WO2007097336A1 - Process for producing (2r,3r)- and (2s,3s)-3-phenylisoserine derivatives - Google Patents

Process for producing (2r,3r)- and (2s,3s)-3-phenylisoserine derivatives Download PDF

Info

Publication number
WO2007097336A1
WO2007097336A1 PCT/JP2007/053097 JP2007053097W WO2007097336A1 WO 2007097336 A1 WO2007097336 A1 WO 2007097336A1 JP 2007053097 W JP2007053097 W JP 2007053097W WO 2007097336 A1 WO2007097336 A1 WO 2007097336A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
genus
compound represented
candida
compound
Prior art date
Application number
PCT/JP2007/053097
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Ohishi
Naoaki Taoka
Akira Nishiyama
Tozo Nishiyama
Daisuke Moriyama
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2007097336A1 publication Critical patent/WO2007097336A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B57/00Separation of optically-active compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • C07C227/32Preparation of optical isomers by stereospecific synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/38Separation; Purification; Stabilisation; Use of additives
    • C07C227/40Separation; Purification
    • C07C227/42Crystallisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters

Definitions

  • the present invention relates to a method for producing (2R, 3R) and (2S, 3S) -3-phenylisoserine derivatives useful as pharmaceutical intermediates.
  • Phenyl isoserine derivatives are produced by, for example, 3-phenol glycidate having a phenyl group and a carboxyl group in the trans position.
  • Patent Document 1 a method in which the obtained erythro 3-phenylisoserine salt is esterified and then separated using optically active tartaric acid.
  • Non-Patent Documents 1 to 3 many examples of methods for obtaining an optically active 3-phenyl darisidate by asymmetric epoxies of cinnamic acid derivatives have been reported (for example, Non-Patent Documents 1 to 3), but all of them are expensive. It is necessary to use reagents and catalysts for which toxicity is a concern, and there are many points that need to be improved in order to obtain an industrially advantageous production method.
  • the optically active 3-phenylglycidate is an optically active 2-chloro-3hydroxy-3-phenol--obtained by asymmetric reduction of 2-chloro-3-oxo-3phenol-propionic acid ester.
  • Lupropionic acid ester is mixed with a suitable solvent (eg, lower alkyl alcohol) )
  • a suitable solvent eg, lower alkyl alcohol
  • a base for example, alkali metal alkoxide
  • Patent document 1 WO2003Z003804
  • Patent Document 2 WO2005Z058893
  • Patent Document 3 Japanese Patent Publication No. 7-79706
  • Patent Document 4 Japanese Patent Publication No. 6-504549
  • Non-Patent Document 1 Tetrahedron 1994, 50, 4323
  • Non-Patent Document 2 Am. Chem. Soc. 2002, 124, 14544
  • Non-Patent Document 3 Org. Chem. 2004, 69, 4217
  • Non-Patent Document 4 Tetrahedron: Asymmetry 1995, 6, 2199
  • Non-Patent Document 5 Org. Chem. 2005, 70, 342
  • an object of the present invention is to provide a practical method by which (2R, 3R) and (2S, 3S) -3 phenol isoserine derivatives can be produced conveniently and industrially advantageously. is there. Means for solving the problem
  • R 1 represents a phenyl group which may have a substituent
  • R 2 represents a hydrogen atom, an alkali metal, an alkaline earth metal or a nitrogenous base
  • * represents an asymmetric group.
  • a general formula (2) obtained by reaction of a compound having a carbon atom and a configuration of (representing 2R, 3S) or (2S, 3R) with ammonia.
  • R 1 and R 2 represent the same meaning as described above, and * represents an asymmetric carbon atom, and its configuration Relates to a method for producing a compound represented by the above formula (2), wherein the compound represented by (2R, 3R) or (2S, 3S) is further subjected to a crystallization step .
  • the present invention provides a compound represented by the above formula (2) by reaction of the compound represented by the above formula (1) with ammonia, followed by esterification of the compound represented by the general formula obtained. (3);
  • R 1 and * represent the same meaning as described above, and R 3 represents a C to C alkyl group
  • the present invention relates to a method for producing a compound represented by the formula (3), which is further subjected to a crystallization step.
  • the present invention relates to a general formula (5);
  • the present invention relates to a method for producing the compound.
  • “may have a substituent” means that it may be substituted by another atom or substituent.
  • the “substituent” is not particularly limited as long as it does not adversely influence the reaction. Specifically, a hydroxyl group, an alkyl group, an alkoxy group, Examples thereof include an alkylthio group, a nitro group, an amino group, a cyan group, a carboxyl group, and a halogen atom. Further, the number of carbon atoms in the alkyl group, alkoxy group, and alkylthio group is not particularly limited, but it is preferably 1 to 20 respectively. Examples of the halogen atom include fluorine, bromine, chlorine, and iodine.
  • R 1 represents a phenyl group which may have a substituent.
  • the phenyl group which may have a substituent include a 4-hydroxyphenol group, a 4-methoxyphenyl group, a 4-chlorophenol group, and a phenol group.
  • it is a phenyl group.
  • R 2 represents a hydrogen atom, an alkali metal, an alkaline earth metal, or a nitrogenous base.
  • compound (1) is in the form of a carboxylate salt with R 2 when it is an alkali metal, alkaline earth metal, or nitrogenous base.
  • the alkali metal include lithium, sodium, and potassium.
  • the alkaline earth metal include magnesium, strength russium, and sodium.
  • nitrogenous bases include primary amines such as ammonia, methylamine, benzylamine and cyclohexylamine; secondary amines such as dimethylamine, dibenzilamine and dicyclohexylamine; tertiary amines such as triethylamine and tributylamine.
  • R 2 is preferably a hydrogen atom or an alkali metal such as lithium, sodium or potassium, more preferably a hydrogen atom or sodium, and particularly preferably sodium.
  • the method for obtaining the compound (1) is not particularly limited, a method for obtaining (2R, 3S) -3-phenol glycidate that can be carried out on an industrial scale will be described below.
  • a method obtained by hydrolyzing the ester group after treatment with a base and cyclizing the compound represented by [0034] is preferred.
  • R 1 is as described above.
  • R 3 represents a C to C alkyl group.
  • Examples of the C to C alkyl group include a methyl group and an ethyl group.
  • n-propyl group isopropyl group
  • n-butyl group isobutyl group
  • sec-butyl group isobutyl group
  • t-butyl group preferably ethyl group.
  • X represents a halogen atom, and examples thereof include a fluorine atom, a bromine atom, a chlorine atom, and an iodine atom.
  • a chlorine atom and a bromine atom are preferable, and a chlorine atom is particularly preferable.
  • Compound (5) can be produced by treating the corresponding benzoyl acetate derivative with a chlorinating agent such as sulfuryl chloride and chlorinating.
  • a chlorinating agent such as sulfuryl chloride and chlorinating.
  • the method for obtaining compound (6) or (7) by asymmetric reduction of compound (5) is not particularly limited as long as it provides compound (6) or compound (7) with high selectivity.
  • Reduction using a hydride reducing agent modified with an optically active compound Method of hydrogenation in the presence of an asymmetric transition metal catalyst; Method of reduction in a hydrogen transfer type in the presence of an asymmetric transition metal catalyst;
  • a reduction method using an enzyme derived from a microorganism can be used.
  • a reduction method using an enzyme derived from a microorganism is preferred.
  • a compound (7) is obtained by stereoselectively reducing the compound (5) in the presence of an enzyme source having the ability to stereoselectively reduce the carbonyl group of the compound (5). Will be described.
  • the "enzyme source” includes not only the enzyme having the reducing activity itself, but also a culture of microorganisms having the reducing activity and processed products thereof.
  • the “microorganism culture” means a culture solution or culture containing cells, or a processed product thereof.
  • the “processed product” means, for example, a crude extract, freeze-dried cells, acetone-dried cells, or a crushed product of these cells.
  • the above enzyme source can be immobilized by known means and used as a fixed enzyme or a fixed bacterial cell. The fixation can be performed by a method well known to those skilled in the art (for example, a crosslinking method, a physical adsorption method, a comprehensive method, etc.).
  • the enzyme source having the ability to selectively reduce the carbonyl group of compound (5) by 3S includes the genus Debarvomvces, the genus Pichia, the genus Acidiphilium, Devosia genus, Microba cterium fe, Micrococcus, Ochrobactrum genus, Qerskovia genus, Paenibacillus genus, Pseudomonas. And enzyme sources derived from microorganisms belonging to the genus.
  • the enzyme sources having the ability to selectively reduce (2S, 3S) the carbonyl group of compound (5) include the genus Debarvomvces, the genus Pichia, the assidy filyum ( Acidinhilium), Devosia ⁇ , Microbac terium genus, Micrococcus genus, Ochrobactrum ⁇ , Qerskovia genus, Paenibacillus genus, Enzyme source derived from microorganism belonging to the genus Pseudomonas is bald
  • Preferable enzyme sources are, specifically, Candida tenuis, Candida tenuis, Candida utilis, Anrio Riomyces polymonore. Fas (Debarvomvces polvmorphus), Tenorio Myces. Orbenoretoshae (Debarvomvces robertsiae), Pichia bovis, Acidinhilium crvptum, Arsrobacta ⁇ Cris Talopoi tes Arthrobacter nicotianae), Ahona Lihonovhi, Na (Devosia ribofiavma, Microno arborescens, Micrococcus luteus, Micrococcus luteus Oerskovia 'Oerskovia Bae-Bacillus' Paenibacillus alvei, Nyu , ⁇ Tomonas Puita (Pseudomonas putitda, Pseudomonas stutzeri), Streptomyces' Kakaoi Safs
  • the enzyme source capable of 3R-selectively reducing the carbonyl group of compound (5) includes the genus Brettanomvces, the genus Debarvomvces, and the genus Hanseniaspora. , Issatchenkia genus, Tanorebero genus Kluweromvces genus, Metschnikowia genus, Ogataa gataea genus, Pachvsolen genus, Pichia genus, Saccharomycocium osaccharses Therefore, Toru Genus TorulasOora, genus Williamopsis, genus Cornepacteria, genus Devosia, genus Streptomvces, genus Auxarthron, genus Coriolus, The genus Crinipel, the genus Mvrothecium, the genus Panus, the genus Phane rochaete, the genus Plectosphaerella
  • the microorganism from which the reductase is derived may be either a wild strain or a mutant strain.
  • microorganisms induced by genetic techniques such as cell fusion or gene manipulation can also be used.
  • a recombinant microorganism having the ability to produce a reductase derived from these microorganisms may be used.
  • the recombinant microorganism producing the enzyme encodes the enzyme based on, for example, a step of isolating and Z or purifying the enzyme to determine part or all of the amino acid sequence of the enzyme.
  • WO98Z35025 comprising a step of obtaining a DNA sequence to be obtained, a step of introducing the DNA into another microorganism to obtain a recombinant microorganism, and a step of culturing the recombinant microorganism to obtain the enzyme (WO98Z35025). No. gazette).
  • Examples of the recombinant microorganism as described above include a transformed microorganism transformed with a vector having a DNA encoding the reductase.
  • Escherichia coli is preferred! / !.
  • the carbocyclic reductase gene derived from the above-mentioned ⁇ evosia riboflavina NBRC 13584 strain Escherichia coli HB101 (pNTDR), accession number FERM BP— 08457 (May 29, 2002 (original deposit day), 1-chome Tsukuba, Ibaraki, Japan) No. 1 1 Central 6th National Institute of Advanced Industrial Science and Technology (AIST), which is internationally deposited at the Patent Biological Deposit Center).
  • (2S, 3S) as a selective enzyme source Devosia 'riboflaviner
  • 2S, 3S as a selective enzyme source, Devosia 'riboflaviner
  • a recombinant Escherichia coli culture transformed with a carbonyl reductase derived from riboflavina or a treated product thereof is more preferred.
  • the culture medium for the microorganism used as the enzyme source is not particularly limited as long as the microorganism can grow.
  • a carbon source carbohydrates such as glucose and sucrose, alcohols such as ethanol and glycerol, fatty acids such as oleic acid and stearic acid and esters thereof, oils such as rapeseed oil and soybean oil; sulfuric acid as a nitrogen source Ammonium, sodium nitrate, peptone, casamino acid, corn steep liquor, bran, yeast extract, etc .; inorganic salts such as magnesium sulfate, sodium chloride sodium, calcium carbonate, potassium monohydrogen phosphate, potassium dihydrogen phosphate, etc .;
  • a normal liquid medium containing a malt extract, meat extract or the like can be used. Cultivation is carried out aerobically. Usually, the cultivation time is about 1 to 5 days, the pH of the medium is 3 to 9, and the cultivation temperature is 10 to 50 ° C.
  • the reduction reaction of the carbonyl group of compound (5) is carried out by using, as a suitable solvent, compound (5) serving as a substrate, coenzyme NAD (P) H, a culture of the microorganism or a treated product thereof, etc. was added, under P H adjustment can be performed ⁇ Koyori stirring.
  • the reaction conditions vary depending on the enzyme, microorganism or treated product thereof, substrate concentration, etc., but the substrate concentration is usually about 0.1 to: L00% by weight, preferably 1 to 60% by weight; coenzyme NAD (P) H is 0.1 relative to the substrate 0001 to 100 mole 0/0, preferably from 0.001 to 0 1 mole 0/0;.
  • the reaction temperature is 10 to 60 ° C, preferably 20 to 50 ° C
  • the pH of the reaction is 4 to 9, preferably 5 to 8; the reaction time is 1 to 120 hours, preferably 1 to 72 hours.
  • an organic solvent may be mixed and used.
  • organic solvent examples include toluene, ethyl acetate, n -butyl acetate, hexane, isopropanol, methanol, diisopropyl ether, acetone, dimethyl sulfoxide and the like.
  • the substrate can be added by batch or continuous addition.
  • the reaction can be performed in a notched manner or a continuous manner. it can.
  • a typical NAD (P) H regeneration system includes, for example, a method using glucose dehydrogenase and glucose.
  • a transformed microorganism in which a gene of a reductase gene and an enzyme (for example, glucose dehydrogenase) capable of regenerating a coenzyme on which the enzyme depends is introduced into the same host microorganism, that is, encodes the reductase of the present invention.
  • a transformant microorganism culture in which a gene of an enzyme having an ability to regenerate a DNA and a coenzyme on which the enzyme depends (for example, glucose dehydrogenase) is introduced into the same host microorganism or a processed product thereof, etc. If the reaction similar to the above is performed, it is necessary to separately adjust the enzyme source necessary for the regeneration of the coenzyme V, and therefore the compound (7) can be produced at a lower cost.
  • the transformed microorganism as described above includes a trait transformed with a plasmid having both the DNA encoding the reductase and the DNA encoding the enzyme having the ability to regenerate the coenzyme on which the enzyme depends.
  • Examples include converted microorganisms.
  • the enzyme having the ability to regenerate the coenzyme glucose dehydrogenase derived from Bacillus megaterium, which is preferable to glucose dehydrogenase, is preferable.
  • the host microorganism is preferably Escherichia i.
  • Such preferred transforming microorganisms include both DNA encoding a carboxyreductase derived from Devosia riboflavina and DNA encoding a glucose dehydrogenase derived from Bacillus megaterium.
  • Escherichia coli HB101 pNTDRGl
  • accession number F ERM BP—08458 May 29, 2002 (original deposit date)
  • 1-chome Tsukuba, Ibaraki, Japan No. 1 1 Central 6th National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, which is internationally deposited).
  • Culture of transformed microorganisms can be performed using a normal liquid nutrient medium containing a carbon source, a nitrogen source, inorganic salts, organic nutrients and the like as long as they grow.
  • activity of an enzyme having a coenzyme regeneration ability in a transformed microorganism can be measured by a conventional method.
  • the activity of glucose dehydrogenase is determined by adding 100 mM glucose, 2 mM coenzyme NADP or NAD +, and enzyme to 1 M Tris-HCl buffer (pH 8.0) at 25 ° C. It is also possible to calculate the rate of increase in absorbance at a wavelength of 340 nm when the reaction is performed for a minute.
  • the compound (7) produced by the reduction reaction can be purified by a conventional method.
  • the reaction solution is subjected to treatment such as centrifugation and filtration to remove suspensions such as bacterial cells, followed by extraction with an organic solvent such as ethyl acetate and toluene, and the organic solvent is removed under reduced pressure.
  • treatment such as centrifugation and filtration to remove suspensions such as bacterial cells
  • organic solvent such as ethyl acetate and toluene
  • It can be purified by a treatment such as distillation or chromatography.
  • the cyclization reaction of compound (7) can be carried out by treating with a base in an appropriate solvent.
  • a base examples include sodium methoxide, sodium ethoxide, sodium t-butoxide, lithium methoxide.
  • Alkali metal alkoxides such as lithium ethoxide, lithium tert-butoxide, potassium methoxide, potassium ethoxide, potassium tert-butoxide; alkali hydrides such as lithium hydride, sodium hydride, potassium hydride; calcium hydride, etc.
  • Alkali earth metal hydrides alkali metal hydroxides such as sodium hydroxide, potassium potassium and hydroxide cesium; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide Porcelain; alkaline metal charcoal such as lithium carbonate, potassium carbonate, sodium carbonate Salts; lithium hydrogen carbonate, potassium hydrogen carbonate, alkali metals bicarbonates sodium hydrogen carbonate and the like.
  • alkali metal alkoxide is preferable, and sodium ethoxide is particularly preferable.
  • the amount of the base used is not particularly limited as long as the reaction proceeds smoothly, but 1 to 2 mol times is preferred from the economical viewpoint that 1 to 5 mol times the amount of compound (7) is preferred. The amount is particularly preferred.
  • the solvent to be used is not particularly limited.
  • alcohols such as methanol and ethanol
  • aprotic polar solvents such as dimethyl sulfoxide and dimethylformamide
  • ethers such as tetrahydrofuran and 1,4 dioxane And the like Alcohols are preferred, especially ethanol! /.
  • the reaction temperature for cyclization is not particularly limited, but is preferably ⁇ 20 to 50 ° C., more preferably 0 to 30 ° C.
  • the reaction time is not particularly limited, but is generally 5 to 60 minutes.
  • Subsequent ester hydrolysis is not particularly limited as long as it is carried out in a usual manner (see, for example, Experimental Science Course 22, The Chemical Society of Japan, Maruzen Co., Ltd.).
  • an acid method or an alkali method is possible, but when excess sodium ethoxide is used for the cyclization reaction of compound (7), water can be added to the system. The remaining sodium ethoxide becomes sodium hydroxide and can be hydrolyzed as it is. Further, when the amount of remaining sodium ethoxide is small, a necessary alkali may be added and added.
  • the alkali to be used include the bases mentioned in the cyclization reaction of the compound (7), preferably sodium hydroxide.
  • examples of the acid include acetic acid, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, p-toluenesulfonic acid, and the like.
  • the reaction temperature for ester hydrolysis is not particularly limited, but is preferably 20 to 50 ° C, more preferably 0 to 30 ° C.
  • the reaction time is not particularly limited, but is generally 5 to 60 minutes.
  • R 1 and R 2 are as described above.
  • the amino group in formula (2) may form a salt with an appropriate acid.
  • the acid that forms the salt is not particularly limited.
  • formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfone Examples include acid, p-toluenesulfonic acid, and the like, preferably hydrochloric acid, sulfuric acid, and methanesulfonic acid.
  • the (2R, 3R) compound (2) is used.
  • the (2S, 3S) compound (2) is used. can get.
  • the step of converting the compound (1) into the compound (2) by amination reaction with ammonia will be described.
  • the compound (1) used here may be obtained by the method described above or may be obtained separately.
  • R 1 and R 2 are as described above.
  • the amino group may form a salt with an appropriate acid.
  • the acid that forms the salt is not particularly limited, and examples include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid. Preferred are hydrochloric acid, sulfuric acid, and methanesulfonic acid. * Is the same as above. The configuration of compound (8) is superior to that of the produced compound (2).
  • the one opposite to the previous configuration is preferentially generated.
  • the amination reaction is carried out in an organic solvent and in Z or water.
  • organic solvents include chloroalkanes such as dichloromethane, chloroform and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, tetrahydrofuran and 1,4 dioxane; methanol, ethanol, isopropanol, Alcohols such as t-butanol Power
  • One or more selected solvents can be used.
  • the mixing ratio is not particularly limited.
  • water or a mixed solvent of water and an organic solvent is preferable as the solvent, and water is more preferable.
  • the amount of ammonia used is not particularly limited as long as the reaction proceeds smoothly and the compound (2) is obtained in good yield, but is preferably 1 to LOO with respect to the compound (1). In order to suppress the by-product of the compound (8), which is a positional isomer, and to obtain the compound (2) with good yield, it is particularly preferably 5 to 50 mole times. .
  • Ammonia may be used as a gas, or as an aqueous solution or a solution of an appropriate organic solvent.
  • reaction temperature is too low, it may take a long time to decrease the reaction yield or complete the reaction. Conversely, if the reaction temperature is too high, only the by-product of the compound (8) will increase. Due to the high pressure inside the reactor, it is not practical for industrial scale production.
  • the reaction time is generally about 1 to 36 hours as long as the disappearance of the compound (1) is confirmed.
  • R 2 is an alkali metal, alkaline earth metal or nitrogenous base and is in the form of a carboxylate (2); a compound (2) in which R 2 is a hydrogen atom; Even when the compound (2) is a hydrogen atom and the amino group forms a salt with an acid, the compound (2) can be carried out. Considering production on an industrial scale, the number of processes can be shortened, and there are few complicated operations. Therefore, R 2 is an alkali metal, alkaline earth metal, or nitrogenous base and is in the form of a carboxylate. Crystallization is preferably performed as a certain compound (2) or as a compound (2) in which R 2 is a hydrogen atom. More preferably, R 2 is an alkali metal, alkaline earth metal, or nitrogenous base, and crystallization is performed as the compound (2) in the form of a carboxylate.
  • the compound represented by the compound (8) can be efficiently removed.
  • Crystallization solvents include chloroalkanes such as dichloromethane, chloroform, and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, methyl tert-butyl ether, tetrahydrofuran, and 1,4 dioxane; methanol , Ethanol, isopropanol, n-butanol, sec butanol, t-butanol and other alcohols; hexane, pentane and other alkanes; ethyl acetate, isopropyl acetate and other esters; acetone, methyl ethyl ketone, etc. Ketones; and water.
  • the crystallization can be performed with one or more solvents selected from these, and an optimal solvent should be selected according to the form of the compound (2) to be crystallized.
  • R 3 is the same as described above
  • R 2 is an alkali metal, alkaline earth metal, or nitrogenous base, and an example of a method for crystallization as a compound (2) in the form of a strong rubonic acid salt is R 2 This is explained in the case where is sodium.
  • the crystallization solvent in this case, it is preferable to use two or more selected from the group of solvents described above such as water and alcohols.
  • the alcohol include alcohols represented by the above formula (4), and more specifically, methanol, ethanol, isopropanol, n-butanol, sec butanol, and t-butanol. Crystallization may be performed with two or more alcohols selected from these groups, or may be performed with one or more alcohols selected from these groups and water. A combination of water and alcohol is preferable, and water and ethanol are particularly preferable.
  • Crystallization can be performed by adding ethanol to an aqueous solution of the compound (2) in which R 2 is sodium, but when the amination reaction solvent in the previous step is water, ammonia is removed. Then, the reaction solution can be concentrated to a predetermined amount and ethanol can be added. The method will be described below. [0072] As the concentration when removing ammonia after the amination reaction and concentrating with water, the concentration of the compound (2) in which R 2 is sodium is preferably in the range of 5 to 50 wt%. In order to obtain the compound (2) in which R 2 is sodium in the analysis yield, 10 to 40 wt% is particularly preferable.
  • the amount of ethanol is preferably 1 to 20 times the weight of water, particularly preferably 5 to 15 times the weight. Crystallization is performed by heating to a predetermined temperature after adding ethanol, and then cooling to a predetermined temperature.
  • the temperature range is -20 to 80 ° C. More preferably, it is in the range of 5 to 60 ° C from the viewpoint of the deposition yield.
  • the crystallization solvent it is preferable to use at least one selected from the group of solvents described above, such as water and alcohols.
  • the alcohol include alcohols represented by the formula (4). Crystallization can also be carried out with one or more alcohols selected from these groups and water, or water, preferably water and ethanol, or water alone.
  • the concentration when removing ammonia after the amination reaction and concentrating with water is preferably such that the concentration of the compound (2) in which R 2 is a hydrogen atom is in the range of 5 to 50 wt%. In order to obtain the compound (2) in which R 2 is a hydrogen atom in the crystallization yield, 10 to 40 wt% is particularly preferable. After the concentration is completed, crystallization is performed by adding an appropriate acid and adjusting to a predetermined pH.
  • the acid to be added is not particularly limited, but examples include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, methanesulfonic acid, trifluoromethanesulfonic acid, ⁇ -toluenesulfonic acid, and the like, preferably hydrochloric acid, sulfuric acid It is.
  • the pH is not particularly limited as long as the crystals can be obtained in good yield, but is preferably in the range of 4 to 9, particularly preferably in the range of 5 to 8.
  • the crystallization yield can be improved by adding an alcohol such as ethanol.
  • Ethanol to be added The amount of potassium is not particularly limited, and may be added until sufficient crystal precipitation is observed.
  • the temperature range for crystallization is preferably in the range of 20 to 80 ° C., more preferably in the range of ⁇ 5 to 60 ° C. from the viewpoint of impurity removal rate and crystallization yield.
  • R 2 is a hydrogen atom and the amino group forms a salt with an acid to obtain a compound.
  • the above method is used.
  • the obtained compound (2) in which R 2 is a hydrogen atom is dissolved in an appropriate solvent, and an acid is added to form a salt.
  • Solvents include chloroalkanes such as dichloromethane, chloroform, and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, methyl-butyl ether, tetrahydrofuran, and 1,4 dioxane; From the group consisting of alcohols such as methanol, ethanol, isopropanol, t-butanol; alkanes such as hexane and pentane; esters such as ethyl acetate and isopropyl acetate; ketones such as methyl ethyl ketone; One or more selected solvents are used.
  • the solvent can be used for both salt formation and crystallization. A solvent in which the generated salt precipitates as crystals with high yield and an improvement in quality is recognized may be selected.
  • Examples of the acid used for salt formation include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and the like, preferably hydrochloric acid, Sulfuric acid and methanesulfonic acid.
  • the concentration of the compound (2) is in the range of 5 to 50 wt%. preferable. Further, the temperature range for crystallization is preferably in the range of ⁇ 20 to 80 ° C.
  • R 1 and R 3 are the same as described above.
  • the amino group may form a salt with an appropriate acid.
  • the acid that forms the salt of compound (3) is not particularly limited, but for example, formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p toluenesulfone Examples thereof include hydrochloric acid, sulfuric acid, and methanesulfonic acid, and hydrochloric acid is particularly preferable.
  • the compound (2) obtained by the reaction of the compound (1) and ammonia by the above-mentioned method may be used as it is and subjected to the crystallization step. Can be used.
  • the esterification is not particularly limited as long as it is carried out in a usual manner (for example, see Experimental Science Course 22, edited by The Chemical Society of Japan, Maruzen Co., Ltd.).
  • the method carried out by the reaction with the alcohol represented by the formula (4) will be described.
  • the alcohol to be used an alcohol corresponding to the desired ester may be selected.
  • the amount to be used is preferably 5 to 200 mol times the compound (2), more preferably 10 to 100 mol times.
  • the acid to be used is not particularly limited as long as the reaction proceeds in good yield.
  • the amount of the acid used is 2 to 20 mole times, preferably 2 to 10 mole times the compound (2).
  • the reaction temperature is not particularly limited, but is preferably in the range from 25 ° C to the boiling point of the alcohol used, and particularly preferably in the range of the boiling point of the alcohol used at 40 ° C force. .
  • the reaction time is not particularly limited as long as the disappearance of the compound (2) is confirmed, but is generally about 1 to 24 hours.
  • the post-treatment after the reaction is not particularly limited as long as it is carried out by a usual method.
  • water is added and the alcohol is removed after neutralization with a suitable base.
  • the compound (3) can be efficiently separated from the inorganic salts in the system by performing extraction with an appropriate organic solvent.
  • the base for making the aqueous layer alkaline after neutralization and alcohol removal is not particularly limited, and examples thereof include alkali metals such as sodium hydroxide, potassium hydroxide, potassium hydroxide and cesium hydroxide.
  • alkali metals such as sodium hydroxide, potassium hydroxide, potassium hydroxide and cesium hydroxide.
  • Hydroxides; alkaline earth metals such as magnesium hydroxide and calcium hydroxide; alkali metal carbonates such as lithium carbonate, potassium carbonate and sodium carbonate; lithium hydrogen carbonate, hydrogen carbonate Mention may be made of alkali metal hydrogen carbonates such as potassium and sodium hydrogen carbonate.
  • alkali metal hydroxides or alkaline earth metal hydroxides is preferred from the economical viewpoint and because no gas is generated by reaction with acids, and sodium hydroxide is particularly preferred.
  • the extraction solvent is not particularly limited as long as it is a solvent that can efficiently extract compound (3) from the aqueous layer.
  • black alkanes such as dichloromethane, black mouth form, and dichloroethane
  • Substituted benzenes such as toluene
  • ethers such as jetyl ether and methyl-butyl ether
  • alkanes such as hexane and pentane
  • esters such as ethyl acetate and isopropyl acetate; preferably dichloromethane, toluene, methyl- t Butyl ether, ethyl acetate, particularly preferably ethyl acetate
  • the obtained extract can be subjected to a crystallization step as necessary after concentration to obtain a highly pure compound (3).
  • R 1 and R 3 are as described above.
  • the amino group may form a salt with an appropriate acid.
  • Forming salt The acid to be used is not particularly limited, but examples include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and the like. Are hydrochloric acid, sulfuric acid and methanesulfonic acid, with hydrochloric acid being particularly preferred.
  • the one opposite to the previous configuration is preferentially generated.
  • the compound (9) contained as an impurity in the compound (3) can be removed by crystallization. Therefore, when obtaining the compound (3) or a salt thereof, the compound (1) is reacted with the ammonia, and then the obtained compound (2) is subjected to a crystallization step to obtain the compound (8 ) And other impurities; a method of removing compound (9) and other impurities in the crystallization step after performing esterification without crystallization of compound (2); There is a method of performing a crystallization process both after the reaction of (1) with ammonia and after the esterification reaction. Which method should be selected should also determine the required quality. In order to obtain a compound (3) with higher purity, it is preferable to perform crystallization after both the amination reaction and the esterification reaction. Needless to say, crystallization should not be performed according to the required quality of the compound (3).
  • Solvents used for crystallization of compound (3) are, for example, chloroalkanes such as dichloromethane, chloroform, dichloroethane, and the like; substituted benzenes such as benzene and toluene; jetyl ether, methyl-butyl ether, tetrahydrofuran, 1 , 4 Ethers such as dioxane; Alcohols such as methanol, ethanol, isopropanol, n-butanol, sec butanol and t-butanol; Alkanes such as hexane and pentane; Esters such as ethyl acetate and isopropyl acetate; Acetone And ketones such as methyl ethyl ketone; and water.
  • chloroalkanes such as dichloromethane, chloroform, dichloroethane, and the like
  • substituted benzenes such as benzene and toluen
  • the crystallization can be performed by selecting one or more solvents from these.
  • ethyl acetate is used as the extraction solvent, it is possible to concentrate the extract to a predetermined amount and perform crystallization from the ethyl acetate solution as it is, or an appropriate one selected from the above group. It is also possible to use a solvent as a poor solvent.
  • the crystallization method using ethyl acetate as the extraction solvent and hexane as the poor solvent after concentrating the extract is described below.
  • the concentration of the extract is particularly preferably from 10 to 30 wt% in order to obtain the compound (3) with a good crystallization yield in which the concentration of the compound (3) is preferably in the range of 5 to 50 wt%.
  • the amount of hexane is preferably 30 to 200 vZv%, particularly preferably 30 to 150 vZv% with respect to ethyl acetate.
  • Crystallization is performed by concentrating the extract and heating to a specified temperature, dissolving the precipitated solids, adding force hexane, and cooling to the specified temperature.
  • the temperature range is 20 to 80 ° C.
  • the range is preferably 5 to 60 ° C, more preferably from the viewpoint of the removal rate of impurities and the crystallization yield.
  • the compound (3) when it is desired to obtain the compound (3) as a salt with an acid, it can be obtained by adding an appropriate acid to the compound (3) obtained above, and the extract or the extract can be obtained. It is also possible to obtain the salt of compound (3) directly as crystals by adding an acid after concentration and substitution with an appropriate solvent.
  • Examples of the solvent to be used include black alkanes such as dichloromethane, chloroform, and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, methyl-butyl ether, tetrahydrofuran, and 1,4 dioxane.
  • Alcohols such as methanol, ethanol, isopropanol, and t-butanol
  • alkanes such as hexane and pentane
  • esters such as ethyl acetate and isopropyl acetate
  • ketones such as acetone and methyl ethyl ketone
  • the mixing ratio is not particularly limited.
  • the acid to be used is not particularly limited, and examples thereof include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and the like. Hydrochloric acid and sulfuric acid are preferred, and hydrochloric acid is particularly preferred.
  • the crystallization temperature is more preferably in the range of ⁇ 5 to 60 ° C. from the viewpoint of the impurity removal rate and the crystallization yield that are preferably performed in the range of 20 to 80 ° C.
  • the crystallization is performed twice or more. be able to. When crystallization is performed twice or more, it may be repeated with the same solvent or with different solvents.
  • (2R, 3R) and (2S, 3S) -3-phenol-lysoserine derivatives useful as pharmaceutical intermediates can be conveniently and industrially advantageously produced.
  • reaction solution was concentrated to about 30 wt% before concentration, and 28 wt% aqueous ammonia solution (124.9 mL, 1.85 mol) was added to the resulting orange slurry.
  • the reaction solution was transferred to a pressure resistant reactor, heated to 50 ° C. and stirred for 19 hours, then cooled to room temperature, and ammonia was removed under reduced pressure.
  • the amount of (2R, 3R) -3 phenol isoserine sodium salt in the obtained reaction solution was quantified by HPLC analysis using a sample, and the yield was 68.8%. Further, the yield of the regioisomer (2S, 3S) -3 phenolserine sodium salt was similarly determined by quantitative analysis by HPLC, and the yield was 18.4%.
  • a liquid medium (rho 7.0) was prepared, and 5 ml was dispensed into a large test tube and steam sterilized at 120 ° C for 20 minutes.
  • 1 yeast each of the yeasts shown in Tables 1 to 2 was inoculated and cultured at 30 ° C for 2 to 3 days with shaking. Bacteria were collected from this culture by centrifugation, suspended in 1 ml of 0.1 M phosphate buffer (pH 5.5) containing 2-% benzoyl acetate ethyl ester and 0.2% glucose, and a stoppered test. Shake for 20 hours at 30 ° C.
  • liquid medium consisting of 1% meat extract, 1% polypeptone, 0.5% yeast extract, 0.3% NaCl, and dispense 5 ml into a large test tube at 120 ° C. Steam sterilized for 20 minutes. Each of these liquid media was inoculated with 1 platinum ear of each of the bacteria shown in Table 3, and cultured at 30 ° C for 2 to 3 days with shaking. Bacteria were collected from this culture by centrifugation, and reacted and analyzed under the same conditions as in Example 4. Yield (%), isomer ratio at 3rd position (%), antiZsyn, and optical purity (% ee). The results are shown in Table 3.
  • a liquid medium (pH 7.2) consisting of 3% tributotic soy broth and 1% soluble starch was prepared, dispensed in 5 ml portions into a large test tube, and steam sterilized at 120 ° C for 20 minutes.
  • One platinum ear of each of the actinomycetes shown in Table 4 was inoculated into these liquid media, and cultured at 30 ° C for 2 to 3 days with shaking. Bacteria were collected from this culture by centrifugation, and reacted and analyzed under the same conditions as in Example 4. Yield (%), 3-position isomer ratio (%), antiZsyn, and optical purity (% ee). The results are shown in Table 4.
  • Example 7 Dispersion of 2-black-mouthed benzoyl acetate ethyl ester by mold Prepare a liquid medium ( ⁇ 7.0) consisting of 1% meat extract, 1% polypeptone, 1% glucose, 0.5% yeast extract, 0.1% NaCl, and MgSO ⁇ 7 ⁇ ⁇ 0.05%.
  • (2R, 3R) and (2S, 3S) -3-phenol-leucinerine derivatives useful as pharmaceutical intermediates can be conveniently and industrially advantageously produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process by which (2R,3R)- and (2S,3S)-3-phenylisoserine derivatives useful as an intermediate for medicines can be easily and industrially advantageously produced. A salt of (2R,3S)- or (2S,3R)-3-phenylglycidic acid is reacted with ammonia to form a (2R,3R)- or (2S,3S)-3-phenylisoserine salt. The salt is optionally neutralized to form (2R,3R)- or (2S,3S)-3-phenylisoserine. Thereafter, the isoserine compound is purified by crystallization. Thus, position isomers which have generated as by-products can be efficiently removed. The compound which has been or not been subjected to the crystallization is esterified by an ordinary method and the resultant (2R,3R)- or (2S,3S)-3-phenylisoserine ester is purified by crystallization. Thus, position isomers and other impurities can be efficiently removed.

