WO2007104743A1 - Procédé d'optimisation des ressources de transmission par bouclage local dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants - Google Patents

Procédé d'optimisation des ressources de transmission par bouclage local dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants Download PDF

Info

Publication number
WO2007104743A1
WO2007104743A1 PCT/EP2007/052305 EP2007052305W WO2007104743A1 WO 2007104743 A1 WO2007104743 A1 WO 2007104743A1 EP 2007052305 W EP2007052305 W EP 2007052305W WO 2007104743 A1 WO2007104743 A1 WO 2007104743A1
Authority
WO
WIPO (PCT)
Prior art keywords
local
cellular network
base station
loopback
transmission method
Prior art date
Application number
PCT/EP2007/052305
Other languages
English (en)
Inventor
Bogéna de Jaeger
Michel Mouly
Didier Verhulst
Original Assignee
Cell & Sat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0602223A external-priority patent/FR2898760B1/fr
Priority claimed from FR0602222A external-priority patent/FR2898759B1/fr
Application filed by Cell & Sat filed Critical Cell & Sat
Priority to US12/282,803 priority Critical patent/US8301131B2/en
Priority to CN2007800164194A priority patent/CN101438616B/zh
Priority to CA2645437A priority patent/CA2645437C/fr
Priority to EP07726811.8A priority patent/EP2002682B1/fr
Publication of WO2007104743A1 publication Critical patent/WO2007104743A1/fr
Priority to IL194046A priority patent/IL194046A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/14WLL [Wireless Local Loop]; RLL [Radio Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location

