WO2007098964A2 - Pyrrazole derivatives as sigma receptors antagonists - Google Patents

Pyrrazole derivatives as sigma receptors antagonists Download PDF

Info

Publication number
WO2007098964A2
WO2007098964A2 PCT/EP2007/001827 EP2007001827W WO2007098964A2 WO 2007098964 A2 WO2007098964 A2 WO 2007098964A2 EP 2007001827 W EP2007001827 W EP 2007001827W WO 2007098964 A2 WO2007098964 A2 WO 2007098964A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally
mono
substituted
branched
Prior art date
Application number
PCT/EP2007/001827
Other languages
French (fr)
Other versions
WO2007098964A3 (en
Inventor
Rosa Cuberes-Altisent
Joerg Holenz
Original Assignee
Laboratorios Del Dr. Esteve S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratorios Del Dr. Esteve S.A. filed Critical Laboratorios Del Dr. Esteve S.A.
Priority to US12/281,246 priority Critical patent/US8138186B2/en
Priority to JP2008556726A priority patent/JP2009528318A/en
Priority to CA002640754A priority patent/CA2640754A1/en
Priority to CN2007800071787A priority patent/CN101395152B/en
Priority to EP07723022.5A priority patent/EP1996580B1/en
Priority to MX2008011019A priority patent/MX2008011019A/en
Priority to ES07723022.5T priority patent/ES2572985T3/en
Publication of WO2007098964A2 publication Critical patent/WO2007098964A2/en
Publication of WO2007098964A3 publication Critical patent/WO2007098964A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • C07D231/20One oxygen atom attached in position 3 or 5
    • C07D231/22One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/12Antidiarrhoeals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/18One oxygen or sulfur atom
    • C07D231/20One oxygen atom attached in position 3 or 5
    • C07D231/22One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
    • C07D231/24One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms having sulfone or sulfonic acid radicals in the molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention relates to compounds having pharmacological activity towards the sigma ( ⁇ ) receptor, and more particularly to some pyrazole derivatives, to processes of preparation of such compounds, to medicaments comprising them, and to their use in therapy and prophylaxis, in particular for the treatment of psychosis.
  • sigma receptor a cell surface receptor of the central nervous system (CNS) which may be related to the dysphoric, hallucinogenic and cardiac stimulant effects of opioids.
  • CNS central nervous system
  • sigma receptor ligands may be useful in the treatment of psychosis and movement disorders such as dystonia and tardive dyskinesia, and motor disturbances associated with Huntington's chorea or Tourette's syndrome and in Parkinson's disease (Walker, J. M.
  • the sigma receptor has at least two subtypes, which may be discriminated by stereoselective isomers of these pharmacoactive drugs.
  • SKF 10047 has nanomolar affinity for the sigma 1 ( ⁇ - 1 ) site, and has micromolar affinity for the sigma ( ⁇ -2) site.
  • Haloperidol has similar affinities for both subtypes.
  • Endogenous sigma ligands are not known, although progesterone has been suggested to be one of them.
  • Possible sigma-site-mediated drug effects include modulation of glutamate receptor function, neurotransmitter response, neuroprotection, behavior, and cognition (Quirion, R. et al. Trends Pharmacol. Sci., 1992, 13:85-86).
  • sigma binding sites are plasmalemmal elements of the signal transduction cascade. Drugs reported to be selective sigma ligands have been evaluated as antipsychotics (Hanner, M. et al. Proc. Natl. Acad. Sci., 1996, 93:8072-8077). The existence of sigma receptors in the CNS, immune and endocrine systems have suggested a likelihood that it may serve as link between the three systems.
  • European patent application EP 0 414 289 Al generically discloses a class of 1 ,2,3,4- tetrahydro-spiro[naphthalene-1 ,4'-piperidine] and 1 ,4-dihydro-spiro[naphthalene-1 ,4'- piperidine] derivatives substituted at the piperidine N-atom with a hydrocarbon group alleged to have selective sigma receptor antagonistic activity.
  • hydrocarbon as defined in said patent, covers all possible straight chained, cyclic, heterocyclic, etc. groups.
  • European patent application EP 0 445 974 A2 generically describes the corresponding spiro[indane-1 ,4'-piperidine] and spiro[benzocycloheptene-5,4'-piperidine] derivatives. Again the compounds are only stated to displace tritiated di-tolyl guanidine (DTG) from sigma sites with potencies better than 200 nM.
  • DTG di-tolyl guanidine
  • European patent Application EPO 431 943 A relates to a further extremely broad class of spiropiperidine compounds substituted at the piperidine N-atom and claimed to be useful as antiarrhythmics and for impaired cardiac pump function.
  • the said application exemplifies several compounds, the majority of which contain an oxo and/or a sulfonylamino substituent in the spiro cyclic ring system. Of the remainder compounds, the main part has another polar substituent attached to the spiro nucleus and/or they have some polar substituents in the substituent on the piperidine N-atom. No suggestion or indication of effect of the compounds on the sigma receptor is given.
  • Patent applications EP 518 805 A and WO 02/102387 describe sigma receptor ligands having piperidine or spiropiperidine structures.
  • Patent US 4,337,263 discloses 1-aryl-4-arylsulphonyl-3-amino propoxy-1 H-pyrazoles, wherein the amino group can be constituted by an N-cycle group as morpholine, piperidine or pyrrolidine group. They are used as hypolipemiant or hypocholesteroleminant agents.
  • Patent FR 2301250 describes similar compounds as those mentioned above, such as 1 ,4- diaryl-3-aminoalcoxy pyrazoles, wherein the amino group comprises pyrrolidine, piperidine, hydroxypiperidine, morpholine or piperazine derivatives.
  • Patent Application US2003/0144309 refers to pyrazoles with their 3 position substituted by a dimethylaminoethoxy group and present in their 4 position a pirimidine group. They are used as inhibitors of JNK3, Lck or Src kinase activity.
  • the compounds present a pyrazol group which are characterized by the substitution at position 3 by an alkoxy group directly bound to a nitrogen.
  • the invention is directed to a compound of the formula (I):
  • R 1 represents a hydrogen atom; F; Cl; Br; I; CF 3 ; OH; SH; NH 2 ; CN; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted C 2 ⁇ aliphatic group; an unbranched or branched, saturated or unsaturated, optionally at least mono- substituted alkoxy radical; a saturated or unsaturated, optionally at least mono- substituted, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least
  • R 2 and R 3 identical or different, represent a hydrogen atom; F; Cl; Br; I; CF 3 ; OH; SH; NH 2 ; CN; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted aliphatic group; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted alkoxy radical; a saturated or unsaturated, optionally at least mono-substituted, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed
  • R 4 and R 5 identical or different, represent a hydrogen atom; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted aliphatic group; an unbranched or branched, optionally at least mono-substituted alkoxy radical; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group may be optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; an optionally at least mono-substituted heteroaryl group which may be condensed with an optionally at
  • R 7 , R 8 , R 9 , R 10 and R 11 identical or different, represent a hydrogen atom; an unbranched or branched, saturated or unsaturated, optionally at least mono- substituted C 1-6 aliphatic group; a branched or unbranched optionally at least mono- substituted C 1-6 alkoxy radical; a saturated or unsaturated, optionally at least mono- substituted, optionally at least one heteroatom as ring member containing cycloalkyl group; a branched or unbranched, optionally at least mono-substituted, optionally at least one heteroatom as ring member containing C 1-6 alkyl-cycloalkyl group; an optionally at least mono-substituted aryl group; an optionally at least mono-substituted heteroaryl group; a branched or unbranched, optionally at least mono-substituted Ci -6 alkyl-aryl; a branched or unbranched, optionally at least mono-sub
  • -(CH 2 ) m -(X) n -(Y) p -(CH 2 ) s - may not represent a Iinear-(CH 2 )-(CH 2 )-(CH 2 )- group or a linear -(CH 2 )-(CH 2 )-(CH 2 )-(CH 2 )- group; optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
  • the following proviso applies: with the proviso that if n is 1 and p is 0 and X represents a CH-R 12 group with R 12 being OH, R 4 and R 5 form together with the bridging nitrogen atom an optionally at least mono-substituted heterocyclyl group which is optionally condensed with an optionally at least mono-substituted mono- or polycyclic ring system.
  • the following proviso applies: with the proviso that if n is 1 and p is 0 and X represents a CH-R 12 group with R 12 being OH, R 3 is hydrogen.
  • prodrug Any compound that is a prodrug of a compound of formula (I) is within the scope of the invention.
  • the term "prodrug” is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compounds of the invention. Such derivatives would readily occur to those skilled in the art, and include, depending on the functional groups present in the molecule and without limitation, the following derivatives of the present compounds: esters, amino acid esters, phosphate esters, metal salts sulfonate esters, carbamates, and amides.
  • condensed means that a ring or ring-system is attached to another ring or ring-system, whereby the terms “annulated” or “annelated” are also used by those skilled in the art to designate this kind of attachment.
  • ring system refers to ring sytems comprises saturated, unsaturated or aromatic carbocyclic ring sytems which contain optionally at least one heteroatom as ring member and which are optionally at least mono-substituted. Said ring systems may be condensed to other carbocyclic ring systems such as aryl groups, naphtyl groups, heteroaryl groups, cycloalkyl groups, etc.
  • Cycloalkyl radicals are understood as meaning saturated and unsaturated (but not aromatic), cyclic hydrocarbons, which can optionally be unsubstituted, mono- or polysubstituted.
  • C 3 ⁇ -cycloalkyl represents C 3 - or C 4 -cycloalkyl
  • C 3-5 -cycloalkyl represents C 3 -, C 4 - or C 5 -cycloalkyl, etc.
  • the term also includes saturated cycloalkyls in which optionally at least one carbon atom may be replaced by a heteroatom, preferably S, N, P or O.
  • mono- or polyunsaturated, preferably monounsaturated, cycloalkyls without a heteroatom in the ring also in particular fall under the term cycloalkyl as long as the cycloalkyl is not an aromatic system.
  • cycloalkyl radicals preferably include but are not restricted to cyclopropyl, 2- methylcyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cycloheptyl, cyclooctyl, acetyl, tert-butyl, adamantyl, pyrroline, pyrrolidine, pyrrolidineone, pyrazoline, pyrazolinone, oxopyrazolinone, aziridine, acetidine, tetrahydropyrrole, oxirane, oxetane, dioxetane, tetrahydrofurane, dioxane, dioxolane, oxathiolane, oxazolidine, thiirane, thietane, thiolane, thiane, thiazolidine, pipe
  • Cycloalkyl radicals as defined in the present invention may optionally be mono-or polysubstituted by F, Cl, Br, I, NH 2 , SH, OH, SO 2 , CF 3 , carboxy, amido, cyano, carbamyl, nitro, -SO 2 NH 2 , C 1-6 alkyl or C 1-6 -alkoxy.
  • Aliphatic radicals/groups are optionally mono- or polysubstituted and may be branched or unbranched, saturated or unsaturated.
  • Unsaturated aliphatic groups include alkyl, alkenyl and alkinyl radicals.
  • Preferred aliphatic radicals according to the present invention include but are not restricted to methyl, ethyl, vinyl (ethenyl), ethinyl, propyl, n-propyl, isopropyl, ally) (2-propenyl), 1-propinyl, methylethyl, butyl, n-butyl, iso-butyl, sec-butyl, tert-butyl butenyl, butinyl, 1-methylpropyl, 2- methylpropyl, 1 ,1-dimethylethyl, pentyl, n-pentyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylpropyl, 2,2- dimethylpropyl, hexyl, 1-methylpentyl, n-heptyl, n-octyl, n-nonyl and n-decyl.
  • Preferred substituents for aliphatic radicals are F, Cl, Br, I, NH 2 , SH, OH, SO 2 , CF 3 , carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO 2 NH 2 , C 1 ⁇ alkyl and/or d- 6 -alkoxy.
  • (CH 2 ) 3-6 is to be understood as meaning -CH 2 -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 - CH 2 -CH 2 -CH 2 -CH 2 - and -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -;
  • (CH 2 J 1-4 is to be understood as meaning -CH 2 -, -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 - and -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -;
  • (CH 2 J 4-5 is to be understood as meaning -CH 2 -CH 2 -CH 2 -CH 2 - and -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -, etc.
  • aryl radical as referred to in the present invention, is understood as meaning ring systems with at least one aromatic ring but without heteroatoms even in only one of the rings.
  • aryl radicals may optionally be mono-or polysubstituted with for example F, Cl, Br, I, NH 2 , SH, OH, SO 2 , CF 3 , carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO 2 NH 2 , C 1-6 alkyl or C 1-6 -alkoxy.
  • aryl radicals include but are not restricted to phenyl, naphthyl, fluoranthenyl, fluorenyl, tetralinyl or indanyl or anthracenyl radicals, which may optionally be mono- or polysubstituted.
  • a heteroaryl radical is understood as meaning heterocyclic ring systems which have at least one aromatic ring and may optionally contain one or more heteroatoms from the group consisting of nitrogen, oxygen and/or sulfur and may optionally be unsubstituted, mono- or polysubstituted by for example F, Cl, Br, I, NH 2 , SH, OH, SO 2 , CF 3 , oxo, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO 2 NH 2 , C 1-6 alkyl or C 1-6 -alkoxy.
  • heteroaryls include but are not restricted to furan, benzofuran, thiophene, benzothiophene, pyrrole, pyridine, pyrimidine, pyridazine, pyrazine, quinoline, isoquinoline, phthalazine, benzo- 1 ,2,5-thiadiazole, benzothiazole, indole, benzotriazole, benzodioxolane, benzodioxane, benzimidzole, carbazole and quinazoline.
  • heterocyclyl refers to a stable 3-to 15 membered, saturated, unsaturated and/or aromatic ring radical, consisting of at least 3 carbon atoms which can be replaced by at least one heteroatom, preferably nitrogen, oxygen, and sulfur.
  • Heterocyclic radicals may be monocyclic or polycyclic ring systems which, including fused ring systems.
  • heterocycles include, but are not limited to, azepines, benzimidazole, benzothiazole, furan, isothiazole, imidazole, indole, piperidine, piperazine, purine, quinoline, thiadiazole, tetrahydrofuran, coumarine, morpholine; pyrrole, pyrazole, oxazole, isoxazole, triazole, imidazole, etc.
  • Said heterocyclic groups may be optionally fully or partly saturated or aromatic and are optionally, unless otherwise stated, at least mono-substituted by one or more substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , CF 3 , oxo, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO 2 NH 2 , C 1-6 alkyl or C 1-6 -alkoxy.
  • Substituted alkyl-cycloalkyl, alkyl-aryl and alkyl-heteroaryl groups are to be understood as being substituted on the alkyl and/or the cycloalkyl, aryl or heteroaryl group.
  • an optionally substituted alkyl-aryl group means optional substitution of either the alkyl group, the aryl group or both the alkyl and the aryl group.
  • these groups are optionally mono- or polysubstituted by F, Cl, Br, I, NH 2 , SH, OH, SO 2 , CF 3 , oxo, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO 2 NH 2 , C 1-6 alkyl or C 1-6 -alkoxy.
  • salt is to be understood as meaning any form of the active compound used according to the invention in which it assumes an ionic form or is charged and is coupled with a counter-ion (a cation or anion) or is in solution.
  • a counter-ion a cation or anion
  • complexes of the active compound with other molecules and ions in particular complexes which are complexed via ionic interactions.
  • physiologically acceptable salt means in the context of this invention any salt that is physiologically tolerated (most of the time meaning not being toxic- especially not caused by the counter-ion) if used appropriately for a treatment especially if used on or applied to humans and/or mammals.
  • physiologically acceptable salts can be formed with cations or bases and in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention - usually a (deprotonated) acid - as an anion with at least one, preferably inorganic, cation which is physiologically tolerated - especially if used on humans and/or mammals.
  • the salts of the alkali metals and alkaline earth metals are particularly preferred, and also those with NH 4 , but in particular (mono)- or (di)sodium, (mono)- or (di)potassium, magnesium or calcium salts.
  • physiologically acceptable salts can also be formed with anions or acids in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention - usually protonated, for example on the nitrogen - as the cation with at least one anion which are physiologically tolerated - especially if used on humans and/or mammals.
  • the salt formed with a physiologically tolerated acid that is to say salts of the particular active compound with inorganic or organic acids which are physiologically tolerated - especially if used on humans and/or mammals.
  • physiologically tolerated salts of particular acids are salts of: hydrochloric acid, hydrobromic acid, sulfuric acid, methanesulfonic acid, formic acid, acetic acid, oxalic acid, succinic acid, malic acid, tartaric acid, mandelic acid, fumaric acid, lactic acid or citric acid.
  • solvate is to be understood as meaning any form of the active compound according to the invention in which this compound has attached to it via non- covalent binding another molecule (most likely a polar solvent) especially including hydrates and alcoholates, e.g. methanolate.
  • a polar solvent especially including hydrates and alcoholates, e.g. methanolate.
  • the compounds of the invention may be in crystalline form either as free compounds or as solvates and it is intended that both forms are within the scope of the present invention.