Description

(2R, 3R)および(2S, 3S) _ 3_フエ二ルイソセリン誘導体の製造法 技術分野  Process for producing (2R, 3R) and (2S, 3S) _ 3_phenylisoserine derivatives
[0001] 本発明は、医薬品中間体として有用な(2R, 3R)及び(2S, 3S)— 3—フエニルイソ セリン誘導体の製造法に関する。  The present invention relates to a method for producing (2R, 3R) and (2S, 3S) -3-phenylisoserine derivatives useful as pharmaceutical intermediates.
背景技術  Background art
[0002] (2R, 3R)及び(2S, 3S)—3 フエ二ルイソセリン誘導体の製造法としては、例えば フエ-ル基とカルボキシル基がトランス位である 3—フエ-ルグリシド酸塩をアンモ- ァと反応させ、得られたエリスロー 3—フエ二ルイソセリン塩をエステルイ匕した後に、光 学活性酒石酸を用いて分割する方法 (特許文献 1)が知られて ヽる。  [0002] (2R, 3R) and (2S, 3S) -3 Phenyl isoserine derivatives are produced by, for example, 3-phenol glycidate having a phenyl group and a carboxyl group in the trans position. There is known a method (Patent Document 1) in which the obtained erythro 3-phenylisoserine salt is esterified and then separated using optically active tartaric acid.
しかしながら、上記方法は分割法であるがゆえに最高収率は 50%であり、工業的に 生産するにあたり実用的かつ経済的な方法とは言 、難 、。  However, since the above method is a splitting method, the maximum yield is 50%, which is difficult to say that it is a practical and economical method for industrial production.
[0003] 光学活性な(2R, 3R)及び(2S, 3S)—3 フエ-ルグリシド酸塩とアンモニアを反応 させれば分割することなく(2R, 3R)及び(2S, 3S)— 3 フエ二ルイソセリン塩を得る ことができ、中和することにより(2R, 3R)及び(2S, 3S)— 3 フエ-ルイソセリンを、 さらにエステル化することにより(2R, 3R)及び(2S, 3S)— 3 フエ-ルイソセリンェ ステルを得ることができる。このような方法としては、桂皮酸誘導体の不斉エポキシィ匕 により得た光学活性 3—フエニルダリシド酸誘導体を開環させる方法が知られている ものの、具体的方法は開示されておらず、工業的に実施可能力どうか不明である (特 許文献 2)。  [0003] Optically active (2R, 3R) and (2S, 3S) -3 phenol glycidate and ammonia react with (2R, 3R) and (2S, 3S) -3 Ruisoserine salt can be obtained, and by neutralizing (2R, 3R) and (2S, 3S) -3 phenol isoserine, further esterifying (2R, 3R) and (2S, 3S) — 3 Ferrous isosterin ester can be obtained. As such a method, although a method of ring-opening an optically active 3-phenyldaricidic acid derivative obtained by asymmetric epoxies of cinnamic acid derivatives is known, a specific method is not disclosed and industrially available. Whether it is feasible is unknown (Patent Document 2).
[0004] また、桂皮酸誘導体の不斉エポキシィ匕により光学活性な 3 フエニルダリシド酸塩を 得る方法は、多くの例が報告されている(例えば非特許文献 1〜3)ものの、いずれも 高価であったり毒性が懸念される試薬や触媒を用いる必要があり、工業的に有利な 製法とするには改善すべき点が多い。  [0004] In addition, many examples of methods for obtaining an optically active 3-phenyl darisidate by asymmetric epoxies of cinnamic acid derivatives have been reported (for example, Non-Patent Documents 1 to 3), but all of them are expensive. It is necessary to use reagents and catalysts for which toxicity is a concern, and there are many points that need to be improved in order to obtain an industrially advantageous production method.
[0005] 一方、上記光学活性な 3—フエ-ルグリシド酸塩は、 2 クロロー 3 ォキソ 3 フエ -ルプロピオン酸エステルを不斉還元して得られる光学活性な 2 クロ口 3 ヒドロ キシ 3—フエ-ルプロピオン酸エステルを、適当な溶媒(例えば、低級アル力ノール )中、塩基(例えば、アルカリ金属アルコキシド)の存在下、 10から 50°C、とりわけ 0 °C〜室温で分子内閉環し、そこに水を添加してエステル基を加水分解することによつ てち得ることがでさる。 [0005] On the other hand, the optically active 3-phenylglycidate is an optically active 2-chloro-3hydroxy-3-phenol--obtained by asymmetric reduction of 2-chloro-3-oxo-3phenol-propionic acid ester. Lupropionic acid ester is mixed with a suitable solvent (eg, lower alkyl alcohol) ) In the presence of a base (for example, alkali metal alkoxide) at 10 to 50 ° C., particularly 0 ° C. to room temperature, and water is added thereto to hydrolyze the ester group. You can get it.
[0006] 光学活性な 2 クロロー 3 ヒドロキシ 3 フエ-ルプロピオン酸エステル誘導体の 製法としては、微生物又は還元酵素を用いて、 2 クロロー 3 ォキソー3 フエニル プロピオン酸エステル誘導体を不斉還元する方法が知られている(特許文献 3、非特 許文献 4〜5)。し力しながら、これらはいずれも仕込み濃度 (0. 1〜0. 2%)及び収 率(1〜60%)が低ぐ実用的製法とは言い難い。また、アンチ体、とりわけ(2S, 3S) 体を高選択的に生成する微生物としてはァルスロパクター 'プロトホルミエ及びストレ プトマイセス'オリボクロモゲネス等が報告されているが(特許文献 3)、いずれも収率 は 5%以下である。  [0006] As a method for producing an optically active 2-chloro-3hydroxy-3phenolpropionic acid ester derivative, there is known a method of asymmetric reduction of a 2-chloro-3-oxo-3 phenylpropionic acid ester derivative using a microorganism or a reductase. (Patent Document 3, Non-Patent Documents 4 to 5). However, it is difficult to say that these are practical production methods in which the feed concentration (0.1 to 0.2%) and the yield (1 to 60%) are low. In addition, as a microorganism that highly selectively produces anti-isomers, particularly (2S, 3S) isomers, Althropacter 'protoformier and Streptomyces' olivochromogenes have been reported (Patent Document 3), and the yields of both are high. 5% or less.
[0007] さらに光学活性な 3 フエ-ルグリシド酸塩が得られても、アンモニアとの反応におい ては、位置異性体である 3—フエ二ルセリン塩の副生を避けることは困難である力 そ の効率的な除去法は知られて 、な 、。  [0007] Even if an optically active 3-phenylglycidate is obtained, it is difficult to avoid by-production of 3-phenylserine salt, which is a regioisomer, in the reaction with ammonia. An efficient removal method is known.
[0008] 単離精製法としては、当該化合物のジァステレオマーである(2R, 3S)— 3 フエ- ルイソセリン塩の晶析による単離精製方法は知られているが(特許文献 4)、同様な方 法で(2R, 3R)及び(2S, 3S)— 3 フエ-ルイソセリン塩が単離されるかどうかは不 明である。  [0008] As an isolation and purification method, an isolation and purification method by crystallization of a diastereomer of the compound (2R, 3S) -3 phenol isoserine salt is known (Patent Document 4). It is unclear whether (2R, 3R) and (2S, 3S) -3 phenol isoserine salts are isolated by the law.
[0009] したがって、医薬品中間体として有用な(2R, 3R)及び(2S, 3S)— 3 フエ-ルイソ セリン誘導体の実用的かつ経済的な製造法の開発が、強く待ち望まれている。 特許文献 1: WO2003Z003804号公報  [0009] Therefore, development of a practical and economical production method of (2R, 3R) and (2S, 3S) -3-phenol isoserine derivatives useful as pharmaceutical intermediates is strongly desired. Patent document 1: WO2003Z003804
特許文献 2: WO2005Z058893号公報  Patent Document 2: WO2005Z058893
特許文献 3:特公平 7— 79706号公報  Patent Document 3: Japanese Patent Publication No. 7-79706
特許文献 4:特表平 6 - 504549号公報  Patent Document 4: Japanese Patent Publication No. 6-504549
非特許文献 1 : Tetrahedron 1994, 50, 4323  Non-Patent Document 1: Tetrahedron 1994, 50, 4323
非特許文献 2 : Am. Chem. Soc. 2002, 124, 14544  Non-Patent Document 2: Am. Chem. Soc. 2002, 124, 14544
非特許文献 3 : Org. Chem. 2004, 69, 4217  Non-Patent Document 3: Org. Chem. 2004, 69, 4217
非特許文献 4: Tetrahedron: Asymmetry 1995, 6, 2199 非特許文献 5 : Org. Chem. 2005, 70, 342 Non-Patent Document 4: Tetrahedron: Asymmetry 1995, 6, 2199 Non-Patent Document 5: Org. Chem. 2005, 70, 342
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 上記を鑑み、本発明の目的は、(2R, 3R)及び(2S, 3S)— 3 フエ-ルイソセリン誘 導体を簡便かつ工業的に有利に製造できる実用的な方法を提供することにある。 課題を解決するための手段 [0010] In view of the above, an object of the present invention is to provide a practical method by which (2R, 3R) and (2S, 3S) -3 phenol isoserine derivatives can be produced conveniently and industrially advantageously. is there. Means for solving the problem
[0011] 本発明者らは上記に鑑み鋭意検討を行った結果、(2R, 3S)あるいは(2S, 3R)—3 フエ-ルグリシド酸又はその塩をアンモニアと反応させ、(2R, 3R)あるいは(2S, 3S)— 3 フエ-ルイソセリン又はその塩とした後に、通常の方法でエステル化し、 (2 R, 3R)あるいは(2S, 3S)— 3 フエ-ルイソセリンアルキルエステル又はその塩と する過程において、(2R, 3S)あるいは(2S, 3R)— 3 フエ-ルグリシド酸又はその アルカリ塩とアンモニアの反応で副生する(2S, 3S)あるいは(2R, 3R)—3 フエ- ルセリン又はその塩、あるいは、続くエステル化において不純物として混在する(2S, 3S)あるいは(2R, 3R)— 3 フエ-ルセリンエステル又はその塩力 晶析により効率 的に除去できることを見出し、本発明を完成するに至った。  [0011] As a result of intensive studies in view of the above, the present inventors have reacted (2R, 3S) or (2S, 3R) -3 phenolglycidic acid or a salt thereof with ammonia to produce (2R, 3R) or (2S, 3S) —3 Phenol isoserine or its salt, then esterified by the usual method to give (2 R, 3R) or (2S, 3S) —3 phenol isoserine alkyl ester or its salt In the process, (2S, 3S) or (2S, 3R) -3 phleglycidic acid or its alkali salt and by-product (2S, 3S) or (2R, 3R) -3 phenserine or its It is found that (2S, 3S) or (2R, 3R) -3 phenolserine ester or its salt power crystallization can be efficiently removed by mixing with salt or subsequent esterification, and the present invention is completed. It came to.
[0012] すなわち、本発明は、一般式(1) ;  That is, the present invention relates to general formula (1);
[0013] [化 1]
Figure imgf000004_0001
[0013] [Chemical 1]
Figure imgf000004_0001
[0014] (式中、 R1は置換基を有していてもよいフエ-ル基を表し、 R2は水素原子、アルカリ 金属、アルカリ土類金属又は窒素性塩基を表し、 * は不斉炭素原子でありその立体 配置は(2R, 3S)あるいは(2S, 3R)であることを表す)で表される化合物と、アンモ ユアとの反応により得られる、一般式(2); [Wherein R 1 represents a phenyl group which may have a substituent, R 2 represents a hydrogen atom, an alkali metal, an alkaline earth metal or a nitrogenous base, and * represents an asymmetric group. A general formula (2) obtained by reaction of a compound having a carbon atom and a configuration of (representing 2R, 3S) or (2S, 3R) with ammonia.
[0015] [化 2]
Figure imgf000004_0002
[0015] [Chemical 2]
Figure imgf000004_0002
[0016] (式中、 R1及び R2は前記と同じ意味を表し、 * は不斉炭素原子でありその立体配置 は(2R, 3R)あるいは(2S, 3S)であることを表す)で表される化合物を、さらに晶析 工程に付すことを特徴とする前記式 (2)で表される化合物の製造法に関する。 [Wherein R 1 and R 2 represent the same meaning as described above, and * represents an asymmetric carbon atom, and its configuration Relates to a method for producing a compound represented by the above formula (2), wherein the compound represented by (2R, 3R) or (2S, 3S) is further subjected to a crystallization step .
[0017] また、本発明は、前記式(1)で表される化合物とアンモニアとの反応により、前記式 ( 2)で表される化合物とし、続いてこれをエステルイ匕し、得られる一般式(3);  [0017] Further, the present invention provides a compound represented by the above formula (2) by reaction of the compound represented by the above formula (1) with ammonia, followed by esterification of the compound represented by the general formula obtained. (3);
[0018] [化 3]
Figure imgf000005_0001
[0018] [Chemical 3]
Figure imgf000005_0001
[0019] (式中、 R1及び * は前記と同じ意味を表し、 R3は C〜Cのアルキル基を表す)で表 [Wherein R 1 and * represent the same meaning as described above, and R 3 represents a C to C alkyl group]
2 1 4  2 1 4
される化合物を、さらに晶析工程に付すことを特徴とする、前記式 (3)で表される化 合物の製造法に関する。  Further, the present invention relates to a method for producing a compound represented by the formula (3), which is further subjected to a crystallization step.
さらに、本発明は、一般式 (5) ;  Furthermore, the present invention relates to a general formula (5);
[0020] [化 4]
Figure imgf000005_0002
[0020] [Chemical 4]
Figure imgf000005_0002
[0021] (式中、 R1及び R3は前記と同じ意味を表し、 Xはハロゲン原子を表す)で表される化 合物に、当該化合物のカルボ二ル基を立体選択的に還元する能力を有する酵素源 を作用させることによる、一般式 (6)又は一般式 (7); [0021] (wherein R 1 and R 3 represent the same meaning as described above, and X represents a halogen atom), the carbonyl group of the compound is stereoselectively reduced. A general formula (6) or a general formula (7) by acting an enzyme source having the ability;
[0022] [化 5]
Figure imgf000005_0003
[0022] [Chemical 5]
Figure imgf000005_0003
[0023] (式中、 R\ R3、 X及び * は前記と同じ意味を表し、 *は不斉炭素原子を表す)で表 [0023] (wherein R \ R 3 , X and * represent the same meaning as above, * represents an asymmetric carbon atom)
2  2
される化合物の製造法に関する。  The present invention relates to a method for producing the compound.
[0024] 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
なお、本発明において「置換基を有していてもよい」とは、他の原子あるいは置換基 によって置換されていてもよいことを示す。「置換基」とは、反応に悪影響を与えない 限り特に限定されるものではなぐ具体的には、水酸基、アルキル基、アルコキシ基、 アルキルチオ基、ニトロ基、アミノ基、シァノ基、カルボキシル基、ハロゲン原子等が 挙げられる。また、当該アルキル基、アルコキシ基、アルキルチオ基における炭素数 は、特に限定されないが、それぞれ 1〜20であることが好ましい。ハロゲン原子として は、フッ素、臭素、塩素、ヨウ素が挙げられる。 In the present invention, “may have a substituent” means that it may be substituted by another atom or substituent. The “substituent” is not particularly limited as long as it does not adversely influence the reaction. Specifically, a hydroxyl group, an alkyl group, an alkoxy group, Examples thereof include an alkylthio group, a nitro group, an amino group, a cyan group, a carboxyl group, and a halogen atom. Further, the number of carbon atoms in the alkyl group, alkoxy group, and alkylthio group is not particularly limited, but it is preferably 1 to 20 respectively. Examples of the halogen atom include fluorine, bromine, chlorine, and iodine.
[0025] まず、一般式(1) ;  [0025] First, the general formula (1);
[0026] [化 6]
Figure imgf000006_0001
[0026] [Chemical 6]
Figure imgf000006_0001
[0027] で表される化合物の製造法につ!、て説明する。  [0027] The production method of the compound represented by
前記式(1)で表される化合物(以下、化合物(1)という)において、 R1は置換基を有し ていてもよいフエ-ル基を表す。置換基を有していても良いフエ-ル基としては、例え ば、 4—ヒドロキシフエ-ル基、 4—メトキシフエ-ル基、 4—クロ口フエ-ル基、フエ- ル基等が挙げられ、好ましくはフ ニル基である。 In the compound represented by the formula (1) (hereinafter referred to as the compound (1)), R 1 represents a phenyl group which may have a substituent. Examples of the phenyl group which may have a substituent include a 4-hydroxyphenol group, a 4-methoxyphenyl group, a 4-chlorophenol group, and a phenol group. Preferably, it is a phenyl group.
R2は水素原子、アルカリ金属、アルカリ土類金属又は窒素性塩基を表す。言うまでも なぐ化合物(1)は、 R2がアルカリ金属、アルカリ土類金属、窒素性塩基の場合には 、これらとのカルボン酸塩の形態である。アルカリ金属としては、例えば、リチウム、ナ トリウム、カリウムが挙げられる。アルカリ土類金属としては、例えば、マグネシウム、力 ルシゥム、ノ リウムが挙げられる。窒素性塩基としては、例えば、アンモニア、メチルァ ミン、ベンジルァミン、シクロへキシルァミン等の 1級ァミン類;ジメチルァミン、ジベン ジルァミン、ジシクロへキシルァミン等の 2級ァミン類;トリェチルァミン、トリブチルアミ ン等の 3級ァミン類が挙げられる。 R2として、好ましくは水素原子、アルカリ金属である リチウム、ナトリウム、カリウムであり、さらに好ましくは水素原子、ナトリウムであり、特に 好ましくはナトリウムである。 R 2 represents a hydrogen atom, an alkali metal, an alkaline earth metal, or a nitrogenous base. Needless to say, compound (1) is in the form of a carboxylate salt with R 2 when it is an alkali metal, alkaline earth metal, or nitrogenous base. Examples of the alkali metal include lithium, sodium, and potassium. Examples of the alkaline earth metal include magnesium, strength russium, and sodium. Examples of nitrogenous bases include primary amines such as ammonia, methylamine, benzylamine and cyclohexylamine; secondary amines such as dimethylamine, dibenzilamine and dicyclohexylamine; tertiary amines such as triethylamine and tributylamine. Kind. R 2 is preferably a hydrogen atom or an alkali metal such as lithium, sodium or potassium, more preferably a hydrogen atom or sodium, and particularly preferably sodium.
* は不斉炭素原子であり、その立体配置は(2R, 3S)あるいは(2S, 3R)であること を表し、好ましくは(2R, 3S)体である。  * Represents an asymmetric carbon atom, and the configuration is (2R, 3S) or (2S, 3R), preferably (2R, 3S).
[0028] 化合物(1)を得る方法としては特に制限されないが、以下に工業的規模で実施可能 な、(2R, 3S)— 3—フエ-ルグリシド酸塩を得る方法について説明する。 [0028] Although the method for obtaining the compound (1) is not particularly limited, a method for obtaining (2R, 3S) -3-phenol glycidate that can be carried out on an industrial scale will be described below.
一般式 (5) ; [0029]
Figure imgf000007_0001
Formula (5); [0029]
Figure imgf000007_0001
[0030] で表される化合物のカルボ二ル基を不斉還元し、得られた一般式(6);  [0030] The carbonyl group of the compound represented by general formula (6) obtained by asymmetric reduction:
[0031] [化 8]
Figure imgf000007_0002
[0031] [Chemical 8]
Figure imgf000007_0002
[0032] 又は一般式(7) ;  Or a general formula (7);
[0033] [化 9]
Figure imgf000007_0003
[0033] [Chemical 9]
Figure imgf000007_0003
[0034] で表される化合物を、塩基で処理して環化した後、エステル基を加水分解することよ り得る方法が好ましい。  [0034] A method obtained by hydrolyzing the ester group after treatment with a base and cyclizing the compound represented by [0034] is preferred.
ここで、前記式(5)で表される化合物(以下、化合物(5) t 、う)、前記式 (6)で表され る化合物 (以下、化合物 (6) t 、う)及び前記式 (7)で表される化合物 (以下、化合物 (7)という)において、 R1は前述のとおりである。 Here, the compound represented by the formula (5) (hereinafter referred to as the compound (5) t), the compound represented by the formula (6) (hereinafter referred to as the compound (6) t) and the above formula ( In the compound represented by 7) (hereinafter referred to as compound (7)), R 1 is as described above.
R3は C〜Cのアルキル基を表す。 C〜Cのアルキル基としては、メチル基、ェチルR 3 represents a C to C alkyl group. Examples of the C to C alkyl group include a methyl group and an ethyl group.
1 4 1 4 1 4 1 4
基、 n プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 sec ブチル基、 t ブチル基が挙げられ、好ましくはェチル基である。  Group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and t-butyl group, preferably ethyl group.
Xはハロゲン原子を表し、フッ素原子、臭素原子、塩素原子、ヨウ素原子が挙げられ る。好ましくは塩素原子、臭素原子であり、塩素原子が特に好ましい。  X represents a halogen atom, and examples thereof include a fluorine atom, a bromine atom, a chlorine atom, and an iodine atom. A chlorine atom and a bromine atom are preferable, and a chlorine atom is particularly preferable.
*は不斉炭素原子を表し、立体配置が Sであることが好ましい。  * Represents an asymmetric carbon atom, and the configuration is preferably S.
* は不斉炭素原子であり、その立体配置は(2R, 3R)あるいは(2S, 3S)であること * Is an asymmetric carbon atom and its configuration is (2R, 3R) or (2S, 3S)
2 2
を表し、好ましくは(2S, 3S)体である。  And preferably (2S, 3S).
なお、化合物(5)は、対応するベンゾィル酢酸エステル誘導体を、塩化スルフリル等 のクロル化剤で処理してクロルイ匕することにより製造することができる。 [0035] まず、化合物(6)と化合物(7)の選択にっ 、て説明する。化合物(6)を塩基で処理し 環化反応を行うと、 2位の立体配置によらずトランス型グリシド酸誘導体を生成するこ とが知られている(Tetrahedron 1995, 6, 2211を参照)。すなわち、 2位の立体 配置にかかわらず、化合物(1)を得ることができるため、化合物(6)と化合物(7)のう ちどちらを選択してもよいが、より高い選択性において環化反応を行うためには、 2, 3位の立体配置が特定された化合物(7)を選択することが好ま 、。 Compound (5) can be produced by treating the corresponding benzoyl acetate derivative with a chlorinating agent such as sulfuryl chloride and chlorinating. [0035] First, the selection of the compound (6) and the compound (7) will be described. It is known that when compound (6) is treated with a base and subjected to a cyclization reaction, a trans-type glycidic acid derivative is produced regardless of the configuration at the 2-position (see Tetrahedron 1995, 6, 2211). In other words, since compound (1) can be obtained regardless of the configuration at the 2-position, either compound (6) or compound (7) may be selected, but cyclization is possible with higher selectivity. In order to carry out the reaction, it is preferable to select the compound (7) in which the configuration at the 2- and 3-positions is specified.
[0036] 化合物(5)を不斉還元して化合物(6)又は(7)を得る方法としては、化合物(6)又は 化合物(7)を高選択的に与える方法であれば特に限定されないが、光学活性化合 物によって修飾されたヒドリド還元剤を用いて還元する方法;不斉遷移金属触媒存在 下に水素化する方法;不斉遷移金属触媒存在下に水素移動型で還元する方法;微 生物、或いは微生物由来の酵素を用いて還元する方法等が挙げられる。工業的に 実施するには、微生物由来の酵素を用いて還元する方法が好ましい。  [0036] The method for obtaining compound (6) or (7) by asymmetric reduction of compound (5) is not particularly limited as long as it provides compound (6) or compound (7) with high selectivity. Reduction using a hydride reducing agent modified with an optically active compound; Method of hydrogenation in the presence of an asymmetric transition metal catalyst; Method of reduction in a hydrogen transfer type in the presence of an asymmetric transition metal catalyst; Alternatively, a reduction method using an enzyme derived from a microorganism can be used. For industrial implementation, a reduction method using an enzyme derived from a microorganism is preferred.
以下に、例えば化合物(5)のカルボ二ル基を立体選択的に還元する能力を有する 酵素源の存在下、化合物(5)を立体選択的に還元することにより、化合物(7)を得る 方法について説明する。  Hereinafter, for example, a compound (7) is obtained by stereoselectively reducing the compound (5) in the presence of an enzyme source having the ability to stereoselectively reduce the carbonyl group of the compound (5). Will be described.
