WO2007099640A1 - Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program - Google Patents

Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program Download PDF

Info

Publication number
WO2007099640A1
WO2007099640A1 PCT/JP2006/304134 JP2006304134W WO2007099640A1 WO 2007099640 A1 WO2007099640 A1 WO 2007099640A1 JP 2006304134 W JP2006304134 W JP 2006304134W WO 2007099640 A1 WO2007099640 A1 WO 2007099640A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
current
unknown
electromagnetic field
field distribution
Prior art date
Application number
PCT/JP2006/304134
Other languages
French (fr)
Japanese (ja)
Inventor
Kengo Sugahara
Kiyoshi Yoda
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2006/304134 priority Critical patent/WO2007099640A1/en
Publication of WO2007099640A1 publication Critical patent/WO2007099640A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling

Definitions

  • Electromagnetic field distribution calculation method calculates electromagnetic field distribution calculation program
  • the present invention relates to a calculation method for calculating an electromagnetic field distribution when an electromagnetic wave transmitted from an electromagnetic wave source is scattered by a metal structure (scattering body) in the vicinity thereof.
  • the present invention relates to a calculation method in an automobile Generated as a result of calculating the electromagnetic wave distribution when the electromagnetic wave transmitted by the transmitting antenna is scattered or reflected by the body structure, or as a result of the eddy current flowing through the body structure of the electromagnetic wave transmitted by the transmitting antenna in the car. It relates to a method of calculating the electromagnetic wave distribution.
  • the present invention also relates to an apparatus using this calculation method and an electromagnetic field distribution calculation program.
  • Non-Patent Document 1 S. M. Rao, D. A. Wilton and A. W. Glisson, IEEE Trans.
  • Non-Patent Document 2 S. Ooms, DD Zutter, DIAKOPTICS AND THE MUL TILEVEL MOMENTS METHOD FOR PLANAR CIRCUITS, IEEE MTT— S International Microwave Symposium Digest Vol. 39 No. 3, 1997 (P. 1803, P. 1806)
  • the present invention has been made to solve the problem, and in analyzing the electromagnetic field distribution, the field integral equation moment method is applied and the large-scale problem in the field integral equation is solved.
  • the object of the present invention is to provide an electromagnetic field distribution calculation method capable of calculating a large-scale electromagnetic field distribution with a small amount of computer qualities.
  • a first step of dividing the surface of the metal structure into elements having a plurality of minute areas, a shared side between the elements for the plurality of divided elements The second step of setting the unknown current perpendicular to the shared edge, the third step of dividing the plurality of elements into N—one element block, the plurality of the set
  • the unknown current is grouped separately for each element block, and 4th step to block-divide N into 1 current block n that belongs only to each element block and current block m that combines unknown current flowing between each element block into one block
  • the direct method is used to calculate the term related to the current block m, the sixth step of calculating the unknown current value of all the current blocks, and the obtained unknown number of each current block Based on the current value, it has a seventh step to calculate the electromagnetic field distribution around the metal structure.
  • the electromagnetic field distribution calculation apparatus provides an input means for inputting element data on the surface of a metal structure divided into a plurality of elements having a minute area force, and for the divided plurality of elements.
  • An unknown current setting means for detecting a shared edge between elements and setting an unknown current perpendicular to the shared edge, and an element block division for dividing the plurality of elements into N—a plurality of element blocks Means, a plurality of set unknown currents are grouped separately for each element block, and N—one current block n belonging only to each element block, and the unknown current flowing between each element block
  • Current block dividing means that divides the current block into one block, m, and the block matrix equation for each current block divided into N blocks by the electric field integral equation moment method.
  • Block matrix equation construction means when solving the block matrix equation, the block iteration method is used to calculate the term related only to the N current block n, and the term related to the current block m is calculated.
  • the electromagnetic field distribution calculation program provides a first step of dividing the surface of the metal structure into a plurality of elements each having a small area force.
  • the second step is to set the unknown current perpendicular to the shared side, and the third step to block the multiple elements into N—multiple element blocks. Multiple unknown currents are grouped separately for each element block.
  • the fifth step of creating a block matrix equation by the electric field integral equation moment method, when solving the block matrix equation, only the N-1 current block n The block iteration method is used to calculate the related terms
  • the direct method is used to calculate the terms related to the current block m
  • the sixth step of calculating the unknown current values of all the current blocks and each obtained Based on the unknown current value of the current block
  • the seventh step of calculating the electromagnetic field distribution around the metal structure is executed.
  • the surface of the metal structure is divided into a plurality of metal elements having a minute area force, and a plurality of metal structures are provided.
  • the electromagnetic field distribution is calculated for each block structure, but when the metal structure is divided into block structures, each block is divided so that the number of sides of the metal elements shared by each divided structure is as small as possible.
  • the electromagnetic field distribution for any metal structure can be calculated with little computer quality.
  • FIG. 1 is a flowchart showing a method for calculating an electromagnetic field distribution in an electromagnetic wave scatterer according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating an electromagnetic field distribution calculation method (step S1) according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an electromagnetic field distribution calculation method (step S3) according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining an electromagnetic field distribution calculation method (step S4) according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining an electromagnetic field distribution calculation method (step S5) according to the first embodiment of the present invention. It is.
  • FIG. 6 is a diagram for explaining an electromagnetic field distribution calculation method (step SI) according to the second embodiment of the present invention.
  • FIG. 7 is a diagram for explaining an electromagnetic field distribution calculation method (step S 3) according to the second embodiment of the present invention.
  • FIG. 8 is a diagram for explaining an electromagnetic field distribution calculation method (step S 4) according to the second embodiment of the present invention.
  • FIG. 9 is a diagram for explaining an electromagnetic field distribution calculation method (step S5) according to the second embodiment of the present invention.
  • FIG. 10 is a diagram for explaining an electromagnetic field distribution calculation method (step S1) according to the third embodiment of the present invention.
  • FIG. 11 is a diagram for explaining an electromagnetic field distribution calculation method (step S5) according to the third embodiment of the present invention.
  • FIG. 12 is a block diagram showing an electromagnetic field distribution calculating apparatus according to Embodiment 3 of the present invention. Explanation of symbols
  • Fig. 1 (a) is a flowchart showing the electromagnetic field distribution calculation method for the electromagnetic wave scatterer according to Embodiment 1 of the present invention
  • Fig. 1 (b) is an electric field integral equation moment method ( This is a flowchart showing a method of calculating the electromagnetic field distribution in the electromagnetic field scatterer using the conventional moment method).
  • the block division and the block iteration method are applied, the block division method, and the direct method when solving the integral equation and the block iteration method are applied.
  • the metal flat plate 10 which is an electromagnetic wave scatterer is divided into a plurality of triangular elements.
  • it is divided into triangular elements, but there is also a conventional method of dividing into quadrilateral or polygonal elements.
  • the present invention can also be applied to elements other than triangular elements as divided elements (same as the conventional method).
  • step S 2 the number of block divisions (N ⁇ 1) is designated.
  • the number of divisions varies depending on the scale of the problem, in order to obtain the effect of reducing the calculation time in a large-scale problem with tens of thousands of elements, the blocks are divided so that the elements in the block are about 3000 elements.
  • step S3 a side shared by the triangular elements is detected, and a current flowing perpendicularly to the side is set as an unknown (same as in the conventional method).
  • Figure 3 shows the unknown current (arrow) set.
  • step S70 the matrix equation is solved by the direct method to obtain the current I.
  • the set unknown current is divided into blocks as shown below, and a block matrix equation is created for each divided current block.
  • the block division of metal elements is determined by the genetic algorithm (Genetic Algorithm method) published in Art of Scientific ComputmgJ ("William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling)" Optimize To do.
  • the number of unknown currents is 96, and the minimum number of currents per block is limited to 40.
  • the number of shared sides between element blocks is 6. Optimized. As shown in Fig. 4, the metal element is divided into two blocks, a white part (element block A) and a gray part (element block B).
  • step S5 a plurality of unknown currents set in step S3 belong only to each element block, and N—one current block n separately grouped for each element block. Then, the unknown current flowing between the element blocks is divided into current blocks m which are combined into one. That is, as shown in Fig. 5 (a), an unknown current belonging only to element block A is a current block (1), and as shown in Fig. 5 (c), an unknown current belonging only to element block B is a current block. (2) As shown in Fig. 5 (b), the unknown current flowing between element block A and element block B is defined as current block (3).
  • step S6 a matrix equation is created for each current block divided into N blocks by a method similar to the conventional moment method, and in step S7, this matrix equation is solved, and all currents are Calculate the unknown current value of the block.
  • the force to create one impedance matrix Z of 96 X 96 in this embodiment, is 3 X Create a block matrix of 3 and the following block matrix equation.
  • Z is a 45 X 45 matrix
  • Z is a 45 X 45 matrix
  • Z is a 45 X 6 matrix
  • Z is a 45 x 45 matrix
  • Z is a 45 x 6 matrix
  • Z is a 6 x 45 matrix
  • Z is a 6 x 45 matrix and Z is a 6 x 6 matrix. Note that I is an unknown current vector of 45 X 1.
  • I is an unknown current vector of 45 X 1
  • I is an unknown current vector of 6 X 1
  • V is a voltage vector of 45 x 1
  • V is a voltage beta of 45 x 1
  • V is a 6 x 1 voltage vector, which is that of an electromagnetic source with multiple triangular elements
  • the voltage vector is created in the same way as the conventional moment method.
