WO2007101931A1 - Method for laying and protecting an underground pipe - Google Patents

Method for laying and protecting an underground pipe Download PDF

Info

Publication number
WO2007101931A1
WO2007101931A1 PCT/FR2007/000378 FR2007000378W WO2007101931A1 WO 2007101931 A1 WO2007101931 A1 WO 2007101931A1 FR 2007000378 W FR2007000378 W FR 2007000378W WO 2007101931 A1 WO2007101931 A1 WO 2007101931A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
sheath
kilograms
annular space
water
Prior art date
Application number
PCT/FR2007/000378
Other languages
French (fr)
Inventor
Eric Puech
Original Assignee
Eric Puech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eric Puech filed Critical Eric Puech
Publication of WO2007101931A1 publication Critical patent/WO2007101931A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/06Coatings characterised by the materials used by cement, concrete, or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/20Constructional parts or assemblies of the anodic or cathodic protection apparatus
    • C23F2213/22Constructional parts or assemblies of the anodic or cathodic protection apparatus characterized by the ionic conductor, e.g. humectant, hydratant or backfill

Definitions

  • the invention relates to a method for installing and protecting a buried fluid transport line (liquid or gas).
  • the invention applies more particularly to metal pipes, in particular to steel pipes, and, more generally, to pipes made of an electrically conductive material.
  • a buried metallic pipe is likely to be subjected to various forms of aggressions, among which mechanical aggression (stresses exerted on the ground and transmitted by the ground surrounding the pipe, instability of the ground %) and chemical or electrolytic aggression (corrosion).
  • the pipe is placed in a sheath, for reasons of ease of installation. Indeed, unlike driving, the sheath can be placed by drilling, without having to dig a trench. The pipe is then easily threaded into the sheath. This technique is therefore essential when crossing a river. It is also advantageous for crossings of inhabited areas or roads and railways, since it does not involve any demolition or interruption of traffic (the installation of the sheath is thus done at a lower cost).
  • the sheath is a mechanical protection of the pipe, appreciable when the stability of the ground is not guaranteed and / or that the pipe is likely to undergo significant mechanical stress.
  • US 4469469 recalls the adverse effects of moisture or water infiltrating into the annular space. This document first teaches introducing, in the annular space, a substance capable of mixing with the residual water and neutralizing the effects thereof, and then injecting a corrosion-resistant filling material suitable for remove the water thus treated and fill the annular space so as to prevent further infiltration or condensation of water.
  • the filling material is a wax based on petroleum or bitumen.
  • the waxes based on petroleum or bitumen are liquid only at high temperature (at least 100-130 ° C.) and it is therefore necessary to provide a heavy installation on site to prepare the wax before injection;
  • the wax injected into the sheath electrically isolates the pipe from the surrounding soil and the sheath, thereby providing passive cathodic protection of the pipe.
  • This property of the wax may seem a priori advantageous; but it should be borne in mind that it is incompatible with the introduction of active cathodic protection of conduct, which is generally more reliable and more effective than passive protection.
  • US Pat. No. 4,932,810 recommends injecting an inert gas, such as argon, into the annular space in order in part to eliminate any moisture in the annular space and, on the other hand, to provide an electrical barrier between the pipe and the sheath.
  • an inert gas such as argon
  • the injection of this gas thus pursues an objective contrary to the establishment of active cathodic protection of the pipe.
  • the gas injected as "material" for filling the annular space provides no support or mechanical protection to the pipe; and it is not excluded that the sheath comes into electrical contact with the pipe due to deformation of the sheath under the effect of mechanical stresses or displacement of the sheath and pipe caused by a movement of the surrounding terrain.
  • JP 2000120923 teaches on the one hand to fill the annular space by means of a cement mortar in order to provide mechanical protection and electrical insulation of the pipe, and secondly to coat the inner surface of the sleeve by a conductive layer (metal foil) to deflect any underground currents likely to reach the sleeve and thus overcome any defect in the electrical insulation made by the mortar.
  • a cement mortar in order to provide mechanical protection and electrical insulation of the pipe
  • a conductive layer metal foil
  • the objective is contrary to the establishment of active cathodic protection.
  • this method of installation and protection is not reversible: the mortar, once cured, can not be removed or destroyed without damaging the pipe, so that it is impossible, in case of problems, to proceed to inspection or repair operations of the pipe in the sheath.
  • the invention aims to overcome these disadvantages, by proposing a method of installing and protecting a buried pipe using a filling material compatible with the establishment of active cathodic protection of the pipe.
  • the invention also aims to propose a process that is easy to implement by means of a light and very simple installation.
  • An object of the invention is to propose a filler material which can have a viscous liquid-like state at ambient temperature, with a view to its injection into the annular space, then a consolidated state after injection, capable of ensuring the setting and stability of the pipe in the sheath.
  • Another object of the invention is to provide a filling material that can be handled by an operator without special protection, with the exception of a possible mask.
  • Another object of the invention is to provide a filling material which does not tend to be washed or to be diluted in a residual water possibly present in the sleeve before injection of the material.
  • Another object of the invention is to provide an aqueous filling material, which develops a negligible resurgence of water during its consolidation and therefore has a volume substantially identical to the liquid state and the consolidated state.
  • Another object of the invention is to provide a non-polluting filling material in the consolidated state, and whose composition is close to the geological elements that can be encountered in the soil.
  • Another object of the invention is to provide an inexpensive filling material, and in particular much less expensive than waxes based on petroleum or bitumen.
  • Another object of the invention is to provide a method of installation and reversible protection, by providing a filling material which, in the consolidated state, can be destroyed or removed from the annular space without risk of deterioration of the conduct.
  • the invention relates to a method for installing and protecting a buried fluid transport pipe, said pipe being made of an electrically conductive material.
  • the pipe is placed in a sheath of an electrically conductive material (metal sheath for example, in particular steel), which follows a longitudinal direction substantially parallel to a longitudinal direction of the pipe, the pipe and the sheath delimiting between them an annular space that extends mainly along these longitudinal directions; the annular space is closed at each longitudinal end of the sleeve by means of a so-called closure ring; the annular space is filled with a filling material.
  • an electrically conductive material metal sheath for example, in particular steel
  • a hydraulic grout containing water is used as filler and, for 900 liters of water, 85 to 105 kilograms of a blast furnace slag, 8 to 13 kilograms of Portland clinker and 120 to 160 kilograms of bentonite,
  • the pipe is connected to an electrical circuit comprising a current draw-off station or a sacrificial anode, with a view to setting up an active cathodic protection of the pipe.
  • Slurry is understood to mean a slurry comprising on the one hand an aqueous liquid phase and, on the other hand, a granular solid phase suspended in the liquid phase, the solid phase consisting essentially of fine particles having diameters less than or equal to 100 ⁇ m, unlike a "mortar” which comprises larger particles -forming a charge- such as sands.
  • the grout according to the invention remains electrically conductive after consolidation. And it is at the cost of months of trials and experiments that the inventor was able to develop a grout that, against all odds, has all of the following characteristics, some of which seemed a priori incompatible:
  • - Grout can be consolidated to provide mechanical protection of the pipe; it is stable and durable; it is particularly able to maintain the surrounding lands after a slow decomposition of the sheath;
  • the grout in the consolidated state, the grout produces an electrolyte making it possible to implement active cathodic protection of the pipe.
  • the slurry has a basic pH.
  • the consolidated slurry has a low electrical resistivity, does not oppose the flow of electrolytic currents and allows in particular ion exchange, despite its solid state.
  • the grout according to the invention has, in the consolidated state, a sufficiently low hardness to allow its destruction by means of a hydrocureuse, while offering sufficient mechanical strength to to guarantee an effective mechanical protection of the pipe, in particular in case of movement of the ground.
  • the filling material according to the invention is a hydraulic slurry, which is liquid (or viscous, of sufficiently low viscosity to allow its injection) at room temperature.
  • the slurry is prepared by mixing its various constituents at room temperature. This preparation does not require any heavy installation: the mixture of constituents of the grout is carried out in a simple kneader, at room temperature; the grout is injected into the annular space by means of a usual pump.
  • the contact of the grout with the sheath and the pipe does not accelerate the setting of the grout (the latter being liquid at ambient temperature), so that it is possible to implement the method according to the invention in the case of traverses (and therefore sleeves) of great length (especially greater than 60 m).
  • the grout according to the invention has a curing time of 3 days and it reaches its final consolidated state only about 30 days.
  • the grout according to the invention In the consolidated state, the grout according to the invention is impervious to the charged waters brought by the surrounding ground, with which it can be in contact after a possible decomposition of the sheath.
  • the grout and the process according to the invention are inexpensive.
  • the grout according to the invention in the consolidated state, is a non-polluting and non-toxic material.
  • a slurry comprising, for 900 liters of water, 95 kilograms of blast furnace slag, between 10 and 11 kilograms of Portland clinker and 145 kilograms of bentonite.
  • a slurry consisting exclusively of water, blast furnace slag, Portland clinker and bentonite is used.
  • a sleeve having a diameter greater than or equal to 1.5 times the diameter of the pipe.
  • a sheath of 1200 mm in diameter is used.
  • a consolidated grout layer 200 mm thick is then obtained. The inventor has found with surprise that, despite its thickness, the consolidated grout layer has a sufficiently low electrical resistance to allow the establishment of effective cathodic protection of the pipe.
  • the grout is injected into the annular space by means of a breather having an upper surface end, connected to an injection pump of the grout, and a buried lower end s opening in the sheath, the breather being arranged such that its lower end opens at the bottom of a section of the sheath.
  • the filling material is injected into the upper part of a section of the sheath.
  • the breather is arranged such that the grout penetrates into the sheath in the lower part thereof, near the bottom of the sheath. This arrangement is particularly advantageous when the sheath contains residual water, which must be evacuated.
  • the inventor has indeed found, in the known techniques, a certain dilution of the filling material in the residual water, the extent of which varies according to the nature of the material, the conditions of its injection, the dimensional characteristics of the pipe and the sheath, the amount of residual water ...
  • This dilution could be due to bursting of the material out of the breather: the material pushed by the pump in the breather penetrates into the residual water by squirts and settles in the bottom of sheath. This contact with the residual water is quite violent (it is even more so if the injection speed is high), the material undergoes a light wash.
  • the material exiting the breather does not come into direct contact with the material already injected until the annular space is almost completely filled.
  • the injected grout first enters the residual water by mass, and pushes the latter as it is injected, without becoming diluted.
  • the lower end of the breather which extends at the bottom of the sleeve, is immersed in the grout already injected: the grout comes out of the breather in contact with the grout already injected, and not the residual water. Any risk of washing the grout is thus eliminated, and it is possible to provide high injection speeds.
  • the invention also relates to a method of installing and protecting a buried pipe, characterized by all or part of the characteristics mentioned above and below.
  • Figure 1 is a schematic top view of a buried pipe, some portions pass through structures and are therefore installed according to the invention.
  • the structures are schematized in projection.
  • Figure 2 is a view of the buried pipe of Figure 1 at the crossing of a road. A first part of the pipe and the sheath is seen in perspective; a second part of the pipe is shown in perspective and devoid of the sheath; a third part of the pipe is shown in perspective and devoid of sheath and consolidated grout; a fourth part of the pipe is seen in perspective and in longitudinal section.
  • Figure 3 shows the diagram of Pourbaix iron in the presence of water.
  • FIG. 1 represents a buried pipe 1 which, on its course, crosses a road 14, a rural road 101, a railway 102 and a rural road 105.