[0037] ここで、「酵素源」とは、上記還元活性を有する酵素自体はもちろんのこと、上記還元 活性を有する微生物の培養物及びその処理物も含まれる。「微生物の培養物」とは、 菌体を含む培養液あるいは培養菌体を意味し、また、その処理物であってもよい。「 その処理物」とは、例えば、粗抽出液、凍結乾燥菌体、アセトン乾燥菌体、又はそれ ら菌体の破砕物等を意味する。さらに上記酵素源は、公知の手段で固定化して、固 定ィ匕酵素又は固定ィ匕菌体として用いることもできる。固定ィ匕は、当業者に周知の方 法 (例えば架橋法、物理的吸着法、包括法等)で行うことができる。  [0037] Here, the "enzyme source" includes not only the enzyme having the reducing activity itself, but also a culture of microorganisms having the reducing activity and processed products thereof. The “microorganism culture” means a culture solution or culture containing cells, or a processed product thereof. The “processed product” means, for example, a crude extract, freeze-dried cells, acetone-dried cells, or a crushed product of these cells. Furthermore, the above enzyme source can be immobilized by known means and used as a fixed enzyme or a fixed bacterial cell. The fixation can be performed by a method well known to those skilled in the art (for example, a crosslinking method, a physical adsorption method, a comprehensive method, etc.).
[0038] 本発明において、化合物(5)のカルボ二ル基を 3S選択的に還元する能力を有する 酵素源としては、デバリオマイセス (Debarvomvces)属、ピキア(Pichia)属、ァシデ ィフイリゥム (Acidiphilium)属、デボシァ(Devosia)属、ミクロパクテリゥム(Microba cterium) fe、ミクロコッカス (Micrococcus) 、才クロノくクトフム (Ochrobactrum) 属、ォエルスコビア (Qerskovia)属、バエ二バチルス (Paenibacillus)属、シユード モナス (Pseudomonas.)属に属する微生物由来の酵素源が挙げられる。 [0039] このうち、化合物(5)のカルボ二ル基を(2S, 3S)選択的に還元する能力を有する酵 素源としては、デバリオマイセス (Debarvomvces)属、ピキア(Pichia)属、ァシディ フイリゥム(Acidinhilium)属、デボシァ (Devosia)鼠、ミクロパクテリゥム(Microbac terium)属、ミクロコッカス (Micrococcus)属、才クロノくクトラム (Ochrobactrum)凰 、ォエルスコビア (Qerskovia)属、バエ二バチルス (Paenibacillus)属、シユードモ ナス (Pseudomonas)属に属する微生物由来の酵素源が举げられる [0038] In the present invention, the enzyme source having the ability to selectively reduce the carbonyl group of compound (5) by 3S includes the genus Debarvomvces, the genus Pichia, the genus Acidiphilium, Devosia genus, Microba cterium fe, Micrococcus, Ochrobactrum genus, Qerskovia genus, Paenibacillus genus, Pseudomonas. And enzyme sources derived from microorganisms belonging to the genus. [0039] Among them, the enzyme sources having the ability to selectively reduce (2S, 3S) the carbonyl group of compound (5) include the genus Debarvomvces, the genus Pichia, the assidy filyum ( Acidinhilium), Devosia 鼠, Microbac terium genus, Micrococcus genus, Ochrobactrum 、, Qerskovia genus, Paenibacillus genus, Enzyme source derived from microorganism belonging to the genus Pseudomonas is bald
[0040] 好ましい酵素源として、より具体的には、キャンディダ'ソラ- (^ did^ solani)、キ ヤンデイダ .テヌイス (Candida tenuis)、キャンディダ .ウテイリス (Candida utilis) 、ァノ リオマイセス ·ポリモノレファス(Debarvomvces polvmorphus)、テノ リオマイ セス .口べノレトシァェ (Debarvomvces robertsiae)、ピキア .ボビス (Pichia bovis )、ァシディフィリウム ·クリプタム(Acidinhilium crvptum)、ァルスロバクタ ~ ·クリス タロポイエテス (Arthrobacter crvstallopoietes)、ァノレスロノくクタ一 .ニコチアナ ェ , Arthrobacter nicotianae)、ァホンァ ·リホノフヒ、、ナ (Devosia ribofiavma 、 ミクロノくクテリゥム .ァノレボレセンス (Microbacterium arborescens)、ミクロコッカス 'ノレテウス(Micrococcus luteus)、ォクロノくクトラム ·スピーシーズ (Ochrobactru m SO. )、ォエルスコビア 'ツルバタ(Oerskovia turbata) .バエ-バチルス 'アル ヘイ (Paenibacillus alvei)、ンュ, ~~トモナス ·プアイタ (Pseudomonas putitda 、 シユードモナス'ストウトゼリ (Pseudomonas stutzeri)、ストレプトマイセス 'カカオィ サフスヒ ~~、ノ' ~~ズ ,ソェンンス (atreptomvces cacaoi subsp. asoensis)、 ストレプトマイセス ·コエレセンス (Streptomvces coelescens)、ストレプトマイセス · ハイドロゲナンス (Streptomvces hvdrogenans)等の微生物由来の酵素源が举 げられる。 [0040] Preferable enzyme sources are, specifically, Candida tenuis, Candida tenuis, Candida utilis, Anrio Riomyces polymonore. Fas (Debarvomvces polvmorphus), Tenorio Myces. Orbenoretoshae (Debarvomvces robertsiae), Pichia bovis, Acidinhilium crvptum, Arsrobacta ~ Cris Talopoi tes Arthrobacter nicotianae), Ahona Lihonovhi, Na (Devosia ribofiavma, Microno arborescens, Micrococcus luteus, Micrococcus luteus Oerskovia 'Oerskovia Bae-Bacillus' Paenibacillus alvei, Nyu , ~~ Tomonas Puita (Pseudomonas putitda, Pseudomonas stutzeri), Streptomyces' Kakaoi Safsuhi ~~, No '~~ asreptomvces cacaoi subsp. asoensis), Streptomyces coelescens, Streptomices hydrogenase (Streptomvces hvdrogenans) and other sources of microorganisms.
[0041] 化合物(5)のカルボ二ル基を 3R選択的に還元する能力を有する酵素源としては、ブ レツタノマイセス(Brettanomvces)属、デノ リオマイセス(Debarvomvces)属、ハン セ-ァスポラ (Hanseniaspora)属、ィサチェンキア (Issatchenkia)属、タノレイべロマ イセス (Kluweromvces)属、メックニコウイァ (Metschnikowia)属、ォガタエア gataea)属、パチソレン(Pachvsolen)属、ピキア (Pichia)属、サッカロマイコプシス (¾accharomvcopsis) ンゾサッカロマ セス(Scnizosaccharomyces)為、トル ラスポラ(TorulasOora)属、ウイリオプシス (Williopsis)属、コリネパクテリゥム(Corv nebacterium)属、デボシァ (Devosia)属、ストレプトマイセス (Streptomvces 属、 オークサノレスロン(Auxarthron)属、コリオラス(Coriolus)属、クリニペリス(Crinipel )属、ミロセシウム (Mvrothecium)属、パヌス(Panus)属、ファネロカエテ (Phane rochaete)属、プレクトスファエレラ (Plectosphaerella)属、アンべロプシス (Umbel opsis)属、ベルテイシリゥム (Verticillium)属に属する微生物由来の酵素源が举げ られる。 [0041] The enzyme source capable of 3R-selectively reducing the carbonyl group of compound (5) includes the genus Brettanomvces, the genus Debarvomvces, and the genus Hanseniaspora. , Issatchenkia genus, Tanorebero genus Kluweromvces genus, Metschnikowia genus, Ogataa gataea genus, Pachvsolen genus, Pichia genus, Saccharomycocium osaccharses Therefore, Toru Genus TorulasOora, genus Williamopsis, genus Cornepacteria, genus Devosia, genus Streptomvces, genus Auxarthron, genus Coriolus, The genus Crinipel, the genus Mvrothecium, the genus Panus, the genus Phane rochaete, the genus Plectosphaerella, the genus Umbel opsis, the genus Verticillium Sources of microorganism-derived enzymes can be raised.
[0042] このうち、化合物(5)のカルボ二ル基を(2R, 3R)選択的に還元する能力を有する酵 素源としては、ブレツタノマイセス(Brettanomvces)属、デノ リ才マイセス(Debarvo mvces)属、ノヽンセニァスポラ (Hanseniaspora)属、ィサチェンキア (Issatchenkia )属、タノレイべロマイセス (Kluweromvces)属、メックニコウイァ (Metschnikowia) 属、パチソレン(Pachvsolen)属、ピキア (Pichia)属、シゾサッカロマイセス(Schizo saccharomvces)属、トノレラスポラ(Torulasnora)属、ウイリオプシス (Williopsis)属 、コリネパクテリゥム(Corvnebacterium)属、デボシァ(Devosia)属、オークサルス ロン(Auxarthron)属、コリォラス(Coriolus)属、パヌス(Panus)属、ファネロカエテ (Phanerochaete)属、プレクトスファエレラ(Plectosphaerella)属、ベノレティシリゥ ム (Verticillium)属に属する微生物由来の酵素源が挙げられる。  [0042] Among these, as an enzyme source capable of (2R, 3R) selective reduction of the carbonyl group of the compound (5), the genus Brettanomvces, Denori myces ( Genus Debarvo mvces, genus Hanseniaspora, genus Issatchenkia, genus Tanoreberomyces (Kluweromvces), genus Metschnikowia, genus Pachvsolen, genus Pichiazo ), Torulasnora, Willopsis, Corvnebacterium, Devosia, Auxarthron, Coriolus, Panus, Fanerocate There are enzyme sources derived from microorganisms belonging to the genus (Phanerochaete), Plectosphaerella, and Verticillium. I can get lost.
[0043] 好ましい酵素源として、より具体的には、ブレツタノマイセス*カステルシアヌス (Eisli anomvces custersianus)、キャンアイタヽカンタレリー (Candida cantarellii)、 ヤンディダ ·グイリエノレモンディ一 (Candida guilliermondii)、キャンディダ ·ノヽェム 口-一 (Candida haemulonii) , = ヤンテイタ ·ノヽフノレコサ (Candida pararugosa )、キャンディダ ·ピ- (Candida pini)、キャンディダ ·クエルシツルサ (Candida QU ercitrusa)、キャンディダ-ステラタ(Candida stellata)、タリプトコッカス 'テレウス( Cryptococcus terreus 、ァノ リオマイセス ·マフムス (Debarvomvces maramu s) ^テノ リオマイセス ·ネノ レンシス (Debarvomvces nepalensis)、ノヽンセニァス ボラ ·ノ レビェンシス(Hanseniaspora valbvensis) .ィサチェンキア ·テリコラ(Issa tchenkia terricola)、クノレイベロマイセス ·ポリスホフス (Kluweromvces polvsp orus)、クノレ ベロマイセス ·サ1 ~~モトレフンス (Kluyveromyces thermotolerans) 、メックニコウイァ .グノレェシー (Metschnikowia gruessii) ,ノ チソレン'タンノフイラ ス (Pachvsolen tannophilus)、ピキア .アングスタ (Pichia angusta)、ピキア .フ インランディ力(Pichia finlandica)、ピキア ·ヘンリシ一(Pichia henricii)、ピキア •ホノレスティー (Pichia holstii)、サッカロマイセス ·ノ ャヌス (Saccharomvces ba vanus)、サッカロマイセス'ノ ストリアヌス(Saccharomvces pastorianus)、シゾサ ッカロマイセス · ンべ (Schizosaccharomvces pombe 、トノレフスホフ .ァノレブノレ ェキー(Torulaspora delbrueckii)、ウイリオプシス,サツルナス バー サツルナス (Williopsis saturnus var. saturnus)、コリ不ノ クテリゥム 'フラベセンス (Cory nebacterium flavescens)、コリネノ クァリゥム 'グノレタ カム (Corvnebacterium glutamicum)、デボシァ ·リボフラビナ (Devosia riboflavina)、オークサノレスロン' サクステリ (Auxarthron thaxteri)、コリォラス 'コンソノレス (Coriolus consors)、 ノ ヌス ·ラコムテイ (Panus lacomtei)、ファネロカエテ ·タリソスポリゥム (Phaneroch aete chrvsosporium 、プレクトスファェレフ ·ククメリナ (Plectosphaerella cucu merina 、及ぴべノレティシリウム.二べォストラトサム (Verticillium niveostratosu m)等の微生物由来の酵素源が挙げられる。 [0043] Preferred enzyme sources include, more specifically, Brettanomyces * castelcianus (Eisli anomvces custersianus), Candida cantarellii, Candida guilliermondii, candy Candida haemulonii, = Candida pararugosa, Candida pini, Candida QU ercitrusa, Candida stellata ), Taryptococcus terreus (Cryptococcus terreus, Debarvomvces maramu s) ), Kunore Belomyces Police Hofs (K luweromvces polvsp orus), Kunore Beromaisesu Sa 1 ~ ~ Motorefunsu (Kluyveromyces thermotolerans) , Metschnikowia gruessii, Pachivhenen (Pachvsolen tannophilus), Pichia angusta, Pichia finlandica, Pichia henricii, Pichia henricii (Pichia holstii), Saccharomyces no Janus (Saccharomvces ba vanus), Saccharomyces no Strianes (Saccharomvces pastorianus), Schizosaccharomvces pombe, Tonorevus bru sul var. saturnus), Cory nebacterium flavumens (Cory nebacterium flavescens), Coryneno qualum 'Corvnebacterium glutamicum, Devosia riboflavina, Oksanolesulon' Saxteri (Auxarthron thaxteri), Colliolus consorres (Coriolus consors), Nonus lacomtei (Phaneroch aete chrvsosporium, Plectosfarev cucuerer pi An enzyme source derived from microorganisms such as Verticillium niveostratosum can be mentioned.
[0044] 上記還元酵素の由来となる微生物としては、野生株又は変異株のいずれでもよい。 [0044] The microorganism from which the reductase is derived may be either a wild strain or a mutant strain.
また、細胞融合又は遺伝子操作等の遺伝学的手法により誘導される微生物も用いる ことができる。さらには、これら微生物由来の還元酵素を生産する能力を有する組換 え微生物であってもよい。該酵素を生産する組換え微生物は、例えば、これらの酵素 を単離及び Z又は精製して酵素のアミノ酸配列の一部又は全部を決定する工程、こ のアミノ酸配列に基づ 、て酵素をコードする DNA配列を得る工程、この DNAを他の 微生物に導入して組換え微生物を得る工程、及びこの組換え微生物を培養して、本 酵素を得る工程を含有する方法により得ることができる (WO98Z35025号公報参 照)。  In addition, microorganisms induced by genetic techniques such as cell fusion or gene manipulation can also be used. Furthermore, a recombinant microorganism having the ability to produce a reductase derived from these microorganisms may be used. The recombinant microorganism producing the enzyme encodes the enzyme based on, for example, a step of isolating and Z or purifying the enzyme to determine part or all of the amino acid sequence of the enzyme. (WO98Z35025) comprising a step of obtaining a DNA sequence to be obtained, a step of introducing the DNA into another microorganism to obtain a recombinant microorganism, and a step of culturing the recombinant microorganism to obtain the enzyme (WO98Z35025). No. gazette).
[0045] 上記のような組換え微生物としては、上記還元酵素をコードする DNAを有するベクタ 一で形質転換された形質転換微生物が挙げられる。また、宿主微生物としては、大 腸菌 (Escherichia coli)が好まし!/ヽ。より好ましくは、上記デボシァ ·リボフラビナ (β evosia riboflavina) NBRC 13584株由来のカルボ-ル還元酵素遺伝子(WO20 04Z027055号公報参照)を有するベクターで形質転換された、 Escherichia coli HB101 (pNTDR)、受託番号 FERM BP— 08457 (平成 14年 5月 29日(原寄託 日)、 日本国茨城県つくば巿東 1丁目 1番地 1 中央第 6 独立行政法人産業技術総 合研究所 特許生物寄託センターに国際寄託されている)等が挙げられる。 [0045] Examples of the recombinant microorganism as described above include a transformed microorganism transformed with a vector having a DNA encoding the reductase. As the host microorganism, Escherichia coli is preferred! / !. More preferably, the carbocyclic reductase gene (WO20) derived from the above-mentioned β evosia riboflavina NBRC 13584 strain Escherichia coli HB101 (pNTDR), accession number FERM BP— 08457 (May 29, 2002 (original deposit day), 1-chome Tsukuba, Ibaraki, Japan) No. 1 1 Central 6th National Institute of Advanced Industrial Science and Technology (AIST), which is internationally deposited at the Patent Biological Deposit Center).
なお、(2S, 3S)選択的な酵素源としては、デボシァ 'リボフラビナ
Figure imgf000012_0001
ribofla vina)由来のカルボニル還元酵素で形質転換された組換え大腸菌の培養物又はそ の処理物がより好ましい。
In addition, (2S, 3S) as a selective enzyme source, Devosia 'riboflaviner
Figure imgf000012_0001
A recombinant Escherichia coli culture transformed with a carbonyl reductase derived from riboflavina or a treated product thereof is more preferred.
[0046] 酵素源として用いる微生物のための培養培地は、その微生物が増殖し得るものであ る限り特に限定されない。例えば、炭素源として、グルコース、シユークロース等の糖 質、エタノール、グリセロール等のアルコール類、ォレイン酸、ステアリン酸等の脂肪 酸及びそのエステル類、菜種油、大豆油等の油類;窒素源として、硫酸アンモ-ゥム 、硝酸ナトリウム、ペプトン、カザミノ酸、コーンスティープリカ一、ふすま、酵母エキス 等;無機塩類として、硫酸マグネシウム、塩ィ匕ナトリウム、炭酸カルシウム、燐酸 1水素 カリウム、燐酸 2水素カリウム等;他の栄養源として、麦芽エキス、肉エキス等を含有す る通常の液体培地を使用することができる。培養は好気的に行い、通常、培養時間 は 1〜5日間程度、培地の pHは 3〜9、培養温度は 10〜50°Cで行うことができる。 [0046] The culture medium for the microorganism used as the enzyme source is not particularly limited as long as the microorganism can grow. For example, as a carbon source, carbohydrates such as glucose and sucrose, alcohols such as ethanol and glycerol, fatty acids such as oleic acid and stearic acid and esters thereof, oils such as rapeseed oil and soybean oil; sulfuric acid as a nitrogen source Ammonium, sodium nitrate, peptone, casamino acid, corn steep liquor, bran, yeast extract, etc .; inorganic salts such as magnesium sulfate, sodium chloride sodium, calcium carbonate, potassium monohydrogen phosphate, potassium dihydrogen phosphate, etc .; As another nutrient source, a normal liquid medium containing a malt extract, meat extract or the like can be used. Cultivation is carried out aerobically. Usually, the cultivation time is about 1 to 5 days, the pH of the medium is 3 to 9, and the cultivation temperature is 10 to 50 ° C.
[0047] 本発明において、化合物(5)のカルボニル基の還元反応は、適当な溶媒に、基質と なる化合物(5)、補酵素 NAD (P) H及び前記微生物の培養物又はその処理物等を 添加し、 PH調整下、攪拌すること〖こより行うことができる。 [0047] In the present invention, the reduction reaction of the carbonyl group of compound (5) is carried out by using, as a suitable solvent, compound (5) serving as a substrate, coenzyme NAD (P) H, a culture of the microorganism or a treated product thereof, etc. was added, under P H adjustment can be performed 〖Koyori stirring.
[0048] 反応条件は、用いる酵素、微生物又はその処理物、基質濃度等によって異なるが、 通常、基質濃度は、約 0. 1〜: L00重量%、好ましくは 1〜60重量%;補酵素 NAD (P ) Hは、基質に対して 0. 0001〜100モル0 /0、好ましくは 0. 001〜0. 1モル0 /0 ;反応 温度は 10〜60°C、好ましくは 20〜50°C ;反応の pHは 4〜9、好ましくは 5〜8;反応 時間は 1〜120時間、好ましくは 1〜72時間で、反応を行うことができる。また、反応 には有機系溶媒を混合して用いてもよい。有機系溶媒としては、例えば、トルエン、 酢酸ェチル、酢酸 n—ブチル、へキサン、イソプロパノール、メタノール、ジイソプロピ ルエーテル、アセトン、ジメチルスルホキシド等が挙げられる。基質は、一括又は連続 的に添加して行うことができる。また、反応は、ノ ツチ方式又は連続方式で行うことが できる。 [0048] The reaction conditions vary depending on the enzyme, microorganism or treated product thereof, substrate concentration, etc., but the substrate concentration is usually about 0.1 to: L00% by weight, preferably 1 to 60% by weight; coenzyme NAD (P) H is 0.1 relative to the substrate 0001 to 100 mole 0/0, preferably from 0.001 to 0 1 mole 0/0;. the reaction temperature is 10 to 60 ° C, preferably 20 to 50 ° C The pH of the reaction is 4 to 9, preferably 5 to 8; the reaction time is 1 to 120 hours, preferably 1 to 72 hours. In the reaction, an organic solvent may be mixed and used. Examples of the organic solvent include toluene, ethyl acetate, n -butyl acetate, hexane, isopropanol, methanol, diisopropyl ether, acetone, dimethyl sulfoxide and the like. The substrate can be added by batch or continuous addition. In addition, the reaction can be performed in a notched manner or a continuous manner. it can.
[0049] 本発明の還元工程において、一般に用いられる補酵素 NAD (P) H再生系を組み合 わせて用いることにより、高価な補酵素の使用量を大幅に減少させることができる。代 表的な NAD (P) H再生系としては、例えば、グルコース脱水素酵素及びグルコース を用いる方法が挙げられる。  [0049] By using a commonly used coenzyme NAD (P) H regeneration system in the reduction step of the present invention, the amount of expensive coenzyme used can be greatly reduced. A typical NAD (P) H regeneration system includes, for example, a method using glucose dehydrogenase and glucose.
還元酵素遺伝子及びこの酵素が依存する補酵素を再生する能力を有する酵素 (例 えばグルコース脱水素酵素)の遺伝子を同一宿主微生物内に導入した形質転換微 生物、すなわち、本発明の還元酵素をコードする DNA及び該酵素が依存する補酵 素を再生する能力を有する酵素 (例えばグルコース脱水素酵素)の遺伝子を同一宿 主微生物内に導入した形質転換微生物の培養物又はその処理物等を用いて、上記 と同様の反応を行えば、別途に補酵素の再生に必要な酵素源を調整する必要がな V、ため、より低コストで化合物(7)を製造することができる。  A transformed microorganism in which a gene of a reductase gene and an enzyme (for example, glucose dehydrogenase) capable of regenerating a coenzyme on which the enzyme depends is introduced into the same host microorganism, that is, encodes the reductase of the present invention. A transformant microorganism culture in which a gene of an enzyme having an ability to regenerate a DNA and a coenzyme on which the enzyme depends (for example, glucose dehydrogenase) is introduced into the same host microorganism or a processed product thereof, etc. If the reaction similar to the above is performed, it is necessary to separately adjust the enzyme source necessary for the regeneration of the coenzyme V, and therefore the compound (7) can be produced at a lower cost.
[0050] 上記のような形質転換微生物としては、上記還元酵素をコードする DNA及び該酵素 が依存する補酵素を再生する能力を有する酵素をコードする DNAの両者を有する プラスミドで形質転換された形質転換微生物が挙げられる。ここで、補酵素を再生す る能力を有する酵素としては、グルコース脱水素酵素が好ましぐバシラス'メガテリゥ ム (Bacillus megaterium)由来のグルコース脱水素酵素が好ましい。また、宿主微 生物としては、大腸菌(Escherichia i)が好ましい。そのような好ましい形質転換 微生物として、デボシァ ·リボフラビナ (Devosia riboflavina)由来のカルボ-ル還 元酵素をコードする DNAと、バシラス ·メガテリゥム(Bacillus megaterium)由来の グルコース脱水素酵素をコードする DNAの両者を有するプラスミドで形質転換され た形質転換微生物である、 Escherichia coli HB101 (pNTDRGl)、受託番号 F ERM BP— 08458 (平成 14年 5月 29日(原寄託日)、日本国茨城県つくば巿東 1 丁目 1番地 1 中央第 6 独立行政法人産業技術総合研究所 特許生物寄託センタ 一に国際寄託されている)等が挙げられる。  [0050] The transformed microorganism as described above includes a trait transformed with a plasmid having both the DNA encoding the reductase and the DNA encoding the enzyme having the ability to regenerate the coenzyme on which the enzyme depends. Examples include converted microorganisms. Here, as the enzyme having the ability to regenerate the coenzyme, glucose dehydrogenase derived from Bacillus megaterium, which is preferable to glucose dehydrogenase, is preferable. The host microorganism is preferably Escherichia i. Such preferred transforming microorganisms include both DNA encoding a carboxyreductase derived from Devosia riboflavina and DNA encoding a glucose dehydrogenase derived from Bacillus megaterium. Escherichia coli HB101 (pNTDRGl), accession number F ERM BP—08458 (May 29, 2002 (original deposit date), 1-chome Tsukuba, Ibaraki, Japan) No. 1 1 Central 6th National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center, which is internationally deposited).
[0051] 形質転換微生物の培養は、それらが増殖する限り、通常の、炭素源、窒素源、無機 塩類、有機栄養素等を含む液体栄養培地を用いて実施できる。また、形質転換微生 物中の補酵素再生能を有する酵素の活性は、常法により測定することができる。例え ば、グルコース脱水素酵素の活性は、 1Mのトリス塩酸緩衝液 (pH8. 0)に、 100m Mのグルコース、 2mMの補酵素 NADP又は NAD +、及び酵素を添カ卩し、 25°Cで 1 分間反応させた際の、波長 340nmにおける吸光度の増加速度力も算出できる。 なお、本発明の還元工程を、補酵素再生系と組み合わせて実施する、又は、酵素源 として上記形質転換微生物の培養物もしくはその処理物を用いる場合は、補酵素と して、より安価な酸化型の NAD (P)を添加して反応を行うことも可能である。 [0051] Culture of transformed microorganisms can be performed using a normal liquid nutrient medium containing a carbon source, a nitrogen source, inorganic salts, organic nutrients and the like as long as they grow. In addition, the activity of an enzyme having a coenzyme regeneration ability in a transformed microorganism can be measured by a conventional method. example For example, the activity of glucose dehydrogenase is determined by adding 100 mM glucose, 2 mM coenzyme NADP or NAD +, and enzyme to 1 M Tris-HCl buffer (pH 8.0) at 25 ° C. It is also possible to calculate the rate of increase in absorbance at a wavelength of 340 nm when the reaction is performed for a minute. When the reduction process of the present invention is carried out in combination with a coenzyme regeneration system, or when a culture or treated product of the above-mentioned transformed microorganism is used as the enzyme source, a cheaper oxidation is performed as a coenzyme. It is also possible to carry out the reaction by adding a type of NAD (P).