  • the unknown current is divided into a current block (1), a current block (2), and a current block (3). (3).
  • the interaction between the blocks is ignored as an initial value for the matrix related only to the current block (1) and the current block (2). Can be approximated.
  • the interaction between current blocks other than the current block (3) is well known and can be corrected by the block iteration method (Block Jacobi method, Block Gauss Seidel method, Block SOR method). Become.
  • the direct method to obtain a solution that considers the interaction between the current block (3) and each of the other current blocks (1) and (2). Can do.
  • the calculation can be performed with a small amount of calculation.
  • the correct electromagnetic field distribution is obtained by using the minimum slow direct method and the fast block iteration method together. be able to.
  • Equation (1) can be written down as the following equations (2) and (3). This is a simple mathematical variant.
  • the computation cost (used memory, computation time) of the matrix operations is the one that calculates the inverse matrix. Lower the overall computational cost by improving the efficiency of computing the inverse matrix be able to.
  • Equation (3) there are the following four operations (Equations (4) to (7)) for calculating the inverse matrix.
  • [0029] is an inverse matrix of the impedance matrix related only to the current block (1) and the current block (2), and there is no interaction between the current block (1) and the current block (2).
  • the block iteration method can be used to calculate equation (8). If the block iterative method can be used, the calculation cost can be reduced compared with the method of obtaining the normal inverse matrix.
  • the number of sides connecting the blocks is 6, so the size of the matrix for calculating the inverse matrix is The calculation cost is 6 ⁇ 6, which is lower than the 96 ⁇ 96 inverse matrix when the conventional moment method is applied.
  • the inverse matrix of equation (8) is calculated by the block iteration method, and from this, equations (4), (5), and (7) are calculated. Further, using the result of equation (4), the inverse matrix of equation (6) is calculated by the direct method. Obtained All current vectors I, I, I are calculated using the calculated results and equations (2) and (3).
  • step S8 an electromagnetic field at an arbitrary point can be calculated by calculating a green function for the obtained current value in the same manner as in the conventional moment method.
  • This method requires less calculation resources such as calculation time and used memory than the conventional moment method.
  • the calculation amount is 0 (N 3 )
  • the calculation amount is 0 (N 2 )
  • the memory used is 1Z4 in the case of the present embodiment in which the metal element is divided into two blocks, so that calculation resources can be saved.
  • FIG. 6 is a diagram in which the rectangular metal plate 10 according to the second embodiment is divided into triangular elements.
  • the electromagnetic field distribution was calculated according to the flowchart in Fig. 1 (a).
  • the number of block divisions (N-1) specified in step S2 is three.
  • step S3 as shown in Fig. 7, if the current on the shared side shared between the elements is set as the unknown current, there are 147 unknown currents.
  • step S4 the triangular element is divided into three blocks: a left part (element block A), a central part (element block B), and a right part (element block C).
  • step S5 the unknown current set in step S3 belongs only to each element block and is divided into N—one current block n separately for each element block, and each element described above.
  • the unknown current flowing between the blocks is divided into current blocks m that are combined into one block. That is, as shown in Fig. 9 (a), the unknown current belonging only to element block A is As shown in current block (1) and Fig. 9 (b), an unknown current belonging only to element block B is converted to an unknown current belonging only to element block C as shown in current block (2) and Fig. 9 (c).
  • Fig. 9 (d) the unknown current flowing between element block A and element block B and the unknown current flowing between element block B and element block are Let it be the flow block (4).
  • step S6 a matrix equation is created for each current block divided into N blocks by the same method as the conventional moment method.
  • this matrix equation is solved, and all currents are Calculate the unknown current value of the block.
  • a 4 ⁇ 4 block matrix is created as an impedance matrix, and the following block matrix equation is created.
  • is a 45X45 matrix
  • is a 45X45 matrix
  • is a 45X45 matrix
  • Z is a 45X12 matrix
  • Z is a 45X45 matrix
  • Z is a 45X45 matrix
  • Z is 45
  • Z is 45X12 matrix
  • Z is 12X45 matrix
  • Z is 12X45 matrix
  • I is an unknown current vector of 45 X 1
  • I is an unknown current vector of 45 X 1
  • I is 12
  • V is 45 x 1 voltage vector
  • V is 45 x 1 voltage vector
  • V is 12 x 1
  • the unknown current is divided into a current block (1) and a current block.
  • Block (2), current block (3), and current block (4), and all the interactions between the blocks are put into the current block (4).
  • the initial value can be approximated by neglecting the interaction between blocks.
  • the interaction between the current blocks other than the current block (4) can be corrected by the block iteration method (block Jacobian method, block Gauss Seidel method, block SOR method).
  • the direct method is used to consider the interaction between the current block (4) and each of the other current blocks (1), (2), (3). Can be obtained.
  • the number of unknown currents is minimal, it can be calculated with a small amount of calculation even if the direct method is used.
  • the correct electromagnetic field distribution can be obtained by combining the calculation using the minimum slow direct method and the calculation using the fast block iteration method. Can be sought.
  • Equation (9) can be written down as the following equations (10) and (11). This is a simple mathematical variant.
  • the computation cost (used memory, computation time) of the matrix operations is the one that calculates the inverse matrix.
  • the overall calculation cost can be reduced by efficiently calculating the inverse matrix.
  • [0045] is an inverse matrix of the impedance matrix related only to the current block (1), the current block (2), and the current block (3).
  • the current block (1), the current block (2), and the current block ( Since there is no interaction with 3), it is possible to use the block iteration method to calculate Eq. (16). If the block iteration method can be used, the calculation cost can be reduced because the memory used and the amount of calculation (that is, the calculation time) can be reduced compared to the method for obtaining the normal inverse matrix.
  • the inverse matrix of equation (14) including the term related to the current block (4) the number of sides connecting the blocks is 12, so the large matrix to calculate the inverse matrix is large. The size is 12 x 12, and the calculation cost is lower than the inverse matrix of 147 x 147 when the conventional method of moments is applied.
  • the inverse matrix of equation (16) is calculated by an iterative method, and from this, equations (12), (13), and (15) are calculated. Further, using the result of equation (12), the inverse matrix of equation (14) is calculated by the direct method. By calculating the current vectors I, I, I, and I using the obtained calculation results and (10) and (11),
  • step S8 an electromagnetic field at an arbitrary point can be calculated by calculating a green function for the obtained current value in the same manner as in the conventional moment method.
  • This method requires less calculation resources such as calculation time and used memory than the conventional moment method.
  • the calculation amount is 0 (N 3 )
  • the calculation amount is 0 (N 2 )
  • the memory used is 1Z9 in the case of the present embodiment in which the metal element is divided into three blocks, so that calculation resources can be saved.
  • the element is divided into two blocks and the unknown current is divided into three blocks.
  • the element is divided into three blocks and the unknown current is divided into four blocks.
  • the same calculation can be performed using the following formula.
  • Embodiment 3 In the third embodiment, the problem of electromagnetic wave scattering by a car is analyzed.
  • FIG. 10 is a diagram in which the metal structure (vehicle) 20 according to the third embodiment is divided into triangular elements. For these triangular elements, the electromagnetic field distribution was calculated according to the flowchart in Fig. 1 (a). In the third embodiment, the number of block divisions of the element specified in step S2 is three as in the second embodiment.
  • step S3 the current on the shared side shared between the elements is set as an unknown current.
  • step S4 the number of elements constituting each element block is divided into 5,000 elements or less (it changes according to the memory used, but about 5,000 is appropriate for the current computer calculation speed).
  • the triangular element is divided into blocks so that the number of element sides shared between each element block is minimized. For example, it is divided into a roof part, a bonnet part, and a car body part so that the boundary part of the element block comes to the column part of the vehicle window.
  • step S5 the unknown current set in step S3 is divided into four blocks as shown in FIG.
  • Fig. 11 ( a ) shows the unknown current of the current block (1), showing 542 unknown currents belonging to the roof of the car.
  • Figure 11 (b) shows the unknown current in the current block (2), showing 1394 unknown currents belonging to the hood of the car.
  • Figure 11 (c) shows the unknown current of the current block (3), which shows 1620 unknown currents belonging to the car body.
  • Fig. 11 (d) shows the unknown current of the current block (4), the unknown current flowing in the side connecting the car roof and the hood, the unknown current flowing in the side connecting the car roof and the body, and the car This shows 42 unknown currents consisting of unknown currents flowing on the edge connecting the bonnet and the body.
  • step S6 a block matrix equation is created for each current block divided into blocks.
  • this block matrix equation is combined with the block iteration method and the direct method in the same manner as in the second embodiment. After calculating all unknown current values, the Green field was calculated on the obtained current values to calculate the electromagnetic field distribution.
  • the total of all unknown currents is 3598.
  • the 3598 X 3598 matrix equation is solved by the direct method, when the solution is divided by the method of the present invention, the calculation time is about 1Z5.
  • the memory could be solved with 1Z4.
  • FIG. 12 is a block diagram of the electromagnetic field distribution calculating apparatus according to the third embodiment.
  • Car gold When the genus structure element data 1 is input from the element data input means 2 to the electromagnetic field distribution calculation device, processing corresponding to each step in FIG. 1 is executed by a program in the computer.
  • the functional blocks expressed by means 3 to 8 in Fig. 12 exist in the program in the computer.
  • the block division when performing block division of the metal element in step S4, the block division is optimized by an optimization method so that the number of unknown currents flowing between the element blocks is minimized. You may optimize the block division visually by using a CAD tool.
  • this method can be applied even if the number of unknown currents flowing between the element blocks is not necessarily the minimum.
  • the calculation time is not shortened as compared with the above embodiments, but the memory used for the calculation can be smaller than the conventional direct method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Complex Calculations (AREA)