  • the pipe 1 Under the road 14, the pipe 1 is placed in a metal sheath 2, according to the method of the invention.
  • the pipe is placed in a metal sleeve 104.
  • the installation of the pipe under the rural roads 101 and 105 is done by digging a trench across the road and burying the driven directly into the ground without a sheath.
  • Figure 2 shows the pipe 1 to the right of the road 14, installed according to the method of the invention. According to this method, a sheath 2 is first of all arranged under the road 14.
  • the sheath 2 consists of a succession of cylindrical sheath sections made of steel, each section having a circular section of 1200 mm in internal diameter and a length of 6 m.
  • a working pit (not shown) on each side of the road.
  • a horizontal drilling machine (not shown) in one of the two pits, said pit, the other pit being called arrival pit.
  • Such a machine comprises in particular a guide rail, a thrust ring, a tube guide, worm and a drill head.
  • a first sleeve section is arranged on the guide rail and is fixed to the thrust ring; it is kept centered on said rail by the tube guide.
  • a driving collar is welded to the front of said sleeve section, in order to protect the latter and to ensure excavation of the ground to the outer diameter of the sleeve.
  • the drill head is placed inside the sleeve section at the drive collar.
  • a worm is arranged in the sleeve section. The cuttings torn off the ground by the drill head are evacuated by the worm to the pit. As the drilling progresses, the sheath section is pushed towards the arrival pit.
  • a second section of sleeve is placed in the extension of the first section and is welded thereto.
  • a second worm is arranged in the second section.
  • the drilling continues (by sequentially arranging the necessary number of sections of sheath and worm, depending on the length of the crossing to be made), until the first section opens into the arrival pit.
  • the sheath 2 thus created is emptied of the cuttings it contains and is carefully cleaned.
  • a breather 7, 8 is then arranged at each end of the sheath.
  • Each breather is a tube of 50 to 80 mm in diameter for example, PVC, polyethylene or other synthetic polymer material.
  • the end 15 of the sheath is the lowest point of said sheath, the end 16 corresponding to its highest point. It is therefore it is preferable to inject the grout in the annular space 3 by the breather 7.
  • the breather 7 is arranged to extend substantially vertically between the sheath 2, close to its end 15, and the surface of the natural ground 4.
  • a bore 26 is formed in the sheath at its end 15, in the upper part of said sheath, to receive the breather 7.
  • the lower end 21 of the breather 7 is introduced into this bore 26 and is positioned so that extend in the upper part of the sheath, so as not to hinder the installation of the pipe.
  • the fixing of the breather 7 in the sheath will be performed later.
  • the breather 8 is arranged to extend substantially vertically between the sheath 2, near its end 16, and the surface of the natural terrain.
  • a bore 27 is formed in the sheath, at its end 16, in the upper part of said sheath.
  • a cylindrical metal / plastic connector 28 is welded to the sheath opposite the bore 27. The weld is made carefully so as to obtain a tight connection between the sheath and the coupling. The lower end 22 of the breather 8 is then introduced into this fitting, and is attached thereto.
  • a metal pipe 1 is then inserted into the sleeve 2.
  • the pipe 1 is formed of a succession of pipe sections. Each section is a cylindrical tube of circular section, 12 to 15 m long and 800 mm in internal diameter.
  • Each tube is made of steel (a mixture of iron and carbon) and is covered (at the factory) with an outer protective coating made of polyethylene (or possibly polypropylene).
  • the polyethylene coating provides passive cathodic protection of the pipe. However, this coating is fragile and it is not uncommon that it is damaged punctually during the installation of the pipe or it deteriorates over time. In the absence of active cathodic protection of the pipe, the areas of the pipe without polyethylene coating eventually corrode, until they are pierced.
  • first pipe section With polyethylene centering collars 5, which will allow the centering and the 2.
  • Each collar comprises a ring 23, intended to be applied to the pipe section and to encircle it firmly, and pads 24 extending radially projecting from the ring, distributed all around the ring. - this.
  • the different collars 5 are distributed along the pipe section, being spaced 2 m for example. They are fixed to said section by clamping their ring.
  • the first section of pipe is put into the sheath from the pit.
  • the centering collars 5 carried by the section not only make it possible to keep the pipe section away from the sheath once the section has been put in place in the sheath, but also to avoid any scraping of the pipe section against the sheath (and therefore any deterioration of the polyethylene coating) during threading of said section into the sheath.
  • the pipe 1 is formed out of the excavation: a plurality of successive sections (welding, radiography, then application of a polyethylene strip) are assembled, as previously explained, until the pipe thus formed has a length greater than that of the sheath.
  • the pipe is then threaded into the sheath.
  • the breather 7, whose lower end 21 has previously been introduced into the bore 26 of the sheath, is then pushed down. Its lower end 21 is thus inserted into the annular space 3 and slid between the sheath and the pipe (on one side of said pipe), until it is positioned in the lower part of the sheath.
  • the breather 7 is then fixed to the sheath by any appropriate means (since this means does not involve any risk of damaging the pipe in the sheath or its polyethylene coating).
  • the piercing 26 is sealed by means of sealant so as to ensure a tight connection between the breather 7 and the sheath 2.
  • the annular space 3 separating the pipe 1 from the sheath 2 is closed.
  • a sealing ring 13 (respectively 12) bellows, rubber.
  • Each closure ring 13 has firstly a first portion whose diameter substantially corresponds to the outer diameter of the sleeve 2, which first portion is provided with a first clamping collar 18 (respectively 20) allowing the fasten firmly to the sheath.
  • the closure ring has, on the other hand, a second portion whose diameter substantially corresponds to the external diameter of the pipe 1, which second portion is provided with a second clamping collar 17 (19 respectively) making it possible to fix it firmly to the 1.
  • the closure ring finally comprises a third bellows portion of variable diameter, which connects the first and second portions.
  • the sealing ring 13 (respectively 12) provides a seal between the pipe and the sleeve at the longitudinal end 15 (16 respectively) of the latter.
  • a potential-measuring terminal 9 is installed on the surface, directly above the sleeve 2.
  • the terminal comprises a first pair of connectors comprising, on the one hand, a connector connected to a reference electrode (copper electrode) placed in the ground and, on the other hand, a connector connected to the pipe 1 by a conductive cable 10 fixed on said pipe by brazing.
  • the terminal 9 comprises a second pair of connectors comprising, on the one hand, a connector connected to a reference electrode and, on the other hand, a connector connected to the sleeve 2 by a conductive cable 11 fixed on said sleeve by brazing.
  • the first pair of connectors makes it possible to measure the potential of the pipe by means of a voltmeter; the second pair of connectors makes it possible to measure the potential of the sleeve by means of a voltmeter. These measures make it possible in particular to verify that there is no direct contact between the sleeve and the pipe. It should be noted that other potential measuring terminals (or ports) are arranged along the path of the pipe 1. They are placed in accessible places and / or in special points (bushings, delivery station , insulating fittings ...) and are, as far as possible, regularly distributed (approximately every 2 km) along the pipe.
  • a terminal 107 similar to the terminal 9 is placed in line with the sleeve 104, close to the railway line 102; terminals 106 and 108 are arranged near the rural roads 101 and 105.
  • the terminals 106 and 108 differ from the terminals 9 and 107 in that they comprise a single pair of connectors, to raise the electrical potential of the pipe. All these terminals make it possible to control the potential of driving over the entire route, with a view to ensuring the effectiveness of active cathodic protection implemented.
  • the lands initially excavated are backfilled to make the two working pits, so as to fill said pits.
  • the slurry according to the invention is prepared by mixing in a conventional mixer at room temperature water, a blast furnace slag, Portland clinker and bentonite. For 900 liters of water, 95 kg of blast furnace slag, 10 kg of Portland clinker and 145 kg of bentonite are added to the mixer. The quantities of water, blast furnace slag, Portland clinker and bentonite actually introduced into the mixer are calculated so as to obtain a volume of grout slightly greater than the volume formed by the annular space 3 and the breather 7 and 8 The order of introduction of these constituents is indifferent.
  • the mixture obtained in the kneader has a viscosity sufficiently low to allow its injection.
  • the grout is injected into the breather 7 by its upper end, by means of a usual pump. The injection continues until the annular space 3 is completely filled and the grout comes out of the upper end of the breather 8. Each breather is then closed at its upper end by a cover plate.
  • Line 1 is connected to a circuit 25 comprising a current rectifier 110 and a weir 111 (see FIG. 1) 3 which constitute a current draw-off station.
  • the rectifier 110 is connected to a mains power supply (low-voltage electrical line passing nearby).
  • the spillway is formed by a buried anodic metal mass: for example, a recovery railroad track or a ferrosilicon or graphite bar is used.
  • an electric current is generated.
  • the current flows in the ground according to current curves 112, passes through the conducting sheath 2 (in the form of electrons), then flows (in the form of ions) through the consolidated grout between the sheath and driving.
  • the filling station offers a large radius of action centered on the spillway 111.
  • the position of the withdrawal station is also chosen according to the nature of the soil, which must have a low electrical resistivity.
  • the spillway 111 is advantageously buried more than 50 m from the pipe and so as to extend orthogonally to said pipe. For a long pipe, it may be necessary to install several draw stations, spaced about 20 km.
  • FIG. 3 represents the iron Pourbaix diagram (pH / equilibrium potential of the reactions), which describes the various possible theoretical reactions between a metal and its ions in the presence of water. This diagram makes it possible to visualize three domains of situation of the metal, which depend on the pH of the surrounding solution and the electric potential of the iron:
  • a corrosion domain where the iron dissolves in the solution and forms soluble salts and hydroxides
  • a passivation domain where the iron is protected by a superficial film which isolates it from the solution.
  • the iron is thus protected from corrosion, provided however that the film could have formed in a uniform manner, that it remains adhered and that it does not undergo any mechanical aggression, - a field of immunity, where the iron remains in the metallic state
  • the steel pipe 1 has, when directly buried in the ground, a potential of between -200 mV and -500 mV, measured with a copper reference electrode (Cu / CuSO 4 ). It is therefore likely to corrode when its polyethylene coating has a defect and the soil pH is less than 6 (acid soil, very common especially in agricultural areas or industrial areas, where runoff water is acidified by the treatments imposed on crops or industrial waste).
  • the pipe 1 is in contact with the consolidated grout 6.
  • the latter having a basic pH (between 10 and 12), the conditions are met for the pipe to be passivated. Even before the introduction of active cathodic protection, the mere presence of grout thus reinforces the protection of the pipe by placing it in its passivation range.
  • Energizing the rectifier 111 reduces the potential of the pipe to a value below -900 mV, generally of the order of -1200 mV.
  • the conduct is then placed in its field of immunity. It is totally protected from corrosion, in the range of action of the filling station and including inside the sleeves 2 and 104.
  • the invention may be subject to numerous variants with respect to the embodiment described above. and shown in the accompanying figures.
  • the invention also applies to a curved sheath (the pipe is also), the latter being implemented by means of a directional drilling machine.
  • the dimensions provided for the pipe and the sleeve illustrated are not limiting.
  • the invention applies to any pipe for transporting water, gas, oil, etc., whose internal diameter generally varies between 100 mm and 1000 mm, the sleeves used having diameters ranging from 130 mm to 2000 mm. .
  • the active cathodic protection can be achieved by means of a sacrificial anode, aluminum, magnesium or zinc.
  • the anode is buried in the ground and is connected to the pipe by a conductive cable.
  • a control terminal (or key fob) installed at the surface is preferably interposed between the sacrificial anode and the pipe. This method is preferably reserved for pipes of short length (for example 500 m).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

The invention relates to a method for laying and protecting an underground metal pipe used to carry fluid, in which: the pipe (1) is placed in a metal sleeve (2); the annular space (3) separating the pipe from the sleeve is closed off using a plugging ring (12, 13) at each longitudinal end of the sleeve; the annular space is filled with a filler material. The method is characterized in that: use is made, by way of filler material, of a water-based slurry (6) comprising water and, per 900 litres of water, 85 to 105 kilograms of a blast furnace slag, 8 to 13 kilograms of Portland clinker and 120 to 160 kilograms of bentonite; and the pipe is connected to an electric circuit comprising a cathodic protection current take-off or a sacrificial anode.