[0052] 還元反応で生じた化合物(7)は、常法により精製することが出来る。例えば、反応液 を遠心分離、濾過等の処理を施して菌体等の懸濁物を除去し、次いで酢酸ェチル、 トルエン等の有機溶媒で抽出し、有機溶媒を減圧下に除去し、そして減圧蒸留又は クロマトグラフィー等の処理を行う事により、精製することができる。  [0052] The compound (7) produced by the reduction reaction can be purified by a conventional method. For example, the reaction solution is subjected to treatment such as centrifugation and filtration to remove suspensions such as bacterial cells, followed by extraction with an organic solvent such as ethyl acetate and toluene, and the organic solvent is removed under reduced pressure. It can be purified by a treatment such as distillation or chromatography.
[0053] 化合物(7)の環化反応は、適当な溶媒中、塩基で処理することにより行うことができる 用いる塩基としては、例えば、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウム t ーブトキシド、リチウムメトキシド、リチウムエトキシド、リチウム—tーブトキシド、カリウム メトキシド、カリウムエトキシド、カリウム— t—ブトキシド等のアルカリ金属アルコキシド; 水素化リチウム、水素化ナトリウム、水素化カリウム等の水素化アルカリ金属;水素化 カルシウム等の水素化アルカリ土類金属;水酸ィ匕ナトリウム、水酸ィ匕カリウム、水酸ィ匕 セシウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のァ ルカリ土類金属水酸ィ匕物;炭酸リチウム、炭酸カリウム、炭酸ナトリウム等のアルカリ金 属炭酸塩;炭酸水素リチウム、炭酸水素カリウム、炭酸水素ナトリウム等のアルカリ金 属炭酸水素塩を挙げることができる。上記の塩基のうち、好ましくはアルカリ金属アル コキシドであり、ナトリウムエトキシドが特に好ましい。  The cyclization reaction of compound (7) can be carried out by treating with a base in an appropriate solvent. Examples of the base used include sodium methoxide, sodium ethoxide, sodium t-butoxide, lithium methoxide. Alkali metal alkoxides such as lithium ethoxide, lithium tert-butoxide, potassium methoxide, potassium ethoxide, potassium tert-butoxide; alkali hydrides such as lithium hydride, sodium hydride, potassium hydride; calcium hydride, etc. Alkali earth metal hydrides; alkali metal hydroxides such as sodium hydroxide, potassium potassium and hydroxide cesium; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide Porcelain; alkaline metal charcoal such as lithium carbonate, potassium carbonate, sodium carbonate Salts; lithium hydrogen carbonate, potassium hydrogen carbonate, alkali metals bicarbonates sodium hydrogen carbonate and the like. Of the above-mentioned bases, alkali metal alkoxide is preferable, and sodium ethoxide is particularly preferable.
塩基の使用量は、反応が円滑に進行すればよぐ特に限定されるものではないが、 化合物(7)に対して 1〜5モル倍量が好ましぐ経済的観点から 1〜2モル倍量が特 に好ましい。  The amount of the base used is not particularly limited as long as the reaction proceeds smoothly, but 1 to 2 mol times is preferred from the economical viewpoint that 1 to 5 mol times the amount of compound (7) is preferred. The amount is particularly preferred.
[0054] 使用する溶媒としては、特に限定されるものではないが、例えばメタノール、エタノー ル等のアルコール類;ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性 極性溶媒;テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類等が挙げられ、好ま しくはアルコール類であり、エタノールが特に好まし!/、。 [0054] The solvent to be used is not particularly limited. For example, alcohols such as methanol and ethanol; aprotic polar solvents such as dimethyl sulfoxide and dimethylformamide; ethers such as tetrahydrofuran and 1,4 dioxane And the like Alcohols are preferred, especially ethanol! /.
環化の反応温度は、特に限定されるものではないが、好ましくは— 20〜50°Cであり 、より好ましくは 0〜30°Cである。反応時間は、特に限定されるものではないが、一般 的には 5〜60分間である。  The reaction temperature for cyclization is not particularly limited, but is preferably −20 to 50 ° C., more preferably 0 to 30 ° C. The reaction time is not particularly limited, but is generally 5 to 60 minutes.
[0055] 続くエステル加水分解は、通常の方法 (例えば実験科学講座 22, 日本化学会編,丸 善株式会社を参照)において行えばよぐ特に限定されるものではない。例えば、酸 による方法及びアルカリによる方法のどちらでも可能であるが、化合物(7)の環化反 応に過剰のナトリウムエトキシドを用いた場合には、水をカ卩えることで、系中に残存す るナトリウムエトキシドが水酸ィ匕ナトリウムとなり、そのまま加水分解反応を行うことがで きる。また、残存するナトリウムエトキシドの量が少ない場合には、必要なアルカリを追 加添カ卩してやればよい。用いるアルカリの例としては、化合物(7)の環化反応におい て挙げた塩基が挙げられ、好ましくは水酸ィ匕ナトリウムである。 [0055] Subsequent ester hydrolysis is not particularly limited as long as it is carried out in a usual manner (see, for example, Experimental Science Course 22, The Chemical Society of Japan, Maruzen Co., Ltd.). For example, either an acid method or an alkali method is possible, but when excess sodium ethoxide is used for the cyclization reaction of compound (7), water can be added to the system. The remaining sodium ethoxide becomes sodium hydroxide and can be hydrolyzed as it is. Further, when the amount of remaining sodium ethoxide is small, a necessary alkali may be added and added. Examples of the alkali to be used include the bases mentioned in the cyclization reaction of the compound (7), preferably sodium hydroxide.
酸を用いて加水分解する場合、酸としては、例えば、酢酸、塩酸、臭化水素酸、硫酸 、硝酸、 p トルエンスルホン酸等が挙げられる。  When hydrolyzing using an acid, examples of the acid include acetic acid, hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, p-toluenesulfonic acid, and the like.
エステル加水分解の反応温度は、特に限定されるものではないが、好ましくは 20 〜50°Cであり、より好ましくは 0〜30°Cである。反応時間は、特に限定されるものでは ないが、一般的には 5〜60分間である。  The reaction temperature for ester hydrolysis is not particularly limited, but is preferably 20 to 50 ° C, more preferably 0 to 30 ° C. The reaction time is not particularly limited, but is generally 5 to 60 minutes.
なお、化合物 (6)を用いた場合も、化合物 (7)の場合と同様にして環化反応を行うこ とがでさる。  When compound (6) is used, the cyclization reaction can be carried out in the same manner as in compound (7).
[0056] 力べして得られた化合物(1)は、アンモニアとの反応により、一般式(2);  [0056] The compound (1) obtained by force is reacted with ammonia to give a general formula (2);
[0057] [化 10]
Figure imgf000015_0001
[0057] [Chemical 10]
Figure imgf000015_0001
[0058] で表される化合物(以下、化合物(2)と 、う)に変換される。  [0058] (hereinafter referred to as compound (2)).
ここで、 R1及び R2は、前記のとおりである。 Here, R 1 and R 2 are as described above.
R2が水素原子である場合には、式 (2)中のアミノ基が、適当な酸との塩を形成してい てもよい。塩を形成する酸としては、特に限定されるものではないが、例えば蟻酸、酢 酸、塩酸、硫酸、硝酸、トリフルォロ酢酸、メタンスルホン酸、トリフルォロメタンスルホ ン酸、 p トルエンスルホン酸等が挙げられ、好ましくは塩酸、硫酸、メタンスルホン酸 である。 When R 2 is a hydrogen atom, the amino group in formula (2) may form a salt with an appropriate acid. The acid that forms the salt is not particularly limited. For example, formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfone Examples include acid, p-toluenesulfonic acid, and the like, preferably hydrochloric acid, sulfuric acid, and methanesulfonic acid.
* は前記と同じである力 好ましくは(2R, 3R)体である。原料として(2R, 3S)体の * Is the same force as described above, preferably (2R, 3R). (2R, 3S) body as raw material
2 2
化合物(1)を用いた場合は(2R, 3R)体の化合物(2)が、 (2S, 3R)体の化合物(1) を用いた場合は(2S, 3S)体の化合物(2)が得られる。  When the compound (1) is used, the (2R, 3R) compound (2) is used. When the (2S, 3R) compound (1) is used, the (2S, 3S) compound (2) is used. can get.
[0059] 化合物(1)とアンモニアによるアミノ化反応により、化合物(2)に変換する工程につい て説明する。ここで用いる化合物(1)は、前述の方法で得たものでも良いし、別途取 得したものでも良い。 [0059] The step of converting the compound (1) into the compound (2) by amination reaction with ammonia will be described. The compound (1) used here may be obtained by the method described above or may be obtained separately.
本工程においては、一般式 (8);  In this step, the general formula (8);
[0060] [化 11]
Figure imgf000016_0001
[0060] [Chemical 11]
Figure imgf000016_0001
[0061] で表される位置異性体が副生成物として生成する。  [0061] The regioisomer represented by the above is generated as a by-product.
前記式 (8)で表される化合物(以下、化合物(8) t 、う)にお 、て、 R1及び R2は前述 のとおりである。 In the compound represented by the formula (8) (hereinafter referred to as compound (8) t), R 1 and R 2 are as described above.
R2が水素原子である場合には、ァミノ基が適当な酸との塩を形成していてもよい。塩 を形成する酸としては、特に限定されるものではないが、例えば蟻酸、酢酸、塩酸、 硫酸、硝酸、トリフルォロ酢酸、メタンスルホン酸、トリフルォロメタンスルホン酸、 p ト ルエンスルホン酸等が挙げられ、好ましくは塩酸、硫酸、メタンスルホン酸である。 * は前記と同じである。化合物(8)の立体配置は、生成した化合物(2)において優When R 2 is a hydrogen atom, the amino group may form a salt with an appropriate acid. The acid that forms the salt is not particularly limited, and examples include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid. Preferred are hydrochloric acid, sulfuric acid, and methanesulfonic acid. * Is the same as above. The configuration of compound (8) is superior to that of the produced compound (2).
2 2
先する立体配置と逆のものが優先して生成する。  The one opposite to the previous configuration is preferentially generated.
[0062] アミノ化反応は、有機溶媒中及び Z又は水中で行われる。有機溶媒としては、ジクロ ロメタン、クロ口ホルム、ジクロロェタン等のクロロアルカン類;ベンゼン、トルエン等の 置換ベンゼン類;ジェチルエーテル、テトラヒドロフラン、 1, 4 ジォキサン等のエー テル類;メタノール、エタノール、イソプロパノール、 tーブタノール等のアルコール類 力 選択される 1種以上の溶媒を用いることができる。 2種以上の混合溶媒を用いる 場合には、その混合比は特に限定されるものではない。化合物(2)を収率良く得るた めには、溶媒として水、又は、水と有機溶媒の混合溶媒が好ましぐさらに好ましくは 水である。 [0062] The amination reaction is carried out in an organic solvent and in Z or water. Examples of organic solvents include chloroalkanes such as dichloromethane, chloroform and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, tetrahydrofuran and 1,4 dioxane; methanol, ethanol, isopropanol, Alcohols such as t-butanol Power One or more selected solvents can be used. When two or more kinds of mixed solvents are used, the mixing ratio is not particularly limited. To obtain the compound (2) with good yield For this purpose, water or a mixed solvent of water and an organic solvent is preferable as the solvent, and water is more preferable.
[0063] アンモニアの使用量は、反応が円滑に進行し、収率良く化合物(2)が得られれば特 に限定されるものではないが、好ましくは化合物(1)に対して 1〜: LOOモル倍量であり 、位置異性体である化合物 (8)の副生を抑制し、収率良くィ匕合物(2)を得るためには 、 5〜50モル倍量であることが特に好ましい。アンモニアは、ガスとして用いてもよい し、水溶液あるいは適当な有機溶媒の溶液として用いてもょ 、。  [0063] The amount of ammonia used is not particularly limited as long as the reaction proceeds smoothly and the compound (2) is obtained in good yield, but is preferably 1 to LOO with respect to the compound (1). In order to suppress the by-product of the compound (8), which is a positional isomer, and to obtain the compound (2) with good yield, it is particularly preferably 5 to 50 mole times. . Ammonia may be used as a gas, or as an aqueous solution or a solution of an appropriate organic solvent.
[0064] 反応温度は、あまり低いと反応収率の低下もしくは反応完結までに長時間を要するこ とがあり、逆にあまり高いとィ匕合物(8)の副生が増加するだけでなぐ反応器内が高 圧となるため、工業規模での製造において現実的ではない。好ましくは 0〜: LOO°Cで あり、特に好ましくは 20〜80°Cである。反応時間は、化合物(1)の消失が確認される まで行えばよぐ一般的には 1〜36時間程度である。  [0064] If the reaction temperature is too low, it may take a long time to decrease the reaction yield or complete the reaction. Conversely, if the reaction temperature is too high, only the by-product of the compound (8) will increase. Due to the high pressure inside the reactor, it is not practical for industrial scale production. Preferably 0 to: LOO ° C, particularly preferably 20 to 80 ° C. The reaction time is generally about 1 to 36 hours as long as the disappearance of the compound (1) is confirmed.
[0065] 本反応において得られたィ匕合物(2)を晶析工程に付すことにより、化合物(8)及びそ の他の不純物を効率的に除去することができる。言うまでもなぐ要求される化合物( 2)の品質に応じて晶析工程を実施しなくとも良い。  [0065] By subjecting the compound (2) obtained in this reaction to a crystallization step, the compound (8) and other impurities can be efficiently removed. Needless to say, it is not necessary to carry out the crystallization step according to the required quality of the compound (2).
[0066] まず、化合物(1)とアンモニアとの反応後に得られた化合物(2)を晶析する方法につ いて説明する。  [0066] First, a method for crystallizing the compound (2) obtained after the reaction between the compound (1) and ammonia will be described.
晶析は、 R2がアルカリ金属、アルカリ土類金属又は窒素性塩基であり、カルボン酸塩 の形態である化合物(2); R2が水素原子である化合物(2);化合物(2)において が 水素原子で、かつアミノ基が酸との塩を形成して 、る化合物(2)の 、ずれにぉ ヽても 、実施することができる。工業的規模での製造を考えた場合、工程数が短縮でき、ま た煩雑な操作も少ないことから、 R2がアルカリ金属、アルカリ土類金属又は窒素性塩 基でありカルボン酸塩の形態である化合物(2)として、あるいは R2が水素原子である 化合物(2)として、晶析を行うことが好ましい。さらに好ましくは、 R2がアルカリ金属、 アルカリ土類金属又は窒素性塩基でありカルボン酸塩の形態である化合物(2)とし て晶析を行う場合である。 In crystallization, R 2 is an alkali metal, alkaline earth metal or nitrogenous base and is in the form of a carboxylate (2); a compound (2) in which R 2 is a hydrogen atom; Even when the compound (2) is a hydrogen atom and the amino group forms a salt with an acid, the compound (2) can be carried out. Considering production on an industrial scale, the number of processes can be shortened, and there are few complicated operations. Therefore, R 2 is an alkali metal, alkaline earth metal, or nitrogenous base and is in the form of a carboxylate. Crystallization is preferably performed as a certain compound (2) or as a compound (2) in which R 2 is a hydrogen atom. More preferably, R 2 is an alkali metal, alkaline earth metal, or nitrogenous base, and crystallization is performed as the compound (2) in the form of a carboxylate.
V、ずれの晶析にお 、ても、 1回の晶析にお 、て目的とする品質が得られな 、場合に は、 2回以上晶析を行い、品質を向上させることができる。同じ晶析方法を繰り返し行 つてもょ 、し、異なる化合物(2)の形態で晶析を行ってもよ!、。 Even in the case of crystallization of V and deviation, if the desired quality cannot be obtained in one crystallization, the crystallization can be performed twice or more to improve the quality. Repeat the same crystallization method You can crystallize in the form of a different compound (2)!
[0067] 本晶析工程では、化合物(8)で表される化合物を効率よく除去することができる。 [0067] In the crystallization step, the compound represented by the compound (8) can be efficiently removed.
晶析溶媒としては、ジクロロメタン、クロ口ホルム、ジクロロェタン等のクロロアルカン類 ;ベンゼン、トルエン等の置換ベンゼン類;ジェチルエーテル、メチルー tーブチルェ 一テル、テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類;メタノール、エタノー ル、イソプロパノール、 n—ブタノール、 sec ブタノール、 tーブタノール等のアルコ ール類;へキサン、ペンタン等のアルカン類;酢酸ェチル、酢酸イソプロピル等のエス テル類;アセトン、メチルェチルケトン等のケトン類;及び水等が挙げられる。当該晶 析は、これらから選択される 1種以上の溶媒で行うことができ、晶析を行う化合物(2) の形態に応じて最適な溶媒を選択すればょ 、。  Crystallization solvents include chloroalkanes such as dichloromethane, chloroform, and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, methyl tert-butyl ether, tetrahydrofuran, and 1,4 dioxane; methanol , Ethanol, isopropanol, n-butanol, sec butanol, t-butanol and other alcohols; hexane, pentane and other alkanes; ethyl acetate, isopropyl acetate and other esters; acetone, methyl ethyl ketone, etc. Ketones; and water. The crystallization can be performed with one or more solvents selected from these, and an optimal solvent should be selected according to the form of the compound (2) to be crystallized.
[0068] 好ましくは、一般式 (4) ; [0068] Preferably, the general formula (4);
R3OH (4) R 3 OH (4)
(R3は前記と同じ)で表されるアルコール類及び水力もなる群力も選択される 1種以上 の溶媒であり、さらに好ましくは水及びエタノールである。 (R 3 is the same as described above) and at least one solvent selected from the group power that is also hydropower, and more preferably water and ethanol.
[0069] アミノ化反応の後で、 R2がアルカリ金属、アルカリ土類金属又は窒素性塩基であり力 ルボン酸塩の形態である化合物(2)として晶析を行う方法の例として、 R2がナトリウム である場合にっ 、て説明する。 [0069] After the amination reaction, R 2 is an alkali metal, alkaline earth metal, or nitrogenous base, and an example of a method for crystallization as a compound (2) in the form of a strong rubonic acid salt is R 2 This is explained in the case where is sodium.
[0070] この場合の晶析溶媒としては、前述した溶媒群のうち、水及びアルコール類カゝら選択 される 2種以上を用いて行うことが好ましい。アルコールとしては、前記式 (4)で表さ れるアルコール類が挙げられ、より具体的には、メタノール、エタノール、イソプロパノ ール、 n—ブタノール、 sec ブタノール、 tーブタノールが挙げられる。これらの群より 選択される 2種以上のアルコールにより晶析を行ってもよいし、これらの群より選択さ れる 1種以上のアルコールと水により晶析を行うこともできる。好ましくは水とアルコー ルの組み合わせであり、特に好ましくは水とエタノールである。  [0070] As the crystallization solvent in this case, it is preferable to use two or more selected from the group of solvents described above such as water and alcohols. Examples of the alcohol include alcohols represented by the above formula (4), and more specifically, methanol, ethanol, isopropanol, n-butanol, sec butanol, and t-butanol. Crystallization may be performed with two or more alcohols selected from these groups, or may be performed with one or more alcohols selected from these groups and water. A combination of water and alcohol is preferable, and water and ethanol are particularly preferable.
[0071] 晶析は、 R2がナトリウムである化合物(2)の水溶液にエタノールをカ卩えることにより実 施できるが、前工程のアミノ化反応の溶媒が水の場合には、アンモニアを除去した後 に所定量まで反応液を濃縮し、エタノールを加えることにより実施することができる。 以下に、その方法について説明する。 [0072] アミノ化反応後にアンモニアを除去し、水濃縮を行う場合の濃縮度としては、 R2がナ トリウムである化合物(2)の濃度が 5〜50wt%の範囲が好ましぐ良好な晶析収率で R2がナトリウムである化合物(2)を取得するためには、 10〜40wt%が特に好ましい 。濃縮終了後、所定量のエタノールを加える力 エタノールの量としては、水に対して 1〜20倍重量が好ましぐ特に好ましくは 5〜 15倍重量である。晶析は、エタノールを 加えた後で所定温度まで加熱した後に、所定温度まで冷却することにより行われるが 、その温度範囲は— 20〜80°Cの範囲が好ましぐ不純物の除去率及び晶析収率の 観点からより好ましくは 5〜60°Cの範囲である。 [0071] Crystallization can be performed by adding ethanol to an aqueous solution of the compound (2) in which R 2 is sodium, but when the amination reaction solvent in the previous step is water, ammonia is removed. Then, the reaction solution can be concentrated to a predetermined amount and ethanol can be added. The method will be described below. [0072] As the concentration when removing ammonia after the amination reaction and concentrating with water, the concentration of the compound (2) in which R 2 is sodium is preferably in the range of 5 to 50 wt%. In order to obtain the compound (2) in which R 2 is sodium in the analysis yield, 10 to 40 wt% is particularly preferable. Ability to add a predetermined amount of ethanol after the completion of concentration The amount of ethanol is preferably 1 to 20 times the weight of water, particularly preferably 5 to 15 times the weight. Crystallization is performed by heating to a predetermined temperature after adding ethanol, and then cooling to a predetermined temperature. The temperature range is -20 to 80 ° C. More preferably, it is in the range of 5 to 60 ° C from the viewpoint of the deposition yield.
[0073] また、アミノ化反応の後で、 R2が水素原子である化合物(2)として晶析を行う方法に ついて説明する。 [0073] A method of performing crystallization as a compound (2) in which R 2 is a hydrogen atom after the amination reaction will be described.
[0074] 晶析溶媒としては、前述した溶媒群のうち、水及びアルコール類カゝら選択される 1種 以上を用いて行うことが好ましい。アルコールとしては、前記式 (4)で表されるアルコ ール類が挙げられる。これらの群より選択される 1種以上のアルコールと水、又は水 により晶析を行うこともでき、好ましくは水とエタノール、又は水単独である。  [0074] As the crystallization solvent, it is preferable to use at least one selected from the group of solvents described above, such as water and alcohols. Examples of the alcohol include alcohols represented by the formula (4). Crystallization can also be carried out with one or more alcohols selected from these groups and water, or water, preferably water and ethanol, or water alone.
[0075] 前工程のアミノ化反応の溶媒が水の場合には、アンモニアを除去した後に所定量ま で反応液を濃縮し、酸を加えて適当な pHに調整することにより、晶析を実施すること ができる。以下に、その方法について説明する。  [0075] When the solvent of the amination reaction in the previous step is water, crystallization is performed by removing the ammonia, concentrating the reaction solution up to a predetermined amount, and adjusting to an appropriate pH by adding an acid. can do. The method will be described below.
[0076] アミノ化反応後にアンモニアを除去し、水濃縮を行う場合の濃縮度としては、 R2が水 素原子である化合物(2)の濃度が 5〜50wt%の範囲が好ましぐ良好な晶析収率で R2が水素原子である化合物(2)を取得するためには、 10〜40wt%が特に好ましい 。濃縮終了後、適当な酸を加えて所定の pHに調整することにより、晶析を行う。 加える酸としては特に限定されるものではないが、例えば蟻酸、酢酸、塩酸、硫酸、 硝酸、メタンスルホン酸、トリフルォロメタンスルホン酸、 ρ—トルエンスルホン酸等が挙 げられ、好ましくは塩酸、硫酸である。 [0076] The concentration when removing ammonia after the amination reaction and concentrating with water is preferably such that the concentration of the compound (2) in which R 2 is a hydrogen atom is in the range of 5 to 50 wt%. In order to obtain the compound (2) in which R 2 is a hydrogen atom in the crystallization yield, 10 to 40 wt% is particularly preferable. After the concentration is completed, crystallization is performed by adding an appropriate acid and adjusting to a predetermined pH. The acid to be added is not particularly limited, but examples include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, methanesulfonic acid, trifluoromethanesulfonic acid, ρ-toluenesulfonic acid, and the like, preferably hydrochloric acid, sulfuric acid It is.
pHとしては、結晶が良好な収率で取得できる pHであれば特に限定されるものでは ないが、好ましくは 4〜9の範囲であり、特に好ましくは 5〜8の範囲である。  The pH is not particularly limited as long as the crystals can be obtained in good yield, but is preferably in the range of 4 to 9, particularly preferably in the range of 5 to 8.