Definitions

  • a method of optimizing local loopback transmission resources in a mobile radio cellular network, network and corresponding local adapters FIELD OF THE DISCLOSURE
  • the field of the invention is that of communication networks. More specifically, the invention relates to cellular networks such as including, but not limited to, GSM ("Global System for Mobile” in English) or UMTS ("Universal Mobile Telecommunications Service” in English).
  • the invention applies to any cellular network in which it is useful to optimize the use of transmission resources.
  • a cellular network comprising for example a satellite radio link for connecting a set of stations, called base stations (BTS in the case of the GSM network), with a central equipment called Hub , itself connected to the base station controllers (BSC in the case of the GSM network).
  • BTS base stations
  • BSC base station controllers
  • the satellite resource is naturally an expensive resource to use, and it is interesting to optimize and save as much as possible.
  • the invention is thus particularly adapted to the implementation of a cellular network in areas where the communication traffic is relatively low, such as rural areas for example, and where conventional techniques require investment costs and especially of relatively high in relation to this low traffic.
  • the present invention applies to any type of cellular network, such as for example those defined by the project 3GPP (for "Third Generation PartnerShip Project” in English).
  • the skilled person will easily be able to implement the present invention in a network of UMTS or other type.
  • the conventional architecture of a GSM type cellular network comprises a mobile service switch 10, called MSC (for "Mobile Switching Center” in English), a base station controller 11, called BSC (for "Base Station Controller” in English) and finally one or more base stations 12, said BTS (for "Base Transceiver Station” in English).
  • MSC Mobile Switching Center
  • BSC Base Station Controller
  • Each BTS provides GSM radio coverage in one or more cells.
  • the BTS 121 is controlled by the BSC 11 and covers the geographical cell 13, in which there are a number of users having a mobile radio station (MS). 14.
  • the MSC controls the configuration of calls for each incoming or outgoing call, and it has an interface role with other telecommunications networks.
  • Each communication goes through the MSC, which controls several BSCs.
  • the BSC meanwhile, is responsible for allocating the necessary radio channels for each call. It manages intercellular transfers between two BTS.
  • a single BSC supports multiple BTSs that cover a wide geographical area.
  • a BTS has the role of carrying out the GSM radio transmission with the users of Mobile Stations.
  • BTS are located near towers 122 supporting antennas, and distributed in the geographical coverage of the cellular network.
  • the GSM code "full rate"("Mlrate” in English) operates at a rate of 13kbit / s.
  • the Half Rate (HR) and Extended Full Rate (EFR) codecs operate at 5.6 kbit / s and 12.2 kbit / s, respectively.
  • HR Half Rate
  • EFR Extended Full Rate
  • the 64 kbit / s speech compressed at 13 / 12.2 kbit / s (respectively 5.6 kbit / s) is transmitted to the base station BTS over a time slot of 16 kbit / s (respectively 8 kbit / s). s).
  • 3GPP TS 08.60 (respectively TS 08.61)
  • the compressed speech is transmitted to the BTS every 20 ms according to the TRAU frame format (for "Transcoder and Adaptation Unit").
  • the TRAU frame carries, in addition to the compressed speech information, signaling information of the "control bit" type, making it possible to optimize the quality of the communications between the transcoding entity TC and the CCU channel coding-decoding unit. (for "Channel Coded Unit” in English) to the BTS.
  • control bits make it possible in particular to synchronize the information exchanged, to define the type of coding used (FR, EFR, HR or AMR) and also to indicate the discontinuity of the transmission related to speech silences (DTX ).
  • PSTN 22 is the public switched telephone network.
  • the interface between the MSC 10 and a BSC 11 is called interface A.
  • the interface between a BSC 11 and the BTS 121 is called the Abis interface.
  • the interface between the TC 21 and the BSC 11 is called Ater.
  • a satellite link can be used within the transmission chain for each of these interfaces.
  • the main problem of inserting a satellite link on one of these interfaces is then to determine how to efficiently transmit the necessary information while minimizing the necessary radio band of satellite transmission.
  • Interface A used between an MSC and a BSC, consists of one or more 2 Mbit / s links (ITU Standard G703 / G704).
  • Each 2Mbps link supports 30 channels of uncompressed voice - at 64 kbps - and a channel of SS7 signaling.
  • the number of links at 2 Mbit / s depends on the sizing of the BSS subsystem.
  • the signaling channel contains messages indicating in particular the traffic requirements according to the number of calls.
  • the Abis interface connects a BSC with a BTS and consists of one or more 2 Mbit / s links (ITU Standard G703 / G704). This is one of the interfaces that is conventionally implemented with a satellite transmission.
  • This Abis interface carries traffic data, such as compressed voice and signaling information.
  • traffic data such as compressed voice and signaling information.
  • two types of signaling information flow: - Signaling messages exchanged with the BTS, transported in a specific signaling channel, which make it possible to control both the BTS equipment itself and the mobile terminals (MS) who are connected with it.
  • the corresponding messages are specified by the GSM in the specification TS 08.58 - in-band control information which is transmitted in the same stream as the traffic information. This information is transmitted within the TRAU frames.
  • This information is a "control bit”, complementary to "data bits”, the meaning of which is explained in specification TS 08.60 / 08.61
  • the signaling information of the first type consisting of protocol messages, is conveyed over time intervals. dedicated, with typically on the Abis interface a bit rate of 64 kbit / s.
  • Each link at 2 Mbps Abis interface has 31 slots (TS for "Time Slots" in English) that are allocated to signaling channels or speech channels.
  • a 2 Mbps link on the Abis interface can typically be used to support up to ten "transmission” radio access channels, called TRXs. "Transceiver").
  • TRXs "Transceiver”
  • Each TRX itself supports eight GSM channels dedicated to full-rate speech FR or sixteen half-rate GSM channels.
  • the BTS is equipped with an N number of TRXs, which induces a proportional occupancy of the number of TS on the Abis interface.
  • the GSM connection network then conventionally comprises an MSC 30, a BSC 31 and a base station BTS 32, providing communications to users with a mobile terminal 34 and located in the coverage area of the BTS 32 .
  • a radio link 36 is implemented at the Abis interface between the BSC 31 and the BTS 32.
  • This radio link 36 is provided by a satellite radio system containing two transmitting antennas 331 and 332. reception on each side of the Abis interface, and a satellite 35.
  • the GSM network itself uses first radio links to communicate, and in particular to transmit between the BTS and the users of mobile terminals.
  • the satellite system consists of a second radio transmission link.
  • a device called Hub allocates the radio resources needed to satellite data transmission between BSC and BTS.
  • radio resources this name then relates to the satellite radio transmission link, but it may be extended according to the invention to any other type of trunked radio link, such as for example links microwave systems, or LMDS systems (Local Multipoint Distribution Systems), or other terrestrial WiFi transmission systems, WiMAX (Wireless Microwave Access), etc.
  • the present invention applies in particular to configurations using a satellite channel managed in DVB-S / DVB-RCS mode.
  • the usual realization in a GSM network requires that the flow of speech passes through the BSC, as well as the MSC. This then requires the allocation of resources on two channels of the satellite link: the uplink and the downlink. This remains particularly valid regardless of the position of the users (callers and recipients), and especially when the two users are located in the same cell or in two nearby cells. 3.
  • the implementation of a radio link, notably via satellite, between a BTS and the corresponding BSC of a cellular network systematically entails, during a communication between two users served each by a BTS connected by satellite, the allocation of two radio channels: one for the called party and a second for the caller. Indeed, the usual application requires that the word "go back" until
  • a first object of the invention is to provide a single transmission procedure regardless of the relative location of the calling and called stations, without impacting the overall architecture of the cellular network implemented.
  • the equipment of the cellular network is therefore not modified by the system of the invention, which remains totally transparent vis-à-vis the BTS and the BSC in particular.
  • the object of the invention is in particular to provide a technique which ensures a significant gain in terms of time and cost compared with the conventional techniques of the prior art in local communication situations, that is to say when the stations in communication are sufficiently close to each other.
  • the goal is to provide such a technique particularly suited to the case of cell phones
  • An additional objective of the technique of the invention is to reduce the costs of a communication system, while maintaining an equivalent quality of service, or better than that obtained with conventional techniques.
  • the invention further aims to provide such a technique which is particularly optimized and suitable for data transfer for voice communications, that is to say for the transfer of voice, and more generally to the transfer of data in real time, circuit type. Therefore, a further object of the invention is to provide such a technique that reliably identifies the local character of a call.
  • Another objective of the invention is to provide such a technique that can be easily implemented both in a standard GSM network architecture, but also its extensions, such as UMTS and more generally all 3GPP project standards. (for "Third Generation PartnerShip” in English), or any other cellular network, in which is implemented a radio link, including satellite type.
  • the invention also aims to be easily integrated in such an architecture to which is added an Internet type of link, according to Internet IP protocol in particular.
  • a further object of the invention is to provide a technique that does not entail any loss of information if a user changes cell during communication, that is to say in the case of a handover ("handover"). " in English). More generally, the objective is that no function or service is damaged by the implementation of the invention. 5. Presentation of the invention
  • a data transmission method in a mobile radio cellular network a process of the type consisting in establishing, maintaining and terminating a communication channel. communication of data between a caller and a called party in said cellular network, a caller and / or a called party being each located in a local area of the cellular network, establishing, maintaining and terminating the data communication channel setting exchange of signaling messages.
  • such a method comprises:
  • a first detection phase if the caller and the called party of the call are located in the same local area of the cellular network, according to a detection strategy including a step of analyzing all or part of signaling messages;
  • a second phase of triggering a local loopback operation of all or part of the data exchanged between the caller and the called party in the case where the detection phase confirms the local character of the communication between the caller and the caller. 'called.
  • said step of analyzing all or part of the signaling messages is implemented by a device located upstream of at least one base station of the cellular network and downstream of a base station controller.
  • said local loopback operation is implemented by a device located upstream of at least one base station of the cellular network and downstream of a base station controller.
  • the invention thus relies on a completely new and inventive approach of direct looping of the data flow exchanged between a caller and a called party when they are located in the same local area.
  • the invention implements a detection strategy according to which the signaling stream containing a series of messages only intended for the equipment of the cellular network is spied on and analyzed, and, or in combination, the data exchanged between the users. .
  • the method of the invention loops the data to be transmitted during a communication, if the latter has a local character, and this in a totally transparent manner for the cellular network, which has no knowledge of this. looping. The operation of the cellular network is then not disturbed at all.
  • the local area is defined by the coverage area downstream of the base station, or a set of base stations.
  • the method not only makes it possible to loop the data transmitted between two users when their mobile terminals depend on the same base station, that is to say when they are located in the same cell of the cellular network, but also when the users are located for example in neighboring cells. In this case, they depend on two different base stations and the method is implemented upstream of a set of base stations.
  • a base station is said to be BTS, and the method is then implemented upstream of an Abis link or a set of Abis links.
  • the invention also applies to any cellular network implementing base stations, such as UMTS in particular, which corresponds to an evolution of the GSM network.
  • the base station being controlled by a base station controller among a plurality of base station controllers and the base station (s) being connected with the base station controller (s) via a connection network
  • the loopback local is to route all or part of the data exchanged between the caller and the called without transit by the controller (s) of base stations.
  • the method of the invention implements a looping between two users in communication, of so that the looped data is not sent back to the BSC. They are directly looped.
  • This therefore differs from a conventional implementation of a cellular network, in which all the data is systematically transmitted to the controller of base stations, whatever the location of the interlocutors.
  • the method of the invention then makes it possible to save steps of double compression / decompression of the data, or else of transcoding, especially in the particular case of speech, and this of transparent way for the cellular network, which is not aware of the looping.
  • the detection strategy includes a step of injection into the signaling flows of at least one tracing information at the local area of the calling party and / or the called party, and to recognize the tracing information in the local area of the other interlocutors.
  • the invention thus implements its strategy of detecting the local character of a call by injecting tracing information into the signaling flows corresponding to each of the two parties in communication.
  • Signal flow is understood to mean the succession of signaling messages.
  • the injection of a tracing information into the signaling stream may then consist of injecting a specific message from the already existing messages, or of injecting information into the messages themselves. The goal is then to find the same information in each signaling flow of the caller and the called party.
  • the tracing information is constituted by at least one piece of information representative of the local area, and / or a specific marker to the call within the calls in progress in the local area.
  • the invention detects in the signaling flow information relating to the location of the interlocutors and, if necessary, a marker relating to the call itself.
  • the signaling messages conform to the GSM standard and the tracing information is encoded in the User-User field of the CONNECT message or the SETUP message.
  • the invention uses the User-User field of the CONNECT or SETUP signaling message to inject information specifying the location of the users of the cellular network.
  • the detection phase comprises a preliminary step of detecting the temporal correlation between the transmission and the reception of messages. predetermined signaling.
  • the strategy of detecting the local character of a call implements a detection of the prior content of the signaling flows.
  • an event in a half-call implies, by the standard, another event in the other half-call, the detection of the succession of the two events with a reasonable delay, is considered as an indication local communication is likely to take place.
  • the predetermined events belong to the group comprising: transmissions of messages of SETUP (departure) and PAGING (arrival) transmissions of the messages of CONNECT (arrival) and CONNECT
  • Such signaling messages are found in a cellular network of GSM type or in the evolutions of this standard.
  • the detection strategy is carried out in two stages: first implementation of the step of detecting the temporal correlation between the transmissions of predetermined signaling messages; - Implementation in the second step of the step of injecting the tracing information if and only if a temporal correlation has been detected.
  • the method may, in one embodiment, implement an information injection step, so as to confirm whether or not a communication in progress is local.
  • the communication traffic channel conveying data with real-time constraints, such as a speech stream
  • the detection strategy includes a phase of direct analysis of data with real-time constraint.
  • the strategy of detecting the local character of a call is able to directly analyze the speech flow.
  • the speech flow analysis phase comprises an additional step of injection into the speech stream of a DTMF type signal at the local area of one of the interlocutors. (calling or called) and to recognize the tracing information in the local area of the other party.
  • the detection strategy proposes to directly inject trace information into the speech stream itself, so that it is recognized by the method that is then able to detect the local character of a communication.
  • the data including a speech stream, and the cellular network being in accordance with the GSM standard
  • the step of analyzing the speech stream is implemented after the TFO mode has been activated.
  • the direct analysis step comprises a phase of injecting at least one specific piece of information into the speech stream to accelerate the detection of the identity between the two streams with respect to the simple one. comparison of speech.
  • connection network including at least one trunked radio type link between the base station (s) (downstream) and the base station controller (s) (upstream), the local area is defined by the area located downstream from a connection point of the trunked radio type link.
  • the invention can be implemented in the specific case where the link between a set of base station controllers and the base stations of a cellular network is supported by a trunked radio link.
  • the method of the invention implements a local loopback when two users are located downstream of a termination point of the radio link between the BTS or BSCs.
  • the local loopback is of great interest since it is performed downstream of the radio link: it thus saves a large amount of radio resource allocation, very costly to this day.
  • the second phase of triggering a local loopback operation implements a looping of data between the caller and the called party, so that none of the data is lost.
  • the second phase of triggering a loopback operation comprises a preliminary phase of storage in a buffer of data from the recipient, so as to ensure continuity in the flow of data to be transmitted.
  • the buffer ensures that no data to be transmitted is lost during a communication, even if the channels allocated for the communication vary.
  • the method of the invention comprises the additional steps of: searching, detection and analysis in the information signaling messages indicative of a movement of the called party and / or the recipient during the call. adaptation of the communication channels according to the result of the search, detection and analysis step.
  • the invention manages inter-cellular movements ("handovers" in English) of interlocutors, during communication. So, the method makes it possible to adapt, in the case where a normal communication becomes local or vice versa, so as to establish or not, or to delete or not, a loopback.
  • the information indicative of a displacement is constituted by a signaling message indicative of the characteristics of a new cell of the cellular network between the called and / or the moving caller.
  • the method of the invention thus manages and analyzes the movements always according to the same approach of detection and analysis of the signaling messages intended for the cellular network.
  • the signaling messages conform to the GSM standard, and the message is the message HANDOVER_COMMAND.
  • the adaptation step comprises the phases of: adaptation of the loopback if the result of the analysis of the information indicative of a displacement indicates that the caller and / or the called party changes cell while remaining in the loopback area; stopping the loopback operation if the result of analyzing the information indicative of a movement indicates that the caller and / or the called party is coming out of the loopback area;