Description

PROCÉDÉ D'INSTALLATION ET DE PROTECTION D'UNE CONDUITE ENTERRÉE METHOD FOR INSTALLING AND PROTECTING AN INFRINGED DRIVING
L'invention concerne un procédé d'installation et de protection d'une conduite enterrée de transport de fluide (liquide ou gaz). L'invention s'applique plus particulièrement aux conduites métalliques, notamment aux conduites en acier, et, de façon plus générale, aux conduites réalisées en un matériau électriquement conducteur.The invention relates to a method for installing and protecting a buried fluid transport line (liquid or gas). The invention applies more particularly to metal pipes, in particular to steel pipes, and, more generally, to pipes made of an electrically conductive material.
Une conduite métallique enterrée est susceptible d'être soumise à diverses formes d'agressions, parmi lesquelles des agressions mécaniques (contraintes exercées sur le sol et transmises par le terrain environnant la conduite, instabilité du terrain...) et des agressions chimiques ou électrolytiques (corrosion).A buried metallic pipe is likely to be subjected to various forms of aggressions, among which mechanical aggression (stresses exerted on the ground and transmitted by the ground surrounding the pipe, instability of the ground ...) and chemical or electrolytic aggression (corrosion).
A la traversée d'un obstacle tel qu'une route, une voie ferrée, une rivière ou une zone habitée, la conduite est placée dans un fourreau, pour des raisons de facilité d'installation. En effet, contrairement à la conduite, le fourreau peut être posé par forage, sans avoir à creuser une tranchée. La conduite est ensuite aisément enfilée dans le fourreau. Cette technique s'impose donc à la traversée d'une rivière. Elle est également avantageuse pour des traversées de zones habitées ou de routes et voies ferrées, puisqu'elle n'entraîne aucune démolition ni aucune interruption de la circulation (la pose du fourreau s'effectue ainsi à un coût moindre). De surcroît, le fourreau constitue une protection mécanique de la conduite, appréciable lorsque la stabilité du terrain n'est pas garantie et/ou que la conduite est susceptible de subir d'importantes contraintes mécaniques.At the crossing of an obstacle such as a road, a railway, a river or an inhabited area, the pipe is placed in a sheath, for reasons of ease of installation. Indeed, unlike driving, the sheath can be placed by drilling, without having to dig a trench. The pipe is then easily threaded into the sheath. This technique is therefore essential when crossing a river. It is also advantageous for crossings of inhabited areas or roads and railways, since it does not involve any demolition or interruption of traffic (the installation of the sheath is thus done at a lower cost). In addition, the sheath is a mechanical protection of the pipe, appreciable when the stability of the ground is not guaranteed and / or that the pipe is likely to undergo significant mechanical stress.
Il existe des fourreaux en béton et des fourreaux métalliques. Bien plus onéreux, les fourreaux en béton sont également plus difficiles à mettre en œuvre que les fourreaux métalliques, en raison de leur conception : un fourreau en béton est formé d'une succession de tronçons emboîtés les uns dans les autres, qui ont tendance à se désolidariser ou à dévier de la trajectoire prévue lors de l'installation par fonçage du fourreau sous terre. En outre, les colliers de centrage utilisés pour caler la conduite dans le fourreau sont souvent détériorés par l'état de surface rugueux du béton lorsque la conduite est enfilée dans le fourreau. Cette dernière opération s'avère de plus délicate lorsque les tronçons en béton ne définissent pas, en fond de fourreau, un fil d'eau rectiligne et régulier (les structures d'emboîtement des tronçons formant une nervure à la jonction de deux tronçons successifs). Pour toutes ces raisons, les fourreaux métalliques sont préférés aux fourreaux en béton. Mais l'utilisation d'un fourreau métallique oblige à prendre des mesures en vue d'empêcher tout contact direct entre le fourreau et la conduite (un tel contact entraînant une corrosion rapide de la conduite) et de limiter les agressions chimiques ou électrolytiques subies par la conduite à l'intérieur du fourreau. Il est ainsi recommandé de fermer l'espace annulaire séparant la conduite et le fourreau et de remplir cet espace par un matériau de remplissage.There are concrete sheaths and metal sheaths. Although much more expensive, concrete sheaths are also more difficult to implement than metal sheaths, because of their design: a concrete sheath is formed of a succession of nested sections, which tend to to dissociate or to deviate from the planned trajectory during the installation by sinking the sleeve underground. In addition, the centering collars used to wedge the pipe in the sheath are often deteriorated by the rough surface condition of the concrete when the pipe is threaded into the sheath. This The last operation proves more difficult when the concrete sections do not define, at the bottom of the sheath, a rectilinear and regular water thread (the interlocking structures of the sections forming a rib at the junction of two successive sections). For all these reasons, metal sheaths are preferred over concrete sheaths. But the use of a metal sheath makes it necessary to take measures to prevent any direct contact between the sleeve and the pipe (such contact causing rapid corrosion of the pipe) and to limit the chemical or electrolytic attacks suffered by driving inside the sheath. It is therefore recommended to close the annular space separating the pipe and the sheath and to fill this space with a filling material.
US 4469 469 rappelle les effets néfastes de l'humidité ou de l'eau s 'infiltrant dans l'espace annulaire. Ce document enseigne tout d'abord d'introduire, dans l'espace annulaire, une substance apte à se mêler à l'eau résiduelle et à en neutraliser les effets, puis d'injecter un matériau de remplissage résistant à la corrosion, apte à chasser l'eau ainsi traitée et à combler l'espace annulaire de façon à empêcher toute nouvelle infiltration ou condensation d'eau. Le matériau de remplissage est une cire à base de pétrole ou de bitume.US 4469469 recalls the adverse effects of moisture or water infiltrating into the annular space. This document first teaches introducing, in the annular space, a substance capable of mixing with the residual water and neutralizing the effects thereof, and then injecting a corrosion-resistant filling material suitable for remove the water thus treated and fill the annular space so as to prevent further infiltration or condensation of water. The filling material is a wax based on petroleum or bitumen.
Une telle cire présente de nombreux inconvénients : - elle résulte d'une ressource fossile (pétrole) onéreuse et épuisable ;Such wax has many disadvantages: - it results from a fossil resource (oil) expensive and exhaustible;
- elle constitue un matériau polluant ;- it constitutes a polluting material;
- sa mise en œuvre est très contraignante ; les cires à base de pétrole ou de bitume ne sont liquides qu'à haute température (au moins 100- 1300C) et il est donc nécessaire de prévoir une installation lourde sur le chantier pour préparer la cire avant son injection ;- its implementation is very restrictive; the waxes based on petroleum or bitumen are liquid only at high temperature (at least 100-130 ° C.) and it is therefore necessary to provide a heavy installation on site to prepare the wax before injection;
- les opérations d'injection ne sont pas sans risque compte tenu de la température d'injection et de la toxicité de la cire ; pour toutes les raisons précédentes, le procédé de US 4469 469 s'avère particulièrement onéreux ; - la cire chaude ayant tendance à se figer rapidement au contact du fourreau et de la conduite froids, le procédé de US 4469 469 est réservé à des fourreaux de longueur inférieure à 60 mètres ;- the injection operations are not without risk considering the injection temperature and the toxicity of the wax; for all the above reasons, the process of US 4469 469 proves to be particularly expensive; - The hot wax tends to congeal quickly in contact with the sheath and cold pipe, the process of US 4469 469 is reserved for sleeves of less than 60 meters;
- il existe principalement deux façons, qui peuvent être additionnées, de lutter contre la corrosion électrolytique d'une conduite métallique : la mise en place d'une protection cathodique passive, qui consiste à empêcher la formation de courants électriques à la surface de la conduite, et la mise en place d'une protection cathodique active (qui jusqu'ici n'a été utilisée que pour des portions de conduite enterrées directement dans le sol, sans fourreau), qui consiste à transformer la conduite en une cathode en vue d'empêcher son oxydation, soit en la reliant à une anode sacrificielle, soit par soutirage de courant. Les cires à base de bitume ou de pétrole sont des matériaux électriquement non conducteurs. Une fois durcie, la cire injectée dans le fourreau isole électriquement la conduite du sol environnant et du fourreau, réalisant ainsi une protection cathodique passive de la conduite. Cette propriété de la cire peut a priori paraître avantageuse ; mais il convient de garder à l'esprit qu'elle est incompatible avec la mise en place d'une protection cathodique active de la conduite, généralement plus fiable et plus efficace qu'une simple protection passive.- there are two main ways, which can be added, to fight against the electrolytic corrosion of a metal pipe: the implementation of a passive cathodic protection, which consists in preventing the formation of electric currents on the surface of the pipe , and the establishment of an active cathodic protection (which until now has been used only for portions of pipe buried directly in the ground, without sheath), which consists in transforming the pipe into a cathode for the purpose of prevent its oxidation, either by connecting it to a sacrificial anode or by drawing off current. Bitumen or petroleum-based waxes are electrically non-conductive materials. Once hardened, the wax injected into the sheath electrically isolates the pipe from the surrounding soil and the sheath, thereby providing passive cathodic protection of the pipe. This property of the wax may seem a priori advantageous; but it should be borne in mind that it is incompatible with the introduction of active cathodic protection of conduct, which is generally more reliable and more effective than passive protection.
US 4 932 810 préconise d'injecter un gaz inerte, tel que l'argon, dans l'espace annulaire en vue d'une part d'éliminer toute humidité dans l'espace annulaire et d'autre part de réaliser une barrière électrique entre la conduite et le fourreau. L'injection de ce gaz poursuit donc un objectif contraire à la mise en place d'une protection cathodique active de la conduite. De plus, le gaz injecté à titre de "matériau" de remplissage de l'espace annulaire ne procure aucun support ni aucune protection mécanique à la conduite ; et il n'est pas exclu que le fourreau entre en contact électrique avec la conduite suite à une déformation du fourreau sous l'effet de contraintes mécaniques ou à un déplacement du fourreau et de la conduite provoqué par un mouvement du terrain environnant. Enfin, la mise en œuvre du gaz oblige à utiliser des dispositifs complexes pour fermer de façon hermétique l'espace annulaire, ce qui grève considérablement les coûts de réalisation. JP 2000120923 enseigne d'une part de remplir l'espace annulaire au moyen d'un mortier de ciment en vue d'assurer une protection mécanique et une isolation électrique de la conduite, et d'autre part de revêtir la surface interne du fourreau par une couche conductrice (feuille métallique) en vue de dévier les éventuels courants souterrains susceptibles d'atteindre le fourreau et de pallier ainsi tout défaut dans l'isolation électrique réalisée par le mortier. Là encore, et de façon usuelle dans le cas d'une conduite protégée par un fourreau, l'objectif poursuivi est contraire à la mise en place d'une protection cathodique active. En outre, ce procédé d'installation et de protection n'est pas réversible : le mortier, une fois durci, ne peut être retiré ou détruit sans détériorer la conduite, de sorte qu'il est impossible, en cas de problèmes, de procéder à des opérations d'inspection ou de réparation de la conduite dans le fourreau.US Pat. No. 4,932,810 recommends injecting an inert gas, such as argon, into the annular space in order in part to eliminate any moisture in the annular space and, on the other hand, to provide an electrical barrier between the pipe and the sheath. The injection of this gas thus pursues an objective contrary to the establishment of active cathodic protection of the pipe. In addition, the gas injected as "material" for filling the annular space provides no support or mechanical protection to the pipe; and it is not excluded that the sheath comes into electrical contact with the pipe due to deformation of the sheath under the effect of mechanical stresses or displacement of the sheath and pipe caused by a movement of the surrounding terrain. Finally, the implementation of the gas requires the use of complex devices to hermetically close the annular space, which significantly affect the costs of implementation. JP 2000120923 teaches on the one hand to fill the annular space by means of a cement mortar in order to provide mechanical protection and electrical insulation of the pipe, and secondly to coat the inner surface of the sleeve by a conductive layer (metal foil) to deflect any underground currents likely to reach the sleeve and thus overcome any defect in the electrical insulation made by the mortar. Again, and usually in the case of a pipe protected by a sleeve, the objective is contrary to the establishment of active cathodic protection. In addition, this method of installation and protection is not reversible: the mortar, once cured, can not be removed or destroyed without damaging the pipe, so that it is impossible, in case of problems, to proceed to inspection or repair operations of the pipe in the sheath.