[0077] 水単独溶媒で所定の pHに調整しても結晶の取得率が低い場合には、エタノール等 のアルコールを添加することで晶析収率を向上させることができる。添加するエタノー ルの量としては、特に限定されるものではなぐ十分な結晶の析出が認められるまで 添加すればよい。晶析の温度範囲としては、 20〜80°Cの範囲が好ましぐ不純物 の除去率及び晶析収率の観点からより好ましくは— 5〜60°Cの範囲である。 [0077] If the crystal acquisition rate is low even after adjusting to a predetermined pH with water alone, the crystallization yield can be improved by adding an alcohol such as ethanol. Ethanol to be added The amount of potassium is not particularly limited, and may be added until sufficient crystal precipitation is observed. The temperature range for crystallization is preferably in the range of 20 to 80 ° C., more preferably in the range of −5 to 60 ° C. from the viewpoint of impurity removal rate and crystallization yield.
[0078] 前記式(2)にお 、て R2が水素原子で、かつアミノ基が酸との塩を形成して 、る化合 物を得た 、場合には、例えば上記方法にぉ 、て得られた R2が水素原子である化合 物(2)を適当な溶媒に溶解し、酸を添加して塩を形成させることにより得ることができ る。 In the above formula (2), R 2 is a hydrogen atom and the amino group forms a salt with an acid to obtain a compound. In this case, for example, the above method is used. The obtained compound (2) in which R 2 is a hydrogen atom is dissolved in an appropriate solvent, and an acid is added to form a salt.
[0079] 溶媒としては、ジクロロメタン、クロ口ホルム、ジクロロェタン等のクロロアルカン類;ベ ンゼン、トルエン等の置換ベンゼン類;ジェチルエーテル、メチルー t ブチルエーテ ル、テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類;メタノール、エタノール、ィ ソプロパノール、 t—ブタノール等のアルコール類;へキサン、ペンタン等のアルカン 類;酢酸ェチル、酢酸イソプロピル等のエステル類;メチルェチルケトン等のケトン類; 及び水からなる群から選択される 1種以上の溶媒が用いられる。なお、当該溶媒は、 塩形成時及び晶析時のいずれにも用いることができる。生成する塩が結晶として収 率よく析出し、なおかつ品質の向上が認められる溶媒を選択すればよい。  [0079] Solvents include chloroalkanes such as dichloromethane, chloroform, and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, methyl-butyl ether, tetrahydrofuran, and 1,4 dioxane; From the group consisting of alcohols such as methanol, ethanol, isopropanol, t-butanol; alkanes such as hexane and pentane; esters such as ethyl acetate and isopropyl acetate; ketones such as methyl ethyl ketone; One or more selected solvents are used. The solvent can be used for both salt formation and crystallization. A solvent in which the generated salt precipitates as crystals with high yield and an improvement in quality is recognized may be selected.
[0080] 塩形成に用いる酸としては、例えば蟻酸、酢酸、塩酸、硫酸、硝酸、トリフルォロ酢酸 、メタンスルホン酸、トリフルォロメタンスルホン酸、 p—トルエンスルホン酸等が挙げら れ、好ましくは塩酸、硫酸、メタンスルホン酸である。 [0080] Examples of the acid used for salt formation include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and the like, preferably hydrochloric acid, Sulfuric acid and methanesulfonic acid.
前記式(2)において R2が水素原子で、かつアミノ基が酸との塩を形成している化合 物を晶析する場合、当該化合物(2)の濃度は、 5〜50wt%の範囲が好ましい。また 、晶析の温度範囲としては、—20〜80°Cの範囲が好ましい。 In the case of crystallization of a compound in which R 2 is a hydrogen atom in the formula (2) and an amino group forms a salt with an acid, the concentration of the compound (2) is in the range of 5 to 50 wt%. preferable. Further, the temperature range for crystallization is preferably in the range of −20 to 80 ° C.
[0081] 次に、化合物(2)をエステルイ匕し、一般式(3);  Next, the compound (2) is converted into a general formula (3);
[0082] [化 12]
Figure imgf000020_0001
[0082] [Chemical 12]
Figure imgf000020_0001
で表される化合物を得る方法にっ 、て説明する。  The method for obtaining the compound represented by
前記式(3)で表される化合物(以下、化合物(3) t 、う)にお 、て、 R1及び R3は前記 と同じである。 化合物(3)においてアミノ基は、適当な酸との塩を形成していても良い。化合物(3) の塩を形成する酸としては、特に限定されるものではないが、例えば蟻酸、酢酸、塩 酸、硫酸、硝酸、トリフルォロ酢酸、メタンスルホン酸、トリフルォロメタンスルホン酸、 p トルエンスルホン酸等が挙げられ、好ましくは塩酸、硫酸、メタンスルホン酸であり、 塩酸が特に好ましい。 In the compound represented by formula (3) (hereinafter referred to as compound (3) t), R 1 and R 3 are the same as described above. In the compound (3), the amino group may form a salt with an appropriate acid. The acid that forms the salt of compound (3) is not particularly limited, but for example, formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p toluenesulfone Examples thereof include hydrochloric acid, sulfuric acid, and methanesulfonic acid, and hydrochloric acid is particularly preferable.
* は前記と同じであり、好ましくは(2R, 3R)体である。原料として(2R, 3R)体の化 * Is the same as described above, and preferably (2R, 3R). (2R, 3R) form as raw material
2 2
合物(2)を用いた場合は(2R, 3R)体の化合物(3)が、 (2S, 3S)体の化合物(2)を 用いた場合は(2S, 3S)体の化合物(3)が得られる。  When compound (2) is used, (2R, 3R) compound (3) is used. When (2S, 3S) compound (2) is used, (2S, 3S) compound (3) is used. Is obtained.
[0084] ここで用いる化合物(2)は、前述の方法にて化合物(1)とアンモニアの反応により得 られた化合物(2)をそのまま用いてもよ!ヽし、晶析工程に付したものを用いても良 、。 [0084] As the compound (2) used here, the compound (2) obtained by the reaction of the compound (1) and ammonia by the above-mentioned method may be used as it is and subjected to the crystallization step. Can be used.
[0085] エステル化は通常の方法 (例えば実験科学講座 22, 日本化学会編,丸善株式会社 を参照)において行えばよぐ特に制限されるものではないが、例えば適当な酸の存 在下、前記式 (4)で表されるアルコール類との反応により行う方法について説明する 用いるアルコールとしては、所望のエステルに相当するアルコールを選択すればよい 。その使用量は、化合物(2)に対して 5〜200モル倍量が好ましぐ特に好ましくは 1 0〜 100モル倍量である。 [0085] The esterification is not particularly limited as long as it is carried out in a usual manner (for example, see Experimental Science Course 22, edited by The Chemical Society of Japan, Maruzen Co., Ltd.). For example, in the presence of an appropriate acid, The method carried out by the reaction with the alcohol represented by the formula (4) will be described. As the alcohol to be used, an alcohol corresponding to the desired ester may be selected. The amount to be used is preferably 5 to 200 mol times the compound (2), more preferably 10 to 100 mol times.
[0086] 用いる酸としては、反応が良好な収率で進行すれば特に限定されるものではないが 、例えば蟻酸、酢酸、塩酸、硫酸、硝酸、メタンスルホン酸、トリフルォロメタンスルホ ン酸、 p トルエンスルホン酸等が挙げられ、好ましくは塩酸、硫酸、メタンスルホン酸 、 p トルエンスルホン酸であり、特に好ましくはメタンスルホン酸である。酸の使用量 は、化合物(2)に対して 2〜20モル倍量であり、好ましくは 2〜 10モル倍量である。  [0086] The acid to be used is not particularly limited as long as the reaction proceeds in good yield. For example, formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, methanesulfonic acid, trifluoromethanesulfonic acid, p Examples include toluenesulfonic acid, and hydrochloric acid, sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid are preferable, and methanesulfonic acid is particularly preferable. The amount of the acid used is 2 to 20 mole times, preferably 2 to 10 mole times the compound (2).
[0087] 反応温度は、特に限定されるものではないが、好ましくは 25°Cから使用するアルコー ルの沸点までの範囲であり、特に好ましくは 40°C力 使用するアルコールの沸点の 範囲である。反応時間は、化合物(2)の消失が確認されるまで行えばよぐ特に制限 されるものではないが、一般的には 1〜24時間程度である。  [0087] The reaction temperature is not particularly limited, but is preferably in the range from 25 ° C to the boiling point of the alcohol used, and particularly preferably in the range of the boiling point of the alcohol used at 40 ° C force. . The reaction time is not particularly limited as long as the disappearance of the compound (2) is confirmed, but is generally about 1 to 24 hours.
[0088] 反応後の後処理は、通常の方法にて行えばよぐ特に限定されるものではない。例え ば、反応終了後に水をカ卩え、さらに適当な塩基により中和した後にアルコールを除去 し、残った水層の pHをアルカリ性にしてから、適当な有機溶媒にて抽出を行うことに より、化合物(3)を系中の無機塩と効率的に分離することができる。 [0088] The post-treatment after the reaction is not particularly limited as long as it is carried out by a usual method. For example, after completion of the reaction, water is added and the alcohol is removed after neutralization with a suitable base. Then, after making the pH of the remaining aqueous layer alkaline, the compound (3) can be efficiently separated from the inorganic salts in the system by performing extraction with an appropriate organic solvent.
[0089] 中和及びアルコール除去後に水層をアルカリ性とするための塩基としては、特に限 定されるものではなぐ例えば、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕セシウム等 のアルカリ金属水酸ィ匕物;水酸ィ匕マグネシウム、水酸ィ匕カルシウム等のアルカリ土類 金属水酸ィ匕物;炭酸リチウム、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩; 炭酸水素リチウム、炭酸水素カリウム、炭酸水素ナトリウム等のアルカリ金属炭酸水素 塩を挙げることができる。経済的観点及び酸との反応によりガスを発生させることがな いこと等から、アルカリ金属水酸化物、アルカリ土類金属水酸化物の使用が好ましく 、特に好ましくは水酸ィ匕ナトリウムである。  [0089] The base for making the aqueous layer alkaline after neutralization and alcohol removal is not particularly limited, and examples thereof include alkali metals such as sodium hydroxide, potassium hydroxide, potassium hydroxide and cesium hydroxide. Hydroxides; alkaline earth metals such as magnesium hydroxide and calcium hydroxide; alkali metal carbonates such as lithium carbonate, potassium carbonate and sodium carbonate; lithium hydrogen carbonate, hydrogen carbonate Mention may be made of alkali metal hydrogen carbonates such as potassium and sodium hydrogen carbonate. The use of alkali metal hydroxides or alkaline earth metal hydroxides is preferred from the economical viewpoint and because no gas is generated by reaction with acids, and sodium hydroxide is particularly preferred.
[0090] 抽出溶媒としては、化合物(3)を水層から効率的に抽出できる溶媒であれば特に限 定されるものではなぐ例えば、ジクロロメタン、クロ口ホルム、ジクロロエタン等のクロ口 アルカン類;ベンゼン、トルエン等の置換ベンゼン類;ジェチルエーテル、メチルー t ブチルエーテル等のエーテル類;へキサン、ペンタン等のアルカン類;酢酸ェチル 、酢酸イソプロピル等のエステル類等が挙げられ、好ましくはジクロロメタン、トルエン 、メチルー t ブチルエーテル、酢酸ェチルであり、特に好ましくは酢酸ェチルである  [0090] The extraction solvent is not particularly limited as long as it is a solvent that can efficiently extract compound (3) from the aqueous layer. For example, black alkanes such as dichloromethane, black mouth form, and dichloroethane; Substituted benzenes such as toluene; ethers such as jetyl ether and methyl-butyl ether; alkanes such as hexane and pentane; esters such as ethyl acetate and isopropyl acetate; preferably dichloromethane, toluene, methyl- t Butyl ether, ethyl acetate, particularly preferably ethyl acetate
[0091] 得られた抽出液は、濃縮後に必要に応じて晶析工程に付すことにより、高純度の化 合物(3)を得ることができる。 [0091] The obtained extract can be subjected to a crystallization step as necessary after concentration to obtain a highly pure compound (3).
化合物(2)が、不純物として位置異性体である化合物 (8)を含有して!/、る場合、化合 物(8)はエステルイ匕反応により、一般式(9);  When the compound (2) contains a compound (8) which is a regioisomer as an impurity! /, The compound (8) is subjected to the esterification reaction to give a general formula (9);
[0092] [化 13]
Figure imgf000022_0001
[0092] [Chemical 13]
Figure imgf000022_0001
で表される化合物(以下、化合物(9) ヽぅ)となる。  (Hereinafter referred to as compound (9) ヽ ぅ).
化合物(9)において、 R1及び R3は前述のとおりである。 In the compound (9), R 1 and R 3 are as described above.
化合物(9)において、アミノ基は適当な酸との塩を形成していてもよい。塩を形成す る酸としては、特に限定されるものではないが、例えば蟻酸、酢酸、塩酸、硫酸、硝酸 、トリフルォロ酢酸、メタンスルホン酸、トリフルォロメタンスルホン酸、 p—トルエンスル ホン酸等が挙げられ、好ましくは塩酸、硫酸、メタンスルホン酸であり、塩酸が特に好 ましい。 In compound (9), the amino group may form a salt with an appropriate acid. Forming salt The acid to be used is not particularly limited, but examples include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and the like. Are hydrochloric acid, sulfuric acid and methanesulfonic acid, with hydrochloric acid being particularly preferred.
* は前記と同じである。化合物(9)の立体配置は、生成した化合物(3)において優 * Is the same as above. The configuration of compound (9) is superior to that of the produced compound (3).
2 2
先する立体配置と逆のものが優先して生成する。  The one opposite to the previous configuration is preferentially generated.
[0094] 化合物(3)に不純物として含有される化合物(9)は、晶析により除去することが可能 である。したがって、化合物(3)又はその塩を得る場合には、化合物(1)をアンモ- ァと反応させた後、得られたィ匕合物(2)を晶析工程に付し、化合物(8)及びその他の 不純物を除去する方法;化合物(2)を晶析することなくエステルイ匕を行った後に、化 合物(9)及びその他の不純物を晶析工程により除去する方法;ィ匕合物(1)とアンモニ ァとの反応後とエステルイ匕反応後の両方で、晶析工程を行う方法等がある。いずれ の方法を選択するかは、要求される品質力も決定すればよい。より高純度の化合物( 3)を得るためには、アミノ化反応及びエステルイ匕反応の両方の工程後に晶析を行う ことが好ましい。言うまでもなぐ要求される化合物(3)の品質に応じて晶析を行わな くとちょい。 [0094] The compound (9) contained as an impurity in the compound (3) can be removed by crystallization. Therefore, when obtaining the compound (3) or a salt thereof, the compound (1) is reacted with the ammonia, and then the obtained compound (2) is subjected to a crystallization step to obtain the compound (8 ) And other impurities; a method of removing compound (9) and other impurities in the crystallization step after performing esterification without crystallization of compound (2); There is a method of performing a crystallization process both after the reaction of (1) with ammonia and after the esterification reaction. Which method should be selected should also determine the required quality. In order to obtain a compound (3) with higher purity, it is preferable to perform crystallization after both the amination reaction and the esterification reaction. Needless to say, crystallization should not be performed according to the required quality of the compound (3).
[0095] 化合物(3)の晶析に用いる溶媒は、例えば、ジクロロメタン、クロ口ホルム、ジクロロェ タン等のクロロアルカン類;ベンゼン、トルエン等の置換ベンゼン類;ジェチルエーテ ル、メチルー t ブチルエーテル、テトラヒドロフラン、 1, 4 ジォキサン等のエーテル 類;メタノール、エタノール、イソプロパノール、 n—ブタノール、 sec ブタノール、 t— ブタノール等のアルコール類;へキサン、ペンタン等のアルカン類;酢酸ェチル、酢 酸イソプロピル等のエステル類;アセトン、メチルェチルケトン等のケトン類;及び水等 が挙げられる。当該晶析は、これらから 1種以上の溶媒を選択して行うことができる。 抽出溶媒として酢酸ェチルを用いた場合には、抽出液を所定量まで濃縮し、そのま ま酢酸ェチル溶液より晶析を行うことも可能であるし、上記群の中から選択される適 当な溶媒を貧溶媒として用いることも可能である。  [0095] Solvents used for crystallization of compound (3) are, for example, chloroalkanes such as dichloromethane, chloroform, dichloroethane, and the like; substituted benzenes such as benzene and toluene; jetyl ether, methyl-butyl ether, tetrahydrofuran, 1 , 4 Ethers such as dioxane; Alcohols such as methanol, ethanol, isopropanol, n-butanol, sec butanol and t-butanol; Alkanes such as hexane and pentane; Esters such as ethyl acetate and isopropyl acetate; Acetone And ketones such as methyl ethyl ketone; and water. The crystallization can be performed by selecting one or more solvents from these. When ethyl acetate is used as the extraction solvent, it is possible to concentrate the extract to a predetermined amount and perform crystallization from the ethyl acetate solution as it is, or an appropriate one selected from the above group. It is also possible to use a solvent as a poor solvent.
[0096] 以下に、抽出溶媒として酢酸ェチルを用い、抽出液を濃縮後に貧溶媒としてへキサ ンを用いる晶析法について説明する。 抽出液の濃縮度としては、化合物(3)の濃度が 5〜50wt%の範囲が好ましぐ良好 な晶析収率で化合物(3)を取得するためには 10〜30wt%が特に好ましい。濃縮終 了後、所定量のへキサンをカ卩える力 へキサンの量としては、酢酸ェチルに対して 30 〜200vZv%が好ましぐ特に好ましくは 30〜150vZv%である。晶析は抽出液の 濃縮後、所定の温度まで加熱し、析出した固形分を溶解させて力 へキサンを加え、 所定温度まで冷却することにより行われる力 その温度範囲は 20〜80°Cの範囲が 好ましぐ不純物の除去率及び晶析収率の観点力 より好ましくは 5〜60°Cの範 囲である。 [0096] The crystallization method using ethyl acetate as the extraction solvent and hexane as the poor solvent after concentrating the extract is described below. The concentration of the extract is particularly preferably from 10 to 30 wt% in order to obtain the compound (3) with a good crystallization yield in which the concentration of the compound (3) is preferably in the range of 5 to 50 wt%. Ability to hold a predetermined amount of hexane after the completion of concentration The amount of hexane is preferably 30 to 200 vZv%, particularly preferably 30 to 150 vZv% with respect to ethyl acetate. Crystallization is performed by concentrating the extract and heating to a specified temperature, dissolving the precipitated solids, adding force hexane, and cooling to the specified temperature. The temperature range is 20 to 80 ° C. The range is preferably 5 to 60 ° C, more preferably from the viewpoint of the removal rate of impurities and the crystallization yield.
[0097] 化合物(3)を酸との塩として得たい場合には、上記で得られた化合物(3)に適当な 酸を加えて得ることができるし、抽出液に、あるいは、抽出液を濃縮し適当な溶媒に 置換した後で、酸を加えることにより、化合物(3)の塩を直接、結晶として取得するこ とも可能である。  [0097] When it is desired to obtain the compound (3) as a salt with an acid, it can be obtained by adding an appropriate acid to the compound (3) obtained above, and the extract or the extract can be obtained. It is also possible to obtain the salt of compound (3) directly as crystals by adding an acid after concentration and substitution with an appropriate solvent.
[0098] 用いる溶媒としては、例えば、ジクロロメタン、クロ口ホルム、ジクロロエタン等のクロ口 アルカン類;ベンゼン、トルエン等の置換ベンゼン類;ジェチルエーテル、メチルー t ブチルエーテル、テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類;メタノール 、エタノール、イソプロパノール、 tーブタノール等のアルコール類;へキサン、ペンタ ン等のアルカン類;酢酸ェチル、酢酸イソプロピル等のエステル類;アセトン、メチル ェチルケトン等のケトン類;及び水等が挙げられる。これらから 1種以上の溶媒を選択 して溶媒置換を行うことができ、用いる酸の種類に応じて最適の溶媒を選択すればよ い。また、 2種以上の混合溶媒を用いる場合には、その混合比は特に限定されるもの ではない。  [0098] Examples of the solvent to be used include black alkanes such as dichloromethane, chloroform, and dichloroethane; substituted benzenes such as benzene and toluene; ethers such as jetyl ether, methyl-butyl ether, tetrahydrofuran, and 1,4 dioxane. Alcohols such as methanol, ethanol, isopropanol, and t-butanol; alkanes such as hexane and pentane; esters such as ethyl acetate and isopropyl acetate; ketones such as acetone and methyl ethyl ketone; and water . One or more solvents can be selected from these to perform solvent substitution, and an optimal solvent may be selected according to the type of acid used. In addition, when two or more kinds of mixed solvents are used, the mixing ratio is not particularly limited.
[0099] 用いる酸としては、特に限定されるものではないが、例えば蟻酸、酢酸、塩酸、硫酸、 硝酸、トリフルォロ酢酸、メタンスルホン酸、トリフルォロメタンスルホン酸、 p—トルエン スルホン酸等が挙げられ、好ましくは塩酸、硫酸であり、塩酸が特に好ましい。  [0099] The acid to be used is not particularly limited, and examples thereof include formic acid, acetic acid, hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, and the like. Hydrochloric acid and sulfuric acid are preferred, and hydrochloric acid is particularly preferred.
晶析温度としては、 20〜80°Cの範囲で行うことが好ましぐ不純物の除去率及び 晶析収率の観点から、より好ましくは― 5〜60°Cの範囲である。  The crystallization temperature is more preferably in the range of −5 to 60 ° C. from the viewpoint of the impurity removal rate and the crystallization yield that are preferably performed in the range of 20 to 80 ° C.
[0100] 化合物(3)あるいは化合物(3)の塩のいずれを最終製品として得る場合にも、 1回の 晶析では目的とする品質が得られない場合には、 2回以上晶析を行うことができる。 晶析を 2回以上行う場合には、同じ溶媒で繰り返し行ってもよいし、異なる溶媒で行 つてもよい。 [0100] Regardless of whether the compound (3) or the salt of the compound (3) is obtained as the final product, if the desired quality cannot be obtained by one crystallization, the crystallization is performed twice or more. be able to. When crystallization is performed twice or more, it may be repeated with the same solvent or with different solvents.
発明の効果  The invention's effect
[0101] 本発明により、医薬品中間体として有用な(2R, 3R)及び(2S, 3S)— 3—フエ-ルイ ソセリン誘導体を、簡便かつ工業的に有利に製造できる。  [0101] According to the present invention, (2R, 3R) and (2S, 3S) -3-phenol-lysoserine derivatives useful as pharmaceutical intermediates can be conveniently and industrially advantageously produced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0102] 以下に実施例を挙げ、本発明をさらに具体的に説明するが、本発明はこれら実施例 に限定されるものではない。  [0102] The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[0103] (実施例 1) (2R, 3R)—3 フエ-ルイソセリンナトリウム塩  Example 1 (2R, 3R) -3 Phenol Isoserine Sodium Salt
(2S, 3S)—2 クロ口 3 ヒドロキシ— 3 フエ-ルプロピオン酸ェチルエステル(1 4. 33g、 62. 67mmol)、エタノーノレ(30mL)力らなる溶液に、室温にて 20wt0/0ナト リウムエトキシド Zエタノール(23. 46g、 68. 94mmol)を加え、 40分攪拌した。析出 する無機塩をろ別し、エタノール(30mL)にて洗浄し、ろ液に水(30mL)、 30wt% 水酸ィ匕ナトリウム水溶液(9. 19g、 68. 94mmol)を加えた。室温にて 35分攪拌後、 別途合成したラセミ 3—フエ-ルグリシド酸ナトリゥム塩を標品として、 HPLC分析に より反応液中の(2R, 3S) 3—フエニルダリシド酸ナトリウム塩の含量を求め、収率 を算出したところ、 98. 3%であった。 (2S, 3S) -2 black port 3 hydroxy - 3 Hue - Rupuropion acid Echiruesuteru (1 4. 33g, 62. 67mmol) , in Etanonore (30 mL) Power et al made solution, 20 wt 0/0 sodium ethoxy at room temperature Z ethanol (23.46g, 68.94mmol) was added and stirred for 40 minutes. The precipitated inorganic salt was filtered off and washed with ethanol (30 mL), and water (30 mL) and 30 wt% aqueous sodium hydroxide solution (9.19 g, 68.94 mmol) were added to the filtrate. After stirring for 35 minutes at room temperature, the content of (2R, 3S) 3-phenyldaricidic acid sodium salt in the reaction solution was determined by HPLC analysis using separately synthesized racemic 3-phenylglycidic acid sodium salt as a standard sample. The rate was calculated to be 98.3%.