  • Methods of solvation are generally known within the art. Suitable solvates are pharmaceutically acceptable solvates. In a particular embodiment the solvate is a hydrate.
  • the compounds of formula (I) or their salts or solvates are preferably in pharmaceutically acceptable or substantially pure form.
  • pharmaceutically acceptable form is meant, inter alia, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and including no material considered toxic at normal dosage levels.
  • Purity levels for the drug substance are preferably above 50%, more preferably above 70%, most preferably above 90%. In a preferred embodiment it is above 95% of the compound of formula (I) or, or of its salts, solvates or prodrugs.
  • the compounds of the invention are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms.
  • compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13 C- or 14 C-enriched carbon or 15 N-enriched nitrogen are within the scope of this invention.
  • the term "pharmacological tool” refers to the property of compounds of the invention through which they are particularly selective ligands for Sigma receptors which implies that compound of formula (I), described in this invention, can be used as a model for testing other compounds as sigma ligands, ex. a radiactive ligands being replaced, and can also be used for modeling physiological actions related to sigma receptors.
  • R 1 represent a hydrogen atom; F; Cl; Br; I; CF 3 ; OH; SH; NH 2 ; CN; an unbranched or branched C 2-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF 3 ; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF 3 ; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF
  • R 2 represents a hydrogen atom; F; Cl; Br; I; CF 3 ; OH; SH; NH 2 ; CN; an unbranched or branched C 1-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH 1 OH 1 SO 2 , or CF 3 ; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl 1 Br 1 I, NH 2 , SH, OH 1 SO 2 , or CF 3 ; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F 1 Cl, Br, I, NH 2 , SH 1 OH 1 SO 2 , or CF 3 ; a branched or unbranched, optional
  • R 3 represents a hydrogen atom; F; Cl; Br; I; CF 3 ; OH; SH; NH 2 ; CN; an unbranched or branched C 1-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I 1 NH 2 , SH, OH, SO 2 , or CF 3 ; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F 1 Cl 1 Br 1 1 1 NH 2 , SH 1 OH, SO 2 , or CF 3 ; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F 1 Cl, Br, I, NH 2 , SH 1 OH 1 SO 2 , or CF 3 ; a branched or unbranched, optional
  • R 4 and R 5 identical or different, represent a hydrogen atom; an unbranched or branched, substituted C 1-6 alkyl group with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF 3 ; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF 3 ; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF 3 ; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cyclo
  • stereoisomers optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
  • R 4 and R 5 identical or different, represent a hydrogen atom; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF 3 ; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH, OH, SO 2 , or CF 3 ; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I,
  • R 4 and R 5 form together with the bridging nitrogen atom an optionally at least mono- substituted 5- or 6-membered ring selected from the group consisting of pyrrolidine, morpholine, piperidine or piperazine, preferably morpholine, pyrrolidine or piperidine.
  • Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein m is selected from 1 , 2, 3 or 4; preferably from 1 or 2.
  • n is selected from 0 or 1 , preferably from 1.
  • Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein p is selected from 0 or 1 ; preferably 1.
  • Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein s is selected from 1 , 2, 3 or 4; preferably 1 or 2.
  • Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein X represents an oxygen atom; a CH-R 12 group with R 12 being -CH 3 , SH 1 OH 1 NH 2 , CF 3 group; Cl 1 F 1 Br 1 I 1 or CN;
  • X represents an oxygen atom or a CH-OH group
  • a preferred embodiment of the present invention refers to a compound of general formula (I) given above,
  • R 1 represents a hydrogen atom; F; Cl; Br; I; CF 3 ; OH; SH; NH 2 ; CN; an optionally, at least mono-substituted ethyl, propyl, n-propyl, i-propyl, tert-butyl, n-butyl, i-butyl, phenyl, benzyl, phenethyl, or naphtyl group with substituents independently selected from the group consisting of F, Cl, Br, I 1 NH 2 , SH, OH, SO 2 , or CF 3 ;
  • R 2 represents a hydrogen atom; an unbranched or branched, Ci -6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH 1 OH 1 SO 2 , or CF 3 ; a branched or unbranched alkyl- aryl group selected from the group consisting of benzyl or phenethyl which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH 1 OH 1 SO 2 , or CF 3 ; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br 1 I, NH 2 , SH 1 OH, SO 2 , or CF 3 ;
  • R 3 represents a hydrogen atom; an unbranched or branched, Ci -6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl 1 Br 1 I, NH 2 , SH, OH 1 SO 2 , or CF 3 ; a branched or unbranched alkyl- aryl group selected from the group consisting of benzyl or phenethyl which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br 1 I, NH 2 , SH, OH, SO 2 , or CF 3 ; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br 1 I, NH 2 , SH, OH 1 SO 2 , or CF 3 ;
  • R 4 and R 5 form together with the bridging nitrogen atom an optionally at least mono- substituted, piperidine, morpholine, pyrrolidine or piperazine group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH 2 , SH 1 OH 1 SO 2 , or CF 3 ;
  • X represents an oxygen atom or a CH-R 12 group with R 12 being OH;
  • m is selected from 1 or 2;
  • n is selected from O or 1 ;
  • p is selected from O or 1 ;
  • s is selected from 1 , 2, 3, or 4; and
  • n plus p is 1 ; optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
  • the compounds of formula (I) defined above can be obtained by available synthetic procedures similar to those described in the patent US 4,337,263 or FR 2 472 564. For example, they can be prepared by condensing a compound of formula (II):
  • R 1 R , X, Y, m, n, p, and s are as defined above in formula (I).
  • the reaction of compounds of formulas (II) and (III) is preferably carried out at a temperature in the range of 60 to 12O 0 C in an aprotic solvent, but not limited to, such as dimethylformamide (DMF) in the presence of an inorganic base, such as K 2 CO 3 .
  • DMF dimethylformamide
  • compounds of general formula (I) as described above can be obtained by condensing a compound of formula (II) as described above, in which R 1 , R 2 and R 3 are as defined above in formula (I) 1 with a compound of formula (IV):
  • reaction of compounds of formulas (II) and (IV) is preferably carried out in the presence of an organic or inorganic, e.g. K 2 CO 3 .
  • the intermediate compound (II) can also be prepared as described in the bibliography (see L.F.Tietze et al., Synthesis, (11 ), 1079-1080, 1993; F. Effenberger and W. Hartmann, Chem. Ber., 102(10), 3260-3267, 1969; both citations incorporated here by reference). It can also be prepared by conventional methods, as can be seen in the synthetic examples of the present patent application.
  • the compounds of general formula (I) themselves are obtained in form of a mixture of stereoisomers, particularly enantiomers or diastereomers, said mixtures may be separated by standard procedures known to those skilled in the art, e.g. chromatographic methods or fractionalized crystallization with chiral reagents. If there are chiral centers the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
  • Solvates preferably hydrates, of the compounds of general formula (I), of corresponding stereoisomers, or of corresponding salts thereof may also be obtained by standard procedures known to those skilled in the art.
  • inventive compounds of general formula (I), of a corresponding stereoisomer, or salt, or solvate or any intermediate thereof may, if required, be carried out by conventional methods known to those skilled in the art, e.g. chromatographic methods or recrystallization.
  • the compounds of general formula (I) and given below, stereoisomers thereof, corresponding salts and corresponding solvates have high affinity to sigma receptors, i.e. they are selective ligands for the sigma receptor and act as modulators, e.g. antagonists, inverse agonists or agonists, on these receptors.
  • the compounds of general formula (I) given below, their stereoisomers, corresponding salts thereof and corresponding solvates are toxicologically acceptable and are therefore suitable as pharmaceutical active substances for the preparation of medicaments.
  • One preferred pharmaceutically acceptable form is the crystalline form, including such form in pharmaceutical composition.
  • the additional ionic and solvent moieties must also be non-toxic.
  • the compounds of the invention may present different polymorphic forms, it is intended that the invention encompasses all such forms.
  • Another aspect of the present invention relates to a medicament comprising at least one compound of general formula (I) given above, said compound being optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof; or a prodrug thereof.
  • Another aspect of the present invention relates to a medicament comprising at least one compound of general formula (I) given above, said compound being optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
  • the medicament comprises at least one compound of general formula (I), said compound being optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
  • Another aspect of the invention is a medicament comprising at least one combination of compounds according to the invention and optionally one or more pharmaceutically acceptable excipients.
  • the medicament is for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of diarrhoea, lipoprotein disorders, migraine, obesity, arthritis, hypertension, arrhythmia, ulcer, learning, memory and attention deficits, cognition disorders, neurodegenerative diseases, demyelinating diseases, addiction to drugs and chemical substances including cocaine, amphetamine, ethanol and nicotine; tardive diskinesia, ischemic stroke, epilepsy, stroke, stress, cancer or psychotic conditions, in particular depression, anxiety or schizophrenia; inflammation, or autoimmune diseases.
  • disorders selected from the group consisting of diarrhoea, lipoprotein disorders, migraine, obesity, arthritis, hypertension, arrhythmia, ulcer, learning, memory and attention deficits, cognition disorders, neurodegenerative diseases, demyelinating diseases, addiction to drugs and chemical substances including cocaine, amphetamine, ethanol and nicotine; tardive diskinesia, ischemic stroke, epilepsy, stroke, stress, cancer or psychotic conditions, in particular depression, anxiety or schizophrenia
  • the medicament is for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and/or dysbetalipoproteinemia.
  • disorders selected from the group consisting of elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and/or dysbetalipoproteinemia.
  • the medicament is for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of pain, preferably neuropathic pain, inflammatory pain or other pain conditions involving allodynia and/or hyperalgesia.
  • Said medicament may also comprise any combination of one or more of the compounds of general formula (I) given above, stereoisomers thereof, physiologically acceptable salts thereof or physiologically acceptable solvates thereof.
  • Another aspect of the present invention is the use of at least one compound of general formula (I) given above as suitable active substances, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the modulation of sigma receptors, preferably for the prophylaxis and/or treatment of psychosis.
  • suitable active substances optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding
  • the medicament according to the present invention may be in any form suitable for the application to humans and/or animals, preferably humans including infants, children and adults and can be produced by standard procedures known to those skilled in the art.
  • the composition of the medicament may vary depending on the route of administration.
  • the medicament of the present invention may for example be administered parentally in combination with conventional injectable liquid carriers, such as water or suitable alcohols.
  • Conventional pharmaceutical excipients for injection such as stabilizing agents, solubilizing agents, and buffers, may be included in such injectable compositions.
  • These medicaments may for example be injected intramuscularly, intraperitoneally, or intravenously.
  • Solid oral compositions (which are preferred as are liquid ones) may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are conventional in the art.
  • the tablets may for example be prepared by wet or dry granulation and optionally coated according to the methods well known in normal pharmaceutical practice, in particular with an enteric coating.
  • the mentioned formulations will be prepared using standard methods such as those described or referred to in the Spanish and US Pharmacopeias and similar reference texts.
  • Medicaments according to the present invention may also be formulated into orally administrable compositions containing one or more physiologically compatible carriers or excipients, in solid or liquid form. These compositions may contain conventional ingredients such as binding agents, fillers, lubricants, and acceptable wetting agents.
  • the compositions may take any convenient form, such as tablets, pellets, capsules, lozenges, aqueous or oily solutions, suspensions, emulsions, or dry powdered forms suitable for reconstitution with water or other suitable liquid medium before use, for immediate or retarded release.
  • liquid oral forms for administration may also contain certain additives such as sweeteners, flavoring, preservatives, and emulsifying agents.
  • Non-aqueous liquid compositions for oral administration may also be formulated, containing edible oils. Such liquid compositions may be conveniently encapsulated in e.g., gelatin capsules in a unit dosage amount.
  • compositions of the present invention may also be administered topically or via a suppository.
  • the daily dosage for humans and animals may vary depending on factors that have their basis in the respective species or other factors, such as age, sex, weight or degree of illness and so forth.
  • the daily dosage for humans may preferably be in the range fromi to 2000, preferably 1 to 1500, more preferably 1 to 1000 milligrams of active substance to be administered during one or several intakes per day.
  • Another aspect of the present invention refers to a method for the prophylaxis and/or treatment of diarrhoea, lipoprotein disorders, migraine, obesity, elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and dysbetalipoproteinemia, arthritis, hypertension, arrhythmia, ulcer, learning, memory and attention deficits, cognition disorders, neurodegenerative diseases, demyelinating diseases, addiction to drugs and chemical substances including cocaine, amphetamine, ethanol and nicotine; tardive diskinesia, ischemic stroke, epilepsy, stroke, stress, cancer or psychotic conditions, in particular depression, anxiety or schizophrenia; inflammation, or autoimmune diseases, the method comprising administering to the subject at least one compound of general formula (I) as described above and optionally at least one
  • a preferred embodiment of the present invention refers to a method for the prophylaxis and/or treatment of elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and/or dysbetalipoproteinemia.
  • Example 2 1-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)-3-(piperidin-1-yl)propan-2-ol oxalate
  • Example 7 4-(2-(2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethoxy)ethyl)morpholine oxalate
  • Siqma-1 Brain membrane preparation and binding assays for the ⁇ 1 -receptor were performed as described (DeHaven-Hudkins et al., 1992) with some modifications.
  • guinea pig brains were homogenized in 10 vols. (w/v) of Tris-HCI 50 mM 0.32 M sucrose, pH 7.4, with a Kinematica Polytron PT 3000 at 15000 r.p.m. for 30 s. The homogenate was centrifuged at 1000g for 10 min at 4 0 C and the supematants collected and centrifuged again at 4800Og for 15 min at 4 0 C.
  • the pellet was resuspended in 10 volumes of Tris-HCI buffer (50 mM, pH 7.4), incubated at 37 0 C for 30 min, and centrifuged at 4800Og for 20 min at 4°C. Following this, the pellet was resuspended in fresh Tris-HCI buffer (50 mM, pH 7.4) and stored on ice until use.
  • Each assay tube contained 10 ⁇ L of [ 3 H](+)-pentazocine (final concentration of 0.5 nM), 900 ⁇ l_ of the tissue suspension to a final assay volume of 1 mL and a final tissue concentration of approximately 30 mg tissue net weight/mL.
  • Non-specific binding was defined by addition of a final concentration of 1 ⁇ M haloperidol.
  • All tubes were incubated at 37 0 C for 150 min before termination of the reaction by rapid filtration over Schleicher & Schuell GF 3362 glass fibre filters [previously soaked in a solution of 0,5% polyethylenimine for at least 1 h]. Filters were then washed with four times with 4 mL of cold Tris-HCI buffer (50 mM, pH 7.4).
  • the pellets were resuspended by vortexing in 2 mL/g ice- cold Tris-sucrose buffer and centrifuged again at 100Og for 10 min. The combined 1000g supematants were centrifuged at 3100Og for 15 min at 4 0 C. The pellets were resuspended by vortexing in 3 ml_/g 10 mM Tris-HCI, pH 7.4, and the suspension was kept at 25 0 C for 15 min. Following centrifugation at 3100Og for 15 min, the pellets were resuspended by gentle Potter Elvehjem homogenization to a volume of 1.53 ml_/g in 10 mM Tris-HCI pH 7.4.
  • the assay tubes contained 10 ⁇ L of [ 3 H]-DTG (final concentration of 3 nM), 400 ⁇ l_ of the tissue suspension (5.3 ml_/g in 50 mM Tris-HCI, pH 8.0) to a final assay volume of 0.5 ml_.
  • Non-specific binding was defined by addition of a final concentration of 1 ⁇ M haloperidol. All tubes were incubated at 25 0 C for 120 min before termination of the reaction by rapid filtration over Schleicher & Schuell GF 3362 glass fibre filters [previously soaked in a solution of 0,5% polyethylenimine for at least 1 h].