  • the method of the invention detects and adapts to any type of intercellular transfer, both in the case where one of the interlocutors changes cells while remaining in the looping zone (the looping is maintained), that in the when it leaves the looping zone (the looping is cut off and the operation becomes "classic").
  • all or part of said data exchanged between the called party and the caller, located in the loopback area are transmitted on the one hand directly to the other party by loopback and on the other hand to at least one of the base station controllers.
  • This embodiment makes it possible to meet the requirements of legal listening, according to which all transmitted information must pass through the MSC.
  • the goal of gain in terms of delay and economy of compression / decompression is maintained, the invention then allows to use the radio link only to trace the data. This differs from much more expensive conventional techniques in which data is reported back to and from the BSC.
  • said first detection phase is implemented in a first module located in a central part of the network, and said second phase of triggering a local loopback operation is implemented. implemented in said local area of said cellular network under the control of said first module.
  • the invention also relates to a cellular network implementing the previously described method.
  • each BTS or each set of BTS connected to the same transmission equipment to the BSCs, is advantageously equipped with a local adapter equipment comprising: means for detecting the need for loopback; means for performing the loopback operation; means for detecting the need for unwinding; means for carrying out the unwinding operation, the means implementing the method as described above.
  • each local area consisting of a BTS, or a set of BTS connected to the same transmission equipment to the BSCs, is equipped with a local device adapter and,
  • the network comprises a central optimizer device.
  • said central optimizer device has means for detecting a need for looping and / or unwinding in one of said local areas; the optimizer device comprises means for transmitting a loopback and / or undocking control to any adapter device located in a local area in which it has detected said need for looping and / or unwinding; each of said adapter devices has means for performing the loopback or undocking operation under the control of the loopback or unwind command respectively; said means implementing the method as described above.
  • the invention relates to any cellular network, of the type comprising at least one base station controlled by a base station controller, named BSC, and a network infrastructure with which the BSC is connected, the network infrastructure including: at least one trunked radio type link for connecting the base station (s) to their control BSC; at least one IP type link for connecting the one or more base stations to their control BSC; or even any feed link.
  • BSC base station controller
  • the network infrastructure including: at least one trunked radio type link for connecting the base station (s) to their control BSC; at least one IP type link for connecting the one or more base stations to their control BSC; or even any feed link.
  • the invention relates to any local detector and / or adapter equipment implementing the method as described above.
  • FIG. 1 already presented in relation with the prior art, illustrates the architecture the GSM network
  • FIG. 2 already introduced in the prior art, schematizes the interfaces implemented in a GSM cellular network
  • FIG. 3 relates to the implementation of a satellite radio link in a GSM network, according to the state of the art
  • FIGS. 1 already presented in relation with the prior art, illustrates the architecture the GSM network
  • FIG. 2 already introduced in the prior art, schematizes the interfaces implemented in a GSM cellular network
  • FIG. 3 relates to the implementation of a satellite radio link in a GSM network, according to the state of the art
  • FIGS. 4A and 4B illustrate the local loopback in a satellite backhaul link network, according to a first and a second embodiment of the invention in which the looping occurs for users located in the same cell , or in two close cells, respectively;
  • Figure 5 relates to the rise of speech flows to the BSC and the MSC;
  • FIGS. 6A and 6B illustrate the implementation of the invention in a satellite feed link network, according to a third and a fourth embodiment in which the looping occurs for users located in the same cell, or in two close cells, respectively;
  • FIGS. 7A and 7B show a possible variant of the invention, according to embodiments similar to those of FIGS. 4A and 4B respectively, in the case where the feed link (backhaul) is constituted by an IP network;
  • the invention thus relies on a completely new and inventive approach to transmission of speech streams in a GSM network implementing a radio transmission link, in the case where two users depend on a network. same base station or two near base stations, by introducing a device connecting two mobile stations locally: local loopback is performed when two users of the cellular network are in communication in a zone called loopback zone.
  • the general principle of local loopback of the invention in the case of a trunked radio feeder link network is illustrated in connection with FIGS. 4A and 4B and 6A and 6B, distinguishing four local loopback embodiments. according to the invention.
  • a cellular network containing a BSC 401, controlling a BTS 402 base station is considered.
  • This BTS 402 transmits the speech data between two users each having a mobile station MS1 404 and MS2 405. via its 403 hertzian antenna.
  • the two users are located in the same cell 406 of the cellular network, therefore in the loopback zone.
  • the link between the BSC 401 and its corresponding BTS 402 is provided by a set of radiocommunication equipment including a geostationary satellite 411, and two antennas 412 and 413 transmit and receive thus forming a 415 radio link on which the Traffic and signaling data, typical of the GSM system, pass through.
  • This link 415 radio is further provided by a device 414, said Hub, responsible for allocating the radio resources necessary for the transfer of data, according to the traffic needs of the GSM network.
  • the Hub operates by communicating with a device 416 IDU (for "Indoor Unit” in English), the hub and the IDU together integrating all the intelligence and control logic of the radio network.
  • the radio link is therefore responsible for transporting a set of information relating to the GSM network, intended only for the MSC or the BTS. In particular, it makes it possible to send the signaling information via two streams 407 and 408, each corresponding to the caller and the called party.
  • a device 420 then analyzes these flows, in one of its embodiments, so as to detect the local character of the call.
  • the device 420 of the invention detects that two users located in the same cell 406 are in communication, and then implements a loopback 421.
  • the device of the invention 420 implements implement a local loopback 421, illustrated by Figure 4B.
  • two users each having a mobile station 431 and 432 are located in two separate and neighboring cells 441 and 442.
  • Each of these cells is networked by a BTS 402.
  • These two cells are also located near a third cell 443, covered by a third BTS.
  • the three BTS 402 are located downstream of the same device 420 of the invention, with respect to the radio link.
  • the device 420 of the invention analyzes the content of the traffic messages 407 and 408 and when it detects the local character of a call, implements a loopback, even if two users are located in two different cells.
  • an adapter device 720 substantially fulfills the same functions of detecting and triggering loopback as the device 420.
  • the system involves two devices, 610 and 620 shown in FIGS. 6A and 6B.
  • the principle is similar to the first embodiment, but there is a separation of functions which, in the first and second embodiments, were grouped together in the device 420 of Figures 4A and 4B. This separation is performed by distributing the detection and triggering functions of the loopback (and / or the unwinding) between the devices 610 and 620 as follows:
  • the detection device (or optimizer device) 620 located in a central zone of the network (beyond the supply link 630 constituted by by satellite 411 and associated equipment), analyzes the flow of signaling information so as to detect the local character of the calls;
  • the detection device 620 sends a command to the device 610 via an internal channel 640 connecting the devices 620 and 610;
  • the device 610 which is in a local area at the periphery, near one or more BTS, implements looping (or unwinding).
  • FIGS. 8A and 8B correspond to the cases already mentioned of a loopback either within the same cell (FIG. 8A) or from two cells controlled by the same BTS 402 (FIG.
  • the 840 loopback (and unwrap) commands are routed via a channel of the IP link.
  • the commands 640 are advantageously conveyed via a channel of the radio link 415.
  • the device of the invention implements a local loopback in two distinct cases: on the one hand (FIGS. 4A, 6A, 7A, 8A) when two users are in communication and are located in the same cell ( they are both in the coverage area of the same BTS base station), and on the other hand (FIGS. 4B, 6B, 7B, 8B) when two users are in communication with two neighboring BTSs, but whose Abis interface is connected to the same adapter device connected to the same satellite radio terminal.
  • the equipment In a cellular network such as the GSM system, as soon as a user sends or receives a call, the equipment generates a sequence of signaling message exchanges, performing a "start call” or an "incoming call".
  • the network therefore manages a significant amount of "half-calls" of this type.
  • the half-call start of the caller is strongly correlated with the recipient's incoming half-call.
  • One of the major problems of the present invention is therefore to detect, within the network, the correspondence between two half-calls, and thus know, reliably and without error, the local character of the call.
  • the main contribution of the invention is in fact to provide a strategy for optimizing the process of detecting the possibility of loopback, and of the looping itself.
  • the inventors have found that there is, to date, in the basic signaling of a GSM network visible on the Abis interface, indicators for correlating the outgoing call and the corresponding incoming call.
  • a message contains in particular an element called CONNECT message (arrival side) and message. from CONNECT (start side).
  • the invention then proposes to rely on this temporal correlation to detect that the two half-calls correspond.
  • the invention proposes a second aspect of study according to which specific information is injected into the signaling flow, which will be intended to be recognized by a device of the invention, and allow the latter to detect with certainty that the communication is local.
  • the injected information must contain a non-repeatable variable part, such as an identifier of the cell, or an entity-specific identifier to which is added a specific marker to the call.
  • An additional difficulty related to this data injection approach is to make this information acceptable when the called is any and located in a completely different network.
  • the method of the invention limits the frequency of occurrence of this case if the injection step is performed only after the response to the PAGING message contained in the flow of signaling messages.
  • the implementation of a temporal correlation step as defined above, in the signaling flow furthermore makes it possible to limit the cases of injection of superfluous information.
  • the solution adopted is then to use the User-User field, which is an optional field appearing in the signaling channel in the CONNECT message. More precisely, it is sent off-hook in the incoming CONNECT message and then copied back into the CONNECT start message. This element is then added on the fly, with a sufficiently long digital content, according to a non-repeatable code.
  • the MSC of the cellular network must implement the User-User functionality.
  • the User-User field is coded in IA5 (for "International Alphabet 5" in English), encoding a sequence of characters according to which each character is coded on 7 bits.
  • IA5 for "International Alphabet 5" in English
  • an unwanted message may be displayed by the caller's mobile when the caller is not in the local area of the called party.
  • the possible preliminary test of temporal correlation makes this occurrence rare.
  • Another flawless solution is to reserve an application-specific encoding code. This requires the approval of standardization committees, which can be obtained by an active support of an operator for example.
  • the device of the invention located, for memory, upstream of the BTS covering the looping area in which there are two users in communication, monitors in the signaling paths the arrival of a CONNECT message, both in the half-start calls and in the incoming half-calls.
  • the device of the invention modifies the message to include a User-User field encoded in IA5, encoding an identity and / or a random value.
  • the inventors have also explored the solutions offered by the speech signal itself.
  • two studies are envisaged: a first direction according to which one seeks to detect, or correlate information common to the speech flows contained in two half-calls, and / or a second direction according to which one seeks to inject into the flows of speech information that will be used to detect the local character of the call.
  • the most reliable information is indeed the direct correlation of speech flows. Such a correlation is made at the beginning of the communication, and triggers the loopback.
  • the speech is transmitted in compressed format between the BTS and a transcoder located at the MSC. It is then converted to the uncompressed PCM digital format. This signal is then compressed again to be sent to the BTS serving the second interlocutor. This double transcoding then destroys the similarity of the digital speech flows, so it is very difficult to rely on these flows for a study of the correlation.
  • TFO mode for "Transcoder Free Operation” in English
  • TRAU for "Transcoder Rate Adapter Unit” in English
  • the principle of such a transmission mode is to transmit the speech both in PCM mode on 6 bits per byte, and also the digitized speech as provided by the mobile on 2 bits per byte.
  • TRAU if activated in TFO mode, can then transmit to the recipient mobile digitized speech as provided by the original mobile: double transcoding is avoided and the correlation between the two speech streams is maintained.
  • the TFO mode must be recognized by the remote TRAU. This is obtained, according to the GSM standard, by a preliminary dialogue between the two TRAUs and the remote ones, once the connection is actually established, that is to say once the CONNECT messages of the signaling channel have been received. . The established dialogue is then continuous, using the remaining capacity between the available 16 kbits per second and what is needed for speech, ie at most 13 kbits per second for a compressed format.
  • this mode thus has the advantage of making possible a comparison between the two speech streams, digital block by digital block.
  • an emitted block is found as received, with a known delay. It should be noted that the identical transmission of the speech streams is only done by the receiver once it has been verified that the two TRAUs are in TFO mode: this procedure creates a delay between the establishment of the communication and detection that it is indeed the same flow on both branches.
  • the invention proposes, in a particular embodiment, to inject in particular dual tone multifrequency signals (DTMF for "dual tone multifrequency").
  • DTMF dual tone multifrequency
  • the invention proposes to put in secret specific information. This then makes it possible to accelerate the detection of the identity between the two streams, compared to a simple comparison of the speech.
  • the device of the invention proposes to buffer the speech from the recipient in a buffer of adequate size. So the speech coming from the MSC is sent first, then the memory Buffer takes over, being emptied progressively, removing the frames of silence, thanks to a silence suppression algorithm.
  • the quality of service is equivalent to conventional techniques.
  • the speech is buffered from the beginning of the communication, on the arrival side.
  • the flow originating from the MSC does not pass.
  • the looping is done via the buffer, which is emptied gradually.
  • this approach has the disadvantage of requiring a larger memory when the looping is not performed.
  • the technique has the advantage of presenting a minimum delay if the speech coming from the arrival is empty. 7.4 Management of intercellular transfers
  • the caller or the recipient may have to move, and thus to change the conditions of the call, and more specifically to change cell.
  • handover in English.
  • the situations studied are as follows: the two users are in communication in the looping zone, the looping is active, then one of the two users leaves the looping zone (outgoing handover); two users are in communication in the looping area, then one of the two users changes cell, while remaining in the loop zone ("internal handover"). 7.4.1 Internal Handover
  • the invention proposes a local looping not only when two users are located in the same cell, but also in the case where they are in two different and neighboring cells.
  • the objective here is then to detect the change of cell of one of the users, during communication, while the local loopback is active, and to maintain this loopback if the new cell detected still belongs to the loopback zone. For this, the analysis of the signaling pathways is once again implemented.
  • the device of the invention detects the presence of the message HANDOVER COMMAND within signaling exchanges related to looped communications. The information in this message allows you to know the new cell and the new circuit. However, the device of the invention must know the configuration of the different cells, and is therefore configured as such. A maintenance of the characteristics of the cellular network is therefore performed, according to the modifications made by the operator.
  • the invention therefore analyzes the content of the HANDOVER COMMAND message as soon as it is detected to check whether the destination cell is in the loopback zone. If this is the case, the invention performs a step of searching for a new channel and activates the loopback via this new found channel.
  • the detection of the handover is based on the same principle as for the internal handover, that is to say on the search and analysis of the HANDOVER COMMAND message within the signaling exchanges related to the looped communications.
  • the ultimate goal here is to disable local loopback to return to conventional speech transmission by the MSC of the cellular network.
  • the device of the invention starts to send the outgoing speech coming from the user A to the MSC of the network. This results in the introduction of silence, seen from A. Moreover, the device sends to A the speech flow from the MSC, which will also result in the introduction of silence. 7.5
  • the legal requirement of listening The local loopback according to the invention makes that the MSC does not receive the speech stream. In some countries or networks the possibility of legal listening is mandatory, and speech must go through the MSC so that legal listening as specified in the standard is possible. To overcome this problem, the invention then proposes to trace the speech flow up to the MSC, in relation with FIG. 5. Such a technique restricts the gain obtained by the local loopback, but does not cancel it.
  • each direction of speech passes twice through the satellite link.
  • the technique of the invention is based on the fact that the descent of speech can be suppressed without restricting the possibility of legal listening.
  • two users of mobile stations 60 and 61 are in communication and are located in the same cell 62 covered by the same BTS 63. They are therefore in the looping area and a loopback 65 is performed on the two speech streams 66 and 67 upstream of the BTS 63.
  • the device 66 of the invention has detected in the signaling channels 67 and 68 information indicating the local nature of the call.
  • the adapter 66 combines 69 the two speech streams 66 and 67 to return them to the MSC in a signal 70 via the satellite radio link 71 and the BSC 72.
  • Such a combination can be achieved in many ways, and it is necessary to test each approach to evaluate the best performance.
  • the streams are transcoded, added and then transcoded again: this approach is expensive.
  • a selection is made frame by frame, by choosing one of the two speech streams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne un procédé de transmission de données dans un réseau cellulaire de radiocommunications mobiles, procédé du type consistant à établir, maintenir et terminer un canal de communication de données entre un appelant et un appelé situés dans ledit réseau cellulaire, un appelant et/ou un appelé étant chacun situé dans une zone locale (406) du réseau cellulaire, l'établissement, le maintien et la terminaison du canal de communication de données mettant en oeuvre des échanges de messages de signalisation. Selon l'invention, un tel procédé comprend : - une première phase de détection si l'appelant et l'appelé de la communication se situent dans une même zone locale (406) du réseau cellulaire, selon une stratégie de détection incluant une étape d'analyse de tout ou partie des messages de signalisation; - une deuxième phase de déclenchement d'une opération de bouclage (421) local de tout ou partie des données échangées entre l'appelant et l'appelé, dans le cas où la phase de détection confirme le caractère local de la communication entre l'appelant et l'appelé.