減圧下、反応液を濃縮前の約 30wt%まで濃縮し、得られたオレンジ色のスラリーに 28wt%アンモニア水溶液(124. 9mL、 1. 85mol)をカ卩えた。反応液を耐圧反応器 に移し、 50°Cに加温し 19時間攪拌した後に、室温まで冷却し、減圧下、アンモニア を除去した。得られた反応液中の(2R, 3R)— 3 フエ-ルイソセリンナトリウム塩を、 標品を用いた HPLC分析にて定量したところ、収率 68. 8%であった。また、位置異 性体である(2S, 3S)— 3 フエ-ルセリンナトリウム塩の収率を、同様に HPLCによ る定量分析にて求めたところ、収率 18. 4%であった。  Under reduced pressure, the reaction solution was concentrated to about 30 wt% before concentration, and 28 wt% aqueous ammonia solution (124.9 mL, 1.85 mol) was added to the resulting orange slurry. The reaction solution was transferred to a pressure resistant reactor, heated to 50 ° C. and stirred for 19 hours, then cooled to room temperature, and ammonia was removed under reduced pressure. The amount of (2R, 3R) -3 phenol isoserine sodium salt in the obtained reaction solution was quantified by HPLC analysis using a sample, and the yield was 68.8%. Further, the yield of the regioisomer (2S, 3S) -3 phenolserine sodium salt was similarly determined by quantitative analysis by HPLC, and the yield was 18.4%.
減圧下、(2R, 3R)— 3 フエ-ルイソセリンナトリウム塩含量が約 30wt%となるまで 濃縮し、得られたスラリーにエタノール(255mL)を加え、 50°Cにて 30分攪拌した後 、攪拌しながら室温まで放冷し、さらに 0〜1°Cまで冷却し、同温にて 30分攪拌した。 析出した結晶をろ別し、エタノール (80mL)にて洗浄した後に、減圧下、 50°Cにて約 18時間乾燥させることにより白色結晶(8. 21g)を得た。ろ液中の(2R, 3R)— 3 フ 工-ルイソセリンナトリウム塩及び(2S, 3S)—3 フエ-ルセリンナトリウム塩の含量 から、結晶中の(2R, 3R)—3 フエ-ルイソセリンナトリウム塩含量を測定したところ 、 (2R, 3R)— 3 フエ-ルイソセリンナトリウム塩含量は 90. 4wt% (晶析収率 86. 2 %)であり、(2S, 3S)— 3 フエ-ルセリンナトリウム塩含量 1. 4wt% (除去率 95. 2 %)であった。 Concentrate under reduced pressure until (2R, 3R) -3 phenol isoserine sodium salt content is about 30 wt%, add ethanol (255 mL) to the resulting slurry, and stir at 50 ° C for 30 minutes The mixture was allowed to cool to room temperature with stirring, further cooled to 0 to 1 ° C, and stirred at the same temperature for 30 minutes. The precipitated crystals were separated by filtration, washed with ethanol (80 mL), and then at about 50 ° C under reduced pressure. White crystals (8.21 g) were obtained by drying for 18 hours. From the content of (2R, 3R) -3 FU-iso-serine sodium salt and (2S, 3S) -3 FERSERIN sodium salt in the filtrate, (2R, 3R) -3 FE-Louis in the crystal When the soserine sodium salt content was measured, the (2R, 3R) -3 phenol isoserine sodium salt content was 90.4 wt% (crystallization yield 86.2%), and (2S, 3S) -3 The content of sodium ferrine salt was 1.4 wt% (removal rate 95.2%).
[0104] 〔収率の分析〕 [Yield Analysis]
(2R, 3S)— 3—フエ-ルグリシド酸ナトリウム塩  (2R, 3S) — 3-Ferglycidic acid sodium salt
カラム:ナカライ社製 COSMOSIL C18 AR (4. 6mm X 250mm)、溶離液:ァ セトニトリル ZO. 5wt%KH PO水溶液(pH = 3. 0) = 5/5,流速: lmlZmin、検  Column: Nacalai COSMOSIL C18 AR (4.6 mm x 250 mm), eluent: acetonitrile ZO. 5 wt% KH PO aqueous solution (pH = 3.0) = 5/5, flow rate: lmlZmin, test
2 4  twenty four
出: 210nm、カラム温度: 40°C、溶出時間:(2R, 3S)—3 フエ-ルグリシド酸ナトリ ゥム塩 3. 4分。  Source: 210 nm, column temperature: 40 ° C, elution time: (2R, 3S) —3 sodium salt of ferric glycidate 3.4 min.
(2R, 3R)— 3 フエ-ルイソセリンナトリウム塩  (2R, 3R) — 3 Phenol isoserine sodium salt
カラム:フエノメネックス社製 Luna 5 C18 (2) (4. 6mm X 250mm)、溶離液: ァセトニトリル ZO. 5wt%KH PO水溶液(pH = 2. 0) = 1/9,流速: 0. 5ml/mi  Column: Luna 5 C18 (2) (4.6 mm X 250 mm) manufactured by Phenomenex, Eluent: Acetonitrile ZO. 5 wt% KH PO aqueous solution (pH = 2.0) = 1/9, Flow rate: 0.5 ml / mi
2 4  twenty four
n、検出: 210nm、カラム温度: 40°C、溶出時間:(2R, 3R)—3 フエ-ルイソセリン ナトリウム塩 5. 7分、(2S, 3S)— 3 フエ-ルセリンナトリウム塩 6. 7分。  n, detection: 210 nm, column temperature: 40 ° C, elution time: (2R, 3R) -3 phenol isoserine sodium salt 5.7 min, (2S, 3S) -3 phenol-serine sodium salt 6.7 min .
¾ NMR (D 0、 400MHZ) δ 7. 27— 7. 38 (m、 5H)、 4. 18 (d、 1H、J =4. 4H  ¾ NMR (D 0, 400MHZ) δ 7. 27— 7. 38 (m, 5H), 4. 18 (d, 1H, J = 4.4H
2  2
z)、 4. 14 (d、 1Hゝ J =4. 2Hz)  z), 4.14 (d, 1H ゝ J = 4.2 Hz)
[0105] (実施例 2) (2R, 3R)—3 フエ-ルイソセリンェチルエステル Example 2 (2R, 3R) -3 Phenol Isoserine Ethyl Ester
実施例 1にて得られた白色結晶(8. 21g) ( (2R, 3R)— 3 フエ-ルイソセリンナトリ ゥム塩: 36. 54mmol、 (2S, 3S)—3 フエ-ルセリンナトリウム塩: 0. 54mmol含有 ; Hこ、エタノーノレ(200mL)及び MsOH (メタンスノレホン酸) ( 18. 37g、 191. 2mmol )を加え、加熱還流を 20時間行った。室温まで放冷後、水(200mL)を加え、 30wt %水酸ィ匕ナトリウム水溶液にて pHを 6. 67とした。減圧下、エタノールを留去し、 30w t%水酸ィ匕ナトリウム水溶液にて pHを 11. 87とした。酢酸ェチルにて抽出(3 X 150 mL)し、抽出液を飽和食塩水(200mL)にて洗浄した。抽出液中の(2R, 3R)— 3— フエ-ルイソセリンェチルエステル及び(2S, 3S) 3 フエ-ルセリンェチルエステ ルの含量を、標品を用いた HPLCによる定量分析にて求めたところ、 (2R, 3R)— 3 —フエ-ルイソセリンェチルエステルは 32. 62mmol (収率 89. 3%)、 (2S, 3S)— 3 —フエ-ルセリンェチルエステルは 0. 38mmolであった。抽出液を(2R, 3R)— 3— フエ二ルイソセリンェチルエステルが約 17wt%となるまで濃縮し、得られたスラリーを 40°Cに加熱すると均一の溶液となった。同温にてへキサン(25mL)をカ卩え、室温ま で攪拌しながら放冷、さらに 0〜2. 5°Cまで冷却し、同温にて 1時間攪拌した。析出し た結晶をろ別し、へキサン(30mL)にて洗浄した後に、減圧下、 50°Cにて約 12時間 乾燥させることにより、白色結晶(5. 82g)を得た。 HPLC分析にて(2R, 3R)— 3— フエ-ルイソセリンェチルエステル及び(2S, 3S) 3 フエ-ルセリンェチルエステ ルの含量を求めたところ、 (2R, 3R)— 3 フエ-ルイソセリンェチルエステルは〉 99 . 9wt% (晶析収率 85. 2%)であり、 (2S, 3S)— 3 フエ-ルセリンェチルエステル は不検出であった。 White crystals (8.21 g) obtained in Example 1 ((2R, 3R) —3 phenol isoserine sodium salt: 36. 54 mmol, (2S, 3S) —3 phenol sodium salt H, ethanolol (200 mL) and MsOH (methane sulphonic acid) (18.37 g, 191.2 mmol) were added and heated to reflux for 20 hours, and then allowed to cool to room temperature, water (200 mL) was added. In addition, the pH was adjusted to 6.67 with 30 wt% sodium hydroxide aqueous solution, ethanol was distilled off under reduced pressure, and the pH was adjusted to 11.87 with 30 wt% sodium hydroxide aqueous solution. (3 X 150 mL), and the extract was washed with saturated brine (200 mL). (2R, 3R) -3-phenylisoserine ester and (2S, 3S 3 Hue-Ruserin Ethyl Este As a result of quantitative analysis by HPLC using a standard sample, (2R, 3R) -3-phenol isoserethyl ester was 32.62 mmol (yield 89.3%), ( The amount of 2S, 3S) -3-ferrine ether ester was 0.38 mmol. The extract was concentrated until (2R, 3R) -3-phenylisoserine ethyl ester was about 17 wt%, and the resulting slurry was heated to 40 ° C. to obtain a homogeneous solution. Hexane (25 mL) was added at the same temperature, allowed to cool to room temperature with stirring, further cooled to 0 to 2.5 ° C, and stirred at the same temperature for 1 hour. The precipitated crystals were separated by filtration, washed with hexane (30 mL), and dried under reduced pressure at 50 ° C. for about 12 hours to obtain white crystals (5.82 g). The contents of (2R, 3R) -3-phenol isoserine ester and (2S, 3S) 3 -phenylserine ester were determined by HPLC analysis. -Luisoserine ethyl ester was> 99.9 wt% (crystallization yield 85.2%), and (2S, 3S) -3 phenol ester was not detected.
[0106] 〔収率の分析〕 [Yield Analysis]
カラム:ナカライ社製 COSMOSIL C18 AR (4. 6mm X 250mm)、溶離液:ァ セトニトリル ZO. 5wt%KH PO水溶液(pH = 2. 0) = 2/8,流速:  Column: Nacalai COSMOSIL C18 AR (4.6 mm x 250 mm), eluent: acetonitrile ZO. 5 wt% KH PO aqueous solution (pH = 2.0) = 2/8, flow rate:
2 4 lmlZmin、検 出: 210nm、カラム温度: 40°C、溶出時間:(2R, 3R)—3 フエ-ルイソセリンェチ ルエステル 3. 3分、 (2S, 3S)— 3 フエ-ルセリンェチルエステル 3. 9分。  2 4 lmlZmin, detection: 210 nm, column temperature: 40 ° C, elution time: (2R, 3R) —3 phenol isoselin ethyl ester 3.3 min, (2S, 3S) —3 phenol serine ethyl ester 3 9 minutes.
¾ NMR(CDC1、 400MHZ) δ 7. 23 7. 33 (m、5H)、4. 44 (d、 1H、J=4. 1  ¾ NMR (CDC1, 400MHZ) δ 7. 23 7. 33 (m, 5H), 4.44 (d, 1H, J = 4.1
3  Three
Hz) , 4. 30 (d、 1H、J = 3. 9Hz)、 4. 06—4. 12 (m、 2H)、 1. 16 (t、 3H、J = 7. 1Hz)  Hz), 4.30 (d, 1H, J = 3.9Hz), 4.06—4.12 (m, 2H), 1.16 (t, 3H, J = 7.1 Hz)
[0107] (実施例 3) (2R, 3S)—3 フエニルダリシド酸ナトリウム塩  Example 3 (2R, 3S) -3 Phenyldaricidic acid sodium salt
(2S, 3S)—2 クロ口 3 ヒドロキシ— 3 フエ-ルプロピオン酸ェチルエステル(3 . 72g、 16. 3mmol)、エタノール(lOmL)からなる溶液に、室温にて 20wt%ナトリウ ムエトキシド Zエタノール(12. 19g、 35. 86mmol)をカ卩え、 1時間攪拌した。析出す る無機塩をろ別し、エタノール(lOmL)にて洗浄し、ろ液に水(323mg、 17. 93mm ol)のエタノール(5mL)溶液をカ卩え、室温にて 1時間攪拌後、内容物の流動性が低 かったため水(lOmL)を加え、析出した白色結晶をろ別した。  (2S, 3S) -2 Black mouth 3 Hydroxy-3 Phenylpropionic acid ethyl ester (3.72 g, 16.3 mmol) and ethanol (lOmL) at room temperature with 20 wt% sodium ethoxide Z ethanol (12. 19 g, 35. 86 mmol) was added and stirred for 1 hour. The precipitated inorganic salt was filtered off and washed with ethanol (10 mL). A solution of water (323 mg, 17.93 mmol) in ethanol (5 mL) was added to the filtrate, and the mixture was stirred at room temperature for 1 hour. Since the fluidity of the contents was low, water (10 mL) was added and the precipitated white crystals were filtered off.
結晶をエタノール(20mL)にて洗浄後、約 12時間、真空乾燥させること〖こより白色結 晶(1. 46g)を得た。このものを HPLCにて分析したところ、(2R, 3S)— 3 フエ-ル グリシド酸ナトリウム塩を 84. lwt%含有していることがわ力つた (収率 37. 2%) o [0108] (実施例 4)酵母菌による 2 クロ口ベンゾィル酢酸ェチルエステルの還元 The crystals are washed with ethanol (20 mL) and then vacuum-dried for about 12 hours. Crystals (1.46 g) were obtained. When this product was analyzed by HPLC, it was found that it contained 84. lwt% of (2R, 3S) -3 phenol glycidic acid sodium salt (yield 37.2%) o [0108] (Example 4) Reduction of 2-chloroethyl acetyl acetate by yeast
グルコース 4%、イーストエキス 0. 3%、 KH PO 1. 3%、 (NH ) HPO 0. 7  Glucose 4%, yeast extract 0.3%, KH PO 1.3%, (NH) HPO 0.7
2 4 4 2 4 2 4 4 2 4
%、 NaCl 0. 01%、 MgSO · 7Η Ο 0. 08%、 ZnSO · 7Η Ο 0. 006%、 FeSO %, NaCl 0.01%, MgSO 7% 0.08%, ZnSO 7% 0.006%, FeSO
4 2 4 2  4 2 4 2
· 7Η Ο 0. 009%、 CuSO · 5Η Ο 0. 0005%、 MnSO ·4〜5Η Ο 0. 001% 7Η Ο 0.009%, CuSO5Η Ο 0.005%, MnSO 4-5〜 〜 0.001%
4 2 4 2 4 2 4 2 4 2 4 2
力もなる液体培地 (ρΗ7. 0)を調製し、大型試験管に 5mlずつ分注して、 120°Cで 2 0分間蒸気殺菌した。これらの液体培地に、表 1〜2に示した酵母菌をそれぞれ 1白 金耳植菌し、 30°Cで 2〜3日間振盪培養した。この培養液から遠心分離により菌体を 集め、 2—クロ口ベンゾィル酢酸ェチルエステル 0. 2%及びグルコース 2%を含んだ 0 . 1Mリン酸緩衝液 (pH5. 5) lmlに懸濁し、栓付試験管中で 20時間 30°Cで振とうし た。反応後、等量体積の酢酸ェチルにより抽出し、抽出液中の生成物を HPLCで分 析することにより、収率(%)、 3位の異性体率(%)、 antiZsyn、及び光学純度(%e . e. )を求め、結果を表 1〜2に示した。ここで、 3位の異性体率及び光学純度は下記 式にて算出した。  A liquid medium (rho 7.0) was prepared, and 5 ml was dispensed into a large test tube and steam sterilized at 120 ° C for 20 minutes. Into these liquid media, 1 yeast each of the yeasts shown in Tables 1 to 2 was inoculated and cultured at 30 ° C for 2 to 3 days with shaking. Bacteria were collected from this culture by centrifugation, suspended in 1 ml of 0.1 M phosphate buffer (pH 5.5) containing 2-% benzoyl acetate ethyl ester and 0.2% glucose, and a stoppered test. Shake for 20 hours at 30 ° C. After the reaction, it was extracted with an equal volume of ethyl acetate, and the product in the extract was analyzed by HPLC, yield (%), isomer ratio at 3rd position (%), antiZsyn, and optical purity ( % E.e.) And the results are shown in Tables 1-2. Here, the isomer ratio and optical purity at the 3-position were calculated by the following formulas.
[0109] 異性体率(%) =AZ (A+B) X 100 (Aと Bは 3位の立体異性体を表し、 A>Bであ る)  [0109] Isomeric ratio (%) = AZ (A + B) X 100 (A and B represent stereoisomers at the 3-position, and A> B)
[0110] 光学純度(%e. e. ) = (C D) Z (C + D) X 100 (C及び Dは対応する鏡像異性体 量を表し、 C>Dである)  [0110] Optical purity (% e. E.) = (C D) Z (C + D) X 100 (C and D represent the amount of the corresponding enantiomer, C> D)
[0111] 〔収率の分析〕  [0111] [Yield Analysis]
カラム: YMC社製 YMC— Pack Pro C18 AS— 303 (4. 6mm X 250mm)ゝ 溶離液: 0. 1%リン酸 Zァセトニトリル = 5Z5、流速: lmlZmin、検出: 220nm、力 ラム温度: 30°C、溶出時間: 2 クロロー 3 ヒドロキシ 3 フエ-ルプロピオン酸ェ チルエステル 8. 9分、 2 クロ口ベンゾィル酢酸ェチルエステル 13. 8分。  Column: YMC YMC—Pack Pro C18 AS—303 (4.6 mm x 250 mm) ゝ Eluent: 0.1% Z-nitronitrile phosphate = 5Z5, Flow rate: lmlZmin, Detection: 220nm, Force Ram temperature: 30 ° C , Elution time: 2 Chloro-3 hydroxy 3 -phenylpropionic acid ethyl ester 8.9 min, 2-chlorobenzoic acid ethyl ester 13.8 min.
[0112] 〔ジァステレオマー比、及び光学純度の分析〕  [Analysis of diastereomeric ratio and optical purity]
カラム:ダイセル化学工業社製 CHIRALCEL OJ— H (4. 6mmX 250mm)、溶離 液:へキサン Zイソプロピルアルコール = 9Zl、流速: lmlZmin、検出: 220nm、力 ラム温度: 30°C、溶出時間:(2R, 3R)—2 クロ口一 3 ヒドロキシ一 3 フエ-ルプ ロピオン酸ェチルエステル 14. 4分、 (2S, 3S)— 2 クロ口 3 ヒドロキシ— 3— フエ-ルプロピオン酸ェチルエステル 15. 1分、 (2R, 3S)— 2 クロ口 3 ヒドロ キシ— 3 フエ-ルプロピオン酸ェチルエステル 20. 5分、 (2S, 3R)— 2 クロ口 3 ヒドロキシー 3 フエ-ルプロピオン酸ェチルエステル 24. 5分。 Column: Daicel Chemical Industries CHIRALCEL OJ—H (4.6 mm x 250 mm), eluent: hexane Z isopropyl alcohol = 9 Zl, flow rate: lmlZmin, detection: 220 nm, ram temperature: 30 ° C, elution time: (2R , 3R) —2 Black mouth 3 Hydroxy 1 3 Ferrule Lopionic acid ethyl ester 14. 4 min, (2S, 3S) — 2 Black mouth 3 Hydroxy-3-phenyl propionic acid ethyl ester 15. 1 min, (2R, 3S) — 2 Black mouth 3 Hydroxy 3 phenol Propionic acid ethyl ester 20. 5 min. (2S, 3R) — 2 Black mouth 3 Hydroxy-3 phenol propionic acid ethyl ester 24.5 min.
[表 1] [table 1]
^〔〕0114 ^ [] 0114
Figure imgf000030_0001
Figure imgf000030_0001
(〔〕0115 ([] 0115
Figure imgf000031_0001
Figure imgf000031_0001
肉エキス 1%、ポリペプトン 1%、イーストエキス 0. 5%、NaCl 0. 3%からなる液 体培地 (pH7. 0)を調製し、大型試験管に 5mlづっ分注して、 120°Cで 20分間蒸気 殺菌した。これらの液体培地に、表 3に示した細菌をそれぞれ 1白金耳植菌し、 30°C で 2〜3日間振盪培養した。この培養液から遠心分離により菌体を集め、実施例 4と 同条件にて反応及び分析を行い、収率 (%)、 3位の異性体率 (%)、 antiZsyn、及 び光学純度(%e. e. )を求めた。結果を表 3に示した。 Prepare a liquid medium (pH 7.0) consisting of 1% meat extract, 1% polypeptone, 0.5% yeast extract, 0.3% NaCl, and dispense 5 ml into a large test tube at 120 ° C. Steam sterilized for 20 minutes. Each of these liquid media was inoculated with 1 platinum ear of each of the bacteria shown in Table 3, and cultured at 30 ° C for 2 to 3 days with shaking. Bacteria were collected from this culture by centrifugation, and reacted and analyzed under the same conditions as in Example 4. Yield (%), isomer ratio at 3rd position (%), antiZsyn, and optical purity (% ee). The results are shown in Table 3.
[表 3] [Table 3]
(〔 s ([S
Figure imgf000033_0001
Figure imgf000033_0001
トリブトティックソイブロス 3%、可溶性澱粉 1%からなる液体培地 (pH7. 2)を調製 し、大型試験管に 5mlずつ分注して、 120°Cで 20分間蒸気殺菌した。これらの液体 培地に表 4に示した放線菌をそれぞれ 1白金耳植菌し、 30°Cで 2〜3日間振盪培養 した。この培養液から遠心分離により菌体を集め、実施例 4と同条件にて反応及び分 析を行い、収率(%)、 3位の異性体率(%)、 antiZsyn、及び光学純度(%e. e. )を 求めた。結果を表 4に示した。 A liquid medium (pH 7.2) consisting of 3% tributotic soy broth and 1% soluble starch was prepared, dispensed in 5 ml portions into a large test tube, and steam sterilized at 120 ° C for 20 minutes. One platinum ear of each of the actinomycetes shown in Table 4 was inoculated into these liquid media, and cultured at 30 ° C for 2 to 3 days with shaking. Bacteria were collected from this culture by centrifugation, and reacted and analyzed under the same conditions as in Example 4. Yield (%), 3-position isomer ratio (%), antiZsyn, and optical purity (% ee). The results are shown in Table 4.
[表 4] [Table 4]
Figure imgf000035_0001
Figure imgf000035_0001
実施例 7)カビによる 2—クロ口ベンゾィル酢酸ェチルエステルの遠兀 肉エキス 1%、ポリペプトン 1%、グルコース 1%、イーストエキス 0. 5%、 NaCl 0. 1%、 MgSO · 7Η Ο 0. 05%からなる液体培地(ρΗ7. 0)を調製し、大型試 Example 7) Dispersion of 2-black-mouthed benzoyl acetate ethyl ester by mold Prepare a liquid medium (ρΗ7.0) consisting of 1% meat extract, 1% polypeptone, 1% glucose, 0.5% yeast extract, 0.1% NaCl, and MgSO · 7Η Η 0.05%.
4 2  4 2
験管に 5mlずつ分注して、 120°Cで 20分間蒸気殺菌した。これらの液体培地に、表 5に示したカビをそれぞれ 1白金耳植菌し、 30°Cで 2〜3日間振盪培養した。この培 養液から吸引ろ過により菌体を集め、実施例 4と同条件にて反応及び分析を行い、 収率(%)、 3位の異性体率(%)、 antiZsyn、及び光学純度(%e. e. )を求めた。結 果を表 5に示した。 5ml was dispensed into the test tube and steam sterilized at 120 ° C for 20 minutes. Each of these liquid media was inoculated with 1 platinum ear of each of the molds shown in Table 5, and cultured with shaking at 30 ° C for 2 to 3 days. Bacteria were collected from this culture solution by suction filtration and subjected to reaction and analysis under the same conditions as in Example 4. Yield (%), isomer ratio at 3rd position (%), antiZsyn, and optical purity (% ee). The results are shown in Table 5.
[表 5] [Table 5]
3位 Anti体 Syn体 3rd place Anti body Syn body
微生物 収率(%) 異性体率 Anti / yn 光学純度 光学純度  Microbe Yield (%) Isomeric ratio Anti / yn Optical purity Optical purity
立体 立体 立体 3D Solid 3D
_ (%) 一 ( e.e.) (%e.e.) _
Figure imgf000037_0001
ォ一クサルスロン'サクステリ(Auxarthron thaxteri) NBRC 8451 99 3R 99 / >99 (2R,3R)
_ (%) One (ee) (% ee) _
Figure imgf000037_0001
Axarthron thaxteri NBRC 8451 99 3R 99 /> 99 (2R, 3R)
コリオラス-コンソルス(Coriolus consors NBRC 9078 87 3R 74 / 26 >99 (2 .3R) (2S.3 ) ゥリニぺリス'ス亍ィピタリア(CriniDellis stipitaria) NBRC 30259 75 3R 40 / 60 35 (2R'3R) 60 (2S,3R) ミロセシウム-ベルカリア(Myrothecium verrucaria) IAM 5063 73 3R 56 / 44 >99 (2R'3R) (2R3S) Coriolus consors NBRC 9078 87 3R 74/26> 99 (2 .3R) (2S.3) CriniDellis stipitaria NBRC 30259 75 3R 40/60 35 (2R'3R) 60 (2S, 3R) Myrothecium verrucaria IAM 5063 73 3R 56/44> 99 (2R'3R) (2R3S)
' ヌス-ラコム亍ィ(Panus lacomtei) NBRC 31653 99 3R 91 / 9 >99 (2R,3R) 73 (2S,3R) ファネロカエテ'ゥリソスポリウ厶(Phanerochaete chrvsosporium) NBRC 'Panus lacomtei NBRC 31653 99 3R 91/9> 99 (2R, 3R) 73 (2S, 3R) Phanerochaete' Phanerochaete chrvsosporium NBRC
22 89 3R 95 / 5 78 (2R,3R) 81 (2S.3R) 31249  22 89 3R 95/5 78 (2R, 3R) 81 (2S.3R) 31249
プレクトスファエレラ'ククメリナ:PlectosphaereHa cucumerina) NBRC  PlectosphaereHa cucumerina) NBRC
82 3R 73 / 27 >99 C2R.3R) 36 (2R.3S) 30005  82 3R 73/27> 99 C2R.3R) 36 (2R.3S) 30005
アンべロプシス-ピナセァ(Umbeloqsis vinacea) NBRC 6738 93 3R 15 / 85 >99 (2R.3R) 96 (2S.3R) へ レ丁インリウム-二へ才ストフ卜サム(Verbicillium niveostratosum  Umbeloqsis vinacea NBRC 6738 93 3R 15/85> 99 (2R.3R) 96 (2S.3R) Lecho Indium-Verbicillium niveostratosum
96 3R 73 / 27 〉99 (2R,3R) 71 (2S,3R) NBRC 5435  96 3R 73/27〉 99 (2R, 3R) 71 (2S, 3R) NBRC 5435
Figure imgf000037_0002
Figure imgf000037_0002
エステル Ester
バクト一トリプトン 1. 6%、バクト一イーストエキス 1%、塩ィ匕ナトリウム 1% (ρΗ7. 0)か らなる培地 50mlを 500ml坂口フラスコに入れて殺菌後、 Escherichia coli HB10 l (pNTDRGl) FERM BP— 08458を植菌し、 37°Cで 24時間振とう培養した。 培養終了後、 2—クロ口ベンゾィル酢酸ェチルエステル 5gとグルコース 4. 8g、酸化 型ニコチンアミドアデニンジヌクレオチド(NAD+) 15mgを添加し、 30%水酸化ナト リウム水溶液で pHを 6. 5に保ちながら、 44時間反応させた。反応終了後、酢酸ェチ ル 150mlで 2回抽出し、得られた有機相を減圧濃縮し、油状の 2—クロロー 3—ヒドロ キシー 3—フエ-ルプロピオン酸ェチルエステル 4. 8gを得た。得られたものを実施例 4記載の方法に従!ヽ分析したところ、 Anti/Syn= 99. 2/0. 8、 Anti体(2S, 3S) の光学純度は 99. 4%e. e.であった。 Put 50 ml of medium consisting of Bacto-tryptone 1.6%, Bacto-yeast extract 1%, sodium chloride 1% (ρΗ7.0) into a 500 ml Sakaguchi flask and sterilize it. Escherichia coli HB10 l (pNTDRGl) FERM BP — 08458 was inoculated and cultured with shaking at 37 ° C for 24 hours. After completion of the culture, add 5 g of 2-chlorobenzoyl acetate ethyl ester, 4.8 g of glucose and 15 mg of oxidized nicotinamide adenine dinucleotide (NAD +), and maintain the pH at 6.5 with 30% aqueous sodium hydroxide solution. The reaction was allowed to proceed for 44 hours. After completion of the reaction, the reaction mixture was extracted twice with 150 ml of ethyl acetate, and the resulting organic phase was concentrated under reduced pressure to obtain 4.8 g of oily 2-chloro-3-hydroxy-3-phenylpropionic acid ethyl ester. The obtained product was analyzed according to the method described in Example 4. As a result, Anti / Syn = 99.2 / 0.8, and the optical purity of the Anti form (2S, 3S) was 99.4% ee. .
産業上の利用可能性 Industrial applicability
本発明により、医薬品中間体として有用な(2R, 3R)及び(2S, 3S)— 3—フエ-ルイ ソセリン誘導体を、簡便かつ工業的に有利に製造できる。 According to the present invention, (2R, 3R) and (2S, 3S) -3-phenol-leucinerine derivatives useful as pharmaceutical intermediates can be conveniently and industrially advantageously produced.

Claims

請求の範囲 The scope of the claims
[1] 一般式 (1) ;  [1] General formula (1);
[化 1]
Figure imgf000039_0001
[Chemical 1]
Figure imgf000039_0001
(式中、 R1は置換基を有していてもよいフエ-ル基を表し、 R2は水素原子、アルカリ 金属、アルカリ土類金属又は窒素性塩基を表し、 * は不斉炭素原子でありその立体 配置は(2R, 3S)あるいは(2S, 3R)であることを表す)で表される化合物と、アンモ ユアとの反応により得られる、一般式(2); (In the formula, R 1 represents an optionally substituted phenol group, R 2 represents a hydrogen atom, an alkali metal, an alkaline earth metal, or a nitrogenous base, and * represents an asymmetric carbon atom. There is a general configuration (2) obtained by reacting a compound represented by (2R, 3S) or (2S, 3R) and ammonia.
[化 2]
Figure imgf000039_0002
[Chemical 2]
Figure imgf000039_0002
(式中、 R1及び R2は前記と同じ意味を表し、 * は不斉炭素原子でありその立体配置 (Wherein R 1 and R 2 represent the same meaning as described above, * is an asymmetric carbon atom and its configuration
2  2
は(2R, 3R)あるいは(2S, 3S)であることを表す)で表される化合物を、さらに晶析 工程に付すことを特徴とする、前記式 (2)で表される化合物の製造法。  Wherein the compound represented by (2R, 3R) or (2S, 3S) is further subjected to a crystallization step, wherein the compound represented by the formula (2) is produced. .
[2] 請求項 1記載の方法で得られた前記式(2)で表される化合物をエステルイ匕し、一般 式 (3) ;  [2] The compound represented by the formula (2) obtained by the method according to claim 1, is esterified, and is represented by the general formula (3);
[化 3]
Figure imgf000039_0003
[Chemical 3]
Figure imgf000039_0003
(式中、 R1及び * は前記と同じ意味を表し、 R3は C ルキル基を表す)で表 (Wherein R 1 and * represent the same meaning as described above, and R 3 represents a C alkyl group).
2 1〜Cのア 2 1 to C
4  Four
される化合物を得ることを特徴とする、前記式 (3)で表される化合物の製造法。  A method for producing a compound represented by the formula (3), characterized in that:
[3] 得られた前記式 (3)で表される化合物をさらに晶析工程に付すことを特徴とする、請 求項 2記載の前記式(3)で表される化合物の製造法。  [3] The process for producing a compound represented by the formula (3) according to claim 2, wherein the obtained compound represented by the formula (3) is further subjected to a crystallization step.
[4] 前記式(2)で表される化合物の晶析工程を、クロロアルカン類、置換ベンゼン類、工 一テル類、アルコール類、アルカン類、エステル類、ケトン類及び水からなる群力 選 択される 1種以上の溶媒を用いて行う請求項 1〜3のいずれかに記載の製造法。 [5] 前記式 (2)で表される化合物の晶析工程を、一般式 (4); [4] The crystallization process of the compound represented by the formula (2) is performed by selecting a group force consisting of chloroalkanes, substituted benzenes, industrial esters, alcohols, alkanes, esters, ketones and water. The production method according to any one of claims 1 to 3, which is carried out using one or more selected solvents. [5] A crystallization step of the compound represented by the formula (2) is performed by the general formula (4);
R3OH (4) R 3 OH (4)
(式中、 R3は C〜Cのアルキル基を表す)で表されるアルコール類及び水力 選択 (Wherein R 3 represents a C to C alkyl group)
1 4  14
される 1種以上の溶媒を用いて行う請求項 4に記載の製造法。  The production method according to claim 4, which is carried out using one or more kinds of solvents.
[6] 前記式(2)で表される化合物の晶析温度が— 20〜80°Cである請求項 1〜5のいず れかに記載の製造法。 6. The production method according to any one of claims 1 to 5, wherein the crystallization temperature of the compound represented by the formula (2) is -20 to 80 ° C.
[7] 一般式 (1) ; [7] General formula (1);
[化 4] [Chemical 4]
Figure imgf000040_0001
Figure imgf000040_0001
(式中、 R1は置換基を有していてもよいフエ-ル基を表し、 R2は水素原子、アルカリ 金属、アルカリ土類金属又は窒素性塩基を表し、 * は不斉炭素原子でありその立体 配置は(2R, 3S)あるいは(2S, 3R)であることを表す)で表される化合物と、アンモ ユアとの反応により、一般式(2); (In the formula, R 1 represents an optionally substituted phenol group, R 2 represents a hydrogen atom, an alkali metal, an alkaline earth metal, or a nitrogenous base, and * represents an asymmetric carbon atom. The steric configuration is represented by (2R, 3S) or (2S, 3R), and the reaction between the compound represented by general formula (2);
[化 5]
Figure imgf000040_0002
[Chemical 5]
Figure imgf000040_0002
(式中、 R1及び R2は前記と同じ意味を表し、 * は不斉炭素原子でありその立体配置 (Wherein R 1 and R 2 represent the same meaning as described above, * is an asymmetric carbon atom and its configuration
2  2
は(2R, 3R)あるいは(2S, 3S)であることを表す)で表される化合物とし、続いてこれ をエステル化し、得られる一般式(3); Is a compound represented by (2R, 3R) or (2S, 3S)), which is then esterified, and the resulting general formula ( 3 );
[化 6]
Figure imgf000040_0003
[Chemical 6]
Figure imgf000040_0003
(式中、 R1及び * は前記と同じ意味を表し、 R3は C〜Cのアルキル基を表す)で表 (Wherein R 1 and * represent the same meaning as described above, and R 3 represents a C to C alkyl group).
2 1 4  2 1 4
される化合物を、さらに晶析工程に付すことを特徴とする、前記式 (3)で表される化 合物の製造法。  The method for producing a compound represented by the formula (3), wherein the compound is further subjected to a crystallization step.
前記式(3)で表される化合物の晶析工程を、クロロアルカン類、置換ベンゼン類、工 一テル類、アルコール類、アルカン類、エステル類、ケトン類及び水からなる群力 選 択される 1種以上の溶媒を用いて行う請求項 7記載の製造法。 The crystallization process of the compound represented by the formula (3) is carried out by chloroalkanes, substituted benzenes, 8. The production method according to claim 7, wherein the process is carried out using one or more solvents selected from the group consisting of monotels, alcohols, alkanes, esters, ketones and water.
[9] 晶析温度が― 20〜80°Cである請求項 7又は 8に記載の晶析法。 [9] The crystallization method according to claim 7 or 8, wherein the crystallization temperature is -20 to 80 ° C.
[10] 前記式(1)で表される化合物とアンモニアの反応において、アンモニアの使用量が 前記式(1)で表される化合物に対して 1〜100モル倍量である請求項 1〜9のいずれ かに記載の製造法。 [10] In the reaction of the compound represented by the formula (1) with ammonia, the amount of ammonia used is 1 to 100 mole times the compound represented by the formula (1). The manufacturing method in any one of.
[11] 前記式(1)で表される化合物とアンモニアの反応において、反応温度が 0〜: LOO°C である請求項 1〜10のいずれかに記載の製造法。  [11] The process according to any one of [1] to [10], wherein in the reaction of the compound represented by the formula (1) and ammonia, the reaction temperature is 0 to LOO ° C.
[12] 前記式(1)で表される化合物とアンモニアの反応を、水、又は水と有機溶媒の混合 溶媒中で行うことを特徴とする請求項 1〜11のいずれかに記載の製造法。 [12] The process according to any one of claims 1 to 11, wherein the reaction between the compound represented by the formula (1) and ammonia is carried out in water or a mixed solvent of water and an organic solvent. .
[13] 前記式(1)で表される化合物が、一般式 (5); [13] The compound represented by the formula (1) is represented by the general formula (5);
[化 7]
Figure imgf000041_0001
[Chemical 7]
Figure imgf000041_0001
(式中、 R1及び R3は前記と同じ意味を表し、 Xはハロゲン原子を表す)で表される化 合物のカルボ二ル基を不斉還元し、得られた一般式(6); (Wherein R 1 and R 3 represent the same meaning as described above, and X represents a halogen atom), the carbonyl group of the compound represented by the following general formula (6) ;
[化 8]
Figure imgf000041_0002
[Chemical 8]
Figure imgf000041_0002
(式中、
Figure imgf000041_0003
R3及び Xは前記と同じ意味を表し、 *は不斉炭素原子を表す)で表され る化合物を、塩基で処理して環化した後、エステル基を加水分解することより得られ たものである請求項 1〜12のいずれかに記載の製造法。
(Where
Figure imgf000041_0003
R 3 and X have the same meaning as described above, * represents an asymmetric carbon atom), and obtained by hydrolyzing the ester group after treatment with a base and cyclization The production method according to any one of claims 1 to 12.
[14] 前記式(1)で表される化合物が、前記式(5)で表される化合物のカルボニル基を不 斉還元し、得られた一般式 (7); [14] The compound represented by the formula (1) asymmetrically reduces the carbonyl group of the compound represented by the formula (5), and the resulting general formula (7);
[化 9]
Figure imgf000041_0004
(式中、 R\ R3、 X及び * は前記と同じ意味を表す)で表される化合物を、塩基で処
[Chemical 9]
Figure imgf000041_0004
(Wherein R \ R 3 , X and * represent the same meaning as described above)
2  2
理して環化した後、エステル基を加水分解することより得られたものである請求項 1〜 13のいずれかに記載の製造法。  The production method according to any one of claims 1 to 13, which is obtained by hydrolyzing an ester group after cyclization.
[15] 前記式(5)で表される化合物の不斉還元を、当該化合物を 3S選択的又は 3R選択 的に還元する能力を有する酵素源を作用させることにより行うことを特徴とする、請求 項 13又は 14に記載の製造法。  [15] The asymmetric reduction of the compound represented by the formula (5) is performed by acting an enzyme source capable of 3S-selectively or 3R-selectively reducing the compound. Item 15. The method according to Item 13 or 14.
[16] 3S選択的な酵素源力 デバリオマイセス (Debarvomvces)属、ピキア (Pichia)属、 ァシディフイリゥム (Acidiohilium)属、デボシァ (Devosia)鼠、ミクロバタテリゥム (腿 crobacterium) fe、ミクロコッカス (Micrococcus) f禺、才クロノくクトフム (Ochrobactr urn)属、ォエノレスコビア (Oerskovia)属、パェニバチルス (Paenibacillus)属、又は シユードモナス (Pseudomonas)属に属する微生物由来の酵素源である請求項 15 記載の製造法。  [16] 3S selective enzyme potential Debarvomvces, Pichia, Acidiohilium, Devosiahi, thigh crobacterium fe, micrococcus 16.The process according to claim 15, which is an enzyme source derived from a microorganism belonging to the genus (Micrococcus) f 禺, the genus Chrono kuttoum (Ochrobactr urn), the genus Oenoscovia (Oerskovia), the genus Paenibacillus, or the genus Pseudomonas. .
[17] (2S, 3S)選択的な酵素源力 デバリオマイセス(Debarvomvces)属、ピキア(Pichi [17] (2S, 3S) Selective enzyme source Debarvomvces, Pichia
)属、ァシディフィリウム(AcidiOhilium)属、デボシァ (Devosia)属、ミクロバクテリウ ム (Microbacterium)属、ミクロコッカス (Micrococcus)属、ォクロノくクトラム (Ochr obactrum)属、ォエノレスコビア (Oerskovia)属、ノ ェニノ チノレス (Paenibacillus) 属、又はシユードモナス (Pseudomonas)属に属する微牛.物由来の酵素源である請 求項 16記載の製造法。  ), AcidiOhilium, Devosia, Microbacterium, Micrococcus, Ochr obactrum, Oerskovia, The production method according to claim 16, which is an enzyme source derived from a fine cattle belonging to the genus Paenibacillus or the genus Pseudomonas.
[18] (2S, 3S)選択的な酵素源力 キャンディダ'ソラ- (Ca dida solani)、キャンディダ  [18] (2S, 3S) Selective enzyme source: Candida solani, Candida
'テヌイス(Candida tenuis)、キャンディダ*ゥティリス(Candida utilis)、デバリオ マイセス .ポリモノレファス (Debarvomvces polvmorphus)、デノ リオマイセス .口べ ノレトン,ェ (Debarvomvces robertsiae)、ピ3 r , ·ボビス (Pichia bovis)、 7ンァ ィフイリゥム ·クリプタム(AcidiOhilium crvptum)、ァルスロバクタ ~ .クリスタロポィ ェテス (Arthrobacter crvstallopoietes)、ァノレスロノくクタ一 .ニコチアナェ (Arthr obacter nicotianae 、テホシァ 'リボノラビナ(Devosia riboflavina)、ミクロノヽク テリゥム ·ァノレボレセンス (Microbacterium arborescens)、ミクロコッカス'ノレテウス (Micrococcus luteus)、ォクロノヽクトフム 'スピーシース (Ochrobactrum sp. )、 ォエルスコビア ·ツルバタ(Oerskovia turbata)、バエ-バチルス ·アルべィ(Paeni bacillus alvei)、シュ, ~~ドモナス ·プテイダ (Pseudomonas putitda)、シュ, ~~ド、モ ナス 'ストウトゼリ(Pseudomonas stutzeri)、ストレプトマイセス ·カカオィ サブスピ ~~シ ~~ズ 7ノエンンス (atreptomvces cacaoi suosp. asoensis)、ス卜レフ。卜マ イセス ·コエレセンス (Streptomvces coelescens)、及びストレプトマイセス ·ノヽイド ロゲナンス (Streptomvces hvdrogenans)からなる群より選択される微生物由来 の酵素源である請求項 15記載の製造法。 'Candida tenuis, Candida utilis, Debario myces .Polymonorefus (Debarvomvces polvmorphus), Deno riomyces .Debarvomvces robertsiae, Pi 3 r, Bovis (Pichia bovis) ), 7 affilium cryptam (AcidiOhilium crvptum), Arthrobacter crvstallopoietes (Arthrobacter crvstallopoietes) ), Micrococcus luteus, Ochrobactrum sp., Oerskovia turbata, and Baeni-Bacillus albei (Paeni) bacillus alvei), Gerhard, ~ ~ Pseudomonas-Puteida (Pseudomonas putitda), Gerhard, ~ ~ de, mode eggplant 'Sutoutozeri (Pseudomonas stutzeri), Streptomyces Kakaoi Sabusupi ~ ~ ~ ~ Shi's 7 Noen'nsu (atreptomvces cacaoi suosp. asoensis), Sulev. 16. The production method according to claim 15, which is an enzyme source derived from a microorganism selected from the group consisting of Streptomvces coelescens and Streptomvces hvdrogenans.
[19] (2S, 3S)選択的な酵素源力 デボシァ 'リボフラビナ (too^k riboflavina)由来 のカルボニル還元酵素で形質転換された組換え大腸菌の培養物又はその処理物で ある請求項 18に記載の製造法。  [19] (2S, 3S) Selective enzyme source: The recombinant Escherichia coli culture transformed with a carbonyl reductase derived from Devosia riboflavina (too ^ k riboflavina) or a processed product thereof. Manufacturing method.
[20] 3R選択的な酵素源力 ブレツタノマイセス (Brettanomvces)属、デノ リオマイセス( Debarvomvces)属、ノヽンセ-ァスポラ (Hanseniaspora)属、ィサチェンキア (Issat chenkia)属、タノレイべロマイセス (Kluweromvces)属、メックニコウイァ (Metschni kowia)属、ォガタエア (Qgataea)属、パチソレン (Pachvsolen)属、ピキア (Pichia )属、サッカロマイコプシス(SaccharomvcoOsis)属、シゾサッカロマイセス(Schizos accharomvces)属、トノレラスポラ(Torulasnora)属、ウイリオプシス (Williopsis)属、 コリネパクテリゥム(Corvnebacterium)属、デボシァ (Devosia)属、ストレプトマイセ ス (Streptomvces)属、オークサノレスロン(Auxarthron)属、コリォラス(Coriolus) 属、クリニペリス(CriniOellis)属、ミロセシウム(Myrothecium)属、パヌス(Panus) 属、ファネロカエテ (Phanerochaete)属、プレクトスファエレラ(Plectosuhaerella) 属、アンべロプシス (Umbelopsis)属、又はべノレテイシリゥム(Verticillium)凰に凰 する微生物由来の酵素源である請求項 15記載の製造法。  [20] 3R-selective enzyme powers Brettanomvces, Debarvomvces, Hanseniaspora, Issat chenkia, Kluweromvces , Genus Metschni kowia, genus Qgataea, genus Pachvsolen, genus Pichia, genus SaccharomvcoOsis, genus Schizos accharomvces, genus Tonorella pora Williopsis, Corvnebacterium, Devosia, Streptomvces, Auxarthron, Coriolus, CriniOellis, Myrothecium, Panus, Phanerochaete, Plectosfaerella (Plect 16. The production method according to claim 15, which is an enzyme source derived from a microorganism belonging to the genus osuhaerella, the genus Umbelopsis, or Verticillium.
[21] (2R, 3R)選択的な酵素源力 ブレツタノマイセス (Brettanomvces)属、デバリオマ ィセス (Debarvomvces)属、ノヽンセ-ァスポラ (Hanseniaspora)属、ィサチエンキ ァ (Issatchenkia)属、タノレイべロマイセス (Kluweromvces)属、メックニコウイァ ( Metschnikowia)属、パチソレン(Pachvsolen)属、ピキア(Pichia)属、シゾサッカ 口マイセス (Schizosaccharomvces)属、トノレラスポラ (Torulaspora)属、ウイリオプ シス (Williopsis)属、コリネバタテリゥム (Corvnebacterium)属、デボシァ (Devosi a)属、オークサルスロン(Auxarthron)属、コリオラス(Coriolus)属、パヌス(Panus )属、ファネロカエテ (Phanerochaete)属、プレクトスファエレラ(Plectosphaerella) 属、又はべルティシリウム (Verticillium)属に属する微生物由来の酵素源である請 求項 20記載の製造法。 [21] (2R, 3R) Selective Enzyme Power Brettanomyces (Brettanomvces), Debarvomvces, Hanseniaspora, Issatchenkia, Tanoleberomyces ( Genus Kluweromvces, Metschnikowia, Pachvsolen, Pichia, Schizosaccharomvces, Torulaspora, Williopsis, Genus, Devosia, Auxarthron, Coriolus, Panus The method according to claim 20, which is an enzyme source derived from a microorganism belonging to the genus, genus Phanerochaete, genus Plectosphaerella, or genus Verticillium.
(2R, 3R)選択的な酵素源力 ブレツタノマイセス ·カステルシアヌス(Brettanomvc es custersianus)、キャンティグ *カンタレリー (Candida cantarellii)、キャンディ ダ ·グイリエノレモンディ一 (Candida guilliermondii)、キャンディダ'ノヽェム口-一 ( Candida haemulonii)、キャンアイダ'ノヽフノレコサ (Candida pararugosa)、ゃャ ンデイダ .ピ- (Candida pini)、キャンディダ .クエルシツルサ (Candida auercitr usa)、キャンディダ,ステラタ(Candida stellata)、クリプトコッカス ·テレウス(Crvnt ococcus terreus 、ァノ リオマイセス'マフムス (Debarvomvces maramus 、ァ ノ リオマイセス ·ネノ レンシス (Debarvomvces nepalensis)ゝノヽンセニァスポラ ·ノ ノレビエンシス (Hanseniaspora valbvensis)、ィサチェンキア,テリコラ(Issatchenk ia terricola 、クノレ ベロマイセス ·ポリスホフス (Kluweromvces polvsporus)、 クノレイベロマイセス ·サーモトレランス (Kluweromvces thermotolerans)、メック ニコウイァ .グノレェシー (Metschnikowia gruessii)、ノ チソレン ·タンノフィラス (Pa chvsolen tannophilus)、ピキア ·アングスタ (Pichia aneusta)、ピキア ·フィンラ ンデイカ (Pichia finlandica)、ピキア ·ヘンリシ一 (Pichia henricii)、ピキア ·ホル スアイ一 (Pichia holstii)、サッカロマイセス ·ノ ャヌス (Saccharomvces bavanus )、サッカロマイセス 'ノ ストリアヌス (Saccharomvces pastorianus)、シゾサッカロ マイセス ·ボンべ (Schizosaccharomvces pombe)、 トノレラス ラ ·テノレブノレェキー (Torulaspora delbrueckii)、ウイリオプシス.サツルナス バー サッノレナス(Willi opsis saturnus var. saturnus)、コリ不ノヽクァリゥム ·フフべセンス (Corvnebact erium flavescens)、コリネノ クァリゥム,グノレタミカム (Corvnebacterium glutam icum)、デボシァ ·リボフラビナ (Devosia riboflavina)、オークサルスロン'サクステ リ (Auxarthron thaxteri)、コリォラス ·コンソノレス (Coriolus consors)、ノ ヌス ·ラ コムティ(Panus lacomtei)、ファネロカエテ,クリソスポリゥム(Phanerochaete ch rvsosporium)、フレクトスファェレフ ·ククメリナ (Plectosphaerella cucumerina) 、及びべノレテイシリゥム · -べォストラトサム(Verticillium niveostratosum)からな る群より選択される微生物由来の酵素源である請求項 15記載の製造法。 (2R, 3R) Selective enzyme source Brettanomvces custersianus, Cantigue * Candida cantarellii, Candida guilliermondii, Candida 'Candida haemulonii', 'Candida pararugosa', 'Candida pini', 'Candida auercitr usa', 'Candida stellata' , Cryptococcus terreus, Anno riomyces' mahummus Police Hoffs (Kluweromvces polvsporus), Kleweromvces thermotolerans, Meckschnikowia gruessii, Pa chvsolen tannophilus, Pichia aneusta, Pichia finland ica, Pichia finland landica Henrici (Pichia henricii), Pichia holstii (Pichia holstii), Saccharomyces nojanus (Saccharomvces bavanus), Saccharomvces pastorianus, Schizosaccharomyces bombes (Schizosaccharom) Ryeky (Torulaspora delbrueckii), Williopsis. Saturnas bar Sanorenas (Willi opsis saturnus var. Saturnus), Corvinebact erium flavescens, Corineno quarium, Gnoretamicam (Corvnebacterium glutam icum), Devosia riboflavina, Auxarthron thaxteri, Coriolus consors, Panus lacomtei, Phanerochaete, Chrvospolet From Plectosphaerella cucumerina and Verticillium niveostratosum 16. The production method according to claim 15, which is a source of an enzyme derived from a microorganism selected from the group consisting of:
一般式 (5) ; Formula (5);
[化 10]
Figure imgf000045_0001
[Chemical 10]
Figure imgf000045_0001
(式中、 R1は置換基を有していてもよいフエ-ル基を表し、 R3は C〜Cのアルキル基 (In the formula, R 1 represents a phenyl group which may have a substituent, and R 3 represents a C to C alkyl group.
1 4  14
を表し、 Xはハロゲン原子を表す)で表される化合物に、当該化合物のカルボニル基 を立体選択的に還元する能力を有する酵素源を作用させることにより、一般式 (7); [化 11]
Figure imgf000045_0002
And X represents a halogen atom) by reacting an enzyme source capable of stereoselectively reducing the carbonyl group of the compound with a compound represented by the general formula (7);
Figure imgf000045_0002
(式中、 R R3及び Xは前記と同じ意味を表し、 * は不斉炭素原子でありその立体 (Wherein RR 3 and X are as defined above, * is an asymmetric carbon atom and
2  2
配置は(2R, 3R)あるいは(2S, 3S)であることを表す)で表される化合物を製造し、 かつ、 Producing a compound represented by (2R, 3R) or (2S, 3S), and
デバリオマイセス (Debarvomvces)属、ピキア (Pichia)属、ァシディフィリウム (Acid iphilium)属、デボシァ (Devosia)属、ミクロノくクテリゥム(Microbacterium)属、ミク ロコッカス(Micrococcus)属、ォクロノ クトラム (Ochrobactrum)属、才エノレスコビア (Oerskovia)属、バエ二バチルス (Paenibacillus)属、又はシユードモナス(Pseud mso ^)属に属する微生物に由来し、前記式(5)で表される化合物を (2S, 3S)選 択的に還元する能力を有する酵素源を用いて、前記式(7)で表される化合物の(2S , 3S)体を製造するか、又は、 The genus Debarvomvces, Pichia, Acid iphilium, Devosia, Microbacterium, Micrococcus, Ochrobactrum, The compounds represented by the formula (5) are selectively (2S, 3S) derived from microorganisms belonging to the genus Enerskovia, Paenibacillus, or Pseud mso ^. (2S, 3S) of the compound represented by the formula (7) is produced using an enzyme source having the ability to reduce, or
ブレツタノマイセス (Brettanomvces)属、テノ リオマイセス(Debarvomvces)属、ノヽ ンセ -ァスポラ (Hanseniaspora)属、ィサチェンキア (Issatchenkia)属、タノレイべ口 マイセス (Kluweromvces)属、メックニコウイァ (Metschnikowia)属、ノ チソレン( Pachvsolen 、ピキア (Pichia)属、シゾサッカロマイセス (Schizosaccharomvces) 属、トノレラスポラ(Torulasnora)属、ウイリオプシス (Williopsis)属、コリネバタテリゥム (CorYnebacterium)属、テボシァ (I)evosi¾)属、オークサノレスロン (Auxarthron) 属、コリオラス(Coriolus)属、パヌス(Panus)属、ファネロカエテ (Phanerochaete) 属、プレクトスファエレラ(Plectosnhaerella)属、又はべノレテイシリゥム(Verticilliu )属に属する微生物に由来し、前記式(5)で表される化合物を (2R, 3R)選択的に 還元する能力を有する酵素源を用いて、前記式(7)で表される化合物の(2R, 3R) 体を製造することを特徴とする、前記式 (7)で表される化合物の製造法。 Brettanomvces, Tenbariomyces, Debarvomvces, Hanseniaspora, Issatchenkia, Tanolei, Kluweromvces, Metschnikv , Pichia, Schizosaccharomvces, Torulasnora, Willopsis, Corynebacterium, Tebosia (I) evosi¾, Oak sanorethron ) Derived from a microorganism belonging to the genus, Coriolus, Panus, Phanerochaete, Plectosnhaerella, or Verticilliu, and represented by the formula (5) (2R, 3R) of the compound represented by the formula (7) is produced using an enzyme source having the ability to selectively reduce the compound (2R, 3R) A method for producing a compound represented by formula (7):
[24] (2S, 3S)選択的な酵素源力 キャンディダ'ソラ- (C^ did^ solani)、キャンディダ  [24] (2S, 3S) Selective enzyme source Candida 'sola- (C ^ did ^ solani), Candida
'テヌイス(Candida tenuis)、キャンディダ*ゥティリス(Candida utilis)、デバリオ マイセス .ポリモノレファス (Debarvomvces polvmorphus)、デノ リオマイセス .口べ ノレトン,ェ (Debarvomvces robertsiae)、ピ3 r , ·ボビス (Pichia bovis)、 7ンァ ィフイリゥム ·クリプタム(AcidiOhilium crvptum)、ァルスロバクタ ~ .クリスタロポィ ェテス (Arthrobacter crvstallopoietes)、ァノレスロノくクタ一 .ニコチアナェ (Arthr obacter nicotianae 、テホシァ 'リボノラヒ、、ナ(Devosia riboflavina)、ミクロノヽク テリゥム ·ァノレボレセンス (Microbacterium arborescens)、ミクロコッカス'ノレテウス (Micrococcus luteus)、ォクロノヽクトフム 'スピーシース (Ochrobactrum sp. )、 ォエルスコビア .ツルバタ (Qerskovia turbata)、バエ-バチルス ·アルべィ (Paeni bacillus alvei)、ンュ' ~~トモナス ·プアイダ (Pseudomonas putitaa)、ンュ ~~ モ ナス,ストウトゼリ(Pseudomonas stutzeri)、ストレプトマイセス ·カカオィ サブスピ ~~シ ~~ズ 7ノエンンス (atreptomvces cacaoi suosp. asoensis)、ス卜レフ。卜マ イセス ·コエレセンス (StrePtomvces coelescens)、及びストレプトマイセス ·ノヽイド ロゲナンス (Streptomvces hvdrogenans)からなる群より選択される微生物由来 の酵素源である請求項 23記載の製造法。 'Candida tenuis, Candida utilis, Debario myces .Polymonorefus (Debarvomvces polvmorphus), Deno riomyces .Debarvomvces robertsiae, Pi 3 r, Bovis (Pichia bovis) ), 7 affilium cryptam (AcidiOhilium crvptum), Arthrobacter crvstallopoietes (Arthrobacter crvstallopoietes), Arthr obacter nicotianae, Flavor (Microbacterium arborescens), Micrococcus luteus, Ochrobactrum sp., Qerskovia turbata, Paeni bacillus alvei, N ' Tomonas Puida (Pseudomonas putitaa), ~~ Monas, Stoutzeri (Pseudomonas stutzeri), Streptomyces cacaoi subspice ~~ Shi ~~ s 7 Noens (atreptomvces cacaoi suosp. Asoensis), Su 卜 refu. 卜 StylPtomvces coelescens, and Streptomyces 24. The production method according to claim 23, which is an enzyme source derived from a microorganism selected from the group consisting of Streptomvces hvdrogenans.
[25] (2S, 3S)選択的な酵素源力 デボシァ ·リボフラビナ (Devosia riboflavina)由来 のカルボニル還元酵素で形質転換された組換え大腸菌の培養物又はその処理物で ある請求項 24に記載の製造法。  [25] (2S, 3S) Selective enzyme source 25 The production according to claim 24, which is a recombinant Escherichia coli culture transformed with a carbonyl reductase derived from Devosia riboflavina or a treated product thereof. Law.
[26] (2R, 3R)撰択的な酵素源力 ブレツタノマイセス ·カステルシアヌス(Brettanomvc es custersianus 、キャンテイタ 'カンタレリー (Candida cantarellii)、やヤンティ ダ ·グイリエノレモンディ一 (Candida guilliermondii)、キャンディダ'ノヽェム口-一 ( Candida haemulonii)、キャンケイダ ·ノヽフノレコサ ( andida pararugpsa)、キヤ ンデイダ .ピ- (Candida pini)、キャンディダ .クエルシツルサ (Candida auercitr usa)、キャンディダ,ステラタ(Candida stellata)、クリプトコッカス ·テレウス(Crvnt ococcus terreus)、ァノ リオマ でス ·マフムス (Debarvomvces maramus)、ァ ノ リオマイセス ·ネノ レンシス (Debarvomvces nepalensis)ゝノヽンセニァスポラ ·ノ ノレビエンシス (Hanseniaspora valbvensis)、ィサチェンキア ·テリコラ(Issatchenk ia terricola)、クノレ ベロマイセス ·ポリスホフス (Kluweromvces poivsporus)、 クノレイベロマイセス ·サーモトレランス (Kluweromvces thermotolerans)、メック ニコウイァ .グノレェシー (Metschnikowia gruessii)、ノ チソレン ·タンノフィラス (Pa chvsolen tannophilus)、ピキア ·アングスタ (Pichia angusta)、ピキア ·フィンラ ンデイカ (Pichia finlandica)、ピキア ·ヘンリシ一 (Pichia henricii)、ピキア ·ホル スアイ一 (Pichia holstii)、サッカロマ セス ·ノ ャヌス (Saccharomvces bavanus )、サッカロマイセス 'ノ ストリアヌス (Saccharomvces pastorianus)、シゾサッカロ マイセス ·ボンべ (Schizosaccharomvces pombeJ、トノレラスポラ ·ァノレブノレェキー (Torulaspora delbrueckii)、ウイリオプシス.サツルナス バー サッノレナス(Willi opsis saturnus var. saturnus)、コリ不ノヽクァリゥム ·フフべセンス (Corvnebact erium flavescens)、コリネノ クテリゥム,グノレタミカム (じ orvnebacterium glutam icum)、デボシァ ·リボフラビナ (Devosia riboflavina)、オークサルスロン'サクステ リ (Auxarthron thaxteri)、コリォラス ·コンソノレス (Coriolus consors)、ノ ヌス ·ラ コムティ(Panus lacomtei)、ファネロカエテ ·クリソスポリゥム(Phanerochaete ch rvsosporium 、プレクトスファェレフ ·ククメリナ (Plectosphaerella cucumerina) 、及びべノレテイシリゥム ·二べォストラトサム(Verticillium niveostratosum)からな る群より選択される微生物由来の酵素源である請求項 23記載の製造法。 [26] (2R, 3R) Selective Enzyme Source Brettanomvces custersianus, Candida cantarellii, and Candida guilliermondii , Candida haemulonii, Candida haemulonii, andida pararugpsa Candida pini, Candida auercitr usa, Candida stellata, Crvnt ococcus terreus, Debarvomvces maramus, Debarvomvces maramus Debarvomvces nepalensis, Hanseniaspora valbvensis, Issatchenk ia terricola, Thermos , Metschnikowia gruessii, Pachvsolen tannophilus, Pichia angusta, Pichia finlandica, Pichia henricii, Pichia henricii Pichia holstii, Saccharomvces bavanus, Saccharomyces' Storiacharus (Saccharomvces pastorianus), Schizosaccharomes pombeJ Bar sagnolenus (Willi opsis saturnus var. Saturnus), Corinebacterium flavescens, Coryneno cuterium, Gnoretamicum (Diorvnebacterium glutam icum), Devosia riboflavina (Devosia riboflavina) (Auxarthron thaxteri), Coriolus consors, Pannus lacomtei, Phanerochaete ch rvsosporium, Plectosphaerella cucumerina 24. The production method according to claim 23, which is an enzyme source derived from a microorganism selected from the group consisting of na), and Verticillium niveostratosum.
[27] R1が無置換のフエ-ル基である請求項 1〜26のいずれかに記載の製造法。 27. The production method according to claim 1, wherein R 1 is an unsubstituted phenol group.
[28] R2が水素原子又はアルカリ金属である請求項 1〜22のいずれかに記載の製造法。 28. The production method according to claim 1, wherein R 2 is a hydrogen atom or an alkali metal.
[29] 前記式(2)の立体配置が(2R, 3R)体であることを特徴とする請求項 1〜22のいず れかに記載の製造法。 [29] The production method according to any one of [1] to [22], wherein the configuration of the formula (2) is a (2R, 3R) isomer.
PCT/JP2007/053097 2006-02-21 2007-02-20 Process for producing (2r,3r)- and (2s,3s)-3-phenylisoserine derivatives WO2007097336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-044263 2006-02-21
JP2006044263A JP2009114065A (en) 2006-02-21 2006-02-21 Method for producing (2r,3r) and (2s,3s)-3-phenylisoserine derivative

Publications (1)

Publication Number Publication Date
WO2007097336A1 true WO2007097336A1 (en) 2007-08-30

Family

ID=38437375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053097 WO2007097336A1 (en) 2006-02-21 2007-02-20 Process for producing (2r,3r)- and (2s,3s)-3-phenylisoserine derivatives

Country Status (2)

Country Link
JP (1) JP2009114065A (en)
WO (1) WO2007097336A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106811432A (en) * 2016-12-31 2017-06-09 浙江医药高等专科学校 A kind of oerskovia turbata and the application in (R) 3 chlorophenethylol is prepared

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE449062T1 (en) * 2007-02-22 2009-12-15 Indena Spa METHOD FOR PRODUCING (2R,3S)-3-PHENYLISOSERINE METHYL ESTER ACETATE SALT
CN101907263B (en) 2009-05-09 2013-08-28 西铁城电子股份有限公司 Lens member and optical unit using said lens member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035025A1 (en) * 1997-02-07 1998-08-13 Kaneka Corporation Novel carbonyl reductase, gene that encodes the same, and method of utilizing these
JP2003340287A (en) * 1991-08-26 2003-12-02 Research Corp Technologies Inc Chiral catalyst, catalytic oxidation, and disproportionation reaction, and production of epoxychroman and taxol
WO2004027055A1 (en) * 2002-09-19 2004-04-01 Kaneka Corporation Novel carbonyl reductase, gene thereof and method of using the same
JP2005500322A (en) * 2001-07-03 2005-01-06 アルタナ ファルマ アクチエンゲゼルシャフト Method for producing 3-phenylisoserine
JP2005507859A (en) * 2001-06-27 2005-03-24 ナプロ バイオセラピューティクス,インコーポレイテッド Chiral resolution method for preparing compounds useful for the synthesis of taxanes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340287A (en) * 1991-08-26 2003-12-02 Research Corp Technologies Inc Chiral catalyst, catalytic oxidation, and disproportionation reaction, and production of epoxychroman and taxol
WO1998035025A1 (en) * 1997-02-07 1998-08-13 Kaneka Corporation Novel carbonyl reductase, gene that encodes the same, and method of utilizing these
JP2005507859A (en) * 2001-06-27 2005-03-24 ナプロ バイオセラピューティクス,インコーポレイテッド Chiral resolution method for preparing compounds useful for the synthesis of taxanes
JP2005500322A (en) * 2001-07-03 2005-01-06 アルタナ ファルマ アクチエンゲゼルシャフト Method for producing 3-phenylisoserine
WO2004027055A1 (en) * 2002-09-19 2004-04-01 Kaneka Corporation Novel carbonyl reductase, gene thereof and method of using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCOLASTICO C. ET AL.: "Diastereo- and Enantioselective Synthesis of Fluorinated Threonines", SYNTHESIS, no. 9, 1985, pages 850 - 855, XP001183196 *
WUTS P.G.M. ET AL.: "Synthesis of (2R,3S)-isobutyl phenylisoserinate, the Taxol side chain, from ethyl benzoylacetate", TETRAHEDRON: ASYMMETRY, vol. 11, no. 10, 2000, pages 2117 - 2123, XP004205768 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106811432A (en) * 2016-12-31 2017-06-09 浙江医药高等专科学校 A kind of oerskovia turbata and the application in (R) 3 chlorophenethylol is prepared
CN106811432B (en) * 2016-12-31 2020-04-28 浙江医药高等专科学校 Erysivelum pratense and application thereof in preparation of (R) -3-chlorobenzene ethanol

Also Published As

Publication number Publication date
JP2009114065A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
EP2488505B1 (en) Method for preparation of carbamic acid (r)-1-aryl-2-tetrazolyl-ethyl ester
US8980592B2 (en) Process for the enantioselective enzymatic reduction of hydroxy keto compounds
JP5090910B2 (en) Process for producing optically active 2- (N-substituted aminomethyl) -3-hydroxybutyric acid esters
TWI287579B (en) Stereoselective reduction of substituted oxo-butanes
WO2007097336A1 (en) Process for producing (2r,3r)- and (2s,3s)-3-phenylisoserine derivatives
JP3703928B2 (en) Process for producing optically active N-benzyl-3-pyrrolidinol
WO2000037666A1 (en) Process for producing (r)-2-hydroxy-1-phenoxypropane derivative
JP4744916B2 (en) Method for isolating and obtaining optically active alkyl alcohol derivative
JPWO2006129628A1 (en) Process for producing optically active 2-substituted propanal derivative
US20050014818A1 (en) Process for producing optically active chroman derivative and intermediate
JP6844073B1 (en) Method for Producing (1R, 3R) -3- (Trifluoromethyl) Cyclohexane-1-ol and its Intermediate
WO2006131933A1 (en) Enzymatic reduction of keto groups in 3-keto-propionic acid derivatives
JP5474280B2 (en) Process for producing optically active trans-form nitrogen-containing cyclic β-hydroxyester
JP3843692B2 (en) Process for the production of optically active endo-norborneol
JP5954539B2 (en) Method for producing 1-benzyl-4-hydroxy-3-piperidinecarboxylic acid alkyl ester
JP2004075561A (en) Method for producing optically active mandelic acid amide derivative
JP2002233392A (en) Method for producing optically active 4-bromo-3- hydroxybutanoate
WO1997010355A1 (en) Process for producing optically active acid amide
JP2004041131A (en) Method for producing 4-hydroxyindole
JP2002281991A (en) Method for producing (r)-2-hydroxy-1-phenoxypropane derivative with producing of rearranged side-product reduced
JPWO2005044973A1 (en) Novel acetoacetyl CoA reductase and method for producing optically active alcohol
MXPA97001992A (en) Procedure for preparing compounds of trans-3-phenylglicidamide optically acti
EP2241629A1 (en) Process for production of optically active ortho-substituted mandelic acid compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP