WO2007102324A1 - Phase lock-in type high-frequency scanning tunnel microscope - Google Patents

Phase lock-in type high-frequency scanning tunnel microscope Download PDF

Info

Publication number
WO2007102324A1
WO2007102324A1 PCT/JP2007/053428 JP2007053428W WO2007102324A1 WO 2007102324 A1 WO2007102324 A1 WO 2007102324A1 JP 2007053428 W JP2007053428 W JP 2007053428W WO 2007102324 A1 WO2007102324 A1 WO 2007102324A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
frequency
lock
sample
Prior art date
Application number
PCT/JP2007/053428
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuyoshi Endo
Kouji Inagaki
Kenta Arima
Original Assignee
Osaka Industrial Promotion Organization
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Industrial Promotion Organization, Osaka University filed Critical Osaka Industrial Promotion Organization
Priority to JP2008503779A priority Critical patent/JP4590574B2/en
Publication of WO2007102324A1 publication Critical patent/WO2007102324A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/12STS [Scanning Tunnelling Spectroscopy]

Definitions

  • the present invention relates to a phase lock-in type high-frequency scanning tunneling microscope, and more specifically, a phase lock-in capable of observing an atomic image of an insulator or a wide band gap semiconductor surface including a conductor or a semiconductor. This is related to a high-frequency scanning tunneling microscope.
  • Non-Patent Documents 1 to 3 show that tunnel electrons flow between a probe sample and a small amount of electrons between the probe sample and the sample during a short period of a high-frequency voltage in the order of GHz.
  • the insulator material has only achieved a spatial resolution of up to about lnm.
  • One of the causes is the charge on the sample surface. It is also a force that prevents tunneling of electrons from the probe by charging the tunnel electrons directly under the probe.
  • the second is AC tunneling with an applied frequency f. Since the flow component is much larger than that, it is buried in the current component due to the capacitance between the sample and others, so harmonic components (such as 3f) instead of f are used as feedback signals.
  • Non-Patent Document 4 reports STM observation performed by applying a voltage of about 5 V to tunnel electrons to the conduction band on a Si surface having an oxide film of several nm. .
  • the resolution of the atomic image size has not been obtained, and the oxide film is limited to a few nm or less.
  • Patent Document 1 the present inventors set the distance between the tip of the probe and the sample extremely close to each other, generate a tunnel current by a bias voltage applied between the probe and the sample, and maintain this tunnel current constant.
  • a scanning tunneling microscope that applies a feedback signal to the drive system under certain conditions to relatively scan the probe and the sample and observe an atomic scale image of the sample surface, with a high-frequency rectangular short between the probe and the sample.
  • a pulse AC bias voltage is applied, and the time constant determined by the tunnel resistance and stray capacitance between the probe and the sample is substantially matched with the time constant determined by the input impedance of the current amplifier, and only the tunnel current component is detected.
  • We have proposed a high-frequency pulsed scanning tunneling microscope that rectifies the feedback signal.
  • the HOPG atomic image can be observed relatively clearly up to a frequency of several tens of kHz, but a clear atomic image can be observed at a frequency of 100 kHz. I could't do it.
  • a high-frequency rectangular short pulse is applied as a bias voltage between the probe 101 and the sample 102 by the pulse generator 103 as shown in FIG. Due to the capacitance of the pulse, overcurrent (spike current) occurs at the rise and fall of the pulse, and the tunnel current is buried in the overcurrent, so it cannot be used as a feedback signal.
  • the impedance matching circuit 104 that also has the capacitor C and the variable resistance R force is provided, and the current amplifier 1 The signal is converted into a DC signal proportional to the tunnel current via 05 and the rectifier circuit 106 and input to the control system 107 as a feedback signal for driving the probe 101.
  • the matching circuit 104 is used, the stray capacitance changes due to the problem of poor frequency characteristics and the displacement of the probe. Therefore, even if an impedance matching circuit is provided, only the tunnel current component cannot be detected. In particular, for a bias voltage with a high frequency, it was difficult to obtain a clear atomic image with large noise.
  • the conventional STM has a structure in which observation is performed by placing the probe and the sample in an ultra-high vacuum chamber with strict electromagnetic shielding in order to reduce noise and increase detection sensitivity. Therefore, it is inevitable that the apparatus is expensive and it takes a long time before the sample can be set and observed.
  • Non-patent literature l G.P.Kochanski Physical Review Letters, Vol. 62 (1989) p2285
  • Non-patent literature 2 W. Seifert et al. Ultramicroscopy, Vol. 42-44 (1992) p379
  • Non-Patent Document 3 B. Micheal et al. Rev. Sci. Instrum., Vol. 63, No. 9 (1992) p4080
  • Non-Patent Document 4 Watanabe et al. Applied Physics Letters, Vol.72, No.l6 (1998) pl987
  • Patent Document 1 JP 2002-365194 A
  • the insulator surface using the current STM for example, SiO
  • a high frequency bias voltage is applied between the probe and the sample to prevent the sample from being charged.
  • the frequency of the high-frequency bias voltage is made as high as possible.
  • the tunnel current component is much larger than that, and it is buried in the current component generated by the stray capacitance between the probe and other samples. It is difficult to detect the tunnel current due to the effect of electromagnetic noise.
  • the tunnel current value in STM observation is generally 0.1 to LnA
  • the current value derived from the floating capacitance is one to two orders of magnitude larger than that.
  • stray capacitance varies depending on the device configuration. Since the 0.IpF is estimated to be sufficiently small, the current derived from stray capacitance is actually much larger than the tunnel current.
  • a high-frequency STM a new measurement method that solves these problems, was proposed and developed to enable observation of insulator or semiconductor surfaces with higher spatial resolution.
  • Atomic Force Microscope It can be expected to obtain information about electronic states that could not be done with; AFM).
  • AFM Atomic Force Microscope
  • the present invention intends to solve an insulator such as SiO.
  • Another object is to provide a phase lock-in type high-frequency scanning tunneling microscope capable of observing atomic images on the surface of a wide band gap semiconductor or optical component.
  • the present invention makes the distance between the tip of the probe and the sample very close, generates a tunnel current by a bias voltage applied between the probe and the sample, and makes this tunnel current constant.
  • a scanning tunneling microscope that applies a feedback signal to the drive system under the conditions to maintain and relatively scans the probe along the sample surface and observes an atomic scale image of the sample surface.
  • a bias power source that applies a rectangular or sine wave high-frequency bias voltage between them, a current amplifier that amplifies the detection current that is a mixture of the tunnel current flowing between the probe and the sample and the current derived from the stray capacitance, and the current amplifier
  • the sampled current is input, the sampling signal is synchronized with the frequency of the high frequency bias voltage and locked to the phase of the high frequency bias voltage, the current from the stray capacitance is removed, and the tunnel is removed.
  • Current only to A phase lock-in type high-frequency scanning tunneling microscope comprising a signal processing means having a phase lock-in function for generating a feedback signal.
  • the high-frequency bias voltage is a rectangular wave, and impedance matching that substantially matches a time constant determined by a tunnel resistance and stray capacitance between the probe and the sample and a time constant determined by an input impedance of a current amplifier. It is preferable to provide a circuit on the input side of the current amplifier.
  • the high-frequency bias voltage is a sine wave
  • the phase of the sampling signal of the signal processing means is locked to the phase of the current derived from the stray capacitance outside the tunnel region where the distance between the probe and the sample is separated. It is more preferable that the output of the current derived from the stray capacitance is set to 0 by shifting the phase of the sampling signal, and then the approach between the probe and the sample is narrowed and the approach is started into the tunnel region where the tunnel current flows.
  • phase of the sampling signal of the signal processing means is locked to the phase of the current derived from the stray capacitance outside the tunnel region, and then the phase of the sampling signal is shifted by -90 ° to The output is set to 0.
  • the frequency of the bias voltage is in the range of 100 kHz to 10 GHz, and the tunnel current used as the feedback signal is in the range of ⁇ to LONA.
  • the distance between the probe and the sample is kept constant, a high frequency bias voltage of a sine wave is applied between the probe and the sample from the bias power source, and the phase of the sampling signal of the signal processing means is tunneled.
  • the I-V characteristic is obtained by measuring dlZdV of the sample by locking to the phase of the current, and the phase of the sampling signal of the signal processing means is locked to the phase of the current due to the capacitance. It is preferable to obtain the CV characteristics by measuring the dCZdV of the sample.
  • the signal processing means is a lock-in amplifier
  • the sampling signal is a reference signal of the lock-in amplifier.
  • the signal processing means is a lock-in amplifier
  • the sampling signal is a reference signal for the lock-in amplifier
  • the phase of the reference signal for the lock-in amplifier is automatically set outside the tunnel region, so that the current derived from the stray capacitance is Lock to phase.
  • the signal processing means is preferably a digital signal processor (DSP). Yes.
  • DSP digital signal processor
  • the conduction band is prevented while applying a high-frequency bias voltage of a sine wave between the probe and the sample. Electrons can be tunneled to the STM image.
  • the bias voltage is a sine wave
  • the tunnel current component is in the same phase as the bias voltage, but the current from the stray capacitance is 90 degrees behind the phase of the bias voltage. Therefore, by using a signal processing means with a phase lock-in function to lock the phase of the sampling signal to the tunnel current component, it is possible to cancel the current derived from the floating capacitance whose phase is shifted by 90 degrees.
  • the matching circuit is not required, the performance of the current amplifier can be better drawn, and the tracking frequency up to the front of the signal processing means can be improved.
  • the signal processing means is a lock-in amplifier and the sampling signal is a reference signal of a lock-in amplifier, a phase lock-in type high-frequency scanning tunneling microscope can be easily configured.
  • the signal processing means is a digital signal processor (DSP), it can be configured at low cost by limiting the functions to the minimum necessary.
  • DSP digital signal processor
  • the force that was several tens of kHz was the limit to obtain the stability of the entire feedback loop.
  • the stability of the feed knock loop is not related to the frequency of the bias voltage, and is stable at high frequencies.
  • the stability of the feedback loop greatly affects the output time constant of the lock-in amplifier or DSP, and the phase of the output current of the current amplifier immediately before the lock-in amplifier or DSP is 180 degrees higher than the phase of the noise voltage frequency. Even if it is more than a delay, the feedback loop is stable because the output time constant of the lock-in amplifier or DSP is stable. Therefore, it is possible to perform pulse STM observation at a higher frequency than before.
  • the lock-in amplifier detects only a signal component having a frequency component near the reference signal, the lock-in amplifier is extremely strong against frequency noise having a frequency apart from the reference signal force, and has a high frequency. Since the measurement is performed with the frequency locked to the wave, the circuit system is extremely strong against electromagnetic noise such as 60 Hz of the commercial frequency, thereby improving the SZN ratio and performing feedback control even with a small tunnel current. An image can be obtained. A similar effect occurs when using DSP.
  • the sensitivity of the conductor is equivalent to that of the conventional STM even under the condition that the probe and the sample are kept open to the atmosphere without using the electromagnetic shield and ultra-high vacuum required by the conventional STM.
  • the atomic image can be observed with this, and the cost of the apparatus can be greatly reduced.
  • the present invention is capable of observing an atomic image on the surface of an insulator or semiconductor, although it is affected by adsorbed molecules even in the open atmosphere.
  • FIG. 1 is a simplified explanatory diagram between a probe and a sample showing a measurement principle according to the present invention.
  • FIG. 2 is a simplified circuit diagram showing a circuit configuration of a high-frequency tunneling microscope using a square-wave noise voltage.
  • FIG. 3 is an oscillograph showing waveforms at various parts of the circuit of FIG. 2 when a rectangular wave bias voltage with a frequency of 4 kHz is applied.
  • FIG. 4 is an STM image of the HOPG surface when a rectangular wave bias voltage with a frequency of 4 kHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
