WO2007098094A2 - Dispositif et procédé de refroidissement - Google Patents
Dispositif et procédé de refroidissement Download PDFInfo
- Publication number
- WO2007098094A2 WO2007098094A2 PCT/US2007/004256 US2007004256W WO2007098094A2 WO 2007098094 A2 WO2007098094 A2 WO 2007098094A2 US 2007004256 W US2007004256 W US 2007004256W WO 2007098094 A2 WO2007098094 A2 WO 2007098094A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling device
- thermoelectric cooler
- heat absorbing
- temperature
- heat
- Prior art date
Links
- 238000011282 treatment Methods 0.000 title claims description 5
- 238000001816 cooling Methods 0.000 claims abstract description 72
- 208000033830 Hot Flashes Diseases 0.000 claims abstract description 34
- 206010060800 Hot flush Diseases 0.000 claims abstract description 34
- 239000012782 phase change material Substances 0.000 claims abstract description 30
- 230000008859 change Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 20
- 230000004044 response Effects 0.000 claims abstract description 11
- 230000003466 anti-cipated effect Effects 0.000 claims abstract description 5
- 239000007787 solid Substances 0.000 claims description 11
- -1 alkyl hydrocarbons Chemical class 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 230000008018 melting Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 208000019695 Migraine disease Diseases 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 201000011510 cancer Diseases 0.000 claims description 3
- 206010012601 diabetes mellitus Diseases 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 201000006417 multiple sclerosis Diseases 0.000 claims description 3
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical class OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 claims description 3
- 239000012074 organic phase Substances 0.000 claims description 3
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical class OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 125000001453 quaternary ammonium group Chemical class 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000005266 side chain polymer Substances 0.000 claims description 3
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical class OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 claims description 3
- 206010027603 Migraine headaches Diseases 0.000 claims description 2
- 150000002194 fatty esters Chemical class 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims description 2
- 230000001331 thermoregulatory effect Effects 0.000 claims description 2
- 230000036760 body temperature Effects 0.000 abstract description 7
- 239000012071 phase Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 206010052428 Wound Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002657 hormone replacement therapy Methods 0.000 description 3
- 208000008454 Hyperhidrosis Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- 230000001430 anti-depressive effect Effects 0.000 description 2
- 239000000935 antidepressant agent Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 210000000038 chest Anatomy 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000009167 androgen deprivation therapy Methods 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 208000013219 diaphoresis Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000001667 episodic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000036649 mental concentration Effects 0.000 description 1
- 208000010658 metastatic prostate carcinoma Diseases 0.000 description 1
- 206010027599 migraine Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012120 mounting media Substances 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 230000028016 temperature homeostasis Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/10—Cooling bags, e.g. ice-bags
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00084—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0001—Body part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
- A61F2007/0075—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating using a Peltier element, e.g. near the spot to be heated or cooled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/007—Heating or cooling appliances for medical or therapeutic treatment of the human body characterised by electric heating
- A61F2007/0077—Details of power supply
- A61F2007/0078—Details of power supply with a battery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F2007/0086—Heating or cooling appliances for medical or therapeutic treatment of the human body with a thermostat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F7/00—Heating or cooling appliances for medical or therapeutic treatment of the human body
- A61F7/02—Compresses or poultices for effecting heating or cooling
- A61F2007/0292—Compresses or poultices for effecting heating or cooling using latent heat produced or absorbed during phase change of materials, e.g. of super-cooled solutions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/021—Control thereof
- F25B2321/0212—Control thereof of electric power, current or voltage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/023—Mounting details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/025—Removal of heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/01—Timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2107—Temperatures of a Peltier element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2400/00—General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
- F25D2400/26—Refrigerating devices for cooling wearing apparel, e.g. garments, hats, shoes or gloves
Definitions
- the present invention relates to a device that provides cooling to a body in response to a measured, sensed or anticipated change in the temperature of the body.
- Hot flashes are sudden increases in core and surface body temperature and are perceived as intense increases in body temperature that are characteristically manifested by nearly instant flushing, sweating, dizziness, nausea, palpitations, and diaphoresis. Hot flashes can disrupt sleep, interfere with mental concentration and adversely affect the quality of life. Hot flashes are characterized by a sudden onset of warmth in the face, neck and chest. Hot flashes may occur many times per day and several times per hour. Hot flashes typically pass within minutes, but can be debilitating until their passage and during a complete recovery period that can last up to 30 minutes.
- Hot flashes can be treated with hormone replacement therapy (HRT) .
- HRT hormone replacement therapy
- women are reluctant to undertake this therapy because of a number of clinical trials that have indicated a significant correlation between HRT and an increased incidence of heart disease, stroke and breast cancer. For this reason, many women have shunned HRT, leaving them with few effective alternatives for treating or controlling their hot flashes.
- herbal remedies which are purported to relieve the discomfort or reduce the frequency or severity of hot flashes.
- Some women have been prescribed anti-depressant medication for ' I their hot flashes. While somewhat helpful in some women, neither herbal remedies nor anti-depressants have been proven generally effective and safe.
- There is clearly a need for a practical device and method for treating hot flashes which is both effective and avoids undesired and dangerous side effects of all known treatment methods. Summary of the Invention
- the invention concerns a cooling device for providing cooling to a body.
- the cooling device comprises a thermoelectric cooler having a heat absorbing surface engageable with the body and a heat rejecting surface.
- a heat absorbing reservoir is engaged with the heat rejecting surface.
- the heat absorbing reservoir comprises a phase change material.
- a temperature sensor is positionable proximate to, and preferably in contact with, the body for sensing a temperature change thereon.
- a controller is operatively connected with the temperature sensor and the thermoelectric cooler.
- An electrical power source is operatively connected with the thermoelectric cooler and the controller and provides power to these components.
- the controller provides power from the power source to the thermoelectric cooler in response to an increase in body surface temperature at a predetermined rate as sensed by the temperature sensor.
- the cooling may be user-activated.
- the heat absorbing reservoir maintains the heat rejecting surface at a substantially constant temperature during operation .
- the thermoelectric cooler is a Peltier device
- the controller comprises a microprocessor
- the electrical power source comprises a battery
- the temperature sensor may be a thermistor, a thermocouple, an infrared sensor or a resistance temperature detector sensor.
- the phase change material comprises a solid which melts at a temperature between about 25 0 C and about 42 0 C.
- the phase change material may comprise metals or metal alloys having a melting point between about 25 0 C and about 42 0 C or may be salt hydrate phase change materials, organic phase change materials, linear crystalline alkyl hydrocarbons, fatty acids, fatty esters, polyethylene glycols, long alkyl side chain polymers, the solid state series of pentaerythritol, pentaglycerine, and neopentyl glycol, quaternary ammonium clathrates and semi-clathrates, salt hydrides and combinations thereof.
- the heat absorbing reservoir may be removably mounted on the heat rejecting surface of the thermoelectric cooler to allow for rapid replacement.
- the invention also encompasses a method of treating hot flashes.
- the method comprises:
- the method may include manual activation of the cooling device in response to a sensed or anticipated hot flash episode.
- Monitoring the skin surface temperature may comprise sampling the skin surface temperature at predetermined time intervals . Additionally, the method may include providing a heat absorbing reservoir mounted on the cooling device and absorbing heat from the cooling device with the heat absorbing reservoir while maintaining a substantially constant temperature of the heat absorbing reservoir.
- Figure 1 is a schematic drawing of a cooling device according to one embodiment of the invention.
- FIG. 2 is a schematic view of the cooling device of Figure 1 in use;
- Figure 2A is a schematic view of another embodiment of a cooling device according to the invention;
- Figure 3 is a graph showing measured skin temperature vs. time.
- FIG. 4 is a schematic view of another embodiment of a cooling device according to the invention. Detailed Description of the Embodiments
- the cooling device 100 includes a temperature sensor 110, a thermoelectric cooler 120, a heat absorbing reservoir 130, a power source 140 and a controller 150.
- the cooling device 100 takes the form of a unitary, compact unit attachable to a body by means of a strap, sling, insert band or adhesive patch.
- the device could also be attached to an article of clothing such as an under garment, a shirt or blouse as well as a hat, cap or helmet.
- the device components will preferably be removable from the garment, headgear, strap or other mounting media so that the media can be washed-
- the cooling device 100 may comprise a plurality of components connected to each other by wires or with a wireless communication system.
- the temperature sensor 110 can be, for example, a thermistor, a thermocouple, an infrared temperature sensor or a resistance temperature detector sensor.
- the temperature sensor 110 is electronically connected to the controller 150 so that the controller receives a signal in the form of a change in voltage (if a thermocouple is used) or a change in resistance (if a thermistor is used) across the temperature sensor 110, which the controller correlates to a temperature at the temperature sensing device 110.
- the thermoelectric cooler 120 has a heat absorbing surface 121 and a heat rejecting surface 123. These surfaces may be, for example, formed of a metal or a heat conducting ceramic.
- An exemplary thermoelectric cooler 120 is a Peltier Effect device, although other devices that perform the same function may also be used.
- the thermoelectric cooler 120 is electrically connected to the power source 140 which provides power to the thermoelectric cooler when cooling is required.
- the controller 150 allows electrical energy to flow from power source 140 to power the thermoelectric cooler 120.
- the heat absorbing reservoir 130 is used to absorb the heat generated during operation of the thermoelectric cooler.
- the heat absorbing reservoir 130 contains a material that has the capacity to absorb heat without significantly changing its temperature, such as a phase change material.
- a phase change material changes from solid to liquid (melts), liquid to gas. (evaporates), or solid to gas (sublimates) .
- the phase change material is in a solid state when the thermoelectric cooler 120 is inactive, i.e., when no power is being provided.
- phase change materials contained in the heat absorbing reservoir 130 include salt hydrate phase change materials, organic phase change materials, linear crystalline alkyl hydrocarbons, fatty acids and esters, polyethylene glycols, long alkyl side chain polymers, the solid state series of pentaerythritol, pentaglycerine, and neopentyl glycol, quaternary ammonium clathrates and semi-clathrates, and salt hydrides.
- Metals and metal alloys having a low melting point are also feasible. By mixing some of the above compounds, or by mixing the low melting point metals (including Gad, Son and/or In, BP, Bi, etc.), a material having a desired single phase change temperature may be produced.
- phase change material melts at a temperature between approximately 25°C"and 42°C.
- the heat absorbing reservoir 130 may be comprised of several components, including a container that will prevent leakage or evaporation of the phase change material and an internal structure, such as cooling fins to augment heat transfer to the phase change material.
- the heat absorbing reservoir is preferably easily connectable and removable from the heat rejecting surface 123 of the thermoelectric cooler 120 in order to quickly switch to a fresh heat absorbing reservoir if additional hot flashes are expected and there is insufficient time for the melted material to resolidify. While connected to the thermoelectric cooler 120, the heat absorbing reservoir 130 maintains good thermal contact with the heat rejecting side of thermoelectric cooler.
- the melting point temperature T me it of the phase change material is higher than the maximum temperature T poW er off of the heat rejecting side of thermoelectric cooler 120 with power off, when the cooling device 100 is positioned in contact with the human body, typically under the clothing.
- the phase change material will undergo a phase change only during "power on” operation, for example, when the device is operated in response to a hot flash, in which the peak heat sensation typically lasts about 1 to 2 minutes.
- the phase change material will resolidify, because the device temperature T power Off is lower than the melting point T me i t -
- the magnitude of T power off is approximately equal to the skin temperature under clothing, about 30 0 C, but may vary depending upon the ambient temperature, and clothing being worn.
- the temperature of the heat absorbing' component 130 will increase from 30 0 C to 35°C.
- the phase change material will start undergoing a phase change (i.e. melting, evaporating, or sublimating) .
- the temperature of the heat absorbing reservoir 130 will not change (it will stay at 35°C in this example) . Consequently, even though heat energy is being absorbed by the heat absorbing reservoir 130, it does not heat up, thereby allowing the thermoelectric cooler to operate efficiently and prevent discomfort.
- the power source 140 can be a DC power source, preferably approximately 1.5 to 12 volts, provided by an electric battery that is preferably integrated into the cooling device 100. Alkaline batteries may be used, but rechargeable batteries, such as lithium ion or nickel cadmium are preferred to enable the user to easily keep the power source 140 at or near full charge capacity.
- the power source 140 may be removable and replaceable within the device 100 or, alternatively, a power cable, for example, a USB cable (not shown) may be connectable to the power source 140 to recharge it from a computer or other source of electrical energy.
- the power source 140 is electrically connected to the thermoelectric cooler 120 and to the controller 150 to provide electrical power to both components.
- the temperature sensor 110 is electrically connected to the controller 150 such that electrical signals in the form of voltage or resistance differences indicative of changes in temperature generated by the sensor are processed by the controller.
- the controller thereby monitors the rate of temperature change of the body over time.
- the controller 150 is preferably a microprocessor, and may provide ON-OFF, proportional, derivative, integral, or programmed process control, or any combination thereof, as well as any other type of process control.
- the controller 150 is also electronically connected to the power source 140. When a predetermined rise in temperature over a predetermined time period is sensed by the temperature sensor 110 and communicated to the controller 150, the controller recognizes this data, for example, as indicative of a hot flash, and transmits a signal which closes a switch, allowing the power source 140 to supply electrical power to the thermoelectric cooler 120 and thereby activate the device 100.
- the controller 150 is programmed to allow electrical power to flow to the thermoelectric cooler 120 for a predetermined time period, for example, approximately two minutes to effectively treat hot flashes. While the time period of device operation may be longer than two minutes for other applications, it is generally impractical for the time period to significantly exceed the time required for the heat absorbing reservoir 130 to completely change phase.
- thermoelectric cooler 120 may be preset by the controller programming, the time period may also be varied by the user, such as by using a switch or dial electronically connected to the processor 150, which will allow the user to selectively determine the operational time of the device 100 from a range of potential durations. Additionally, the device may be capable of different modes of operation, for example, one mode which may provide intense cooling and another for less intense cooling.
- the device 100 may also include an "ON/OFF" switch 160 that may be employed to prevent operation of the device 100, overriding the actions of the controller.
- the device 100 is shown in use as securely attached to a body 170 with the heat absorbing surface 121 of the thermoelectric cooler 120 engaged with the body to facilitate providing cooling thereto.
- Temperature sensor 110 is positioned, either in contact with or proximate to the body as well.
- the "ON/OFF" switch 160 if employed, is switched to the
- the device 100 is in a passive mode, wherein the controller 150 monitors signals from the temperature sensor 110, converting those signals to temperature values, and comparing the change in temperature values over a predetermined time period to determine whether the body temperature is rising at a sufficiently fast rate indicative of a hot flash.
- a thermally conductive medium may be applied between the heat absorbing surface 121 of the thermoelectric cooler 120 and the surface of body 170 to facilitate heat conduction away from the body.
- the medium may be a gel, paste or other suitable substance such as the medium that is commonly used in ultrasound procedures to enhance heat conduction.
- the medium may be omitted without departing from the scope of the present invention .
- FIG 2A schematically illustrates another embodiment of the cooling device 100 having a plurality of thermoelectric coolers 120.
- Each cooler has an associated heat reservoir 130 and is controlled by the controller 150 and powered by the power source 140.
- the thermoelectric coolers 120 may be judiciously positioned in spaced relation to one another on the body 170 to augment the cooling effect.
- Figure 3 shows a graph of body temperature vs. time to illustrate the rate of change of body surface temperature over time during a hot flash.
- Arrows A and B point out rises in temperature of over 0.5 0 C in less than 1 minute, which are indicative of a hot flash.
- the phase change material changes phase, for example, from solid to liquid.
- the controller 150 is programmed to operate for a time period long enough to mitigate the hot flashes but short enough such that the phase change material of the heat absorbing reservoir 130 does not completely change phase. Studies thus far have shown that about two minutes of operation is sufficient for a device having a heat transfer capacity of about 1 to about 10 watts, worn on the chest of the subject, is sufficient for relieving symptom of a hot flash.
- the controller 150 shuts off the power source 140 so that electrical power ceases to be supplied to the thermoelectric cooler 120.
- the heat absorbing reservoir 130 ceases to absorb heat from the thermoelectric cooler 120 and returns to its no power equilibrium phase, which is preferably a solid state.
- the device 100 is again ready for operation, the controller continuing to monitor the body temperature, ready to activate the device at the onset of the next hot flash.
- the phase change material is contained in a cartridge that is removably attached to the heat rejecting surface of the thermoelectric cooler so that it may be easily replaced in the event that a second hot flash is expected before the phase change material can solidify from a preceding hot flash.
- This embodiment can be used in a hot environment which does not allow the phase change material to solidify between the flashes or in an anticipated stressful situation. The user may place the cartridge on a cool surface, in a cold location such as air conditioned room, or in a refrigerator if very rapid cooling is desired to solidify the phase change material.
- the article of clothing includes at least one opening or surface to allow direct contact by at least a portion of the temperature sensor 110 with the body 170.
- the temperature sensor may be in proximate, but preferably in actual, contact with the wearer's body, allowing for accurate sensing of the body temperature proximate to the device.
- the heat absorbing surface 121 is in direct contact with the body as well for rapid cooling of the body when the thermoelectric cooler 120 is in operation.
- a manually operated embodiment of the present invention is shown schematically in the device 200, shown in Figure 4.
- This embodiment includes a controller or timer 250 programmed to turn the device 200 off after a specified period of time.
- the device 200 includes a thermoelectric cooler 220 that preferably operates on the same principle as the thermoelectric cooler 120 described above.
- the device 200 also includes a power source 240, similar to the power source 140 described above, that is used to provide power to operate the thermoelectric cooler and the controller. Further, the device 200 includes an "ON/OFF" switch 260 that is used to selectively transmit power from the power source 240 to the thermoelectric cooler.
- the device 200 may have other uses, such as for the alleviation of migraine headaches wherein cerebral vasodilation is a known symptom and where applied cold is a known effective treatment.
- the device 200 may be applied to the user's head or neck region 270 to provide cooling relief to that area of the user.
- the user desires the cooling effect of the device 200, such as a recognizable prodrome preceding a migraine headache, or based on a perceived rise in skin surface temperature over a first time period, the user turns the "ON/OFF" switch 260 to the "ON" position.
- the switch 260 completes an electrical circuit, and the power source 240 provides electrical power to the thermoelectric cooler 220.
- the heat absorbing reservoir 230 absorbs the heat from the heat rejecting surface of the thermoelectric cooler by changing phase, for example, from solid to a liquid, without a change in temperature.
- the user opens the "ON/OFF" switch 260, stopping operation of the device 200 or after a predetermined limit, the device automatically turns off
- the size of the devices 100, 200 is preferably relatively small, such as a footprint of approximately 1 to 5 square inches, those skilled in the art will recognize that a larger version of the device 200 can be used to stem blood flow in an open wound, by cooling the wound opening and the skin area surrounding the wound. Further, the inventors believe that the devices 100, 200 can be used in other applications such as in patients suffering from diabetes, multiple sclerosis and cancer who are being treated with chemotherapy, where cooling is required to be applied to a surface for a period of time to relieve the discomfort of episodes of heating due to abnormal thermoregulation associated with these disorders or their treatment.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
Abstract
La présente invention concerne un dispositif pour dispenser un refroidissement au corps d'une personne. Le dispositif fonctionne en réaction à un changement mesuré de la température à la surface cutanée du corps sur une période prédéterminée ou manuellement en réaction à un changement perçu ou anticipé de la température du corps par l'utilisateur. Le dispositif comprend une commande, un capteur de température, une source d'alimentation, un refroidisseur thermoélectrique et un réservoir d'absorption de chaleur contenant un matériau à changement de phase. Le refroidisseur thermoélectrique possède une surface anticalorique qui peut être mise en contact avec le corps à refroidir et une surface de rejet de chaleur venant en contact avec le réservoir d'absorption de chaleur. La commande est reliée opérationnellement au capteur de température, à la source d'alimentation et au refroidisseur thermoélectrique, et elle actionne le refroidisseur soit quand le capteur de température envoie des signaux indiquant un taux prédéterminé de changement de température soit, en mode manuel, sur intervention de l'utilisateur. La présente invention concerne également un procédé pour traiter les bouffées de chaleur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002642886A CA2642886A1 (fr) | 2006-02-16 | 2007-02-16 | Dispositif et procede de refroidissement |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77394506P | 2006-02-16 | 2006-02-16 | |
US60/773,945 | 2006-02-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007098094A2 true WO2007098094A2 (fr) | 2007-08-30 |
WO2007098094A3 WO2007098094A3 (fr) | 2009-04-09 |
Family
ID=38437918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/004256 WO2007098094A2 (fr) | 2006-02-16 | 2007-02-16 | Dispositif et procédé de refroidissement |
Country Status (3)
Country | Link |
---|---|
US (1) | US20070193278A1 (fr) |
CA (1) | CA2642886A1 (fr) |
WO (1) | WO2007098094A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017161699A1 (fr) * | 2016-03-24 | 2017-09-28 | 北京小米移动软件有限公司 | Dispositif de télécommande |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2012707B1 (fr) | 2006-04-28 | 2020-03-18 | Zeltiq Aesthetics, Inc. | Cryoprotecteur pour dispositif de traitement destiné au refroidissement amélioré de cellules sous-cutanées riches en lipides |
US20080077201A1 (en) * | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Cooling devices with flexible sensors |
US20080268333A1 (en) * | 2006-12-31 | 2008-10-30 | Joseph Barrella | Integral battery thermal management |
US8359871B2 (en) * | 2009-02-11 | 2013-01-29 | Marlow Industries, Inc. | Temperature control device |
US20100204764A1 (en) * | 2009-02-11 | 2010-08-12 | Garetz Bruce A | Method for Treating Hot Flashes Associated with Menopause During Sleep |
CN103068346B (zh) * | 2010-06-11 | 2016-03-02 | W·R·曼德尔 | 用于对人或哺乳动物的身体部分进行治疗性冷却和加温的装置 |
US8397518B1 (en) | 2012-02-20 | 2013-03-19 | Dhama Innovations PVT. Ltd. | Apparel with integral heating and cooling device |
WO2013130424A1 (fr) * | 2012-02-27 | 2013-09-06 | Double Cool Ltd. | Climatiseur thermoélectrique |
US9513045B2 (en) | 2012-05-03 | 2016-12-06 | Whirlpool Corporation | Heater-less ice maker assembly with a twistable tray |
JP6297108B2 (ja) * | 2012-07-31 | 2018-03-20 | ヤーマン株式会社 | 温冷美容処理装置 |
JP5992260B2 (ja) * | 2012-07-31 | 2016-09-14 | ヤーマン株式会社 | 温冷美容処理装置 |
US8925335B2 (en) | 2012-11-16 | 2015-01-06 | Whirlpool Corporation | Ice cube release and rapid freeze using fluid exchange apparatus and methods |
US9200823B2 (en) * | 2012-12-13 | 2015-12-01 | Whirlpool Corporation | Ice maker with thermoelectrically cooled mold for producing spherical clear ice |
US9410723B2 (en) | 2012-12-13 | 2016-08-09 | Whirlpool Corporation | Ice maker with rocking cold plate |
US9518773B2 (en) | 2012-12-13 | 2016-12-13 | Whirlpool Corporation | Clear ice maker |
US9476629B2 (en) | 2012-12-13 | 2016-10-25 | Whirlpool Corporation | Clear ice maker and method for forming clear ice |
US9759472B2 (en) | 2012-12-13 | 2017-09-12 | Whirlpool Corporation | Clear ice maker with warm air flow |
US9500398B2 (en) | 2012-12-13 | 2016-11-22 | Whirlpool Corporation | Twist harvest ice geometry |
US9557087B2 (en) | 2012-12-13 | 2017-01-31 | Whirlpool Corporation | Clear ice making apparatus having an oscillation frequency and angle |
US9518770B2 (en) | 2012-12-13 | 2016-12-13 | Whirlpool Corporation | Multi-sheet spherical ice making |
US9470448B2 (en) | 2012-12-13 | 2016-10-18 | Whirlpool Corporation | Apparatus to warm plastic side of mold |
US9310115B2 (en) | 2012-12-13 | 2016-04-12 | Whirlpool Corporation | Layering of low thermal conductive material on metal tray |
FR3004244B1 (fr) * | 2013-04-08 | 2015-05-01 | Newtec Scient | Dispositif thermoelectrique pour refroidir/chauffer une paroi externe et procede pour gerer l'alimentation d'un tel dispositif. |
US10182937B2 (en) | 2013-10-11 | 2019-01-22 | Embr Labs Inc. | Methods and apparatuses for manipulating temperature |
CA2921674A1 (fr) * | 2013-11-14 | 2015-05-21 | Icetron Technologies Ltd. | Systeme de regulation de temperature corporelle |
US10201380B2 (en) | 2014-01-31 | 2019-02-12 | Zeltiq Aesthetics, Inc. | Treatment systems, methods, and apparatuses for improving the appearance of skin and providing other treatments |
US20150305979A1 (en) * | 2014-04-25 | 2015-10-29 | Dustin Tintinger | Thermoelectric Medication Cooler |
US10179064B2 (en) | 2014-05-09 | 2019-01-15 | Sleepnea Llc | WhipFlash [TM]: wearable environmental control system for predicting and cooling hot flashes |
US11925271B2 (en) | 2014-05-09 | 2024-03-12 | Sleepnea Llc | Smooch n' snore [TM]: devices to create a plurality of adjustable acoustic and/or thermal zones in a bed |
WO2016065269A2 (fr) | 2014-10-23 | 2016-04-28 | Whirlpool Corporation | Procédé et appareil permettant d'augmenter la vitesse de production de glace dans une machine à glaçons automatique |
FR3033057B1 (fr) * | 2015-02-23 | 2017-03-03 | Saint Claude | Dispositif pour la regulation de temperature |
US20180042761A1 (en) * | 2015-03-13 | 2018-02-15 | Embr Labs Inc. | Methods and apparatuses for manipulating temperature |
US11559421B2 (en) | 2015-06-25 | 2023-01-24 | Hill-Rom Services, Inc. | Protective dressing with reusable phase-change material cooling insert |
US10709601B2 (en) | 2016-09-02 | 2020-07-14 | John Adair | Personal cooling and heating device |
WO2018089609A1 (fr) | 2016-11-10 | 2018-05-17 | Embr Labs Inc. | Procédés et dispositifs de manipulation de la température |
WO2018152068A1 (fr) * | 2017-02-15 | 2018-08-23 | Vasily Dronov | Dispositif de cryothérapie portatif, alimenté par batterie |
CN107403972B (zh) * | 2017-09-08 | 2024-03-08 | 华霆(合肥)动力技术有限公司 | 探漏装置及电源装置 |
EP4325518A3 (fr) * | 2017-10-12 | 2024-06-26 | EMBR Labs IP LLC | Actionneurs haptiques et leurs procédés d'utilisation |
US10739053B2 (en) | 2017-11-13 | 2020-08-11 | Whirlpool Corporation | Ice-making appliance |
US10731878B2 (en) * | 2017-11-22 | 2020-08-04 | International Business Machines Corporation | Thermal cooling of an enclosure |
WO2019152172A1 (fr) | 2018-01-31 | 2019-08-08 | Embr Labs Inc. | Procédés et systèmes de dissipation de charges thermiques dans des dispositifs techno vestimentaires |
US11583437B2 (en) | 2018-02-06 | 2023-02-21 | Aspen Surgical Products, Inc. | Reusable warming blanket with phase change material |
WO2019246306A1 (fr) * | 2018-06-19 | 2019-12-26 | Ii-Vi Delaware, Inc. | Dispositif de thérapie de contraste thermoélectrique |
JP7040345B2 (ja) * | 2018-07-30 | 2022-03-23 | セイコーエプソン株式会社 | 光源装置およびプロジェクター |
JP2021532873A (ja) | 2018-07-31 | 2021-12-02 | ゼルティック エステティックス インコーポレイテッド | 皮膚特性を改善する方法、デバイス、及びシステム |
US10907874B2 (en) | 2018-10-22 | 2021-02-02 | Whirlpool Corporation | Ice maker downspout |
US12096828B2 (en) * | 2020-07-01 | 2024-09-24 | Thermaband, Inc. | Wearable thermoregulation device, system and method responsive to hot flashes |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3212274A (en) * | 1964-07-28 | 1965-10-19 | Eidus William | Thermoelectric condenser |
US4962761A (en) * | 1987-02-24 | 1990-10-16 | Golden Theodore A | Thermal bandage |
US5097829A (en) * | 1990-03-19 | 1992-03-24 | Tony Quisenberry | Temperature controlled cooling system |
US5505046A (en) * | 1994-01-12 | 1996-04-09 | Marlow Industrie, Inc. | Control system for thermoelectric refrigerator |
US5711155A (en) * | 1995-12-19 | 1998-01-27 | Thermotek, Inc. | Temperature control system with thermal capacitor |
US5956963A (en) * | 1996-01-18 | 1999-09-28 | Lerner; Irene K. | Wrist cooler for relief of hot flashes and similar symptoms |
US6004662A (en) * | 1992-07-14 | 1999-12-21 | Buckley; Theresa M. | Flexible composite material with phase change thermal storage |
US6230501B1 (en) * | 1994-04-14 | 2001-05-15 | Promxd Technology, Inc. | Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US956963A (en) * | 1909-07-28 | 1910-05-03 | Gustave Harmuth | Sash-lock. |
US4856294B1 (en) * | 1988-02-04 | 1997-05-13 | Mainstream Engineering Corp | Micro-climate control vest |
US4930317A (en) * | 1988-05-20 | 1990-06-05 | Temperature Research Corporation | Apparatus for localized heat and cold therapy |
IT1232239B (it) * | 1989-09-08 | 1992-01-28 | Enea | Apparecchio miniaturizzato di condizionamento e climatizzazione |
US5097828A (en) * | 1990-09-25 | 1992-03-24 | Richard Deutsch | Thermoelectric therapy device |
US5255520A (en) * | 1991-12-20 | 1993-10-26 | Refir Technologies | Advanced thermoelectric heating and cooling system |
US5871526A (en) * | 1993-10-13 | 1999-02-16 | Gibbs; Roselle | Portable temperature control system |
US6295519B1 (en) * | 1995-03-03 | 2001-09-25 | Datascape, Inc. | Method and apparatus for coupling multiple computer peripherals to a computer system through a single I/O port |
DE69618972T2 (de) * | 1995-10-11 | 2002-08-29 | Kool Ltd., West Byfleet | Persönliche wärmeregelung |
US5737923A (en) * | 1995-10-17 | 1998-04-14 | Marlow Industries, Inc. | Thermoelectric device with evaporating/condensing heat exchanger |
US5800490A (en) * | 1996-11-07 | 1998-09-01 | Patz; Herbert Samuel | Lightweight portable cooling or heating device with multiple applications |
US6125645A (en) * | 1997-06-12 | 2000-10-03 | Horn; Stephen T. | Moisture removal phase shift personal cooling Garment |
US6146413A (en) * | 1997-09-18 | 2000-11-14 | Harman; Susan | Therapeutic cold pack for hand, wrist and forearm |
US6307871B1 (en) * | 1998-09-11 | 2001-10-23 | Cutting Edge Optronics, Inc. | Laser system using phase change material for thermal control |
US6185742B1 (en) * | 1998-10-23 | 2001-02-13 | Brian Doherty | Cool garment |
US6125636A (en) * | 1999-01-14 | 2000-10-03 | Sharper Image Corporation | Thermo-voltaic personal cooling/heating device |
US6840955B2 (en) * | 2000-01-27 | 2005-01-11 | Robert J. Ein | Therapeutic apparatus |
FR2805338B1 (fr) * | 2000-02-17 | 2002-05-24 | Robert Schegerin | Systeme de refrigeration individuel cryogenique |
US6297441B1 (en) * | 2000-03-24 | 2001-10-02 | Chris Macris | Thermoelectric device and method of manufacture |
US6481213B2 (en) * | 2000-10-13 | 2002-11-19 | Instatherm Company | Personal thermal comfort system using thermal storage |
US6800933B1 (en) * | 2001-04-23 | 2004-10-05 | Advanced Micro Devices, Inc. | Integrated circuit cooling device |
US6957697B2 (en) * | 2001-06-25 | 2005-10-25 | Chambers Paul A | Personal cooling or warming system using closed loop fluid flow |
US6438964B1 (en) * | 2001-09-10 | 2002-08-27 | Percy Giblin | Thermoelectric heat pump appliance with carbon foam heat sink |
US20030109910A1 (en) * | 2001-12-08 | 2003-06-12 | Lachenbruch Charles A. | Heating or cooling pad or glove with phase change material |
US6772445B2 (en) * | 2001-12-19 | 2004-08-10 | Benjamin Yeager | Cooling bracelet |
US6523354B1 (en) * | 2002-03-08 | 2003-02-25 | Deborah Ann Tolbert | Cooling blanket |
US20040211189A1 (en) * | 2002-07-17 | 2004-10-28 | Arnold Anthony P. | Personal heat control device and method |
WO2004014169A2 (fr) * | 2002-08-07 | 2004-02-19 | Phoenix Consultants, Ltd | Vêtement à régulation de température |
DE10240281A1 (de) * | 2002-08-31 | 2004-03-18 | Entrak Energie- Und Antriebstechnik Gmbh & Co. Kg | Tragbares Klimatisierungsgerät, insbesondere Personenklimagerät |
US7152412B2 (en) * | 2003-01-14 | 2006-12-26 | Harvie Mark R | Personal back rest and seat cooling and heating system |
US6915641B2 (en) * | 2003-01-14 | 2005-07-12 | Mark R. Harvie | Personal cooling and heating system |
US20050056026A1 (en) * | 2003-09-16 | 2005-03-17 | Sundhar Shaam Periyapatna | Personal cooling system |
US20050193742A1 (en) * | 2004-02-10 | 2005-09-08 | Its Kool, Llc | Personal heat control devicee and method |
WO2005105105A2 (fr) * | 2004-04-16 | 2005-11-10 | Champion Mary J | Systemes et methodes de traitement des bouffees de chaleur associees a la menopause |
US20050240251A1 (en) * | 2004-04-23 | 2005-10-27 | Smith Deborah A | Apparatus and method for applying cooling substances to pressure points in the human body |
US20050262871A1 (en) * | 2004-05-27 | 2005-12-01 | Valerie Bailey-Weston | Portable cooling system |
USD529617S1 (en) * | 2004-08-26 | 2006-10-03 | Fontanez Acevedo Pedro Javier | Cold helmet |
US20060147507A1 (en) * | 2005-01-04 | 2006-07-06 | Marie Cammarata | Hot flash treatment system |
-
2007
- 2007-02-16 US US11/675,719 patent/US20070193278A1/en not_active Abandoned
- 2007-02-16 CA CA002642886A patent/CA2642886A1/fr not_active Abandoned
- 2007-02-16 WO PCT/US2007/004256 patent/WO2007098094A2/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3212274A (en) * | 1964-07-28 | 1965-10-19 | Eidus William | Thermoelectric condenser |
US4962761A (en) * | 1987-02-24 | 1990-10-16 | Golden Theodore A | Thermal bandage |
US5097829A (en) * | 1990-03-19 | 1992-03-24 | Tony Quisenberry | Temperature controlled cooling system |
US6004662A (en) * | 1992-07-14 | 1999-12-21 | Buckley; Theresa M. | Flexible composite material with phase change thermal storage |
US5505046A (en) * | 1994-01-12 | 1996-04-09 | Marlow Industrie, Inc. | Control system for thermoelectric refrigerator |
US6230501B1 (en) * | 1994-04-14 | 2001-05-15 | Promxd Technology, Inc. | Ergonomic systems and methods providing intelligent adaptive surfaces and temperature control |
US5711155A (en) * | 1995-12-19 | 1998-01-27 | Thermotek, Inc. | Temperature control system with thermal capacitor |
US5956963A (en) * | 1996-01-18 | 1999-09-28 | Lerner; Irene K. | Wrist cooler for relief of hot flashes and similar symptoms |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017161699A1 (fr) * | 2016-03-24 | 2017-09-28 | 北京小米移动软件有限公司 | Dispositif de télécommande |
Also Published As
Publication number | Publication date |
---|---|
US20070193278A1 (en) | 2007-08-23 |
WO2007098094A3 (fr) | 2009-04-09 |
CA2642886A1 (fr) | 2007-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070193278A1 (en) | Cooling device and method | |
US11219549B2 (en) | Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile | |
US8603073B2 (en) | Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells | |
US9314368B2 (en) | Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associates devices, systems and methods | |
ES2883856T3 (es) | Prenda de vestir con dispositivo integral de calentamiento y enfriamiento | |
CN102089127B (zh) | 具有整合冷却的电动剃刀 | |
WO2006036612A3 (fr) | Appareil permettant de modifier la temperature corporelle d'un patient | |
WO2004006814A3 (fr) | Appareil destine a changer la temperature corporelle d'un patient | |
CN109310460A (zh) | 冷却系统和皮肤处理方法 | |
JP2009538158A5 (fr) | ||
CN107647965A (zh) | 半导体人体物理温度调节仪 | |
KR20170122624A (ko) | 냉온찜질사우나마스크 | |
CN213429441U (zh) | 一种冷热循环温控舒眠枕 | |
CN107635732A (zh) | 用户电器和用于调节用户电器的冷却元件的最大冷却温度的方法 | |
KR20170050867A (ko) | 냉온찜질이 가능한 눈찜질패드 케이스 | |
JP3115222U (ja) | カユミ止冷却器 | |
KR20140066901A (ko) | 펠티어 소자를 구비한 냉온 찜질 장치 | |
EP1549216B1 (fr) | Capteur pour determiner l'effet d'un traitement anesthesique par refroidissement de la peau au moyen du capteur | |
US20220378605A1 (en) | Smart head cooling system | |
CN116785057A (zh) | 一种便携式皮肤冷却装置 | |
CZ22373U1 (cs) | Vrstvená bandáž |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2642886 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07751045 Country of ref document: EP Kind code of ref document: A2 |