L'invention vise à pallier ces inconvénients, en proposant un procédé d'installation et de protection d'une conduite enterrée utilisant un matériau de remplissage compatible avec la mise en place d'une protection cathodique active de la conduite.The invention aims to overcome these disadvantages, by proposing a method of installing and protecting a buried pipe using a filling material compatible with the establishment of active cathodic protection of the pipe.
L'invention vise également à proposer un procédé facile à mettre en œuvre, au moyen d'une installation légère et très simple. Un objectif de l'invention est de proposer un matériau de remplissage qui puisse présenter un état visqueux à liquide à température ambiante, en vue de son injection dans l'espace annulaire, puis un état consolidé après injection, apte à assurer le calage et la stabilité de la conduite dans le fourreau. Un autre objectif de l'invention est de proposer un matériau de remplissage qui puisse être manipulé par un opérateur sans protection particulière, à l'exception d'un éventuel masque. Un autre objectif de l'invention est de fournir un matériau de remplissage qui n'ait pas tendance à être laver ou à se diluer dans une eau résiduelle éventuellement présente dans le fourreau avant injection du matériau.The invention also aims to propose a process that is easy to implement by means of a light and very simple installation. An object of the invention is to propose a filler material which can have a viscous liquid-like state at ambient temperature, with a view to its injection into the annular space, then a consolidated state after injection, capable of ensuring the setting and stability of the pipe in the sheath. Another object of the invention is to provide a filling material that can be handled by an operator without special protection, with the exception of a possible mask. Another object of the invention is to provide a filling material which does not tend to be washed or to be diluted in a residual water possibly present in the sleeve before injection of the material.
Un autre objectif de l'invention est de fournir un matériau de remplissage aqueux, qui développe une résurgence d'eau négligeable lors de sa consolidation et présente donc un volume sensiblement identique à l'état liquide et à l'état consolidé. Un autre objectif de l'invention est de proposer un matériau de remplissage non polluant à l'état consolidé, et dont la composition est proche des éléments géologiques que l'on peut rencontrer dans les sols.Another object of the invention is to provide an aqueous filling material, which develops a negligible resurgence of water during its consolidation and therefore has a volume substantially identical to the liquid state and the consolidated state. Another object of the invention is to provide a non-polluting filling material in the consolidated state, and whose composition is close to the geological elements that can be encountered in the soil.
Un autre objectif de l'invention est de fournir un matériau de remplissage peu onéreux, et notamment bien moins onéreux que les cires à base de pétrole ou de bitume.Another object of the invention is to provide an inexpensive filling material, and in particular much less expensive than waxes based on petroleum or bitumen.
Un autre objectif de l'invention est de proposer un procédé d'installation et de protection réversible, en fournissant un matériau de remplissage qui, à l'état consolidé, peut être détruit ou retiré de l'espace annulaire sans risque de détérioration de la conduite.Another object of the invention is to provide a method of installation and reversible protection, by providing a filling material which, in the consolidated state, can be destroyed or removed from the annular space without risk of deterioration of the conduct.
L'invention concerne un procédé d'installation et de protection d'une conduite enterrée de transport de fluide, ladite conduite étant en un matériau électriquement conducteur. Selon ce procédé : on place la conduite dans un fourreau en un matériau électriquement conducteur (fourreau métallique par exemple, notamment en acier), qui suit une direction longitudinale sensiblement parallèle à une direction longitudinale de la conduite, la conduite et le fourreau délimitant entre eux un espace annulaire qui s'étend principalement selon ces directions longitudinales ; on ferme l'espace annulaire à chaque extrémité longitudinale du fourreau au moyen d'une bague dite bague d'obturation ; on remplit l'espace annulaire par un matériau de remplissage.The invention relates to a method for installing and protecting a buried fluid transport pipe, said pipe being made of an electrically conductive material. According to this method: the pipe is placed in a sheath of an electrically conductive material (metal sheath for example, in particular steel), which follows a longitudinal direction substantially parallel to a longitudinal direction of the pipe, the pipe and the sheath delimiting between them an annular space that extends mainly along these longitudinal directions; the annular space is closed at each longitudinal end of the sleeve by means of a so-called closure ring; the annular space is filled with a filling material.
Le procédé selon l'invention est caractérisé en ce que :The method according to the invention is characterized in that:
- on utilise, à titre de matériau de remplissage, un coulis hydraulique comprenant de l'eau et, pour 900 litres d'eau, 85 à 105 kilogrammes d'un laitier de haut fourneau, 8 à 13 kilogrammes de clinker Portland et 120 à 160 kilogrammes de bentonite,- a hydraulic grout containing water is used as filler and, for 900 liters of water, 85 to 105 kilograms of a blast furnace slag, 8 to 13 kilograms of Portland clinker and 120 to 160 kilograms of bentonite,
- on relie la conduite à un circuit électrique comprenant un poste de soutirage de courant ou une anode sacrificielle, en vue de la mise en place d'une protection cathodique active de la conduite.the pipe is connected to an electrical circuit comprising a current draw-off station or a sacrificial anode, with a view to setting up an active cathodic protection of the pipe.
On entend par « coulis » une suspension comprenant d'une part une phase liquide aqueuse et d'autre part une phase solide granulaire en suspension dans la phase liquide, la phase solide étant constituée essentiellement de particules fines ayant des diamètres inférieurs ou égaux à lOOμm, contrairement à un « mortier » qui comprend des particules plus grosses -formant une charge- telles que des sables."Slurry" is understood to mean a slurry comprising on the one hand an aqueous liquid phase and, on the other hand, a granular solid phase suspended in the liquid phase, the solid phase consisting essentially of fine particles having diameters less than or equal to 100 μm, unlike a "mortar" which comprises larger particles -forming a charge- such as sands.
Alors que l'ensemble des techniques antérieures connues vise à isoler électriquement la conduite du fourreau, l'inventeur a souhaité mettre en place une protection cathodique active de la conduite dans le fourreau. Contrairement à tous les matériaux de remplissage connus (et notamment au mortier de JP 2000120923), le coulis selon l'invention reste électriquement conducteur après consolidation. Et c'est au prix de mois d'essais et d'expérimentations que l'inventeur a pu mettre au point un coulis qui, contre toute attente, présente l'ensemble des caractéristiques suivantes, dont certaines paraissaient a priori incompatibles :While all known prior art aims to electrically isolate the pipe sleeve, the inventor wished to implement active cathodic protection of the pipe in the sheath. Unlike all the known filling materials (and in particular the mortar of JP 2000120923), the grout according to the invention remains electrically conductive after consolidation. And it is at the cost of months of trials and experiments that the inventor was able to develop a grout that, against all odds, has all of the following characteristics, some of which seemed a priori incompatible:
- le coulis peut se consolider de façon à offrir une protection mécanique de la conduite ; il est stable et pérenne ; il est notamment apte à maintenir les terres environnantes après une décomposition lente du fourreau ;- Grout can be consolidated to provide mechanical protection of the pipe; it is stable and durable; it is particularly able to maintain the surrounding lands after a slow decomposition of the sheath;
- à l'état consolidé, le coulis réalise un électrolyte permettant de mettre en œuvre une protection cathodique active de la conduite. En particulier, le coulis présente un pH basique. Par ailleurs, de façon surprenante, le coulis consolidé présente une résistivité électrique faible, ne s'oppose pas à la circulation de courants électrolytiques et permet notamment des échanges d'ions, malgré son état solide. En fait, le mélange du laitier de haut fourneau, du clinker portland et de la bentonite conduit, par synergie, à l'obtention d'une structure solide humide, formant un réseau microscopique stable et résistant dans lequel l'eau ajoutée au mélange est emprisonnée ; - la consolidation du coulis s'effectue à volume constant (ou quasiment constant), sans résurgence d'eau (ou avec une résurgence très faible et négligeable) ni risque d'essorage.in the consolidated state, the grout produces an electrolyte making it possible to implement active cathodic protection of the pipe. In particular, the slurry has a basic pH. Furthermore, surprisingly, the consolidated slurry has a low electrical resistivity, does not oppose the flow of electrolytic currents and allows in particular ion exchange, despite its solid state. In fact, mixing blast furnace slag, portland clinker and bentonite leads, by synergy, to obtaining a moist solid structure, forming a stable and resistant microscopic network in which the water added to the mixture is imprisoned; - The consolidation of the grout is done at constant volume (or almost constant), without resurgence of water (or with a very small and negligible resurgence) or risk of spinning.
De surcroît, le coulis selon l'invention présente, à l'état consolidé, une dureté suffisamment faible pour permettre sa destruction au moyen d'une hydrocureuse, tout en offrant une résistance mécanique suffisante pour garantir une protection mécanique efficace de la conduite, notamment en cas de mouvement du terrain.In addition, the grout according to the invention has, in the consolidated state, a sufficiently low hardness to allow its destruction by means of a hydrocureuse, while offering sufficient mechanical strength to to guarantee an effective mechanical protection of the pipe, in particular in case of movement of the ground.
Le matériau de remplissage selon l'invention est un coulis hydraulique, qui est liquide (ou visqueux, de viscosité suffisamment faible pour permettre son injection) à température ambiante. Avantageusement et selon l'invention, on prépare donc le coulis en mélangeant ses divers constituants à température ambiante. Cette préparation ne nécessite aucune installation lourde : le mélange des constituants du coulis s'effectue dans un simple malaxeur, à température ambiante ; le coulis est injecté dans l'espace annulaire au moyen d'une pompe usuelle.The filling material according to the invention is a hydraulic slurry, which is liquid (or viscous, of sufficiently low viscosity to allow its injection) at room temperature. Advantageously and according to the invention, the slurry is prepared by mixing its various constituents at room temperature. This preparation does not require any heavy installation: the mixture of constituents of the grout is carried out in a simple kneader, at room temperature; the grout is injected into the annular space by means of a usual pump.
Le contact du coulis avec le fourreau et la conduite n'accélère pas la prise du coulis (ce dernier étant liquide à température ambiante), de sorte qu'il est possible de mettre en œuvre le procédé selon l'invention dans le cas de traversées (et donc de fourreaux) de grande longueur (notamment supérieure à 60 m). A noter que le coulis selon l'invention présente un temps de prise de l'ordre de 3 jours et qu'il n'atteint son état consolidé final qu'à 30 jours environ.The contact of the grout with the sheath and the pipe does not accelerate the setting of the grout (the latter being liquid at ambient temperature), so that it is possible to implement the method according to the invention in the case of traverses (and therefore sleeves) of great length (especially greater than 60 m). Note that the grout according to the invention has a curing time of 3 days and it reaches its final consolidated state only about 30 days.
A l'état consolidé, le coulis selon l'invention est imperméable aux eaux chargées apportées par le terrain environnant, avec lesquelles il peut être en contact après une éventuelle décomposition du fourreau. Le coulis et le procédé selon l'invention sont peu onéreux. En outre, à l'état consolidé, le coulis selon l'invention est un matériau non polluant et non toxique.In the consolidated state, the grout according to the invention is impervious to the charged waters brought by the surrounding ground, with which it can be in contact after a possible decomposition of the sheath. The grout and the process according to the invention are inexpensive. In addition, in the consolidated state, the grout according to the invention is a non-polluting and non-toxic material.