Abstract

The present invention relates to compounds of formula (I), methods for their preparation, medicaments comprising these compounds as well their use in the manufacture of a medicament for the treatment of humans and animals.

Description

Sigma receptor compounds
Field of the invention The present invention relates to compounds having pharmacological activity towards the sigma (σ) receptor, and more particularly to some pyrazole derivatives, to processes of preparation of such compounds, to medicaments comprising them, and to their use in therapy and prophylaxis, in particular for the treatment of psychosis.
Background of the invention The search for new therapeutic agents has been greatly aided in recent years by better understanding of the structure of proteins and other biomolecules associated with target diseases. One important class of these proteins is the sigma (σ) receptor, a cell surface receptor of the central nervous system (CNS) which may be related to the dysphoric, hallucinogenic and cardiac stimulant effects of opioids. From studies of the biology and function of sigma receptors, evidence has been presented that sigma receptor ligands may be useful in the treatment of psychosis and movement disorders such as dystonia and tardive dyskinesia, and motor disturbances associated with Huntington's chorea or Tourette's syndrome and in Parkinson's disease (Walker, J. M. et al, Pharmacological Reviews, 1990, 42, 355). It has been reported that the known sigma receptor ligand rimcazole clinically shows effects in the treatment of psychosis (Snyder, S. H., Largent, B.L. J. Neuropsychiatry 1989, 1 , 7). The sigma binding sites have preferential affinity for the dextrorotatory isomers of certain opiate benzomorphans, such as (+)SKF 10047, (+)cyclazocine, and (+)pentazocine and also for some narcoleptics such as haloperidol.
The sigma receptor has at least two subtypes, which may be discriminated by stereoselective isomers of these pharmacoactive drugs. SKF 10047 has nanomolar affinity for the sigma 1 (σ- 1 ) site, and has micromolar affinity for the sigma (σ-2) site. Haloperidol has similar affinities for both subtypes. Endogenous sigma ligands are not known, although progesterone has been suggested to be one of them. Possible sigma-site-mediated drug effects include modulation of glutamate receptor function, neurotransmitter response, neuroprotection, behavior, and cognition (Quirion, R. et al. Trends Pharmacol. Sci., 1992, 13:85-86). Most studies have implied that sigma binding sites (receptors) are plasmalemmal elements of the signal transduction cascade. Drugs reported to be selective sigma ligands have been evaluated as antipsychotics (Hanner, M. et al. Proc. Natl. Acad. Sci., 1996, 93:8072-8077). The existence of sigma receptors in the CNS, immune and endocrine systems have suggested a likelihood that it may serve as link between the three systems.
In view of the potential therapeutic applications of agonists or antagonists of the sigma receptor, a great effort has been directed to find selective ligands. Thus, the prior art discloses different sigma receptor ligands.
International Patent Application WO 91/09594 generically describes a broad class of sigma receptor ligands some of which are 4-phenylpiperidine, -tetrahydro-pyridine or -piperazine compounds having an optionally substituted aryl or heteroaryl, alkyl, alkenyl, alkynyl, alkoxy or alkoxyalkyl substituent on the ring N-atom. The terms aryl and heteroaryl are defined by mention of a number of such substituents.
European patent application EP 0 414 289 Al generically discloses a class of 1 ,2,3,4- tetrahydro-spiro[naphthalene-1 ,4'-piperidine] and 1 ,4-dihydro-spiro[naphthalene-1 ,4'- piperidine] derivatives substituted at the piperidine N-atom with a hydrocarbon group alleged to have selective sigma receptor antagonistic activity. The term hydrocarbon, as defined in said patent, covers all possible straight chained, cyclic, heterocyclic, etc. groups. However, only compounds having benzyl, phenethyl, cycloalkylmethyl, furyl- or thienylmethyl or lower alkyl or alkenyl as the hydrocarbon substituent at the piperidine nitrogen atom are specifically disclosed. The compounds are stated to displace tritiated di- tolyl guanidine (DTG) from sigma sites with potencies better than 200 nM. 1 -benzyl-1 , 2,3,4- tetrahydro-spiro [naphthalene-1 ,4'-piperidine] is mentioned as a particularly preferred compound. European patent application EP 0 445 974 A2 generically describes the corresponding spiro[indane-1 ,4'-piperidine] and spiro[benzocycloheptene-5,4'-piperidine] derivatives. Again the compounds are only stated to displace tritiated di-tolyl guanidine (DTG) from sigma sites with potencies better than 200 nM.
European patent Application EPO 431 943 A relates to a further extremely broad class of spiropiperidine compounds substituted at the piperidine N-atom and claimed to be useful as antiarrhythmics and for impaired cardiac pump function. The said application exemplifies several compounds, the majority of which contain an oxo and/or a sulfonylamino substituent in the spiro cyclic ring system. Of the remainder compounds, the main part has another polar substituent attached to the spiro nucleus and/or they have some polar substituents in the substituent on the piperidine N-atom. No suggestion or indication of effect of the compounds on the sigma receptor is given.
Patent applications EP 518 805 A and WO 02/102387 describe sigma receptor ligands having piperidine or spiropiperidine structures.
With regard to the chemical structure of the compounds described in the present patent application, there are some documents in the prior art which disclose pyrazole derivatives characterized, among other things, for being substituted by amino alkoxy groups in different positions of the pyrazole group.
Patent US 4,337,263 discloses 1-aryl-4-arylsulphonyl-3-amino propoxy-1 H-pyrazoles, wherein the amino group can be constituted by an N-cycle group as morpholine, piperidine or pyrrolidine group. They are used as hypolipemiant or hypocholesteroleminant agents. Patent FR 2301250 describes similar compounds as those mentioned above, such as 1 ,4- diaryl-3-aminoalcoxy pyrazoles, wherein the amino group comprises pyrrolidine, piperidine, hydroxypiperidine, morpholine or piperazine derivatives.
Patent Application US2003/0144309 refers to pyrazoles with their 3 position substituted by a dimethylaminoethoxy group and present in their 4 position a pirimidine group. They are used as inhibitors of JNK3, Lck or Src kinase activity.
International patent Application WO 02/092573 describes substituted pyrazole compounds as inhibitors of SRC and other protein kinases.
International patent Application WO 2004/017961 discloses pyrazole compounds wherein the 3 position is substituted by an alcoxy group directly bounded to a cyclic amide, which are used for therapeutically treating and/or preventing a sex hormone related condition in a patient.
US patent US 6,492,529 describes pyrazole derivatives which are used for the treatment of inflammatory deseases. These compounds present in the 5 position a urea group, linked in some cases to a morpholine ethoxy group. International patent Application WO 04/016592 refers to pyrazole compounds for inhibiting protein prenylation which comprises in the 5 position, among others, an alcoxy group directly bonded to a cyclic amide.
However, none of these documents suggests the effect of these compounds on the sigma receptor.
There is still a need to find compounds that have pharmacological activity towards the sigma receptor, being both effective and selective, and having good "drugability" properties, i.e. good pharmaceutical properties related to administration, distribution, metabolism and excretion.
Summary of the invention
We have now found a family of structurally distinct pyrazol derivatives which are particularly selective inhibitors of the sigma receptor. The compounds present a pyrazol group which are characterized by the substitution at position 3 by an alkoxy group directly bound to a nitrogen.
In one aspect the invention is directed to a compound of the formula (I):
Figure imgf000006_0001
(I) wherein R1 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted C2^ aliphatic group; an unbranched or branched, saturated or unsaturated, optionally at least mono- substituted alkoxy radical; a saturated or unsaturated, optionally at least mono- substituted, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; an optionally at least mono-substituted heteroaryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched alkyl-aryl group in which the aryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a branched or unbranched alkyl-heteroaryl group in which the heteroaryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a (C=O)-R7 group; a (C=O)-O-R8 group; a (S=O2)-R9 group; or a (C=O)-NR10R11 group;
R2 and R3, identical or different, represent a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted aliphatic group; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted alkoxy radical; a saturated or unsaturated, optionally at least mono-substituted, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; an optionally at least mono-substituted heteroaryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched alkyl-aryl group in which the aryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a branched or unbranched alkyl-heteroaryl group in which the heteroaryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a (C=O)-R7 group; a (C=O)-O-R8 group; a (S=O2)-R9 group; or a (C=O)-NR10R11 group;
R4 and R5, identical or different, represent a hydrogen atom; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted aliphatic group; an unbranched or branched, optionally at least mono-substituted alkoxy radical; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group may be optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; an optionally at least mono-substituted heteroaryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched alkyl-aryl group in which the aryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a branched or unbranched alkyl-heteroaryl group in which the heteroaryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a (C=O)-R7 group; a (C=O)-O-R8 group; a (S=O2J-R9 group; or a (C=O)-NR10R11 group; or form together with the bridging nitrogen atom an optionally at least mono-substituted heterocyclyl group which is optionally condensed with an optionally at least mono- substituted mono- or polycyclic ring system; X represents an oxygen atom; a CH-R12 group with R12 being -CH3, SH, OH, NH2, CF3 group; Cl1 F, Br, I1 or CN;
Y represents a (S=O2) group; m is selected from 1 , 2, 3 or 4; n is selected from O or 1 ; p is selected from O or 1 ; s is selected from 1 , 2, 3 or 4; and n plus p is 1 ;
R7, R8, R9, R10 and R11, identical or different, represent a hydrogen atom; an unbranched or branched, saturated or unsaturated, optionally at least mono- substituted C1-6 aliphatic group; a branched or unbranched optionally at least mono- substituted C1-6 alkoxy radical; a saturated or unsaturated, optionally at least mono- substituted, optionally at least one heteroatom as ring member containing cycloalkyl group; a branched or unbranched, optionally at least mono-substituted, optionally at least one heteroatom as ring member containing C1-6 alkyl-cycloalkyl group; an optionally at least mono-substituted aryl group; an optionally at least mono-substituted heteroaryl group; a branched or unbranched, optionally at least mono-substituted Ci-6 alkyl-aryl; a branched or unbranched, optionally at least mono-substituted Ci-6 alkyl- heteroaryl group;
with the condition that -(CH2)m-(X)n-(Y)p-(CH2)s- may not represent a Iinear-(CH2)-(CH2)-(CH2)- group or a linear -(CH2)-(CH2)-(CH2)-(CH2)- group; optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In one embodiment the following proviso applies: with the proviso that if n is 1 and p is 0 and X represents a CH-R12 group with R12 being OH, R4 and R5 form together with the bridging nitrogen atom an optionally at least mono-substituted heterocyclyl group which is optionally condensed with an optionally at least mono-substituted mono- or polycyclic ring system.
In another embodiment the following proviso applies: with the proviso that if n is 1 and p is 0 and X represents a CH-R12 group with R12 being OH, R3 is hydrogen.
In another embodiment the following proviso applies: with the proviso that the following compounds are excluded:
• 3-(3'-t-butylamino-2'-hydroxy-propoxy)-1-benzyl-pyrazol ;
• 3-(3'-isopropylamino-2'-hydroxy-propoxy)-pyrazol;
• 3-(3'-isopropylamino-2'-hydroxy-propoxy)-1-isopropyl-pyrazol;
• 3-(3'-lsopropylamino-2'-hydroxy-propoxy)-1 -(4-isopropyl-benzyl)-pyrazol;
• 3-(3'-lsopropylamino-2'-hydroxy-propoxy)-1 -phenyl-pyrazol;
• 3-(3'-lsopropylamino-2'-hydroxy-propoxy)-1-cyclohexyl-pyrazol;
• 3-(3'-lsopropylamino-2'-hydroxy-propoxy)-1 -furfuryl-pyrazol. Any compound that is a prodrug of a compound of formula (I) is within the scope of the invention. The term "prodrug" is used in its broadest sense and encompasses those derivatives that are converted in vivo to the compounds of the invention. Such derivatives would readily occur to those skilled in the art, and include, depending on the functional groups present in the molecule and without limitation, the following derivatives of the present compounds: esters, amino acid esters, phosphate esters, metal salts sulfonate esters, carbamates, and amides. Examples of well known methods of producing a prodrug of a given acting compound are known to those skilled in the art and can be found e.g. in Krogsgaard- Larsen et al. "Textbook of Drug design and Discovery" Taylor & Francis (April 2002).
The term "condensed" according to the present invention means that a ring or ring-system is attached to another ring or ring-system, whereby the terms "annulated" or "annelated" are also used by those skilled in the art to designate this kind of attachment.
The term "ring system" according to the present invention refers to ring sytems comprises saturated, unsaturated or aromatic carbocyclic ring sytems which contain optionally at least one heteroatom as ring member and which are optionally at least mono-substituted. Said ring systems may be condensed to other carbocyclic ring systems such as aryl groups, naphtyl groups, heteroaryl groups, cycloalkyl groups, etc.
Cycloalkyl radicals, as referred to in the present invention, are understood as meaning saturated and unsaturated (but not aromatic), cyclic hydrocarbons, which can optionally be unsubstituted, mono- or polysubstituted. In these radicals, for example C3^-cycloalkyl represents C3- or C4-cycloalkyl, C3-5-cycloalkyl represents C3-, C4- or C5-cycloalkyl, etc. With respect to cycloalkyl, the term also includes saturated cycloalkyls in which optionally at least one carbon atom may be replaced by a heteroatom, preferably S, N, P or O. However, mono- or polyunsaturated, preferably monounsaturated, cycloalkyls without a heteroatom in the ring also in particular fall under the term cycloalkyl as long as the cycloalkyl is not an aromatic system.
Examples for cycloalkyl radicals preferably include but are not restricted to cyclopropyl, 2- methylcyclopropyl, cyclopropylmethyl, cyclobutyl, cyclopentyl, cyclopentylmethyl, cyclohexyl, cycloheptyl, cyclooctyl, acetyl, tert-butyl, adamantyl, pyrroline, pyrrolidine, pyrrolidineone, pyrazoline, pyrazolinone, oxopyrazolinone, aziridine, acetidine, tetrahydropyrrole, oxirane, oxetane, dioxetane, tetrahydrofurane, dioxane, dioxolane, oxathiolane, oxazolidine, thiirane, thietane, thiolane, thiane, thiazolidine, piperidine, piperazine or morpholine.
Cycloalkyl radicals, as defined in the present invention may optionally be mono-or polysubstituted by F, Cl, Br, I, NH2, SH, OH, SO2, CF3, carboxy, amido, cyano, carbamyl, nitro, -SO2NH2, C1-6 alkyl or C1-6-alkoxy.
Aliphatic radicals/groups, as referred to in the present invention, are optionally mono- or polysubstituted and may be branched or unbranched, saturated or unsaturated. Unsaturated aliphatic groups, as defined in the present invention, include alkyl, alkenyl and alkinyl radicals. Preferred aliphatic radicals according to the present invention include but are not restricted to methyl, ethyl, vinyl (ethenyl), ethinyl, propyl, n-propyl, isopropyl, ally) (2-propenyl), 1-propinyl, methylethyl, butyl, n-butyl, iso-butyl, sec-butyl, tert-butyl butenyl, butinyl, 1-methylpropyl, 2- methylpropyl, 1 ,1-dimethylethyl, pentyl, n-pentyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylpropyl, 2,2- dimethylpropyl, hexyl, 1-methylpentyl, n-heptyl, n-octyl, n-nonyl and n-decyl. Preferred substituents for aliphatic radicals, according to the present invention, are F, Cl, Br, I, NH2, SH, OH, SO2, CF3, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO2NH2, C1^ alkyl and/or d-6-alkoxy.
The term (CH2)3-6 is to be understood as meaning -CH2-CH2-CH2-, -CH2-CH2-CH2-CH2-, -CH2- CH2-CH2-CH2-CH2- and -CH2-CH2-CH2-CH2-CH2-CH2-; (CH2J1-4 is to be understood as meaning -CH2-, -CH2-CH2-, -CH2-CH2-CH2- and -CH2-CH2-CH2-CH2-; (CH2J4-5 is to be understood as meaning -CH2-CH2-CH2-CH2- and -CH2-CH2-CH2-CH2-CH2-, etc.
An aryl radical, as referred to in the present invention, is understood as meaning ring systems with at least one aromatic ring but without heteroatoms even in only one of the rings. These aryl radicals may optionally be mono-or polysubstituted with for example F, Cl, Br, I, NH2, SH, OH, SO2, CF3, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO2NH2, C1-6 alkyl or C1-6-alkoxy. Preferred examples of aryl radicals include but are not restricted to phenyl, naphthyl, fluoranthenyl, fluorenyl, tetralinyl or indanyl or anthracenyl radicals, which may optionally be mono- or polysubstituted.
A heteroaryl radical is understood as meaning heterocyclic ring systems which have at least one aromatic ring and may optionally contain one or more heteroatoms from the group consisting of nitrogen, oxygen and/or sulfur and may optionally be unsubstituted, mono- or polysubstituted by for example F, Cl, Br, I, NH2, SH, OH, SO2, CF3, oxo, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO2NH2, C1-6 alkyl or C1-6-alkoxy. Preferred examples of heteroaryls include but are not restricted to furan, benzofuran, thiophene, benzothiophene, pyrrole, pyridine, pyrimidine, pyridazine, pyrazine, quinoline, isoquinoline, phthalazine, benzo- 1 ,2,5-thiadiazole, benzothiazole, indole, benzotriazole, benzodioxolane, benzodioxane, benzimidzole, carbazole and quinazoline.
The term "heterocyclyl" refers to a stable 3-to 15 membered, saturated, unsaturated and/or aromatic ring radical, consisting of at least 3 carbon atoms which can be replaced by at least one heteroatom, preferably nitrogen, oxygen, and sulfur. Heterocyclic radicals may be monocyclic or polycyclic ring systems which, including fused ring systems. Examples of such heterocycles include, but are not limited to, azepines, benzimidazole, benzothiazole, furan, isothiazole, imidazole, indole, piperidine, piperazine, purine, quinoline, thiadiazole, tetrahydrofuran, coumarine, morpholine; pyrrole, pyrazole, oxazole, isoxazole, triazole, imidazole, etc. Said heterocyclic groups may be optionally fully or partly saturated or aromatic and are optionally, unless otherwise stated, at least mono-substituted by one or more substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, CF3, oxo, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO2NH2, C1-6 alkyl or C1-6-alkoxy.
Substituted alkyl-cycloalkyl, alkyl-aryl and alkyl-heteroaryl groups are to be understood as being substituted on the alkyl and/or the cycloalkyl, aryl or heteroaryl group. For example, an optionally substituted alkyl-aryl group means optional substitution of either the alkyl group, the aryl group or both the alkyl and the aryl group. Preferably, these groups are optionally mono- or polysubstituted by F, Cl, Br, I, NH2, SH, OH, SO2, CF3, oxo, carboxy, amido, cyano, carbamyl, nitro, phenyl, benzyl, -SO2NH2, C1-6 alkyl or C1-6-alkoxy.
The term "salt" is to be understood as meaning any form of the active compound used according to the invention in which it assumes an ionic form or is charged and is coupled with a counter-ion (a cation or anion) or is in solution. By this are also to be understood complexes of the active compound with other molecules and ions, in particular complexes which are complexed via ionic interactions.
The term "physiologically acceptable salt" means in the context of this invention any salt that is physiologically tolerated (most of the time meaning not being toxic- especially not caused by the counter-ion) if used appropriately for a treatment especially if used on or applied to humans and/or mammals. These physiologically acceptable salts can be formed with cations or bases and in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention - usually a (deprotonated) acid - as an anion with at least one, preferably inorganic, cation which is physiologically tolerated - especially if used on humans and/or mammals. The salts of the alkali metals and alkaline earth metals are particularly preferred, and also those with NH4, but in particular (mono)- or (di)sodium, (mono)- or (di)potassium, magnesium or calcium salts.
These physiologically acceptable salts can also be formed with anions or acids in the context of this invention is understood as meaning salts of at least one of the compounds used according to the invention - usually protonated, for example on the nitrogen - as the cation with at least one anion which are physiologically tolerated - especially if used on humans and/or mammals. By this is understood in particular, in the context of this invention, the salt formed with a physiologically tolerated acid, that is to say salts of the particular active compound with inorganic or organic acids which are physiologically tolerated - especially if used on humans and/or mammals. Examples of physiologically tolerated salts of particular acids are salts of: hydrochloric acid, hydrobromic acid, sulfuric acid, methanesulfonic acid, formic acid, acetic acid, oxalic acid, succinic acid, malic acid, tartaric acid, mandelic acid, fumaric acid, lactic acid or citric acid.
The term "solvate" according to this invention is to be understood as meaning any form of the active compound according to the invention in which this compound has attached to it via non- covalent binding another molecule (most likely a polar solvent) especially including hydrates and alcoholates, e.g. methanolate.
The compounds of the invention may be in crystalline form either as free compounds or as solvates and it is intended that both forms are within the scope of the present invention. Methods of solvation are generally known within the art. Suitable solvates are pharmaceutically acceptable solvates. In a particular embodiment the solvate is a hydrate.
The compounds of formula (I) or their salts or solvates are preferably in pharmaceutically acceptable or substantially pure form. By pharmaceutically acceptable form is meant, inter alia, having a pharmaceutically acceptable level of purity excluding normal pharmaceutical additives such as diluents and carriers, and including no material considered toxic at normal dosage levels. Purity levels for the drug substance are preferably above 50%, more preferably above 70%, most preferably above 90%. In a preferred embodiment it is above 95% of the compound of formula (I) or, or of its salts, solvates or prodrugs.
Unless otherwise stated, the compounds of the invention are also meant to include compounds which differ only in the presence of one or more isotopically enriched atoms. For example, compounds having the present structures except for the replacement of a hydrogen by a deuterium or tritium, or the replacement of a carbon by 13C- or 14C-enriched carbon or 15N-enriched nitrogen are within the scope of this invention.
The term "pharmacological tool" refers to the property of compounds of the invention through which they are particularly selective ligands for Sigma receptors which implies that compound of formula (I), described in this invention, can be used as a model for testing other compounds as sigma ligands, ex. a radiactive ligands being replaced, and can also be used for modeling physiological actions related to sigma receptors.
Preferred are compounds of general formula (I) given above, wherein R1 represent a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched C2-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH,
OH, SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono- substituted substituted with substituents independently selected from the group consisting of F, Cl, Br1 I1 NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH1 SO2, or CF3;
R2 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched C1-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH1 OH1 SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl1 Br1 I, NH2, SH, OH1 SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl, Br, I, NH2, SH1 OH1 SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl1 Br, I1 NH2, SH1 OH1 SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl1 Br, I, NH2, SH, OH, SO2, or CF3; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH1 SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono- substituted with substituents independently selected from the group consisting of F, Cl, Br,
I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I1 NH2, SH, OH, SO2, or CF3;
R3 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched C1-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I1 NH2, SH, OH, SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F1 Cl1 Br1 11 NH2, SH1 OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl, Br, I, NH2, SH1 OH1 SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F; Cl; Br; I; CF3; OH; SH; NH2; CN; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3;
R4 and R5, identical or different, represent a hydrogen atom; an unbranched or branched, substituted C1-6 alkyl group with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono- substituted with substituents independently selected from the group consisting of F, Cl, Br,
I, NH2, SH, OH, SO2, or CF3; or form together with the bridging nitrogen atom an optionally at least mono-substituted, at least one heteroatom as ring member containing cycloalkyl group;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein R4 and R5, identical or different, represent a hydrogen atom; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH1 SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3;
or
form together with the bridging nitrogen atom an optionally at least mono-substituted, at least one heteroatom as ring member containing cycloalkyl group; optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein
R4 and R5 form together with the bridging nitrogen atom an optionally at least mono- substituted 5- or 6-membered ring selected from the group consisting of pyrrolidine, morpholine, piperidine or piperazine, preferably morpholine, pyrrolidine or piperidine.
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein m is selected from 1 , 2, 3 or 4; preferably from 1 or 2.
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein n is selected from 0 or 1 , preferably from 1.
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein p is selected from 0 or 1 ; preferably 1.
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein s is selected from 1 , 2, 3 or 4; preferably 1 or 2.
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein X represents an oxygen atom; a CH-R12 group with R12 being -CH3, SH1 OH1 NH2, CF3 group; Cl1 F1 Br1 I1 or CN;
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein
X represents an oxygen atom or a CH-OH group;
Another alternative embodiment of the present invention refers to compounds of formula (I) given above, wherein Y represents an (S=O2) group;
A preferred embodiment of the present invention refers to a compound of general formula (I) given above,
wherein
R1 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an optionally, at least mono-substituted ethyl, propyl, n-propyl, i-propyl, tert-butyl, n-butyl, i-butyl, phenyl, benzyl, phenethyl, or naphtyl group with substituents independently selected from the group consisting of F, Cl, Br, I1 NH2, SH, OH, SO2, or CF3;
R2 represents a hydrogen atom; an unbranched or branched, Ci-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH1 OH1 SO2, or CF3; a branched or unbranched alkyl- aryl group selected from the group consisting of benzyl or phenethyl which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH1 OH1 SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br1 I, NH2, SH1 OH, SO2, or CF3;
R3 represents a hydrogen atom; an unbranched or branched, Ci-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl1 Br1 I, NH2, SH, OH1 SO2, or CF3; a branched or unbranched alkyl- aryl group selected from the group consisting of benzyl or phenethyl which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br1 I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br1 I, NH2, SH, OH1 SO2, or CF3;
R4 and R5 form together with the bridging nitrogen atom an optionally at least mono- substituted, piperidine, morpholine, pyrrolidine or piperazine group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH1 OH1 SO2, or CF3;
X represents an oxygen atom or a CH-R12 group with R12 being OH; Y represents a (S=O2) group; m is selected from 1 or 2; n is selected from O or 1 ; p is selected from O or 1 ; s is selected from 1 , 2, 3, or 4; and n plus p is 1 ; optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
Highly preferred are compounds of formula (I) given above, selected from the group consisting of:
1 -(1 -(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)-3-morpholinopropan-2-ol, 1-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)-3-(piperidin-1-yl)propan-2-ol, 1-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)-3-(pyrrolidin-1-yl)propan-2-ol, 1-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)-3-(4-methylpiperazin-1-yl)propan-2-ol,
2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethyl 2-morpholine, 1-(2-(2-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)ethoxy)ethyl) piperidine, 4-(2-(2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethoxy)ethyl)morpholine, or any acceptable salt or solvate thereof. Another aspect of the present invention relates to a process for the preparation of compounds of general formula (I) as described above.
The compounds of formula (I) defined above can be obtained by available synthetic procedures similar to those described in the patent US 4,337,263 or FR 2 472 564. For example, they can be prepared by condensing a compound of formula (II):
Figure imgf000021_0001
(H)
in which R j1 , r R-,2 and R are as defined above in formula (I), with a compound of formula (III):
Figure imgf000021_0002
(III)
in which R 1 R , X, Y, m, n, p, and s are as defined above in formula (I). The reaction of compounds of formulas (II) and (III) is preferably carried out at a temperature in the range of 60 to 12O0C in an aprotic solvent, but not limited to, such as dimethylformamide (DMF) in the presence of an inorganic base, such as K2CO3.
Alternatively, compounds of general formula (I) as described above can be obtained by condensing a compound of formula (II) as described above, in which R1, R2 and R3 are as defined above in formula (I)1 with a compound of formula (IV):
Figure imgf000022_0001
(IV)
in which X, Y, m, n, p, and s are as defined above in formula (I).
The reaction of compounds of formulas (II) and (IV) is preferably carried out in the presence of an organic or inorganic, e.g. K2CO3.
The intermediate compound (II) can also be prepared as described in the bibliography (see L.F.Tietze et al., Synthesis, (11 ), 1079-1080, 1993; F. Effenberger and W. Hartmann, Chem. Ber., 102(10), 3260-3267, 1969; both citations incorporated here by reference). It can also be prepared by conventional methods, as can be seen in the synthetic examples of the present patent application.
Compounds of formula (III) and (IV) are commercially available or can be prepared by conventional methods known to those ordinary skilled in the art.
A general for process for synthesizing compounds of general formula (I) as described above is given in scheme (I)
Scheme (I)
Figure imgf000023_0001
Compounds of general formula (I) as described above may be obtained by more than one route of synthesis, as described in scheme (I). Three of these alternative routes of synthesis are described more in detail in scheme 1A, 1 B and 1C. These routes are to be understood as to form part of general scheme (I) and are therefore no restriction to the general process for obtaining compounds of general formula (I) as described above.
Scheme 1A
Figure imgf000024_0001
Scheme 1B
Figure imgf000024_0002
Scheme 1C
Figure imgf000025_0001
During the processes described above the protection of sensitive groups or of reagents may be necessary and/or desirable. The introduction of conventional protective groups as well as their removal may be performed by methods well-known to those skilled in the art.
If the compounds of general formula (I) themselves are obtained in form of a mixture of stereoisomers, particularly enantiomers or diastereomers, said mixtures may be separated by standard procedures known to those skilled in the art, e.g. chromatographic methods or fractionalized crystallization with chiral reagents. If there are chiral centers the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
Solvates, preferably hydrates, of the compounds of general formula (I), of corresponding stereoisomers, or of corresponding salts thereof may also be obtained by standard procedures known to those skilled in the art.
The purification and isolation of the inventive compounds of general formula (I), of a corresponding stereoisomer, or salt, or solvate or any intermediate thereof may, if required, be carried out by conventional methods known to those skilled in the art, e.g. chromatographic methods or recrystallization.
It has been found that the compounds of general formula (I) and given below, stereoisomers thereof, corresponding salts and corresponding solvates have high affinity to sigma receptors, i.e. they are selective ligands for the sigma receptor and act as modulators, e.g. antagonists, inverse agonists or agonists, on these receptors. The compounds of general formula (I) given below, their stereoisomers, corresponding salts thereof and corresponding solvates are toxicologically acceptable and are therefore suitable as pharmaceutical active substances for the preparation of medicaments.
One preferred pharmaceutically acceptable form is the crystalline form, including such form in pharmaceutical composition. In the case of salts and solvates the additional ionic and solvent moieties must also be non-toxic. The compounds of the invention may present different polymorphic forms, it is intended that the invention encompasses all such forms.
Another aspect of the present invention relates to a medicament comprising at least one compound of general formula (I) given above, said compound being optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof; or a prodrug thereof.
Another aspect of the present invention relates to a medicament comprising at least one compound of general formula (I) given above, said compound being optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
In an alternative embodiment of the present invention, the medicament comprises at least one compound of general formula (I), said compound being optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
Another aspect of the invention is a medicament comprising at least one combination of compounds according to the invention and optionally one or more pharmaceutically acceptable excipients.
In an embodiment according to the invention the medicament is for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of diarrhoea, lipoprotein disorders, migraine, obesity, arthritis, hypertension, arrhythmia, ulcer, learning, memory and attention deficits, cognition disorders, neurodegenerative diseases, demyelinating diseases, addiction to drugs and chemical substances including cocaine, amphetamine, ethanol and nicotine; tardive diskinesia, ischemic stroke, epilepsy, stroke, stress, cancer or psychotic conditions, in particular depression, anxiety or schizophrenia; inflammation, or autoimmune diseases.
In an embodiment according to the invention the medicament is for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and/or dysbetalipoproteinemia.
In another embodiment according to the invention the medicament is for the prophylaxis and/or treatment of one or more disorders selected from the group consisting of pain, preferably neuropathic pain, inflammatory pain or other pain conditions involving allodynia and/or hyperalgesia.
Said medicament may also comprise any combination of one or more of the compounds of general formula (I) given above, stereoisomers thereof, physiologically acceptable salts thereof or physiologically acceptable solvates thereof.
Another aspect of the present invention is the use of at least one compound of general formula (I) given above as suitable active substances, optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof, and optionally one or more pharmaceutically acceptable excipients, for the preparation of a medicament for the modulation of sigma receptors, preferably for the prophylaxis and/or treatment of psychosis.
The medicament according to the present invention may be in any form suitable for the application to humans and/or animals, preferably humans including infants, children and adults and can be produced by standard procedures known to those skilled in the art. The composition of the medicament may vary depending on the route of administration. The medicament of the present invention may for example be administered parentally in combination with conventional injectable liquid carriers, such as water or suitable alcohols. Conventional pharmaceutical excipients for injection, such as stabilizing agents, solubilizing agents, and buffers, may be included in such injectable compositions. These medicaments may for example be injected intramuscularly, intraperitoneally, or intravenously.
Solid oral compositions (which are preferred as are liquid ones) may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are conventional in the art. The tablets may for example be prepared by wet or dry granulation and optionally coated according to the methods well known in normal pharmaceutical practice, in particular with an enteric coating. The mentioned formulations will be prepared using standard methods such as those described or referred to in the Spanish and US Pharmacopeias and similar reference texts.
Medicaments according to the present invention may also be formulated into orally administrable compositions containing one or more physiologically compatible carriers or excipients, in solid or liquid form. These compositions may contain conventional ingredients such as binding agents, fillers, lubricants, and acceptable wetting agents. The compositions may take any convenient form, such as tablets, pellets, capsules, lozenges, aqueous or oily solutions, suspensions, emulsions, or dry powdered forms suitable for reconstitution with water or other suitable liquid medium before use, for immediate or retarded release.
The liquid oral forms for administration may also contain certain additives such as sweeteners, flavoring, preservatives, and emulsifying agents. Non-aqueous liquid compositions for oral administration may also be formulated, containing edible oils. Such liquid compositions may be conveniently encapsulated in e.g., gelatin capsules in a unit dosage amount.
The compositions of the present invention may also be administered topically or via a suppository. The daily dosage for humans and animals may vary depending on factors that have their basis in the respective species or other factors, such as age, sex, weight or degree of illness and so forth. The daily dosage for humans may preferably be in the range fromi to 2000, preferably 1 to 1500, more preferably 1 to 1000 milligrams of active substance to be administered during one or several intakes per day. Another aspect of the present invention refers to a method for the prophylaxis and/or treatment of diarrhoea, lipoprotein disorders, migraine, obesity, elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and dysbetalipoproteinemia, arthritis, hypertension, arrhythmia, ulcer, learning, memory and attention deficits, cognition disorders, neurodegenerative diseases, demyelinating diseases, addiction to drugs and chemical substances including cocaine, amphetamine, ethanol and nicotine; tardive diskinesia, ischemic stroke, epilepsy, stroke, stress, cancer or psychotic conditions, in particular depression, anxiety or schizophrenia; inflammation, or autoimmune diseases, the method comprising administering to the subject at least one compound of general formula (I) as described above and optionally at least one further active substance and/or optionally at least one auxiliary substance to the subject.
A preferred embodiment of the present invention refers to a method for the prophylaxis and/or treatment of elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and/or dysbetalipoproteinemia.
The present invention is illustrated below with the aid of examples. These illustrations are given solely by way of example and do not limit the general spirit of the present invention. Examples:
Example 1: Synthesis of 1-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)-3- morpholinopropan-2-ol oxalate
1 ) Scheme 1A-step 1. Synthesis of 1-(3,4-dichlorophenyl)-3-(oxiran-2-ylmethoxy)-1 H-pyrazole
Figure imgf000030_0001
A mixture of 1-(3,4-dichlorophenyl)-1 H-pyrazol-3-ol (0,2 g, 0,87 mmol; compound prepared in the same way as Example 1 , Scheme 1-step 1 B), 2-(chloromethyl)oxirane (0,1 g, 1 ,05 mmol), potassium carbonate (0,36 g, 2,62 mmol) and sodium iodide (0,13 g, 0,87 mmol) in dimethylformamide (6 ml) was warmed, with stirring, to 1000C for 4 hrs. The solvent was evaporated to dryness in vacuo and residue partitioned between water and dichlorometane. The combined organic phases were dried over sodium sulphate, filtered and evaporated in vacuo to yield 0,24 g of 1-(3,4-dichlorophenyl)-3-(oxiran-2-ylmethoxy)-1 H-pyrazole as a dark oil, used without further purification in next step of synthesis.
1H-NMR (CDCI3) δ ppm: 7,75 (d, J=2,4Hz, 1 H)1 7,7 (d, J=2,6Hz, 1H), 7,45 (d, J=8,8Hz, 1 H), 7,4 (dd, J=2,5 and 8,8Hz, 1 H), 5,95 (d, J=2,6Hz, 1H), 4,55 (dd, J=3,1 and 11 ,7Hz, 1 H), 4,2 (dd, J=6,0 and 11 ,7Hz, 1H), 3,4 (m, 1 H), 2,9 (dd, J=5,0 and 9,1 Hz, 1 H), 2,75 (dd, J=2,7 and 5,0Hz, 1 H).
2) Scheme 1A-step 2. Synthesis of 1-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)-3- morpholinopropan-2-ol
Figure imgf000031_0001
A mixture of 1-(3,4-dichlorophenyl)-3-(oxiran-2-ylmethoxy)-1 H-pyrazole (0,23 g, 0,82 mmol), morpholine (72 mg, 0,82 mmol), potasium carbonate (0,34 g, 2,47 mmol) and sodium iodide (123 mg, 0,82 mmol) in dimethylformamide (6 ml) was refluxed 8 hrs and the solvent evaporated in vacuo. To the crude residue was added water and dichlorometane, the aqueous solution extracted several times with dichlorometane and the combined organic phases washed with water, dried over sodium sulphate, filtered and evaporated to dryness in vacuo. The crude dark oil obtained, 296 mg, was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether 1 :1 to 1 :0 and ethyl acetate/CH3OH 9:1 ) yielding 114 mg of 1-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)-3-morpholinopropan-2-ol.
The salt with oxalic acid was prepared analogously to method described in Example 1 , obtaining a white solid with m.p. = 158-161°C 1H-NMR (DMSO-d6) δ ppm: 8,45 (d, J=2,8Hz, 1 H), 8,0 (d, J=1 ,9Hz, 1 H), 7,7 (m, 2H), 6,1 (d, J=2,8Hz, 1 H), 4,2 (m, 1 H), 4,1 (m, 2H), 3,6 (bm, 4H), 2,7 (m, 6H).
The following examples 2-4 were prepared with the same synthetic steps used in Example 1. Example 2: 1-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)-3-(piperidin-1-yl)propan-2-ol oxalate
Figure imgf000032_0001
White solid. M.p. = 116-1190C.
1H-NMR (CD3OD) δ ppm: 8,1 (d, J=2,6Hz, 1H)17,9 (d, J=2,2Hz, 1H), 7,65 (dd, J=2,2 and 8,9 Hz, 1H)17,6 (d, J=8,9Hz, 1H)16,0 (d, J=2,6Hz, 1H), 4,5 (m, 1H), 4,3 (m, 2H), 3,4-3,2 (m, 6H), 1,9 (m, 4H), 1,7(m.2H).
Example 3: 1-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)-3-(pyrrolidin-1-yl)propan-2-ol oxalate
Figure imgf000032_0002
White solid. M.p. = 123,5-1290C.
1H-NMR (CD3OD) δ ppm: 8,1 (d, J=2,8Hz, 1H), 7,9 (d, J=2,3Hz, 1H), 7,65 (dd, J=2,3 and 8,9 Hz, 1H), 7,55 (d, J=8,9Hz, 1H), 6,0 (d, J=2,8Hz, 1H), 4,4-4,2 (m, 3H), 3,4-3,2 (m, 6H), 2,15 (m, 4H). Example 4: 1-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)-3-(4-methylpiperazin-1- yl)propan-2-ol dioxalate
Figure imgf000033_0001
White solid. M.P. = 189-1920C.
1H-NMR (DMSO-de÷ TFA) δ ppm: 8,25 (d, J=2,5Hz, 1 H), 7,9 (bs, 1 H), 7,6 (d, J=8,8Hz, 1 H), 7,5 (d, J=8,8Hz, 1 H), 5,95 (d, J=2,5Hz, 1 H), 4,3 (m, 1H), 4,2(m, 2H), 3,5-3,3 (m + H2O, 10H), 2,8 (s, 3H).
Example 5: Synthesis of 2-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)ethyl 2- morpholino ethane sulfonate
1 ) Scheme 1B-Step 1. Synthesis of 2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy) ethanol
Figure imgf000033_0002
A mixture of 1-(3,4-dichlorophenyl)-1 H-pyrazol-3-ol (238 mg, 1 ,04 mmol; compound prepared in the same way as Example 1 , Scheme 1-step 1 B)1 2-bromoethanol (273 mg, 2,08 mmol), potassium carbonate (0,43 g, 3,12 mmol) and sodium iodide (0,16 g, 1 ,04 mmol) in dimethylformamide (5 ml) was warmed, under dry nitrogen atmosphere, with stirring, to 6O0C overnight. The solvent was evaporated to dryness in vacuo and residue partitioned between water and ethyl ether. The combined organic phases were washed with water and dried over sodium sulphate, filtered and evaporated in vacuo. The residue was stirred with petroleum ether at 450C and decanted for 3 times to yield, after drying, 258 mg of 2-(1-(3,4- dichlorophenyl)-1H-pyrazol-3-yloxy)ethanol which was used without further purification in the next step of synthesis
1H-NMR (CDCI3 ) δ ppm: 7,7 (d, J=2,3Hz, 1 H), 7,65 (d, J=2,7Hz, 1 H), 7,45 (d, J=8,7Hz, 1 H), 7,4 (dd, J=2,3 and 8,7Hz, 1 H), 5,95 (d, J=2,7Hz, 1 H), 4,4 (m, 2H), 4,0 (m, 2H).
2) Scheme 1 B-Step 2. Synthesis of 2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethyl 2- morpholinoethanesulfonate
Figure imgf000034_0001
hanol (154 mg, 0,53 mmol) and tryethylamine (0,22 ml, 1 ,58 mmol) in dichlorometane (9 ml) was added a solution of 2-morpholinoethanesulfonyl chloride (prepared from 0,69 mmol of 2- morpholinoethanesulfonic acid and 1 ,14 ml of oxalyl dichloride in dichlorometane at O0C) and the final mixture was stirred at room temperature overnight. Water was added, the organic phase separated and the aqueous phase extracted with more dichlorometane. The combined organic phases were washed with saturated aqueous solution of NaHCO3 and water, and after drying over sodium sulphate, filtered and evaporated to dryness yielding 222 mg of crude compound. After column chromatography purification (silica gel, eluent: petroleum ether/ethyl acetate 8:2), 94 mg of 2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethyl 2- morpholinoethanesulfonate as a solid was obtained, with a m.p.=120-122°C after crystallization in acetone-petroleum ether.
1H-NMR (DMSO-d6) δ ppm: 8,45 (d, J=2,6 Hz, 1 H)1 8,0 (d, J=2,2 Hz, 1 H), 7,7 (m, 2H)1 6,1 (d, J=2,6 Hz, 1 H), 4,55 (t, J=3,2Hz, 2H), 4,45 (t, J=3,5Hz, 2H), 3,6-3,5 (m, 6H), 2,65 (t, J=7,6 Hz,
2H)1 2,35 (t, J= 4,4 Hz, 4H). Example 6: Synthesis of 1-(2-(2-(1-(3,4-dichlorophenyl)-1H-pyrazol-3-yloxy)ethoxy)ethyl) piperidine
1 ) Scheme 1C-Step 1. Synthesis of 3-(2-(2-bromoethoxy)ethoxy)-1-(3,4-dichloro phenyl)-1 H- pyrazole
Figure imgf000035_0001
A mixture of 1-(3,4-dichlorophenyl)-1 H-pyrazol-3-ol (229 mg, 1 mmol; compound prepared in the same way as Example 1 , Scheme 1-step 1B), 1-bromo-2-(2-bromoethoxy)ethane (515 mg, 2 mmol), potassium carbonate (0,42 g, 3 mmol) and sodium iodide (0,15 g, 1 mmol) in dimethylformamide (12 ml) was stirred, under dry nitrogen atmosphere, at room temperature overnight. The inorganic solid was filtered off and solvent was evaporated to dryness in vacuo. The remaining residue was partitioned between water and ethyl ether. The combined organic phases were washed with water and dried over sodium sulphate, filtered and evaporated in vacuo. The residue was stirred with petroleum ether at 450C and decanted for 3 times to yield, after drying, 466 mg of 3-(2-(2-bromoethoxy)ethoxy)-1-(3,4-dichlorophenyl)-1 H-pyrazole which was used without further purification in the next step of synthesis.
1H-NMR (CDCI3 ) δ ppm: 7,75 (d, J=2,2Hz, 1 H), 7,7 (d, J=2,7Hz, 1H)1 7,45 (m, 2H), 5,95 (d, J=2,7Hz, 1 H)1 4,4 (t, J=4,4Hz, 2H), 4,0-3,8 (m, 4H), 3,5 (t, J=6,4Hz, 2H).. 2) Scheme 1 C-Step 2. Synthesis of 1-(2-(2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3- yloxy)ethoxy)ethyl)piperidine
Figure imgf000036_0001
pyrazole
(0,17 mg, 0,45 mmol), piperidine (62 mg, 0,72 mmol), potasium carbonate (0,25 g, 1 ,8 mmol) and sodium iodide (67 mg, 0,45 mmol) in dimethylformamide (5 ml) was stirred at 1000C overnight in a dry nitrogen atmosphere. The solvent was evaporated in vacuo and water and ethyl ether was added. The aqueous phase was extracted several times with organic solvent and the combined organic phases washed with water, dried over sodium sulphate, filtered and evaporated to dryness in vacuo. The crude dark oil obtained, 138 mg, was purified by column chromatography on silica gel (eluent: ethyl acetate/petroleum ether 2:8 to 10:0 and ethyl acetate/CH3OH 9:1 ) yielding 118 mg of . of 1-(2-(2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3- yloxy)ethoxy)ethyl)piperidine as an oil
1H-NMR (DMSO-d6) δ ppm: 8,4 (d, J=2,6 Hz, 1 H), 8,0 (d, J=2,2 Hz, 1 H), 7,7 (m, 2H), 6,1 (d, J=2,6 Hz, 1 H), 4,3 (t, J=4,6Hz, 2H), 3,7 (t, J= 4,6 Hz, 2 H), 3,5 (t, J=6,0Hz, 2H), 2,4 (t, J=6,0Hz, 2H), 2,3 (m, 4H), 1 ,45 (m, 4H), 1 ,3 (m, 2H).
The salt with oxalic acid was prepared analogously to method described in Example 1 , obtaining a white solid with m.p. = 126-1280C
The following example 7 was prepared with the same synthetic steps used in Example 6. Example 7: 4-(2-(2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethoxy)ethyl)morpholine oxalate
Figure imgf000037_0001
White solid. M.P. = 154-1560C.
1H-NMR (DMSOd6) δ ppm: 8,45 (d, J=2,6 Hz, 1 H), 8,0 (d, J=2,0 Hz, 1H), 7,7 (m, 2H), 6,1 (d, J=2,6 Hz, 1 H), 4,3 (t, J=4,6Hz, 2H), 3,8-3,6 (m partially under water of solvent, 8H), 2,95 (m, 2H), 2,85 (m, 4H).
BIOLOGICAL ACTIVITY
Some representative compounds of the invention were tested for their activity as sigma (sigma-1 and sigma-2) inhibitors. The following protocols were followed:
Siqma-1 Brain membrane preparation and binding assays for the σ1 -receptor were performed as described (DeHaven-Hudkins et al., 1992) with some modifications. In brief, guinea pig brains were homogenized in 10 vols. (w/v) of Tris-HCI 50 mM 0.32 M sucrose, pH 7.4, with a Kinematica Polytron PT 3000 at 15000 r.p.m. for 30 s. The homogenate was centrifuged at 1000g for 10 min at 40C and the supematants collected and centrifuged again at 4800Og for 15 min at 40C. The pellet was resuspended in 10 volumes of Tris-HCI buffer (50 mM, pH 7.4), incubated at 370C for 30 min, and centrifuged at 4800Og for 20 min at 4°C. Following this, the pellet was resuspended in fresh Tris-HCI buffer (50 mM, pH 7.4) and stored on ice until use.
Each assay tube contained 10 μL of [3H](+)-pentazocine (final concentration of 0.5 nM), 900 μl_ of the tissue suspension to a final assay volume of 1 mL and a final tissue concentration of approximately 30 mg tissue net weight/mL. Non-specific binding was defined by addition of a final concentration of 1 μM haloperidol. All tubes were incubated at 370C for 150 min before termination of the reaction by rapid filtration over Schleicher & Schuell GF 3362 glass fibre filters [previously soaked in a solution of 0,5% polyethylenimine for at least 1 h]. Filters were then washed with four times with 4 mL of cold Tris-HCI buffer (50 mM, pH 7.4). Following addition of scintillation cocktail, the samples were allowed to equilibrate overnight. The amount of bound radioactivity was determined by liquid scintillation spectrometry using a Wallac Winspectral 1414 liquid scintillation counter. Protein concentrations were determined by the method of Lowry et al. (1951 ).
Sigma-2 Binding studies for σ2-receptor were performed as described (Radesca et al., 1991 ) with some modifications. In brief, brains from sigma receptor type I (σ1 ) knockout mice were homogenized in a volume of 10 ml_/g tissue net weight of ice-cold 10 mM Tris-HCI, pH 7.4, containing 320 mM sucrose (Tris-sucrose buffer) with a Potter-Elvehjem homogenizer (10 strokes at 500 r.p.m.) The homogenates were then centrifuged at 1000g for 10 min at 4°C, and the supematants were saved. The pellets were resuspended by vortexing in 2 mL/g ice- cold Tris-sucrose buffer and centrifuged again at 100Og for 10 min. The combined 1000g supematants were centrifuged at 3100Og for 15 min at 40C. The pellets were resuspended by vortexing in 3 ml_/g 10 mM Tris-HCI, pH 7.4, and the suspension was kept at 250C for 15 min. Following centrifugation at 3100Og for 15 min, the pellets were resuspended by gentle Potter Elvehjem homogenization to a volume of 1.53 ml_/g in 10 mM Tris-HCI pH 7.4.
The assay tubes contained 10 μL of [3H]-DTG (final concentration of 3 nM), 400 μl_ of the tissue suspension (5.3 ml_/g in 50 mM Tris-HCI, pH 8.0) to a final assay volume of 0.5 ml_. Non-specific binding was defined by addition of a final concentration of 1 μM haloperidol. All tubes were incubated at 250C for 120 min before termination of the reaction by rapid filtration over Schleicher & Schuell GF 3362 glass fibre filters [previously soaked in a solution of 0,5% polyethylenimine for at least 1 h]. Filters were washed with three times with 5 mL volumes of cold Tris-HCI buffer (10 mM, pH 8.0). Following addition of scintillation cocktail samples were allowed to equilibrate overnight. The amount of bound radioactivity was determined by liquid scintillation spectrometry using a Wallac Winspectral 1414 liquid scintillation counter. Protein concentrations were determined by the method of Lowry et al. (1951 ).
References
DeHaven-Hudkins, D. L., L. C. Fleissner, and F. Y. Ford-Rice, 1992, "Characterization of the binding of [3H](+)pentazocine to σ recognition sites in guinea pig brain", Eur. J. Pharmacol. 227, 371-378. Radesca, L., W. D. Bowen, and L. Di Paolo, B.R. de Costa, 1991 , Synthesis and Receptor Binding of Enantiomeric N-Substituted cis-N-[2-(3,4-Dichlorophenyl)ethyl]-2-(1- pyrrolidinyl)cyclohexylamines as High-Affinity σ Receptor Ligands, J. Med. Chem. 34, 3065- 3074.
Langa, F., Codony X., Tovar V., Lavado A., Gimenez E., Cozar P., Cantero M., Dordal A., Hernandez E., Perez R., Monroy X., Zamanillo D., Guitart X., Montoliu Ll., 2003, Generation and phenotypic analysis of sigma receptor type I (Sigmal ) knockout mice, European Journal of Neuroscience, Vol. 18, 2188-2196.
Lowry, O. H., N.J. Rosebrough, A.L. Farr, and RJ. Randall, 1951 , Protein measurement with the Folin phenol reagent, J. Biol. Chem, 193, 265. Some of the results obtained are shown in table (I).
Table (I)
Figure imgf000040_0001

Claims

CLAIMS:
1. Compounds of general formula (I),
Figure imgf000041_0001
(I) wherein
R1 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted C1-6 aliphatic group; an unbranched or branched, saturated or unsaturated, optionally at least mono- substituted alkoxy radical; a saturated or unsaturated, optionally at least mono- substituted, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; an optionally at least mono-substituted heteroaryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched alkyl-aryl group in which the aryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a branched or unbranched alkyl-heteroaryl group in which the heteroaryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a (C=O)-R7 group; a (C=O)-O-R8 group; a (S=O2J-R9 group; or a (C=O)-NR10R11 group;
R2 and R3, identical or different, represent a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted aliphatic group; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted alkoxy radical; a saturated or unsaturated, optionally at least mono-substituted, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; an optionally at least mono-substituted heteroaryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched alkyl-aryl group in which the aryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a branched or unbranched alkyl-heteroaryl group in which the heteroaryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a (C=O)-R7 group; a (C=O)-O-R8 group; a (S=O2)-R9 group; or a (C=O)-NR10R11 group;
R4 and R5, identical or different, represent a hydrogen atom; an unbranched or branched, saturated or unsaturated, optionally at least mono-substituted aliphatic group; an unbranched or branched, optionally at least mono-substituted alkoxy radical; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group, which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group may be optionally at least mono-substituted; an optionally at least mono-substituted aryl group which may be condensed with an optionally at least mono- substituted mono- or polycyclic ring system; an optionally at least mono-substituted heteroaryl group which may be condensed with an optionally at least mono-substituted mono- or polycyclic ring system; a branched or unbranched alkyl-aryl group in which the aryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a branched or unbranched alkyl-heteroaryl group in which the heteroaryl group is optionally at least mono-substituted and/or condensed with a mono- or polycyclic ring system; a (C=O)-R7 group; a (C=O)-O-R8 group; a (S=O2J-R9 group; or a (C=O)-NR10R11 group; or form together with the bridging nitrogen atom an optionally at least mono-substituted heterocyclyl group which is optionally condensed with an optionally at least mono- substituted mono- or polycyclic ring system; X represents an oxygen atom; a CH-R12 group with R12 being a-CH3, SH, OH1 NH2,
CF3 group; Cl, F, Br, I, or CN;
Y represents a (S=O2) group; m is selected from 1 , 2, 3 or 4; n is selected from O or 1 ; p is selected from O or 1 ; s is selected from 1 , 2, 3 or 4; and n plus p is 1 ;
R7, R8, R9, R10 and R11, identical or different, represent a hydrogen atom; an unbranched or branched, saturated or unsaturated, optionally at least mono- substituted C1-6 aliphatic group; a branched or unbranched optionally at least mono- substituted Ci_6 alkoxy radical; a saturated or unsaturated, optionally at least mono- substituted, optionally at least one heteroatom as ring member containing cycloalkyl group; a branched or unbranched, optionally at least mono-substituted, optionally at least one heteroatom as ring member containing C1-6 alkyl-cycloalkyl group; an optionally at least mono-substituted aryl group; an optionally at least mono-substituted heteroaryl group; a branched or unbranched, optionally at least mono-substituted C1^ alkyl-aryl; a branched or unbranched, optionally at least mono-substituted C1^ alkyl- heteroaryl group;
with the condition that -(CH2)m-(X)n-(Y)P-(CH2)s- may not represent a Iinear-(CH2MCH2HCH2)- group or a linear -(CH2HCH2HCH2HCH2)- group; with the proviso that if n is 1 and p is 0 and X represents a CH-R12 group with R12 being OH, R4 and R5 form together with the bridging nitrogen atom an optionally at least mono-substituted heterocyclyl group which is optionally condensed with an optionally at least mono-substituted mono- or polycyclic ring system;
optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
2. Compounds according to claim 1 , characterized in that R1 represent a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched C1-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl1 Br, I, NH2, SH, OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br1 I, NH2, SH1 OH1 SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br1 I1 NH2, SH1 OH1 SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl1 Br1 11 NH2, SH1 OH1 SO2, or CF3; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono-substituted substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted substituted with substituents independently selected from the group consisting of F, Cl1 Br, I, NH2, SH1 OH, SO2, or CF3;
3. Compounds according to any of claims 1 or 2, characterized in that R2 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched C1-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I1 NH2, SH, OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH,
OH, SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH1 OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono- substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3;
Compounds according to any of claims 1 to 3, characterized in that R3 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an unbranched or branched C1^ alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F; Cl; Br; I; CF3; OH; SH; NH2; CN; a heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH,
OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3;
5. Compounds according to any of claims 1 to 4, characterized in that R4 and R5, identical or different, represent a hydrogen atom; an unbranched or branched, substituted C1-6 alkyl group with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an unbranched or branched, alkoxy radical which is optionally substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a saturated or unsaturated, optionally at least one heteroatom as ring member containing cycloalkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched, optionally at least one heteroatom as ring member containing alkyl-cycloalkyl group in which the cycloalkyl group is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; an aryl group which is optionally at least mono- substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a heteroaryl group which is optionally at least mono- substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-aryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl- heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3;
or form together with the bridging nitrogen atom an optionally at least mono-substituted, at least one heteroatom as ring member containing cycloalkyl group;
6. Compounds according to any of claims 1 to 5, characterized in that R1 represents a hydrogen atom; F; Cl; Br; I; CF3; OH; SH; NH2; CN; an optionally, at least mono-substituted ethyl, propyl, n-propyl, i-propyl, tert-butyl, n-butyl, i-butyl, cyclohexyl, phenyl, benzyl, phenethyl or naphtyl group with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3;
R2 represents a hydrogen atom; an unbranched or branched, Ci-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl- aryl group selected from the group consisting of benzyl or phenethyl which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3;
R3 represents a hydrogen atom; an unbranched or branched, Ci-6 alkyl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br, I, NH2, SH, OH, SO2, or CF3; a branched or unbranched alkyl- aryl group selected from the group consisting of benzyl or phenethyl which is optionally at least mono-substituted with substituents independently selected from the group consisting of F, Cl, Br1 I, NH2, SH1 OH, SO2, or CF3; a branched or unbranched alkyl-heteroaryl group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl, Br, I, NH2, SH, OH1 SO2, or CF3;
R4 and R5 form together with the bridging nitrogen atom an optionally at least mono- substituted, piperidine, morpholine, pyrrolidine or piperazine group which is optionally at least mono-substituted with substituents independently selected from the group consisting of F1 Cl, Br1 I, NH2, SH1 OH, SO2, or CF3;
X represents an oxygen atom or a CH-R12 group with R12 being OH; Y represents a (S=O2) group; m is selected from 1 or 2; n is selected from O or 1 ; p is selected from O or 1 ; s is selected from 1 or 2; and n plus p is 1 ; optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
7. Compounds according to any of claims 1 to 5, characterized in that m is selected from 1 , 2, 3 or 4; preferably from 1 or 2.
8. Compounds according to any of claims 1 to 5, characterized in that n is selected from 0 or 1 ; preferably from 1.
9. Compounds according to any of claims 1 to 5, characterized in that p is selected from 0 or 1 ; preferably from 0.
10. Compounds according to any of claims 1 to 5, characterized in that that -
(CH2)m-(X)n-(Y)p-(CH2)s- may not represent a Iinear-(CH2)-(CH2)-(CH2)- group or a linear -(CH2)-(CH2)-(CH2)-(CH2)- group;
11. Compounds according to any of claims 1 to 5, characterized in that s is selected from 1 , 2, 3 or 4; preferably from 1 or 2.
12. Compounds according to any of claims 1 to 6, characterized in that R4 and R5 form together with the bridging nitrogen atom an optionally at least mono-substituted 5- or 6- membered ring selected from the group consisting of pyrrolidine, morpholine, piperidine or piperazine, preferably morpholine, pyrrolidine or piperidine.
13. Compounds according to any of claims 1 to 6, characterized in that n is selected from 1 and X represents an oxygen atom; a CH-R12 group with R12 being -CH3, SH, OH, NH2, CF3 group; Cl, F, Br, I1 or CN;
14. Compounds according to any of claims 1 to 6, characterized in that n is selected from 1 and X represents an oxygen atom or a CH-OH group;
15. Compounds according to any of claims 1 to 6 selected from the group consisting of: 1-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)-3-morpholinopropan-2-ol, I^I^S^-dichlorophenylJ-I H-pyrazol-a-yloxy^S^piperidin-i-yOpropan^-ol, 1-(1-(3^-dichlorophenyl)-1H-pyrazol-3-yloxy)-3-(pyrrolidin-1-yl)propan-2-ol, 1-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)-3-(4-methylpiperazin-1-yl)propan-2-ol, 2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethyl 2-morpholine, 1-(2-(2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethoxy)ethyl) piperidine, 4-(2-(2-(1-(3,4-dichlorophenyl)-1 H-pyrazol-3-yloxy)ethoxy)ethyl)morpholine, or any acceptable salt or solvate thereof.
16. A process for the preparation of compounds of formula (I) by reacting compounds of general formula (II)
Figure imgf000049_0001
(H)
in which R1, R2 and R3 have the meaning according to claim 1 , with a compound of formula (III):
Figure imgf000049_0002
(III)
in which R -.4 , r R-,5 , X, Y, m, n, p, and s are defined according to claim 1.
17. A process for the preparation of compounds of formula (I) by reacting compounds of general formula (II)
Figure imgf000050_0001
(H)
in which R1, R2 and R3 have the meaning according to claim 1 , with a compound of formula (IV),
Figure imgf000050_0002
n (IV)
in which X1 Y, m, n, p, and s have the meaning according to claim 1 ; optionally followed by reacting with an amine with general formula (V)1
Figure imgf000050_0003
(V)
wherein R and R5 have the meaning according to claim 1.
18. A medicament comprising at least one compound of general formula (I)1 according to one or more of claims 1 to 15, said compound being optionally in form of one of the stereoisomers, preferably enantiomers or diastereomers, a racemate or in form of a mixture of at least two of the stereoisomers, preferably enantiomers and/or diastereomers, in any mixing ratio, or a corresponding salt thereof, or a corresponding solvate thereof.
19. Use of a compound of general formula (I) according to one or more of claims 1 to 15 in the manufacture of a medicament.
20. Use of a compound of general formula (I) according to one or more of claims 1 to 15 in the manufacture of a medicament for the treatment or prophylaxis of a sigma receptor- mediated disease or condition.
21. Use according to claim 20, characterized in that the disease comprises diarrhoea, lipoprotein disorders, migraine, obesity, elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and dysbetalipoproteinemia, arthritis, hypertension, arrhythmia, ulcer, learning, memory and attention deficits, cognition disorders, neurodegenerative diseases, demyelinating diseases, addiction to drugs and chemical substances including cocaine, amphetamine, ethanol and nicotine; tardive diskinesia, ischemic stroke, epilepsy, stroke, stress, cancer or psychotic conditions, in particular depression, anxiety or schizophrenia; inflammation, or autoimmune diseases.
22. Use according to claim 20, characterized in that the disease comprises pain, preferably neuropathic pain, inflammatory pain or other pain conditions involving allodynia and/or hyperalgesia.
23. Use according to claims 20 and 21 , characterized in that the disease is selected from the group consisting of elevated trigyceride levels, chylomicronemia, dysbetalipoproteinemia, hyperlipoproteinemia, hyperlipidemia, mixed hyperlipidemia, hypercholesterolemia, lipoprotein disorders, hypertriglyceridemia, sporadic hypertriglyceridemia, inherited hypertriglyceridemia and dysbetalipoproteinemia.
24. Use of a compound of general formula (I) according to one or more of claims 1 to 15 as a pharmacological tool or as anxiolytic or immunosuppressant.
PCT/EP2007/001827 2006-03-02 2007-03-02 Pyrrazole derivatives as sigma receptors antagonists WO2007098964A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/281,246 US8138186B2 (en) 2006-03-02 2007-03-02 Pyrazole derivatives as sigma receptors antagonists
JP2008556726A JP2009528318A (en) 2006-03-02 2007-03-02 Sigma receptor compounds
CA002640754A CA2640754A1 (en) 2006-03-02 2007-03-02 Pyrazole derivatives as sigma receptors antagonists
CN2007800071787A CN101395152B (en) 2006-03-02 2007-03-02 Sigma receptor compounds
EP07723022.5A EP1996580B1 (en) 2006-03-02 2007-03-02 Pyrrazole derivatives as sigma receptors antagonists
MX2008011019A MX2008011019A (en) 2006-03-02 2007-03-02 Pyrrazole derivatives as sigma receptors antagonists.
ES07723022.5T ES2572985T3 (en) 2006-03-02 2007-03-02 Pyrazole derivatives as sigma receptor antagonists

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06004288A EP1829873A1 (en) 2006-03-02 2006-03-02 Pyrrazole derivatives as sigma receptors antagonists
EP06004288.4 2006-03-02

Publications (2)

Publication Number Publication Date
WO2007098964A2 true WO2007098964A2 (en) 2007-09-07
WO2007098964A3 WO2007098964A3 (en) 2007-11-29

Family

ID=36440951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/001827 WO2007098964A2 (en) 2006-03-02 2007-03-02 Pyrrazole derivatives as sigma receptors antagonists

Country Status (8)

Country Link
US (1) US8138186B2 (en)
EP (2) EP1829873A1 (en)
JP (1) JP2009528318A (en)
CN (1) CN101395152B (en)
CA (1) CA2640754A1 (en)
ES (1) ES2572985T3 (en)
MX (1) MX2008011019A (en)
WO (1) WO2007098964A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147910A1 (en) 2010-05-27 2011-12-01 Laboratorios Del Dr. Esteve, S.A. Pyrazole compounds as sigma receptor inhibitors
US9757358B2 (en) 2010-02-04 2017-09-12 Laboratorios Del Dr. Esteve, S.A. Sigma ligands for potentiating the analgesic effect of opioids and opiates in post-operative pain and attenuating the dependency thereof
US9782483B2 (en) 2010-05-21 2017-10-10 Laboratories Del Dr. Esteve, S.A. Sigma ligands for the prevention and/or treatment of emesis induced by chemotherapy or radiotherapy
US9789117B2 (en) 2011-05-18 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in diabetes type-2 associated pain
US9789115B2 (en) 2010-08-03 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in opioid-induced hyperalgesia
US9844516B2 (en) 2010-02-04 2017-12-19 Laboratorios De Dr. Esteve Sigma ligands for use in the prevention and/or treatment of post-operative pain
US9914705B2 (en) 2008-04-25 2018-03-13 Laboratorios Del Dr. Esteve, S.A. 1-aryl-3-aminoalkoxy pyrazoles as sigma ligands enhancing analgesic effect of opioids and attenuating the dependency thereof
US9931346B2 (en) 2013-12-17 2018-04-03 Laboratorios Del Dr. Esteve S.A. Serotonin-norepinephrine reuptake inhibitors (SNRIs) and Sigma receptor ligands combinations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2929883A1 (en) * 2014-04-08 2015-10-14 Institut Pasteur Pyrazole derivatives as dihydroorotate dehydrogenase (DHODH) inhibitors
CN104829541B (en) * 2015-05-05 2017-06-30 江苏豪森药业集团有限公司 The method that high selectivity and high-purity prepare morpholine nitre azoles
EP4027987A4 (en) * 2019-09-10 2023-11-29 University of Pittsburgh - Of the Commonwealth System of Higher Education Methods and materials for increasing level of phosphorylated ampk protein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD118637A1 (en) * 1975-04-10 1976-03-12
DD118636A1 (en) * 1975-04-10 1976-03-12
WO1995025733A1 (en) * 1994-03-18 1995-09-28 Ferrer Internacional, S.A. 4-p-fluorobenzoyl-1-piperidinyl-propoxy-chromen-4-one derivatives, their preparation and their use in the treatment of psychosis and schizophrenia
WO2006021462A1 (en) * 2004-08-27 2006-03-02 Laboratorios Del Dr. Esteve, S.A. Sigma receptor inhibitors
EP1634872A1 (en) * 2004-08-27 2006-03-15 Laboratorios Del Dr. Esteve, S.A. Pyrazole derivatives as sigma receptor inhibitors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4341749A1 (en) * 1993-12-08 1995-06-14 Kali Chemie Pharma Gmbh 3- (Phenylalkylaminoalkyloxy) -5-phenylpyrazole compounds and methods and intermediates for their preparation and medicaments containing these compounds
US6514977B1 (en) * 1997-05-22 2003-02-04 G.D. Searle & Company Substituted pyrazoles as p38 kinase inhibitors
GB9824310D0 (en) * 1998-11-05 1998-12-30 Univ London Activators of soluble guanylate cyclase

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD118637A1 (en) * 1975-04-10 1976-03-12
DD118636A1 (en) * 1975-04-10 1976-03-12
WO1995025733A1 (en) * 1994-03-18 1995-09-28 Ferrer Internacional, S.A. 4-p-fluorobenzoyl-1-piperidinyl-propoxy-chromen-4-one derivatives, their preparation and their use in the treatment of psychosis and schizophrenia
WO2006021462A1 (en) * 2004-08-27 2006-03-02 Laboratorios Del Dr. Esteve, S.A. Sigma receptor inhibitors
EP1634872A1 (en) * 2004-08-27 2006-03-15 Laboratorios Del Dr. Esteve, S.A. Pyrazole derivatives as sigma receptor inhibitors

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9914705B2 (en) 2008-04-25 2018-03-13 Laboratorios Del Dr. Esteve, S.A. 1-aryl-3-aminoalkoxy pyrazoles as sigma ligands enhancing analgesic effect of opioids and attenuating the dependency thereof
US9757358B2 (en) 2010-02-04 2017-09-12 Laboratorios Del Dr. Esteve, S.A. Sigma ligands for potentiating the analgesic effect of opioids and opiates in post-operative pain and attenuating the dependency thereof
US9844516B2 (en) 2010-02-04 2017-12-19 Laboratorios De Dr. Esteve Sigma ligands for use in the prevention and/or treatment of post-operative pain
US9782483B2 (en) 2010-05-21 2017-10-10 Laboratories Del Dr. Esteve, S.A. Sigma ligands for the prevention and/or treatment of emesis induced by chemotherapy or radiotherapy
WO2011147910A1 (en) 2010-05-27 2011-12-01 Laboratorios Del Dr. Esteve, S.A. Pyrazole compounds as sigma receptor inhibitors
EP2395003A1 (en) 2010-05-27 2011-12-14 Laboratorios Del. Dr. Esteve, S.A. Pyrazole compounds as sigma receptor inhibitors
US9181195B2 (en) 2010-05-27 2015-11-10 Laboratorios Del Dr. Esteve, S.A. Sigma receptor inhibitors
US9789115B2 (en) 2010-08-03 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in opioid-induced hyperalgesia
US9789117B2 (en) 2011-05-18 2017-10-17 Laboratorios Del Dr. Esteve, S.A. Use of sigma ligands in diabetes type-2 associated pain
US9931346B2 (en) 2013-12-17 2018-04-03 Laboratorios Del Dr. Esteve S.A. Serotonin-norepinephrine reuptake inhibitors (SNRIs) and Sigma receptor ligands combinations

Also Published As

Publication number Publication date
EP1996580A2 (en) 2008-12-03
CN101395152B (en) 2012-05-23
EP1996580B1 (en) 2016-03-02
EP1829873A1 (en) 2007-09-05
MX2008011019A (en) 2008-09-08
US8138186B2 (en) 2012-03-20
ES2572985T3 (en) 2016-06-03
WO2007098964A3 (en) 2007-11-29
CN101395152A (en) 2009-03-25
JP2009528318A (en) 2009-08-06
US20090227589A1 (en) 2009-09-10
CA2640754A1 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
EP1996580B1 (en) Pyrrazole derivatives as sigma receptors antagonists
US8202872B2 (en) Pyrazole derivatives as sigma receptor inhibitors
KR101352012B1 (en) Sigma receptor inhibitors
US20100081659A1 (en) Sigma receptor inhibitors
US8314096B2 (en) Sigma receptor inhibitors
US8088812B2 (en) Sigma receptor inhibitors
US8410159B2 (en) Imidazole compounds having pharmaceutical activity towards the sigma receptor
EP1829875A1 (en) Pyrazole derivatives as sigma receptor inhibitors
EP1996548B1 (en) Sigma receptor compounds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2640754

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/011019

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008556726

Country of ref document: JP

Ref document number: 200780007178.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007723022

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07723022

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12281246

Country of ref document: US