Abstract

It is possible to provide an electromagnetic field distribution calculation method capable of performing a large-scale electromagnetic distribution calculation by using a small amount of calculation resource. Furthermore, it is possible to provide an electromagnetic field distribution calculation device and an electromagnetic field distribution calculation program. The electromagnetic field calculation method divides a metal structure surface divided into a plurality of elements into a plurality of element blocks, sets currents of unknown values vertical to common sides between the elements, and block-divides the unknown-value currents into a current block n belonging only to the respective element blocks and a current block m collecting the unknown-value currents flowing between the respective element blocks into one, thereby creating a block matrix equation. Furthermore, when solving the block matrix equation, the block repletion method is used for calculating a term concerning only the current block n and the direct method is used for calculating a term concerning the current block m. According to the obtained unknown-value current of each current block, an electromagnetic field distribution around the metal structure is calculated.

Description

明 細 書  Specification
電磁界分布計算方法、電磁界分布計算装置、および電磁界分布計算プ ログラム  Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program
技術分野  Technical field
[0001] 本発明は、電磁波源から送信された電磁波がその近傍の金属構造体 (散乱体)で 散乱される場合の電磁界分布を計算する計算方法に関するものであり、たとえば、自 動車内の送信アンテナで送信された電磁波が車体構造で散乱または反射された場 合の電磁波分布を計算する方法、あるいは自動車内の送信アンテナで送信された 電磁波が車体構造に渦電流を流した結果、生成される電磁波分布を計算する方法 に関するものである。また、この計算方法を用いた装置、および電磁界分布計算プロ グラムに関するものである。  The present invention relates to a calculation method for calculating an electromagnetic field distribution when an electromagnetic wave transmitted from an electromagnetic wave source is scattered by a metal structure (scattering body) in the vicinity thereof. For example, the present invention relates to a calculation method in an automobile Generated as a result of calculating the electromagnetic wave distribution when the electromagnetic wave transmitted by the transmitting antenna is scattered or reflected by the body structure, or as a result of the eddy current flowing through the body structure of the electromagnetic wave transmitted by the transmitting antenna in the car. It relates to a method of calculating the electromagnetic wave distribution. The present invention also relates to an apparatus using this calculation method and an electromagnetic field distribution calculation program.
背景技術  Background art
[0002] 1960年代後半にハリントンは電界積分方程式法の数値解法にモーメント法の考え 方を用い、電磁波の散乱問題の解析手法を具体的かつ理論的に整理した。周波数 を指定した解析の場合には、積分方程式法は数ある電磁波の数値解法の中で最も 少な 、未知数の数で最も精度の高 、結果を与えると 、う大きな特徴を持つ手法であ る。マイクロストリップタイプのマイクロ波集積回路やアンテナの解析では、通常パッチ 上の電流を未知数とした積分方程式をつくり、この積分方程式を直接解いて解析を 行っている (例えば、非特許文献 1参照。 ) o  [0002] In the late 1960s, Harrington used the method of moments for the numerical solution of the field integral equation method, and concretely and theoretically organized analysis methods for electromagnetic wave scattering problems. In the case of analysis with a specified frequency, the integral equation method is the smallest of the many numerical methods for solving electromagnetic waves, and is the most accurate method with the most accurate number of unknowns. In the analysis of microstrip type microwave integrated circuits and antennas, an integral equation is normally created with the current on the patch as an unknown, and the integral equation is directly solved for analysis (see Non-Patent Document 1, for example). o
[0003] ただし、この手法では、行列方程式が複素密行列方程式となるため、車からの電磁 波の散乱問題のように散乱問題の規模が大きい場合には、多くの計算機メモリ、多く の計算時間を消費する。たとえば、 1万要素の複素密行列を計算機のメモリに格納 するためには、 1. 6GByteのメモリを必要とする。一方、一般に普及している 32bit計 算機には利用可能なメモリの大きさに制限がある(2GByte〜4GByte)。したがって 、従来行われている方法、すなわち作成した行列方程式を直接解く方法 (以下、直 接法と記す)では、数万要素の大規模計算を行うことは不可能である。 [0003] However, in this method, since the matrix equation becomes a complex dense matrix equation, when the size of the scattering problem is large, such as the scattering problem of electromagnetic waves from a car, a lot of computer memory and a lot of calculation time are required. Consume. For example, to store a 10,000-element complex dense matrix in the computer's memory, 1.6 GByte of memory is required. On the other hand, the size of available memory is limited (2 GByte to 4 GByte) in the general-purpose 32-bit computers. Therefore, the conventional method, that is, the method of directly solving the created matrix equation (hereinafter referred to as the direct method), cannot perform large-scale calculation of tens of thousands of elements.
この問題を解決するための 1つの方法として、マイクロ波回路において、回路を構 造に応じたブロックに分割し、反復計算を行い、行列方程式を効率的に解く手法 (B1 ock Jacobi法、 Block Gauss Seidel法、 Block SOR法など)が提案されている (例えば、非特許文献 2参照。 )0 One way to solve this problem is to configure the circuit in a microwave circuit. There are proposed methods (B1 ock Jacobi method, Block Gauss Seidel method, Block SOR method, etc.) that divide into blocks according to structure, perform iterative calculations, and solve matrix equations efficiently (for example, Non-Patent Document 2) See also.) 0
[0004] 非特許文献 1 : S. M. Rao, D. A. Wilton and A. W. Glisson, IEEE Trans. [0004] Non-Patent Document 1: S. M. Rao, D. A. Wilton and A. W. Glisson, IEEE Trans.
Antennas and Propaget. , Vol. 30, No. 3, pp. 409—418, May 1982. 非特許文献 2 : S. Ooms, D. D. Zutter著、 DIAKOPTICS AND THE MUL TILEVEL MOMENTS METHOD FOR PLANAR CIRCUITS, IEEE MTT— S International Microwave Symposium Digest Vol. 39 No. 3 , 1997年(P. 1803、 P. 1806)  Antennas and Propaget., Vol. 30, No. 3, pp. 409—418, May 1982. Non-Patent Document 2: S. Ooms, DD Zutter, DIAKOPTICS AND THE MUL TILEVEL MOMENTS METHOD FOR PLANAR CIRCUITS, IEEE MTT— S International Microwave Symposium Digest Vol. 39 No. 3, 1997 (P. 1803, P. 1806)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、上記マイクロ波集積回路に限らず、一般の散乱体に対して、上記手 法を適用したところ、ブロック間の接続辺の数が 1以下のときには有用であるが、プロ ック間が 2つ以上の辺で接続されている場合には、反復計算が収束しないため正し ぃ電磁界分布を求めることが出来ず、上記手法を適用できないことが明らかになった [0005] However, when the above method is applied to a general scatterer, not limited to the microwave integrated circuit, it is useful when the number of connection sides between blocks is 1 or less. When the blocks are connected by two or more sides, it is clear that the iterative calculation does not converge and the correct electromagnetic field distribution cannot be obtained, and the above method cannot be applied.
[0006] 本発明は、カゝかる問題点を解決するためになされたものであり、電磁界分布の解析 にあたって、電界積分方程式モーメント法を適用すると共に、上記電界積分方程式 における大規模問題を解決し、少な ヽ計算機資質で大規模の電磁界分布が計算可 能となる電磁界分布計算方法を提供することを目的とする。 [0006] The present invention has been made to solve the problem, and in analyzing the electromagnetic field distribution, the field integral equation moment method is applied and the large-scale problem in the field integral equation is solved. The object of the present invention is to provide an electromagnetic field distribution calculation method capable of calculating a large-scale electromagnetic field distribution with a small amount of computer qualities.
また、少な!ヽ計算機資質で大規模の電磁界分布が計算可能となる電磁界分布計 算装置、および電磁界分布計算プログラムを提供することを目的とする。  It is another object of the present invention to provide an electromagnetic field distribution calculation device and an electromagnetic field distribution calculation program capable of calculating a large-scale electromagnetic field distribution with a small amount of computer qualities.
課題を解決するための手段  Means for solving the problem
[0007] この発明に係る電磁界分布計算方法は、金属構造体表面を複数の微小面積から なる要素に分割する第 1のステップ、分割された上記複数の要素に対し、各要素間 の共有辺を検出し、上記共有辺に垂直な未知数電流を設定する第 2のステップ、上 記複数の要素を N— 1個の複数の要素ブロックにブロック分割する第 3のステップ、設 定された複数の上記未知数電流を、上記各要素ブロック毎に別々に纏められ、上記 各要素ブロックにのみ属する N— 1個の電流ブロック nと、上記各要素ブロック間に流 れる未知数電流を一つに纏めた電流ブロック mとにブロック分割する第 4のステップ、 N個にブロック分割された各電流ブロックに対し、電界積分方程式モーメント法により ブロック行列方程式を作成する第 5のステップ、上記ブロック行列方程式を解く際に、 上記 N— 1個の電流ブロック nにのみ係わる項の計算にはブロック反復法を用い、上 記電流ブロック mに係わる項の計算には直接法を用い、全ての電流ブロックの未知 数電流値を計算する第 6のステップ、および得られた各電流ブロックの未知数電流値 を基に、金属構造体周辺の電磁場分布を計算する第 7のステップを備えたものであ る。 [0007] In the electromagnetic field distribution calculation method according to the present invention, a first step of dividing the surface of the metal structure into elements having a plurality of minute areas, a shared side between the elements for the plurality of divided elements The second step of setting the unknown current perpendicular to the shared edge, the third step of dividing the plurality of elements into N—one element block, the plurality of the set The unknown current is grouped separately for each element block, and 4th step to block-divide N into 1 current block n that belongs only to each element block and current block m that combines unknown current flowing between each element block into one block For each current block, the fifth step of creating a block matrix equation by the field integral equation moment method, when calculating the block matrix equation, it is necessary to calculate the term related to only N—one current block n. Uses the block iteration method, the direct method is used to calculate the term related to the current block m, the sixth step of calculating the unknown current value of all the current blocks, and the obtained unknown number of each current block Based on the current value, it has a seventh step to calculate the electromagnetic field distribution around the metal structure.
