WO2007105623A1 - Oligonucleotide-immobilized solid support - Google Patents

Oligonucleotide-immobilized solid support Download PDF

Info

Publication number
WO2007105623A1
WO2007105623A1 PCT/JP2007/054645 JP2007054645W WO2007105623A1 WO 2007105623 A1 WO2007105623 A1 WO 2007105623A1 JP 2007054645 W JP2007054645 W JP 2007054645W WO 2007105623 A1 WO2007105623 A1 WO 2007105623A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
solid phase
group
phase carrier
complementary
Prior art date
Application number
PCT/JP2007/054645
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Sekine
Kohji Seio
Akihiro Ohkubo
Kunihiko Tanaka
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Publication of WO2007105623A1 publication Critical patent/WO2007105623A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Definitions

  • the present invention relates to an oligonucleotide-immobilized solid phase carrier.
  • the oligonucleotide-immobilized solid phase carrier of the present invention is useful for improving the sensitivity of long-chain DNA synthesis and SNPs analysis.
  • Non-patent Document 1 In genetic engineering, the cleavage and ligation of nucleic acid molecules such as DNA is one of the most important basic techniques. Therefore, with the development of genetic engineering, efficient technology for binding DNA is required. Conventionally, the ligation of double-stranded nucleic acids using restriction enzymes has been the main method for linking two types of nucleic acids. In recent years, chemical ligation, a new DNA binding technology, has been reported (Non-patent Document 1).
  • Chemical ligation is the complementary D-complementation of an oligonucleotide having a highly nucleophilic functional group such as phosphate at the 3 ′ end of a nucleic acid and an oligonucleotide having a leaving group such as a iodine at the 5 ′ end.
  • This is a technology that uses NA as a template to synthesize a single oligonucleotide by forming a covalent bond.
  • DNA chips and DNA microarrays are made by aligning a large number of DNA molecules on a substrate such as a glass slide, silicon, or plastic, and are useful for analyzing gene polymorphisms.
  • DNA is grown on microporous glass (CPG), which is the most suitable material for DNA synthesis.
  • CPG microporous glass
  • a probe-on-carrier method has been developed that can be used to detect SNPs for each CPG without separating the probe molecule from the CPG carrier force. This technique not only improves the efficiency of DNA probe strand extension, but also reduces the cost of the DNA chip and allows the probe to be arranged three-dimensionally, so it can be expected to improve detection sensitivity. However, it is desired to further improve the SN p s detection efficiency.
  • Oligonucleotides having a leaving group at the 5 'end are useful for genetic diagnosis, and many methods for their synthesis have been reported (for example, Non-Patent Document 2 and Non-Patent Document 3).
  • the chemical ligation technique as described above is useful for genetic diagnosis to examine gene polymorphism, but it binds an oligonucleotide having a leaving group at the 5 ′ end and forms a duplex.
  • a solid support having a function has not been reported yet.
  • Such a solid phase carrier is useful for genetic diagnosis as described above, and development is desired.
  • Non-Special Reference 1 Yanzheng Xu and Eric T, Kooi, Journal of the American hemical Soc iety, 2000, 122, 9040-9041
  • Non-Patent Document 2 Mathias K. Herrlein, Jeffrey S. Nelson and Robert L. Letsinger, Journal of the American Chemical Society, 1995, 117, 10151-10152
  • Non-Patent Document 3 Yanzheng Xu and Eric T, Kool, Tetrahedron Letters, 1997, 38, 5595
  • an object of the present invention is to provide a solid phase carrier which binds an oligonucleotide having a leaving group at the 5 ′ end and has a double bond forming ability.
  • the present inventors diligently studied, and as a result, have found that the above object can be achieved by a solid phase synthesis method using chemical ligation.
  • the present invention has been made based on the above knowledge, and provides an oligonucleotide-immobilized solid phase carrier bound to an oligonucleotide derivative-forced solid phase carrier represented by the general formula (1). .
  • R 1 represents hydrogen or alkoxy group, which may be the same or different
  • R 2 represents hydrogen, which may be the same or different, or Represents an alkoxy group
  • B represents a natural or non-natural nucleobase, which may be the same or different
  • X represents a leaving group
  • n represents an integer of 2 to 50.
  • the present invention also provides a method for producing an oligonucleotide-immobilized solid phase carrier, wherein the oligonucleotide derivative represented by the general formula (1) is bound to a solid phase carrier,
  • reaction accelerator in the solid phase synthesis of oligonucleotides by the phosphoramidide method 1-hydroxybenzotriazole is used, and a method for producing an oligonucleotide-immobilized solid phase carrier is provided.
  • R 1 represents hydrogen or an alkoxy group, which may be the same or different
  • R 2 represents hydrogen, which may be the same or different, or Represents an alkoxy group
  • B represents a natural or non-natural nucleobase, which may be the same or different
  • X represents a leaving group
  • n represents an integer of 2 to 50.
  • the present invention also relates to the oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a gene with a leaving group bonded to the 5 'end side and fixed to the 3' end side.
  • Complementary oligonucleotide-immobilized solid phase carrier formed by binding a phase carrier and a complementary base sequence portion complementary to a base sequence portion adjacent to a predetermined base sequence portion in the gene
  • An oligonucleotide solid-phase synthesis method which comprises a step of reacting.
  • the present invention also provides a method for binding a leaving group to the 5 'end side of an oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a normal gene, and Complementary oligonucleotide-immobilized solid phase carrier formed by binding a solid phase carrier and an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the predetermined base sequence portion in the normal gene
  • a specific nucleotide sequence in a normal gene and a sample gene corresponding to the sample gene which has a step of reacting with a complementary oligonucleotide having a highly nucleophilic functional group on the 3 ′ end of A method for confirming the difference from the base sequence portion is provided.
  • the present invention also includes a step of chemically synthesizing an oligonucleotide having a predetermined base sequence by coupling base-part unprotected nucleotide phosphoramidides in a predetermined order.
  • Ligated oligonucleotide solid phase is a method of chemically synthesizing a solid phase carrier, which is a nucleotide phosphoramidide having a leaving group at the 5 ′ end as a 5 ′ terminal base unprotected nucleotide phosphoramidide
  • a method using a nucleotide phosphoramidite having a solid phase carrier bound to the 3 ′ end as a 3′-terminal base-unprotected nucleotide phosphoramidide is a method of chemically synthesizing a solid phase carrier, which is a nucleotide phosphoramidide having a leaving group at the 5 ′ end as a 5 ′ terminal base unprotected nucleot
  • the oligonucleotide-immobilized solid phase carrier of the present invention can improve the sensitivity of long-chain DNA synthesis and SNPs analysis.
  • the method for confirming the difference between a predetermined base sequence portion in a normal gene and a corresponding base sequence portion in a sample gene of the present invention has improved sensitivity.
  • the method for chemically synthesizing an oligonucleotide-immobilized solid phase carrier of the present invention can synthesize long-chain DNA and an oligonucleotide-immobilized solid phase carrier that can improve the sensitivity of SNPs analysis. .
  • the oligonucleotide-immobilized solid phase carrier of the present invention is obtained by binding an oligonucleotide derivative represented by the general formula (1) to a solid phase carrier.
  • R 1 and R 2 may be the same or different and each represents hydrogen or an alkoxy group.
  • the alkoxy group an alkoxy group having from 5 to 5 carbon atoms is preferable, for example, a methoxy group, an ethoxy group, a propoxy group, a 1 ptyloxy group, a 1 pentyloxy group, and the like.
  • an alkoxy group in which a part or all of the side chain thereof is cyclized such as a branched alkoxy group such as a group, an isopropyloxy group, a cyclopropyloxy group, a cycloptynoxy group, and a cyclopentyloxy group is also included.
  • B is a natural or non-natural nucleic acid salt which may be the same or different.
  • natural bases such as adenine, cytosine, guanine, thymine, and urashinore are artificial bases such as 7-dazaadenine, 7-dazaadenine, 3-dazaadenine, 6-thioguanine, 2 thiouracil, 2 thiotimine,
  • substituents alkyl, alkenyl, alkynyl, halogen, nitro group, acyl group, hydroxyl group, etc.
  • substituents alkyl, alkenyl, alkynyl, halogen, Nitro group, acyl group, hydroxyl group, etc.
  • 8_position various substituents (alkyl, halogen, nitro group, acyl group, hydroxyl group, etc.) introduced adenine, 8_position, various substituents (alkyl, halogen, nitro group, acyl group, hydroxyl group
  • X represents a leaving group.
  • the leaving group include a halogen atom, a tosyl group, a mesinole group, a trifluoromethanesulfonyl group, and a phosphate group.
  • the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.
  • n represents an integer of 2 to 50, preferably an integer of 5 to 20. Less than n force, chemical ligation is not performed efficiently, while if it is larger than 50, base discrimination ability decreases. However, the accuracy of chemical ligation is reduced.
  • the oligonucleotide-immobilized solid phase carrier of the present invention is bound to a solid phase carrier.
  • a solid phase carrier those conventionally used for producing DNA chips and DNA microarrays can be used without particular limitation.
  • slide glass, porous glass, polystyrene beads, plastic examples thereof include gold particles, gold plates, silver particles and silver plates, glass such as microporous glass and porous glass, magnetic beads having polystyrene, metal and ferrite as the core and the surface covered with glycine methacrylate.
  • the shape of the carrier may be any shape such as a plate (substrate) or a bead.
  • a thermoplastic resin or a thermosetting resin can be used as the plastic.
  • thermoplastic resin examples include linear polyolefins such as polyethylene and polypropylene, cyclic polyolefins, and fluorine-containing resins.
  • linear polyolefins such as polyethylene and polypropylene
  • cyclic polyolefins such as polyethylene and polypropylene
  • fluorine-containing resins such as polyethylene and polypropylene
  • microporous glass a DNA chip that can be used in the probe-on-carrier method can be obtained.
  • the oligonucleotide-immobilized solid phase carrier of the present invention the hydroxyl group at the 3-position of the sugar moiety of the residue on the 3 ′ end side is bonded to the carrier. That is, the oligonucleotide-immobilized solid phase carrier of the present invention is represented by the general formula (2).
  • R 2 , B, X and n are the same as described in the general formula (1), and D represents a solid support.
  • the method for producing the oligonucleotide-immobilized solid phase carrier of the present invention is not particularly limited, but after producing the oligonucleotide derivative represented by the general formula (1), it may be immobilized or adsorbed on the carrier. Each nucleotide unit may be bound. In the latter case, the production can be performed in solid phase synthesis using 1-hydroxybenzotriazole as a reaction accelerator.
  • a method for producing an oligonucleotide-immobilized solid phase carrier in which an oligonucleotide derivative represented by the general formula (1) is bound to a solid phase carrier, As a reaction accelerator in solid phase synthesis of oligonucleotides by the dye method 1-hydroxybenzotriazole is used, and a method for producing an oligonucleotide-immobilized solid phase carrier is provided.