Description

Procédé d'optimisation des ressources de transmission par bouclage local dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants. 1. Domaine de l'invention Le domaine de l'invention est celui des réseaux de communication. Plus précisément, l'invention concerne les réseaux cellulaires tels que notamment, mais non exclusivement, le GSM (« Global System for Mobile » en anglais) ou l'UMTS (« Universal Mobile Télécommunications Service » en anglais).
L'invention s'applique à tout réseau cellulaire dans lequel il est utile d'optimiser l'utilisation des ressources de transmission.
Il s'applique particulièrement, mais non exclusivement, à un réseau cellulaire comprenant par exemple une liaison radio par satellite permettant de relier un ensemble de stations, appelées stations de base (BTS dans le cas du réseau GSM), avec un équipement central appelé Hub, lui même relié aux contrôleurs de stations de base (BSC dans le cas du réseau GSM). Dans ce cas, la ressource satellite constitue naturellement une ressource chère à utiliser, et qu'il est intéressant d'optimiser et d'économiser le plus possible.
L'invention est ainsi particulièrement adaptée à la mise en œuvre d'un réseau cellulaire dans des zones où le trafic des communications est relativement faible, comme les zones rurales par exemple, et où les techniques classiques requièrent des coûts d'investissement et surtout de fonctionnement relativement élevés au regard de ce trafic faible.
Mais elle s'applique plus généralement à toute situation où la gestion de ressources est critique. 2. Techniques de l'art antérieur
Tout d'abord, il est important de noter que, par souci de clarté, on présente les inconvénients de l'état de la technique dans le cas particulier du standard
GSM. Cependant, la présente invention s'applique à tout type de réseau cellulaire, tels que par exemple ceux définis par le projet 3GPP (pour « Third Génération PartnerShip Project » en anglais). L'homme du métier pourra aisément mettre en œuvre la présente invention dans un réseau de type UMTS ou autre.
La popularité grandissante du système GSM dans le monde entier a conduit les opérateurs à déployer ce service non seulement dans les régions métropolitaines, mais aussi de plus en plus dans des zones rurales et plus isolées ou éloignées. Dans ce dernier type de régions, une infrastructure terrestre est souvent insuffisante ou mal adaptée pour assurer une bonne couverture de réseau. Un système de liaison radio par satellite est alors un très bon moyen d'étendre le service GSM et ce type de système est aujourd'hui communément utilisé dans de nombreuses régions du monde. Cependant, les ressources radio satellite restent coûteuses à ce jour, et toute la problématique de ce type d'application réside dans les techniques de réduction de la bande passante nécessaire à la transmission des données par voie radio satellite.
Une telle problématique reste notamment valable dans le cas où deux utilisateurs sont situés dans la même cellule géographique, ou tout le moins localisés dans des cellules proches l'une de l'autre. Dans un tel cas, on conçoit que les techniques classiques de transmission en réseau GSM, par essence centralisé, consomment des ressources trafic bien supérieures à ce que permettrait un acheminement optimisé. Pour plus de clarté, on décrit ci-après les inconvénients de l'art antérieur dans le cas spécifique d'un système GSM mis en œuvre par l'intermédiaire d'une liaison satellite, et dans lequel deux utilisateurs situés dans une même cellule ou dans deux cellules suffisamment voisines du réseau GSM, en aval de la liaison satellite, sont en communication. 2.1 Architecture du GSM
En relation avec la figure 1, l'architecture classique d'un réseau cellulaire de type GSM comprend un commutateur de service mobile 10, dit MSC (pour « Mobile Switching Center » en anglais), un contrôleur de station de base 11, dit BSC (pour « Base Station Controller » en anglais) et enfin une ou plusieurs stations de bases 12, dites BTS (pour « Base Transceiver Station » en anglais). Chaque BTS assure la couverture radio GSM dans une ou plusieurs cellules. A titre d'exemple, en relation avec la figure 1, la BTS 121 est contrôlée par le BSC 11 et couvre la cellule géographique 13, dans laquelle se trouve un certain nombre d'utilisateurs disposant d'une Station Mobile (MS) de radiocommunication 14.
Plus précisément, le MSC contrôle la configuration des appels pour chaque appel entrant ou sortant, et il a un rôle d'interface avec les autres réseaux de télécommunications. Chaque communication passe par le MSC, qui contrôle plusieurs BSC. Le BSC, quant à lui, est chargé d'allouer les canaux radio nécessaires pour chaque appel. Il gère les transferts intercellulaires entre deux BTS. Un seul BSC supporte plusieurs BTS qui assurent la couverture d'une large zone géographique.
Enfin, une BTS a pour rôle d'effectuer la transmission radio GSM avec les utilisateurs de Stations Mobiles. Les BTS sont localisées à proximité de pylônes 122 supportant des antennes, et réparties dans l'espace géographique de couverture du réseau cellulaire.
Le standard GSM et ses évolutions, tels que défini par le groupe 3GPP (pour « third Génération Partnership Project » en anglais), utilise la compression de voix. Cette compression est réalisée par un transcodeur aussi appelé TC. Selon la norme GSM , le TC peut être implémenté au site MSC, au site BSC ou encore au site BTS. Les considérations économiques conduisent à implémenter de préférence le TC au site MSC, de façon à réduire les coûts de transmission.
Plusieurs types de codées ont été définis par le groupe 3GPP. Le codée GSM FR « plein débit » (« Ml rate » en anglais) opère à un débit de 13kbit/s. Les codées HR « demi débit » (« half rate » en anglais) et EFR « plein débit étendu » (« enhanced full rate ») opèrent respectivement à 5,6 kbit/s et 12,2 kbit/s. Après transcodage, la parole à 64 kbit/s compressée à 13 / 12,2 kbit/s (respectivement 5.6 kbit/s) est véhiculée vers la station de base BTS sur un intervalle de temps à 16 kbit/s (respectivement 8 kbit/s). Selon la spécification 3GPP TS 08.60 (respectivement TS 08.61), la parole compressée est transmise à la BTS toutes les 20 ms selon le format de trame TRAU (pour « Transcoder and Adaptation Unit » en anglais).
Ces mêmes principes s'appliquent aux codages AMR (en anglais « Adaptative Multi Rate ») plein débit FR et débit réduit HR. La trame TRAU transporte, en plus des informations de parole compressée, des informations de signalisation de type « bits de contrôle » permettant d'optimiser la qualité des communications entre l'entité de transcodage TC et l'unité de codage-décodage de canal CCU (pour « Channel Codée Unit » en anglais) à la BTS. Ces bits de contrôle permettent en particulier d'assurer la synchronisation des informations échangées, de définir le type de codage utilisé (FR, EFR, HR ou AMR) et aussi d'indiquer la discontinuité de la transmission liée aux silences de la parole (DTX).
De façon à introduire la mise en œuvre d'une liaison satellite au sein d'un réseau cellulaire, on décrit maintenant succinctement, en relation avec la figure 2, les interfaces mises en œuvre et leur dénomination entre les entités principales introduites précédemment.
On note PSTN (pour « Public Switched Téléphone Network » en anglais) 22 le réseau téléphonique public commuté.
L'interface entre le MSC 10 et un BSC 11 est dite interface A. L'interface entre un BSC 11 et la BTS 121 est nommée l'interface Abis.
Dans le cas où le TC 21 est implémenté au site MSC 10, l'interface entre le TC 21 et le BSC 11 est appelé Ater.
Une liaison satellite peut être utilisée au sein de la chaîne de transmission pour chacune de ces interfaces. La problématique principale de l'insertion d'une liaison satellite sur l'une de ces interfaces est alors de déterminer comment transmettre de façon efficace les informations nécessaires tout en minimisant la bande radio nécessaire de transmission par satellite.
L'interface A, utilisée entre un MSC et un BSC, est constituée par une ou plusieurs liaisons à 2 Mbit/s (Standard ITU G703/ G704). Chaque lien à 2Mbit/s supporte 30 canaux de voix non compressée - à 64 kbit/s - et un canal de signalisation SS7. Le nombre de liens à 2 Mbit/s dépend du dimensionnement du sous-système BSS. Le canal de signalisation contient des messages indiquant en particulier les besoins de trafic en fonction du nombre de communications.
L'interface Abis connecte un BSC avec une BTS et est constituée d'une ou plusieurs liaisons à 2 Mbit/s (Standard ITU G703/ G704). C'est une des interfaces qui est classiquement mise en oeuvre avec une transmission par satellite.
Cette interface Abis transporte des données de trafic, telle que la voix compressée et des informations de signalisation. Sur l'interface Abis, deux types d'information de signalisation circulent: - des messages de signalisation échangés avec la BTS, transportés dans un canal spécifique de signalisation, qui permettent de contrôler à la fois l'équipement BTS lui même et les terminaux mobiles (MS) qui sont en relation avec elle. Les messages correspondants sont spécifiés par le GSM dans la spécification TS 08.58 - des informations intrabande (« in band » en anglais) de contrôle qui sont transmises dans le même flux que les informations de trafic. Ces informations sont transmises, au sein des trames TRAU. Ces informations sont des « bits de contrôle », complémentaires des « bits de données », dont la signification est expliquée dans les spécification TS 08.60 / 08.61 Les informations de signalisation du premier type, constituées de messages protocolaires, sont véhiculées sur des intervalles de temps dédiés, avec typiquement sur l'interface Abis un débit de 64 kbit/s.
Chaque lien à 2 Mbit/s de l'interface Abis dispose de 31 intervalles de temps (TS pour « Time Slots » en anglais) qui sont alloués aux voies de signalisation ou aux canaux de parole. Selon la typologie du réseau et les choix de codage de la parole, un lien à 2 Mbit/s sur l'interface Abis peut typiquement être utilisée pour supporter jusqu'à dix canaux d'accès radio « transmission », dits TRX (en anglais « Transceiver »). Chaque TRX supporte lui-même huit canaux GSM dédiés à la parole à plein débit FR ou seize canaux GSM à demi débit HR. La réservation correspondante des canaux de parole sur l'interface Abis représente pour chaque TRX une allocation de 2 TS à 64 kbit/s (8* 16 kbit/s = 16* 8 kbit/s= 128 kbit/s).
Selon le dimensionnement du réseau GSM, la BTS est équipée d'un nombre N de TRXs , ce qui induit une occupation proportionnelle du nombre de TS sur l'interface Abis.
2.2 Les applications satellite
On décrit en relation avec la figure 3 un réseau GSM classique mettant en œuvre une liaison radio de type satellite.
Le réseau de connexion GSM comprend alors, classiquement, un MSC 30, un BSC 31 ainsi qu'une station de base BTS 32, assurant les communications aux utilisateurs disposant d'un terminal mobile 34 et localisés dans la zone de couverture de la BTS 32.
De plus, une liaison radio 36 est mise en œuvre au niveau de l'interface Abis, entre le BSC 31 et la BTS 32. Cette liaison radio 36 est assurée par un système radio par satellite contenant deux antennes 331 et 332 d'émission- réception de chaque côté de l'interface Abis, et un satellite 35.
On notera qu'il est possible en fait d'insérer une liaison radio par satellite au niveau de chacune des interfaces mises en œuvre dans le système GSM : A, Abis, Ater. Mais l'insertion d'une telle liaison satellite au niveau de l'interface Abis, c'est-à-dire entre un BSC et des BTS, est très souvent préférée pour étendre le service GSM à des localisations géographiques distantes et de faible densité d'utilisateurs avec des coûts d'infrastructure minimaux.
De façon à éviter toute confusion, il est important de noter que dans une telle implémentation, deux types de systèmes radio sont mis en œuvre, mais qu'ils n'ont pas le même rôle :
Le réseau GSM en lui-même utilise de premières liaisons radio pour communiquer, et notamment pour effectuer la transmission entre les BTS et les utilisateurs de terminaux mobiles.
Le système satellite consiste en une seconde liaison de transmission radio. Classiquement, un dispositif appelé Hub alloue les ressources radio nécessaires à la transmission des données par satellite entre BSC et BTS.
Dans la suite de la description, on parle de ressources radio : cette dénomination concerne alors la liaison de transmission radio par satellite, mais elle peut être étendue selon l'invention à tout autre type de liaison radio à ressources partagées, comme par exemple des liaisons par faisceaux hertziens (dits « microwave » en anglais), ou les sytèmes de type LMDS (« Local Multipoint Distribution Systems »), ou d'autres systèmes terrestres de transmission de type WiFi, WiMAX (« Wireless Microwave Access » en anglais), etc. La présente invention s'applique notamment aux configurations utilisant un canal satellite géré en mode DVB-S / DVB-RCS.
Concrètement, lorsque deux utilisateurs sont en communication, la réalisation usuelle dans un réseau GSM demande que le flux de parole transite par le BSC, ainsi que par le MSC. Ceci nécessite alors l'allocation de ressources sur deux canaux de la liaison satellite : la voie montante et la voie descendante. Ceci reste notamment valable quelles que soient la position des utilisateurs (appelant et destinataires), et particulièrement lorsque les deux utilisateurs sont situés dans une même cellule ou dans deux cellules proches. 3. Inconvénients de l'art antérieur A ce jour, la mise en œuvre d'une liaison radio, par satellite notamment, entre une BTS et le BSC correspondant d'un réseau cellulaire entraîne systématiquement, lors d'une communication entre deux utilisateurs desservis chacun par une BTS connectée par satellite, l'allocation de deux canaux radio : un premier pour l'appelé et un second pour l'appelant. En effet, l'application usuelle demande que la parole « remonte » jusqu'au
MSC du réseau GSM. Le flux de parole passe alors deux fois par le satellite et ceci même si la communication en question présente un caractère local. Une communication locale souffre donc inutilement de l'ajout de deux fois le délai de transfert par satellite, de l'ordre de 250 millisecondes. L'existence de ce double lien satellite ajoute donc non seulement un temps de transmission non négligeable qui rejaillit sur la qualité de la communication perçue par les utilisateurs, mais elle est de plus très coûteuse.
Cette situation a été jusqu'à présent acceptée.
Ainsi, il n'existe à ce jour aucun moyen permettant de spécifier le caractère local d'un appel. Les techniques actuelles ne gèrent donc pas une telle configuration de manière optimisée. 4. Objectifs de l'invention
L'invention a notamment pour objectif de pallier ces différents inconvénients de l'état de la technique. Un premier objectif de l'invention consiste à fournir une procédure unique de transmission indépendamment de la localisation relative des stations appelante et appelée, sans impact sur l'architecture globale du réseau cellulaire mis en œuvre. Les équipements du réseau cellulaire ne sont donc pas modifiés par le système de l'invention, qui reste totalement transparent vis-à-vis des BTS et du BSC notamment.
L'invention a notamment pour objectif de fournir une technique qui assure un gain important en termes de délai et de coût par rapport aux techniques classiques de l'art antérieur dans des situations de communications locales, c'est- à-dire lorsque les stations en communication sont suffisamment proches l'une de l'autre.
L'objectif est de fournir une telle technique particulièrement adaptée au cas de la téléphonie cellulaire
Un objectif supplémentaire de la technique de l'invention est de diminuer les coûts d'un système de communication, tout en maintenant une qualité de service équivalente, voir meilleure que celle obtenue avec les techniques classiques.
L'invention a en outre pour objectif de fournir une telle technique qui soit particulièrement optimisée et adaptée au transfert de données pour les communications phoniques, c'est-à-dire pour le transfert de la voix, et plus généralement au transfert de données en temps réel, de type circuit. De ce fait, un objectif supplémentaire de l'invention est de proposer une telle technique qui permette d'identifier de façon fiable le caractère local d'un appel.
Un autre objectif de l'invention est de fournir une telle technique qui s'implémente aisément aussi bien dans une architecture standard de réseau GSM, mais aussi de ses extensions, telles que l'UMTS et plus généralement l'ensemble des standards du projet 3GPP (pour « Third Génération PartnerShip » en anglais), ou tout autre réseau cellulaire, dans lequel est mise en œuvre une liaison radio, de type satellite notamment. L'invention a en outre pour objectif d'être aisément intégrée dans une telle architecture à laquelle est ajoutée une liaison de type Internet, selon le protocole Internet IP notamment.
Un objectif supplémentaire de l'invention est de fournir une technique qui n'entraîne aucune perte d'information si un utilisateur change de cellule en cours de communication, c'est-à-dire dans le cas d'un transfert intercellulaire (« handover » en anglais). Plus généralement, l'objectif est qu'aucune fonction ou service ne soit détérioré par la mise en oeuvre de l'invention. 5. Exposé de l'invention
Ces différents objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un procédé de transmission de données dans un réseau cellulaire de radiocommunications mobiles, procédé du type consistant à établir, maintenir et terminer un canal de communication de données entre un appelant et un appelé situés dans ledit réseau cellulaire, un appelant et/ou un appelé étant chacun situé dans une zone locale du réseau cellulaire, l'établissement, le maintien et la terminaison du canal de communication de données mettant en oeuvre des échanges de messages de signalisation.
Selon l'invention, un tel procédé comprend :
- une première phase de détection si l'appelant et l'appelé de la communication se situent dans une même zone locale du réseau cellulaire, selon une stratégie de détection incluant une étape d'analyse de tout ou partie des messages de signalisation;
- une deuxième phase de déclenchement d'une opération de bouclage local de tout ou partie des données échangées entre l'appelant et l'appelé, dans le cas où la phase de détection confirme le caractère local de la communication entre l'appelant et l'appelé.
Préférentiellement, ladite étape d'analyse de tout ou partie des messages de signalisation est mise en œuvre par un dispositif situé en amont d'au moins une station de base du réseau cellulaire et en aval d'un contrôleur de station de base.
Préférentiellement, ladite opération de bouclage local est mise en œuvre par un dispositif situé en amont d'au moins une station de base du réseau cellulaire et en aval d'un contrôleur de station de base.
Par exemple, c'est le même dispositif qui met en œuvre les étapes d'analyse et de bouclage local précité.
L'invention repose ainsi sur une approche tout à fait nouvelle et inventive de bouclage direct du flux de données échangées entre un appelant et un appelé lorsque ceux-ci sont localisés dans une même zone locale. L'invention met en œuvre pour ce faire une stratégie de détection selon laquelle on espionne et analyse le flux de signalisation contenant une succession de messages uniquement destinés aux équipements du réseau cellulaire, et, ou, ou en combinaison, les données échangées entre les usagers. En fonction des résultats de cette analyse, le procédé de l'invention boucle les données à transmettre pendant une communication, si cette dernière présente un caractère local, et ceci de façon totalement transparente pour le réseau cellulaire, qui n'a aucune connaissance de ce bouclage. Le fonctionnement du réseau cellulaire n'est alors aucunement perturbé.
Ce procédé permet alors de gagner judicieusement en termes de délai de transmission. De plus, il s'applique à tout type de données, telles que des données à forte contrainte temps réel, comme la parole, mais aussi aux autres types de données classiquement échangées via un réseau cellulaire, à savoir un SMS, une image, etc. De façon avantageuse, la zone locale est définie par la zone de couverture en aval de la station de base, ou d'un ensemble des stations de base.