[0008] また、この発明に係る電磁界分布計算装置は、複数の微小面積力もなる要素に分 割された金属構造体表面の要素データを入力する入力手段、分割された上記複数 の要素に対し、各要素間の共有辺を検出し、上記共有辺に垂直な未知数電流を設 定する未知数電流設定手段、上記複数の要素を N— 1個の複数の要素ブロックにブ ロック分割する要素ブロック分割手段、設定された複数の上記未知数電流を、上記 各要素ブロック毎に別々に纏められ、上記各要素ブロックにのみ属する N— 1個の電 流ブロック nと、上記各要素ブロック間に流れる未知数電流を一つにまとめた電流ブ ロック mとにブロック分割する電流ブロック分割手段、 N個にブロック分割された各電 流ブロックに対し、電界積分方程式モーメント法によりブロック行列方程式を作成する ブロック行列方程式構築手段、上記ブロック行列方程式を解く際に、上記 N— 1個の 電流ブロック nにのみ係わる項の計算にはブロック反復法を用い、上記電流ブロック mに係わる項の計算には直接法を用い、全ての電流ブロックの未知数電流値を計算 する求解手段、および得られた各電流ブロックの未知数電流値を基に、金属構造体 周辺の電磁場分布を計算する電磁場分布計算手段を備えたものである。  [0008] In addition, the electromagnetic field distribution calculation apparatus according to the present invention provides an input means for inputting element data on the surface of a metal structure divided into a plurality of elements having a minute area force, and for the divided plurality of elements. An unknown current setting means for detecting a shared edge between elements and setting an unknown current perpendicular to the shared edge, and an element block division for dividing the plurality of elements into N—a plurality of element blocks Means, a plurality of set unknown currents are grouped separately for each element block, and N—one current block n belonging only to each element block, and the unknown current flowing between each element block Current block dividing means that divides the current block into one block, m, and the block matrix equation for each current block divided into N blocks by the electric field integral equation moment method. Block matrix equation construction means, when solving the block matrix equation, the block iteration method is used to calculate the term related only to the N current block n, and the term related to the current block m is calculated. The solution method for calculating the unknown current values of all current blocks using the direct method and the electromagnetic field distribution calculation means for calculating the electromagnetic field distribution around the metal structure based on the obtained unknown current values of each current block It is equipped with.
[0009] また、この発明に係る電磁界分布計算プログラムは、金属構造体表面を複数の微 小面積力 なる要素に分割する第 1のステップ、分割された上記複数の要素に対し、 各要素間の共有辺を検出し、上記共有辺に垂直な未知数電流を設定する第 2のス テツプ、上記複数の要素を N— 1個の複数の要素ブロックにブロック分割する第 3のス テツプ、設定された複数の上記未知数電流を、上記各要素ブロック毎に別々に纏め られ、上記各要素ブロックにのみ属する N— 1個の電流ブロック nと、上記各要素ブロ ック間に流れる未知数電流を一つに纏めた電流ブロック mとにブロック分割する第 4 のステップ、 N個にブロック分割された各電流ブロックに対し、電界積分方程式モーメ ント法によりブロック行列方程式を作成する第 5のステップ、上記ブロック行列方程式 を解く際に、上記 N— 1個の電流ブロック nにのみ係わる項の計算にはブロック反復 法を用い、上記電流ブロック mに係わる項の計算には直接法を用い、全ての電流ブ ロックの未知数電流値を計算する第 6のステップ、および得られた各電流ブロックの 未知数電流値を基に、金属構造体周辺の電磁場分布を計算する第 7のステップを実 行するものである。 [0009] In addition, the electromagnetic field distribution calculation program according to the present invention provides a first step of dividing the surface of the metal structure into a plurality of elements each having a small area force. The second step is to set the unknown current perpendicular to the shared side, and the third step to block the multiple elements into N—multiple element blocks. Multiple unknown currents are grouped separately for each element block. The fourth step of dividing the block into N—one current block n belonging only to each element block and a current block m in which unknown currents flowing between the element blocks are combined into one, N For each current block divided into blocks, the fifth step of creating a block matrix equation by the electric field integral equation moment method, when solving the block matrix equation, only the N-1 current block n The block iteration method is used to calculate the related terms, the direct method is used to calculate the terms related to the current block m, the sixth step of calculating the unknown current values of all the current blocks, and each obtained Based on the unknown current value of the current block, the seventh step of calculating the electromagnetic field distribution around the metal structure is executed.
発明の効果  The invention's effect
[0010] 本発明の電磁界分布計算方法、および電磁界分布計算装置、および電磁界分布 計算プログラムでは、金属構造体表面を複数の微小面積力 なる金属要素に分割 すると共に、金属構造体を複数のブロック構造に分けて電磁界分布を計算するが、 金属構造体をブロック構造に分ける際に、分割したそれぞれの構造が共有する金属 要素の辺の数がなるべく少なくなるように分割し、各ブロックに対する行列方程式を 作成すると共に、この行列方程式を解く際に直接法とブロック反復法を効率よく用い て解くので、少な 、計算機資質で任意の金属構造体に対する電磁界分布が計算可 能となる。  [0010] In the electromagnetic field distribution calculation method, electromagnetic field distribution calculation apparatus, and electromagnetic field distribution calculation program of the present invention, the surface of the metal structure is divided into a plurality of metal elements having a minute area force, and a plurality of metal structures are provided. The electromagnetic field distribution is calculated for each block structure, but when the metal structure is divided into block structures, each block is divided so that the number of sides of the metal elements shared by each divided structure is as small as possible. In addition to creating a matrix equation for, and efficiently solving the matrix equation using the direct method and the block iteration method, the electromagnetic field distribution for any metal structure can be calculated with little computer quality.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の実施の形態 1による電磁波散乱体における電磁界分布計算方法を示 すフローチャートである。  FIG. 1 is a flowchart showing a method for calculating an electromagnetic field distribution in an electromagnetic wave scatterer according to Embodiment 1 of the present invention.
[図 2]本発明の実施の形態 1による電磁界分布計算方法 (ステップ S1)を説明する図 である。  FIG. 2 is a diagram illustrating an electromagnetic field distribution calculation method (step S1) according to the first embodiment of the present invention.
[図 3]本発明の実施の形態 1による電磁界分布計算方法 (ステップ S3)を説明する図 である。  FIG. 3 is a diagram illustrating an electromagnetic field distribution calculation method (step S3) according to the first embodiment of the present invention.
[図 4]本発明の実施の形態 1による電磁界分布計算方法 (ステップ S4)を説明する図 である。  FIG. 4 is a diagram for explaining an electromagnetic field distribution calculation method (step S4) according to the first embodiment of the present invention.
[図 5]本発明の実施の形態 1による電磁界分布計算方法 (ステップ S5)を説明する図 である。 FIG. 5 is a diagram for explaining an electromagnetic field distribution calculation method (step S5) according to the first embodiment of the present invention. It is.
[図 6]本発明の実施の形態 2による電磁界分布計算方法 (ステップ SI)を説明する図 である。  FIG. 6 is a diagram for explaining an electromagnetic field distribution calculation method (step SI) according to the second embodiment of the present invention.
[図 7]本発明の実施の形態 2による電磁界分布計算方法 (ステップ S3)を説明する図 である。  FIG. 7 is a diagram for explaining an electromagnetic field distribution calculation method (step S 3) according to the second embodiment of the present invention.
[図 8]本発明の実施の形態 2による電磁界分布計算方法 (ステップ S4)を説明する図 である。  FIG. 8 is a diagram for explaining an electromagnetic field distribution calculation method (step S 4) according to the second embodiment of the present invention.
[図 9]本発明の実施の形態 2による電磁界分布計算方法 (ステップ S5)を説明する図 である。  FIG. 9 is a diagram for explaining an electromagnetic field distribution calculation method (step S5) according to the second embodiment of the present invention.
[図 10]本発明の実施の形態 3による電磁界分布計算方法 (ステップ S1)を説明する 図である。  FIG. 10 is a diagram for explaining an electromagnetic field distribution calculation method (step S1) according to the third embodiment of the present invention.
[図 11]本発明の実施の形態 3による電磁界分布計算方法 (ステップ S5)を説明する 図である。  FIG. 11 is a diagram for explaining an electromagnetic field distribution calculation method (step S5) according to the third embodiment of the present invention.
[図 12]本発明の実施の形態 3による電磁界分布計算装置を示すブロック図である。 符号の説明  FIG. 12 is a block diagram showing an electromagnetic field distribution calculating apparatus according to Embodiment 3 of the present invention. Explanation of symbols
[0012] 1 自動車金属要素構成データ、 2 要素データ入力手段、 3 未知数電流設定手 段、 4 金属要素のブロック分割手段、 5 未知数電流のブロック分割手段、 6 ブロッ ク行列方程式の構築手段、 7 行列方程式の求解手段、 8 電磁場分布の計算手段 、 10 金属平板、 20 金属構造体、 A, B, C 金属要素ブロック。  [0012] 1 automotive metal element configuration data, 2 element data input means, 3 unknown current setting means, 4 metal element block division means, 5 unknown current block division means, 6 block matrix equation construction means, 7 matrix Equation solving means, 8 electromagnetic field distribution calculating means, 10 metal plates, 20 metal structures, A, B, C metal element blocks.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 実施の形態 1. Embodiment 1.
図 1 (a)は本発明の実施の形態 1による電磁波散乱体における電磁界分布計算方 法を示すフローチャート、図 1 (b)は、高周波電磁界解析で一般に用いられる電界積 分方程式モーメント法 (以後、従来モーメント法と呼ぶ)を用いて電磁界散乱体にお ける電磁界分布を計算する方法を示すフローチャートである。  Fig. 1 (a) is a flowchart showing the electromagnetic field distribution calculation method for the electromagnetic wave scatterer according to Embodiment 1 of the present invention, and Fig. 1 (b) is an electric field integral equation moment method ( This is a flowchart showing a method of calculating the electromagnetic field distribution in the electromagnetic field scatterer using the conventional moment method).
本発明では、電磁界分布を計算するにあたって、ブロック分割とブロック反復法を 適用すると共に、ブロックの割け方、および積分方程式を解く際に直接法を適用する 部分とブロック反復法を適用する部分とを工夫することにより、計算時間、使用メモリ の計算資源を少なくし、大規模問題を解くことを可能とする。 In the present invention, in calculating the electromagnetic field distribution, the block division and the block iteration method are applied, the block division method, and the direct method when solving the integral equation and the block iteration method are applied. By devising, calculation time, memory used It is possible to solve the large-scale problem by reducing the computational resources.
[0014] 図 1のフローチャートの具体的な説明として、正方形金属平板からの高周波電磁界 の散乱問題を考える。  As a specific description of the flowchart of FIG. 1, consider the problem of high-frequency electromagnetic field scattering from a square metal plate.
まず、ステップ S1では、図 2に示すように、電磁波の散乱体である金属平板 10を複 数の三角形要素に分割する。この例では三角形要素に分割したが、従来ある方法と して、四角形や多角形要素に分割する手法もある。本発明は、分割要素として三角 形要素以外の要素にも適用可能である(従来法と同じ)。  First, in step S1, as shown in FIG. 2, the metal flat plate 10 which is an electromagnetic wave scatterer is divided into a plurality of triangular elements. In this example, it is divided into triangular elements, but there is also a conventional method of dividing into quadrilateral or polygonal elements. The present invention can also be applied to elements other than triangular elements as divided elements (same as the conventional method).
[0015] 次に、ステップ S 2では、ブロック分割の数 (N— 1)を指定する。問題の規模によって 分割数は異なるが、数万要素規模の大規模の問題において、計算時間を短縮する 効果を得るためには、ブロック内の要素が 3000要素程度になるようにブロック分割す る。 Next, in step S 2, the number of block divisions (N−1) is designated. Although the number of divisions varies depending on the scale of the problem, in order to obtain the effect of reducing the calculation time in a large-scale problem with tens of thousands of elements, the blocks are divided so that the elements in the block are about 3000 elements.
この例では、説明を明解にするため、 72の三角要素を 2つのブロックに分割するこ とを考える。  In this example, for clarity of explanation, consider dividing the 72 triangular elements into two blocks.
[0016] 次に、ステップ S3では、三角要素間で共有される辺を検出し、上記辺に垂直に流 れる電流を未知数として設定する(従来法と同じ)。図 3に設定した未知数電流 (矢印 )を示す。  [0016] Next, in step S3, a side shared by the triangular elements is detected, and a current flowing perpendicularly to the side is set as an unknown (same as in the conventional method). Figure 3 shows the unknown current (arrow) set.
この正方形金属平板の例の場合、未知数電流 Iが 96個存在する。従来のモーメント 法であれば、図 1 (b)のステップ S60で、この 96個の未知数電流 Iをもとに 96 X 96の インピーダンス行列 Zを作成し、行列方程式 ZI=Vを作成して、ステップ S70で、この 行列方程式を直接法で解き、電流 Iを求める。  In this square metal plate example, there are 96 unknown currents I. In the conventional moment method, at step S60 in Fig. 1 (b), an impedance matrix Z of 96 X 96 is created based on these 96 unknown currents I, and a matrix equation ZI = V is created. In step S70, the matrix equation is solved by the direct method to obtain the current I.
本発明では、設定された未知数電流を以下に示すようなブロックに分け、ブロック分 割された各電流ブロックに対しブロック行列方程式を作成する。  In the present invention, the set unknown current is divided into blocks as shown below, and a block matrix equation is created for each divided current block.
[0017] すなわち、ステップ S4では、各要素ブロック内のみを流れる未知数電流の数がほ ぼ同等で、かつ、各要素ブロック間に流れる未知数電流の数が最も少なくなるような 金属要素の分割の仕方を最適化手法(例えば、「Numerical Recipes in C :TheThat is, in step S4, the metal element is divided such that the number of unknown currents flowing only in each element block is almost the same and the number of unknown currents flowing between the element blocks is minimized. Optimization techniques (for example, “Numerical Recipes in C: The
Art of Scientific ComputmgJ ("William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling)に掲載されている遺伝的アルゴリ ズム(Genetic Algorithm)の手法)により求め、金属要素のブロック分割を最適化 する。 The block division of metal elements is determined by the genetic algorithm (Genetic Algorithm method) published in Art of Scientific ComputmgJ ("William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling)" Optimize To do.
この例では、未知数電流の数が 96電流があり、 1ブロックあたりの最低の電流の数 を 40に限定して、最適な分割を探索したところ、要素ブロック間の共有辺の数は 6辺 となり最適化された。金属要素のブロック分割は、図 4に示すように、白色部分 (要素 ブロック A)とグレー部分(要素ブロック B)との 2つのブロックに分割される。  In this example, the number of unknown currents is 96, and the minimum number of currents per block is limited to 40. When searching for the optimal division, the number of shared sides between element blocks is 6. Optimized. As shown in Fig. 4, the metal element is divided into two blocks, a white part (element block A) and a gray part (element block B).
[0018] 次に、ステップ S5では、ステップ S3で設定された複数の未知数電流を、各要素ブ ロックにのみ属し、上記各要素ブロック毎に別々に纏められた N— 1個の電流ブロック nと、上記各要素ブロック間に流れる未知数電流を一つにまとめた電流ブロック mとに ブロック分割する。すなわち、図 5 (a)に示すように、要素ブロック Aにのみ属する未知 数電流を電流ブロック(1)、図 5 (c)に示すように、要素ブロック Bにのみ属する未知 数電流を電流ブロック(2)、図 5 (b)に示すように、要素ブロック Aと要素ブロック Bとの 間に流れる未知数電流を電流ブロック(3)とする。  [0018] Next, in step S5, a plurality of unknown currents set in step S3 belong only to each element block, and N—one current block n separately grouped for each element block. Then, the unknown current flowing between the element blocks is divided into current blocks m which are combined into one. That is, as shown in Fig. 5 (a), an unknown current belonging only to element block A is a current block (1), and as shown in Fig. 5 (c), an unknown current belonging only to element block B is a current block. (2) As shown in Fig. 5 (b), the unknown current flowing between element block A and element block B is defined as current block (3).
[0019] 次に、ステップ S6で、 N個にブロック分割された各電流ブロックに対し、従来モーメ ント法と同様の方法で行列方程式を作成し、ステップ S7でこの行列方程式を解き、 全ての電流ブロックの未知数電流値を計算する。なお、従来のモーメント法では、前 述のように、 96 X 96の 1つのインピーダンス行列 Zを作成する力 本実施の形態では 、上記ステップ 6で行列方程式を作成する際に、インピーダンス行列として 3 X 3のブ ロック行列を作成し、以下のようなブロック行列方程式を作成する。  [0019] Next, in step S6, a matrix equation is created for each current block divided into N blocks by a method similar to the conventional moment method, and in step S7, this matrix equation is solved, and all currents are Calculate the unknown current value of the block. In the conventional moment method, as described above, the force to create one impedance matrix Z of 96 X 96 In this embodiment, when the matrix equation is created in step 6 above, the impedance matrix is 3 X Create a block matrix of 3 and the following block matrix equation.
[0020] [数 1]  [0020] [Equation 1]
11 Η2 11 Η2
< 1 )  <1)
^'21 32
Figure imgf000009_0001
^ '21 32
Figure imgf000009_0001
[0021] この例の場合、 Z は 45 X 45の行列、 Z は 45 X 45の行列、 Z は 45 X 6の行列、 Z [0021] In this example, Z is a 45 X 45 matrix, Z is a 45 X 45 matrix, Z is a 45 X 6 matrix, Z
11 12 13  11 12 13
は 45 X 45の行列、 Z は 45 X 45の行列、 Z は 45 X 6の行列、 Z は 6 X 45の行列 Is a 45 x 45 matrix, Z is a 45 x 45 matrix, Z is a 45 x 6 matrix, Z is a 6 x 45 matrix
21 22 23 31 21 22 23 31
、 Z は 6 X 45の行列、 Z は 6 X 6の行列である。なお、 Iは 45 X 1の未知数電流べク , Z is a 6 x 45 matrix and Z is a 6 x 6 matrix. Note that I is an unknown current vector of 45 X 1.
32 33 1 32 33 1
トル、 Iは 45 X 1の未知数電流ベクトル、 Iは 6 X 1の未知数電流ベクトルであり、この Toll, I is an unknown current vector of 45 X 1, I is an unknown current vector of 6 X 1, and this
2 3 twenty three
方程式で求めるべき解である。 Vは 45 X 1の電圧ベクトル、 Vは 45 X 1の電圧べタト ル、 Vは 6 X 1の電圧ベクトルであり、これらは、電磁波源が複数の三角要素のそれIt is a solution to be obtained by an equation. V is a voltage vector of 45 x 1, V is a voltage beta of 45 x 1 , V is a 6 x 1 voltage vector, which is that of an electromagnetic source with multiple triangular elements
3 Three
ぞれの辺要素に作る電圧である。電圧ベクトルの作成方法は、従来モーメント法と同 様である。  This is the voltage created at each side element. The voltage vector is created in the same way as the conventional moment method.
[0022] 次にこの行列方程式を解く手順を示す。  Next, a procedure for solving this matrix equation is shown.
本実施の形態では、図 5に示すように、未知数電流を電流ブロック(1)、電流ブロッ ク(2)、電流ブロック(3)にブロック分けし、ブロック間の相互作用をすベて電流ブロッ ク(3)に入れており、このようなブロック分けを行うことによって、電流ブロック(1)と電 流ブロック(2)にのみ係わる行列に対しては初期値としてブロック間の相互作用を無 視した近似ができるようになる。その結果、電流ブロック(3)以外の電流ブロック間に おける相互作用をよく知られて 、るブロック反復法 (ブロックヤコビ法、ブロックガウス ザイデル法、ブロック SOR法)によって補正していくことが可能となる。さらに、電流ブ ロック(3)に係わる行列に関しては、直接法を用いて、電流ブロック(3)とそれ以外の 各電流ブロック(1)、 (2)との相互作用を考慮した解を得ることができる。すなわち、 未知数電流の数が最小なので、直接法を用いても少な 、計算量で計算できるように なる。その結果、ブロック間が 2つ以上の複数の辺で接続されている場合にも最小限 の低速な直接法による計算と高速なブロック反復法による計算とを併用して、正しい 電磁界分布を求めることができる。  In the present embodiment, as shown in FIG. 5, the unknown current is divided into a current block (1), a current block (2), and a current block (3). (3). By performing such block division, the interaction between the blocks is ignored as an initial value for the matrix related only to the current block (1) and the current block (2). Can be approximated. As a result, the interaction between current blocks other than the current block (3) is well known and can be corrected by the block iteration method (Block Jacobi method, Block Gauss Seidel method, Block SOR method). Become. Furthermore, for the matrix related to the current block (3), use the direct method to obtain a solution that considers the interaction between the current block (3) and each of the other current blocks (1) and (2). Can do. In other words, since the number of unknown currents is the smallest, even if the direct method is used, the calculation can be performed with a small amount of calculation. As a result, even when blocks are connected by two or more sides, the correct electromagnetic field distribution is obtained by using the minimum slow direct method and the fast block iteration method together. be able to.
[0023] 以下に手順を詳細に示す。  [0023] The procedure is described in detail below.
(1)式は、以下の(2) (3)式のように書き下すことが可能である。これは単純な数式 変形である。  Equation (1) can be written down as the following equations (2) and (3). This is a simple mathematical variant.
[0024] [数 2]  [0024] [Equation 2]
33 32. < 2 )
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000010_0001
行列演算の中で最も計算コスト (使用メモリ、計算時間)がかかるのは逆行列を求め る演算である。逆行列を求める演算を効率ィ匕することにより全体の計算コストを下げる ことができる。
33 32. <2)
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000010_0001
The computation cost (used memory, computation time) of the matrix operations is the one that calculates the inverse matrix. Lower the overall computational cost by improving the efficiency of computing the inverse matrix be able to.
(2) (3)式において、逆行列を求める演算は、以下の四ケ所((4)〜(7)式)存在す る。  (2) In Equation (3), there are the following four operations (Equations (4) to (7)) for calculating the inverse matrix.
[0026] [数 3]  [0026] [Equation 3]
Figure imgf000011_0001
2
Figure imgf000011_0001
2
[0027] (4)〜(7)式中の逆行列 [0027] Inverse matrix in equations (4) to (7)
[0028] [数 4]
Figure imgf000011_0002
[0028] [Equation 4]
Figure imgf000011_0002
[0029] は、電流ブロック(1)と電流ブロック(2)とにのみ係わるインピーダンス行列の逆行列 であり、電流ブロック(1)と電流ブロック(2)との間には相互作用がないため、(8)式の 計算には、ブロック反復法を用いることが可能である。ブロック反復法を用いることが できれば、通常の逆行列を求める方法に比べ、計算コストが少なくて済む。また、電 流ブロック(3)に係わる項を含む(6)式の逆行列の計算では、ブロック間を接続する 辺の数が 6辺であるので、逆行列を計算するべき行列の大きさは 6 X 6となり、従来モ 一メント法を適用した場合の 96 X 96の逆行列に比べ計算コストは小さくなる。 [0029] is an inverse matrix of the impedance matrix related only to the current block (1) and the current block (2), and there is no interaction between the current block (1) and the current block (2). The block iteration method can be used to calculate equation (8). If the block iterative method can be used, the calculation cost can be reduced compared with the method of obtaining the normal inverse matrix. In addition, in the calculation of the inverse matrix of equation (6) including the term related to the current block (3), the number of sides connecting the blocks is 6, so the size of the matrix for calculating the inverse matrix is The calculation cost is 6 × 6, which is lower than the 96 × 96 inverse matrix when the conventional moment method is applied.