  • the first step is to use a material in which a base on the 3 'end side is fixed to a solid-phase support as a material, and to this, a phosphoroamidide for binding oligonucleotides that contact P
  • 1-hydroxybenzotriazole is used as a reaction accelerator.
  • 1-hydroxybenzotriazole even a compound having a substituent can be used without particular limitation.
  • 6-nitro-1-hydroxybenzotriazole can be used.
  • the amount used is not particularly limited, but is about 0.5 to 40 equivalents, preferably 5 to 35 equivalents, more preferably about 10 to 30 equivalents with respect to phosphoroamidide.
  • this reaction is preferable from the viewpoint that an oligonucleotide derivative having a leaving group can be synthesized with high purity since an oligonucleotide derivative can be produced without requiring a protecting group in the base moiety.
  • the extension reaction by solid-phase synthesis reaction includes steps of detrityl lysis with trichloroacetic acid, etc., washing with dichloromethane, oxidation with iodine, etc., washing with pyridine and the like. In order to improve the reaction yield, the coupling and subsequent washing steps are carried out several times, preferably twice.
  • a leaving group is bonded to the 5 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a gene, and the 3 ′ end side Complementary oligonucleotide-immobilized solid phase carrier (hereinafter, also simply referred to as “complementary oligonucleotide-immobilized solid phase carrier”), which is formed by binding a solid phase carrier to a specific nucleotide sequence in the above gene Complementary oligonucleotide (hereinafter simply referred to as “complementary oligonucleotide”) having a highly nucleophilic functional group on the 3 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the portion (Also called).
  • the above-described oligonucleotide-immobilized solid phase carrier of the present invention is used.
  • the oligo to be synthesized is synthesized.
  • a gene having a nucleotide sequence complementary to the nucleotide chain is prepared.
  • a predetermined (arbitrary site) base sequence portion of this gene is selected, and a leaving group is bound to the 5 ′ end side of the oligonucleotide having a complementary base sequence portion complementary to this base sequence portion.
  • the complementary oligonucleotide-immobilized solid phase carrier is reacted with the complementary oligonucleotide.
  • a functional group having high nucleophilicity is bonded to the 3 'terminal side of the complementary oligonucleotide.
  • Examples of the functional group having high nucleophilicity include a thiophosphate group, a phosphate group, an amino group, a carboxy group, and a thiol group.
  • the 5 ′ end side of the complementary oligonucleotide-immobilized solid phase carrier and the 3 ′ end side of the complementary oligonucleotide are linked by a nucleophilic reaction, and the chain length of the oligonucleotide is increased.
  • the reaction between the complementary oligonucleotide-immobilized solid phase carrier and the complementary oligonucleotide can be carried out in an appropriate buffer, and the reaction temperature and reaction time are 5 to 60 ° C, respectively: ⁇ 48 hours is sufficient.
  • This reaction is a reaction generally called chemical ligation, and the reaction conditions can be appropriately selected depending on the number of bases of the oligonucleotide and the type of base pair.
  • the treatment with ammonia is preferably a treatment for a short time, preferably 6 to 18 hours. By this ammonia treatment, the protecting group of the phosphate group is deprotected.
  • a new second complementary oligonucleotide is further linked by attaching a leaving group to the 5 ′ end side of the complementary oligonucleotide.
  • the second complementary oligonucleotide should also be complementary to the adjacent sequence of the gene that is complementary to the complementary oligonucleotide. As described above, by sequentially using new complementary oligonucleotides, it is possible to extend the chain length of the oligonucleotides, and it is possible to synthesize oligonucleotides of several hundred bases by chemical ligation.
  • the method for confirming the difference with the corresponding base sequence portion in the sample gene of the present invention is a complementary base sequence portion complementary to the predetermined base sequence portion in the normal gene.
  • a complementary oligonucleotide-immobilized solid phase carrier having a leaving group bonded to the 5 ′ end side of an oligonucleotide having a base and a solid phase carrier bonded to the 3 ′ end side, and a predetermined in the normal gene A step of reacting a complementary oligonucleotide having a highly nucleophilic functional group on the 3 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the base sequence portion. It is characterized by that.
  • a functional group having high nucleophilicity is bonded to the 3 'end of the complementary oligonucleotide.
  • the functional group having high nucleophilicity is as described above.
  • the 5 ′ end side of the complementary oligonucleotide-immobilized solid phase carrier and the 3 ′ end side of the oligonucleotide are linked by a nucleophilic reaction, and the oligonucleotide chain length is increased.
  • the reaction between the complementary oligonucleotide-immobilized solid phase carrier and the complementary oligonucleotide can be carried out in an appropriate buffer, and the reaction temperature and reaction time are 5 to 60 ° C and 1 to 5 respectively. 48 hours is sufficient.
  • This reaction is a reaction generally called chemical ligation, and the reaction conditions can be appropriately selected depending on the number of bases of the oligonucleotide and the type of base pair.
  • a labeled compound is bound to a complementary oligonucleotide or contains a radioisotope, and chemical ligation can be detected using this label. If the base sequence part adjacent to the normal base part of the normal gene and the complementary oligonucleotide used are not completely complementary, chemical ligation will not occur and ligation cannot be confirmed by the labeling substance. It is possible to detect the presence of a normal gene and base substitution, deletion or addition.
  • the method of chemically synthesizing an oligonucleotide-immobilized solid phase carrier of the present invention comprises chemically synthesizing an oligonucleotide consisting of a predetermined base sequence by coupling base unprotected nucleotide phosphoramidides in a predetermined order.
  • a method of chemically synthesizing an oligonucleotide-immobilized solid phase carrier comprising an oligonucleotide bound to a solid phase carrier, comprising 5′-terminal base-unprotected nucleotide phosphoramidite, Use a nucleotide phosphoramidite with a leaving group at the 5 'end, as a nucleotide unprotected nucleotide phosphoramidide at the 3' end, and a nucleotide phosphoramidite with a solid phase carrier bound to the 3 'end. Use a dido.
  • the base-unprotected nucleotide phosphoramidide used in this method can be produced, for example, as in the examples described later.
  • the base-unprotected nucleotide phosphoramidide it is commercially available.
  • nucleotide phosphoramidite having a leaving group at the 5 ′ end a commercially available phosphoramidite unit (3′—O— (2-cyanoethyl) represented by the formula (7) can be used.
  • 3′—O— (2-cyanoethyl) represented by the formula (7) can be used.
  • 1 N, N′-diisopropyl phosphoramidite) -5′-odothymidine can be synthesized as follows.
  • Thymidine (1.94 g, 8 mmol) was dissolved in anhydrous dimethylformamide (20 ml), followed by methyl triphenoxyphosphonium iodide (4.35 g, 9.6 mmol). After stirring at room temperature for 10 minutes, methanol (10 ml) was added. Methanol (30 ml) was added again to the mixture obtained by evaporating the solvent under reduced pressure to obtain the desired 5′-odothymidine as crystals.
  • nucleotide phosphoramidite having a solid phase carrier bound to the 3 'end is used as the 3' end base-unprotected nucleotide phosphoramidide.
  • Nucleotide phosphoramidides having a solid phase carrier bound to the terminal can be produced, for example, by binding a solid phase carrier into which 16-hydroxyhexadecanoic acid has been introduced and a base part unprotected nucleotide phosphoramidide. it can.
  • the conditions at this time are not particularly limited, but can be carried out under the conditions described in the examples described later.
  • the oligonucleotide-immobilized solid phase carrier is obtained by coupling base-unprotected nucleotide phosphoramidides in a predetermined order. Is obtained.
  • a conventional method for producing an oligonucleotide using phosphoramidide is used. It is preferable to use 1-hydroxybenzotriazole as a reaction accelerator during the reaction. By including such a reaction accelerator, a side reaction to the base amino group can be suppressed, and hydroxyl group-selective phosphorylation can be performed.
  • the machine synthesis is a microporous glass with 16-hydroxyhexadecanoic acid at the end.
  • CPG CPG
  • a solid phase carrier (10 mg, 10 / i mol / g) was used.
  • Each chain extension cycle was as shown in Table 1 below, and benzoimidazolium triflate (BIT) and 6-nitro-1-hydroxybenzotriazole (nHoBt) were used in the condensation reaction.
  • BIT benzoimidazolium triflate
  • nHoBt 6-nitro-1-hydroxybenzotriazole
  • the obtained probe has a leaving group at the 5 'end and a solid support bound to the 3' end.
  • the phosphoramidide units represented by the formulas (3) to (5) were synthesized by the following method.
  • the phosphoramidite units represented by formulas (6) and (7) were purchased from Spotify Research.
  • the oligonucleotide-immobilized solid phase carrier having the base sequences of SEQ ID NOs: 2 to 4 shown below was synthesized in the same manner as in Example 1. All sequences have a 5 'terminal side and a 3' terminal side with CPG.
  • an oligonucleotide having the base sequence of SEQ ID NO: 5 shown below was synthesized in the same manner as in Example 1.
  • fluorescein is bonded to the 5 ′ end and a thiophosphate group is bonded to the 3 ′ end.
  • an oligonucleotide having the base sequence of SEQ ID NO: 6 was synthesized in the same manner as in Example 1.
  • SEQ ID NO: 6 (ATGAACCAGAGGCCCAT)
  • Oligonucleotide (0.25 nmol) was immersed in an oligonucleotide solution (0.5 mL, 30 mM phosphate buffer (pH 7.2), 1 M NaCl, 50 ⁇ M DTT), and stirred at 40 ° C. for 14 hours. After completion of the stirring, the solid support was washed with water and dried. After drying, the fluorescence brightness of the solid phase carrier was measured at a wavelength of 470 to 490 nm using a fluorescence microscope (manufactured by Olympus Corporation, BX51WI).
  • the fluorescence intensity is about as compared to when using an oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 3. It was 10 times.
  • the base sequence of SEQ ID NO: 2 is complementary to a part of the base sequence of SEQ ID NO: 6, and the base sequence of SEQ ID NO: 3 is different by only one base.
  • a chemical ligation reaction occurs, and when the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 3 is used.
  • the chemical ligation reaction did not occur. Therefore, it was found that a single base mismatch (A-C mismatch) can be detected by this example.
  • the oligonucleotide-immobilized solid phase carrier of the present invention has a double-strand forming ability.
  • the fluorescence intensity was measured in the same manner using the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 4 instead of the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 2. .
  • the base sequence of SEQ ID NO: 2 is complementary to a part of the base sequence of SEQ ID NO: 6, and the base sequence of SEQ ID NO: 3 differs by only two bases.
  • a chemical ligation reaction occurs, and when the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 4 is used.
  • the chemical ligation reaction did not occur. Therefore, it was found that a mismatch of two bases (A-C mismatch, C-A mismatch) can be detected by this example.
  • the ratio of match to single-base mismatch is about 1.9 times. Considering this, it can be seen that the method using the oligonucleotide-immobilized solid phase carrier of the present invention has an accuracy of 5 times or more that of the conventional method.

Abstract

[PROBLEMS] To provide a solid support to which an oligonucleotide having a leaving group at the 5'-terminus is bound and which has a capability of forming a double bond. [MEANS FOR SOLVING PROBLEMS] Disclosed is an oligonucleotide-immobilized solid support which comprises a solid support and an oligonucleotide derivative represented by the general formula (1) bound to the solid support: wherein R1's may be different from or same as one another and independently represent a hydrogen or an alkoxy group; R2's may be different from or same as one another and independently represent a hydrogen or an alkoxy group; B's may be different from or same as one another and independently represent a natural or non-natural nucleotide; X represents a leaving group; and n is an integer of 2 to 50.

Description

明 細 書  Specification
オリゴヌクレオチド固定化固相担体  Oligonucleotide-immobilized solid support
技術分野  Technical field
[0001] 本発明は、オリゴヌクレオチド固定化固相担体に関する。  [0001] The present invention relates to an oligonucleotide-immobilized solid phase carrier.
本発明のオリゴヌクレオチド固定化固相担体は、長鎖 DNAの合成や、 SNPs解析 の感度を向上させるために有用である。  The oligonucleotide-immobilized solid phase carrier of the present invention is useful for improving the sensitivity of long-chain DNA synthesis and SNPs analysis.
背景技術  Background art
[0002] 遺伝子工学において、核酸分子、例えば DNAの切断及び連結は最も重要な基本 的手法の一つである。従って、遺伝子工学の発展に伴い、 DNAを結合させる効率 の良い技術が求められている。 2種類の核酸を連結させる方法としては、従来は制限 酵素を用いた 2本鎖核酸のライゲーシヨンが主な手法であった。近年、新しい DNA 結合技術である、ケミカルライゲーシヨンが報告された (非特許文献 1)。ケミカルライ ゲーシヨンとは、核酸の 3'末端にリン酸等の求核性の高い官能基を有するオリゴヌク レオチドと、 5 '末端にョード等の脱離基を有するオリゴヌクレオチドとを、相補的な D NAをテンプレートとして、共有結合を形成させ、一本のオリゴヌクレオチドを合成する 技術である。  [0002] In genetic engineering, the cleavage and ligation of nucleic acid molecules such as DNA is one of the most important basic techniques. Therefore, with the development of genetic engineering, efficient technology for binding DNA is required. Conventionally, the ligation of double-stranded nucleic acids using restriction enzymes has been the main method for linking two types of nucleic acids. In recent years, chemical ligation, a new DNA binding technology, has been reported (Non-patent Document 1). Chemical ligation is the complementary D-complementation of an oligonucleotide having a highly nucleophilic functional group such as phosphate at the 3 ′ end of a nucleic acid and an oligonucleotide having a leaving group such as a iodine at the 5 ′ end. This is a technology that uses NA as a template to synthesize a single oligonucleotide by forming a covalent bond.
[0003] 一方、ヒトをはじめとする種々の生物のゲノム配列を利用し、医療、製薬をはじめと する様々な分野でゲノム配列を用いる試みが活発に行われている。その中でも、ゲノ ム配列中の 1塩基置換である遺伝子多型は、遺伝子と疾患との関連、又は医薬品感 受性との関連性を調べるという観点から解析が進められている。このような解析から、 個々の遺伝子多型と疾患との関連や医薬品の感受性との関連を明らかにし、遺伝子 診断といわれる検査が行われるようになつてきた。  [0003] On the other hand, attempts have been actively made to use genome sequences in various fields such as medicine and pharmaceuticals using genome sequences of various organisms including humans. Among them, genetic polymorphism, which is a single nucleotide substitution in the genome sequence, is being analyzed from the viewpoint of investigating the relationship between genes and diseases or drug sensitivity. Such analysis has revealed the relationship between individual genetic polymorphisms and diseases and the sensitivity of drugs, and tests called genetic diagnosis have been conducted.
[0004] 上述のような遺伝子診断を行なう技術として、 DNAチップや DNAマイクロアレイ等 が知られている。 DNAチップや DNAマイクロアレイは、スライドガラス、シリコン、プラ スチック等の基板に、多数の DNA分子を整列させたものであり、遺伝子の多型性の 解析に有用なものである。  [0004] As a technique for performing the genetic diagnosis as described above, a DNA chip, a DNA microarray, and the like are known. DNA chips and DNA microarrays are made by aligning a large number of DNA molecules on a substrate such as a glass slide, silicon, or plastic, and are useful for analyzing gene polymorphisms.
一方、 DNA合成に最も適した素材とされる微小多孔質ガラス(CPG)上で DNAプ ローブを合成した後、プローブ分子を CPG担体力 切り離すことなぐ CPGごと SNP s検出に用いられるプローブオンキャリア法が開発されている。この手法では、 DNA プローブの鎖伸張効率が向上するのみならず、 DNAチップの低コスト化やプローブ を三次元的に配置することができるため、検出感度の向上が期待できる。しかし、 SN ps検出効率を更に向上させることが望まれている。 On the other hand, DNA is grown on microporous glass (CPG), which is the most suitable material for DNA synthesis. After synthesizing the lobe, a probe-on-carrier method has been developed that can be used to detect SNPs for each CPG without separating the probe molecule from the CPG carrier force. This technique not only improves the efficiency of DNA probe strand extension, but also reduces the cost of the DNA chip and allows the probe to be arranged three-dimensionally, so it can be expected to improve detection sensitivity. However, it is desired to further improve the SN p s detection efficiency.
[0005] 5 '末端に脱離基を有するオリゴヌクレオチドは遺伝子診断に有用なものであり、そ の合成方法は多数報告されている (例えば、非特許文献 2及び非特許文献 3)。また 、上述したような、ケミカルライゲーシヨンの技術は、遺伝子多型を調べる遺伝子診断 に有用なものであるが、 5 '末端に脱離基を有するオリゴヌクレオチドを結合し、かつ 二重鎖形成能を有する固相担体は未だ報告されていない。  [0005] Oligonucleotides having a leaving group at the 5 'end are useful for genetic diagnosis, and many methods for their synthesis have been reported (for example, Non-Patent Document 2 and Non-Patent Document 3). In addition, the chemical ligation technique as described above is useful for genetic diagnosis to examine gene polymorphism, but it binds an oligonucleotide having a leaving group at the 5 ′ end and forms a duplex. A solid support having a function has not been reported yet.
このような固相担体は、上述したような遺伝子診断に有用であり、開発が望まれて いる。  Such a solid phase carrier is useful for genetic diagnosis as described above, and development is desired.
[0006] 非特午文献 1: Yanzheng Xu and Eric T, Kooi, Journal of the Americanし hemical Soc iety, 2000, 122, 9040-9041  [0006] Non-Special Reference 1: Yanzheng Xu and Eric T, Kooi, Journal of the American hemical Soc iety, 2000, 122, 9040-9041
非特許文献 2 : Mathias K. Herrlein, Jeffrey S. Nelson and Robert L. Letsinger, Jour nal of the American Chemical Society, 1995, 117, 10151-10152  Non-Patent Document 2: Mathias K. Herrlein, Jeffrey S. Nelson and Robert L. Letsinger, Journal of the American Chemical Society, 1995, 117, 10151-10152
非特許文献 3 : Yanzheng Xu and Eric T, Kool, Tetrahedron Letters, 1997, 38, 5595 Non-Patent Document 3: Yanzheng Xu and Eric T, Kool, Tetrahedron Letters, 1997, 38, 5595
-5598 -5598
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 上述したような 5 '末端に脱離基を有するオリゴヌクレオチドを結合した固相担体を、 一般的な DNA合成方法により製造した場合、 5 '末端に存在する脱離基が脱離して しまう力、又はオリゴヌクレオチド自体が脱離してしまう。 [0007] When a solid phase carrier to which an oligonucleotide having a leaving group at the 5 'end as described above is bound by a general DNA synthesis method, the leaving group present at the 5' end is eliminated. Or the oligonucleotide itself will be detached.
従って、本発明の目的は、 5 '末端に脱離基を有するオリゴヌクレオチドを結合し、 かつ二重結合形成能を有する固相担体を提供することにある。  Accordingly, an object of the present invention is to provide a solid phase carrier which binds an oligonucleotide having a leaving group at the 5 ′ end and has a double bond forming ability.
課題を解決するための手段  Means for solving the problem
[0008] 上記目的を達成するため、本発明者らは鋭意検討した結果、ケミカルライグーショ ンを用いた固相合成法により上記目的を達成し得るという知見を得た。 本発明は、上記知見に基づいてなされたものであり、一般式(1)で表わされるオリゴ ヌクレオチド誘導体力 固相担体に結合してなる、オリゴヌクレオチド固定化固相担 体を提供するものである。 [0008] In order to achieve the above object, the present inventors diligently studied, and as a result, have found that the above object can be achieved by a solid phase synthesis method using chemical ligation. The present invention has been made based on the above knowledge, and provides an oligonucleotide-immobilized solid phase carrier bound to an oligonucleotide derivative-forced solid phase carrier represented by the general formula (1). .
[化 1]  [Chemical 1]
Figure imgf000005_0001
Figure imgf000005_0001
[0010] (上記式中、 R1は、同一であっても異なっていてもよぐそれぞれ水素又はアルコキシ 基を表わし、 R2は、同一であっても異なっていてもよぐそれぞれ水素、又はアルコキ シ基を表わし、 Bは、同一であっても異なっていてもよぐそれぞれ天然又は非天然 の核酸塩基を表わし、 Xは脱離基を表し、 nは 2〜50の整数を表す。 ) [In the above formula, R 1 represents hydrogen or alkoxy group, which may be the same or different, and R 2 represents hydrogen, which may be the same or different, or Represents an alkoxy group, B represents a natural or non-natural nucleobase, which may be the same or different, X represents a leaving group, and n represents an integer of 2 to 50.)
[0011] また、本発明は、一般式(1)で表わされるオリゴヌクレオチド誘導体が、固相担体に 結合してなる、オリゴヌクレオチド固定化固相担体の製造方法であって、  [0011] The present invention also provides a method for producing an oligonucleotide-immobilized solid phase carrier, wherein the oligonucleotide derivative represented by the general formula (1) is bound to a solid phase carrier,
ホスホロアミダイド法によるオリゴヌクレオチドの固相合成において、反応促進剤とし て 1—ヒドロキシベンゾトリアゾールを用いることを特徴とする、オリゴヌクレオチド固定 化固相担体の製造方法を提供する。 As a reaction accelerator in the solid phase synthesis of oligonucleotides by the phosphoramidide method. 1-hydroxybenzotriazole is used, and a method for producing an oligonucleotide-immobilized solid phase carrier is provided.
[化 2]  [Chemical 2]
B B
Figure imgf000006_0001
Figure imgf000006_0001
[0013] (上記式中、 R1は、同一であっても異なっていてもよぐそれぞれ水素又はアルコキシ 基を表わし、 R2は、同一であっても異なっていてもよぐそれぞれ水素、又はアルコキ シ基を表わし、 Bは、同一であっても異なっていてもよぐそれぞれ天然又は非天然 の核酸塩基を表わし、 Xは脱離基を表し、 nは 2〜50の整数を表す。 ) (In the above formula, R 1 represents hydrogen or an alkoxy group, which may be the same or different, and R 2 represents hydrogen, which may be the same or different, or Represents an alkoxy group, B represents a natural or non-natural nucleobase, which may be the same or different, X represents a leaving group, and n represents an integer of 2 to 50.)
[0014] また、本発明は、遺伝子中の所定の塩基配列部分に相補的な相補性塩基配列部 分を有するオリゴヌクレオチドの 5'末端側に脱離基を結合し、 3 '末端側に固相担体 を結合してなる、相補性オリゴヌクレオチド固定化固相担体と、上記遺伝子中の所定 の塩基配列部分に隣接する塩基配列部分に相補的な相補性塩基配列部分を有す るオリゴヌクレオチドの 3 '末端側に求核性の高い官能基を有する、相補性オリゴヌク レオチドとを [0014] The present invention also relates to the oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a gene with a leaving group bonded to the 5 'end side and fixed to the 3' end side. Complementary oligonucleotide-immobilized solid phase carrier formed by binding a phase carrier and a complementary base sequence portion complementary to a base sequence portion adjacent to a predetermined base sequence portion in the gene A complementary oligonucleotide having a highly nucleophilic functional group at the 3 'end of the oligonucleotide
反応させる工程を有する、オリゴヌクレオチド固相合成方法を提供する。  An oligonucleotide solid-phase synthesis method is provided, which comprises a step of reacting.
[0015] また、本発明は、正常遺伝子中の所定の塩基配列部分に相補的な相補性塩基配 列部分を有するオリゴヌクレオチドの 5'末端側に脱離基を結合し、 3 '末端側に固相 担体を結合してなる、相補性オリゴヌクレオチド固定化固相担体と、上記正常遺伝子 中の所定の塩基配列部分に隣接する塩基配列部分に相補的な相補性塩基配列部 分を有するオリゴヌクレオチドの 3'末端側に求核性の高い官能基を有する、相補性 オリゴヌクレオチドとを反応させる工程を有することを特徴とする、正常遺伝子中の所 定の塩基配列部分と試料遺伝子の中の対応塩基配列部分との異同を確認する方法 を提供する。 [0015] The present invention also provides a method for binding a leaving group to the 5 'end side of an oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a normal gene, and Complementary oligonucleotide-immobilized solid phase carrier formed by binding a solid phase carrier and an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the predetermined base sequence portion in the normal gene A specific nucleotide sequence in a normal gene and a sample gene corresponding to the sample gene, which has a step of reacting with a complementary oligonucleotide having a highly nucleophilic functional group on the 3 ′ end of A method for confirming the difference from the base sequence portion is provided.
また、本発明は、塩基部無保護ヌクレオチドホスホロアミダイドを所定の順番でカツ プリングすることにより、所定の塩基配列からなる、オリゴヌクレオチドを化学合成する 工程を含む、オリゴヌクレオチドが固相担体に結合してなるオリゴヌクレオチド固相化 固相担体を化学合成する方法であって、 5 '末端側の塩基部無保護ヌクレオドホスホ ロアミダイドとして、 5'末端に脱離基を有するヌクレオチドホスホロアミダイドを用い、 3 '末端側の塩基部無保護ヌクレオチドホスホロアミダイドとして、 3 '末端に固相担体が 結合したヌクレオチドホスホロアミダイドを用いる方法を提供する。  The present invention also includes a step of chemically synthesizing an oligonucleotide having a predetermined base sequence by coupling base-part unprotected nucleotide phosphoramidides in a predetermined order. Ligated oligonucleotide solid phase is a method of chemically synthesizing a solid phase carrier, which is a nucleotide phosphoramidide having a leaving group at the 5 ′ end as a 5 ′ terminal base unprotected nucleotide phosphoramidide And a method using a nucleotide phosphoramidite having a solid phase carrier bound to the 3 ′ end as a 3′-terminal base-unprotected nucleotide phosphoramidide.
発明の効果  The invention's effect
[0016] 本発明のオリゴヌクレオチド固定化固相担体は、長鎖 DNAの合成や、 SNPs解析 の感度を向上させることができる。  [0016] The oligonucleotide-immobilized solid phase carrier of the present invention can improve the sensitivity of long-chain DNA synthesis and SNPs analysis.
本発明の正常遺伝子中の所定の塩基配列部分と試料遺伝子の中の対応塩基配 列部分との異同を確認する方法は、感度が向上したものである。  The method for confirming the difference between a predetermined base sequence portion in a normal gene and a corresponding base sequence portion in a sample gene of the present invention has improved sensitivity.
本発明のオリゴヌクレオチド固相化固相担体を化学合成する方法は、長鎖 DNAの 合成や、 SNPs解析の感度を向上させることのできるオリゴヌクレオチド固相化固相 担体の合成をすることができる。  The method for chemically synthesizing an oligonucleotide-immobilized solid phase carrier of the present invention can synthesize long-chain DNA and an oligonucleotide-immobilized solid phase carrier that can improve the sensitivity of SNPs analysis. .
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明のオリゴヌクレオチド固定化固相担体について説明する。 本発明のオリゴヌクレオチド固定化固相担体は、一般式(1)で表わされるオリゴヌク レオチド誘導体が、固相担体に結合してなる。 [0017] Hereinafter, the oligonucleotide-immobilized solid phase carrier of the present invention will be described. The oligonucleotide-immobilized solid phase carrier of the present invention is obtained by binding an oligonucleotide derivative represented by the general formula (1) to a solid phase carrier.
[化 3]  [Chemical 3]
Figure imgf000008_0001
Figure imgf000008_0001
上記一般式(1)において、 R1及び R2は、同一であっても異なっていてもよぐそれ ぞれ水素又はアルコキシ基を表わす。アルコキシ基としては、炭素数が:!〜 5個のァ ルコキシ基が好ましぐ例えば、メトキシ基、エトキシ基、プロポキシ基、 1 プチルォ キシ基、 1 ペンチルォキシ基等が挙げられ、また、 2—プロピルォキシ基、イソプチ ルォキシ基等のように分枝したアルコキシ基、シクロプロピルォキシ基、シクロプチノレ ォキシ基、シクロペンチルォキシ基等の、側鎖の一部もしくは全部が環化したアルコ キシ基も含む。 In the general formula (1), R 1 and R 2 may be the same or different and each represents hydrogen or an alkoxy group. As the alkoxy group, an alkoxy group having from 5 to 5 carbon atoms is preferable, for example, a methoxy group, an ethoxy group, a propoxy group, a 1 ptyloxy group, a 1 pentyloxy group, and the like. In addition, an alkoxy group in which a part or all of the side chain thereof is cyclized, such as a branched alkoxy group such as a group, an isopropyloxy group, a cyclopropyloxy group, a cycloptynoxy group, and a cyclopentyloxy group is also included.
また、 Bは、同一であっても異なっていてもよぐそれぞれ天然又は非天然の核酸塩 基を表わす。具体的には、天然のアデニン、シトシン、グァニン、チミン、ゥラシノレのほ かに人工塩基である 7—デァザアデニン、 7—デァザ 8—ァザアデニン、 3—デァ ザアデニン、 6 チォグァニン、 2 チォゥラシル、 2 チォチミン、 7位に種々の置換 基(アルキル、アルケニル、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が 導入された 7_デァザアデニン、 8位に種々の置換基(アルキル、アルケニル、アルキ ニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入されたアデニン、 8位に種々 の置換基(アルキル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入された 7_デ ァザアデニン、 7位及び 8位に種々の置換基(アルキル、アルケニル、アルキニル、ハ ロゲン、ニトロ基、アシノレ基、水酸基等)が導入された 7_デァザアデニン、 7—デァ ザグァニン、 7—デァザ一 8—ァザグァニン、 3—デァザグァニン、 7位に種々の置換 基(アルキル、アルケニル、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が 導入された 7—デァザグァニン、 8位に種々の置換基(アルキル、アルケニル、アルキ ニル、ハロゲン、ニトロ基、ァシル基、水酸基)を導入したグァニン、 8位に種々の置換 基(アルキル、アルケニル、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が 導入された 7—デァザグァニン、 7位と 8位に種々の置換基(アルキル、アルケニル、 アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入された 7—デァザグァ ニン、 5位に種々の官能基(アルキル、アルケニル、アルキニル、ハロゲン、ニトロ基、 ァシル基、水酸基等)が導入されたシトシン、シユードイソシトシン、 1位に種々の官能 基(アルキル、アルケニル、アルキニル、アシノレ基、水酸基等)が導入されたシユード イソシトシン、 5位に種々の官能基(アルキル、アルケニル、ァノレキニル、ハロゲン、二 トロ基、ァシル基、水酸基等)が導入されたゥラシル、シユードウラシル、 1位に種々の 官能基(アルキル、アルケニル、アルキニル、ァシル基、水酸基等)が導入されたシュ 一ドウラシル等が挙げられる。 B is a natural or non-natural nucleic acid salt which may be the same or different. Represents a group. Specifically, natural bases such as adenine, cytosine, guanine, thymine, and urashinore are artificial bases such as 7-dazaadenine, 7-dazaadenine, 3-dazaadenine, 6-thioguanine, 2 thiouracil, 2 thiotimine, Various substituents (alkyl, alkenyl, alkynyl, halogen, nitro group, acyl group, hydroxyl group, etc.) introduced at the 7-position, 7_deazaadenine, and various substituents at the 8-position (alkyl, alkenyl, alkynyl, halogen, Nitro group, acyl group, hydroxyl group, etc.) introduced adenine, 8_position, various substituents (alkyl, halogen, nitro group, acyl group, hydroxyl group, etc.) introduced 7_ diazaadenine, 7th and 8th position Introduced various substituents (alkyl, alkenyl, alkynyl, halogen, nitro group, acylol group, hydroxyl group, etc.) Denine, 7-Dazaguanine, 7-Daza-1-8-azaguanine, 3-Dazaguanine, various substituents (alkyl, alkenyl, alkynyl, halogen, nitro group, acyl group, hydroxyl group, etc.) were introduced at position 7 —Dazaguanine, guanine with various substituents (alkyl, alkenyl, alkynyl, halogen, nitro, acyl, hydroxyl group) introduced at the 8-position, various substituents (alkyl, alkenyl, alkynyl, halogen, nitro at the 8-position Group, acyl group, hydroxyl group, etc.) introduced 7-deazaguanine, 7- and 8-position various substituents (alkyl, alkenyl, alkynyl, halogen, nitro group, acyl group, hydroxyl group, etc.) introduced 7- Diazaguanine, various functional groups at the 5-position (alkyl, alkenyl, alkynyl, halogen, nitro group, acyl group, hydroxyl group, etc.) Introduced cytosine, pseudoisocytosine, various functional groups (alkyl, alkenyl, alkynyl, asinole group, hydroxyl group, etc.) introduced at the 1-position, various functional groups (alkyl, alkenyl, ananolinyl at the 5-position) Such as uracil, pseudouracil, etc., into which various functional groups (alkyl, alkenyl, alkynyl, acyl group, hydroxyl group, etc.) are introduced at the 1-position. Can be mentioned.
また、 Xは脱離基を表す。脱離基としては、ハロゲン原子、トシル基、メシノレ基、トリフ ルォロメタンスルホニル基、又はリン酸基等があげられる。ハロゲン原子としては、塩 素原子、臭素原子、ヨウ素原子等があげられる。  X represents a leaving group. Examples of the leaving group include a halogen atom, a tosyl group, a mesinole group, a trifluoromethanesulfonyl group, and a phosphate group. Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.
nは、 2〜50の整数を表し、好ましくは 5〜20の整数を表す。 n力 より小さレ、と、ケミ カルライゲーシヨンが効率よく行われず、一方、 50より大きくいと、塩基識別能が低下 し、ケミカルライゲーシヨンの精度が低下する。 n represents an integer of 2 to 50, preferably an integer of 5 to 20. Less than n force, chemical ligation is not performed efficiently, while if it is larger than 50, base discrimination ability decreases. However, the accuracy of chemical ligation is reduced.
[0020] 本発明のオリゴヌクレオチド固定化固相担体は、固相担体に結合してなる。固相担 体としては、 DNAチップ、 DNAマイクロアレイを製造するために従来より用いられて レ、るものが特に制限なく用いることができ、例えば、スライドガラス、ポーラスガラス、ポ リスチレンビーズ、プラスチック、金粒子、金板、銀粒子及び銀板、微小多孔質ガラス 、ポーラスガラス等のガラス、ポリスチレン、金属、フェライトを芯にグリシンメタタリレー トで表面を覆った磁性ビーズ等が挙げられる。また、担体の形状は、板状(基板状)、 ビーズ状等、どのような形状のものであってもよレ、。上記プラスチックとしては、例えば 、熱可塑性樹脂、熱硬化性樹脂を用いることができる。熱可塑性樹脂としては例えば ポリエチレン、ポリプロピレン等の直鎖状ポリオレフイン、環状ポリオレフイン、含フッ素 樹脂等が挙げられる。微小多孔質ガラスを用いた場合、プローブオンキャリア法に用 レ、ることのできる DNAチップを得ることができる。  [0020] The oligonucleotide-immobilized solid phase carrier of the present invention is bound to a solid phase carrier. As the solid phase carrier, those conventionally used for producing DNA chips and DNA microarrays can be used without particular limitation. For example, slide glass, porous glass, polystyrene beads, plastic, Examples thereof include gold particles, gold plates, silver particles and silver plates, glass such as microporous glass and porous glass, magnetic beads having polystyrene, metal and ferrite as the core and the surface covered with glycine methacrylate. The shape of the carrier may be any shape such as a plate (substrate) or a bead. For example, a thermoplastic resin or a thermosetting resin can be used as the plastic. Examples of the thermoplastic resin include linear polyolefins such as polyethylene and polypropylene, cyclic polyolefins, and fluorine-containing resins. When microporous glass is used, a DNA chip that can be used in the probe-on-carrier method can be obtained.
本発明のオリゴヌクレオチド固定化固相担体は、 3 '末端側の残基の糖部分の 3位 の水酸基が担体と結合している。すなわち、本発明のオリゴヌクレオチド固定化固相 担体は、一般式(2)で表わされる。  In the oligonucleotide-immobilized solid phase carrier of the present invention, the hydroxyl group at the 3-position of the sugar moiety of the residue on the 3 ′ end side is bonded to the carrier. That is, the oligonucleotide-immobilized solid phase carrier of the present invention is represented by the general formula (2).
[0021] [化 4] [0021] [Chemical 4]
Figure imgf000011_0001
Figure imgf000011_0001
D D
[0022] 一般式(2)において、
Figure imgf000011_0002
R2、 B、 X及び nは、一般式(1)で説明したのと同様であ り、 Dは固相担体を表す。
[0022] In the general formula (2),
Figure imgf000011_0002
R 2 , B, X and n are the same as described in the general formula (1), and D represents a solid support.
本発明のオリゴヌクレオチド固定化固相担体の製造方法に特に制限はないが、一 般式(1)で表わされるオリゴヌクレオチド誘導体を製造した後、担体に固定又は吸着 させてもょレ、が、ヌクレオチド単位 1個毎に結合させていってもよい。後者の場合、製 造は固相合成において、反応促進剤として 1—ヒドロキシベンゾトリアゾールを用いて 行うことができる。  The method for producing the oligonucleotide-immobilized solid phase carrier of the present invention is not particularly limited, but after producing the oligonucleotide derivative represented by the general formula (1), it may be immobilized or adsorbed on the carrier. Each nucleotide unit may be bound. In the latter case, the production can be performed in solid phase synthesis using 1-hydroxybenzotriazole as a reaction accelerator.
[0023] すなわち、本発明によれば、一般式(1)で表わされるオリゴヌクレオチド誘導体が、 固相担体に結合してなる、オリゴヌクレオチド固定化固相担体の製造方法であって、 ホスホロアミダイド法によるオリゴヌクレオチドの固相合成において、反応促進剤とし て 1—ヒドロキシベンゾトリアゾールを用いることを特徴とする、オリゴヌクレオチド固定 化固相担体の製造方法が提供される。 [0023] That is, according to the present invention, there is provided a method for producing an oligonucleotide-immobilized solid phase carrier in which an oligonucleotide derivative represented by the general formula (1) is bound to a solid phase carrier, As a reaction accelerator in solid phase synthesis of oligonucleotides by the dye method 1-hydroxybenzotriazole is used, and a method for producing an oligonucleotide-immobilized solid phase carrier is provided.
固相合成法においては、最初の段階として、固相担体に 3'末端側の塩基が固定さ れたものを材料として用レ、、ここに、 P 接するオリゴヌクレオチドを結合するためのホス ホロアミダイドを結合させるが、このときに、反応促進剤として、 1—ヒドロキシベンゾトリ ァゾールを用いて行なう。なお、 1—ヒドロキシベンゾトリアゾールとしては、置換基を 有している化合物であっても特に制限なく用いることができる。例えば、 6—ニトロ一 1 —ヒドロキシベンゾトリアゾールが使用可能である。使用量は、特に制限はないが、ホ スホロアミダイドに対し、 0. 5〜40等量程度、好ましくは 5〜35等量、更に好ましくは 10〜30等量程度が用いられる。また、この反応によれば、塩基部に保護基を必要と せずにオリゴヌクレオチド誘導体を製造できるので、脱離基を有するオリゴヌクレオチ ド誘導体を高純度で合成できる点から好ましい。  In the solid-phase synthesis method, the first step is to use a material in which a base on the 3 'end side is fixed to a solid-phase support as a material, and to this, a phosphoroamidide for binding oligonucleotides that contact P At this time, 1-hydroxybenzotriazole is used as a reaction accelerator. As 1-hydroxybenzotriazole, even a compound having a substituent can be used without particular limitation. For example, 6-nitro-1-hydroxybenzotriazole can be used. The amount used is not particularly limited, but is about 0.5 to 40 equivalents, preferably 5 to 35 equivalents, more preferably about 10 to 30 equivalents with respect to phosphoroamidide. In addition, this reaction is preferable from the viewpoint that an oligonucleotide derivative having a leaving group can be synthesized with high purity since an oligonucleotide derivative can be produced without requiring a protecting group in the base moiety.
なお、固相合成反応により伸張反応においては、トリクロ口酢酸等による脱トリチル ィ匕、ジクロロメタンによる洗浄、ヨウ素等による酸化、ピリジン等による洗浄の工程が含 まれる。反応収率を向上させるためには、カップリングとその後の洗浄の工程を複数 回、好ましくは 2回行なう。  The extension reaction by solid-phase synthesis reaction includes steps of detrityl lysis with trichloroacetic acid, etc., washing with dichloromethane, oxidation with iodine, etc., washing with pyridine and the like. In order to improve the reaction yield, the coupling and subsequent washing steps are carried out several times, preferably twice.
[0024] 次に、本発明のオリゴヌクレオチド固相合成方法について説明する。 Next, the oligonucleotide solid phase synthesis method of the present invention will be described.
本発明のオリゴヌクレオチド固相合成方法は、遺伝子中の所定の塩基配列部分に 相補的な相補性塩基配列部分を有するオリゴヌクレオチドの 5'末端側に脱離基を結 合し、 3'末端側に固相担体を結合してなる、相補性オリゴヌクレオチド固定化固相担 体 (以下、単に、「相補性オリゴヌクレオチド固定化固相担体」ともいう)と、上記遺伝 子中の所定の塩基配列部分に隣接する塩基配列部分に相補的な相補性塩基配列 部分を有するオリゴヌクレオチドの 3'末端側に求核性の高い官能基を有する、相補 性オリゴヌクレオチド(以下、単に「相補性オリゴヌクレオチド」ともいう)とを反応させる 工程を有する。  In the oligonucleotide solid phase synthesis method of the present invention, a leaving group is bonded to the 5 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a gene, and the 3 ′ end side Complementary oligonucleotide-immobilized solid phase carrier (hereinafter, also simply referred to as “complementary oligonucleotide-immobilized solid phase carrier”), which is formed by binding a solid phase carrier to a specific nucleotide sequence in the above gene Complementary oligonucleotide (hereinafter simply referred to as “complementary oligonucleotide”) having a highly nucleophilic functional group on the 3 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the portion (Also called).
上記相補性オリゴヌクレオチド固定化固相担体としては、上述した、本発明のオリゴ ヌクレオチド固定化固相担体が用いられる。  As the complementary oligonucleotide-immobilized solid phase carrier, the above-described oligonucleotide-immobilized solid phase carrier of the present invention is used.
[0025] 本発明のオリゴヌクレオチド固相合成方法においては、まず、合成しょうとするオリ ゴヌクレオチド鎖と相補的な塩基配列の遺伝子を準備する。次いで、この遺伝子の所 定の (任意の部位)塩基配列部分を選択し、この塩基配列部分に相補的な相補性塩 基配列部分を有するオリゴヌクレオチドの 5 '末端側に脱離基を結合し、 3 '末端側に 固相担体を結合してなる、相補性オリゴヌクレオチド固定化固相担体を準備する。次 いで、この相補性オリゴヌクレオチド固定化固相担体と、相補性オリゴヌクレオチドと を反応させる。 [0025] In the oligonucleotide solid-phase synthesis method of the present invention, first, the oligo to be synthesized is synthesized. A gene having a nucleotide sequence complementary to the nucleotide chain is prepared. Next, a predetermined (arbitrary site) base sequence portion of this gene is selected, and a leaving group is bound to the 5 ′ end side of the oligonucleotide having a complementary base sequence portion complementary to this base sequence portion. Prepare a complementary oligonucleotide-immobilized solid phase carrier having a solid phase carrier bound to the 3 ′ end. Next, the complementary oligonucleotide-immobilized solid phase carrier is reacted with the complementary oligonucleotide.
[0026] 相補性オリゴヌクレオチドの 3 '末端側には求核性の高い官能基が結合している。  [0026] A functional group having high nucleophilicity is bonded to the 3 'terminal side of the complementary oligonucleotide.
求核性の高い官能基としては、例えば、チォリン酸基、リン酸基、アミノ基、カルボキ シル基、チオール基等が挙げられる。この反応によって、上記相補性オリゴヌクレオ チド固定化固相担体の 5 '末端側と上記相補性オリゴヌクレオチドの 3 '末端側とが求 核反応によって連結し、オリゴヌクレオチドの鎖長が長くなる。上記相補性オリゴヌク レオチド固定化固相担体と、相補性オリゴヌクレオチドとの反応は、適当な緩衝液中 で実施することができ、反応温度、反応時間は、それぞれ 5〜60°C、及び:!〜 48時 間程度でよい。この反応は、一般にケミカルライゲーシヨンと呼ばれる反応であり、反 応条件は、オリゴヌクレオチドの塩基数や塩基対の種類によって適宜選択することが できる。なお、反応終了後、アンモニア処理を行うことが好ましい。アンモニア処理は 、短時間の処理が好ましぐ好ましくは 6〜: 18時間である。このアンモニア処理によつ て、リン酸基の保護基の脱保護が行われる。  Examples of the functional group having high nucleophilicity include a thiophosphate group, a phosphate group, an amino group, a carboxy group, and a thiol group. By this reaction, the 5 ′ end side of the complementary oligonucleotide-immobilized solid phase carrier and the 3 ′ end side of the complementary oligonucleotide are linked by a nucleophilic reaction, and the chain length of the oligonucleotide is increased. The reaction between the complementary oligonucleotide-immobilized solid phase carrier and the complementary oligonucleotide can be carried out in an appropriate buffer, and the reaction temperature and reaction time are 5 to 60 ° C, respectively: ~ 48 hours is sufficient. This reaction is a reaction generally called chemical ligation, and the reaction conditions can be appropriately selected depending on the number of bases of the oligonucleotide and the type of base pair. In addition, it is preferable to perform ammonia treatment after completion | finish of reaction. The treatment with ammonia is preferably a treatment for a short time, preferably 6 to 18 hours. By this ammonia treatment, the protecting group of the phosphate group is deprotected.
[0027] 本発明のオリゴヌクレオチド固相合成方法においては、上記相補性オリゴヌクレオ チドの 5 '末端側に脱離基を結合させておくことによって、新たな第 2の相補性オリゴ ヌクレオチドを更に連結させることができる。なお、第 2の相補性オリゴヌクレオチドも、 相補性オリゴヌクレオチドに対して相補的な錡型となる遺伝子の隣接する配列に相 補性のものを使用する。このように、新たな相補性オリゴヌクレオチドを順に用いること により、オリゴヌクレオチドの鎖長を延長することが可能となり、数百塩基のオリゴヌク レオチドをケミカルライゲーシヨンによって合成することができる。  In the oligonucleotide solid-phase synthesis method of the present invention, a new second complementary oligonucleotide is further linked by attaching a leaving group to the 5 ′ end side of the complementary oligonucleotide. Can be made. The second complementary oligonucleotide should also be complementary to the adjacent sequence of the gene that is complementary to the complementary oligonucleotide. As described above, by sequentially using new complementary oligonucleotides, it is possible to extend the chain length of the oligonucleotides, and it is possible to synthesize oligonucleotides of several hundred bases by chemical ligation.
[0028] 次に、本発明の試料遺伝子の中の対応塩基配列部分との異同を確認する方法に ついて説明する。本発明の試料遺伝子の中の対応塩基配列部分との異同を確認す る方法は、正常遺伝子中の所定の塩基配列部分に相補的な相補性塩基配列部分 を有するオリゴヌクレオチドの 5'末端側に脱離基を結合し、 3 '末端側に固相担体を 結合してなる、相補性オリゴヌクレオチド固定化固相担体と、上記正常遺伝子中の所 定の塩基配列部分に隣接する塩基配列部分に相補的な相補性塩基配列部分を有 するオリゴヌクレオチドの 3 '末端側に求核性の高い官能基を有する、相補性オリゴヌ クレオチドとを反応させる工程を有することを特徴とする。 [0028] Next, a method for confirming the difference from the corresponding nucleotide sequence in the sample gene of the present invention will be described. The method for confirming the difference with the corresponding base sequence portion in the sample gene of the present invention is a complementary base sequence portion complementary to the predetermined base sequence portion in the normal gene. A complementary oligonucleotide-immobilized solid phase carrier having a leaving group bonded to the 5 ′ end side of an oligonucleotide having a base and a solid phase carrier bonded to the 3 ′ end side, and a predetermined in the normal gene A step of reacting a complementary oligonucleotide having a highly nucleophilic functional group on the 3 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the base sequence portion. It is characterized by that.
[0029] 本方法においては、相補性オリゴヌクレオチドの 3 '末端側には求核性の高い官能 基が結合している。求核性の高い官能基としては、上述した通りである。この反応に よって、上記相補性オリゴヌクレオチド固定化固相担体の 5'末端側と上記オリゴヌク レオチドの 3 '末端側とが求核反応によって連結し、オリゴヌクレオチドの鎖長が長くな る。上記相補性オリゴヌクレオチド固定化固相担体と、相補性オリゴヌクレオチドとの 反応は、適当な緩衝液中で実施することができ、反応温度、反応時間は、それぞれ 5 〜60°C、及び 1〜48時間程度でよい。この反応は、一般にケミカルライゲーシヨンと 呼ばれる反応であり、反応条件は、オリゴヌクレオチドの塩基数や塩基対の種類によ つて適宜選択することができる。 [0029] In this method, a functional group having high nucleophilicity is bonded to the 3 'end of the complementary oligonucleotide. The functional group having high nucleophilicity is as described above. By this reaction, the 5 ′ end side of the complementary oligonucleotide-immobilized solid phase carrier and the 3 ′ end side of the oligonucleotide are linked by a nucleophilic reaction, and the oligonucleotide chain length is increased. The reaction between the complementary oligonucleotide-immobilized solid phase carrier and the complementary oligonucleotide can be carried out in an appropriate buffer, and the reaction temperature and reaction time are 5 to 60 ° C and 1 to 5 respectively. 48 hours is sufficient. This reaction is a reaction generally called chemical ligation, and the reaction conditions can be appropriately selected depending on the number of bases of the oligonucleotide and the type of base pair.
本方法においては、上記相補性オリゴヌクレオチドが、正常遺伝子の所定の塩基 配列部分に隣接する塩基配列部分に相補的である場合、ケミカルライゲーシヨンが 起こり、上記相補性オリゴヌクレオチド固定化固相担体と上記相補性オリゴヌクレオチ ドが連結する。従って、上記相補性オリゴヌクレオチドの 5 '末端側に標識物質を結合 しておくことにより、ケミカルライゲーシヨンが起こったことを確認することができる。用 レ、られる標識物質としては、どのようなものであっても特に制限なく用いることができ、 例えば、放射性同意元素、蛍光物質、酵素等が使用可能である。すなわち、相補性 オリゴヌクレオチドに標識化合物が結合しているか、又は放射性同位元素が含まれ ており、この標識を用いてケミカルライゲーシヨンを検出することができる。正常遺伝 子の所定の塩基配列部分に隣接する塩基配列部分と、用いられる相補性オリゴヌク レオチドとが、完全に相補的でない場合、ケミカルライゲーシヨンが起こらず、標識物 質によって連結を確認できないので、正常遺伝子と、塩基の置換、欠失又は付加等 が存在することが検出できる。  In this method, when the complementary oligonucleotide is complementary to a base sequence portion adjacent to a predetermined base sequence portion of a normal gene, chemical ligation occurs and the complementary oligonucleotide-immobilized solid phase carrier And the above complementary oligonucleotides are linked. Therefore, it is possible to confirm that chemical ligation has occurred by binding a labeling substance to the 5 ′ end of the complementary oligonucleotide. Any labeling substance can be used without any particular limitation. For example, radioactive consent elements, fluorescent substances, enzymes, and the like can be used. That is, a labeled compound is bound to a complementary oligonucleotide or contains a radioisotope, and chemical ligation can be detected using this label. If the base sequence part adjacent to the normal base part of the normal gene and the complementary oligonucleotide used are not completely complementary, chemical ligation will not occur and ligation cannot be confirmed by the labeling substance. It is possible to detect the presence of a normal gene and base substitution, deletion or addition.
[0030] なお、上記ヌクレオチド固相合成方法、及び試料遺伝子の中の対応塩基配列部分 との異同を確認する方法においては、上述した本発明のオリゴヌクレオチド固相担体 を用いることができる。 [0030] The nucleotide solid phase synthesis method described above and the corresponding nucleotide sequence in the sample gene In the method for confirming the difference, the above-described oligonucleotide solid phase carrier of the present invention can be used.
[0031] 次に、本発明のオリゴヌクレオチド固相化固相担体を化学合成する方法について 説明する。本発明のオリゴヌクレオチド固相化固相担体を化学合成する方法は、塩 基部無保護ヌクレオチドホスホロアミダイドを所定の順番でカップリングすることにより 、所定の塩基配列からなる、オリゴヌクレオチドを化学合成する工程を含む、オリゴヌ クレオチドが固相担体に結合してなるオリゴヌクレオチド固相化固相担体を化学合成 する方法であって、 5 '末端側の塩基部無保護ヌクレオドホスホロアミダイドとして、 5 ' 末端に脱離基を有するヌクレオチドホスホロアミダイドを用レ、、 3 '末端側の塩基部無 保護ヌクレオチドホスホロアミダイドとして、 3 '末端に固相担体が結合したヌクレオチ ドホスホロアミダイドを用いる。  [0031] Next, a method for chemically synthesizing the oligonucleotide-immobilized solid phase carrier of the present invention will be described. The method of chemically synthesizing an oligonucleotide-immobilized solid phase carrier of the present invention comprises chemically synthesizing an oligonucleotide consisting of a predetermined base sequence by coupling base unprotected nucleotide phosphoramidides in a predetermined order. A method of chemically synthesizing an oligonucleotide-immobilized solid phase carrier comprising an oligonucleotide bound to a solid phase carrier, comprising 5′-terminal base-unprotected nucleotide phosphoramidite, Use a nucleotide phosphoramidite with a leaving group at the 5 'end, as a nucleotide unprotected nucleotide phosphoramidide at the 3' end, and a nucleotide phosphoramidite with a solid phase carrier bound to the 3 'end. Use a dido.
[0032] この方法で用いられる、塩基部無保護ヌクレオチドホスホロアミダイドは、例えば、後 述する実施例にように製造することができる。また、塩基部無保護ヌクレオチドホスホ ロアミダイドとしては、市販されてレ、るものを用いてもょレ、。  [0032] The base-unprotected nucleotide phosphoramidide used in this method can be produced, for example, as in the examples described later. In addition, as the base-unprotected nucleotide phosphoramidide, it is commercially available.
5 '末端に脱離基を有するヌクレオチドホスホロアミダイドとしては、市販のものを用 いることができる力 式(7)で表わされるホスホロアミダイドユニット(3 '— O—(2—シ ァノエチル一 N, N '—ジイソプロピルホスホロアミダイト) - 5 '—ョードチミジン)を例 にして説明すると、例えば、以下のようにして合成することができる。  As the nucleotide phosphoramidite having a leaving group at the 5 ′ end, a commercially available phosphoramidite unit (3′—O— (2-cyanoethyl) represented by the formula (7) can be used. For example, 1 N, N′-diisopropyl phosphoramidite) -5′-odothymidine) can be synthesized as follows.
チミジン(1.94 g, 8 mmol)を無水ジメチルホルムアミド(20 ml)に溶力し、つづいて、 メチルトリフエノキシホスホニゥムョージド(4.35 g, 9.6 mmol)をカロえた。室温で 10分間 撹拌させた後、メタノール(10 ml)を加えた。溶媒を減圧下留去した混合物に対し、 再度、メタノール(30 ml)を加え、 目的の 5 ' _ョードチミジンを結晶として得た。 (1.61 g, 57%)この、 5, _ョードチミジン(1.61 g, 4.6 mmol)を無水ァセトニトリルに溶解させた後 、無水ァセトニトリルで共沸 ( X 3)し、無水塩ィ匕メチレンに溶解し、つづいてイソプロピ ルェチルァミン(1.11 ml, 6.8 mmol)を加え、最後に 2—シァノジイソプロピルホスホロ アミドク口リダイト(1.11 ml, 5.0 mmol)をカ卩え、室温で 4.5時間撹拌した。水を加え反応 を停止した。反応溶液を塩化メチレン Z5%重炭酸ナトリウム水で 5回抽出した。有機 層を無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した後、残渣をシリカゲルカラム クロマトグラフィー (N60球状中性シリカゲル)を用いて 1%トリェチルァミンを添加した へキサン/クロ口ホルム 50%→80%で精製し式(7)の化合物を得た。 (2.16 g, 3.9 m mol) Thymidine (1.94 g, 8 mmol) was dissolved in anhydrous dimethylformamide (20 ml), followed by methyl triphenoxyphosphonium iodide (4.35 g, 9.6 mmol). After stirring at room temperature for 10 minutes, methanol (10 ml) was added. Methanol (30 ml) was added again to the mixture obtained by evaporating the solvent under reduced pressure to obtain the desired 5′-odothymidine as crystals. (1.61 g, 57%) 5, _odothymidine (1.61 g, 4.6 mmol) was dissolved in anhydrous acetonitrile, azeotroped with anhydrous acetonitrile (X3), dissolved in anhydrous salt-methylene, followed by Then, isopropylethylamine (1.11 ml, 6.8 mmol) was added, and finally 2-cyanodiisopropyl phosphoramidite redite (1.11 ml, 5.0 mmol) was added and stirred at room temperature for 4.5 hours. Water was added to stop the reaction. The reaction solution was extracted 5 times with methylene chloride Z5% aqueous sodium bicarbonate. The organic layer is dried over anhydrous sodium sulfate and the solvent is distilled off under reduced pressure. Purification by chromatography (N60 spherical neutral silica gel) with hexane / chloroform 50% → 80% with addition of 1% triethylamine gave the compound of formula (7). (2.16 g, 3.9 mmol)
その他のホスホロアミダイドユニットについても、後述する実施例に記載のようにして 製造すること力 Sできる。  Other phosphoramidite units can also be manufactured as described in the examples described later.
[0033] また、この方法においては、 3 '末端の塩基部無保護ヌクレオチドホスホロアミダイド として、 3'末端に固相担体が結合したヌクレオチドホスホロアミダイドを用いている。 3 [0033] Further, in this method, a nucleotide phosphoramidite having a solid phase carrier bound to the 3 'end is used as the 3' end base-unprotected nucleotide phosphoramidide. Three
'末端に固相担体が結合したヌクレオチドホスホロアミダイドとしては、例えば、 16—ヒ ドロキシへキサデカン酸を導入した固相担体と塩基部無保護ヌクレオチドホスホロァ ミダイドを結合させることによって製造することができる。この際の条件は、特に制限は ないが、後述する実施例に記載した条件で実施することができる。 'Nucleotide phosphoramidides having a solid phase carrier bound to the terminal can be produced, for example, by binding a solid phase carrier into which 16-hydroxyhexadecanoic acid has been introduced and a base part unprotected nucleotide phosphoramidide. it can. The conditions at this time are not particularly limited, but can be carried out under the conditions described in the examples described later.
[0034] 本発明のオリゴヌクレオチド固相化固相担体を化学合成する方法においては、塩基 部無保護ヌクレオチドホスホロアミダイドを所定の順番でカップリングすることにより、 オリゴヌクレオチド固相化固相担体が得られる。反応は、通常のホスホロアミダイドを 用いたオリゴヌクレオチドの製造方法にぉレ、て用いられる方法が用いられ、反応中に 反応促進剤として 1—ヒドロキシベンゾトリアゾールを用いることが好ましい。このような 反応促進剤が含まれることにより、塩基部ァミノ基への副反応を抑えることができ、水 酸基選択的なリン酸化を行なうことができる。 [0034] In the method of chemically synthesizing the oligonucleotide-immobilized solid phase carrier of the present invention, the oligonucleotide-immobilized solid phase carrier is obtained by coupling base-unprotected nucleotide phosphoramidides in a predetermined order. Is obtained. For the reaction, a conventional method for producing an oligonucleotide using phosphoramidide is used. It is preferable to use 1-hydroxybenzotriazole as a reaction accelerator during the reaction. By including such a reaction accelerator, a side reaction to the base amino group can be suppressed, and hydroxyl group-selective phosphorylation can be performed.
実施例  Example
[0035] 以下、本発明を実施例により更に詳細に説明する。なお、本発明の範囲は、かかる 実施例に限定されないことはいうまでもない。 下記式(3)〜(7)で表わされる、 5種類のホスホロアミダイドユニットを用いて、 Appli ed Biosynthesis Incの自動合成機、商品名「DNA/RNA Synthesizer 392」を用いて、 配列番号: 1 (TCCGGTCATTTTTT)の塩基配列を有するプローブ(オリゴヌクレオチ ド固定化固相担体)の合成を行った(式(3)〜(6)における R3はジメトキシトリチル基 である。)。なお、 5 '末端の Tにはョードが結合している。 DNAオリゴマーの自動合成 機による合成は、末端に 16—ヒドロキシへキサデカン酸を導入した微小多孔質ガラス (CPG)固相担体(10mg、 10 /i mol/g)を用いて行った。合成各鎖伸張サイクルは 、以下の表 1に示す通りであり、縮合反応では、ベンゾイミダゾリゥムトリフラート(BIT) 及び 6—ニトロ一 1—ヒドロキシベンゾトリアゾール(nHoBt)を用いた。得られたプロ ーブは、 5 '末端に脱離基(ョード)を有し、 3 '末端に固相担体が結合したものである Hereinafter, the present invention will be described in more detail with reference to examples. Needless to say, the scope of the present invention is not limited to such examples. Using five types of phosphoramidide units represented by the following formulas (3) to (7), using an automated synthesizer of Applied Biosynthesis Inc, trade name “DNA / RNA Synthesizer 392”, SEQ ID NO: 1 A probe (oligonucleotide-immobilized solid phase carrier) having a base sequence of 1 (TCCGGTCATTTTTT) was synthesized (R 3 in formulas (3) to (6) is a dimethoxytrityl group). In addition, the 5 'end T has a odode. Automatic synthesis of DNA oligomers The machine synthesis is a microporous glass with 16-hydroxyhexadecanoic acid at the end. (CPG) A solid phase carrier (10 mg, 10 / i mol / g) was used. Each chain extension cycle was as shown in Table 1 below, and benzoimidazolium triflate (BIT) and 6-nitro-1-hydroxybenzotriazole (nHoBt) were used in the condensation reaction. The obtained probe has a leaving group at the 5 'end and a solid support bound to the 3' end.
[化 5][Chemical 5]
Figure imgf000017_0001
Figure imgf000017_0001
[化 6] [Chemical 6]
[8S00] [8S00]
Figure imgf000018_0001
Figure imgf000018_0001
Figure imgf000018_0002
91· CZ9S0l/.00Z OAV
Figure imgf000018_0002
91 · CZ9S0l / .00Z OAV
[6soo] [6soo]
Figure imgf000019_0001
Figure imgf000019_0001
Figure imgf000019_0002
LY CZ9S0l/.00Z OAV
Figure imgf000019_0002
LY CZ9S0l / .00Z OAV
[6 ] [0 00] [6] [0 00]
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
81· CZ9S0l/.00Z OAV
Figure imgf000020_0002
81 · CZ9S0l / .00Z OAV
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000021_0002
なお、式(3)〜(5)で表わされるホスホロアミダイドユニットは以下の方法で合成した
Figure imgf000021_0002
The phosphoramidide units represented by the formulas (3) to (5) were synthesized by the following method.
5' -0- (ジメトキシ)トリチル一N—フエノキシァセチル一2'—デォキシアデノシン 3, - (2—シァノエチル N, N—ジイソプロピルホスホロアミダイト(215 mg, 0.24 mmol) を 2Mアンモニア-メタノール溶液(2.5ml)に溶解した。得られた溶液を 1時間撹拌した 後、溶媒を減圧留去し、粗生成物を得た。得られた粗生成物をシリカゲルクロマトダラ フィー (1%トリェチルァミン)により精製し、へキサンに 50〜: 100%クロ口ホルム、次い で、クロ口ホルムに 0〜3%メタノールのグラジェントをかけて溶出し、溶媒を留去し、 5 '—O—ジメトキシ)トリチルー 2'—デォキシアデノシン 3 '—(2—シァノエチル N, N ージイソプロピルホスホロアミダイト)(式(3)で表わされるホスホロアミダイドユニット) を白色固体として得た。(177 mg, 98%) 5 '-0- (dimethoxy) trityl mono-N-phenoxyacetyl mono-2'-deoxyadenosine 3,-(2-cyanoethyl N, N-diisopropyl phosphoramidite (215 mg, 0.24 mmol) in 2M ammonia- After dissolving the resulting solution in methanol solution (2.5 ml), the resulting solution was stirred for 1 hour, and then the solvent was distilled off under reduced pressure to obtain a crude product, which was purified by silica gel chromatography (1% triethylamine). ), Elution with 50 to 100% chloroform in hexane, and then with a gradient of 0 to 3% methanol in chloroform and distilling off the solvent, 5'—O— Dimethoxy) trityl-2'-deoxyadenosine 3 '-(2-cyanoethyl N, N -Diisopropyl phosphoramidite) (phosphoramidite unit represented by the formula (3)) was obtained as a white solid. (177 mg, 98%)
[0042] また、 5,一O— (ジメトキシ)トリチルー N—フエノキシァセチルー 2,ーデォキシアデノ シン 3, - (2—シァノエチル N, N—ジイソプロピルホスホロアミダイト (420 mg, 0.44 m mol)を 2Mアンモニア-メタノール溶液(4.5ml)に溶解した。得られた溶液を 2時間撹拌 した後、溶媒を減圧留去し、粗生成物を得た。得られた粗生成物をシリカゲルクロマト グラフィー (1 %トリェチルァミン)により精製し、へキサンに 50〜: 100%クロ口ホルム、 次いで、クロ口ホルムに 0〜3%メタノールのグラジェントをかけて溶出し、溶媒を留去 し、 5' -0- (ジメトキシ)トリチル—2'—デォキシグアノシン 3 ' - (2—シァノエチル N, N—ジイソプロピルホスホロアミダイト)(式(4)で表わされるホスホロアミダイドュニ ット)を白色固体として得た。 (298 mg, 88%)  [0042] In addition, 5, 1-O- (dimethoxy) trityl N-phenoxyacetyl 2, deoxyadenosine 3,-(2-cyanethyl N, N-diisopropyl phosphoramidite (420 mg, 0.44 mmol) 2M The resulting solution was dissolved in ammonia-methanol solution (4.5 ml), and the resulting solution was stirred for 2 hours, and then the solvent was distilled off under reduced pressure to obtain a crude product, which was obtained by silica gel chromatography (1% Elution with hexane in a gradient of 50-: 100% black mouth form, followed by 0-3% methanol on the black mouth form, and the solvent was distilled off to remove 5 '-0- ( Dimethoxy) trityl-2'-deoxyguanosine 3 '-(2-cyanoethyl N, N-diisopropyl phosphoramidite) (phosphoramidite unit represented by formula (4)) was obtained as a white solid. (298 mg, 88%)
[0043] また、 5' -0- (ジメトキシ)トリチノレ一 N—ァセチノレ一2'—デォキシシチジン 3' - ( 2—シァノエチル N, N—ジイソプロピルホスホロアミダイト)(215mg,0.28mmol)を 2M アンモニア一メタノール溶液(2.5ml)に溶解した。得られた溶液を 2時間撹拌した後、 溶媒を減圧留去し、粗生成物を得た。得られた粗生成物をシリカゲルクロマトグラフィ 一 (1 %トリェチルァミン)により精製し、へキサンに 50〜: 100%クロ口ホルム、次いで、 クロ口ホルムに 0〜3%メタノールのグラジェントをかけて溶出し、溶媒を留去し、 5 ' - O—(ジメトキシ)トリチルー 2'—デォキシシチジン 3 ' - 3 '一(2—シァノエチル N, N ージイソプロピルホスホロアミダイト)(式(5)で表わされるホスホロアミダイドユニット) を白色固体として得た。(190 mg, 94%)  [0043] In addition, 5'-0- (dimethoxy) tritinole N-acetinole 2'-deoxycytidine 3 '-(2-cyanethyl N, N-diisopropyl phosphoramidite) (215 mg, 0.28 mmol) was added to 2M ammonia monomethanol. Dissolved in solution (2.5 ml). After stirring the obtained solution for 2 hours, the solvent was distilled off under reduced pressure to obtain a crude product. The resulting crude product was purified by silica gel chromatography (1% triethylamine) and eluted with a hexane gradient of 50-: 100% black mouth form and then a black mouth form with a 0-3% methanol gradient. The solvent was distilled off, and 5′-O— (dimethoxy) trityl-2′-deoxycytidine 3′-3′one (2-cyanethyl N, N-diisopropyl phosphoramidite) (phosphoramido represented by the formula (5) Dyed unit) was obtained as a white solid. (190 mg, 94%)
式(6)及び(7)で表わされるホスホロアミダイドユニットは、ダレンリサーチ社力ら購 入したものを用いた。  The phosphoramidite units represented by formulas (6) and (7) were purchased from Darren Research.
[0044] [表 1] 順番 操作 試薬 time (min)[0044] [Table 1] Sequence operation Reagent time (min)
1 洗浄 CH3CN 0.2 1 Wash CH 3 CN 0.2
2 脱保護 3% Cl3CCOOH / CH2C12 1.5 2 Deprotection 3% Cl 3 CCOOH / CH 2 C1 2 1.5
3 洗浄 CH3CN 0.4 3 Wash CH 3 CN 0.4
縮合 0.1 Mホスホロアミダイド + 0.2 M nHOBt + BIT in 1.0  Condensation 0.1 M phosphoramidide + 0.2 M nHOBt + BIT in 1.0
CH3CN - N-メチル -2-ピロリドン (15:1, v/v) CH 3 CN-N-methyl-2-pyrrolidone (15: 1, v / v)
5 縮合 0.1 Mホスホロアミダイド + 0.2 M nHOBt + BIT in 1.0  5 Condensed 0.1 M phosphoramidide + 0.2 M nHOBt + BIT in 1.0
CH3CN - N-メチル -2-ピロリドン (15:1, v/v) CH 3 CN-N-methyl-2-pyrrolidone (15: 1, v / v)
6 洗浄 CH3CN 0.2 つ 酸化 0.1 M I2inピリジン- H20-THF ( v/v/v) 0.5 6 Wash CH 3 CN 0.2 Oxidation 0.1 MI 2 in pyridine-H 2 0-THF (v / v / v) 0.5
8 洗浄 CH3CN 0.4 8 Wash CH 3 CN 0.4
[0045] なお、鎖伸張後、 10分間のアンモニア処理を行レ、、リン酸部のシァノエチル基を除 去し、 目的のオリゴヌクレオチド固定化固相担体を得た。表 1において、手順 4及び 5 は、同じ手順を 2度繰り返すことを意味する。 [0045] After the chain extension, ammonia treatment was performed for 10 minutes to remove the cyanoethyl group of the phosphate portion, and the target oligonucleotide-immobilized solid phase carrier was obtained. In Table 1, steps 4 and 5 mean that the same procedure is repeated twice.
[0046] 実施例 2  [0046] Example 2
下記に示す、配列番号: 2〜4の塩基配列を有する、オリゴヌクレオチド固定化固相 担体を、実施例 1と同様にして合成した。なお、全ての配列の 5'末端側にはョードが 、 3'末端側には CPGが結合している。  The oligonucleotide-immobilized solid phase carrier having the base sequences of SEQ ID NOs: 2 to 4 shown below was synthesized in the same manner as in Example 1. All sequences have a 5 'terminal side and a 3' terminal side with CPG.
配列番号: 2 (TCTGGTTCATTTTTT)  SEQ ID NO: 2 (TCTGGTTCATTTTTT)
酉己歹 IJ番号: 3 (TCCGGTTCATTTTTT)  酉 己 歹 IJ number: 3 (TCCGGTTCATTTTTT)
酉己歹 IJ番号: 4 (TCCAGTTCATTTTTT)  酉 己 歹 IJ number: 4 (TCCAGTTCATTTTTT)
また、下記に示す配列番号: 5の塩基配列を有する、オリゴヌクレオチドを、実施例 1 と同様にして合成した。なお、 5'末端側にはフルォレセインが、 3'末端側にはチオリ ン酸基が結合している。  In addition, an oligonucleotide having the base sequence of SEQ ID NO: 5 shown below was synthesized in the same manner as in Example 1. In addition, fluorescein is bonded to the 5 ′ end and a thiophosphate group is bonded to the 3 ′ end.
配列番号: 5 (ATGGGCC)  SEQ ID NO: 5 (ATGGGCC)
[0047] また、別に、下記配列番号: 6の塩基配列を有するオリゴヌクレオチドを、実施例 1と 同様にして合成した。 配列番号: 6 (ATGAACCAGAGGCCCAT) Separately, an oligonucleotide having the base sequence of SEQ ID NO: 6 was synthesized in the same manner as in Example 1. SEQ ID NO: 6 (ATGAACCAGAGGCCCAT)
配列番号: 6の塩基配列を有するオリゴヌクレオチド(0. 25nmol)、配列番号: 2の 塩基配列を有する、オリゴヌクレオチド固定化固相担体(10 /i g)、及び配列番号: 5 の塩基配列を有するオリゴヌクレオチド(0. 25nmol)を、オリゴヌクレオチド溶液(0.5 mL, 30 mMリン酸バッファー(pH 7.2), 1 M NaCl, 50 μ M DTT)に浸し、 40°Cで 14 時間撹拌を行った。撹拌終了後、固相担体を水で洗浄し、乾燥させた。乾燥後、固 相担体の蛍光輝度を、蛍光顕微鏡 (ォリンパス (株)製、 BX51WI)を用いて 470〜4 90nmの波長測定した。  An oligonucleotide having a base sequence of SEQ ID NO: 6 (0.25 nmol), an oligonucleotide-immobilized solid phase carrier having a base sequence of SEQ ID NO: 2 (10 / ig), and a base sequence of SEQ ID NO: 5 Oligonucleotide (0.25 nmol) was immersed in an oligonucleotide solution (0.5 mL, 30 mM phosphate buffer (pH 7.2), 1 M NaCl, 50 μM DTT), and stirred at 40 ° C. for 14 hours. After completion of the stirring, the solid support was washed with water and dried. After drying, the fluorescence brightness of the solid phase carrier was measured at a wavelength of 470 to 490 nm using a fluorescence microscope (manufactured by Olympus Corporation, BX51WI).
[0048] 配列番号: 2の塩基配列を有するオリゴヌクレオチド固定化固相担体に変え、配列 番号 3の塩基配歹を有するオリゴヌクレオチド固定化固相担体を用いて、同様に操作 を行い、蛍光輝度を測定した。 [0048] Using the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 3 instead of the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 2, the same operation was carried out, and the fluorescence intensity was changed. Was measured.
配列番号: 2の塩基配歹を有するオリゴヌクレオチド固定化固相担体を用いた場合 、配列番号: 3の塩基配列を有するオリゴヌクレオチド固定化固相担体を用いた場合 に比較し、蛍光輝度は約 10倍であった。配列番号: 2の塩基配列は、配列番号: 6の 塩基配列の一部と相補的であり、配列番号: 3の塩基配列は一塩基のみが異なって いる。従って、配列番号: 2の塩基配列を有するオリゴヌクレオチド固定化固相担体の 場合はケミカルライゲーシヨン反応が起こり、配列番号: 3の塩基配列を有するオリゴ ヌクレオチド固定化固相担体を用いた場合はケミカルライゲーシヨン反応が起こらな 力つた。従って、本実施例により、一塩基のミスマッチ (A—Cミスマッチ)を検出できる ことがわかった。  When using an oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 2, the fluorescence intensity is about as compared to when using an oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 3. It was 10 times. The base sequence of SEQ ID NO: 2 is complementary to a part of the base sequence of SEQ ID NO: 6, and the base sequence of SEQ ID NO: 3 is different by only one base. Therefore, in the case of the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 2, a chemical ligation reaction occurs, and when the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 3 is used. The chemical ligation reaction did not occur. Therefore, it was found that a single base mismatch (A-C mismatch) can be detected by this example.
また、本発明のオリゴヌクレオチド固定化固相担体は、二重鎖形成能を有するもの であることがわかった。  Further, it was found that the oligonucleotide-immobilized solid phase carrier of the present invention has a double-strand forming ability.
[0049] 実施例 2 [0049] Example 2
配列番号: 2の塩基配列を有するオリゴヌクレオチド固定化固相担体に変え、配列 番号 4の塩基配歹を有するオリゴヌクレオチド固定化固相担体を用いて、同様に操作 を行い、蛍光輝度を測定した。  The fluorescence intensity was measured in the same manner using the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 4 instead of the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 2. .
配列番号: 2の塩基配歹を有するオリゴヌクレオチド固定化固相担体を用いた場合 、配列番号: 4の塩基配歹を有するオリゴヌクレオチド固定化固相担体を用いた場合 に比較し、蛍光輝度は約 10倍であった。配列番号: 2の塩基配列は、配列番号: 6の 塩基配列の一部と相補的であり、配列番号: 3の塩基配列は二塩基のみが異なって いる。従って、配列番号: 2の塩基配列を有するオリゴヌクレオチド固定化固相担体の 場合はケミカルライゲーシヨン反応が起こり、配列番号: 4の塩基配列を有するオリゴ ヌクレオチド固定化固相担体を用いた場合はケミカルライゲーシヨン反応が起こらな かった。従って、本実施例により、二塩基のミスマッチ(A—Cミスマッチ、 C—Aミスマ ツチ)を検出できることがわかった。 When using an oligonucleotide-immobilized solid phase carrier having a base arrangement of SEQ ID NO: 2 When using an oligonucleotide-immobilized solid phase carrier having a base arrangement of SEQ ID NO: 4 Compared with, the fluorescence brightness was about 10 times. The base sequence of SEQ ID NO: 2 is complementary to a part of the base sequence of SEQ ID NO: 6, and the base sequence of SEQ ID NO: 3 differs by only two bases. Therefore, in the case of the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 2, a chemical ligation reaction occurs, and when the oligonucleotide-immobilized solid phase carrier having the nucleotide sequence of SEQ ID NO: 4 is used. The chemical ligation reaction did not occur. Therefore, it was found that a mismatch of two bases (A-C mismatch, C-A mismatch) can be detected by this example.
従来の SNPs検出においては、マッチと一塩基ミスマッチとの比率は約 1. 9倍であ る。これを考慮すると、本発明のオリゴヌクレオチド固定化固相担体を用いた方法は、 従来の方法の 5倍以上の精度を有することがわかる。  In conventional SNP detection, the ratio of match to single-base mismatch is about 1.9 times. Considering this, it can be seen that the method using the oligonucleotide-immobilized solid phase carrier of the present invention has an accuracy of 5 times or more that of the conventional method.