Ainsi, le procédé permet non seulement de reboucler les données transmises entre deux utilisateurs lorsque leurs terminaux mobiles dépendent d'une même station de base, c'est-à-dire lorsqu'ils sont situés dans une même cellule du réseau cellulaire, mais aussi lorsque les utilisateurs sont situés par exemple dans des cellules voisines. Dans ce cas, ils dépendent de deux stations de base différentes et le procédé est mis en œuvre en amont d'un ensemble de stations de base. On note que dans le cas du GSM, une station de base est dite BTS, et le procédé est alors mis en œuvre en amont d'une liaison Abis ou d'un ensemble de liaisons Abis. Cependant, de façon plus générale, l'invention s'applique aussi à tout réseau cellulaire mettant en œuvre des stations de base, telles que l'UMTS notamment, qui correspond à une évolution du réseau GSM. Avantageusement, la station de base étant contrôlée par un contrôleur de stations de base parmi une pluralité de contrôleurs de stations de base et la ou les stations de base étant connectées avec le ou les contrôleurs de stations de base via un réseau de connexion, le bouclage local consiste à acheminer tout ou partie des données échangées entre l'appelant et l'appelé sans transit par le ou les contrôleurs de stations de base.
Ainsi, dans un réseau cellulaire tel que le GSM par exemple, dans lequel les stations de base sont contrôlées par un contrôleur de stations de base, dit BSC, le procédé de l'invention met en œuvre un bouclage entre deux utilisateurs en communication, de façon que les données rebouclées ne sont pas remontées jusqu'au BSC. Elles sont directement rebouclées. Ceci diffère donc d'une mise en œuvre classique d'un réseau cellulaire, dans lequel toutes les données sont systématiquement transmises au contrôleur de stations de base, quelle que soit la localisation des interlocuteurs. Le procédé de l'invention permet alors d'économiser des étapes de double compression/décompression des données, ou encore de transcodage, notamment dans le cas particulier de la parole, et ceci de façon transparente pour le réseau cellulaire, qui n'a pas connaissance du bouclage.
De façon avantageuse, la succession des messages de signalisation formant un flux de signalisation, la stratégie de détection inclut une étape d'injection dans les flux de signalisation d'au moins une information de traçage au niveau de la zone locale de l'appelant et/ou de l'appelé, et à reconnaître l'information de traçage dans la zone locale de l'autre des interlocuteurs.
Dans un mode de réalisation de l'invention, l'invention met ainsi en œuvre sa stratégie de détection du caractère local d'un appel en injectant une information de traçage dans les flux de signalisation correspondant à chacun des deux interlocuteurs en cours de communication. On entend par flux de signalisation la succession des messages de signalisation. L'injection d'une information de traçage dans le flux de signalisation peut alors consister à injecter un message spécifique parmi les messages déjà existants, ou bien à injecter une information au sein des messages eux-mêmes. L'objectif est alors de retrouver cette même information dans chacun des flux de signalisation de l'appelant et l'appelé.
Avantageusement, l'information de traçage est constituée par au moins une information représentative de la zone locale, et/ou un marqueur spécifique à l'appel au sein des appels en cours dans la zone locale.
L'invention détecte dans le flux de signalisation une information relative à la localisation des interlocuteurs ainsi que, si nécessaire, un marqueur relatif à l'appel en lui-même.
De façon avantageuse, les messages de signalisation sont conformes au standard GSM et l'information de traçage est encodée dans le champ User-User du message CONNECT ou du message SETUP. Dans le cas des réseaux cellulaires selon le standard GSM ainsi que ses évolutions, l'invention utilise le champ User-User du message de signalisation CONNECT ou SETUP pour injecter l'information spécifiant la localisation des utilisateurs du réseau cellulaire.
Avantageusement, la phase de détection comprend une étape préalable de détection de la corrélation temporelle entre l'émission et la réception de messages de signalisation prédéterminés.
Ainsi, en plus de l'injection d'informations, la stratégie de détection du caractère local d'un appel met en œuvre une détection du contenu préalable des flux de signalisation. En d'autres termes, si un événement dans un demi-appel implique, de par le standard, un autre événement dans l'autre demi-appel, la détection de la succession des deux événements avec un délai raisonnable, est considérée comme une indication qu'une communication locale est susceptible d'avoir lieu.
De façon avantageuse, les événements prédéterminés appartiennent au groupe comprenant : transmissions des messages de SETUP (départ) et PAGING (arrivée) transmissions des messages de CONNECT (arrivée) et CONNECT
(départ).
On trouve de tels messages de signalisation dans un réseau cellulaire de type GSM ou dans les évolutions de ce standard.
Avantageusement, la stratégie de détection s'effectue en deux temps : mise en œuvre dans un premier temps de l'étape de détection de la corrélation temporelle entre les transmissions de messages de signalisation prédéterminés ; - mise en œuvre dans un second temps de l'étape d'injection de l'information de traçage si et seulement si une corrélation temporelle a été détectée.
Suite à une première étape de détection de la corrélation temporelle, le procédé peut, dans un mode de réalisation, mettre en œuvre une étape d'injection d'information, de façon à confirmer ou non qu'une communication en cours est locale.
Avantageusement, la voie de trafic de la communication acheminant des données à contraintes de temps réel, tel qu'un flux de parole, la stratégie de détection inclut une phase d'analyse directe des données à contrainte de temps réel. Dans le mode de réalisation particulier de la phonie par exemple, dans lequel les données transmises sont du type de la voix, la stratégie de détection du caractère local d'un appel est en mesure d'analyser directement le flux de parole.
Avantageusement, les données incluant un flux de parole, la phase d'analyse du flux de parole comprend une étape supplémentaire d'injection dans le flux de parole d'un signal de type DTMF au niveau de la zone locale de l'un des interlocuteurs (appelant ou appelé) et à reconnaître l'information de traçage dans la zone locale de l'autre des interlocuteurs.
Ainsi, selon une même approche que celle mise en œuvre sur le flux de signalisation, la stratégie de détection propose d'injecter directement une information de traçage dans le flux de parole lui-même, pour que celle-ci soit reconnue par le procédé qui est alors en mesure de détecter le caractère local d'une communication.
De façon avantageuse, les données incluant un flux de parole, et le réseau cellulaire étant conforme au standard GSM, l'étape d'analyse du flux de parole est mise en œuvre après que le mode TFO ait été activé.
En d'autres termes, il est possible de mettre en œuvre le procédé de l'invention dans un mode de réalisation particulier, dans lequel le mode TFO est activé. Avantageusement, le mode TFO étant activé, l'étape d'analyse directe comprend une phase d'injection d'au moins une information spécifique dans le flux de parole pour accélérer la détection de l'identité entre les deux flux par rapport à la simple comparaison de la parole.
De façon avantageuse, le réseau de connexion incluant au moins une liaison de type radio à ressources partagées entre la ou les stations de base (aval) et le ou les contrôleurs de stations de base (amont), la zone locale est définie par la zone située en aval d'un point de connexion à la liaison de type radio à ressources partagées.
En d'autres termes, l'invention peut être mise en œuvre dans le cas spécifique où la liaison entre un ensemble de contrôleurs de stations de base et les stations de bases d'un réseau cellulaire est supportée par une liaison radio à ressources partagées. Dans ce mode de réalisation, le procédé de l'invention met en œuvre un bouclage local dès lors que deux utilisateurs sont localisés en aval d'un point de terminaison de la liaison radio entre le ou les BTSs et le ou les BSCs. Dans de mode de réalisation particulier de l'invention, le bouclage local présente un très grand intérêt puisqu'il est effectué en aval de la liaison radio : il permet ainsi d'économiser une grande quantité d'allocation de ressources radio, très coûteuses à ce jour.
Avantageusement, la deuxième phase de déclenchement d'une opération de bouclage local met en œuvre un bouclage des données entre l'appelant et l'appelé, de façon qu'aucune des données ne soit perdue.
En effet, si le bouclage est détecté et activé en cours de communication, il est important qu'aucune des données ne soit perdue, même si l'allocation des canaux de communication change pendant la communication. De façon avantageuse, la deuxième phase de déclenchement d'une opération de bouclage comprend une phase préliminaire de stockage dans une mémoire tampon des données issues du destinataire, de façon à assurer une continuité dans le flux des données à transmettre.
Ainsi, la mémoire tampon assure de ne perdre aucune donnée à transmettre, pendant une communication, et ce même si les canaux alloués pour la communication varient.
Avantageusement, le procédé de l'invention comprend les étapes supplémentaires de : recherche, détection et analyse dans les messages de signalisation d'informations indicatives d'un déplacement de l'appelé et/ou du destinataire, en cours de communication. adaptation des canaux de communication selon le résultat de l'étape de recherche, détection et analyse.
En d'autres termes, l'invention gère les déplacements inter cellulaires (« handovers » en anglais) des interlocuteurs, en cours de communication. Ainsi, le procédé permet de s'adapter, dans le cas où une communication normale devient locale ou inversement, de façon à établir ou non, ou supprimer ou non, un bouclage.
De façon avantageuse, l'information indicative d'un déplacement est constituée par un message de signalisation indicatif des caractéristiques d'une nouvelle cellule du réseau cellulaire entre l'appelé et/ou l'appelant en déplacement.
Le procédé de l'invention gère et analyse donc les déplacements toujours selon une même approche de détection et d'analyse des messages de signalisation destinés au réseau cellulaire.
Avantageusement, les messages de signalisation sont conformes au standard GSM, et le message est le message HANDOVER_COMMAND.
De façon avantageuse, l'étape d'adaptation comprend les phases de : adaptation du bouclage si le résultat de l'analyse de l'information indicative d'un déplacement indique que l'appelant et/ou l'appelé change de cellule tout en restant dans la zone de bouclage ; arrêt de l'opération de bouclage si le résultat de l'analyse de l'information indicative d'un déplacement indique que l'appelant et/ou l'appelé sort de la zone de bouclage; Le procédé de l'invention détecte et s'adapte à tout type de transfert intercellulaire, aussi bien dans le cas où l'un des interlocuteurs change de cellule tout en restant dans la zone de bouclage (le bouclage est maintenu), que dans le cas où il sort de la zone de bouclage (le bouclage est coupé et le fonctionnement devient « classique »). Dans une mode de réalisation de l'invention et en situation de bouclage, tout ou partie desdites données échangées entre l'appelé et l'appelant, localisés dans la zone de bouclage, sont transmises d'une part directement à l'autre interlocuteur par bouclage et d'autre part à au moins un des contrôleurs de stations de base. Ce mode de réalisation permet de répondre aux exigences d'écoute légale, selon lesquelles toute information transmise doit transiter par le MSC. L'objectif de gain en termes de délai et d'économie de compression/décompression est maintenu, l'invention permet alors de n'utiliser la liaison radio seulement pour remonter les données. Ceci diffère des techniques classiques beaucoup plus coûteuses, selon lesquelles les données sont remontées jusqu'au BSC et en reviennent.
Selon un mode de réalisation spécifique du procédé de l'invention, ladite première phase de détection est mise en œuvre dans un premier module situé dans une partie centrale du réseau, et ladite deuxième phase de déclenchement d'une opération de bouclage local est mise en œuvre dans ladite zone locale dudit réseau cellulaire sous ommande dudit premier module.
L'invention concerne par ailleurs un réseau cellulaire mettant en œuvre le procédé précédemment décrit.
Selon l'invention, dans un tel réseau cellulaire, chaque BTS, ou chaque ensemble de BTS relié à un même équipement de transmission vers les BSC, est avantageusement équipé d'un équipement local adaptateur comprenant : des moyens de détection du besoin de bouclage ; des moyens de réalisation de l'opération de bouclage ; des moyens de détection du besoin de débouclage ; - des moyens de réalisation du l'opération de débouclage, les moyens mettant en œuvre le procédé tel que décrit précédemment.
Selon un autre mode de réalisation du réseau cellulaire selon l'invention, d'une part chaque zone locale constituée d'un BTS, ou d'un ensemble de BTS reliés à un même équipement de transmission vers les BSC, est équipée d'un dispositif local adaptateur et,
- d'autre part le réseau comprend un dispositif central optimiseur. Dans ce mode de réalisation, ledit dispositif optimiseur central possède des moyens de détection d'un besoin de bouclage et/ou de débouclage dans une desdites zones locales ; - le dispositif optimiseur comprend des moyens d'émission d'une commande de bouclage et/ou de débouclage à tout dispositif adaptateur situé dans une zone locale dans laquelle il a détecté ledit besoin de bouclage et/ou de débouclage ; chacun desdits dispositifs adaptateurs possède des moyens de réalisation de l'opération de bouclage ou de débouclage sous contrôle de la commande de bouclage ou de débouclage respectivement ; lesdits moyens mettant en œuvre le procédé tel que décrit précédemment.
L'invention concerne tout réseau cellulaire, du type comprenant au moins une station de base contrôlée par un contrôleur de stations de base, nommé BSC, et une infrastructure de réseau avec lequel le BSC est en connexion, l'infrastructure de réseau incluant : soit au moins une liaison de type radio à ressources partagées pour relier le ou les stations de base à leur BSC de contrôle ; soit au moins une liaison de type IP pour relier le ou lesdites stations de base à leur BSC de contrôle ; soit même une liaison d'amenée quelconque.
Enfin, l'invention concerne tout équipement local détecteur et/ou adaptateur mettant en œuvre le procédé tel que décrit précédemment.
6. Liste des figures D'autres caractéristiques et avantages de modes de réalisation de l'invention apparaîtront à la lecture de la description suivante de plusieurs modes de réalisation préférentiel de l'invention, donnés à titre d'exemple indicatif et non limitatif (tous les modes de réalisation de l'invention ne sont pas limités aux caractéristiques et avantages de ce mode de réalisation préférentiel), et des dessins annexés, dans lesquels : la figure 1, déjà présentée en relation avec l'art antérieur, illustre l'architecture du réseau GSM ; la figure 2, déjà introduite dans la partie art antérieur, schématise les interfaces mises en œuvre dans un réseau cellulaire GSM ; la figure 3 concerne la mise en œuvre d'une liaison radio par satellite dans un réseau GSM, selon l'état de la technique ; les figures 4A et 4B illustrent le bouclage local dans un réseau à liaison d'amenée (backhaul) satellitaire, selon un premier et un second modes de mise en oeuvre de l'invention dans lequel le bouclage intervient pour des utilisateurs situés dans une même cellule, ou dans deux cellules proches, respectivement ; la figure 5 concerne la remontée des flux de parole vers la BSC et le MSC ; les figures 6 A et 6B illustrent la mise en œuvre de l'invention dans un réseau à liaison d'amenée satellitaire, selon un troisième et un quatrième modes de réalisation dans lequel le bouclage intervient pour des utilisateurs situés dans une même cellule, ou dans deux cellules proches, respectivement ; les figures 7A et 7B présentent une variante possible de l'invention, selon des modes de réalisation similaires à ceux des figures 4A et 4B respectivement, dans le cas où la liaison d'amenée (backhaul) est constituée par un réseau IP - les figures 8A et 8B de réalisation présentent une autre variante possible de l'invention, selon des modes de réalisation similaires à ceux des figures 6A et 6B respectivement, dans le cas où la liaison d'amenée (backhaul) est constituée par un réseau IP. 7. Description de différents modes de réalisation particuliers de l'invention 7.1 Principe général
L'invention repose alors sur une approche tout à fait nouvelle et inventive de transmission de flux de parole dans un réseau GSM mettant en œuvre une liaison de transmission radio, dans le cas où deux utilisateurs dépendent d'une même station de base ou de deux stations de base proches, en introduisant un dispositif connectant localement deux stations mobiles : on réalise un bouclage local lorsque deux utilisateurs du réseau cellulaire sont en communication dans une zone dite zone de bouclage. Le principe général de bouclage local de l'invention dans le cas d'un réseau à liaison d 'amenée radio à ressources partagées, est illustré en relation avec les figures 4A et 4B et 6A et 6B, distinguant quatre modes de réalisation de bouclage local selon l'invention.
En relation avec la figure 4A, on considère un réseau cellulaire contenant un BSC 401, contrôlant une station de base BTS 402. Cette BTS 402 assure la transmission des données de parole entre deux utilisateurs disposant chacun d'une station mobile MSl 404 et MS2 405, via son antenne 403 hertzienne. Dans ce mode réalisation, les deux utilisateurs sont situés dans une même cellule 406 du réseau cellulaire, donc dans la zone de bouclage. La liaison entre le BSC 401 et sa BTS 402 correspondante est assurée par un ensemble d'équipements de radiocommunication comprenant notamment un satellite géostationnaire 411, ainsi que deux antennes 412 et 413 d'émission et de réception formant ainsi une liaison 415 radio sur laquelle les données de trafic et de signalisation, typiques du système GSM, transitent. Cette liaison 415 radio est en outre assurée par un dispositif 414, dit Hub, chargé d'allouer les ressources radio nécessaires au transfert des données, selon les besoins de trafic du réseau GSM. Le Hub fonctionne en communiquant avec un dispositif 416 IDU (pour « Indoor Unit » en anglais), le hub et l'IDU intégrant ensemble toute l'intelligence et la logique de contrôle du réseau radio. La liaison radio est donc chargée de transporter un ensemble d'informations relatives au réseau GSM, destinées uniquement au MSC ou à la BTS. Il permet plus particulièrement de faire transiter les informations de signalisation, via deux flux 407 et 408, correspondant chacun à l'appelant et à l'appelé. Selon l'invention, un dispositif 420 analyse alors ces flux, dans un de ses modes de réalisation, de façon à détecter le caractère local de l'appel.
Dans ce cas précis, le dispositif 420 de l'invention détecte que deux utilisateurs situés dans la même cellule 406 sont en communication, et met alors en œuvre un bouclage 421 Dans un second mode de réalisation, le dispositif de l'invention 420 met en œuvre un bouclage local 421, illustré par la figure 4B. Dans cette configuration, deux utilisateurs disposant chacun d'une station mobile 431 et 432 sont situés dans deux cellules 441 et 442 distinctes et voisines. Chacune de ces cellules est couverte en réseau par une BTS 402. Ces deux cellules sont de plus situées à proximité d'une troisième cellule 443, couverte par une troisième BTS. Les trois BTS 402 sont situées en aval du même dispositif 420 de l'invention, par rapport à la liaison radio.
Selon un principe similaire au premier mode de réalisation de bouclage local présenté, le dispositif 420 de l'invention analyse le contenu des messages de trafic 407 et 408 et lorsqu'il détecte le caractère local d'un appel, met en œuvre un bouclage, même si deux utilisateurs sont localisés dans deux cellules différentes.
On notera incidemment que ces deux modes de réalisation sont également applicables à un réseau dont la liaison d'amenée 730 est un réseau IP, comme représenté en figures 7 A et 7B. Dans un tel cas, un dispositif adaptateur 720 remplit substantiellement les mêmes fonctions de détection et de déclenchement du bouclage que le dispositif 420.
Dans un troisième et un quatrième modes de réalisation, le système fait intervenir deux dispositifs, 610 et 620 représentés sur les figures 6A et 6B. Le principe est similaire au premier mode de réalisation, mais il existe une séparation des fonctions qui, dans le premier et le deuxième modes de réalisation, se trouvaient regroupées dans le dispositif 420 des figures 4A et 4B. Cette séparation est effectuée en répartissant les fonctions de détection et de déclenchement du bouclage (et/ou du débouclage) entre les équipements 610 et 620 comme suit :
- le dispositif de détection (ou dispositif optimiseur) 620, situé dans une zone centrale du réseau (au-delà de la liaison d'amenée 630 constituée par le satellite 411 et les équipements associés), analyse le flux des informations de signalisation de façon à détecter le caractère local des appels ;