Avantageusement et selon l'invention, dans une version préférée, on utilise un coulis comprenant, pour 900 litres d'eau, 95 kilogrammes de laitier de haut fourneau, entre 10 et 11 kilogrammes de clinker Portland et 145 kilogrammes de bentonite.Advantageously and according to the invention, in a preferred version, use is made of a slurry comprising, for 900 liters of water, 95 kilograms of blast furnace slag, between 10 and 11 kilograms of Portland clinker and 145 kilograms of bentonite.
Avantageusement et selon l'invention, on utilise un coulis exclusivement constitué d'eau, de laitier de haut fourneau, de clinker Portland et de bentonite. Avantageusement et selon l'invention, on utilise un fourreau présentant un diamètre supérieur ou égal à 1,5 fois le diamètre de la conduite. Par exemple, pour une conduite de 800 mm de diamètre, on utilise un fourreau de 1200 mm de diamètre. On obtient alors une couche de coulis consolidé de 200 mm d'épaisseur. L'inventeur a constaté avec surprise que, malgré son épaisseur, la couche de coulis consolidé présente une résistance électrique suffisamment faible pour permettre la mise en place d'une protection cathodique active efficace de la conduite.Advantageously and according to the invention, a slurry consisting exclusively of water, blast furnace slag, Portland clinker and bentonite is used. Advantageously and according to the invention, use is made of a sleeve having a diameter greater than or equal to 1.5 times the diameter of the pipe. By for example, for a pipe of 800 mm in diameter, a sheath of 1200 mm in diameter is used. A consolidated grout layer 200 mm thick is then obtained. The inventor has found with surprise that, despite its thickness, the consolidated grout layer has a sufficiently low electrical resistance to allow the establishment of effective cathodic protection of the pipe.
Avantageusement et selon l'invention, on injecte le coulis dans l'espace annulaire au moyen d'un reniflard présentant une extrémité supérieure en surface, reliée à une pompe d'injection du coulis, et une extrémité inférieure enfouie s Ouvrant dans le fourreau, le reniflard étant agencé de telle sorte que son extrémité inférieure s'ouvre en partie inférieure d'une section du fourreau. Dans les techniques antérieures connues, le matériau de remplissage est injecté en partie supérieure d'une section du fourreau. Selon l'invention, le reniflard est agencé de telle sorte que le coulis pénètre dans le fourreau en partie inférieure de celui-ci, à proximité du fond du fourreau. Cet agencement est particulièrement avantageux lorsque le fourreau contient de l'eau résiduelle, qu'il convient d'évacuer. L'inventeur a en effet constaté, dans les techniques connues, une certaine dilution du matériau de remplissage dans l'eau résiduelle, dilution dont l'importance varie selon la nature du matériau, les conditions de son injection, les caractéristiques dimensionnelles de la conduite et du fourreau, la quantité d'eau résiduelle... L'inventeur a déterminé que cette dilution pouvait être due à un éclatement du matériau au sortir du reniflard : le matériau poussé par la pompe dans le reniflard pénètre dans l'eau résiduelle par giclées et se dépose en fond de fourreau. Ce contact avec l'eau résiduelle étant assez violent (il l'est d'autant plus si la vitesse d'injection est élevée), le matériau subit un léger lavage. Le matériau sortant du reniflard n'entre en contact direct avec le matériau déjà injecté que lorsque l'espace annulaire est quasiment totalement rempli. A l'inverse, lorsque l'extrémité inférieure du reniflard est agencée, selon l'invention, en partie inférieure du fourreau, dans l'eau résiduelle éventuellement présente, le coulis injecté pénètre tout d'abord en masse dans l'eau résiduelle, et pousse cette dernière au fur et à mesure de son injection, sans se diluer. Quelques minutes voire quelques secondes seulement après le début de l'injection, l'extrémité inférieure du reniflard, qui s'étend en fond de fourreau, se trouve plongée dans le coulis déjà injecté : le coulis sort du reniflard au contact du coulis déjà injecté, et non de l'eau résiduelle. Tout risque de lavage du coulis est ainsi écarté, et il possible de prévoir des vitesses d'injection élevées.Advantageously and according to the invention, the grout is injected into the annular space by means of a breather having an upper surface end, connected to an injection pump of the grout, and a buried lower end s opening in the sheath, the breather being arranged such that its lower end opens at the bottom of a section of the sheath. In known prior art, the filling material is injected into the upper part of a section of the sheath. According to the invention, the breather is arranged such that the grout penetrates into the sheath in the lower part thereof, near the bottom of the sheath. This arrangement is particularly advantageous when the sheath contains residual water, which must be evacuated. The inventor has indeed found, in the known techniques, a certain dilution of the filling material in the residual water, the extent of which varies according to the nature of the material, the conditions of its injection, the dimensional characteristics of the pipe and the sheath, the amount of residual water ... The inventor determined that this dilution could be due to bursting of the material out of the breather: the material pushed by the pump in the breather penetrates into the residual water by squirts and settles in the bottom of sheath. This contact with the residual water is quite violent (it is even more so if the injection speed is high), the material undergoes a light wash. The material exiting the breather does not come into direct contact with the material already injected until the annular space is almost completely filled. Conversely, when the lower end of the breather is arranged, according to the invention, in the lower part of the sleeve, in the residual water that may be present, the injected grout first enters the residual water by mass, and pushes the latter as it is injected, without becoming diluted. A few minutes or even a few seconds only after the start of the injection, the lower end of the breather, which extends at the bottom of the sleeve, is immersed in the grout already injected: the grout comes out of the breather in contact with the grout already injected, and not the residual water. Any risk of washing the grout is thus eliminated, and it is possible to provide high injection speeds.
L'invention concerne également un procédé d'installation et de protection d'une conduite enterrée, caractérisé par tout ou partie des caractéristiques mentionnées ci-dessus et ci-après.The invention also relates to a method of installing and protecting a buried pipe, characterized by all or part of the characteristics mentioned above and below.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, qui se réfère aux figures annexées représentant un mode de réalisation préférentiel de l'invention, donné uniquement à titre d'exemple non limitatif.Other objects, features and advantages of the invention will appear on reading the following description, which refers to the appended figures representing a preferred embodiment of the invention, given solely by way of non-limiting example.
La figure 1 est une vue de dessus schématique d'une conduite enterrée, dont certaines portions traversent des ouvrages d'art et sont donc installées selon l'invention. Les ouvrages d'art sont schématisés en projection.Figure 1 is a schematic top view of a buried pipe, some portions pass through structures and are therefore installed according to the invention. The structures are schematized in projection.
La figure 2 est une vue de la conduite enterrée de la figure 1 à la traversée d'une route. Une première partie de la conduite et du fourreau est vue en perspective ; une deuxième partie de la conduite est représentée en perspective et dépourvue du fourreau ; une troisième partie de la conduite est représentée en perspective et dépourvue du fourreau et du coulis consolidé ; une quatrième partie de la conduite est vue en perspective et en coupe longitudinale.Figure 2 is a view of the buried pipe of Figure 1 at the crossing of a road. A first part of the pipe and the sheath is seen in perspective; a second part of the pipe is shown in perspective and devoid of the sheath; a third part of the pipe is shown in perspective and devoid of sheath and consolidated grout; a fourth part of the pipe is seen in perspective and in longitudinal section.
La figure 3 représente le diagramme de Pourbaix du fer en présence d'eau.Figure 3 shows the diagram of Pourbaix iron in the presence of water.
La figure 1 représente une conduite enterrée 1 qui, sur son parcours, traverse une route 14, un chemin rural 101, une voie ferrée 102 et un chemin rural 105. Sous la route 14, la conduite 1 est placée dans un fourreau métallique 2, suivant le procédé de l'invention. De même, sous la voie ferrée 102, la conduite est placée dans un fourreau métallique 104. En revanche, l'installation de la conduite sous les chemins ruraux 101 et 105 s'effectue en creusant une tranchée à travers le chemin et en enterrant la conduite directement dans le sol, sans fourreau. La figure 2 représente la conduite 1 au droit de la route 14, installée selon le procédé de l'invention. Selon ce procédé, on agence tout d'abord un fourreau 2 sous la route 14. Le fourreau 2 est constitué d'une succession de tronçons de fourreau cylindriques, en acier, chaque tronçon présentant une section circulaire de 1200 mm de diamètre interne et une longueur de 6 m. Pour mettre en place le fourreau, on creuse tout d'abord, dans le terrain 4, une fosse de travail (non représentée) de chaque côté de la route. On dispose une machine de forage horizontal (non représentée) dans l'une des deux fosses, dite fosse de départ, l'autre fosse étant dite fosse d'arrivée. Une telle machine comprend notamment un rail de guidage, une couronne de poussée, un guide tube, des vis sans fin et une tête de forage. Un premier tronçon de fourreau est agencé sur le rail de guidage et est fixé à la couronne de poussée ; il est maintenu centré sur ledit rail par le guide tube. Un collier d'attaque est soudé à l'avant dudit tronçon de fourreau, en vue de protéger ce dernier et d'assurer une excavation du terrain au diamètre extérieur du fourreau. La tête de forage est placée à l'intérieur du tronçon de fourreau, au niveau du collier d'attaque. Une vis sans fin est agencée dans le tronçon de fourreau. Les déblais arrachés au terrain par la tête de forage sont évacués par la vis sans fin jusqu'à la fosse de départ. Au fur et à mesure du forage, le tronçon de fourreau est poussé en direction de la fosse d'arrivée. Lorsque le premier tronçon de fourreau est presque totalement enfoncé sous terre, un deuxième tronçon de fourreau est placé dans le prolongement du premier tronçon et est soudé à celui-ci. Une deuxième vis sans fin est agencée dans le deuxième tronçon. Le forage se poursuit (en agençant successivement le nombre nécessaire de tronçons de fourreau et de vis sans fin, selon la longueur de la traversée à réaliser), jusqu'à ce que le premier tronçon débouche dans la fosse d'arrivée. Le fourreau 2 ainsi créé est vidé des déblais qu'il contient et est soigneusement nettoyé.FIG. 1 represents a buried pipe 1 which, on its course, crosses a road 14, a rural road 101, a railway 102 and a rural road 105. Under the road 14, the pipe 1 is placed in a metal sheath 2, according to the method of the invention. Similarly, under the track 102, the pipe is placed in a metal sleeve 104. In contrast, the installation of the pipe under the rural roads 101 and 105 is done by digging a trench across the road and burying the driven directly into the ground without a sheath. Figure 2 shows the pipe 1 to the right of the road 14, installed according to the method of the invention. According to this method, a sheath 2 is first of all arranged under the road 14. The sheath 2 consists of a succession of cylindrical sheath sections made of steel, each section having a circular section of 1200 mm in internal diameter and a length of 6 m. To set up the sheath, one dig first, in the ground 4, a working pit (not shown) on each side of the road. There is a horizontal drilling machine (not shown) in one of the two pits, said pit, the other pit being called arrival pit. Such a machine comprises in particular a guide rail, a thrust ring, a tube guide, worm and a drill head. A first sleeve section is arranged on the guide rail and is fixed to the thrust ring; it is kept centered on said rail by the tube guide. A driving collar is welded to the front of said sleeve section, in order to protect the latter and to ensure excavation of the ground to the outer diameter of the sleeve. The drill head is placed inside the sleeve section at the drive collar. A worm is arranged in the sleeve section. The cuttings torn off the ground by the drill head are evacuated by the worm to the pit. As the drilling progresses, the sheath section is pushed towards the arrival pit. When the first section of the sleeve is almost completely depressed underground, a second section of sleeve is placed in the extension of the first section and is welded thereto. A second worm is arranged in the second section. The drilling continues (by sequentially arranging the necessary number of sections of sheath and worm, depending on the length of the crossing to be made), until the first section opens into the arrival pit. The sheath 2 thus created is emptied of the cuttings it contains and is carefully cleaned.
On agence ensuite un reniflard 7, 8 à chaque extrémité du fourreau. Chaque reniflard est un tube de 50 à 80 mm de diamètre par exemple, en PVC, polyéthylène ou autre matériau synthétique polymère. Dans l'exemple illustré, l'extrémité 15 du fourreau constitue le point le plus bas dudit fourreau, l'extrémité 16 correspondant à son point le plus haut. Il est par conséquent préférable d'injecter le coulis dans l'espace annulaire 3 par le reniflard 7. Le reniflard 7 est agencé de façon à s'étendre sensiblement verticalement entre le fourreau 2, à proximité de son extrémité 15, et la surface du terrain naturel 4. Un perçage 26 est réalisé dans le fourreau à son extrémité 15, en partie supérieure dudit fourreau, pour recevoir le reniflard 7. A ce stade, l'extrémité inférieure 21 du reniflard 7 est introduite dans ce perçage 26 et est positionnée de façon à s'étendre en partie supérieure du fourreau, pour ne pas gêner la mise en place de la conduite. La fixation du reniflard 7 au fourreau sera réalisée ultérieurement.A breather 7, 8 is then arranged at each end of the sheath. Each breather is a tube of 50 to 80 mm in diameter for example, PVC, polyethylene or other synthetic polymer material. In the illustrated example, the end 15 of the sheath is the lowest point of said sheath, the end 16 corresponding to its highest point. It is therefore it is preferable to inject the grout in the annular space 3 by the breather 7. The breather 7 is arranged to extend substantially vertically between the sheath 2, close to its end 15, and the surface of the natural ground 4. A bore 26 is formed in the sheath at its end 15, in the upper part of said sheath, to receive the breather 7. At this stage, the lower end 21 of the breather 7 is introduced into this bore 26 and is positioned so that extend in the upper part of the sheath, so as not to hinder the installation of the pipe. The fixing of the breather 7 in the sheath will be performed later.
Le reniflard 8 est agencé de façon à s'étendre sensiblement verticalement entre le fourreau 2, à proximité de son extrémité 16, et la surface du terrain naturel. Un perçage 27 est réalisé dans le fourreau, à son extrémité 16, en partie supérieure dudit fourreau. Un raccord métal/plastique cylindrique 28 est soudé sur le fourreau en regard du perçage 27. La soudure est réalisée avec soin de façon à obtenir une liaison étanche entre le fourreau et le raccord. L'extrémité inférieure 22 du reniflard 8 est ensuite introduite dans ce raccord, puis est fixée à ce dernier.The breather 8 is arranged to extend substantially vertically between the sheath 2, near its end 16, and the surface of the natural terrain. A bore 27 is formed in the sheath, at its end 16, in the upper part of said sheath. A cylindrical metal / plastic connector 28 is welded to the sheath opposite the bore 27. The weld is made carefully so as to obtain a tight connection between the sheath and the coupling. The lower end 22 of the breather 8 is then introduced into this fitting, and is attached thereto.
On enfile ensuite une conduite métallique 1 dans le fourreau 2. A l'instar du fourreau 2, la conduite 1 est formée d'une succession de tronçons de conduite. Chaque tronçon est un tube cylindrique de section circulaire, de 12 à 15 m de long et de 800 mm de diamètre interne. Chaque tube est en acier (mélange de fer et de carbone) et est recouvert (en usine) d'un revêtement de protection extérieur en polyéthylène (ou éventuellement en polypropylène). Le revêtement polyéthylène offre une protection cathodique passive de la conduite. Toutefois, ce revêtement est fragile et il n'est pas rare qu'il soit endommagé ponctuellement lors de l'installation de la conduite ou qu'il se détériore au fil du temps. En l'absence d'une protection cathodique active de la conduite, les zones de la conduite dépourvues de revêtement polyéthylène finissent par se corroder, jusqu'à se percer. En support de la protection passive réalisée par le revêtement, une protection cathodique active permet de pallier tout défaut du revêtement et d'éviter toute corrosion de la conduite. On équipe tout d'abord un premier tronçon de conduite à l'aide de colliers de centrage 5 en polyéthylène, qui vont permettre le centrage et le calage de la conduite dans le fourreau 2. Chaque collier comprend une bague 23, destinée être appliquée sur le tronçon de conduite et à l'encercler fermement, et des patins 24 s 'étendant radialement en saillie de la bague, répartis tout autour de celle- ci. Les différents colliers 5 sont répartis le long du tronçon de conduite, en étant espacés de 2 m par exemple. Ils sont fixés audit tronçon par serrage de leur bague.A metal pipe 1 is then inserted into the sleeve 2. Like the sleeve 2, the pipe 1 is formed of a succession of pipe sections. Each section is a cylindrical tube of circular section, 12 to 15 m long and 800 mm in internal diameter. Each tube is made of steel (a mixture of iron and carbon) and is covered (at the factory) with an outer protective coating made of polyethylene (or possibly polypropylene). The polyethylene coating provides passive cathodic protection of the pipe. However, this coating is fragile and it is not uncommon that it is damaged punctually during the installation of the pipe or it deteriorates over time. In the absence of active cathodic protection of the pipe, the areas of the pipe without polyethylene coating eventually corrode, until they are pierced. In support of the passive protection provided by the coating, active cathodic protection makes it possible to overcome any defect in the coating and to avoid any corrosion of the pipe. First equip a first pipe section with polyethylene centering collars 5, which will allow the centering and the 2. Each collar comprises a ring 23, intended to be applied to the pipe section and to encircle it firmly, and pads 24 extending radially projecting from the ring, distributed all around the ring. - this. The different collars 5 are distributed along the pipe section, being spaced 2 m for example. They are fixed to said section by clamping their ring.
On enfile le premier tronçon de conduite dans le fourreau, depuis la fosse de départ. Les colliers de centrage 5 portés par le tronçon permettent non seulement de maintenir le tronçon de conduite à distance du fourreau une fois le tronçon mis en place dans le fourreau, mais aussi d'éviter tout raclage du tronçon de conduite contre le fourreau (et donc toute détérioration du revêtement polyéthylène) lors de l'enfilage dudit tronçon dans le fourreau.The first section of pipe is put into the sheath from the pit. The centering collars 5 carried by the section not only make it possible to keep the pipe section away from the sheath once the section has been put in place in the sheath, but also to avoid any scraping of the pipe section against the sheath (and therefore any deterioration of the polyethylene coating) during threading of said section into the sheath.
Lorsque le premier tronçon de conduite est presque totalement inséré dans le fourreau, on agence, dans le prolongement du premier tronçon, un deuxième tronçon de conduite, que l'on soude au premier. On radiographie la soudure pour s'assurer de son étanchéité. A la jonction des deux tronçons de conduite, où le revêtement polyéthylène a été détruit, on applique une bande en polyéthylène de façon à enrober la soudure et garantir ainsi une continuité du revêtement isolant de la conduite. On pousse axialement dans le fourreau les deux tronçons ainsi assemblés, jusqu'à ce que le deuxième tronçon soit à son tour presque totalement inséré dans le fourreau. On assemble un troisième tronçon de conduite au deuxième, comme précédemment expliqué, et ainsi de suite jusqu'à ce que le premier tronçon de conduite sorte du fourreau dans la fosse d'arrivée. On forme ainsi une conduite 1 (ou plutôt une portion de la conduite 1 plus largement représentée à la figure 1) dont la longueur est supérieure à celle du fourreau 2, de sorte qu'elle dépasse du fourreau à chaque extrémité longitudinale 15, 16 de ce dernier.When the first pipe section is almost fully inserted into the sheath, is arranged in the extension of the first section, a second pipe section, which is welded to the first. We radiograph the weld to ensure its tightness. At the junction of the two pipe sections, where the polyethylene coating was destroyed, a polyethylene strip is applied so as to coat the weld and thus ensure continuity of the insulating coating of the pipe. The two sections thus assembled are axially pushed into the sheath until the second section is in turn almost fully inserted into the sheath. A third section of pipe is assembled to the second, as previously explained, and so on until the first section of pipe comes out of the sheath in the arrival pit. Thus, a pipe 1 (or rather a portion of the pipe 1 more widely shown in FIG. 1) is formed, the length of which is greater than that of the sleeve 2, so that it projects from the sleeve at each longitudinal end 15, 16 of this last.
En variante, la conduite 1 est formée hors fouille : on assemble, comme précédemment expliqué une pluralité de tronçons successifs (soudure, radiographie, puis application d'une bande polyéthylène) jusqu'à ce que la conduite ainsi formée présente une longueur supérieure à celle du fourreau. On enfile ensuite la conduite dans le fourreau. Le reniflard 7, dont l'extrémité inférieure 21 a préalablement été introduite dans le perçage 26 du fourreau, est ensuite poussé vers le bas. Son extrémité inférieure 21 est ainsi insérée dans l'espace annulaire 3 et glissée entre le fourreau et la conduite (sur un côté de ladite conduite), jusqu'à être positionnée en partie inférieure du fourreau. Le reniflard 7 est alors fixé au fourreau par tout moyen approprié (dès lors que ce moyen n'entraîne aucun risque d'endommagement de la conduite présente dans le fourreau ou de son revêtement polyéthylène). Le perçage 26 est colmaté au moyen de mastic de façon à garantir une liaison étanche entre le reniflard 7 et le fourreau 2. On ferme ensuite l'espace annulaire 3 séparant la conduite 1 du fourreau 2. Pour ce faire, à chaque extrémité 15 (respectivement 16) dudit fourreau, on agence une bague d'obturation 13 (respectivement 12) à soufflet, en caoutchouc. Chaque bague d'obturation 13 (respectivement 12) présente d'une part une première portion dont le diamètre correspond sensiblement au diamètre externe du fourreau 2, laquelle première portion est munie d'un premier collier de serrage 18 (respectivement 20) permettant de la fixer fermement au fourreau. La bague d'obturation présente d'autre part une deuxième portion dont le diamètre correspond sensiblement au diamètre externe de la conduite 1, laquelle deuxième portion est munie d'un deuxième collier de serrage 17 (respectivement 19) permettant de la fixer fermement à la conduite 1. La bague d'obturation comprend enfin une troisième portion à soufflet de diamètre variable, qui relie les première et deuxième portions. La bague d'obturation 13 (respectivement 12) réalise un joint étanche entre la conduite et le fourreau à l'extrémité longitudinale 15 (respectivement 16) de ce dernier. On installe en surface une borne 9 de mesure de potentiel, à l'aplomb du fourreau 2. La borne comprend un premier couple de connecteurs comprenant, d'une part, un connecteur relié à une électrode de référence (électrode au cuivre) placée dans le sol et, d'autre part, un connecteur relié à la conduite 1 par un câble conducteur 10 fixé sur ladite conduite par brasage. La borne 9 comprend un deuxième couple de connecteurs comprenant, d'une part, un connecteur relié à une électrode de référence et, d'autre part, un connecteur relié au fourreau 2 par un câble conducteur 11 fixé sur ledit fourreau par brasage. Le premier couple de connecteurs permet de mesurer le potentiel de la conduite au moyen d'un voltmètre ; le deuxième couple de connecteurs permet de mesurer le potentiel du fourreau au moyen d'un voltmètre. Ces mesures permettent notamment de vérifier qu'il n'existe aucun contact direct entre le fourreau et la conduite. A noter que d'autres bornes (ou bouches à clé) de mesure de potentiel sont agencées le long du parcours de la conduite 1. Elles sont placées en des endroits accessibles et/ou en des points spéciaux (traversées sous fourreau, poste de livraison, raccords isolants...) et sont, dans la mesure du possible, régulièrement réparties (environ tous les 2 km) le long de la conduite. En particulier, une borne 107 similaire à la borne 9 est placée à l'aplomb du fourreau 104, à proximité de la voie ferrée 102 ; des bornes 106 et 108 sont agencées à proximité des chemins ruraux 101 et 105. Les bornes 106 et 108 diffèrent des bornes 9 et 107 en ce qu'elles comprennent un unique couple de connecteurs, permettant de relever le potentiel électrique de la conduite. Toutes ces bornes permettent de contrôler le potentiel de la conduite sur l'ensemble du parcours, en vue de s'assurer de l'efficacité de la protection cathodique active mise en place.In a variant, the pipe 1 is formed out of the excavation: a plurality of successive sections (welding, radiography, then application of a polyethylene strip) are assembled, as previously explained, until the pipe thus formed has a length greater than that of the sheath. The pipe is then threaded into the sheath. The breather 7, whose lower end 21 has previously been introduced into the bore 26 of the sheath, is then pushed down. Its lower end 21 is thus inserted into the annular space 3 and slid between the sheath and the pipe (on one side of said pipe), until it is positioned in the lower part of the sheath. The breather 7 is then fixed to the sheath by any appropriate means (since this means does not involve any risk of damaging the pipe in the sheath or its polyethylene coating). The piercing 26 is sealed by means of sealant so as to ensure a tight connection between the breather 7 and the sheath 2. The annular space 3 separating the pipe 1 from the sheath 2 is closed. To this end, at each end 15 ( respectively 16) of said sheath, is arranged a sealing ring 13 (respectively 12) bellows, rubber. Each closure ring 13 (respectively 12) has firstly a first portion whose diameter substantially corresponds to the outer diameter of the sleeve 2, which first portion is provided with a first clamping collar 18 (respectively 20) allowing the fasten firmly to the sheath. The closure ring has, on the other hand, a second portion whose diameter substantially corresponds to the external diameter of the pipe 1, which second portion is provided with a second clamping collar 17 (19 respectively) making it possible to fix it firmly to the 1. The closure ring finally comprises a third bellows portion of variable diameter, which connects the first and second portions. The sealing ring 13 (respectively 12) provides a seal between the pipe and the sleeve at the longitudinal end 15 (16 respectively) of the latter. A potential-measuring terminal 9 is installed on the surface, directly above the sleeve 2. The terminal comprises a first pair of connectors comprising, on the one hand, a connector connected to a reference electrode (copper electrode) placed in the ground and, on the other hand, a connector connected to the pipe 1 by a conductive cable 10 fixed on said pipe by brazing. The terminal 9 comprises a second pair of connectors comprising, on the one hand, a connector connected to a reference electrode and, on the other hand, a connector connected to the sleeve 2 by a conductive cable 11 fixed on said sleeve by brazing. The first pair of connectors makes it possible to measure the potential of the pipe by means of a voltmeter; the second pair of connectors makes it possible to measure the potential of the sleeve by means of a voltmeter. These measures make it possible in particular to verify that there is no direct contact between the sleeve and the pipe. It should be noted that other potential measuring terminals (or ports) are arranged along the path of the pipe 1. They are placed in accessible places and / or in special points (bushings, delivery station , insulating fittings ...) and are, as far as possible, regularly distributed (approximately every 2 km) along the pipe. In particular, a terminal 107 similar to the terminal 9 is placed in line with the sleeve 104, close to the railway line 102; terminals 106 and 108 are arranged near the rural roads 101 and 105. The terminals 106 and 108 differ from the terminals 9 and 107 in that they comprise a single pair of connectors, to raise the electrical potential of the pipe. All these terminals make it possible to control the potential of driving over the entire route, with a view to ensuring the effectiveness of active cathodic protection implemented.
On remblaie les terres initialement excavées pour réaliser les deux fosses de travail, de façon à combler lesdites fosses. On prépare le coulis selon l'invention, en mélangeant dans un malaxeur usuel, à température ambiante, de l'eau, un laitier de haut fourneau, du clinker Portland et de la bentonite. Pour 900 i d'eau, on ajoute dans le malaxeur 95 kg de laitier de haut fourneau, 10 kg de clinker Portland et 145 kg de bentonite. Les quantités d'eau, de laitier de haut fourneau, de clinker Portland et de bentonite effectivement introduites dans le malaxeur sont calculées de façon à obtenir un volume de coulis légèrement supérieur au volume formé par l'espace annulaire 3 et les reniflards 7 et 8. L'ordre d'introduction de ces constituants est indifférent. Le mélange obtenu dans le malaxeur présente une viscosité suffisamment faible pour permettre son injection. On injecte le coulis dans le reniflard 7 par son extrémité supérieure, au moyen d'une pompe usuelle. L'injection se poursuit jusqu'à ce que l'espace annulaire 3 soit entièrement rempli et que le coulis ressorte par l'extrémité supérieure du reniflard 8. Chaque reniflard est ensuite fermé à son extrémité supérieure par une plaque de regard.The lands initially excavated are backfilled to make the two working pits, so as to fill said pits. The slurry according to the invention is prepared by mixing in a conventional mixer at room temperature water, a blast furnace slag, Portland clinker and bentonite. For 900 liters of water, 95 kg of blast furnace slag, 10 kg of Portland clinker and 145 kg of bentonite are added to the mixer. The quantities of water, blast furnace slag, Portland clinker and bentonite actually introduced into the mixer are calculated so as to obtain a volume of grout slightly greater than the volume formed by the annular space 3 and the breather 7 and 8 The order of introduction of these constituents is indifferent. The mixture obtained in the kneader has a viscosity sufficiently low to allow its injection. The grout is injected into the breather 7 by its upper end, by means of a usual pump. The injection continues until the annular space 3 is completely filled and the grout comes out of the upper end of the breather 8. Each breather is then closed at its upper end by a cover plate.
La conduite 1 est reliée à un circuit 25 comprenant un redresseur de courant 110 et un déversoir 111 (voir figure I)3 qui constituent un poste de soutirage de courant. Le redresseur 110 est relié à une alimentation secteur (ligne électrique basse tension passant à proximité). Le déversoir est formé par une masse métallique anodique enterrée : à titre d'exemple, on utilise un rail de voie ferrée de récupération ou une barre de ferrosilicium ou de graphite. Lorsque le redresseur est alimenté, un courant électrique est généré. Entre la conduite et le déversoir, le courant circule dans le sol selon des courbes de courant 112, traverse le fourreau conducteur 2 (sous forme d'électrons), puis circule (sous forme d'ions) à travers le coulis consolidé, entre le fourreau et la conduite. Positionné comme indiqué à la figure 1, le poste de soutirage offre un rayon d'action important centré sur le déversoir 111. La position du poste de soutirage est également choisie en fonction de la nature du sol, qui doit présenter une faible résistivité électrique. Par ailleurs, pour obtenir à la fois un rayon d'action important et une protection efficace, le déversoir 111 est avantageusement enterré à plus de 50 m de la conduite et de façon à s'étendre orthogonalement à ladite conduite. Pour une conduite de grande longueur, il peut être nécessaire d'installer plusieurs postes de soutirage, espacés de 20 km environ.Line 1 is connected to a circuit 25 comprising a current rectifier 110 and a weir 111 (see FIG. 1) 3 which constitute a current draw-off station. The rectifier 110 is connected to a mains power supply (low-voltage electrical line passing nearby). The spillway is formed by a buried anodic metal mass: for example, a recovery railroad track or a ferrosilicon or graphite bar is used. When the rectifier is powered, an electric current is generated. Between the pipe and the spillway, the current flows in the ground according to current curves 112, passes through the conducting sheath 2 (in the form of electrons), then flows (in the form of ions) through the consolidated grout between the sheath and driving. Positioned as shown in Figure 1, the filling station offers a large radius of action centered on the spillway 111. The position of the withdrawal station is also chosen according to the nature of the soil, which must have a low electrical resistivity. Moreover, to obtain both a large radius of action and effective protection, the spillway 111 is advantageously buried more than 50 m from the pipe and so as to extend orthogonally to said pipe. For a long pipe, it may be necessary to install several draw stations, spaced about 20 km.
La figure 3 représente le diagramme de Pourbaix du fer (pH/potentiel d'équilibre des réactions), qui décrit les différentes réactions théoriques possibles entre un métal et ses ions en présence -d'eau. Ce diagramme permet de visualiser trois domaines de situation du métal, qui dépendent du pH de la solution environnante et du potentiel électrique du fer :FIG. 3 represents the iron Pourbaix diagram (pH / equilibrium potential of the reactions), which describes the various possible theoretical reactions between a metal and its ions in the presence of water. This diagram makes it possible to visualize three domains of situation of the metal, which depend on the pH of the surrounding solution and the electric potential of the iron:
- un domaine de corrosion, où le fer se dissout dans la solution et forme des sels et des hydroxydes solubles, - un domaine de passivation, où le fer est protégé par un film superficiel qui l'isole de la solution. Le fer est ainsi protégé de la corrosion, à condition toutefois que le film ait pu se former d'une manière uniforme, qu'il reste adhèrent et qu'il ne subisse aucune agression mécanique, - un domaine d'immunité, où le fer reste à l'état métalliquea corrosion domain, where the iron dissolves in the solution and forms soluble salts and hydroxides, a passivation domain, where the iron is protected by a superficial film which isolates it from the solution. The iron is thus protected from corrosion, provided however that the film could have formed in a uniform manner, that it remains adhered and that it does not undergo any mechanical aggression, - a field of immunity, where the iron remains in the metallic state
(les réactions d'oxydation n'étant plus possibles) et ne peut donc se corroder. C'est le domaine de la protection cathodique active.(oxidation reactions are no longer possible) and can not corrode. This is the field of active cathodic protection.
La conduite 1 en acier présente, lorsqu'elle est directement enterrée dans le sol, un potentiel compris entre -200 mV et -500 mV, mesuré avec une électrode de référence au cuivre (Cu/CuSO4). Elle est donc susceptible de se corroder dès lors que son revêtement polyéthylène présente un défaut et que le pH du sol est inférieur à 6 (sol acide, très fréquent notamment en zones agricoles ou en zones industrielles, où les eaux ruisselantes sont acidifiées par les traitements imposés aux cultures ou les rejets industriels). A l'intérieur du fourreau 2, la conduite 1 est en contact avec le coulis consolidé 6. Ce dernier ayant un pH basique (compris entre 10 et 12), les conditions sont réunies pour que la conduite soit passivée. Avant même la mise en place de la protection cathodique active, la simple présence du coulis renforce donc la protection de la conduite en la plaçant dans son domaine de passivation. La mise sous tension du redresseur 111 permet d'abaisser le potentiel de la conduite à une valeur inférieure à -900 mV, généralement de l'ordre de -1200 mV. La conduite est alors placée dans son domaine d'immunité. Elle est totalement protégée de la corrosion, dans le rayon d'action du poste de soutirage et y compris à l'intérieur des fourreaux 2 et 104. L'invention peut faire l'objet de nombreuses variantes par rapport au mode de réalisation précédemment décrit et représenté sur les figures annexées.The steel pipe 1 has, when directly buried in the ground, a potential of between -200 mV and -500 mV, measured with a copper reference electrode (Cu / CuSO 4 ). It is therefore likely to corrode when its polyethylene coating has a defect and the soil pH is less than 6 (acid soil, very common especially in agricultural areas or industrial areas, where runoff water is acidified by the treatments imposed on crops or industrial waste). Inside the sheath 2, the pipe 1 is in contact with the consolidated grout 6. The latter having a basic pH (between 10 and 12), the conditions are met for the pipe to be passivated. Even before the introduction of active cathodic protection, the mere presence of grout thus reinforces the protection of the pipe by placing it in its passivation range. Energizing the rectifier 111 reduces the potential of the pipe to a value below -900 mV, generally of the order of -1200 mV. The conduct is then placed in its field of immunity. It is totally protected from corrosion, in the range of action of the filling station and including inside the sleeves 2 and 104. The invention may be subject to numerous variants with respect to the embodiment described above. and shown in the accompanying figures.
En particulier, l'invention s'applique également à un fourreau courbe (la conduite l'étant également), ce dernier étant mis en place au moyen d'une machine de forage dirigé. Par ailleurs, les dimensions fournies pour la conduite et le fourreau illustrés ne sont pas limitatives. L'invention s'applique à toute conduite de transport d'eau, de gaz, de pétrole..., dont le diamètre interne varie généralement entre 100 mm et 1000 mm, les fourreaux utilisés ayant des diamètres variant entre 130 mm et 2000 mm.In particular, the invention also applies to a curved sheath (the pipe is also), the latter being implemented by means of a directional drilling machine. Moreover, the dimensions provided for the pipe and the sleeve illustrated are not limiting. The invention applies to any pipe for transporting water, gas, oil, etc., whose internal diameter generally varies between 100 mm and 1000 mm, the sleeves used having diameters ranging from 130 mm to 2000 mm. .
En outre, si le terrain environnant la conduite présente une résistivité faible (inférieure à 5000 Ω.m), la protection cathodique active peut être réalisée au moyen d'une anode sacrificielle, en aluminium, magnésium ou zinc. L'anode est enfouie dans le terrain et est reliée à la conduite par un câble conducteur. Une borne (ou bouche à clé) de contrôle, installée en surface, est de préférence intercalée entre l'anode sacrificielle et la conduite. Ce procédé est de préférence réservé à des conduites de faible longueur (par exemple 500 m). In addition, if the terrain surrounding the pipe has a low resistivity (less than 5000 Ω.m), the active cathodic protection can be achieved by means of a sacrificial anode, aluminum, magnesium or zinc. The anode is buried in the ground and is connected to the pipe by a conductive cable. A control terminal (or key fob) installed at the surface is preferably interposed between the sacrificial anode and the pipe. This method is preferably reserved for pipes of short length (for example 500 m).