[0030] 具体的には、 (8)式の逆行列をブロック反復法で計算し、これより(4) (5) (7)式を 計算する。さらに、(4)式の結果を用い、(6)式の逆行列を直接法で計算する。得ら れた計算結果と(2)、 (3)式を用いて電流ベクトル I、 I、 Iを求めることにより、全ての [0030] Specifically, the inverse matrix of equation (8) is calculated by the block iteration method, and from this, equations (4), (5), and (7) are calculated. Further, using the result of equation (4), the inverse matrix of equation (6) is calculated by the direct method. Obtained All current vectors I, I, I are calculated using the calculated results and equations (2) and (3).
1 2 3  one two Three
未知数電流値を求める。  Find the unknown current value.
[0031] ステップ S8では、得られた電流値に対して、従来モーメント法と同様にグリーン関 数を演算することによって任意の点での電磁場が計算可能となる。  [0031] In step S8, an electromagnetic field at an arbitrary point can be calculated by calculating a green function for the obtained current value in the same manner as in the conventional moment method.
[0032] この方法では、従来モーメント法に比べ、計算時間、使用メモリ等の計算資源が少 なくてすむ。すなわち、直接法のみを用いた従来の計算方法では、未知数電流の数 を Nとした時、計算量は 0 (N3)になるが、本発明による手法では 0 (N2)の計算量に なる。よって、計算時間がこれに依存して短縮化できる。また、使用メモリも、金属要 素を 2ブロックに分割した本実施の形態の場合には 1Z4となり、計算資源が節約で きる。 [0032] This method requires less calculation resources such as calculation time and used memory than the conventional moment method. In other words, in the conventional calculation method using only the direct method, when the number of unknown currents is N, the calculation amount is 0 (N 3 ), but in the method according to the present invention, the calculation amount is 0 (N 2 ). Become. Therefore, the calculation time can be shortened depending on this. In addition, the memory used is 1Z4 in the case of the present embodiment in which the metal element is divided into two blocks, so that calculation resources can be saved.
従って、本発明の方法を用いれば計算コストが低減できる効果がある。  Therefore, the calculation cost can be reduced by using the method of the present invention.
[0033] 実施の形態 2. [0033] Embodiment 2.
図 6は本実施の形態 2に係わる長方形金属平板 10を三角形要素に分割した図で ある。このような三角形要素に対して、図 1 (a)のフローチャートに沿って電磁場分布 を計算した。本実施の形態 2では、ステップ S2で指定するブロック分割の数 (N— 1) を 3つとした。ステップ S3で、図 7に示すように、要素間で共有される共有辺上の電流 を未知数電流として設定すると、未知数電流は 147個存在する。従来モーメント法で あれば、この未知数電流をもとに 147 X 147のインピーダンス行列 Zを作成し、行列 方程式 ZI=Vを作成して、この行列方程式を直接法で解き、電流 Iを求める。  FIG. 6 is a diagram in which the rectangular metal plate 10 according to the second embodiment is divided into triangular elements. For these triangular elements, the electromagnetic field distribution was calculated according to the flowchart in Fig. 1 (a). In the second embodiment, the number of block divisions (N-1) specified in step S2 is three. In step S3, as shown in Fig. 7, if the current on the shared side shared between the elements is set as the unknown current, there are 147 unknown currents. With the conventional moment method, an impedance matrix Z of 147 X 147 is created based on this unknown current, a matrix equation ZI = V is created, and this matrix equation is solved by the direct method to obtain the current I.
本実施の形態では、計算コスト (使用メモリ'計算時間)を節約するために、直接イン ピーダンス行列を作成せずに、以下のようなブロック分割を行い、ブロック行列方程 式を作成する。すなわち、ステップ S4で、図 8に示すように、三角形要素を左部分( 要素ブロック A)と中央部(要素ブロック B)と右部(要素ブロック C)との 3つのブロック に分割する。  In this embodiment, in order to save calculation cost (used memory 'calculation time), the following block division is performed and the block matrix equation is created without directly creating the impedance matrix. That is, in step S4, as shown in FIG. 8, the triangular element is divided into three blocks: a left part (element block A), a central part (element block B), and a right part (element block C).
[0034] ステップ S5では、ステップ S3で設定された未知数電流を、各要素ブロックにのみ属 し、上記各要素ブロック毎に別々に纏められた N— 1個の電流ブロック nと、上記各要 素ブロック間に流れる未知数電流を一つにまとめた電流ブロック mとにブロック分割 する。すなわち、図 9 (a)に示すように、要素ブロック Aにのみ属する未知数電流を電 流ブロック(1)、図 9(b)に示すように、要素ブロック Bにのみ属する未知数電流を電 流ブロック(2)、図 9(c)に示すように、要素ブロック Cにのみ属する未知数電流を電 流ブロック(3)、図 9(d)に示すように、要素ブロック Aと要素ブロック Bとの間に流れる 未知数電流、および要素ブロック Bと要素ブロックじとの間に流れる未知数電流を電 流ブロック(4)とする。 [0034] In step S5, the unknown current set in step S3 belongs only to each element block and is divided into N—one current block n separately for each element block, and each element described above. The unknown current flowing between the blocks is divided into current blocks m that are combined into one block. That is, as shown in Fig. 9 (a), the unknown current belonging only to element block A is As shown in current block (1) and Fig. 9 (b), an unknown current belonging only to element block B is converted to an unknown current belonging only to element block C as shown in current block (2) and Fig. 9 (c). As shown in Fig. 9 (d), the unknown current flowing between element block A and element block B and the unknown current flowing between element block B and element block are Let it be the flow block (4).
[0035] 次に、ステップ S6で、 N個にブロック分割された各電流ブロックに対し、従来モーメ ント法と同様の方法で行列方程式を作成し、ステップ S7でこの行列方程式を解き、 全ての電流ブロックの未知数電流値を計算する。ただし、本実施の形態では、インピ ダンス行列として 4 X 4のブロック行列を作成し、以下のようなブロック行列方程式 を作成する。  [0035] Next, in step S6, a matrix equation is created for each current block divided into N blocks by the same method as the conventional moment method. In step S7, this matrix equation is solved, and all currents are Calculate the unknown current value of the block. However, in the present embodiment, a 4 × 4 block matrix is created as an impedance matrix, and the following block matrix equation is created.
[0036] [数 5]  [0036] [Equation 5]
Figure imgf000013_0001
Figure imgf000013_0001
[0037] この例の場合、 Ζ は 45X45の行列、 Ζ は 45X45の行列、 Ζ は 45X45の行列、 [0037] In this example, Ζ is a 45X45 matrix, Ζ is a 45X45 matrix, Ζ is a 45X45 matrix,
11 12 13  11 12 13
Ζ 〖ま 45 XI 2の行歹 U Ζ 〖ま 45X45の行歹 U Z 〖ま 45 X45の行歹 U Z 〖ま 45X45の Ζ 〖45 45 XI 2 row 歹 U 〖〖45 x 45 row 歹 U Z 〖45 x 45 row Z U Z 〖45 x 45
14 21 22 23 14 21 22 23
行列、 Z は 45X12の行列、 Z は 45X45の行列、 Z は 45X45の行列、 Z は 45 Matrix, Z is a 45X12 matrix, Z is a 45X45 matrix, Z is a 45X45 matrix, Z is 45
24 31 32 3324 31 32 33
X45の行列、 Z は 45X12の行列、 Z は 12X45の行列、 Z は 12X45の行列、 Z X45 matrix, Z is 45X12 matrix, Z is 12X45 matrix, Z is 12X45 matrix, Z
34 41 42 4 は 12X45の行列、 Z は 12X 12の行列である。なお、 Iは 45X 1の未知数電流べ 34 41 42 4 is a 12X45 matrix and Z is a 12X12 matrix. Note that I is an unknown current base of 45X 1.
3 44 1 3 44 1
タトル、 Iは 45 X 1の未知数電流ベクトル、 Iは 45 X 1の未知数電流ベクトル、 Iは 12 Tuttle, I is an unknown current vector of 45 X 1, I is an unknown current vector of 45 X 1, I is 12
2 3 42 3 4
X 1の未知数電流ベクトルであり、この方程式で求めるべき解である。 Vは 45X 1の This is the unknown current vector of X1, which is the solution to be obtained from this equation. V 45X 1
1  1
電圧ベクトル、 Vは 45 X 1の電圧ベクトル、 Vは 45 X 1の電圧ベクトル、 Vは 12X 1  Voltage vector, V is 45 x 1 voltage vector, V is 45 x 1 voltage vector, V is 12 x 1
2 3 4 の電圧ベクトルであり、これらは、電磁波源が複数の三角要素のそれぞれの辺要素 に作る電圧である。電圧ベクトルの作成方法は、従来モーメント法と同様である。  2 3 4 These are the voltages generated by the electromagnetic wave source at each side element of the triangular elements. The method of creating the voltage vector is the same as the conventional moment method.
[0038] 次にこの行列方程式を解く手順を示す。  Next, a procedure for solving this matrix equation is shown.
本実施の形態では、図 9に示すように、未知数電流を電流ブロック(1)、電流ブロッ ク(2)、電流ブロック(3)、電流ブロック (4)にブロック分けし、ブロック間の相互作用を すべて電流ブロック(4)に入れており、このようなブロック分けを行うことによって、電 流ブロック(1)と電流ブロック(2)と電流ブロック(3)にのみ係わる行列に対しては初 期値としてブロック間の相互作用を無視した近似ができるようになる。その結果、電流 ブロック (4)以外の電流ブロック間における相互作用をブロック反復法 (ブロックヤコ ビ法、ブロックガウスザイデル法、ブロック SOR法)によって補正していくことが可能と なる。さらに、電流ブロック (4)に係わる行列に関しては、直接法を用いて、電流プロ ック (4)とそれ以外の各電流ブロック(1)、(2)、(3)との相互作用を考慮した解を得る ことができる。すなわち、未知数電流の数が最小なので、直接法を用いても少ない計 算量で計算できるようになる。その結果、ブロック間が 2つ以上の複数の辺で接続さ れている場合にも最小限の低速な直接法による計算と高速なブロック反復法による 計算とを併用して、正しい電磁界分布を求めることができる。 In this embodiment, as shown in FIG. 9, the unknown current is divided into a current block (1) and a current block. Block (2), current block (3), and current block (4), and all the interactions between the blocks are put into the current block (4). For matrices related only to block (1), current block (2), and current block (3), the initial value can be approximated by neglecting the interaction between blocks. As a result, the interaction between the current blocks other than the current block (4) can be corrected by the block iteration method (block Jacobian method, block Gauss Seidel method, block SOR method). Furthermore, regarding the matrix related to the current block (4), the direct method is used to consider the interaction between the current block (4) and each of the other current blocks (1), (2), (3). Can be obtained. In other words, since the number of unknown currents is minimal, it can be calculated with a small amount of calculation even if the direct method is used. As a result, even when the blocks are connected by two or more sides, the correct electromagnetic field distribution can be obtained by combining the calculation using the minimum slow direct method and the calculation using the fast block iteration method. Can be sought.
[0039] 以下に手順を詳細に示す。  [0039] The procedure is described in detail below.
(9)式は、以下の(10) (11)式のように書き下すことが可能である。これは単純な数 式変形である。  Equation (9) can be written down as the following equations (10) and (11). This is a simple mathematical variant.
[0040] [数 6]  [0040] [Equation 6]
Figure imgf000014_0001
Figure imgf000014_0001
i t 0 )
Figure imgf000014_0002
行列演算の中で最も計算コスト (使用メモリ、計算時間)がかかるのは逆行列を求め る演算である。逆行列を求める演算を効率ィ匕することにより全体の計算コストを下げる ことができる。
it 0)
Figure imgf000014_0002
The computation cost (used memory, computation time) of the matrix operations is the one that calculates the inverse matrix. The overall calculation cost can be reduced by efficiently calculating the inverse matrix.
(10) (11)式において、逆行列を求める演算は、以下の四ケ所((12) (15)式) 存在する。 [0042] [数 7] (10) In equation (11), there are the following four points ((12) (15)) for calculating the inverse matrix. [0042] [Equation 7]
Figure imgf000015_0001
Figure imgf000015_0001
-1.  -1.
½ 12 13 ι - 21 . · 24^4 ( 1 5〉 ½ 12 13 ι -21 .24 ^ 4 (1 5〉
,¾ ¾ ¾ 34ί4 , ¾ ¾ ¾ 34 ί 4
[0043] (12)〜(15)式中の逆行列 [0043] Inverse matrix in equations (12) to (15)
[0044] [数 8] 11 , [0044] [Equation 8] 11,
21 twenty one
' 2 3  ' twenty three
[0045] は、電流ブロック(1)と電流ブロック(2)と電流ブロック(3)とにのみ係わるインピーダ ンス行列の逆行列であり、電流ブロック(1)と電流ブロック(2)と電流ブロック(3)との 間には相互作用がないため、(16)式の計算には、ブロック反復法を用いることが可 能である。ブロック反復法を用いることができれば、通常の逆行列を求める方法に比 ベ、使用メモリ、および計算量 (すなわち計算時間)が低減できるので、計算コストが 少なくて済む。また、電流ブロック (4)に係わる項を含む(14)式の逆行列の計算では 、ブロック間を接続する辺の数が 12辺であるので、逆行列を計算するべき行列の大 きさは 12 X 12となり、従来モーメント法を適用した場合の 147 X 147の逆行列に比 ベ、前記同様に計算コストは小さくなる。 [0045] is an inverse matrix of the impedance matrix related only to the current block (1), the current block (2), and the current block (3). The current block (1), the current block (2), and the current block ( Since there is no interaction with 3), it is possible to use the block iteration method to calculate Eq. (16). If the block iteration method can be used, the calculation cost can be reduced because the memory used and the amount of calculation (that is, the calculation time) can be reduced compared to the method for obtaining the normal inverse matrix. In addition, in the calculation of the inverse matrix of equation (14) including the term related to the current block (4), the number of sides connecting the blocks is 12, so the large matrix to calculate the inverse matrix is large. The size is 12 x 12, and the calculation cost is lower than the inverse matrix of 147 x 147 when the conventional method of moments is applied.
[0046] 具体的には、(16)式の逆行列を反復法で計算し、これより(12) (13) (15)式を計 算する。さらに、(12)式の結果を用い、(14)式の逆行列を直接法で計算する。得ら れた計算結果と(10)、 (11)式を用いて電流ベクトル I 、 I 、 I 、 Iを求めることにより、 [0046] Specifically, the inverse matrix of equation (16) is calculated by an iterative method, and from this, equations (12), (13), and (15) are calculated. Further, using the result of equation (12), the inverse matrix of equation (14) is calculated by the direct method. By calculating the current vectors I, I, I, and I using the obtained calculation results and (10) and (11),
1 2 3 4  1 2 3 4
全ての未知数電流値を求める。。  Find all unknown current values. .
[0047] ステップ S8では、得られた電流値に対して、従来モーメント法と同様にグリーン関 数を演算することによって任意の点での電磁場が計算可能となる。  [0047] In step S8, an electromagnetic field at an arbitrary point can be calculated by calculating a green function for the obtained current value in the same manner as in the conventional moment method.
[0048] この方法では、従来モーメント法に比べ、計算時間、使用メモリ等の計算資源が少 なくてすむ。すなわち、直接法のみを用いた従来の計算方法では、未知数電流の数 を Nとした時、計算量は 0 (N3)になるが、本発明による手法では 0 (N2)の計算量に なる。よって、計算時間がこれに依存して短縮化できる。また、使用メモリも、金属要 素を 3ブロックに分割した本実施の形態の場合には 1Z9となり、計算資源が節約で きる。 [0048] This method requires less calculation resources such as calculation time and used memory than the conventional moment method. In other words, in the conventional calculation method using only the direct method, when the number of unknown currents is N, the calculation amount is 0 (N 3 ), but in the method according to the present invention, the calculation amount is 0 (N 2 ). Become. Therefore, the calculation time can be shortened depending on this. In addition, the memory used is 1Z9 in the case of the present embodiment in which the metal element is divided into three blocks, so that calculation resources can be saved.
従って、本発明の方法を用いれば計算コストが低減できる効果がある。  Therefore, the calculation cost can be reduced by using the method of the present invention.
[0049] 上記実施の形態 1では、要素を 2ブロックに分割し、未知数電流を 3ブロックに分割 する例を、上記実施の形態 2では、要素を 3ブロックに分割し、未知数電流を 4ブロッ クに分割する例を示したが、要素を N—1個のブロックに分割し、未知数電流を N個 のブロックに分割する場合にも、下式を用 、て同様に計算できる。 [0049] In the first embodiment, the element is divided into two blocks and the unknown current is divided into three blocks. In the second embodiment, the element is divided into three blocks and the unknown current is divided into four blocks. In the example shown in Fig. 8, when the element is divided into N-1 blocks and the unknown current is divided into N blocks, the same calculation can be performed using the following formula.
[0050] [数 9] [0050] [Equation 9]
Figure imgf000016_0001
Figure imgf000016_0001
< 1 ?)
Figure imgf000016_0003
Figure imgf000016_0002
<1? )
Figure imgf000016_0003
Figure imgf000016_0002
[0051] 実施の形態 3. 本実施の形態 3では、車による電磁波の散乱問題を解析する。 [0051] Embodiment 3. In the third embodiment, the problem of electromagnetic wave scattering by a car is analyzed.
図 10は本実施の形態 3に係わる金属構造体 (車両) 20を三角形要素に分割した図 である。このような三角形要素に対して、図 1 (a)のフローチャートに沿って電磁場分 布を計算した。本実施の形態 3では、ステップ S2で指定する要素のブロック分割の数 を、実施の形態 2と同様、 3つとした。  FIG. 10 is a diagram in which the metal structure (vehicle) 20 according to the third embodiment is divided into triangular elements. For these triangular elements, the electromagnetic field distribution was calculated according to the flowchart in Fig. 1 (a). In the third embodiment, the number of block divisions of the element specified in step S2 is three as in the second embodiment.
[0052] ステップ S3では、要素間で共有される共有辺上の電流を未知数電流として設定す る。ステップ S4では、各要素ブロックを構成する要素の数が 5千要素以下 (使用メモリ に応じて変化するが現行の計算機の計算速度では、 5千程度が適当)となるように分 割すると共に、各要素ブロック間で共有する要素の辺の数が最小となるように、三角 形要素をブロック分割する。例えば、車両の窓の支柱部に要素ブロックの境界部がく るように、屋根部分、ボンネット部分、車のボディ部分に分割する。 [0052] In step S3, the current on the shared side shared between the elements is set as an unknown current. In step S4, the number of elements constituting each element block is divided into 5,000 elements or less (it changes according to the memory used, but about 5,000 is appropriate for the current computer calculation speed). The triangular element is divided into blocks so that the number of element sides shared between each element block is minimized. For example, it is divided into a roof part, a bonnet part, and a car body part so that the boundary part of the element block comes to the column part of the vehicle window.
ステップ S5では、ステップ S3で設定された未知数電流を、図 11に示すように 4つの ブロックにブロック分割する。図 11 (a)は電流ブロック(1)の未知数電流を示しており 、車の屋根部分に属する 542個の未知数電流を示す。図 11 (b)は電流ブロック(2) の未知数電流を示しており、車のボンネットに属する 1394個の未知数電流を示す。 図 11 (c)は電流ブロック(3)の未知数電流を示しており、車のボディに属する 1620 個の未知数電流を示す。図 11 (d)は電流ブロック (4)の未知数電流を示しており、車 の屋根とボンネット間を接続する辺に流れる未知数電流、車の屋根とボディ間を接続 する辺に流れる未知数電流、車のボンネットとボディ間を接続する辺に流れる未知数 電流からなる 42個の未知数電流を示す。 In step S5, the unknown current set in step S3 is divided into four blocks as shown in FIG. Fig. 11 ( a ) shows the unknown current of the current block (1), showing 542 unknown currents belonging to the roof of the car. Figure 11 (b) shows the unknown current in the current block (2), showing 1394 unknown currents belonging to the hood of the car. Figure 11 (c) shows the unknown current of the current block (3), which shows 1620 unknown currents belonging to the car body. Fig. 11 (d) shows the unknown current of the current block (4), the unknown current flowing in the side connecting the car roof and the hood, the unknown current flowing in the side connecting the car roof and the body, and the car This shows 42 unknown currents consisting of unknown currents flowing on the edge connecting the bonnet and the body.
[0053] ステップ S6では、ブロック分割された各電流ブロックに対し、ブロック行列方程式を 作成し、ステップ S7でこのブロック行列方程式を、実施の形態 2と同様にしてブロック 反復法と直接法とを組み合わせて解き、全ての未知数電流値を計算後、得られた電 流値にグリーン関数を演算して電磁界分布を計算した。 [0053] In step S6, a block matrix equation is created for each current block divided into blocks. In step S7, this block matrix equation is combined with the block iteration method and the direct method in the same manner as in the second embodiment. After calculating all unknown current values, the Green field was calculated on the obtained current values to calculate the electromagnetic field distribution.
すべての未知数電流の合計は 3598個であり、 3598 X 3598の行列方程式を直接 法で解いた場合にくらべ、本発明の方法で分割して解いた場合、計算時間は約 1Z 5になり、使用メモリは 1Z4の量で解くことができた。  The total of all unknown currents is 3598. Compared to the case where the 3598 X 3598 matrix equation is solved by the direct method, when the solution is divided by the method of the present invention, the calculation time is about 1Z5. The memory could be solved with 1Z4.
[0054] 図 12は本実施の形態 3による電磁界分布計算装置のブロック図である。自動車金 属構造要素データ 1が要素データ入力手段 2より電磁界分布計算装置に入力される と、図 1の各ステップに対応する処理が計算機内のプログラムで実行される。図 12の 各手段 3〜8で表現された機能ブロックは計算機内のプログラム内に存在する。 FIG. 12 is a block diagram of the electromagnetic field distribution calculating apparatus according to the third embodiment. Car gold When the genus structure element data 1 is input from the element data input means 2 to the electromagnetic field distribution calculation device, processing corresponding to each step in FIG. 1 is executed by a program in the computer. The functional blocks expressed by means 3 to 8 in Fig. 12 exist in the program in the computer.
[0055] なお、上記各実施の形態では、ステップ S4で金属要素のブロック分割を行う際に、 最適化手法によりブロック分割を最適化し、要素ブロック間を流れる未知数電流の数 が最小になるようにした力 CADツールを用いて目視によってブロック分割の最適化 を行っても良い。 [0055] In each of the above embodiments, when performing block division of the metal element in step S4, the block division is optimized by an optimization method so that the number of unknown currents flowing between the element blocks is minimized. You may optimize the block division visually by using a CAD tool.
[0056] また、各要素ブロック間を流れる未知数電流の数は必ずしも最小でなくてもこの方 法は適用可能である。各要素ブロック間を流れる未知数電流の数が多くなると、計算 時間は、上記各実施の形態に比べ短くはならないが、計算に際しての使用メモリは 従来の直接法よりも少なくて済む。  Further, this method can be applied even if the number of unknown currents flowing between the element blocks is not necessarily the minimum. When the number of unknown currents flowing between the element blocks increases, the calculation time is not shortened as compared with the above embodiments, but the memory used for the calculation can be smaller than the conventional direct method.