Claims

請求の範囲 The scope of the claims
一般式(1 )で表わされるオリゴヌクレオチド誘導体が、固相担体に結合してなる、オリ ゴヌクレオチド固定化固相担体。 An oligonucleotide-immobilized solid phase carrier in which an oligonucleotide derivative represented by the general formula (1) is bound to a solid phase carrier.
[化 1]  [Chemical 1]
Figure imgf000026_0001
Figure imgf000026_0001
(上記式中、 R1は、同一であっても異なっていてもよぐそれぞれ水素又はアルコキシ 基を表わし、 R2は、同一であっても異なっていてもよぐそれぞれ水素、又はアルコキ シ基を表わし、 Bは、同一であっても異なっていてもよぐそれぞれ天然又は非天然 の核酸塩基を表わし、 Xは脱離基を表し、 nは 2〜50の整数を表す。 ) (In the above formula, R 1 represents the same or different hydrogen or alkoxy group, and R 2 represents the same or different hydrogen or alkoxy group, respectively. B represents a natural or non-natural nucleobase, which may be the same or different, X represents a leaving group, and n represents an integer of 2 to 50.)
一般式(2)で表わされる、オリゴヌクレオチド固定化固相担体。 An oligonucleotide-immobilized solid phase carrier represented by the general formula (2).
[化 2] [Chemical 2]
Figure imgf000027_0001
Figure imgf000027_0001
(上記式中、 R1は、同一であっても異なっていてもよぐそれぞれ水素又はアルコキシ 基を表わし、 R2は、同一であっても異なっていてもよ それぞれ水素、又はアルコキ シ基を表わし、 Bは、同一であっても異なっていてもよぐそれぞれ天然又は非天然 の核酸塩基を表わし、 Xは脱離基を表し、 Dは固相担体を表し、 nは 2〜50の整数を 表す。) (In the above formula, R 1 may be the same or different and each represents hydrogen or an alkoxy group; R 2 may be the same or different; each represents hydrogen or an alkoxy group; B represents a natural or non-natural nucleobase, which may be the same or different, X represents a leaving group, D represents a solid support, and n is an integer from 2 to 50 Represents.)
上記固相担体が、スライドガラス、ポーラスガラス、ポリスチレンビーズ、プラスチック、 金粒子、金板、銀粒子及び銀板である、請求項 1又は 2に記載のオリゴヌクレオチド 固定化固相担体。 一般式(1)で表わされるオリゴヌクレオチド誘導体力 固相担体に結合してなる、オリ ゴヌクレオチド固定化固相担体の製造方法であって、 The oligonucleotide-immobilized solid phase carrier according to claim 1 or 2, wherein the solid phase carrier is a slide glass, porous glass, polystyrene beads, plastic, gold particles, a gold plate, silver particles, and a silver plate. An oligonucleotide derivative represented by the general formula (1):
ホスホロアミダイド法によるオリゴヌクレオチドの固相合成において、反応促進剤とし て 1—ヒドロキシベンゾトリアゾールを用いることを特徴とする、オリゴヌクレオチド固定 化固相担体の製造方法。  A method for producing an oligonucleotide-immobilized solid phase carrier, wherein 1-hydroxybenzotriazole is used as a reaction accelerator in solid phase synthesis of an oligonucleotide by a phosphoramidide method.
[化 3]  [Chemical 3]
B B
Figure imgf000028_0001
Figure imgf000028_0001
(上記式中、 R1は、同一であっても異なっていてもよぐそれぞれ水素又はアルコキシ 基を表わし、 R2は、同一であっても異なっていてもよぐそれぞれ水素、又はアルコキ シ基を表わし、 Bは、同一であっても異なっていてもよぐそれぞれ天然又は非天然 の核酸塩基を表わし、 Xは脱離基を表し、 nは 2〜50の整数を表す。 ) (In the above formula, R 1 represents the same or different hydrogen or alkoxy group, and R 2 represents the same or different hydrogen or alkoxy group, respectively. B represents a natural or non-natural nucleobase, which may be the same or different, X represents a leaving group, and n represents an integer of 2 to 50.)
遺伝子中の所定の塩基配列部分に相補的な相補性塩基配列部分を有するオリゴヌ クレオチドの 5'末端側に脱離基を結合し、 3'末端側に固相担体を結合してなる、相 補性オリゴヌクレオチド固定化固相担体と、 An oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a gene A complementary oligonucleotide-immobilized solid phase carrier comprising a leaving group bound to the 5 ′ end side of the nucleotide and a solid phase carrier bound to the 3 ′ end side;
上記遺伝子中の所定の塩基配列部分に隣接する塩基配列部分に相補的な相補 性塩基配列部分を有するオリゴヌクレオチドの 3'末端側に求核性の高い官能基を有 する、相補性オリゴヌクレオチドとを  A complementary oligonucleotide having a highly nucleophilic functional group on the 3 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the predetermined base sequence portion in the gene; The
反応させる工程を有する、オリゴヌクレオチド固相合成方法。  An oligonucleotide solid phase synthesis method comprising a step of reacting.
[6] 上記固相担体が、スライドガラス、ポーラスガラス、ポリスチレンビーズ、プラスチック、 金粒子、金板、銀粒子及び銀板である、請求項 5に記載のオリゴヌクレオチド固相 合成方法。 6. The oligonucleotide solid phase synthesis method according to claim 5, wherein the solid phase carrier is a slide glass, porous glass, polystyrene bead, plastic, gold particle, gold plate, silver particle and silver plate.
[7] 上記脱離基が、ハロゲン、トシノレ基、メシノレ基、トリフルォロメタンスルホニル基又はリ ン酸基である、請求項 5又は 6に記載のオリゴヌクレオチド固相合成方法。  [7] The oligonucleotide solid-phase synthesis method according to [5] or [6], wherein the leaving group is a halogen, a tosinore group, a mesinole group, a trifluoromethanesulfonyl group or a phosphate group.
[8] 正常遺伝子中の所定の塩基配列部分に相補的な相補性塩基配列部分を有するオリ ゴヌクレオチドの 5'末端側に脱離基を結合し、 3 '末端側に固相担体を結合してなる 、相補性オリゴヌクレオチド固定化固相担体と、 [8] A leaving group is bound to the 5 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to a predetermined base sequence portion in a normal gene, and a solid phase carrier is bound to the 3 ′ end side. A complementary oligonucleotide-immobilized solid phase carrier,
上記正常遺伝子中の所定の塩基配列部分に隣接する塩基配列部分に相補的な 相補性塩基配列部分を有するオリゴヌクレオチドの 3'末端側に求核性の高い官能 基を有する、相補性オリゴヌクレオチドとを  A complementary oligonucleotide having a highly nucleophilic functional group on the 3 ′ end side of an oligonucleotide having a complementary base sequence portion complementary to the base sequence portion adjacent to the predetermined base sequence portion in the normal gene; The
反応させる工程を有することを特徴とする、  A step of reacting,
正常遺伝子中の所定の塩基配列部分と試料遺伝子の中の対応塩基配列部分との 異同を確認する方法。  A method for confirming the difference between a predetermined nucleotide sequence in a normal gene and a corresponding nucleotide sequence in a sample gene.
[9] 上記固相担体が、スライドガラス、ポーラスガラス、ポリスチレンビーズ、プラスチック、 金粒子、金板、銀粒子及び銀板である、請求項 8に記載の方法。  [9] The method according to claim 8, wherein the solid phase carrier is a glass slide, a porous glass, a polystyrene bead, a plastic, a gold particle, a gold plate, a silver particle and a silver plate.
[10] 上記脱離基が、ハロゲン、トシノレ基、メシノレ基、トリフルォロメタンスルホニル基又はリ ン酸基である、請求項 8又は 9に記載の方法。 [10] The method according to claim 8 or 9, wherein the leaving group is a halogen, a tosinore group, a mesinole group, a trifluoromethanesulfonyl group or a phosphoric acid group.
[11] 上記相補性オリゴヌクレオチドに標識化合物が結合しているか、又は放射性同位元 素が含まれており、該標識を用いて上記反応を検出する、請求項 8〜: 10のいずれか[11] The labeling compound is bound to the complementary oligonucleotide or contains a radioisotope, and the reaction is detected using the label.
1項に記載の方法。 The method according to item 1.
[12] 相補性オリゴヌクレオチド固相担体として、請求項 1に記載のオリゴヌクレオチド固定 化固相担体を用いる、請求項 8〜: 11のレ、ずれか 1項に記載の方法。 [12] The oligonucleotide immobilization according to claim 1, as a complementary oligonucleotide solid phase carrier 12. The method according to claim 8, wherein a solidified carrier is used.
[13] 塩基部無保護ヌクレオチドホスホロアミダイドを所定の順番でカップリングすることによ り、所定の塩基配列からなる、オリゴヌクレオチドを化学合成する工程を含む、オリゴ ヌクレオチドが固相担体に結合してなるオリゴヌクレオチド固相化固相担体を化学合 成する方法であって、 [13] By coupling base-unprotected nucleotide phosphoramidides in a predetermined order, the oligonucleotide is bound to the solid phase carrier, including a step of chemically synthesizing the oligonucleotide having a predetermined base sequence. A method of chemically synthesizing an oligonucleotide-immobilized solid phase carrier comprising:
5'末端側の塩基部無保護ヌクレオドホスホロアミダイドとして、 5 '末端に脱離基を 有するヌクレオチドホスホロアミダイドを用い、  As the 5′-terminal base-unprotected nucleotide phosphoramidide, a nucleotide phosphoramidide having a leaving group at the 5′-end is used.
3'末端側の塩基部無保護ヌクレオチドホスホロアミダイドとして、 3 '末端に固相担 体が結合したヌクレオチドホスホロアミダイドを用いる方法。  A method of using a nucleotide phosphoramidite having a solid phase carrier bound to the 3 ′ end as the nucleotide-side unprotected nucleotide phosphoramidide on the 3 ′ end side.
[14] 反応促進剤として 1—ヒドロキシベンゾトリアゾールを用いる、請求項 13に記載の方 法。 [14] The method according to claim 13, wherein 1-hydroxybenzotriazole is used as a reaction accelerator.
PCT/JP2007/054645 2006-03-10 2007-03-09 Oligonucleotide-immobilized solid support WO2007105623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-066396 2006-03-10
JP2006066396A JP2009153381A (en) 2006-03-10 2006-03-10 Oligonucleotide-immobilized solid support

Publications (1)

Publication Number Publication Date
WO2007105623A1 true WO2007105623A1 (en) 2007-09-20

Family

ID=38509446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054645 WO2007105623A1 (en) 2006-03-10 2007-03-09 Oligonucleotide-immobilized solid support

Country Status (2)

Country Link
JP (1) JP2009153381A (en)
WO (1) WO2007105623A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202459A1 (en) * 2003-09-23 2005-09-15 Hud Nicholas V. Intercalation-mediated synthesis of polymers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202459A1 (en) * 2003-09-23 2005-09-15 Hud Nicholas V. Intercalation-mediated synthesis of polymers

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MILLER G. ET AL.: "A Simple Method for Electrophilic Functionalization of DNA", ORG. LETT., vol. 4, no. 21, 2002, pages 3599 - 3601, XP003017788 *
OHKUBO A. ET AL.: "DNA Oligomer o Shukugo Block ni Mochiita Koso Goseiho no Kaihatsu", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 86 SHUNKI NENKAI (2006) KOEN YOKOSHU II, 13 March 2006 (2006-03-13), pages 858 + ABSTR. NO. 2 G3-20, XP003017790 *
OHKUBO A. ET AL.: "Hosuhoroamidaito-ho o Mochiita Suisanki Sentakuteki na Rinsanka Hanno no Kaihatsu to DNA Gosei eno Oyo", CSJ: THE CHEMICAL SOCIETY OF JAPAN DAI 84 SHUNKI NENKAI (2004) KOEN YOKOSHU II, 11 March 2004 (2004-03-11), pages 1042 + ABSTR. NO. 1 J3-09, XP003017789 *
XU Y. ET AL.: "Rapid and Selective Selenium-Mediated Autoligation of DNA Strands", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 122, no. 37, 2000, pages 9040 - 9041, XP002297261 *

Also Published As

Publication number Publication date
JP2009153381A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
EP3504340B1 (en) Tagged nucleotides useful for nanopore detection
JP3379064B2 (en) Oligonucleotide synthesis carrier
JP4714320B2 (en) Solid phase nucleic acid labeling by transamination
EP2089343B1 (en) Click chemistry for the production of reporter molecules
EP1877415B1 (en) New labelling strategies for the sensitive detection of analytes
US20100029008A1 (en) Polymerase-independent analysis of the sequence of polynucleotides
Raddatz et al. Hydrazide oligonucleotides: new chemical modification for chip array attachment and conjugation
US20030144231A1 (en) Oligonucleotide analogues
JP2003532092A (en) TAG library compounds, compositions, kits and methods of use
WO2005085269A1 (en) Nucleotide derivatives and dna microarray
KR101599466B1 (en) Nucleobase characterisation
JP2001512131A (en) Base analog
JPH05504563A (en) Uncharged morpholino-based polymers with phosphorus-containing chiral intersubunit linkages
JPH04290896A (en) Nucleoside, nucleotide and oligonucleotide bonded with 3'-(2')-amino-or thiol- modified fluorescent dye, process for producing same and use thereof
JPH0460600B2 (en)
JPH02503146A (en) Non-nucleotide ligation reagent for nucleotide probes
EP1442142A2 (en) NUCLEIC ACID PROBES AND METHODS TO DETECT AND/OR QUANTIFY NUCLEIC ACID ANALYTES
KR20080059323A (en) Polynucleotide labelling reagent
EP1296997B1 (en) Base analogues
JP4779147B2 (en) Nucleotide derivatives and uses thereof
WO2004058793A1 (en) Nucleotide derivatives and dna microarray
US20030105056A1 (en) Protected linker compounds
WO2007105623A1 (en) Oligonucleotide-immobilized solid support
JP2007031389A6 (en) Nucleotide derivatives and uses thereof
JP4963015B2 (en) Nucleotide derivatives and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738130

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)