  • FIG. 5 is an oscillograph showing waveforms at various parts of the circuit of FIG. 2 when a rectangular wave bias voltage with a frequency of 100 kHz is applied.
  • FIG. 6 is an STM image of the HOPG surface when a rectangular wave bias voltage with a frequency of 1 OOkHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
  • FIG. 7 is a simplified circuit diagram showing a circuit configuration of a high-frequency tunneling microscope using a sinusoidal noise voltage.
  • FIG. 8 is a waveform diagram showing a general operating principle of a lock-in amplifier.
  • FIG. 9 is a waveform diagram showing a measurement principle in which only a tunnel current component is extracted by a lock-in amplifier from an input current in which a tunnel current component (measurement signal) and a capacitance component are mixed.
  • FIG. 10 Shows the adjustment procedure when actually observing a sample using the high-frequency tunneling microscope of Fig. 7.
  • (a) shows the phase of the reference signal of the lock-in amplifier outside the tunnel region.
  • (B) shows the waveform when the phase of the reference signal is shifted by 90 ° and the output of the capacitive component is 0, and
  • (c) shows the waveform when only the tunnel current component is detected. Show.
  • FIG. 11 is an STM image of the HOPG surface when a sinusoidal bias voltage with a frequency of 100 kHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
  • FIG. 12 is an STM image of the HOPG surface when a sinusoidal bias voltage with a frequency of 200 kHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
  • FIG. 13 is an STM image obtained by observing the Si (111) surface in the direct current mode in the atmosphere with the circuit configuration shown in FIG.
  • FIG.14 An STM image of the Si (111) surface observed in the atmosphere using a sine wave bias voltage with a frequency of 100 kHz.
  • FIG. 15 is a simplified circuit diagram showing a circuit configuration of a conventional high-frequency pulse scanning tunneling microscope.
  • Fig. 1 schematically shows the exchange of electrons between the probe 1 and the sample 2.
  • a high frequency bias voltage whose polarity changes between positive and negative of a sine wave or a rectangular wave is applied between the probe 1 and the sample 2.
  • the sample 2 is assumed to be Si (ll l) having an oxide film (SiO 2) formed on the surface.
  • the frequency of the bias voltage is 1
  • the range is 00 kHz to 10 GHz, and the tunnel current used as a feedback signal is in the range of 1 pA to LONA.
  • FIG. 1 (a) shows a state where electrons are tunneled and flow into the conduction band of sample 2 when a negative bias voltage is applied to probe 1.
  • Figure 1 (b) shows that some of the tunneled electrons remain on the sample surface just below the probe even when the bias voltage becomes 0, and the sample surface is charged.
  • FIG. 1 (c) shows how the charged electrons move to the probe 1 when the positive bias voltage is applied to the probe 1 and the charge on the surface of the sample 2 is relaxed.
  • Fig. 1 (d) shows that the charged electrons have almost disappeared and the bias voltage has returned to 0. Next, when a negative bias voltage is applied to probe 1, the electron tunnel is not obstructed. Shows how to recover and show.
  • the high-frequency scanning tunneling microscope with the rectangular wave bias voltage shown in Fig. 2 applies a rectangular wave bias voltage between the probe 1 and the sample 2 with the pulse generator 3 (bias power supply) force. It is a method to add.
  • the current flowing between the probe 1 and the sample 2 is detected by the current amplifier 5 through the impedance matching circuit 4 including the capacitor C and the variable resistance R force.
  • C is set to 100pF and R is set to 0 to 2 ⁇ , so the time constant (CR) can be adjusted in the range of 0 to 200 ⁇ s.
  • the output of the current amplifier 5 is input to the control system 7 that performs feedback control of the probe 1 through the lock-in amplifier 6.
  • the lock-in amplifier 6 since the conventional STM is a DC bias voltage system, the use of the lock-in amplifier 6 that has never been used eliminates noise due to stray capacitance, etc., and greatly improves SZN. It was planned. In the present embodiment, the same applies to the case where a force digital signal processor (DSP), which explains the case where the input amplifier 6 is used, is used as the signal processing means having the phase lock-in function in the present invention. In other words, the lock-in amplifier is generally configured using a DSP. However, in the present invention, of the functions of a general lock-in amplifier, the current amplified by the current amplifier 5 is input, and the reference signal is a high-frequency bias voltage.
  • DSP force digital signal processor
  • FIG. 3 shows signal waveforms in the apparatus having the circuit configuration shown in FIG.
  • the bias voltage of the square wave is 4kHz, ⁇ 200mV, and the waveform is shown in the upper part of Fig.3. Since 4 kHz is 250 s in terms of period, the matching circuit 4 is adjusted so that only components that change faster than this can be removed.
  • the output waveform when the gain of current amplifier 5 is 10 7 is shown in the middle part of Fig. 3, and the output waveform of lock-in amplifier 6 where the gain is 10 and the output time constant is 100 s is shown in the lower part of Fig. 3. Yes.
  • Fig. 4 is an ATM image of the surface of HOPG as a sample.
  • Fig. 4 (a) is an observation region of lnm x lnm
  • Fig. 4 (b) is an observation region of 2nm x 2nm
  • Fig. 4 (c) is 5 This is an observation region of nm X 5 nm.
  • FIG. 5 shows a waveform when the bias voltage of the rectangular wave is 100 kHz and p ⁇ p 200 mV in the apparatus having the circuit configuration shown in FIG.
  • the upper part of FIG. The first voltage waveform, the middle row shows the output waveform of the current amplifier 5, and the lower row shows the output waveform of the lock-in amplifier 6.
  • Fig. 6 (&) shows an STM image when the square wave bias voltage is 5 (3 ⁇ 413 ⁇ 4, p-p200mV)
  • Fig. 6 (b) shows an STM image when the square wave bias voltage is 100kHz and p-p200mV. Both of these are observation areas of 5 nm ⁇ 5 nm, which shows that the present invention has made it possible to observe a much clearer atomic image compared to FIG. The effect of using an amplifier became obvious.
  • the output waveform of the current amplifier becomes a waveform close to a sine wave (sine wave) when the frequency increases to 1 OOkHz even though a rectangular wave bias voltage is applied. It is assumed that the atomic image can be observed even when the bias voltage is a sine wave.
  • the impedance matching circuit 4 in FIG. 2 is not necessary. As a result, a high-frequency scanning tunneling microscope with a sine wave bias voltage with a simple circuit configuration as shown in Fig. 7 was reached.
  • the phase lock-in type high-frequency scanning tunneling microscope shown in FIG. 7 applies a sinusoidal bias voltage from the AC power source 8 (bias power source) between the probe 1 and the sample 2,
  • the current flowing between the sample 2 and the current amplifier 5 is amplified by the current amplifier 5, and the output is input to the lock-in amplifier 6.
  • the lock-in amplifier 6 generates a feedback signal based only on the tunnel current and inputs it to the control system 7. Then, the probe 1 is feedback-controlled.
  • the impedance matching circuit 4 is not provided, it is possible to prevent the frequency characteristics from being deteriorated due to the matching circuit.
  • a measurement principle that uses the lock-in amplifier 6 to remove a current component due to stray capacitance and extract only a weak tunnel current First, a general operation principle of the lock-in amplifier will be described with reference to FIG. As shown in Fig. 8 (a), when a measurement signal with sinusoidal force is input to the lock-in amplifier and the phase difference between the measurement signal and the lock-in amplifier reference signal is 0 °, the reference signal is added to the measurement signal.
  • the multiplied PSD output is a waveform in which the negative half-wave of the measurement signal is positively folded (positive full-wave rectification).
  • the smoothed LPF output is positive DC.
  • the probe 1 and the sample 2 are replaced with a circuit in which a resistance for flowing a tunnel current and a floating capacity are connected in parallel in an equivalent circuit.
  • the current passed between the probe and the sample is the force that flows through the lock amplifier while mixing the tunnel current component (measurement signal) and the capacitive component.
  • the capacitive component is 90 ° out of phase with the tunnel current component. It's off. Therefore, when the phase of the reference signal is locked to the phase of the tunnel current component by the lock-in amplifier, the capacitive component shifted by 90 ° is not output, and only the tunnel current component can be detected as shown in FIG. By using this as a feedback signal, STM observation can be performed.
  • the phase of the reference signal can be locked to the phase of the capacitive component by automatically setting the phase of the reference signal of the lock-in amplifier outside the tunnel region.
  • the reference signal and the current of the capacitive component have the same phase. From there, the approach is started by shifting the phase of the reference signal by 90 ° and setting the output of the capacitive component to 0 (see Fig. 10 (b)). In this way, as shown in Fig. 10 (c), the output appears only when the tunnel current component flows, and only the tunnel current can be detected.
  • the current flowing through the tunnel gap is the sum of the tunnel current component and the capacitance component.
  • the capacitance component becomes much larger than the signal level of the tunnel current component, so the waveform of the capacitance component becomes dominant. In this way, only the tunnel current component can be detected by adjusting the output of the capacitive component flowing before the broaching to 0 using the lock-in amplifier.
  • FIG. 11 and 12 show STM images obtained by actually observing the surface of the HOPG with the phase lock-in type high-frequency scanning tunneling microscope having the circuit configuration shown in FIG.
  • Figure 11 shows the result of HOPG surface observation using a sine wave bias voltage with a frequency of 100 kHz and p-p200 mV, with a lock-in amplifier time constant of 100 ⁇ s
  • (a) shows the observation area of 2 nm X 2 nm.
  • (B) the observation region is 5 nm X 5 nm
  • an atomic image is obtained.
  • Figure 12 shows the result of HOPG surface observation using a sine wave bias voltage of 200 kHz and p-p200 mV with a lock-in amplifier time constant of 100 s.
  • A) shows the observation area of 2.5 nm.
  • (b) has an observation area of 5 nm X 5 nm, and although it is unclear, an atomic image is obtained.
  • FIG. 13 and FIG. 14 show the results of observation of the step terrace structure on the Si (l l l) surface.
  • Fig. 13 is an STM image of the Si (111) surface observed in the DC mode in the atmosphere with the circuit configuration shown in Fig. 7.
  • (a) is an observation region of 150 nm X 150 nm
  • (b) is 500 nm X It is an observation region of 500 nm.
  • An STM image of the step terrace structure on the Si (l l l) surface was obtained in the DC mode even in the atmosphere.
  • FIG. 14 is an STM image obtained by observing the Si (ll 1) surface in the atmosphere using a sinusoidal bias voltage with a frequency of 100 kHz, (a) is an observation region of 200 nm ⁇ 200 nm, and (b) is This is an observation region of 500 nm X 500 nm.
  • changes in the Si (lll) surface were also observed in high-frequency STM observation. This change appears to be smaller than in the positive case where the bias voltage in DC mode is greater than in the negative case. This is because the surface changes due to the influence of alternating positive and negative because the polarity of the bias voltage changes while alternating between positive and negative. it is conceivable that.
  • a step-terrace structure is observed in the high-frequency STM image. As a result, it was confirmed that high-frequency STM observation was possible even for samples with a band gap.
  • the distance between the probe and the sample is kept constant, a high frequency bias voltage of a sine wave is applied between the probe and the sample from the bias power source, and the phase of the reference signal of the lock-in amplifier is changed to the tunnel current.
  • the dlZdV of the sample is measured by locking to the phase to obtain the I-V characteristics, or the dCZdV of the sample is measured by locking the phase of the reference signal of the lock-in amplifier to the phase of the current derived from the capacitance.
  • the distance between the probe and the sample is kept constant, a sine wave high frequency bias voltage is applied between the probe and the sample from the noise power source, and the phase of the reference signal of the lock-in amplifier is changed to the phase of the current derived from the capacitance.
  • the frequency at which the dlZdV or dCZdV of the sample is measured may be different from the frequency used to control the probe-sample distance.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Provided is a phase lock-in type high-frequency scanning tunnel microscope, which can observe an atomic image of the surface of an insulator or a wide-band-gap semiconductor. The microscope comprises a bias power source (8) for applying a high-frequency bias voltage of a rectangular or sinusoidal wave between a probe (1) and a specimen (2), a current amplifier (5) for amplifying a detection current, in which a tunnel current to flow between the probe and the specimen and a current derived from a stray capacity are mixed, and signal processing means (a lock-in amplifier (6) or a DSP) having phase lock-in functions to input the current amplified by the current amplifier and to synchronize a sampling signal with the frequency of the high-frequency bias voltage and lock the same with the frequency of the high-frequency bias voltage so that the current derived from the stray capacity is eliminated to generate a feedback signal exclusively of the tunnel current.

Description

明 細 書  Specification
位相ロックイン型高周波走査トンネル顕微鏡  Phase lock-in type high-frequency scanning tunneling microscope
技術分野  Technical field
[0001] 本発明は、位相ロックイン型高周波走査トンネル顕微鏡に係わり、更に詳しくは導 体もしくは半導体を始めとして絶縁体あるいはワイドバンドギャップの半導体表面の 原子像を観察することが可能な位相ロックイン型高周波走査トンネル顕微鏡に関する ものである。  The present invention relates to a phase lock-in type high-frequency scanning tunneling microscope, and more specifically, a phase lock-in capable of observing an atomic image of an insulator or a wide band gap semiconductor surface including a conductor or a semiconductor. This is related to a high-frequency scanning tunneling microscope.
背景技術  Background art
[0002] 走査型トンネル顕微鏡 (Scanning Tunneling Microscopy;STM)の開発以来、固体 表面の原子構造を実空間で観察することが可能となっている。しかし、従来の直流バ ィァス電圧を用いた STMはトンネル電流を利用するために、電流が流れる導体もしく は半導体の原子構造の観察はできるが、絶縁体では不可能である。ところが、表面 の原子配列を問題とする機能を持つ表面たとえば、光学レンズ'ミラー等の光学素子 の多くは絶縁体であり、また半導体デバイスには多くの絶縁材料が用いられているた め、絶縁体表面の原子構造の観察が強く望まれている。  [0002] Since the development of Scanning Tunneling Microscopy (STM), it has become possible to observe the atomic structure of solid surfaces in real space. However, the conventional STM using a DC bias voltage uses a tunnel current, so that the atomic structure of the conductor or semiconductor through which the current flows can be observed, but not with an insulator. However, a surface having a function that affects the atomic arrangement of the surface, for example, many optical elements such as optical lenses and mirrors are insulators, and many insulating materials are used for semiconductor devices. Observation of the atomic structure on the body surface is strongly desired.
[0003] 現在、半導体産業において用いられている Si実用表面は、通常、自然酸化膜で覆 われているため、溶液処理を施さなければ STM測定が行えな力つた。そこで、 STM を用いて SiOなどの絶縁体表面の観察をするために、探針一試料間に交流電圧を  [0003] Since the Si practical surface currently used in the semiconductor industry is usually covered with a natural oxide film, it has been powerful enough to perform STM measurement without solution treatment. Therefore, in order to observe the surface of an insulator such as SiO using STM, an AC voltage was applied between the probe and the sample.
2  2
印加する方法や Siの薄 、自然酸化膜に十分な直流電圧を探針に印加する方法が 試みられている。  Attempts have been made to apply a sufficient DC voltage to the probe or to a thin Si native oxide film.
[0004] 非特許文献 1〜3には、探針 試料間に GHzオーダーの高周波電圧の短い一周 期の間に、少量の電子を探針 試料間で行き来させ、トンネル電子が流れることによ り発生する高調波をフィードバック信号に利用することで電気伝導性を持たない試料 での STM動作を行うことを試みている。し力しながら、絶縁体材料においては、最高 lnm程度の空間分解能を得ているにとどまつている。この原因の一つとして試料表 面の帯電がある。トンネル電子が探針直下で帯電することで、探針からの電子のトン ネルが妨げられる力もである。二つ目は、印加した周波数 fを持つ交流のトンネル電 流成分が、それよりもはるかに大きい探針 試料間その他からの静電容量による電 流成分の中に埋もれてしまうため fでなく高調波成分 (3f等)をフィードバック信号と [0004] Non-Patent Documents 1 to 3 show that tunnel electrons flow between a probe sample and a small amount of electrons between the probe sample and the sample during a short period of a high-frequency voltage in the order of GHz. We are trying to perform STM operation on samples that do not have electrical conductivity by using the generated harmonics as feedback signals. However, the insulator material has only achieved a spatial resolution of up to about lnm. One of the causes is the charge on the sample surface. It is also a force that prevents tunneling of electrons from the probe by charging the tunnel electrons directly under the probe. The second is AC tunneling with an applied frequency f. Since the flow component is much larger than that, it is buried in the current component due to the capacitance between the sample and others, so harmonic components (such as 3f) instead of f are used as feedback signals.
1 1  1 1
して利用しているためである。  It is because it uses it.
[0005] 本発明のターゲットの一つである酸ィ匕膜付き Si表面の観察、探針—試料間に DC バイアスを印加して通常の STMとして動作にさせた報告例は幾つか存在する。その なかで非特許文献 4には、数 nmの酸ィ匕膜をもつ Si表面に、伝導帯に電子をトンネル させるために 5V程度の電圧を印加させて行った STM観察が報告されて 、る。しかし 、原子像サイズの分解能は得られておらず、酸化膜も数 nm以下に限られる。これは 、 Si上の自然酸ィ匕膜がアモルファス状であるために、バンドギャップ中に様々な欠陥 準位が存在しており、トンネルさせた電子の一部が欠陥準位に落ち、試料が帯電さ れてしまい、 STM観察中のトンネルを妨げるからと考えられる。  [0005] There are several reports on the observation of the Si surface with an oxide film, which is one of the targets of the present invention, and applying a DC bias between the probe and the sample to operate as a normal STM. Among them, Non-Patent Document 4 reports STM observation performed by applying a voltage of about 5 V to tunnel electrons to the conduction band on a Si surface having an oxide film of several nm. . However, the resolution of the atomic image size has not been obtained, and the oxide film is limited to a few nm or less. This is because the natural oxide film on Si is amorphous, so there are various defect levels in the band gap, and some of the tunneled electrons fall to the defect level, and the sample This is thought to be due to charging and obstructing the tunnel during STM observation.
[0006] このように、 V、ずれの場合にも原子像を観察する分解能には致って 、な 、。そこで [0006] In this way, V, the resolution of observing an atomic image even in the case of a deviation is appropriate. Therefore
、本発明者らは、特許文献 1にて、探針先端と試料の間隔を極めて接近させ、探針と 試料間に印加したバイアス電圧によってトンネル電流を生じさせ、このトンネル電流を 一定に維持する条件でフィードバック信号を駆動系に与えて探針と試料を相対的に 走査し、試料表面の原子スケールの像を観察する走査トンネル顕微鏡であって、前 記探針と試料間に、高周波矩形短パルスの交流バイアス電圧を印加するとともに、探 針と試料間のトンネル抵抗と浮遊容量で決する時定数と、電流アンプの入力インピー ダンスで決する時定数を略一致させて、トンネル電流成分だけを検出し整流してフィ ードバック信号とする高周波パルス走査トンネル顕微鏡を提案している。 In Patent Document 1, the present inventors set the distance between the tip of the probe and the sample extremely close to each other, generate a tunnel current by a bias voltage applied between the probe and the sample, and maintain this tunnel current constant. A scanning tunneling microscope that applies a feedback signal to the drive system under certain conditions to relatively scan the probe and the sample and observe an atomic scale image of the sample surface, with a high-frequency rectangular short between the probe and the sample. A pulse AC bias voltage is applied, and the time constant determined by the tunnel resistance and stray capacitance between the probe and the sample is substantially matched with the time constant determined by the input impedance of the current amplifier, and only the tunnel current component is detected. We have proposed a high-frequency pulsed scanning tunneling microscope that rectifies the feedback signal.
[0007] この特許文献 1に記載の方法によって、数十 kHzの周波数までは HOPGの原子像 を比較的鮮明に観察することができるようになつたが、 100kHzの周波数では鮮明な 原子像を観察することができな力つた。この特許文献 1に記載の方法では、図 15に 示すように、探針 101と試料 102間にパルスジヱネレーター 103より高周波矩形短パ ルスをバイアス電圧として印加するが、探針—試料間の静電容量等が原因で、パル スの立上がりと立下がりに過電流 (スパイク電流)が発生し、トンネル電流が過電流に 埋もれてしまうので、フィードバック信号として用いることができない。そこで、コンデン サー Cと可変抵抗 R力もなるインピーダンスマッチング回路 104を設け、電流アンプ 1 05と整流回路 106を介してトンネル電流に比例した直流信号に変換して、それを制 御系 107に入力して探針 101を駆動するフィードバック信号とする。しかし、マツチン グ回路 104を用いると周波数特性が悪くなるといった問題と、探針の変位等によって 浮遊容量が変化するので、インピーダンスマッチング回路を設けても完全にトンネル 電流成分だけを検出することができないといった問題があり、特に周波数が高いバイ ァス電圧に対してはノイズが大きぐ鮮明な原子像を得ることができな力つた。 [0007] By the method described in Patent Document 1, the HOPG atomic image can be observed relatively clearly up to a frequency of several tens of kHz, but a clear atomic image can be observed at a frequency of 100 kHz. I couldn't do it. In the method described in Patent Document 1, a high-frequency rectangular short pulse is applied as a bias voltage between the probe 101 and the sample 102 by the pulse generator 103 as shown in FIG. Due to the capacitance of the pulse, overcurrent (spike current) occurs at the rise and fall of the pulse, and the tunnel current is buried in the overcurrent, so it cannot be used as a feedback signal. Therefore, the impedance matching circuit 104 that also has the capacitor C and the variable resistance R force is provided, and the current amplifier 1 The signal is converted into a DC signal proportional to the tunnel current via 05 and the rectifier circuit 106 and input to the control system 107 as a feedback signal for driving the probe 101. However, if the matching circuit 104 is used, the stray capacitance changes due to the problem of poor frequency characteristics and the displacement of the probe. Therefore, even if an impedance matching circuit is provided, only the tunnel current component cannot be detected. In particular, for a bias voltage with a high frequency, it was difficult to obtain a clear atomic image with large noise.
[0008] また、従来の STMは、ノイズを極力低減し、検出感度を高めるために、探針と試料 を電磁シールドを厳重に施した超高真空チャンバ一内に配して観察を行う構造にな つているため、装置が高価であり、また試料をセットして観察できるようになるまでに長 時間を要することは避けられなかった。 [0008] In addition, the conventional STM has a structure in which observation is performed by placing the probe and the sample in an ultra-high vacuum chamber with strict electromagnetic shielding in order to reduce noise and increase detection sensitivity. Therefore, it is inevitable that the apparatus is expensive and it takes a long time before the sample can be set and observed.
非特許文献 l : G.P.Kochanski Physical Review Letters, Vol.62(1989)p2285 非特許文献 2 : W.Seifert等 Ultramicroscopy,Vol.42- 44(1992)p379  Non-patent literature l: G.P.Kochanski Physical Review Letters, Vol. 62 (1989) p2285 Non-patent literature 2: W. Seifert et al. Ultramicroscopy, Vol. 42-44 (1992) p379
非特許文献 3: B.Micheal等 Rev.Sci.Instrum.,Vol.63,No.9(1992)p4080  Non-Patent Document 3: B. Micheal et al. Rev. Sci. Instrum., Vol. 63, No. 9 (1992) p4080
非特許文献 4 :渡部等 Applied Physics Letters, Vol.72,No.l6(1998)pl987 特許文献 1:特開 2002— 365194号公報  Non-Patent Document 4: Watanabe et al. Applied Physics Letters, Vol.72, No.l6 (1998) pl987 Patent Document 1: JP 2002-365194 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] このように、現在の STMを用いた絶縁体表面 (例えば SiO [0009] Thus, the insulator surface using the current STM (for example, SiO
2 )の観察においては、高 い空間分解能が得られていない。この原因は、トンネル電子が探針直下の試料表面 で帯電することで、探針からの電子のトンネルが妨げられるためである。ここで、絶縁 体若しくは半導体表面を STMで観察するための条件は次のようにまとめられる。 In the observation in 2), high spatial resolution has not been obtained. This is because tunnel electrons are charged on the surface of the sample directly under the probe, preventing tunneling of electrons from the probe. Here, the conditions for observing the insulator or semiconductor surface with STM can be summarized as follows.
(1)試料の帯電を防ぐために探針—試料間に高周波バイアス電圧を印加する。(1) A high frequency bias voltage is applied between the probe and the sample to prevent the sample from being charged.
(2)トンネル電流成分のみ検出して、それを探針と試料表面間の距離を一定に保つ フィードバック信号とする。 (2) Only the tunnel current component is detected and used as a feedback signal that keeps the distance between the probe and the sample surface constant.
(3) STM探針直下の試料が帯電しな 、ようにするために、探針側から試料側へ送り 込む電荷量をできるだけ小さくする必要がある。そのために高周波バイアス電圧の周 波数をできるだけ高くする。  (3) To prevent the sample directly under the STM probe from being charged, it is necessary to minimize the amount of charge sent from the probe side to the sample side. For this purpose, the frequency of the high-frequency bias voltage is made as high as possible.
(4)絶縁体材料の伝導帯に電子をトンネルさせる。 [0010] しかし、探針—試料間に高周波バイアス電圧を印加する場合は、トンネル電流成分 がそれよりもはるかに大きい探針 試料間その他からの浮遊容量によって発生する 電流成分の中に埋もれ、また電磁ノイズの影響によってトンネル電流を検出すること が困難である。例えば、高周波 STMにおける浮遊容量による電流値 (i= 2 w fCV) は、浮遊容量 Cとして小さ目の値 0. IpFを選んでも、バイアス電圧の周波数 fを 100k Hz、バイアス電圧 Vを 200mVとすれば、約 12nAと見積もることができる。それに対 して、一般に STM観察におけるトンネル電流値は、 0. 1〜: LnAであるので、浮遊容 量由来の電流値はそれより 1〜2桁大きい。但し、浮遊容量は装置構成によって異な る力 0. IpFは十分小さく見積もっているので、実際には浮遊容量由来の電流はト ンネル電流よりも遥かに大きな値となる。 (4) Tunnel electrons to the conduction band of the insulator material. [0010] However, when a high-frequency bias voltage is applied between the probe and the sample, the tunnel current component is much larger than that, and it is buried in the current component generated by the stray capacitance between the probe and other samples. It is difficult to detect the tunnel current due to the effect of electromagnetic noise. For example, the current value (i = 2 w fCV) due to stray capacitance in the high-frequency STM can be obtained by setting the bias voltage frequency f to 100 kHz and bias voltage V to 200 mV, even if the smaller value 0. IpF is selected as the stray capacitance C. Can be estimated at about 12nA. In contrast, since the tunnel current value in STM observation is generally 0.1 to LnA, the current value derived from the floating capacitance is one to two orders of magnitude larger than that. However, stray capacitance varies depending on the device configuration. Since the 0.IpF is estimated to be sufficiently small, the current derived from stray capacitance is actually much larger than the tunnel current.
[0011] これらを解決する新 、測定方法である高周波 STMを提案し、これを開発すること でより高い空間分解能で絶縁体若しくは半導体表面の観察が可能になり、原子間力 顕微鏡 (Atomic Force Microscope ;AFM)では行えなかった電子状態に関する情報 を得ることが期待できる。勿論、一般の STMと同様に、導体の原子像を観察し、電子 状態に関する情報を得ることも可能である。  [0011] A high-frequency STM, a new measurement method that solves these problems, was proposed and developed to enable observation of insulator or semiconductor surfaces with higher spatial resolution. Atomic Force Microscope It can be expected to obtain information about electronic states that could not be done with; AFM). Of course, it is also possible to obtain information on the electronic state by observing the atomic image of the conductor in the same way as a general STM.
[0012] そこで、本発明が前述の状況に鑑み、解決しょうとするところは、 SiOなどの絶縁体  [0012] Therefore, in view of the above situation, the present invention intends to solve an insulator such as SiO.
2  2
あるいはワイドバンドギャップの半導体、あるいは光学部品表面の原子像を観察する ことが可能な位相ロックイン型高周波走査トンネル顕微鏡を提供する点にある。  Another object is to provide a phase lock-in type high-frequency scanning tunneling microscope capable of observing atomic images on the surface of a wide band gap semiconductor or optical component.
課題を解決するための手段  Means for solving the problem
[0013] 本発明は、前述の課題解決のために、探針先端と試料の間隔を極めて接近させ、 探針と試料間に印加したバイアス電圧によってトンネル電流を生じさせ、このトンネル 電流を一定に維持する条件でフィードバック信号を駆動系に与えて探針を試料表面 に沿って相対的に走査し、試料表面の原子スケールの像を観察する走査トンネル顕 微鏡であって、前記探針と試料間に矩形波若しくは正弦波の高周波バイアス電圧を 印加するバイアス電源と、探針と試料間に流れるトンネル電流と浮遊容量由来の電 流が混合した検出電流を増幅する電流アンプと、電流アンプで増幅した電流を入力 し、サンプリング信号を高周波バイアス電圧の周波数に同期させ且つ高周波バイァ ス電圧の位相にロックさせて、浮遊容量由来の電流を除去してトンネル電流のみによ るフィードバック信号を発生させる、位相ロックイン機能を有する信号処理手段とを備 えたことを特徴とする位相ロックイン型高周波走査トンネル顕微鏡を構成した。 [0013] In order to solve the above-mentioned problems, the present invention makes the distance between the tip of the probe and the sample very close, generates a tunnel current by a bias voltage applied between the probe and the sample, and makes this tunnel current constant. A scanning tunneling microscope that applies a feedback signal to the drive system under the conditions to maintain and relatively scans the probe along the sample surface and observes an atomic scale image of the sample surface. A bias power source that applies a rectangular or sine wave high-frequency bias voltage between them, a current amplifier that amplifies the detection current that is a mixture of the tunnel current flowing between the probe and the sample and the current derived from the stray capacitance, and the current amplifier The sampled current is input, the sampling signal is synchronized with the frequency of the high frequency bias voltage and locked to the phase of the high frequency bias voltage, the current from the stray capacitance is removed, and the tunnel is removed. Current only to A phase lock-in type high-frequency scanning tunneling microscope comprising a signal processing means having a phase lock-in function for generating a feedback signal.
[0014] ここで、前記高周波バイアス電圧が矩形波であり、前記探針と試料間のトンネル抵 抗と浮遊容量で決する時定数と、電流アンプの入力インピーダンスで決する時定数 を略一致させるインピーダンスマッチング回路を電流アンプの入力側に設けてなるこ とが好ましい。  Here, the high-frequency bias voltage is a rectangular wave, and impedance matching that substantially matches a time constant determined by a tunnel resistance and stray capacitance between the probe and the sample and a time constant determined by an input impedance of a current amplifier. It is preferable to provide a circuit on the input side of the current amplifier.
[0015] また、前記高周波バイアス電圧が正弦波であり、探針と試料間の間隔が離れたトン ネル領域外において前記信号処理手段のサンプリング信号の位相を浮遊容量由来 の電流の位相にロックした後、サンプリング信号の位相をずらすことにより浮遊容量 由来の電流の出力を 0にし、それから探針と試料間の間隔を狭めてトンネル電流が 流れるトンネル領域内へとアプローチを開始することがより好ましい。  In addition, the high-frequency bias voltage is a sine wave, and the phase of the sampling signal of the signal processing means is locked to the phase of the current derived from the stray capacitance outside the tunnel region where the distance between the probe and the sample is separated. It is more preferable that the output of the current derived from the stray capacitance is set to 0 by shifting the phase of the sampling signal, and then the approach between the probe and the sample is narrowed and the approach is started into the tunnel region where the tunnel current flows.
[0016] この場合、トンネル領域外において前記信号処理手段のサンプリング信号の位相 を浮遊容量由来の電流の位相にロックした後、サンプリング信号の位相を- 90° ずら すことにより浮遊容量由来の電流の出力を 0にするのである。  [0016] In this case, the phase of the sampling signal of the signal processing means is locked to the phase of the current derived from the stray capacitance outside the tunnel region, and then the phase of the sampling signal is shifted by -90 ° to The output is set to 0.
[0017] そして、前記バイアス電圧の周波数が 100kHz〜10GHzの範囲であり、フィードバ ック信号として使用するトンネル電流が ΙρΑ〜: LOnAの範囲である。  [0017] The frequency of the bias voltage is in the range of 100 kHz to 10 GHz, and the tunnel current used as the feedback signal is in the range of ΙρΑ to LONA.
[0018] また、探針—試料間距離を一定に保ち、前記バイアス電源より探針と試料間に正 弦波の高周波バイアス電圧を印加するとともに、前記信号処理手段のサンプリング信 号の位相をトンネル電流の位相にロックすることにより前記試料の dlZdVを測定して I— V特性を取得し、ある 、は前記信号処理手段のサンプリング信号の位相を容量由 来の電流の位相にロックすることにより前記試料の dCZdVを測定して C V特性を 取得することが好ましい。  [0018] Further, the distance between the probe and the sample is kept constant, a high frequency bias voltage of a sine wave is applied between the probe and the sample from the bias power source, and the phase of the sampling signal of the signal processing means is tunneled. The I-V characteristic is obtained by measuring dlZdV of the sample by locking to the phase of the current, and the phase of the sampling signal of the signal processing means is locked to the phase of the current due to the capacitance. It is preferable to obtain the CV characteristics by measuring the dCZdV of the sample.
[0019] ここで、前記信号処理手段がロックインアンプであり、前記サンプリング信号がロック インアンプの参照信号であることが好ましい。また、前記信号処理手段がロックインァ ンプであり、前記サンプリング信号がロックインアンプの参照信号であり、トンネル領 域外において前記ロックインアンプの参照信号の位相をオートセットすることで浮遊 容量由来の電流の位相にロックするのである。  Here, it is preferable that the signal processing means is a lock-in amplifier, and the sampling signal is a reference signal of the lock-in amplifier. Further, the signal processing means is a lock-in amplifier, the sampling signal is a reference signal for the lock-in amplifier, and the phase of the reference signal for the lock-in amplifier is automatically set outside the tunnel region, so that the current derived from the stray capacitance is Lock to phase.
[0020] あるいは、前記信号処理手段がデジタル信号プロセッサ(DSP)であることも好まし い。 [0020] Alternatively, the signal processing means is preferably a digital signal processor (DSP). Yes.
発明の効果  The invention's effect
[0021] 以上にしてなる本発明の位相ロックイン型高周波走査トンネル顕微鏡によれば、正 弦波の高周波バイアス電圧を探針一試料間に印加することで試料の帯電を防ぎつ つ、伝導帯に電子をトンネルさせることができ、 STM像を得ることができる。ここで、バ ィァス電圧として正弦波ある 、は周波数の高!、矩形波を用いると、トンネル電流成分 はバイアス電圧と同じ位相であるが浮遊容量由来の電流はバイアス電圧の位相より 9 0度遅れた正弦波となるので、位相ロックイン機能を有する信号処理手段でトンネル 電流成分にサンプリング信号の位相をロックすることで、位相が 90度ずれた浮遊容 量由来の電流を打ち消すことができる。それにより、正弦波の場合には、マッチング 回路を必要とせず、電流アンプの性能をより良く引き出すことができ、信号処理手段 の手前までの追従周波数を向上できる。ここで、前記信号処理手段がロックインアン プであり、前記サンプリング信号がロックインアンプの参照信号であると、位相ロックィ ン型高周波走査トンネル顕微鏡を簡単に構成できる。また、前記信号処理手段がデ ジタル信号プロセッサ (DSP)であると、機能を必要最小限に絞ることにより、安価に 構成できるのである。  [0021] According to the phase lock-in type high-frequency scanning tunneling microscope of the present invention configured as described above, the conduction band is prevented while applying a high-frequency bias voltage of a sine wave between the probe and the sample. Electrons can be tunneled to the STM image. Here, if the bias voltage is a sine wave, is a high frequency, and if a square wave is used, the tunnel current component is in the same phase as the bias voltage, but the current from the stray capacitance is 90 degrees behind the phase of the bias voltage. Therefore, by using a signal processing means with a phase lock-in function to lock the phase of the sampling signal to the tunnel current component, it is possible to cancel the current derived from the floating capacitance whose phase is shifted by 90 degrees. As a result, in the case of a sine wave, the matching circuit is not required, the performance of the current amplifier can be better drawn, and the tracking frequency up to the front of the signal processing means can be improved. Here, when the signal processing means is a lock-in amplifier and the sampling signal is a reference signal of a lock-in amplifier, a phase lock-in type high-frequency scanning tunneling microscope can be easily configured. Further, if the signal processing means is a digital signal processor (DSP), it can be configured at low cost by limiting the functions to the minimum necessary.
[0022] 従来のフィードバック制御系ではフィードバックループ全体での安定性を得るため には数十 kHzが限界であった力 ロックインアンプ若しくは DSPを用いることにより口 ックインアンプ若しくは DSPでフィードバック信号が直流に変換されるため、フィード ノ ックループの安定性はバイアス電圧の周波数に関係なくなり、高周波でも安定であ る。つまり、フィードバックループの安定性は、ロックインアンプ若しくは DSPの出力時 定数に大きく影響するようになり、ロックインアンプ若しくは DSP直前の電流アンプの 出力電流の位相が、ノ ィァス電圧周波数の位相より 180度以上遅れて 、たとしても、 ロックインアンプ若しくは DSPの出力時定数が安定であるので、フィードバックループ は安定である。よって、従来よりさらに高周波でパルス STM観察を行うことが可能とな る。  [0022] In the conventional feedback control system, the force that was several tens of kHz was the limit to obtain the stability of the entire feedback loop. By using a lock-in amplifier or DSP, the feedback signal is converted to DC by the mouth-in amplifier or DSP. Therefore, the stability of the feed knock loop is not related to the frequency of the bias voltage, and is stable at high frequencies. In other words, the stability of the feedback loop greatly affects the output time constant of the lock-in amplifier or DSP, and the phase of the output current of the current amplifier immediately before the lock-in amplifier or DSP is 180 degrees higher than the phase of the noise voltage frequency. Even if it is more than a delay, the feedback loop is stable because the output time constant of the lock-in amplifier or DSP is stable. Therefore, it is possible to perform pulse STM observation at a higher frequency than before.
[0023] 更に、ロックインアンプは参照信号付近の周波数成分を持つ信号成分のみを検出 するため、参照信号力 周波数の離れた周波数ノイズなどには極端に強ぐまた高周 波に周波数をロックして計測を行うので、商用周波数の 60Hzなどの電磁ノイズに非 常に強い回路系となり、それにより SZN比の向上が図れ、微小なトンネル電流でもフ イードバック制御を行い、 STM像を得ることが可能である。同様の効果は、 DSPを用 いる場合にも生じる。 [0023] Furthermore, since the lock-in amplifier detects only a signal component having a frequency component near the reference signal, the lock-in amplifier is extremely strong against frequency noise having a frequency apart from the reference signal force, and has a high frequency. Since the measurement is performed with the frequency locked to the wave, the circuit system is extremely strong against electromagnetic noise such as 60 Hz of the commercial frequency, thereby improving the SZN ratio and performing feedback control even with a small tunnel current. An image can be obtained. A similar effect occurs when using DSP.
[0024] また、本発明によれば、従来の STMで要求される電磁シールドと超高真空を用い ず、探針と試料を大気開放下に置く条件でも、導体を従来の STMと同等の感度で 原子像を観察することができ、装置の大幅なコスト低減ィ匕を図ることができる。また、 同じく本発明は、大気開放下でも吸着分子の影響を受けるが絶縁体あるいは半導体 表面の原子像を観察することが可能である。  [0024] Also, according to the present invention, the sensitivity of the conductor is equivalent to that of the conventional STM even under the condition that the probe and the sample are kept open to the atmosphere without using the electromagnetic shield and ultra-high vacuum required by the conventional STM. The atomic image can be observed with this, and the cost of the apparatus can be greatly reduced. Similarly, the present invention is capable of observing an atomic image on the surface of an insulator or semiconductor, although it is affected by adsorbed molecules even in the open atmosphere.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明に係る測定原理を示す探針—試料間の簡略説明図である。 FIG. 1 is a simplified explanatory diagram between a probe and a sample showing a measurement principle according to the present invention.
[図 2]矩形波ノ ィァス電圧を用いた高周波トンネル顕微鏡の回路構成を示す簡略回 路図である。  FIG. 2 is a simplified circuit diagram showing a circuit configuration of a high-frequency tunneling microscope using a square-wave noise voltage.
[図 3]周波数 4kHzの矩形波バイアス電圧を印加した際の図 2の回路の各部における 波形を示すオシログラフである。  FIG. 3 is an oscillograph showing waveforms at various parts of the circuit of FIG. 2 when a rectangular wave bias voltage with a frequency of 4 kHz is applied.
[図 4]図 2の回路構成の高周波トンネル顕微鏡で周波数 4kHzの矩形波バイアス電圧 を印加した場合の HOPG表面の STM像である。  FIG. 4 is an STM image of the HOPG surface when a rectangular wave bias voltage with a frequency of 4 kHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
[図 5]周波数 100kHzの矩形波バイアス電圧を印加した際の図 2の回路の各部にお ける波形を示すオシログラフである。  FIG. 5 is an oscillograph showing waveforms at various parts of the circuit of FIG. 2 when a rectangular wave bias voltage with a frequency of 100 kHz is applied.
[図 6]図 2の回路構成の高周波トンネル顕微鏡で周波数 1 OOkHzの矩形波バイアス 電圧を印加した場合の HOPG表面の STM像である。  FIG. 6 is an STM image of the HOPG surface when a rectangular wave bias voltage with a frequency of 1 OOkHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
[図 7]正弦波ノ ィァス電圧を用いた高周波トンネル顕微鏡の回路構成を示す簡略回 路図である。  FIG. 7 is a simplified circuit diagram showing a circuit configuration of a high-frequency tunneling microscope using a sinusoidal noise voltage.
[図 8]ロックインアンプの一般的な動作原理を示す波形図である。  FIG. 8 is a waveform diagram showing a general operating principle of a lock-in amplifier.
[図 9]トンネル電流成分 (測定信号)と容量成分が混合した入力電流から、ロックイン アンプによりトンネル電流成分のみを抽出する測定原理を示す波形図である。  FIG. 9 is a waveform diagram showing a measurement principle in which only a tunnel current component is extracted by a lock-in amplifier from an input current in which a tunnel current component (measurement signal) and a capacitance component are mixed.
[図 10]図 7の高周波トンネル顕微鏡を用いて、実際に試料を観察する場合における 調節手順を示し、 (a)はトンネル領域外でロックインアンプの参照信号の位相を容量 成分の位相にロックした状態の波形、(b)は参照信号の位相を 90° ずらせて容量 成分の出力を 0にした状態の波形、(c)トンネル電流成分のみを検出した状態の波 形を示している。 [Fig. 10] Shows the adjustment procedure when actually observing a sample using the high-frequency tunneling microscope of Fig. 7. (a) shows the phase of the reference signal of the lock-in amplifier outside the tunnel region. (B) shows the waveform when the phase of the reference signal is shifted by 90 ° and the output of the capacitive component is 0, and (c) shows the waveform when only the tunnel current component is detected. Show.
[図 11]図 7の回路構成の高周波トンネル顕微鏡で周波数 100kHzの正弦波バイアス 電圧を印加した場合の HOPG表面の STM像である。  FIG. 11 is an STM image of the HOPG surface when a sinusoidal bias voltage with a frequency of 100 kHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
[図 12]図 7の回路構成の高周波トンネル顕微鏡で周波数 200kHzの正弦波バイアス 電圧を印加した場合の HOPG表面の STM像である。  FIG. 12 is an STM image of the HOPG surface when a sinusoidal bias voltage with a frequency of 200 kHz is applied using the high-frequency tunneling microscope with the circuit configuration shown in FIG.
[図 13]図 7に示した回路構成で、大気中にお 、て直流モードで Si (111)表面を観察 した STM像でである。  FIG. 13 is an STM image obtained by observing the Si (111) surface in the direct current mode in the atmosphere with the circuit configuration shown in FIG.
[図 14]周波数 100kHzの正弦波バイアス電圧を用いて、大気中にお 、て Si (111)表 面を観察した STM像である。  [Fig.14] An STM image of the Si (111) surface observed in the atmosphere using a sine wave bias voltage with a frequency of 100 kHz.
[図 15]従来の高周波パルス走査トンネル顕微鏡の回路構成を示す簡略回路図であ る。  FIG. 15 is a simplified circuit diagram showing a circuit configuration of a conventional high-frequency pulse scanning tunneling microscope.
符号の説明 Explanation of symbols
1 探針 1 tip
2 試料 2 Sample
3 パルスジェネレーター(バイアス電源)  3 Pulse generator (bias power supply)
4 インピーダンスマッチング回路 4 Impedance matching circuit
5 電流アンプ 5 Current amplifier
6 ロックインアンプ (信号処理手段)  6 Lock-in amplifier (Signal processing means)
7 制御系 7 Control system
8 交流電源 (バイアス電源)  8 AC power supply (bias power supply)
101 探針 101 probe
102 試料 102 samples
103 パルスジェネレーター(バイアス電源)  103 Pulse generator (bias power supply)
104 インピーダンスマッチング回路 104 Impedance matching circuit
104 マッチング回路 104 matching circuit
105 電流アンプ 106 整流回路 105 current amplifier 106 Rectifier circuit
107 制御系  107 Control system
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。先ず 、本発明の前提となる高周波走査トンネル顕微鏡の測定原理を図 1に基づいて説明 する。本発明は、絶縁体若しくは半導体の表面の原子像を得ることを目的としたもの である。図 1は、探針 1と試料 2との間での電子の授受を模式的に示したものである。 前記探針 1と試料 2との間に、正弦波若しくは矩形波の正負に極性が変化する高周 波バイアス電圧を印加する。本発明で、特に好ましいのは探針 1と試料 2間に正弦波 の高周波バイアス電圧を印加することである。ここで、前記試料 2としては、表面に酸 化膜 (SiO )が形成された Si(l l l)を想定している。前記バイアス電圧の周波数は 1 Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. First, the measurement principle of the high-frequency scanning tunneling microscope, which is the premise of the present invention, will be described with reference to FIG. The object of the present invention is to obtain an atomic image of the surface of an insulator or semiconductor. Fig. 1 schematically shows the exchange of electrons between the probe 1 and the sample 2. A high frequency bias voltage whose polarity changes between positive and negative of a sine wave or a rectangular wave is applied between the probe 1 and the sample 2. In the present invention, it is particularly preferable to apply a sinusoidal high-frequency bias voltage between the probe 1 and the sample 2. Here, the sample 2 is assumed to be Si (ll l) having an oxide film (SiO 2) formed on the surface. The frequency of the bias voltage is 1
2  2
00kHz〜10GHzの範囲であり、フィードバック信号として使用するトンネル電流が 1 pA〜: LOnAの範囲である。  The range is 00 kHz to 10 GHz, and the tunnel current used as a feedback signal is in the range of 1 pA to LONA.
[0028] 図 1 (a)は、探針 1に負のバイアス電圧が力かると電子がトンネルして、試料 2の伝 導帯に流れる様子を示している。図 1 (b)は、バイアス電圧が 0になってもトンネルした 電子の一部は、探針直下の試料表面に残り、試料表面が帯電する様子を示している 。図 1 (c)は、探針 1に正のバイアス電圧が力かると帯電した電子が探針 1に移動して 試料 2の表面の帯電が緩和される様子を示している。図 1 (d)は、帯電した電子がほ ぼ無くなり、バイアス電圧も 0に戻った状態を示し、次に探針 1に負のバイアス電圧が かかったときに、電子のトンネルを妨げな 、状態に回復して 、る様子を示して 、る。  FIG. 1 (a) shows a state where electrons are tunneled and flow into the conduction band of sample 2 when a negative bias voltage is applied to probe 1. Figure 1 (b) shows that some of the tunneled electrons remain on the sample surface just below the probe even when the bias voltage becomes 0, and the sample surface is charged. FIG. 1 (c) shows how the charged electrons move to the probe 1 when the positive bias voltage is applied to the probe 1 and the charge on the surface of the sample 2 is relaxed. Fig. 1 (d) shows that the charged electrons have almost disappeared and the bias voltage has returned to 0. Next, when a negative bias voltage is applied to probe 1, the electron tunnel is not obstructed. Shows how to recover and show.
[0029] しかし、図 1のように高周波バイアス電圧を探針にかけると、理想的には電子がトン ネルして電流が検出されるが、試料が絶縁体若しくは半導体である場合には、トンネ ル電流は非常に小さいので、浮遊容量による電流成分やノイズに隠れてしまうので、 単純にはフィードバック信号が得られない。この浮遊容量によって探針と試料間に大 きな電流が流れる現象は、従来の直流バイアス方式の STMでは問題にならな力つた ものである。  However, when a high frequency bias voltage is applied to the probe as shown in FIG. 1, the electrons are ideally tunneled and current is detected, but when the sample is an insulator or semiconductor, the tunnel is Since the current is very small, it is hidden by the current component and noise caused by stray capacitance, so a feedback signal cannot be obtained simply. The phenomenon that a large current flows between the probe and the sample due to this stray capacitance has become a problem that does not become a problem in the conventional DC bias type STM.
[0030] 図 2に示した矩形波バイアス電圧による高周波走査トンネル顕微鏡は、探針 1と試 料 2との間に、パルスジェネレーター 3 (バイアス電源)力 矩形波バイアス電圧を印 加する方法である。探針 1と試料 2との間に流れる電流を、コンデンサー Cと可変抵抗 R力もなるインピーダンスマッチング回路 4を通して電流アンプ 5で検出する。ここで、 Cは 100pF、 Rは 0〜2Μ Ωとしているので、時定数(CR)は 0〜200 μ s範囲で調節 可能である。そして、電流アンプ 5の出力は、ロックインアンプ 6を通して探針 1をフィ ードバック制御する制御系 7に入力される。本発明では、従来の STMが直流バイァ ス電圧方式であったので、使用されることがなかったロックインアンプ 6を用いることに より、浮遊容量等によるノイズ除去を行い、大幅な SZNの向上を図ったのである。本 実施形態では、本発明における位相ロックイン機能を有する信号処理手段として、口 ックインアンプ 6を用いる場合について説明する力 デジタル信号プロセッサ(DSP) を用いる場合も同様である。つまり、一般的にロックインアンプは DSPを用いて構成さ れるが、本発明では一般のロックインアンプの機能のうち、電流アンプ 5で増幅した電 流を入力し、参照信号を高周波バイアス電圧の周波数に同期させ且つ高周波バイァ ス電圧の位相にロックさせて、浮遊容量由来の電流を除去してトンネル電流のみによ るフィードバック信号を発生させる、位相ロックイン機能のみを使用するため、同等の 機能を DSPで実現できるからである。 [0030] The high-frequency scanning tunneling microscope with the rectangular wave bias voltage shown in Fig. 2 applies a rectangular wave bias voltage between the probe 1 and the sample 2 with the pulse generator 3 (bias power supply) force. It is a method to add. The current flowing between the probe 1 and the sample 2 is detected by the current amplifier 5 through the impedance matching circuit 4 including the capacitor C and the variable resistance R force. Here, C is set to 100pF and R is set to 0 to 2Ω, so the time constant (CR) can be adjusted in the range of 0 to 200 μs. The output of the current amplifier 5 is input to the control system 7 that performs feedback control of the probe 1 through the lock-in amplifier 6. In the present invention, since the conventional STM is a DC bias voltage system, the use of the lock-in amplifier 6 that has never been used eliminates noise due to stray capacitance, etc., and greatly improves SZN. It was planned. In the present embodiment, the same applies to the case where a force digital signal processor (DSP), which explains the case where the input amplifier 6 is used, is used as the signal processing means having the phase lock-in function in the present invention. In other words, the lock-in amplifier is generally configured using a DSP. However, in the present invention, of the functions of a general lock-in amplifier, the current amplified by the current amplifier 5 is input, and the reference signal is a high-frequency bias voltage. Equivalent function because only the phase lock-in function is used, which synchronizes with the frequency and locks to the phase of the high-frequency bias voltage to remove the stray capacitance-derived current and generate a feedback signal based only on the tunnel current. This is because DSP can be realized.
[0031] 図 3は、図 2に示した回路構成の装置での信号波形を示している。矩形波のバイァ ス電圧は 4kHz、 ± 200mVであり、その波形を図 3の上段に示している。 4kHzは周 期に換算すると 250 sであるので、これよりも早く変化する成分のみを除去すること ができるように、前記マッチング回路 4を調節する。電流アンプ 5のゲインを 107とした 場合のその出力波形を図 3の中段に示し、ゲインを 10、出力時定数を 100 sとした ロックインアンプ 6の出力波形を図 3の下段に示している。ここで、ロックインアンプ 6は バンドパスフィルタ一として機能するので、バイアス電圧の周波数に同期させて、バイ ァス電圧の立上がりと立下がりの部分に遅れて現れる浮遊容量の影響を除いてサン プリングして出力する。図 4は、試料として HOPGの表面を観察した ATM像であり、 図 4 (a)は lnm X lnmの観察領域、図 4 (b)は 2nm X 2nmの観察領域、図 4 (c)は 5 nm X 5nmの観察領域である。 FIG. 3 shows signal waveforms in the apparatus having the circuit configuration shown in FIG. The bias voltage of the square wave is 4kHz, ± 200mV, and the waveform is shown in the upper part of Fig.3. Since 4 kHz is 250 s in terms of period, the matching circuit 4 is adjusted so that only components that change faster than this can be removed. The output waveform when the gain of current amplifier 5 is 10 7 is shown in the middle part of Fig. 3, and the output waveform of lock-in amplifier 6 where the gain is 10 and the output time constant is 100 s is shown in the lower part of Fig. 3. Yes. Here, since the lock-in amplifier 6 functions as a band-pass filter, it is sampled in synchronism with the frequency of the bias voltage, excluding the influence of stray capacitance that appears late at the rising and falling parts of the bias voltage. And output. Fig. 4 is an ATM image of the surface of HOPG as a sample. Fig. 4 (a) is an observation region of lnm x lnm, Fig. 4 (b) is an observation region of 2nm x 2nm, and Fig. 4 (c) is 5 This is an observation region of nm X 5 nm.
[0032] 図 5は、図 2に示した回路構成の装置で、矩形波のバイアス電圧を 100kHz、 p—p 200mVとした場合の波形を示している。この場合も前記同様に、図 5の上段はバイ ァス電圧波形、中段は電流アンプ 5の出力波形、下段はロックインアンプ 6の出力波 形をそれぞれ示している。図 6 (&)は矩形波のバィァス電圧を5(¾1¾、 p-p200mV とした場合の STM像、図 6 (b)は矩形波のバイアス電圧を 100kHz、 p— p200mVと した場合の STM像であり、両方とも 5nmX 5nmの観察領域である。先の特許文献 1 の図 11 (a)と比較すれば、本発明により格段に鮮明な原子像を観察できるようになつ たことが分かり、ロックインアンプを用いる効果が明ら力となった。 FIG. 5 shows a waveform when the bias voltage of the rectangular wave is 100 kHz and p−p 200 mV in the apparatus having the circuit configuration shown in FIG. In this case as well, the upper part of FIG. The first voltage waveform, the middle row shows the output waveform of the current amplifier 5, and the lower row shows the output waveform of the lock-in amplifier 6. Fig. 6 (&) shows an STM image when the square wave bias voltage is 5 (¾1¾, p-p200mV), and Fig. 6 (b) shows an STM image when the square wave bias voltage is 100kHz and p-p200mV. Both of these are observation areas of 5 nm × 5 nm, which shows that the present invention has made it possible to observe a much clearer atomic image compared to FIG. The effect of using an amplifier became obvious.
[0033] ここで、図 5を見れば、矩形波のバイアス電圧を印加したにも係わらず、周波数が 1 OOkHzと高くなると、電流アンプの出力波形は正弦波(サイン波)に近い波形となつ ていることが分かり、バイアス電圧を正弦波としても原子像を観察できることが推測さ れる。一方、試料表面の帯電を防止するには、できるだけ高い周波数のバイアス電 圧を印加することが望まれる。また、バイアス電圧を正弦波とすることにより、スパイク 電流の問題が解消するので、図 2におけるインピーダンスマッチング回路 4は不要と なる。その結果、図 7に示すような簡単な回路構成の正弦波バイアス電圧による高周 波走査トンネル顕微鏡に至ったのである。  [0033] Here, when looking at Fig. 5, the output waveform of the current amplifier becomes a waveform close to a sine wave (sine wave) when the frequency increases to 1 OOkHz even though a rectangular wave bias voltage is applied. It is assumed that the atomic image can be observed even when the bias voltage is a sine wave. On the other hand, in order to prevent charging of the sample surface, it is desirable to apply a bias voltage having a frequency as high as possible. In addition, since the problem of spike current is eliminated by using a sine wave as the bias voltage, the impedance matching circuit 4 in FIG. 2 is not necessary. As a result, a high-frequency scanning tunneling microscope with a sine wave bias voltage with a simple circuit configuration as shown in Fig. 7 was reached.
[0034] 図 7に示した位相ロックイン型高周波走査トンネル顕微鏡は、探針 1と試料 2との間 に、交流電源 8 (バイアス電源)から正弦波のバイアス電圧を印加し、探針 1と試料 2と の間に流れる電流を電流アンプ 5で増幅し、その出力をロックインアンプ 6に入力して 、ロックインアンプ 6でトンネル電流のみによるフィードバック信号を発生させ、それを 制御系 7に入力して探針 1をフィードバック制御するのである。この場合、インピーダ ンスマッチング回路 4を設けてな 、ので、このマッチング回路に起因した周波数特性 の劣化を防止できる。  The phase lock-in type high-frequency scanning tunneling microscope shown in FIG. 7 applies a sinusoidal bias voltage from the AC power source 8 (bias power source) between the probe 1 and the sample 2, The current flowing between the sample 2 and the current amplifier 5 is amplified by the current amplifier 5, and the output is input to the lock-in amplifier 6. The lock-in amplifier 6 generates a feedback signal based only on the tunnel current and inputs it to the control system 7. Then, the probe 1 is feedback-controlled. In this case, since the impedance matching circuit 4 is not provided, it is possible to prevent the frequency characteristics from being deteriorated due to the matching circuit.
[0035] 次に、図 8及び図 9に基づいて、ロックインアンプ 6を用いることにより、浮遊容量に よる電流成分を除去し、微弱なトンネル電流のみを抽出する測定原理を説明する。 先ず、ロックインアンプの一般的な動作原理を図 8に基づいて説明する。図 8 (a)に示 すように、正弦波力もなる測定信号をロックインアンプに入力し、該測定信号とロック インアンプの参照信号の位相差を 0° とすると、測定信号に参照信号を掛け合わせ た PSD出力は、測定信号の負の部分の半波が正に折り返された波形 (正の全波整 流)となり、これを平滑ィ匕した LPF出力は正の直流となる。一方、図 8 (b)に示すように 、測定信号とロックインアンプの参照信号の位相差を 90° とすると、 PSD出力は上 下対称波形となり、 LPF出力は 0となる。また、図 8 (c)に示すように、測定信号とロッ クインアンプの参照信号の位相差を 180° とすると、 PSD出力は位相差が 0° の場 合の上下反転した波形となり、 LPF出力は負の直流となる。ロックインアンプでは参 照信号の位相を測定信号の位相にロックすることで、測定信号を検出することができ る。また、測定信号検出において、測定信号との位相差が 90° の成分は出力されな いという特徴がある。 Next, based on FIGS. 8 and 9, description will be given of a measurement principle that uses the lock-in amplifier 6 to remove a current component due to stray capacitance and extract only a weak tunnel current. First, a general operation principle of the lock-in amplifier will be described with reference to FIG. As shown in Fig. 8 (a), when a measurement signal with sinusoidal force is input to the lock-in amplifier and the phase difference between the measurement signal and the lock-in amplifier reference signal is 0 °, the reference signal is added to the measurement signal. The multiplied PSD output is a waveform in which the negative half-wave of the measurement signal is positively folded (positive full-wave rectification). The smoothed LPF output is positive DC. On the other hand, as shown in Figure 8 (b) If the phase difference between the measurement signal and the reference signal of the lock-in amplifier is 90 °, the PSD output will be a symmetrical waveform, and the LPF output will be zero. Also, as shown in Fig. 8 (c), if the phase difference between the measurement signal and the reference signal of the lock-in amplifier is 180 °, the PSD output becomes an inverted waveform when the phase difference is 0 °, and the LPF output Becomes negative direct current. The lock-in amplifier can detect the measurement signal by locking the phase of the reference signal to the phase of the measurement signal. In addition, in measurement signal detection, components with a phase difference of 90 ° from the measurement signal are not output.
[0036] 次に、前記探針 1と試料 2とは、等価回路的にはトンネル電流を流す抵抗と浮遊容 量とが並列接続された回路に置き換えられる。図 9に示すように、探針 試料間を通 過した電流は、トンネル電流成分 (測定信号)と容量成分が混合したままロックインァ ンプに流れる力 容量成分はトンネル電流成分に対して位相が 90° ずれている。従 つて、ロックインアンプによってトンネル電流成分の位相に参照信号の位相をロックし た場合、そこから 90° ずれた容量成分は出力されず、図 9のようにトンネル電流成分 のみが検出できる。これをフィードバック信号として用いることにより STM観察を行うこ とが可能となる。  Next, the probe 1 and the sample 2 are replaced with a circuit in which a resistance for flowing a tunnel current and a floating capacity are connected in parallel in an equivalent circuit. As shown in Fig. 9, the current passed between the probe and the sample is the force that flows through the lock amplifier while mixing the tunnel current component (measurement signal) and the capacitive component. The capacitive component is 90 ° out of phase with the tunnel current component. It's off. Therefore, when the phase of the reference signal is locked to the phase of the tunnel current component by the lock-in amplifier, the capacitive component shifted by 90 ° is not output, and only the tunnel current component can be detected as shown in FIG. By using this as a feedback signal, STM observation can be performed.
[0037] 次に、図 7に示した回路構成の装置を用いて実際に STM観察を行う手順を簡単に 説明する。バイアス電圧に交流を用いるとき、探針がトンネル領域に入っている場合 は、探針—試料間は抵抗と容量が並列した形とみなすことができるが、探針がトンネ ル領域に入っていない場合(図 10 (a)参照)、探針-試料間は容量のみの回路とな る。即ち、アプローチするに当たり、始めは探針—試料間に容量成分のみ流れてい る力 探針がトンネル領域に入ることで容量成分とトンネル電流成分が混合した電流 が流れる。まず、図 10 (a)に示すように、トンネル領域外でロックインアンプの参照信 号の位相をオートセットすることで参照信号の位相を容量成分の位相にロックするこ とができる。ここで、参照信号と容量成分の電流は同位相である。そこから参照信号 の位相を 90° ずらすことにより容量成分の出力を 0にしてアプローチを開始する( 図 10 (b)参照)。こうすることで、図 10 (c)に示すように、トンネル電流成分が流れたと きにはじめて出力が現れ、トンネル電流のみを検出することができる。尚、図 10 (c)に おいて、トンネルギャップを流れる電流は、トンネル電流成分と容量成分の和になる 力 周波数が高くなると容量成分はトンネル電流成分の信号レベルより遥かに大きく なるので、容量成分の波形が支配的となる。このように、ロックインアンプを用いて、ァ ブローチ前に流れている容量成分の出力が 0になるように調整することで、トンネル 電流成分のみを検出することができるのである。 Next, a procedure for actually performing STM observation using the apparatus having the circuit configuration shown in FIG. 7 will be briefly described. When AC is used for the bias voltage, if the probe is in the tunnel region, it can be considered that the resistance and capacitance are in parallel between the probe and the sample, but the probe is not in the tunnel region. In this case (see Fig. 10 (a)), the circuit between the probe and the sample is only a capacitance. That is, when approaching, the force that only the capacitive component flows between the probe and the sample at the beginning, the mixed current of the capacitive component and the tunnel current component flows when the probe enters the tunnel region. First, as shown in Fig. 10 (a), the phase of the reference signal can be locked to the phase of the capacitive component by automatically setting the phase of the reference signal of the lock-in amplifier outside the tunnel region. Here, the reference signal and the current of the capacitive component have the same phase. From there, the approach is started by shifting the phase of the reference signal by 90 ° and setting the output of the capacitive component to 0 (see Fig. 10 (b)). In this way, as shown in Fig. 10 (c), the output appears only when the tunnel current component flows, and only the tunnel current can be detected. In Fig. 10 (c), the current flowing through the tunnel gap is the sum of the tunnel current component and the capacitance component. As the force frequency increases, the capacitance component becomes much larger than the signal level of the tunnel current component, so the waveform of the capacitance component becomes dominant. In this way, only the tunnel current component can be detected by adjusting the output of the capacitive component flowing before the broaching to 0 using the lock-in amplifier.
[0038] 図 11及び図 12は、図 7に示した回路構成の位相ロックイン型高周波走査トンネル 顕微鏡によって、実際に HOPGの表面を観察した STM像を示している。図 11は、 周波数 100kHz、 p—p200mVの正弦波バイアス電圧を用い、ロックインアンプの時 定数 100 μ sで HOPG表面の観察を行った結果を示し、 (a)は観察領域が 2nm X 2 nm、(b)は観察領域が 5nm X 5nmであり、原子像が得られている。また、図 12は、 周波数 200kHz、 p—p200mVの正弦波バイアス電圧を用い、ロックインアンプの時 定数 100 sで HOPG表面の観察を行った結果を示し、(a)は観察領域が 2. 5nm X 2. 5nm、(b)は観察領域が 5nmX 5nmであり、不鮮明ではあるが原子像が得ら れている。  11 and 12 show STM images obtained by actually observing the surface of the HOPG with the phase lock-in type high-frequency scanning tunneling microscope having the circuit configuration shown in FIG. Figure 11 shows the result of HOPG surface observation using a sine wave bias voltage with a frequency of 100 kHz and p-p200 mV, with a lock-in amplifier time constant of 100 μs, and (a) shows the observation area of 2 nm X 2 nm. , (B), the observation region is 5 nm X 5 nm, and an atomic image is obtained. Figure 12 shows the result of HOPG surface observation using a sine wave bias voltage of 200 kHz and p-p200 mV with a lock-in amplifier time constant of 100 s. (A) shows the observation area of 2.5 nm. X 2.5 nm, (b) has an observation area of 5 nm X 5 nm, and although it is unclear, an atomic image is obtained.
[0039] 尚、周波数 200kHzの正弦波バイアス電圧を用いた観察では、使用したロックイン アンプの最高使用周波数が 100kHzであったので、ロックインアンプの前に周波数 ェクステンダを揷入して測定を行った。電流アンプ及びロックインアンプを広帯域のも のを使用することにより、更に鮮明な原子像が得られることは容易に予測できる。  [0039] In observation using a sinusoidal bias voltage with a frequency of 200 kHz, the maximum operating frequency of the lock-in amplifier used was 100 kHz, so measurement was performed with a frequency extender inserted before the lock-in amplifier. It was. It can be easily predicted that a clearer atomic image can be obtained by using a wide-band current amplifier and lock-in amplifier.
[0040] 最後に、図 13及び図 14に、 Si(l l l)表面のステップ テラス構造の観察を行った 結果を示す。先ず、図 13は、図 7に示した回路構成で、大気中において直流モード で Si (111)表面を観察した STM像であり、(a)は 150nm X 150nmの観察領域、(b )は 500nmX 500nmの観察領域である。大気中でも、直流モードで Si(l l l)表面 のステップ テラス構造の STM像が得られた。  Finally, FIG. 13 and FIG. 14 show the results of observation of the step terrace structure on the Si (l l l) surface. First, Fig. 13 is an STM image of the Si (111) surface observed in the DC mode in the atmosphere with the circuit configuration shown in Fig. 7. (a) is an observation region of 150 nm X 150 nm, and (b) is 500 nm X It is an observation region of 500 nm. An STM image of the step terrace structure on the Si (l l l) surface was obtained in the DC mode even in the atmosphere.
[0041] 図 14は、周波数 100kHzの正弦波バイアス電圧を用いて、大気中において Si (l l 1)表面を観察した STM像であり、(a)は 200nm X 200nmの観察領域、(b)は 500 nm X 500nmの観察領域である。このように、高周波 STMにおける観察においても Si(l l l)表面の変化が観察された。この変化は直流モードでのバイアス電圧が負の 場合よりも大きぐ正の場合よりも小さく見える。これはバイアス電圧の極性が正負交 互に変化しながら計測をおこなうため、正負交互の影響により表面が変化したためだ と考えられる。しかし、高周波 STM像にはステップ—テラス構造が観察されているこ とがわかる。これにより、バンドギャップを持つ試料に対しても高周波 STM観察を行う ことが可能であることが確認された。 [0041] FIG. 14 is an STM image obtained by observing the Si (ll 1) surface in the atmosphere using a sinusoidal bias voltage with a frequency of 100 kHz, (a) is an observation region of 200 nm × 200 nm, and (b) is This is an observation region of 500 nm X 500 nm. In this way, changes in the Si (lll) surface were also observed in high-frequency STM observation. This change appears to be smaller than in the positive case where the bias voltage in DC mode is greater than in the negative case. This is because the surface changes due to the influence of alternating positive and negative because the polarity of the bias voltage changes while alternating between positive and negative. it is conceivable that. However, it can be seen that a step-terrace structure is observed in the high-frequency STM image. As a result, it was confirmed that high-frequency STM observation was possible even for samples with a band gap.
[0042] このように、高周波ノィァス電圧と同位相の成分をロックインアンプで選別すること によって、浮遊容量による影響を最小限に抑制してトンネル電流成分のみで探針 試料間距離を制御することができ、より高い周波数の正弦波バイアス電圧を印加する ことで絶縁体若しくは半導体試料の観察を行うことが可能である。  [0042] As described above, by selecting the component having the same phase as the high-frequency noise voltage by the lock-in amplifier, the influence of the stray capacitance is minimized, and the distance between the probe and the sample is controlled only by the tunnel current component. It is possible to observe an insulator or a semiconductor sample by applying a sinusoidal bias voltage having a higher frequency.
[0043] また、探針 試料間距離を一定に保ち、前記バイアス電源より探針と試料間に正 弦波の高周波バイアス電圧を印加するとともに、前記ロックインアンプの参照信号の 位相をトンネル電流の位相にロックすることにより前記試料の dlZdVを測定して I—V 特性を取得し、あるいは前記ロックインアンプの参照信号の位相を容量由来の電流 の位相にロックすることにより前記試料の dCZdVを測定して C—V特性を取得するこ とにより、半導体表面の nmオーダーの微小領域での電気的特性を調べることができ る。ここで、探針—試料間距離を一定に保ち、前記ノィァス電源より探針と試料間に 正弦波の高周波バイアス電圧を印加し、前記ロックインアンプの参照信号の位相を 容量由来の電流の位相にロックすることで、浮遊容量由来の電流変動を無くし、従つ て試料の物性に基づく容量成分による電流の変化のみを検出することができるので ある。前記試料の dlZdVあるいは dCZdVを測定するときの周波数は、探針—試料 間距離の制御に使った周波数とは異なっても可能である。  [0043] Further, the distance between the probe and the sample is kept constant, a high frequency bias voltage of a sine wave is applied between the probe and the sample from the bias power source, and the phase of the reference signal of the lock-in amplifier is changed to the tunnel current. The dlZdV of the sample is measured by locking to the phase to obtain the I-V characteristics, or the dCZdV of the sample is measured by locking the phase of the reference signal of the lock-in amplifier to the phase of the current derived from the capacitance. By acquiring the C-V characteristics, the electrical characteristics in a minute region of the nm order on the semiconductor surface can be investigated. Here, the distance between the probe and the sample is kept constant, a sine wave high frequency bias voltage is applied between the probe and the sample from the noise power source, and the phase of the reference signal of the lock-in amplifier is changed to the phase of the current derived from the capacitance. By locking to, current fluctuations due to stray capacitance are eliminated, and therefore only changes in current due to capacitive components based on the physical properties of the sample can be detected. The frequency at which the dlZdV or dCZdV of the sample is measured may be different from the frequency used to control the probe-sample distance.

Claims

請求の範囲 The scope of the claims
[1] 探針先端と試料の間隔を極めて接近させ、探針と試料間に印カロしたバイアス電圧 によってトンネル電流を生じさせ、このトンネル電流を一定に維持する条件でフィード バック信号を駆動系に与えて探針を試料表面に沿って相対的に走査し、試料表面の 原子スケールの像を観察する走査トンネル顕微鏡であって、前記探針と試料間に矩 形波若しくは正弦波の高周波バイアス電圧を印加するバイアス電源と、探針と試料 間に流れるトンネル電流と浮遊容量由来の電流が混合した検出電流を増幅する電 流アンプと、電流アンプで増幅した電流を入力し、サンプリング信号を高周波バイァ ス電圧の周波数に同期させ且つ高周波バイアス電圧の位相にロックさせて、浮遊容 量由来の電流を除去してトンネル電流のみによるフィードバック信号を発生させる、 位相ロックイン機能を有する信号処理手段とを備えたことを特徴とする位相ロックイン 型高周波走査トンネル顕微鏡。  [1] The distance between the tip of the probe and the sample is very close, and a tunnel current is generated by the bias voltage applied between the probe and the sample. The feedback signal is sent to the drive system under the condition that this tunnel current is maintained constant. A scanning tunneling microscope for observing an atomic-scale image of the sample surface by relatively scanning the probe along the sample surface, and a high-frequency bias voltage of a square wave or a sine wave between the probe and the sample A bias power supply for applying a current, a current amplifier for amplifying a detection current obtained by mixing a tunnel current flowing between the probe and the sample and a current derived from a stray capacitance, and a current amplified by the current amplifier are input, and a sampling signal is input to a high-frequency bias. This is a feedback signal based only on the tunnel current by synchronizing with the frequency of the source voltage and locking to the phase of the high frequency bias voltage to remove the current from the floating capacitance. Generating, phase-lock-type high frequency scanning tunneling microscope, characterized in that a signal processing unit having a phase lock-in feature.
[2] 前記高周波バイアス電圧が矩形波であり、前記探針と試料間のトンネル抵抗と浮遊 容量で決する時定数と、電流アンプの入力インピーダンスで決する時定数を略一致 させるインピーダンスマッチング回路を電流アンプの入力側に設けてなる請求項 1記 載の位相ロックイン型高周波走査トンネル顕微鏡。  [2] The high-frequency bias voltage is a rectangular wave, and an impedance matching circuit that substantially matches the time constant determined by the tunnel resistance and stray capacitance between the probe and the sample and the time constant determined by the input impedance of the current amplifier is a current amplifier. The phase lock-in type high-frequency scanning tunneling microscope according to claim 1, wherein the phase-lock-in type high-frequency scanning tunneling microscope is provided on the input side.
[3] 前記高周波ノィァス電圧が正弦波であり、探針と試料間の間隔が離れたトンネル 領域外において前記信号処理手段のサンプリング信号の位相を浮遊容量由来の電 流の位相にロックした後、サンプリング信号の位相をずらすことにより浮遊容量由来 の電流の出力を 0にし、それから探針と試料間の間隔を狭めてトンネル電流が流れる トンネル領域内へとアプローチを開始する請求項 1記載の位相ロックイン型高周波走 查トンネル顕微鏡。  [3] After the high-frequency noise voltage is a sine wave and the phase of the sampling signal of the signal processing means is locked to the phase of the current derived from the stray capacitance outside the tunnel region where the distance between the probe and the sample is separated, The phase lock according to claim 1, wherein the phase lock of the sampling capacitance is set to 0 by shifting the phase of the sampling signal, and then the approach is started into the tunnel region where the tunnel current flows by narrowing the distance between the probe and the sample. In-type high-frequency traveling tunnel tunnel microscope.
[4] トンネル領域外にお 、て前記信号処理手段のサンプリング信号の位相を浮遊容量 由来の電流の位相にロックした後、サンプリング信号の位相を- 90° ずらすことにより 浮遊容量由来の電流の出力を 0にする請求項 3記載の位相ロックイン型高周波走査 トンネル顕微鏡。  [4] Outside the tunnel region, the phase of the sampling signal of the signal processing means is locked to the phase of the current derived from the stray capacitance, and then the current of the stray capacitance is output by shifting the phase of the sampling signal by -90 ° The phase lock-in type high-frequency scanning tunneling microscope according to claim 3, wherein
[5] 前記バイアス電圧の周波数が 100kHz〜10GHzの範囲であり、フィードバック信 号として使用するトンネル電流が ΙρΑ〜: LOnAの範囲である請求項 1〜4何れかに記 載の位相ロックイン型高周波走査トンネル顕微鏡。 [5] The frequency of the bias voltage is in a range of 100 kHz to 10 GHz, and a tunnel current used as a feedback signal is in a range of ΙρΑ to LONA. Phase lock-in type high-frequency scanning tunneling microscope.
[6] 探針—試料間距離を一定に保ち、前記バイアス電源より探針と試料間に正弦波の 高周波バイアス電圧を印加するとともに、前記信号処理手段のサンプリング信号の位 相をトンネル電流の位相にロックすることにより前記試料の dlZdVを測定して I—V特 性を取得し、あるいは前記信号処理手段のサンプリング信号の位相を容量由来の電 流の位相にロックすることにより前記試料の dCZdVを測定して C V特性を取得す る請求項 1記載の位相ロックイン型高周波走査トンネル顕微鏡。  [6] The distance between the probe and the sample is kept constant, a high frequency bias voltage of sine wave is applied between the probe and the sample from the bias power source, and the phase of the sampling signal of the signal processing means is changed to the phase of the tunnel current. The dlZdV of the sample is measured by locking the signal to obtain the IV characteristic, or the dCZdV of the sample is obtained by locking the phase of the sampling signal of the signal processing means to the phase of the current derived from the capacitance. 2. The phase lock-in type high-frequency scanning tunneling microscope according to claim 1, wherein CV characteristics are obtained by measurement.
[7] 前記信号処理手段がロックインアンプであり、前記サンプリング信号がロックインァ ンプの参照信号である請求項 1〜6何れかに記載の位相ロックイン型高周波走査トン ネル顕微鏡。  7. The phase lock-in type high-frequency scanning tunneling microscope according to claim 1, wherein the signal processing means is a lock-in amplifier, and the sampling signal is a lock-in amplifier reference signal.
[8] 前記信号処理手段がロックインアンプであり、前記サンプリング信号がロックインァ ンプの参照信号であり、トンネル領域外にお 、て前記ロックインアンプの参照信号の 位相をオートセットすることで浮遊容量由来の電流の位相にロックする請求項 3又は 4 記載の位相ロックイン型高周波走査トンネル顕微鏡。  [8] The signal processing means is a lock-in amplifier, the sampling signal is a lock-in amplifier reference signal, and the stray capacitance is obtained by automatically setting the phase of the reference signal of the lock-in amplifier outside the tunnel region 5. The phase lock-in type high-frequency scanning tunneling microscope according to claim 3, wherein the phase lock-in type high-frequency scanning tunneling microscope is locked to a phase of a current derived therefrom.
[9] 前記信号処理手段がデジタル信号プロセッサ(DSP)である請求項 1〜6何れかに 記載の位相ロックイン型高周波走査トンネル顕微鏡。  9. The phase lock-in type high-frequency scanning tunneling microscope according to claim 1, wherein the signal processing means is a digital signal processor (DSP).
PCT/JP2007/053428 2006-03-07 2007-02-23 Phase lock-in type high-frequency scanning tunnel microscope WO2007102324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008503779A JP4590574B2 (en) 2006-03-07 2007-02-23 Phase lock-in type high-frequency scanning tunneling microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-061421 2006-03-07
JP2006061421 2006-03-07

Publications (1)

Publication Number Publication Date
WO2007102324A1 true WO2007102324A1 (en) 2007-09-13

Family

ID=38474762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053428 WO2007102324A1 (en) 2006-03-07 2007-02-23 Phase lock-in type high-frequency scanning tunnel microscope

Country Status (2)

Country Link
JP (1) JP4590574B2 (en)
WO (1) WO2007102324A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869103A (en) * 2014-03-27 2014-06-18 上海华力微电子有限公司 AFM probe device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142202A (en) * 1986-12-05 1988-06-14 Fujitsu Ltd High frequency tunnel microscape
JPH04225104A (en) * 1990-12-27 1992-08-14 Olympus Optical Co Ltd Capacitance-signal removing circuit
JP2002365194A (en) * 2001-06-12 2002-12-18 Yuzo Mori High-frequency pulse scanning tunneling microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142202A (en) * 1986-12-05 1988-06-14 Fujitsu Ltd High frequency tunnel microscape
JPH04225104A (en) * 1990-12-27 1992-08-14 Olympus Optical Co Ltd Capacitance-signal removing circuit
JP2002365194A (en) * 2001-06-12 2002-12-18 Yuzo Mori High-frequency pulse scanning tunneling microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869103A (en) * 2014-03-27 2014-06-18 上海华力微电子有限公司 AFM probe device
CN103869103B (en) * 2014-03-27 2016-04-06 上海华力微电子有限公司 Probe unit of microscope with atomic force

Also Published As

Publication number Publication date
JPWO2007102324A1 (en) 2009-07-23
JP4590574B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
Farinacci et al. Tuning the coupling of an individual magnetic impurity to a superconductor: quantum phase transition and transport
Shao et al. Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy
Ziegler et al. Force gradient sensitive detection in lift-mode Kelvin probe force microscopy
Fumagalli et al. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy
Murawski et al. Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits
Lüpke et al. Scanning tunneling potentiometry implemented into a multi-tip setup by software
US7910390B2 (en) Resonant MEMS device that detects photons, particles and small forces
Yamasue et al. Scanning nonlinear dielectric potentiometry
Kilpatrick et al. Quantitative comparison of closed-loop and dual harmonic Kelvin probe force microscopy techniques
Romanyuk et al. Single-and multi-frequency detection of surface displacements via scanning probe microscopy
Tselev et al. Near-field microwave microscope with improved sensitivity and spatial resolution
WO2007102324A1 (en) Phase lock-in type high-frequency scanning tunnel microscope
Diesinger et al. Kelvin force microscopy at the second cantilever resonance: An out-of-vacuum crosstalk compensation setup
Meerwaldt et al. Submicrosecond-timescale readout of carbon nanotube mechanical motion
Rommel et al. Influence of parasitic capacitances on conductive AFM IV measurements and approaches for its reduction
Hirose et al. Observation of the Si (111) 7× 7 atomic structure using non-contact scanning nonlinear dielectric microscopy
Shen et al. Sample-charged mode scanning polarization force microscopy for characterizing reduced graphene oxide sheets
Cheran et al. Scanning Kelvin microprobe in the tandem analysis of surface topography and chemistry
Bostanci et al. Nanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy
Schneegans et al. Capacitance measurements on small parallel plate capacitors using nanoscale impedance microscopy
Barimar et al. Spreading resistance at the nano-scale studied by scanning tunneling and field emission spectroscopy
US20210132109A1 (en) Methods and devices configured to operated scanning tunneling microscopes using out-of-bandwidth frequency components added to bias voltage and related software
Li et al. Self-navigation of STM tip toward a micron sized sample
Yanev et al. Comparative study between conventional macroscopic IV techniques and advanced AFM based methods for electrical characterization of dielectrics at the nanoscale
Yamasue et al. Boxcar averaging based scanning nonlinear dielectric microscopy and its application to carrier distribution imaging on 2D semiconductors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008503779

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714883

Country of ref document: EP

Kind code of ref document: A1