Claims

REVENDICATIONS
1/ Procédé d'installation et de protection d'une conduite enterrée de transport de fluide, ladite conduite (1) étant en un matériau électriquement conducteur, dans lequel on place la conduite dans un fourreau (2) en un matériau électriquement conducteur, qui suit une direction longitudinale sensiblement parallèle à une direction longitudinale de la conduite, la conduite et le fourreau délimitant entre eux un espace annulaire (3) qui s'étend principalement selon ces directions longitudinales, on ferme l'espace annulaire à chaque extrémité longitudinale (15, 16) du fourreau au moyen d'une bague (12, 13) dite bague d'obturation, on remplit l'espace annulaire par un matériau de remplissage, caractérisé en ce que :1 / A method for installing and protecting a buried fluid transport pipe, said pipe (1) being made of an electrically conductive material, in which the pipe is placed in a sleeve (2) made of an electrically conductive material, which follows a longitudinal direction substantially parallel to a longitudinal direction of the pipe, the pipe and the sleeve defining between them an annular space (3) which extends mainly in these longitudinal directions, the annular space is closed at each longitudinal end (15 , 16) of the sheath by means of a ring (12, 13) called closure ring, the annular space is filled with a filling material, characterized in that:
- on utilise, à titre de matériau de remplissage, un coulis hydraulique (6) comprenant de l'eau et, pour 900 litres d'eau, 85 à 105 kilogrammes d'un laitier de haut fourneau, 8 à 13 kilogrammes de clinker Portland et 120 à 160 kilogrammes de bentonite,- as a filler material, a hydraulic grout (6) comprising water is used and, for 900 liters of water, 85 to 105 kilograms of a blast furnace slag, 8 to 13 kilograms of Portland clinker and 120 to 160 kilograms of bentonite,
- on relie la conduite (1) à un circuit électrique (25) comprenant un poste de soutirage de courant (110, 111) ou une anode sacrificielle. 2/ Procédé selon la revendication 1, caractérisé en ce qu'on utilise un coulis comprenant, pour 900 litres d'eau, 95 kilogrammes de laitier de haut fourneau, entre 10 et 11 kilogrammes de clinker Portland et 145 kilogrammes de bentonite.the pipe (1) is connected to an electrical circuit (25) comprising a current draw-off station (110, 111) or a sacrificial anode. 2 / A method according to claim 1, characterized in that a slurry comprising, for 900 liters of water, 95 kilograms of blast furnace slag, between 10 and 11 kilograms of Portland clinker and 145 kilograms of bentonite.
3/ Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on utilise un coulis exclusivement constitué d'eau, de laitier et haut fourneau, de clinker Portland et de bentonite.3 / A method according to one of claims 1 or 2, characterized in that a slurry exclusively consisting of water, slag and blast furnace, Portland clinker and bentonite.
4/ Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'on prépare le coulis en mélangeant ses divers constituants à température ambiante. 5/ Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'on utilise un fourreau (2) présentant un diamètre supérieur ou égal à 1,5 fois le diamètre de la conduite.4 / A method according to one of claims 1 to 3, characterized in that the slurry is prepared by mixing its various constituents at room temperature. 5 / A method according to one of claims 1 to 4, characterized in that a sheath (2) having a diameter greater than or equal to 1.5 times the diameter of the pipe.
6/ Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'on injecte le coulis dans l'espace annulaire au moyen d'un reniflard (7) agencé de telle sorte que son extrémité inférieure (21) s'ouvre en partie inférieure d'une section du fourreau (2). 6 / A method according to one of claims 1 to 5, characterized in that the grout injected into the annular space by means of a breather (7) arranged so that its lower end (21) opens in the lower part of a section of the sheath (2).
PCT/FR2007/000378 2006-03-06 2007-03-02 Method for laying and protecting an underground pipe WO2007101931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0601962A FR2898178B1 (en) 2006-03-06 2006-03-06 METHOD FOR INSTALLATION AND PROTECTION OF A BURIED DRIVE.
FR0601962 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007101931A1 true WO2007101931A1 (en) 2007-09-13

Family

ID=37075046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/000378 WO2007101931A1 (en) 2006-03-06 2007-03-02 Method for laying and protecting an underground pipe

Country Status (2)

Country Link
FR (1) FR2898178B1 (en)
WO (1) WO2007101931A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990142A (en) * 2019-04-16 2019-07-09 广东华坤建设集团有限公司 Pipe sleeve antiseep blocks up the research method of scheme in assembled arthitecutral structure
CN112539302A (en) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 Crossing pipeline and crossing pipeline protection method
CN114233937A (en) * 2020-09-09 2022-03-25 中国石油天然气集团有限公司 Pipeline assembly and construction method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944114B2 (en) * 2011-06-10 2015-02-03 Ameron International Corporation Mortar-coated steel pipes and methods of making the same
FR3084674B1 (en) * 2018-07-31 2021-04-09 Travaux Souterrains Et Maintenance ANTI-CORROSION PROTECTION PROCESS FOR A BURIED METAL STRUCTURE AND BURIED METAL STRUCTURE THUS PROTECTED

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593391A (en) * 1969-07-17 1971-07-20 Rice Engineering & Operating I Apparatus for lining a pipe
US4932810A (en) * 1989-09-25 1990-06-12 Conoco Inc. Corrosion protection system for a pipeline crossing
GB2239301A (en) * 1989-12-06 1991-06-26 Patrick James Stephens Grout for annular cavities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593391A (en) * 1969-07-17 1971-07-20 Rice Engineering & Operating I Apparatus for lining a pipe
US4932810A (en) * 1989-09-25 1990-06-12 Conoco Inc. Corrosion protection system for a pipeline crossing
GB2239301A (en) * 1989-12-06 1991-06-26 Patrick James Stephens Grout for annular cavities

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990142A (en) * 2019-04-16 2019-07-09 广东华坤建设集团有限公司 Pipe sleeve antiseep blocks up the research method of scheme in assembled arthitecutral structure
CN112539302A (en) * 2019-09-20 2021-03-23 中国石油化工股份有限公司 Crossing pipeline and crossing pipeline protection method
CN114233937A (en) * 2020-09-09 2022-03-25 中国石油天然气集团有限公司 Pipeline assembly and construction method thereof

Also Published As

Publication number Publication date
FR2898178B1 (en) 2008-05-23
FR2898178A1 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
WO2007101931A1 (en) Method for laying and protecting an underground pipe
CA2683236C (en) Method and apparatus for forming an alloy plug in an oil or gas well
FR2704575A1 (en) Method for anchoring a post in the ground, device for the implementation of this method, and post anchor mass realized for the implementation of this method and / or this device.
CN104481450A (en) Sealing method for hydrological hole
CN203891017U (en) Demountable and recyclable anchorage device
CN101979781B (en) Method for constructing oil drilling waste mud solidification pool
CN103981864A (en) Detachable recovery-type anchorage device and use method for same
EP3140492A1 (en) Joint assembly for forming a duct
CN103629474B (en) For repairing the restorative procedure connecting aqueduct of impaired cast iron fire protection pipeline
CA2064429C (en) Sealing device for expansion joints cut in dams
KR101867900B1 (en) Soil heat exchanger constructing under building and method for constructing the same
CN104482352A (en) Restoration structure and restoration method of PCCP (prestressed concrete cylinder pipe)
CH711029B1 (en) Assembly for anchoring device at least partially removable.
CA2268352C (en) Sealing joints for sheet piles
Thomas et al. Advances in HDPE barrier walls
JP5115456B2 (en) Laying and burying pipelines on steep slopes
FR2533579A1 (en) METHOD FOR CONSOLIDATING AND MAKING THE INFRASTRUCTURE AND BUILDING CONSTRUCTIONS, BUILDING OBJECTS, ESPECIALLY CHANNELS AND PIPES, BUILDING ELEMENTS, ROCKS AND LANDS WATERTIGHT
FR3084674A1 (en) METHOD FOR THE ANTI-CORROSION PROTECTION OF A BURIED METAL STRUCTURE AND A BURIED METAL STRUCTURE THUS PROTECTED
FR2567240A1 (en) Device for passing various pipelines through foundation walls
JP7191327B2 (en) How to remove steel pipe piles
CN108179424B (en) Sacrificial anode and construction method thereof
BE894870A (en) Method of underground working - has open trench first dug ahead of face and sealed enclosure later covered over
JP4140692B2 (en) Magnesium galvanic anode and cathodic protection system using the same
JP3724734B2 (en) Underground cavity filling method
BE841576A (en) PROCESS FOR WATERPROOFING OLD UNDERGROUND MINING WELLS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07731077

Country of ref document: EP

Kind code of ref document: A1