- le cas échéant le dispositif de détection 620 envoie une commande au dispositif 610 par un canal interne 640 reliant les dispositifs 620 et 610 ;
- en réponse à cette commande, le dispositif 610, qui se trouve dans une zone locale à la périphérie, à proximité d'une ou plusieurs BTS, met en œuvre le bouclage (ou le débouclage).
On notera que cette architecture répartie est applicable aux deux situations précédemment décrites : bouclage au sein d'une même cellule (Figure 6A) ou bouclage entre deux cellules dépendant du même équipement local 610 (Figure
6B).
Le même principe de répartition entre un dispositif central de détection
820 situé dans une zone centrale 800 du réseau et un dispositif local 810 de déclenchement de bouclage situé dans une zone locale peut également être mis en œuvre dans un réseau dont la liaison d'amenée 830 est un réseau IP, comme représenté en figures 8A et 8B. Dans ce cas, les commandes de bouclage sont acheminées par un canal de signalisation 840 reliant le dispositif de détection 820 au dispositif 810 de déclenchement de bouclage. Les figures 8 A et 8B correspondent aux cas déjà mentionnés d'un bouclage soit au sein d'une même cellule (figure 8A), soit de deux cellules contrôlées par un même BTS 402 (figure
8B) respectivement.
Avantageusement, les commandes 840 de bouclage (et de débouclage) sont acheminées via un canal de la liaison IP. De la même façon, dans les modes de réalisation des figures 6A et 6B, les commandes 640 sont avantageusement acheminées via un canal de la liaison radio 415.
En résumé, le dispositif de l'invention met en œuvre un bouclage local dans deux cas de figure distincts : d'une part (figures 4A, 6A, 7A, 8A) lorsque deux utilisateurs sont en communication et sont situés dans une même cellule (ils sont tous les deux dans la zone de couverture d'une même station de base BTS), et d'autre part (figures 4B, 6B, 7B, 8B) lorsque deux utilisateurs sont en communication avec deux BTS voisines, mais dont l'interface Abis est relié au même dispositif adaptateur connecté à un même terminal radio par satellite.
Toujours pour résumer, il existe aussi différentes implémentations, selon que
- l'analyse des informations de signalisation et l'exécution du bouclage et/ou du débouclage se font dans le même équipement, à la périphérie et colocalisé avec les BTS (figures 4 et 7)
- ou l'analyse se fait dans un équipement central qui contrôle une multiplicité d'équipements à la périphérie, exécutant le bouclage et/ou le débouclage sous le contrôle de l'équipement central (figures 6 et 8). Dans ces différents cas, les flux de parole sont alors rebouclés en amont de la ou des BTS juste en aval de la liaison radio (figures 4 et 6), ou de la liaison IP (figures 7 et 8). Cette dernière n'est alors pas utilisée pour les données échangées entre appelant et appelé, c'est-à-dire que, contrairement aux techniques classiques, les données de parole ne remontent pas jusqu'au BSC et au MSC situés en amont de la liaison d'amenée (radio, IP ou autre). Ainsi, dans le cas d'une liaison satellitaire, on économise deux canaux radio bi-directionnels.
On décrit dans la suite de cette description une technique de détection du caractère local d'un appel, puis une technique de mise en œuvre du bouclage de la parole, dans un mode de réalisation particulier.
7.2 Stratégie de détection du caractère local d'un appel
De façon à réaliser le bouclage de la parole, il est avant tout nécessaire de détecter de façon fiable la localisation relative de deux utilisateurs impliquées dans une même communication.
Dans un réseau cellulaire tel que le système GSM, dès qu'un utilisateur émet ou reçoit un appel, les équipements génèrent une suite d'échanges de messages de signalisation, réalisant un « appel départ » ou un « appel arrivée ».
Le réseau gère donc une quantité importante de « demi-appels » de ce type. Lorsque deux utilisateurs sont en communication, le demi-appel départ de l'appelant est fortement corrélé à le demi-appel arrivée du destinataire.
Une des problématiques majeures de la présente invention est donc de détecter, au sein du réseau, la correspondance entre deux demi-appels, et ainsi connaître, de façon fiable et sans erreur, le caractère local de l'appel. L'apport principal de l'invention est en effet de fournir une stratégie d'optimisation du processus de détection de la possibilité de bouclage, et du bouclage lui-même.
La stratégie de détection du caractère local d'un appel développée par les inventeurs est basée sur l'exploitation de plusieurs approches, qui peuvent être regroupées en deux grandes catégories : un travail à titre principal sur le contenu des voies de signalisation, sans négliger le recours à une analyse du flux de parole lui-même. 7.2.1 Détection par analyse des messages de signalisation
Les inventeurs ont constaté qu'il n'existe pas, à ce jour, dans la signalisation de base d'un réseau GSM visible sur l'interface Abis, d'indicateurs permettant de corréler l'appel départ et l'appel arrivée correspondant.
Cependant, différentes informations sont communes aux deux parties de l'appel, et peuvent être utilisées pour corréler deux demi-appels.
Lors de la mise en communication d'un appelant et d'un destinataire, parmi les messages de signalisation contenus dans la voie de signalisation correspondant à chaque demi-appel, un message contient notamment un élément dit message de CONNECT (côté arrivée) et message de CONNECT (côté départ).
Ces deux messages se succèdent dans cet ordre et le temps de réception entre les deux présente l'avantage d'être relativement répétitif, puisque aucun facteur aléatoire majeur n'intervient.
L'invention propose alors de se baser sur cette corrélation temporelle pour détecter que les deux demi-appels correspondent.
Cependant, au lieu d'étudier le contenu standard de la voie de signalisation, l'invention propose un second aspect d'étude selon lequel on injecte une information spécifique dans le flux de signalisation, qui sera destinée à être reconnue par un dispositif de l'invention, et permettra à ce dernier de détecter avec certitude que la communication est locale.
Il est nécessaire d'être vigilant quant au contenu de cette information injectée pour ne pas avoir un taux inacceptable de fausses détections par collision entre deux demi-appels sans relation. Pour cela, l'information injectée doit contenir une partie variable non répétable, tel qu'un identifiant de la cellule, ou un identifiant spécifique à l'entité auquel est ajouté un marqueur spécifique à l'appel.
Une difficulté supplémentaire liée à cette approche d'injection de données consiste à rendre cette information acceptable lorsque l'appelé est quelconque et situé dans un tout autre réseau. Le procédé de l'invention limite la fréquence d'apparition de ce cas de figure si l'étape d'injection est réalisée uniquement après la réponse au message PAGING contenu parmi le flux de messages de signalisation. La mise en œuvre d'une étape de corrélation temporelle telle que définie précédemment, dans le flux de signalisation, permet en outre de limiter les cas d'injection d'information superflus.
La solution adoptée consiste alors à utiliser le champ User-User, qui est un champ optionnel apparaissant dans la voie de signalisation dans le message CONNECT. Plus précisément, il est envoyé au décroché dans le message CONNECT arrivée, puis recopié dans le message CONNECT départ. Cet élément est alors ajouté à la volée, avec un contenu numérique suffisamment long, selon un code non répétable.
On note que, pour un bon fonctionnement de cette solution, le MSC du réseau cellulaire doit implanter la fonctionnalité User-User.
De façon à ne pas troubler un destinataire autre que celui éventuellement présent dans la zone de bouclage, le champ User-User est codé en IA5 (pour « International Alphabet 5 » en anglais), codage d'une séquence de caractères selon lequel chaque caractère est codé sur 7 bits. Avec une telle approche, un message intempestif risque d'être affiché par le portable de l'appelant lorsque celui-ci ne se trouve pas être dans la zone locale de l'appelé. L'éventuel test préalable de corrélation temporelle rend cet occurrence rare. Une autre solution sans défaut consiste à réserver un code d'encodage spécifique à l'application. Ceci demande l'agrément des comités de normalisation, ce qui peut être obtenu par un support actif d'un opérateur par exemple.
L'avantage d'une telle solution est de supprimer tout affichage intempestif du message User-User pour des destinataires non concernés.
La procédure est donc la suivante : le dispositif de l'invention, localisé, pour mémoire, en amont de la BTS couvrant la zone de bouclage dans laquelle se trouvent deux utilisateurs en communication, surveille dans les voies de signalisation l'arrivée d'un message CONNECT, aussi bien dans les demi-appels départ que dans les demi-appels arrivée. Lorsqu'un message CONNECT est envoyé au MSC du réseau cellulaire, c'est-à-dire du côté arrivée, le dispositif de l'invention modifie le message pour y inclure un champ User-User codé en IA5, encodant une identité et/ou une valeur aléatoire.
Si un message CONNECT du côté départ est détecté par le dispositif de l'invention avec un champ User-User de même contenu, les deux demi-appels sont réputés se correspondre. 7.2.2. Détection par analyse du flux de parole
Les inventeurs ont par ailleurs exploré les solutions offertes par le signal de parole lui-même. Là aussi, on envisage deux études : une première direction selon laquelle on cherche à détecter, ou corréler des informations communes aux flux de parole contenus dans deux demi-appels, et/ou une seconde direction selon laquelle on cherche à injecter dans les flux de parole des informations qui serviront à la détection du caractère local de l'appel.
L'information la plus fiable est en effet la corrélation directe des flux de parole. Une telle corrélation est réalisée au début de la communication, et déclenche le bouclage.
Classiquement, dans un réseau GSM, la parole est transmise en format comprimé entre la BTS et un transcodeur situé au niveau du MSC. Elle est alors convertie au format numérique PCM non compressé. Ce signal est ensuite à nouveau compressé pour être envoyé à la BTS desservant le second interlocuteur. Ce double transcodage détruit alors la ressemblance des flux numériques de parole, il est donc très difficile de se baser sur ces flux pour une étude de la corrélation.
Cependant, il existe un mode de transmission, dit mode TFO (pour « Transcoder Free Opération » en anglais) qui évite ce double transcodage. La parole est transmise dans le réseau central, c'est-à-dire entres les dispositifs appelés TRAU (pour « Transcoder Rate Adapter Unit » en anglais) chargés de compresser les flux de parole. Le principe d'un tel mode de transmission est de transmettre la parole à la fois en mode PCM sur 6 bits par octet, et aussi la parole numérisée telle que fournie par le mobile sur 2 bits par octet. Le TRAU, s'il est activé en mode TFO, peut alors transmettre au mobile destinataire la parole numérisée telle que fournie par le mobile de départ : le double transcodage est ainsi évité et la corrélation entre les deux flux de parole est maintenue.
S'il est utilisé, le mode TFO doit être reconnu par le TRAU distant. Ceci est obtenu, selon le standard GSM, par un dialogue préalable entre les deux TRAU et distants, une fois que la connexion est effectivement établie, c'est-à- dire une fois que les message CONNECT de la voie de signalisation ont été reçus. Le dialogue établi est ensuite continu, en utilisant la capacité résiduelle entre les 16 kbits par secondes disponibles et ce qui est nécessaire pour la parole, à savoir au maximum 13 kbits par seconde pour un format comprimé.
L'activation de ce mode TFO présente donc l'avantage de rendre possible une comparaison entre les deux flux de parole, bloc numérique par bloc numérique. Dans ce mode, un bloc émis est retrouvé tel quel à la réception, avec un délai connu. On note que la transmission à l'identique des flux de parole n'est faite par le récepteur qu'une fois qu'il a été vérifié que les deux TRAU sont en mode TFO : cette procédure crée un délai entre l'établissement de la communication et la détection qu'il s'agit bien du même flux sur les deux branches.
Selon une approche différente, il est possible d'injecter des informations dans le signal de parole en lui-même. Une fois la connexion établie, l'invention propose, dans un mode de réalisation particulier, d'injecter notamment des signaux multifréquence à deux tonalités (DTMF pour « dual tone multifrequency » en anglais). L'étude de corrélation se fait alors sur les valeurs, mais aussi sur la longueur et sur le temps de retard des messages. Cependant, cette solution présente un risque d'être audible par le destinataire.
Dans le mode de réalisation dans lequel le mode TFO est activé, l'invention propose de mettre en clandestin des informations spécifiques. Ceci permet alors d'accélérer la détection de l'identité entre les deux flux, par rapport à une simple comparaison de la parole.
7.3 L'opération de bouclage de la parole
Pour plus de clarté, on se place dans le mode de réalisation dans lequel la détection du caractère local d'un appel est basée sur les réceptions successives et l'analyse des messages CONNECT (introduit au paragraphe 7.2.1 de la présente description).
L'homme du métier saura aisément transposer la technique présentée aux autres modes de détection précédemment introduits.
Lorsque qu'un message CONNECT est émis par le destinataire, la parole est en émission-réception. A la réception du côté appelant de ce message par le dispositif de l'invention, et si ce dernier détecte le caractère local d'un appel, la parole est bouclée directement du côté départ vers le côté arrivée, sans perte.
A l'inverse, pour pouvoir boucler la parole en sens inverse, c'est-à-dire de l'arrivée vers le départ, il est nécessaire d'être vigilant du fait qu'une partie de la parole est en transit via le MSC du réseau cellulaire. On rappelle qu'en cas de bouclage, les flux de paroles ne transitent plus par le MSC. Il est donc nécessaire d'assurer une transition au moment de l'opération de bouclage de la parole, de façon qu'aucune information ne soit perdue.
Pour ce faire, le dispositif de l'invention propose de tamponner la parole en provenance du destinataire, dans une mémoire tampon de taille adéquate. Ainsi, la parole en provenance du MSC est tout d'abord envoyée, puis la mémoire tampon prend le relais, en étant vidée progressivement, en enlevant les trames de silence, grâce à un algorithme de suppression de silences.
Ainsi, l'intégralité des trames de parole est correctement restituée : la qualité de service est équivalente aux techniques classiques. Dans un troisième mode de réalisation, la parole est tamponnée dès le début de la communication, côté arrivée. Le flux originaire du MSC ne passe pas. Le bouclage est fait via le tampon, qui est vidé progressivement. Cependant, cette approche présente l'inconvénient de demander une mémoire plus importante lorsque le bouclage n'est pas réalisé. En revanche, la technique a pour avantage de présenter un délai minimal si la parole venant de l'arrivée est vide. 7.4 Gestion des transferts intercellulaires
En cours de communication, l'appelant ou le destinataire peuvent être amenés à se déplacer, et ainsi à modifier les conditions de l'appel, et plus précisément à changer de cellule. On parle de transfert intercellulaire (« handover » en anglais). Les situations étudiées sont les suivantes : les deux utilisateurs sont en communication dans la zone de bouclage, le bouclage est actif, puis l'un des deux utilisateurs sort de la zone de bouclage (« handover » sortant); deux utilisateurs sont en communication dans la zone de bouclage, puis l'un des deux utilisateurs change de cellule, tout en restant dans la zone de bouclage (« handover » interne). 7.4.1 Handover interne
On rappelle que l'invention propose un bouclage local non seulement lorsque deux utilisateurs sont localisés dans une même cellule, mais aussi dans le cas où ils sont dans deux cellules différentes et voisines.
L'objectif ici est alors de détecter le changement de cellule d'un des utilisateurs, en cours de communication, alors que le bouclage local est actif, et de maintenir ce bouclage si la nouvelle cellule détectée appartient toujours à la zone de bouclage. Pour cela, l'analyse des voies de signalisation est une fois de plus mise en œuvre. Le dispositif de l'invention détecte la présence du message HANDOVER COMMAND au sein des échanges de signalisation relatifs aux communications bouclées. Les informations de ce message permettent de connaître la nouvelle cellule et le nouveau circuit. Cependant, le dispositif de l'invention doit pour cela connaître la configuration des différentes cellules, et est donc configuré comme tel. Une maintenance des caractéristiques du réseau cellulaire est donc réalisée, en fonction des modifications apportées par l'exploitant.
L'invention analyse donc le contenu du message HANDOVER COMMAND dès sa détection pour vérifier si la cellule destinatrice est dans la zone de bouclage. Si tel est le cas, l'invention effectue une étape de recherche d'un nouveau canal et active le bouclage via ce nouveau canal trouvé.
Parallèlement, une maintenance locale est exécutée sur l'équipement, concernant les données techniques permettant d'analyser les messages, telles que notamment les données de configuration des cellules, les données nécessaires au décodage de certains champs des voies de signalisation, le décodage contextuel... 7.4.2 Handover sortant
Dans cette configuration, la détection du handover est basée sur le même principe que pour le handover interne, c'est-à-dire sur la recherche et l'analyse du message HANDOVER COMMAND au sein des échanges de signalisation relatifs aux communications bouclées. Cependant, au lieu de chercher un nouveau canal, le but final ici est de désactiver le bouclage local pour repasser en transmission classique de la parole par le MSC du réseau cellulaire.
Si l'utilisateur B est l'utilisateur sortant de la zone de bouclage, et l'utilisateur A est celui restant dans la zone de bouclage. Alors lorsque le message HANDOVER COMMAND de l'utilisateur B est détecté, le dispositif de l'invention commence à envoyer la parole sortante venant de l'utilisateur A vers le MSC du réseau. Ceci se traduit par l'introduction d'un silence, vu de A. De plus, le dispositif envoie à A le flux de parole en provenance du MSC, ce qui se traduira aussi par l'introduction d'un silence. 7.5 L'exigence légale de l'écoute Le bouclage local selon l'invention fait que le MSC ne reçoit pas le flux de parole. Dans certains pays ou réseaux la possibilité d'écoute légale est obligatoire, et la parole doit passer par le MSC pour que l'écoute légale telle que spécifiée dans le standard soit possible. Pour pallier à ce problème, l'invention propose alors de remonter le flux de parole jusqu'au MSC, en relation avec la figure 5. Une telle technique restreint le gain obtenu par le bouclage local, mais ne l'annule pas.
En effet, on rappelle que sans bouclage, chaque sens de la parole passe deux fois par la liaison satellite. La technique de l'invention est basée sur le fait que la redescente de la parole peut être supprimée sans restreindre la possibilité d'écoute légale.
Plus précisément, deux utilisateurs de stations mobiles 60 et 61 sont en communication et sont localisés dans une même cellule 62 couverte par la même BTS 63. Ils sont donc dans la zone de bouclage et un bouclage 65 est effectué sur les deux flux de parole 66 et 67 en amont de la BTS 63. En effet, le dispositif 66 de l'invention a détecté dans les voies de signalisation 67 et 68 des informations indiquant le caractère local de l'appel.
De façon à répondre aux exigences d'écoute légale, l'adaptateur 66 combine 69 les deux flux de parole 66 et 67 pour les faire remonter jusqu'au MSC dans un signal 70 via la liaison radio par satellite 71 et le BSC 72.
Il est aussi possible de remonter les deux flux indépendamment l'un de l'autre. La combinaison permet alors de gagner un canal.
Une telle combinaison peut être réalisée de plusieurs façons, et il est nécessaire de tester chaque approche pour évaluer les meilleures performances. Dans un premier cas de figure, les flux sont transcodés, additionnés puis transcodés à nouveau : cette approche est coûteuse. Dans un second cas de figure, une sélection est faite trame par trame, en choisissant l'un des deux flux de parole.
Ceci entraîne une perte de la parole quand les deux interlocuteurs parlent en même temps. Enfin, il est possible de transmettre les deux flux en les mettant en séquence. Cette technique assure qu'aucune parole ne soit perdue et est équivalente à l'utilisation d'un bon algorithme d'allocation dans le cas où les deux flux de parole sont transmis indépendamment l'un de l'autre.

Claims

REVENDICATIONS
1. Procédé de transmission de données dans un réseau cellulaire de radiocommunications mobiles, procédé du type consistant à établir, maintenir et terminer un canal de communication de données entre un appelant et un appelé situés dans ledit réseau cellulaire, un appelant et/ou un appelé étant chacun situé dans une zone locale (406) dudit réseau cellulaire, l'établissement, le maintien et la terminaison dudit canal de communication de données mettant en oeuvre des échanges de messages de signalisation, procédé caractérisé en ce qu'il comprend :
- une première phase de détection si l'appelant et l'appelé de ladite communication se situent dans une même zone locale (406) dudit réseau cellulaire, selon une stratégie de détection incluant une étape d'analyse de tout ou partie desdits messages de signalisation;
- une deuxième phase de déclenchement d'une opération de bouclage (421) local de tout ou partie des données échangées entre l'appelant et l'appelé, dans le cas où ladite phase de détection confirme le caractère local de ladite communication entre l'appelant et l'appelé.
2. Procédé de transmission selon la revendication 1, caractérisé en ce que ladite étape d'analyse de tout ou partie des messages de signalisation est mise en œuvre par un dispositif situé en amont d'au moins une station de base (402) du réseau cellulaire et en aval d'un contrôleur (401) de station de base.
3. Procédé de transmission selon l'une quelconque des revendications 1 et 2, caractérisé en ce que ladite opération de bouclage local est mise en œuvre par un dispositif situé en amont d'au moins une station de base (402) du réseau cellulaire et en aval d'un contrôleur (401) de station de base.
4. Procédé de transmission selon l'une quelconque des revendications 2 et 3, caractérisé en ce que ladite zone locale est définie par la zone de couverture en aval de ladite station de base (402), ou d'un ensemble desdites stations de base.
5. Procédé de transmission selon l'une quelconque des revendications 2 à 4, ladite station de base étant contrôlée par ledit contrôleur (401) de stations de base parmi une pluralité de contrôleurs de stations de base et la ou lesdites stations de base étant connectées avec le ou lesdits contrôleurs de stations de base via un réseau de connexion, caractérisé en ce que ledit bouclage local consiste à acheminer tout ou partie des données échangées entre l'appelant et l'appelé sans transit par le ou lesdits contrôleurs (401) de stations de base.
6. Procédé de transmission selon l'une quelconque des revendications 1 à 5, la succession desdits messages de signalisation formant des flux de signalisation, caractérisé en ce que ladite stratégie de détection inclut une étape d'injection dans lesdits flux de signalisation d'au moins une information de traçage au niveau de la zone locale dudit interlocuteur appelant et/ou dudit interlocuteur appelé, et à reconnaître ladite information de traçage dans la zone locale de l'autre desdits interlocuteurs.
7. Procédé de transmission selon la revendication 6 caractérisé en ce que ladite information de traçage est constituée par au moins une information représentative de ladite zone locale, et/ou un marqueur spécifique à l'appel au sein des appels en cours dans ladite zone locale.
8. Procédé de transmission selon l'une quelconque des revendications 6 et 7 caractérisé en ce que lesdits messages de signalisation sont conformes au standard GSM et en ce que ladite information de traçage est encodée dans le champ User-User du message CONNECT ou du message SETUP.
9. Procédé de transmission selon l'une quelconque des revendications 1 à 8 caractérisé en ce que ladite phase de détection comprend une étape préalable de détection de la corrélation temporelle entre l'émission et la réception de messages de signalisation prédéterminés.
10. Procédé de transmission selon la revendication 9 caractérisé en ce que lesdits messages de signalisation prédéterminés appartiennent au groupe comprenant : les messages de SETUP départ et PAGING ; les messages de CONNECT arrivée et CONNECT départ.
11. Procédé de transmission selon l'une quelconque des revendications 9 et 10 caractérisé en ce que ladite stratégie de détection s'effectue en deux temps : - mise en œuvre dans un premier temps de ladite étape de détection de la corrélation temporelle entre l'émission et la réception de messages de signalisation prédéterminés ; mise en œuvre dans un second temps de l'étape d'injection de ladite information de traçage si et seulement si une corrélation temporelle a été détectée.
12. Procédé de transmission selon l'une quelconque des revendications 1 à 11, la voie de trafic de la communication acheminant des données à contraintes de temps réel, tel qu'un flux de parole, caractérisé en ce que ladite stratégie de détection inclut une phase d'analyse directe desdites données à contrainte de temps réel.
13. Procédé de transmission selon la revendication 12, lesdites données incluant un flux de parole, caractérisé en ce que ladite phase d'analyse du flux de parole comprend une étape supplémentaire d'injection dans ledit flux de parole d'un signal de type DTMF au niveau de la zone locale de l'un desdits interlocuteurs appelant ou appelé et à reconnaître ladite information de traçage dans la zone locale de l'autre desdits interlocuteurs.
14. Procédé de transmission selon l'une quelconque des revendications 12 et 13 lesdites données incluant un flux de parole, et ledit réseau cellulaire étant conforme au standard GSM, caractérisé en ce que ladite étape d'analyse du flux de parole est mise en œuvre après que le mode TFO a été activé.
15. Procédé de transmission selon la revendication 14, le mode TFO étant activé, caractérisé en ce que ladite étape d'analyse directe comprend une phase d'injection d'au moins une information spécifique dans le flux de parole pour accélérer la détection de l'identité entre les deux flux par rapport à la simple comparaison de la parole.
16. Procédé de transmission selon la revendication 5 ou l'une quelconque des revendications 6 à 15 en ce qu'elles sont dépendantes de la revendication 5, ledit réseau de connexion incluant au moins une liaison de type radio à ressources partagées (415) entre la ou lesdites stations de base (402) et le ou lesdits contrôleurs (401) de stations de base, caractérisé en ce que ladite zone locale est définie par la zone située en aval d'un point de connexion à ladite liaison de type radio à ressources partagées.
17. Procédé de transmission selon l'une quelconque des revendications 1 à
16, caractérisé en ce que ladite deuxième phase de déclenchement d'une opération de bouclage comprend une phase préliminaire de stockage dans une mémoire tampon des données issues dudit destinataire, de façon à assurer une continuité dans le flux desdites données à transmettre.
18. Procédé de transmission selon l'une quelconque des revendications 1 à
17, caractérisé en ce qu'il comprend les étapes supplémentaires de : - recherche, détection et analyse dans lesdits messages de signalisation d'informations indicatives d'un déplacement dudit appelé et/ou dudit destinataire, en cours de communication. adaptation des canaux de communication selon le résultat de ladite étape de recherche, détection et analyse.
19. Procédé de transmission selon la revendication 18, caractérisé en ce que ladite information indicative d'un déplacement est constituée par un message de signalisation indicatif des caractéristiques d'une nouvelle cellule dudit réseau cellulaire entre ledit appelé et/ou ledit appelé en déplacement.
20. Procédé de transmission selon la revendication 19, caractérisé en ce que lesdits messages de signalisation sont conformes au standard GSM, et en ce que ledit message est le message HANDOVER_COMMAND.
21. Procédé de transmission selon l'une quelconque des revendications 18 à 20, caractérisé en ce que ladite étape d'adaptation comprend les phase de: adaptation du bouclage si le résultat de l'analyse de ladite information indicative d'un déplacement indique que ledit appelant et/ou ledit appelé change de cellule tout en restant dans ladite zone de bouclage ; arrêt de ladite opération de bouclage si le résultat de l'analyse de ladite information indicative d'un déplacement indique que ledit appelant et/ou ledit appelé sort de ladite zone de bouclage.
22. Procédé de transmission selon l'une quelconque des revendication 1 à
21, caractérisé en ce que tout ou partie desdites données échangées entre ledit appelé et ledit appelant, localisés dans ladite zone de bouclage, est transmis d'une part directement à l'autre interlocuteur par bouclage et d'autre part à au moins un desdits contrôleurs de stations de base.
23. Procédé selon l'une quelconque des revendications 1 à 22, caractérisé en ce que ladite première phase de détection est mise en œuvre dans un premier dispositif (620, 820) situé dans une partie centrale (600 ; 800) du réseau, et en ce que ladite deuxième phase de déclenchement d'une opération de bouclage (421) local est mise en œuvre dans un second dispositif (610 ; 810) situé ladite zone locale (406) dudit réseau cellulaire sous commande (640 ; 840) dudit premier dispositif (620 ; 820).
24. Réseau cellulaire caractérisé en ce qu'il met en œuvre le procédé selon l'une quelconque des revendications 1 à 23.
25. Réseau cellulaire selon la revendication 24, caractérisé en ce que chaque station de base, nommée BTS, ou chaque ensemble de BTS relié à un même équipement de transmission vers des contrôleurs de stations de base, nommé BSC, est équipée d'un équipement local adaptateur (420 ;720) comprenant : des moyens de détection du besoin de bouclage ; - des moyens de réalisation de l'opération de bouclage ; des moyens de détection du besoin de débouclage ; des moyens de réalisation du l'opération de débouclage, au moins un desdits moyens mettant en œuvre au moins une étape du procédé selon l'une quelconque des revendications 1 à 23.
26. Réseau cellulaire selon la revendication 24, caractérisé en ce que d'une part, chaque zone locale constituée d'un BTS, ou d'un ensemble de BTS reliés à un même équipement de transmission vers les BSC, est équipée d'un dispositif local adaptateur (610 ; 810) ; et, d'autre part, le réseau comprend un dispositif central optimiseur (620 ;820), et en ce que :
- ledit dispositif optimiseur central (620 ;820) possède des moyens de détection d'un besoin de bouclage et/ou de débouclage dans une desdites zones locales; - le dispositif optimiseur (620 ;820) comprend des moyens d'émission d'une commande (640 ; 840) de bouclage et/ou de débouclage à tout dispositif adaptateur (610 ; 810) situé dans une zone locale dans laquelle il a détecté ledit besoin de bouclage et/ou de débouclage;
- chacun desdits dispositifs adaptateurs (610 ; 810) possède des moyens de réalisation de l'opération de bouclage ou de débouclage sous contrôle de la commande de bouclage ou de débouclage respectivement ; lesdits moyens mettant en œuvre le procédé selon l'une quelconque des revendications 1 à 23.
27. Réseau cellulaire selon l'une quelconque des revendications 25 et 26, du type comprenant au moins une station de base (402) contrôlée par un contrôleur (401) de stations de base, nommé BSC, et une infrastructure de réseau avec lequel ledit BSC est en connexion, ladite infrastructure de réseau incluant au moins une liaison (415) de type radio à ressources partagées pour relier le ou lesdites stations de base à leur BSC de contrôle.
28. Réseau cellulaire selon l'une quelconque des revendications 25 et 26, du type comprenant au moins une station de base (402) contrôlée par un contrôleur (401) de stations de base, nommé BSC, et une infrastructure de réseau avec lequel ledit BSC est en connexion, ladite infrastructure de réseau incluant au moins une liaison (730 ; 830) de type IP pour relier le ou lesdites stations de base à leur BSC de contrôle.
29.. Equipement local détecteur (420 ; 620 ; 720 ; 820) mettant en œuvre le procédé selon l'une quelconque des revendications 1 à 23.
30. Equipement local adaptateur (420 ; 610 ; 720 ; 810) mettant en œuvre le procédé selon l'une quelconque des revendications 1 à 23.
PCT/EP2007/052305 2006-03-14 2007-03-12 Procédé d'optimisation des ressources de transmission par bouclage local dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants WO2007104743A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/282,803 US8301131B2 (en) 2006-03-14 2007-03-12 Method for optimizing the transmission resources by local loopback in a mobile radio communication cellular network, network and local adapters thereof
CN2007800164194A CN101438616B (zh) 2006-03-14 2007-03-12 用于在移动无线电通信蜂窝网络中通过本地回送优化传输资源的方法,网络以及其本地适配器
CA2645437A CA2645437C (fr) 2006-03-14 2007-03-12 Procede d'optimisation des ressources de transmission par bouclage local dans un reseau cellulaire de radiocommunication mobile, reseau et adaptateurs locaux correspondants
EP07726811.8A EP2002682B1 (fr) 2006-03-14 2007-03-12 Optimisation des ressources de transmission par bouclage local dans un réseau cellulaire de radiocommunication mobile
IL194046A IL194046A (en) 2006-03-14 2008-09-11 A method for optimizing resource transfer using local repetitive nutrition in a cellular wireless radio communication system, communication system and local adapters

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR0602223 2006-03-14
FR0602222 2006-03-14
FR0602223A FR2898760B1 (fr) 2006-03-14 2006-03-14 Procede d'optimisation des ressources de transmission par bouclage local dans un reseau cellulaire de radiocommunication mobile, reseau et adaptateurs locaux correspondants.
FR0602222A FR2898759B1 (fr) 2006-03-14 2006-03-14 Procede d'optimisation de l'allocation des ressources dans un reseau cellulaire mettant en oeuvre une liaison de transmission radio partagee, reseau et adaptateurs de reseau correspondants.
FR0611565 2006-12-29
FR0611565 2006-12-29

Publications (1)

Publication Number Publication Date
WO2007104743A1 true WO2007104743A1 (fr) 2007-09-20

Family

ID=38093601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/052305 WO2007104743A1 (fr) 2006-03-14 2007-03-12 Procédé d'optimisation des ressources de transmission par bouclage local dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants

Country Status (5)

Country Link
US (1) US8301131B2 (fr)
EP (1) EP2002682B1 (fr)
CA (1) CA2645437C (fr)
IL (1) IL194046A (fr)
WO (1) WO2007104743A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090193A1 (fr) 2008-01-15 2009-07-23 Cell & Sat Procédé d'optimisation des ressources de transmission par bouclage intercellulaire dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants
WO2010044082A2 (fr) * 2008-10-14 2010-04-22 Slieve Mish Inventions Limited Système et procédé de communication
WO2010091627A1 (fr) * 2009-02-10 2010-08-19 华为技术有限公司 Procédé, dispositif et système d'établissement du commutateur local
US8166247B2 (en) 2008-08-15 2012-04-24 International Business Machines Corporation Data vaulting in emergency shutdown
WO2016150496A1 (fr) * 2015-03-25 2016-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Complexe cytotoxique anti-cd89

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944630B (zh) * 2014-05-06 2017-08-15 周在龙 一种空间信息网络的信道动态带宽分配及接入方法
US9838108B2 (en) * 2015-06-18 2017-12-05 International Business Machines Corporation IP based real-time communications over a mobile network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761195A (en) 1995-05-04 1998-06-02 Interwave Communications International, Ltd. Methods and apparatus for connecting calls in a hierarchical cellular network
EP1282320A2 (fr) * 2001-08-01 2003-02-05 Shiron Satellite Communications (1996) Ltd. Infrastructure pour un réseau de téléphonie
EP1387592A1 (fr) * 2002-08-01 2004-02-04 Alcatel Dispositif de prise de controle de ressources dans un réseau de communications, pour l'insertion de trafic
EP1528714A1 (fr) * 2003-10-30 2005-05-04 Research In Motion Limited Système et procédé de détection de proximité dans un réseau sans fil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI100079B (fi) * 1994-11-09 1997-09-15 Nokia Telecommunications Oy Menetelmä koodauksen toteuttamiseksi solukkoradioverkossa
US5930708A (en) 1996-03-21 1999-07-27 Trw Inc. Communications satellite router-formatter
US5751706A (en) * 1996-06-05 1998-05-12 Cignal Global Communications, Inc. System and method for establishing a call telecommunications path
US6205214B1 (en) * 1997-07-09 2001-03-20 Sbc Technology Resources Inc. Local routing system and method
US6256503B1 (en) * 1997-07-09 2001-07-03 Nortel Networks Limited Method and system in a wireless communications network for providing restricted user termination areas based on originator location
FR2803713B1 (fr) 2000-01-07 2002-08-30 Aerospatiale Matra Systeme de telecommunication cellulaire a satellite relais
US7289814B2 (en) 2003-04-01 2007-10-30 International Business Machines Corporation System and method for detecting proximity between mobile device users
FR2870662B1 (fr) * 2004-05-24 2006-08-18 Alcatel Sa Dispositif de routage local de trafics locaux au sein d'un reseau de communication radio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5761195A (en) 1995-05-04 1998-06-02 Interwave Communications International, Ltd. Methods and apparatus for connecting calls in a hierarchical cellular network
EP1282320A2 (fr) * 2001-08-01 2003-02-05 Shiron Satellite Communications (1996) Ltd. Infrastructure pour un réseau de téléphonie
EP1387592A1 (fr) * 2002-08-01 2004-02-04 Alcatel Dispositif de prise de controle de ressources dans un réseau de communications, pour l'insertion de trafic
EP1528714A1 (fr) * 2003-10-30 2005-05-04 Research In Motion Limited Système et procédé de détection de proximité dans un réseau sans fil

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090193A1 (fr) 2008-01-15 2009-07-23 Cell & Sat Procédé d'optimisation des ressources de transmission par bouclage intercellulaire dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants
US8676185B2 (en) 2008-01-15 2014-03-18 Cell & Sat Method for optimising transmission resources by inter-cellular loop in a mobile cellular radio-communication network and corresponding local network and adaptors
US8166247B2 (en) 2008-08-15 2012-04-24 International Business Machines Corporation Data vaulting in emergency shutdown
WO2010044082A2 (fr) * 2008-10-14 2010-04-22 Slieve Mish Inventions Limited Système et procédé de communication
WO2010044082A3 (fr) * 2008-10-14 2011-05-05 Slieve Mish Inventions Limited Système et procédé de communication
CN102197700A (zh) * 2008-10-14 2011-09-21 斯利府·米什创造有限公司 通信系统和方法
US8670770B2 (en) 2008-10-14 2014-03-11 Altobridge Limited Communications system and method
CN102197700B (zh) * 2008-10-14 2014-06-11 阿尔特布里奇有限公司 通信系统和方法
WO2010091627A1 (fr) * 2009-02-10 2010-08-19 华为技术有限公司 Procédé, dispositif et système d'établissement du commutateur local
WO2016150496A1 (fr) * 2015-03-25 2016-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Complexe cytotoxique anti-cd89
US10668147B2 (en) 2015-03-25 2020-06-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Anti-CD89 cytotoxic complex

Also Published As

Publication number Publication date
US20090215455A1 (en) 2009-08-27
EP2002682A1 (fr) 2008-12-17
CA2645437A1 (fr) 2007-09-20
EP2002682B1 (fr) 2018-01-10
US8301131B2 (en) 2012-10-30
CA2645437C (fr) 2015-11-24
IL194046A (en) 2014-03-31

Similar Documents

Publication Publication Date Title
EP2005770B1 (fr) Procédé d'optimisation de l'allocation des ressources dans un réseau cellulaire mettant en oeuvre une liaison de transmission radio partagée, et réseau correspondant
EP0642285B1 (fr) Procédé de partage de canaux par vol d'intervalles de temps contrÔlé dans un système de radiocommunications multiplexées, terminal et infrastructure correspondants
EP2002682B1 (fr) Optimisation des ressources de transmission par bouclage local dans un réseau cellulaire de radiocommunication mobile
CA2112514C (fr) Procede de transmission de donnees entre des equipements de communication connectes a une infrastructure de communication
EP1603351B1 (fr) Dispositif de routage local de trafics locaux au sein d'un reseau de communication radio
FR2757003A1 (fr) Procede de retour au fonctionnement en tandem entre transcodeurs d'un systeme de telecommunications
EP1685733B1 (fr) Procede de controle de service de communication dans un systeme de telecommunication et commutateur associe
EP1478195A1 (fr) Gestion de ressources d'un réseau de communications de type point à multipoint ou multipoint à Multipoint, par deux niveaux d'allocation
FI106082B (fi) Menetelmä puhekanavan takaisinkytkemisen havaitsemiseksi sekä puheenkäsittelylaite
EP2245884B1 (fr) Procédé d'optimisation des ressources de transmission par bouclage intercellulaire dans un réseau cellulaire de radiocommunication mobile, réseau et adaptateurs locaux correspondants
FR2900530A1 (fr) Dispositif de routage local de trafics locaux au sein d'un reseau de communitation radio, par detection dans des copies de trames descendantes de donnees correspondant a des copies de trames montantes
US8515769B2 (en) Single channel EVRCx, ISLP and G.711 transcoding in packet networks
FR2898758A1 (fr) Procede d'optimisation des ressources de transmission par bouclage local dans un reseau cellulaire de radiocommunication mobile, reseau et adaptateurs locaux correspondants
FR2898760A1 (fr) Procede d'optimisation des ressources de transmission par bouclage local dans un reseau cellulaire de radiocommunication mobile, reseau et adaptateurs locaux correspondants.
KR101319788B1 (ko) 네트워크의 가용 범위와 용량 중 한가지 이상을 개선시키기 위한 통신 장치 및 방법
EP1043903A1 (fr) Procédé et dispositif de transmission de données sur un canal de parole
EP2373027B1 (fr) Procédé et système de transmission coopérative d'une séquence vidéo
EP1968258A1 (fr) Dispositif d'aide au routage transverse de trafics entre sites distants au sein d'un réseau de communication radio
EP3675581A1 (fr) Etablissement d'une liaison d'echange de donnees sous protocole ip entre des stations de base de structures mobiles avec partage de la bande de frequence en sous-bandes de frequences
FR2994628A1 (fr) Procede d'optimisation de la transmission des donnees dans un reseau cellulaire a optimisation de l'allocation des ressources equipe d'un systeme de bouclage local, reseau et adaptateurs locaux correspondants
FR2862472A1 (fr) Procede de controle du codage de communications, controleur de reseau radio et terminal mobile pour la mise en oeuvre du procede
WO2007045806A1 (fr) Basculement de modes de communication dans un reseau de mobile lors d'un changement de couverture radio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07726811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2645437

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 194046

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 7730/DELNP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007726811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780016419.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12282803

Country of ref document: US