Claims

請求の範囲 The scope of the claims
[1] 金属構造体表面を複数の微小面積力 なる要素に分割する第 1のステップ、分割さ れた上記複数の要素に対し、各要素間の共有辺を検出し、上記共有辺に垂直な未 知数電流を設定する第 2のステップ、上記複数の要素を N— 1個の複数の要素ブロッ クにブロック分割する第 3のステップ、設定された複数の上記未知数電流を、上記各 要素ブロック毎に別々に纏められ、上記各要素ブロックにのみ属する N— 1個の電流 ブロック nと、上記各要素ブロック間に流れる未知数電流を一つに纏めた電流ブロッ ク mとにブロック分割する第 4のステップ、 N個にブロック分割された各電流ブロックに 対し、電界積分方程式モーメント法によりブロック行列方程式を作成する第 5のステツ プ、上記ブロック行列方程式を解く際に、上記 N— 1個の電流ブロック nにのみ係わる 項の計算にはブロック反復法を用い、上記電流ブロック mに係わる項の計算には直 接法を用い、全ての電流ブロックの未知数電流値を計算する第 6のステップ、および 得られた各電流ブロックの未知数電流値を基に、金属構造体周辺の電磁場分布を 計算する第 7のステップを備えたことを特徴とする電磁界分布計算方法。  [1] First step of dividing the surface of the metal structure into a plurality of elements having a small area force. For the plurality of divided elements, a shared edge between the elements is detected, and the perpendicular to the shared edge is detected. 2nd step to set unknown current, 3rd step to divide the multiple elements into N-multiple element blocks, 3rd step to set unknown currents to each element block Each block is divided separately into N—1 current block n that belongs only to each element block, and a current block m that combines unknown currents flowing between the element blocks into a fourth block. Step 5 for creating a block matrix equation by the electric field integral equation moment method for each current block divided into N blocks. Bro The sixth step of calculating unknown current values of all current blocks using the block iteration method for the calculation of the term related only to the current block n, and the direct method for the calculation of the term related to the current block m, and An electromagnetic field distribution calculation method comprising a seventh step of calculating an electromagnetic field distribution around a metal structure based on the unknown current value of each obtained current block.
[2] 第 6のステップにおいて、 N—1個の電流ブロック nにのみ係わる逆行列の計算には ブロック反復法を用い、電流ブロック mに係わる逆行列の計算には直接法を用いて 計算することを特徴とする請求項 1記載の電磁界分布計算方法。  [2] In the sixth step, the block iteration method is used to calculate the inverse matrix related to N—one current block n, and the direct method is used to calculate the inverse matrix related to current block m. The electromagnetic field distribution calculation method according to claim 1, wherein:
[3] 第 3のステップにおいて、各要素ブロック間に流れる未知数電流の数が最も少なくな るようなブロック分割を行うことを特徴とする請求項 1記載の電磁界分布計算方法。  [3] The electromagnetic field distribution calculation method according to claim 1, wherein in the third step, block division is performed so that the number of unknown currents flowing between the element blocks is minimized.
[4] 金属構造体が車両であり、上記車両の窓の支柱部に要素ブロックの境界部を定めた ことを特徴とする請求項 1記載の電磁界分布計算方法。  4. The electromagnetic field distribution calculation method according to claim 1, wherein the metal structure is a vehicle, and a boundary portion of the element block is defined in a support portion of the window of the vehicle.
[5] 複数の微小面積力 なる要素に分割された金属構造体表面の要素データを入力す る入力手段、分割された上記複数の要素に対し、各要素間の共有辺を検出し、上記 共有辺に垂直な未知数電流を設定する未知数電流設定手段、上記複数の要素を N 1個の複数の要素ブロックにブロック分割する要素ブロック分割手段、設定された 複数の上記未知数電流を、上記各要素ブロック毎に別々に纏められ、上記各要素ブ ロックにのみ属する N— 1個の電流ブロック nと、上記各要素ブロック間に流れる未知 数電流を一つにまとめた電流ブロック mとにブロック分割する電流ブロック分割手段、 N個にブロック分割された各電流ブロックに対し、電界積分方程式モーメント法により ブロック行列方程式を作成するブロック行列方程式構築手段、上記ブロック行列方程 式を解く際に、上記 N— 1個の電流ブロック nにのみ係わる項の計算にはブロック反 復法を用い、上記電流ブロック mに係わる項の計算には直接法を用い、全ての電流 ブロックの未知数電流値を計算する求解手段、および得られた各電流ブロックの未 知数電流値を基に、金属構造体周辺の電磁場分布を計算する電磁場分布計算手 段を備えたことを特徴とする電磁界分布計算装置。 [5] An input means for inputting element data on the surface of a metal structure divided into a plurality of elements having a small area force. For the plurality of divided elements, a shared edge between each element is detected, and the sharing is performed. An unknown current setting means for setting an unknown current perpendicular to the side, an element block dividing means for dividing the plurality of elements into a plurality of N element blocks, and a plurality of the unknown currents set to each element block The current is divided into N—1 current block n that belongs only to each element block and is divided into each current block m, and the current block m that combines the unknown current flowing between each element block. Block dividing means, For each current block divided into N blocks, a block matrix equation constructing means for creating a block matrix equation by the electric field integral equation moment method, and when solving the above block matrix equation, the above N— 1 current block n The block iteration method is used for the calculation of the term related only to the current block, the direct method is used for the calculation of the term related to the current block m, the solution means for calculating the unknown current values of all the current blocks, and each obtained An electromagnetic field distribution calculating apparatus comprising an electromagnetic field distribution calculating means for calculating an electromagnetic field distribution around a metal structure based on an unknown current value of a current block.
金属構造体表面を複数の微小面積力 なる要素に分割する第 1のステップ、分割さ れた上記複数の要素に対し、各要素間の共有辺を検出し、上記共有辺に垂直な未 知数電流を設定する第 2のステップ、上記複数の要素を N— 1個の複数の要素ブロッ クにブロック分割する第 3のステップ、設定された複数の上記未知数電流を、上記各 要素ブロック毎に別々に纏められ、上記各要素ブロックにのみ属する N— 1個の電流 ブロック nと、上記各要素ブロック間に流れる未知数電流を一つに纏めた電流ブロッ ク mとにブロック分割する第 4のステップ、 N個にブロック分割された各電流ブロックに 対し、電界積分方程式モーメント法によりブロック行列方程式を作成する第 5のステツ プ、上記ブロック行列方程式を解く際に、上記 N— 1個の電流ブロック nにのみ係わる 項の計算にはブロック反復法を用い、上記電流ブロック mに係わる項の計算には直 接法を用い、全ての電流ブロックの未知数電流値を計算する第 6のステップ、および 得られた各電流ブロックの未知数電流値を基に、金属構造体周辺の電磁場分布を 計算する第 7のステップを実行することを特徴とする電磁界分布計算プログラム。 The first step of dividing the metal structure surface into a plurality of elements with a small area force. For the divided elements, a shared edge between each element is detected, and an unknown number perpendicular to the shared edge. 2nd step to set current, 3rd step to divide the multiple elements into N-multiple element blocks, 3 separate unknown currents set for each element block A fourth step of dividing the block into N—one current block n that belongs only to each element block and a current block m in which unknown currents flowing between the element blocks are grouped together. For each current block divided into N blocks, the fifth step of creating a block matrix equation by the electric field integral equation moment method, the N-1 current block when solving the block matrix equation The sixth step of calculating unknown current values of all current blocks using the block iteration method for the calculation of the term related only to n and the direct method for the calculation of the term related to the current block m, and An electromagnetic field distribution calculation program that executes a seventh step of calculating an electromagnetic field distribution around the metal structure based on the unknown current value of each current block.
PCT/JP2006/304134 2006-03-03 2006-03-03 Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program WO2007099640A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304134 WO2007099640A1 (en) 2006-03-03 2006-03-03 Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304134 WO2007099640A1 (en) 2006-03-03 2006-03-03 Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program

Publications (1)

Publication Number Publication Date
WO2007099640A1 true WO2007099640A1 (en) 2007-09-07

Family

ID=38458765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304134 WO2007099640A1 (en) 2006-03-03 2006-03-03 Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program

Country Status (1)

Country Link
WO (1) WO2007099640A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244934A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Alternating field analyzing method and alternating field analyzing program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188075A (en) * 1999-10-20 2001-07-10 Fujitsu Ltd Electromagnetic intensity computing device and method and computer-readable recording medium in which program to make computer execute the method is recorded
JP2003296395A (en) * 2002-04-01 2003-10-17 Fujitsu Ltd Program, device, method for calculating mutual immittance and electromagnetic field intensity calculation program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188075A (en) * 1999-10-20 2001-07-10 Fujitsu Ltd Electromagnetic intensity computing device and method and computer-readable recording medium in which program to make computer execute the method is recorded
JP2003296395A (en) * 2002-04-01 2003-10-17 Fujitsu Ltd Program, device, method for calculating mutual immittance and electromagnetic field intensity calculation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244934A (en) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp Alternating field analyzing method and alternating field analyzing program

Similar Documents

Publication Publication Date Title
Vestias et al. Trends of CPU, GPU and FPGA for high-performance computing
Jakobsson et al. Rational radial basis function interpolation with applications to antenna design
CN114528716B (en) Efficient numerical simulation method applied to multi-scale electromagnetic wave problem analysis
Liu et al. Thickness-shear vibration analysis of rectangular quartz plates by a numerical extended Kantorovich method
US20090037157A1 (en) Method, Apparatus and Computer Program Providing Broadband Preconditioning Based on Reduced Coupling for Numerical Solvers
Gu et al. FPGA-based multigrid computation for molecular dynamics simulations
Garg et al. Reconfigurable rounding based approximate multiplier for energy efficient multimedia applications
Dehghani et al. A new approach for design of an efficient FPGA-based reconfigurable convolver for image processing
US10949498B1 (en) Softmax circuit
WO2017107338A1 (en) Improved module and method for solving matrix inverse matrix according to bit substitution
Pierson et al. Data-driven correlation analysis between observed 3D fatigue-crack path and computed fields from high-fidelity, crystal-plasticity, finite-element simulations
WO2007099640A1 (en) Electromagnetic field distribution calculation method, electromagnetic field distribution calculation device, and electromagnetic field distribution calculation program
Liu et al. Hardware efficient architectures for eigenvalue computation
CN111931353A (en) Scattered field solving method applied to simulated FSS structure
Brański et al. A comparison of boundary methods based on inverse variational formulation
Carpinteri et al. The partition of unity quadrature in element-free crack modelling
Aghdaei et al. Hypersf: Spectral hypergraph coarsening via flow-based local clustering
JP2004239736A (en) Electromagnetic field characteristic analytical method
US7555509B2 (en) Parallel fast Fourier transformation method of concealed-communication type
Wirski et al. State-space approach to implementation of FIR systems using pipeline rotation structures
JP2003296395A (en) Program, device, method for calculating mutual immittance and electromagnetic field intensity calculation program
Dziekonski et al. GPU-accelerated finite element method
Libessart et al. 40 Gop/s/mm 2 fixed-point operators for Brain Computer Interface in 65 nm CMOS
Lightbody et al. Rapid design of a single chip adaptive beamformer
Ruchitha et al. FPGA Implementation of UaL Decomposition, an alternative to the LU factorization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06728613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP