WO2007097073A1 - Gene encoding regulatory subunit of acetolactate synthase activity and use thereof - Google Patents

Gene encoding regulatory subunit of acetolactate synthase activity and use thereof Download PDF

Info

Publication number
WO2007097073A1
WO2007097073A1 PCT/JP2006/322059 JP2006322059W WO2007097073A1 WO 2007097073 A1 WO2007097073 A1 WO 2007097073A1 JP 2006322059 W JP2006322059 W JP 2006322059W WO 2007097073 A1 WO2007097073 A1 WO 2007097073A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
yeast
seq
protein
amino acid
Prior art date
Application number
PCT/JP2006/322059
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Nakao
Yukiko Kodama
Tomoko Shimonaga
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Publication of WO2007097073A1 publication Critical patent/WO2007097073A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G1/00Preparation of wine or sparkling wine
    • C12G1/02Preparation of must from grapes; Must treatment and fermentation
    • C12G1/0203Preparation of must from grapes; Must treatment and fermentation by microbiological or enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C12/00Processes specially adapted for making special kinds of beer
    • C12C12/002Processes specially adapted for making special kinds of beer using special microorganisms
    • C12C12/004Genetically modified microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C12/00Processes specially adapted for making special kinds of beer
    • C12C12/002Processes specially adapted for making special kinds of beer using special microorganisms
    • C12C12/006Yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms

Definitions

  • the present invention relates to a gene encoding a acetolactate synthase activity regulatory subunit and use thereof. More particularly, the present invention relates to a brewer's yeast producing a liquor with excellent flavor, a liquor produced using the yeast, a method for producing the same. More specifically, the present invention relates to a product by suppressing the expression level of a gene ILV6 encoding a lactic acid synthase activity-regulating subunit of brewing yeast, particularly the nonScILV6 gene characteristic of bi / yeast. The present invention relates to a vicinal diketone which is an off-flavor of the yeast, particularly a yeast with reduced diacetyl production, and a method for producing an alcoholic beverage using the yeast. Background Technology ''s yeast producing a liquor with excellent flavor, a liquor produced using the yeast, a method for producing the same. More specifically, the present invention relates to a product by suppressing the expression level of a gene ILV6 encoding a lactic acid synth
  • diacetyl (DA) odor is one of the typical off-flavors in brewed liquors such as beer, sake and wine.
  • DA odor (expressed as stuffy odor or butter odor in beer, or scented odor in sake) is caused by the presence of vicinal diketones (hereinafter referred to as VDK) mainly consisting of DA in the product,
  • VDK vicinal diketones
  • VDKs in liquors are broadly divided into DA and 2,3-pentanedione (PD).
  • DA and PD are produced by non-enzymatic reactions that do not involve yeast, using ⁇ -case lactic acid and hyase 'hydroxybutyric acid as precursors, valine and isoleucine biosynthesis intermediates, respectively.
  • VM DA and PD
  • -acetohydroxy acids hyacetolactic acid and -acetohydroxybutyric acid
  • Yeast breeding that stably reduces these can not only facilitate the production management of alcoholic beverages, but also expand the possibilities of new product development.
  • acetolactic acid synthase is an enzyme that converts pyruvate or ⁇ -oxobutyric acid to ⁇ -acetolactic acid or ⁇ -acetohydroxybutyric acid, respectively.
  • a gene encoding yeast acetolactic acid synthase It is known that ILV2 and ILV6 exist, ILV2 encodes the active subunit and ILV6 encodes the regulatory subunit.
  • Japanese Patent Application Laid-Open No. 2002-291465 discloses a method of obtaining mutant strains that are sensitive to analogs of these branched amino acids and selecting a DA low accumulation strain from them.
  • genetically engineered yeasts that regulate the expression level of the ILV3 gene are also reported.
  • the enzymatic activity of the acetate hydroxy acid reductoisomerase encoded by the ILV5 gene increased 5-7 times, and the amount of VM produced decreased to about 40%.
  • An object of the present invention is to breed a VDK, particularly a gene encoding a protein capable of reducing the generation of DA odor in yeast, and to cultivate a VM low-productivity yeast using the protein, and to produce an alcoholic beverage with excellent flavor. It is possible to manufacture.
  • the present invention provides a gene encoding a novel acetolactic acid synthase activity regulating subunit characteristically present in peel yeast, a protein encoded by the gene, a transformed yeast in which expression of the gene is regulated,
  • the present invention relates to a method for controlling the VDK concentration in a product, particularly the DA concentration, by using yeast in which gene expression is regulated.
  • the present invention uses the following polynucleotide, vector or DNA fragment containing the polynucleotide, transformed yeast introduced with the vector or DNA fragment, and the transformed yeast. Providing methods for producing alcoholic beverages.
  • a polynucleotide comprising a polynucleotide encoding a protein having an amino acid sequence having 60% or more identity to the amino acid sequence of SEQ ID NO: 2 and having ability to regulate acetolactic acid synthase activity;
  • polynucleotides having a nucleotide sequence of SEQ ID NO: 1 or polynucleotides having a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 are hyperprecipitated under highly stringent conditions;
  • polynucleotide according to (1) above which comprises a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1.
  • test yeast is cultured, and the protein described in (7) above is quantified, or the gene encoding the case-lactic acid synthase activity-regulating subunit having the base sequence of SEQ ID NO: 1.
  • a method for selecting yeast comprising measuring an expression level and selecting a test yeast having a production amount of the protein or an expression level of the gene according to a target total vicinal diketone production ability or total diacetyl production ability.
  • Reference yeast and test yeast are cultured and the expression level of the gene encoding the lactic acid synthase activity regulatory subunit having the nucleotide sequence of SEQ ID NO: 1 is measured in each yeast.
  • the method for selecting yeast according to (20) above, wherein a test yeast having a low expression is selected.
  • the reference yeast and the test yeast are cultured, the protein described in (7) above in each yeast is quantified, and the test yeast having a smaller amount of the protein than the reference yeast is selected.
  • 20. The method for selecting yeast according to 2). That is, culturing a plurality of yeasts, quantifying the protein described in (7) above in each yeast, and selecting a test mother having a small amount of the protein among them, wherein the yeast described in (20) above is selected Selection method.
  • FIG. 1 is a diagram showing the change over time in the amount of yeast grown in beer test brewing.
  • the horizontal axis shows the fermentation time, and the vertical axis shows the value of 0D660.
  • Fig. 2 is a diagram showing the change over time in the amount of extract consumed in beer test brewing.
  • the horizontal axis shows fermentation time, and the vertical axis shows appearance extract concentration (w / w%).
  • FIG. 3 shows the expression behavior of the nonScILV6 gene in yeast during brewing of beer.
  • the horizontal axis shows the fermentation time, and the vertical axis shows the detected signal brightness.
  • the present inventors have isolated and identified a nonScILV6 gene encoding a acetolactate synthase activity regulatory subunit specific to brewer's yeast, based on the brewer's yeast genome information decoded by the method disclosed in JP-A-2004-283169.
  • This base sequence is shown in SEQ ID NO: 1.
  • the amino acid sequence of the protein encoded by this gene is shown in SEQ ID NO: 2.
  • VDK and its precursor ⁇ -acetohydroxy acid are collectively referred to as “all vicinal diketones”.
  • DA and its precursor hyase lactic acid are collectively referred to as “all diacetyl”. 1: Polynucleotide of the present invention
  • the present invention relates to (a) a polynucleotide comprising a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1; and 0)) a polynucleotide comprising a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide may be DNA or RNA.
  • the polynucleotide targeted by the present invention is not limited to the polynucleotide that codes for the above-mentioned lactic acid synthase activity-regulating subunit derived from brewer's yeast, and is functionally equivalent to this protein.
  • functionally equivalent proteins include: (c) an amino acid sequence of SEQ ID NO: 2, consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted, and Z or added; Examples include proteins having the ability to regulate lactic acid synthase activity.
  • 'As such a protein, in the amino acid sequence of SEQ ID NO: 2, for example, 1 to 100, 1 to 90, 1 to 80, 1 to 70, 1 to 60, 1 to 50, 1 -40, 1-39, 1-38, 1-37, 1-36, 1-35, 1-34, 1-33, 1-32, 1-31, 1 -30, 1-29, 1-28, 1-27, 1-26, 1-25, 1-24, 1-23, 1-22, 1-21, 1 -20, 1-19, 1-18, 1-17, 1-16, 1-15, 1-14, 1-13, 1-12, 1-11, 1 -10, 1-9, 1-8, 1-7, 1-6 (1 to several), 1-5, 1-4, -3, 1-2, 1 Consisting of an amino acid sequence in which one amino acid residue is deleted, substituted, inserted and / or added, and A protein having an ability to regulate trilactic acid synthase activity.
  • such a protein includes (d) the amino acid sequence of SEQ ID NO: 2, about 60% or more, about 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88 % Or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1 % Or higher, 99.2% or higher, 99.3% or higher, 99.4% or higher, '99 .5% or higher, '99 .6% or higher, 99.7% or
  • the present invention also relates to (e) a protein that is hybridized under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1, and that has the ability to regulate acetate lactate synthase activity.
  • polynucleotide that hybridizes under stringent conditions is a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2.
  • a polynucleotide obtained by using a colony hybridization method, a plaque hybridization method, a Southern hybridization method, or the like with all or a part of the probe as a probe.
  • the hybridization method for example, the method described in 'Molecular Cloning 3rd Ed., Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997, etc. can be used.
  • stringent conditions refers to low stringency conditions, Either stringent conditions or highly stringent conditions may be used.
  • Low stringent conditions are, for example, conditions of 5 X SSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide.
  • the “medium stringent conditions” are, for example, conditions of 5 X SS 5 X Denhardt's solution, 0.5% SDS, 50% formamide, and 42 ° C.
  • “High stringent conditions” are, for example, 5 X SS (:, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C.
  • Polynucleotides with high homology (eg, DNA) force S can be expected to be obtained efficiently, however, factors that affect the stringency of high-pridition include temperature, probe concentration, and probe length. Several factors such as ionic strength, time, and salt concentration are conceivable, and those skilled in the art can achieve the same stringency by selecting these factors as appropriate.
  • Alkphos Direct Labeling Reagents manufactured by Amersham Almacia
  • the protocol attached to the kit incubate the labeled probe overnight, then remove the membrane in the primary wash buffer containing 0.1% (w / v) SDS under 55 conditions. After washing, the hybridized polynucleotide (eg DNA) can be detected.
  • polynucleotides that can be hyper-predicted are those that encode the amino acid sequence of SEQ ID NO: 2 when calculated using the same parameters as FASTA, BLAST, etc. About 60% or more, About 70% or more, 71% or more, .72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, .78% or more, 79% or more, 80 % Or higher, 81% or higher, 82% or higher, 83% or higher, 84% or higher, 85% or higher, 86% or higher, 87% or higher, 88% or higher, 89% or higher, 90% or higher, 91% or higher, 92% or higher 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4 Polynucleotides having% or more, 99.5 or more, 99.6 or more, 99.7 or more
  • the polynucleotide of the present invention comprises (j) a polynucleotide that encodes a polynucleotide having a base sequence complementary to the transcript of the polynucleotide (MA) described in (5) above; ) A polynucleotide that encodes an RNA that suppresses the expression of the polynucleotide (DNA) described in (S) above by the RNAi effect; (1) a specific transcript of the polynucleotide (MA) described in (5) above; And (m) a polynucleotide encoding an RNA that suppresses the expression of the polynucleotide (DNA) described in (5) above by a co-suppression effect.
  • polynucleotides can be suppressed in the expression of the polynucleotides (DNA) (a) to (i) in transformed cells into which the vector has been introduced and further incorporated into the vector. Therefore, it can be suitably used for suppressing the expression of the polynucleotide (DNA).
  • polynucleotide encoding RNA having a base sequence complementary to a transcription product of DNA refers to so-called antisense DNA.
  • Antisense technology is known as a method for suppressing the expression of specific endogenous genes, and is described in various literatures (for example, Hirashima and Inoue: Shinsei Chemistry Laboratory 1 Nucleic Acid IV Remnants. Expression (refer to pp. 319-347, 1993, etc.).
  • the sequence of the antisense DNA is preferably a sequence complementary to the endogenous gene or a part thereof, but may not be completely complementary as long as the gene expression can be effectively suppressed.
  • the transcribed RNA preferably has a complementarity of 90% or more, more preferably 95% or more, to the transcript of the target gene.
  • the length of the antisense DNA is at least 15 bases or more, preferably 100 bases or more, and more preferably 500 bases or more.
  • RNAiJ is a phenomenon in which when a double-stranded RNA having the same or similar sequence as the target gene is introduced into a cell, the expression of the introduced foreign gene and target endogenous gene are both suppressed.
  • RNA used here include double-stranded RNA that causes RNA interference of 21 to 25 bases, such as dsRNA (double strand RNA), siRNA (small interfering RNA), or shRNA (short hairpin)
  • dsRNA double strand RNA
  • siRNA small interfering RNA
  • shRNA short hairpin
  • RNA can be locally delivered to a desired site by a delivery system such as a ribosome, and this can be achieved by using a vector that produces the above double mRNA.
  • Methods for preparing and using such double-stranded RNA are known from many literatures (Japanese translations of PCT publication No.
  • the “polynucleotide encoding RNA having an activity of specifically cleaving DNi transcript” generally refers to a ribozyme.
  • Lipozyme is an RNA molecule that has catalytic activity, and inhibits the function of the gene by cleaving the target MA transcript.
  • Various known literatures can also be referred to for the design of lipozymes (for example, FEBS Lett. 228: 228, 1988; FEBS Lett. 239: 285, 1988; Nucl. Acids. Res. 17: 7059, 1989; Nature 323). : 349, 1986; Nucl. Acids. Res. 19: 6751, 1991; Protein Eng 3: 733, 1990; Nucl. Acids Res.
  • RNA that suppresses MA expression by co-suppression effect refers to a nucleotide that inhibits the function of the target DNA by “co-suppression”.
  • co-suppression refers to the introduction of a gene having a sequence identical or similar to a target endogenous gene into a cell by transformation: the introduced foreign gene and the frictional endogenous gene. It refers to each phenomenon in which expression is suppressed.
  • Protein of the Present Invention-The present invention also provides a protein encoded by any of the polynucleotides (a) to (i).
  • a preferred protein of the present invention comprises: an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2; It is a protein having the ability.
  • Such a protein comprises an amino acid sequence in which the number of amino acid residues as described above is deleted, substituted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2, and And a protein having the ability to regulate the activity of the enzyme.
  • Examples of such a protein include a protein having the amino acid sequence having the homology as described above with the amino acid sequence of SEQ ID NO: 2 and having the ability to regulate acetolactic acid synthase activity.
  • deletion, substitution, insertion and Z or addition of one or more amino acid residues in the amino acid sequence of the protein of the present invention means that one or more amino acid residues in one or more amino acid sequences in the same sequence It means that there are amino acid residue deletion, substitution, insertion and / or addition, and two or more of deletion, substitution, insertion and addition may occur simultaneously. Examples of amino acid residues that can be substituted with each other are shown below. Amino acid residues contained in the same group can be substituted for each other.
  • Group A Leucine, Isoleucine, Norleucine, Norin, Norpaline, Alanine, 2-Aminobutanoic acid, Methionine, 0-Methylserine, t-Butylglycine, N-Butylalanin, Cyclohexylalanin;
  • Group B Aspartic acid, Glutamic acid, Isoaspartic acid , Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid; group C: asparagine, glutamine;
  • group D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diamino Propionic acid;
  • Group E proline, 3-hydroxyproline, 4-hydroxyproline;
  • Group F serine, threonine, moserin;
  • Group G phenylalanin, tyrosine.
  • the protein of the present invention can also be produced by chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • a vector according to the present invention contains the polynucleotide (for example, DNA) described in any one of (a) to (i) above.
  • the vector of the present invention usually has (X) a promoter that can be transcribed in yeast cells so as to suppress the expression of the polynucleotide (DNA) described in any of (a) to (i) above.
  • polynucleotides are introduced into a vector containing the polynucleotide according to any one of (j) to (! II) so that the polynucleotide can be expressed.
  • the target gene is introduced into a vector containing the polynucleotide according to any one of (j) to (! II) so that the polynucleotide can be expressed.
  • the target gene is introduced into a vector containing the polynucleotide according to any one of (j) to (! II) so that the polynucleotide can be expressed.
  • the target gene is introduced into a vector containing the polynucleotide according to any one of (j) to (! II) so that the polynucleotide can be expressed.
  • Gene destruction is the gene in the target gene This can be done by adding or deleting single or multiple bases within the region involved in the expression of the product, for example, the coding region ⁇ 3 promoter region, or by deleting these entire regions.
  • known literature can be referred to (for example, Proc. Natl. Acad. Sci. USA, 76, 4951 (1979), Methods in Enzymology, 101, 202 (1983), (See Kaihei 6-253826).
  • any of a multicopy type (YEp type), a single copy type (YCp type), and a chromosomal integration type (Yip type) can be used.
  • YEp type J.. Broach et al., Experimental Manipulat ion of Gene Express ion, Academic Press, New York, 83, 1983
  • YCp50 MD Rose et al., Gene, 60, 237, 1987
  • YIp5 K. Struhl et al., Proc. Natl. Acad. Sci. USA, 76, 1035, 1979
  • Yip type vectors can be easily obtained. .
  • any combination may be used as long as it functions in brewing yeast and is not affected by components in mash.
  • a promoter of the dalyceraldehyde 3 phosphate dehydrogenase gene (TDH3) and a promoter of the 3-phosphodarylate kinase gene (PGK1) can be used.
  • TDH3 dalyceraldehyde 3 phosphate dehydrogenase gene
  • PGK1 3-phosphodarylate kinase gene
  • dieneticin resistance gene G418r
  • copper resistance gene are not available in the case of brewer's yeast.
  • CUP1 Marin et al., Proc. Natl. Acad. Sci. USA, 81, 337 1984
  • cerulenin resistance gene fas2ni, PDR4
  • fas2ni cerulenin resistance gene
  • PDR4 Ashigaki, et al., Biochemistry, 64, 660, 1992, respectively
  • Hussain et al., Gene, 101, 149, 1991 can be used.
  • the vector constructed as described above is introduced into the host yeast.
  • the host yeast include any yeast that can be used for brewing, for example, brewery yeast for beer, wine, sake and the like. Specific examples include yeasts of the genus Saccharomyces, and in the present invention, beer yeasts such as Saccharomyces pas torianus W34 / 70, Saccharomyces carlsberg, etc. Saccharomyces carl sbergens is NCYC453, NCYC456 etc., Saccharomyces cerevis iae NBRC195 NB C1952, NBRC1953, NBRC1954 'etc. can be used.
  • whiskey yeasts such as Saccharomyces cerevisiae NCYC90, wine yeasts such as association wine, No. 1, 3 and 4, etc., sake yeasts such as association yeast sake 7 and 9 etc. Yes, but not limited to this.
  • beer yeast such as Saccharomyces pastorianus is preferably used.
  • yeast transformation method a publicly known method can be used.
  • electroboration method “Meth. Enzymol., 194, pl82 (1990)”
  • Spheroplast method Proc. Natl. Acad. Sci. USA, 75 p 1.929 (1978)
  • the lithium acetate method “L Bacteriology , 153, pl63 (1983) ", Proc. Natl. Acad. Sci. USA, 75 pl929 (1978), Methods in yeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manual It can be implemented, but is not limited to this.
  • the host yeast is transformed into a standard yeast nutrient medium (for example, YEPD medium "Genetic Engineering. Vol. 1, Plenum Press, New York, 117 (1979)") with an OD600nm value of s 1-6.
  • a standard yeast nutrient medium for example, YEPD medium "Genetic Engineering. Vol. 1, Plenum Press, New York, 117 (1979)"
  • alkali metal ions preferably lithium ions
  • the cells are allowed to stand for about 3 (about 60 minutes at TC and then with the DNA to be introduced (about 1 to 20 g) at about 30 ° C. for about 60 minutes.
  • Polyethylene glycol preferably about 4, Add 000 daltons of polyethylene glycol to a final concentration of about 20% to 50% ..
  • this cell suspension is washed with standard yeast nutrient medium, placed in a predetermined amount of fresh standard yeast nutrient medium, and allowed to stand for about 3 (about 60 minutes at TC. Then select Transformants are obtained by planting on a standard agar medium containing antibiotics used as markers.
  • the desired liquor is reduced in the amount of VDK, particularly A, and excellent in flavor.
  • a yeast introduced with the above-described vector of the present invention a yeast in which expression of the above-described polynucleotide (DNA) of the present invention is suppressed, or a yeast selected by the yeast evaluation method of the present invention described below is selected. It is possible to produce a desired liquor and a liquor with a reduced VDK content, particularly DA content, by performing fermentation for liquor production and reducing the VDK production amount, particularly DA production amount.
  • alcoholic beverages to be covered include, but are not limited to, beer-taste drinks such as beer and happoshu, wine, whiskey, and sake.
  • alcoholic beverages with excellent flavor can be produced using existing facilities without increasing costs.
  • the present invention uses a primer or a probe designed on the basis of a nucleotide sequence of a gene that codes for a lactate synthase activity regulatory unit having the nucleotide sequence of SEQ ID NO: 1. Or, it relates to a method for evaluating DA production ability.
  • a general method of such an evaluation method is known, and is described in, for example, W001Z040514, JP-A-8-205900, and the like. This evaluation method is briefly explained below.
  • test yeast genome prepares the test yeast genome.
  • any known method such as Hereford method or potassium acetate method can be used (for example, Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, pl30 (1990)).
  • a gene encoding a acetolactate synthase activity regulatory subunit in the obtained genome Using a primer or probe designed based on the nucleotide sequence (preferably 0RF sequence), it is examined whether the gene or the gene-specific sequence exists in the genome of the test yeast.
  • the primer or probe can be designed using a known method.
  • Detection of a gene or a specific sequence can be carried out using a known method.
  • a polynucleotide containing a part or all of a specific sequence or a polynucleotide containing a base sequence complementary to the base sequence is used as one primer, and the other primer is more than this sequence.
  • Amplification of yeast nucleic acid by PCR using a polynucleotide containing a part or all of the upstream or downstream sequence or a polynucleotide containing a base sequence complementary to the base sequence, and the presence or absence of the amplified product Measure the molecular weight of an object.
  • the number of bases of the polynucleotide used for the primer is usually 10 bp or more, preferably 15 to 25 bp.
  • the base number of the sandwiched portion is usually 300 to 2000 bp.
  • the reaction conditions of the PCR method are not particularly limited. For example, denaturation temperature: 90 to 95 ° C, annealing temperature: 40 to 60 ° C, extension temperature: 60 to 75, cycle number: 10 times or more, etc. Conditions can be used.
  • the obtained reaction product is separated by electrophoretic method using agarose gel or the like, and the molecular weight of the amplified product can be measured. This method predicts and evaluates the ability of the yeast to produce vicinal diketone (VDK) or total diacetyl (DA) depending on whether the molecular weight of the amplified product is large enough to include the DNA molecules of the specific part. . Further, by analyzing the base sequence of the amplified product, the above performance can be predicted and evaluated more accurately.
  • the test yeast is cultured, and the expression level of the gene coding for the acetate lactate synthase activity regulatory unit having the base sequence of SEQ ID NO: 1 is measured, whereby all of the test yeast is obtained.
  • the ability to produce vicinal diketone (VDK) or total diacetyl (DA) can also be evaluated.
  • the expression level of the gene encoding the lactic acid synthase activity-regulating subunit can be measured by culturing the test yeast, and then measuring the transcript of the gene encoding the acetolactic acid synthase activity-regulating unit. It is possible by quantifying the quality. Quantification of ⁇ or protein can be performed using a known method. Quantification of mRNA is, for example, Northern Hybridization By quantitative RT-PCR, protein quantification can be performed, for example, by Western blotting (Current Protocols in Molecular Biology, John Wiley & Sons 1994-2003).
  • the test yeast is cultured, and the expression level of the gene encoding the acetolactic acid synthase activity-regulating subunit having the nucleotide sequence of SEQ ID NO: 1 is measured, and the desired total vicinal diketone (VDK) production ability
  • a yeast suitable for brewing a desired liquor can be selected by selecting a yeast having the gene expression level according to the total diacetyl (DA) production ability ⁇ ).
  • the reference yeast eg, genome decoding strain Saccharomyces pastorianus' byhenstefan 34/70
  • the test yeast are cultured, the expression level of the gene having the nucleotide sequence of SEQ ID NO: 1 in each yeast is determined.
  • a yeast suitable for brewing a desired liquor can be selected.
  • test yeast by culturing the test yeast and selecting a yeast having a low ability to produce total vicinal diketone (VDK) or total diacetyl (DA), or a low acetolactate synthase activity, the desired alcoholic beverage can be brewed.
  • a suitable test yeast can be selected.
  • examples of the test yeast or the reference yeast include a yeast introduced with the vector of the present invention described above, and the above-described polynucleotide (DNA) of the present invention. Fermentation in which expression is suppressed, yeast in which the expression of protein poor according to the present invention described above is suppressed, yeast that has been subjected to mutation treatment, naturally-mutated yeast, and the like can be used.
  • VDK or DA production ability can be measured by known methods.
  • the amount of total vicinal diketone can be determined by the method described in Drews et al., ⁇ . Fur Brau., 34, 1966. Quantification of the total amount of diacetyl can be carried out, for example, by the method described in J Agric Food Chem. 50 (13): 3647-53, 2002.
  • the acetate lactate synthase activity can be measured, for example, by the method of Pang et al. (Biochemistry, 38, 5222-5231 (1999)).
  • Mutation treatment can be performed by any method, for example, physical methods such as ultraviolet irradiation and radiation irradiation, chemical methods using chemical treatment such as EMS (ethyl methanesulfonate), N-methyl-N-nitrosoguanidine, etc.
  • physical methods such as ultraviolet irradiation and radiation irradiation
  • chemical methods using chemical treatment such as EMS (ethyl methanesulfonate), N-methyl-N-nitrosoguanidine, etc.
  • Good for example, edited by Taiji Oshima, Biochemical Experimental Method 39 Yeast Molecular Genetics Experimental Method, p 67-75, Society Press
  • yeasts that can be used as the reference yeast or the test yeast include any yeast that can be used for brewing, for example, brewery yeast for beer, wine, sake and the like. Specific examples include yeasts of the genus Saccharomyces (for example, Saccharomyces pastorianus, Saccharomyces cerevisiae, and Saccharomyces cerevisiae / cis). In the present invention, beer yeasts such as Saccharomyces pastorianus ( Saccharomyces pas tor ianus) W34 / 70, Saccharomyces carlsbergens is NCYC453, NCYC456, Saccharomyces cerevis iae NBRC195 L 195RC4, NB Can be used.
  • Saccharomyces pastorianus Saccharomyces pas tor ianus
  • Saccharomyces carlsbergens is NCYC453, NCYC456, Saccharomyces cerevis iae NBRC195 L 195RC4, NB Can be used.
  • grape yeast for example, association wine sake No. 1, 3, 4 etc.
  • sake yeast for example, association yeast sake no. 7, 9 etc.
  • beer yeasts such as Saccharomyces pastorianus are preferably used.
  • the reference yeast and the test yeast may be selected from any combination of the above yeasts.
  • the beer was brewed using the brewer's yeast Saccharomyces pastorianus bihenstefan W34 / 70. Wort extract concentration 12. 69%
  • the fermentation broth was sampled over time, and changes in the yeast growth (Fig. 1) and extract concentration (Fig. 2) over time were observed.
  • yeast cells were sampled, and the prepared mRNA was labeled with piotin and hybridized to a beer yeast MA microarray.
  • Signal detection was performed using a GeneChip operating system (GCOS; GeneChip, Operating Software 1.0, manufactured by Affymetrix).
  • GCOS GeneChip operating system
  • the expression pattern of the nonScILV6 gene is shown in FIG. From this result, it was confirmed that the non'ScILV6 gene was expressed in normal beer fermentation.
  • Example 2 NonScILV6 gene disruption
  • NonScILV6_delta_for SEQ ID NO: 3
  • nonScILV6_delta_rv SEQ ID NO: 4
  • the spore clone strain (W34 / 70-2) isolated from the brewer's yeast Saccharomyces pastorianus strain W34 / 70 is transformed with the gene disruption fragment prepared by the method described above. Transformation is carried out by the method described in Japanese Patent Application Laid-Open No. 07-303475, and includes dieneticin (300 mg / L), nourseoihricin (50 mg / L) or hygromycin B (Hygroiycin B) (200 mg / L).
  • YPD plate medium 1% yeast extract,
  • VDK Yeast input 5g Wet yeast cells ZL wort Sampling fermented koji over time, and examine changes in yeast growth (OD660) and extract consumption over time.
  • the total amount of VDK in the cocoon is determined by reacting VDK (DA and PD) with hydroxylamine and measuring the absorbance of the complex formed by the reaction of the resulting darioxime derivative with divalent iron ions (Drews et al. al., Mon. fur Brau., 34, 1966).
  • the precursors ⁇ -acetolactic acid and ⁇ -acetohydroxybutyric acid are converted into DA and PD by gas scrubbing (oxidative decarboxylation) in advance, respectively.
  • VDK amount Industrial applicability
  • the production amount of VDK, which is off-flavor in the product, particularly DA production is reduced, and it becomes possible to easily produce alcoholic beverages with excellent flavor.

Abstract

The invention relates to a gene encoding a regulatory subunit of an acetolactate synthase activity and use thereof, and particularly relates to a brewing yeast strain for producing an alcoholic beverage with a good flavor, an alcoholic beverage produced by using the yeast strain, a process for producing the same, etc. More particularly, the invention relates to a yeast strain whose ability to produce VDK, particularly DA to cause an off-flavor of a product has been reduced by reducing the expression level of ILV6 gene encoding Ilv6p which is an acetolactate synthase in a brewing yeast strain, particularly nonScILV6 gene which is unique to beer yeast, a process for producing an alcoholic beverage by using the yeast strain, etc.

Description

明 細 書  Specification
ァセト乳酸シンターゼ活性調節サブュニットをコ一ドする遺伝子及びその用途 技術分野  Genes that code for subunits that regulate the activity of lactate synthase and their uses
本発明は、 ァセト乳酸シンターゼ活性調節サブユニットをコードする遺伝子及び その用途に関し、. 特に、 香味に優れた酒類を製造する醸造酵母、 該酵母を用いて製 造した酒類、 その製造方法などに関する。 さらに具体的には、 本発明は、 醸造酵母 のァセト乳酸シン夕一ゼ活性調節サブユニットをコードする遺伝子 ILV6、 特にビ一 !/酵母に特徴 な nonScILV6遺伝子の発現量を抑制することによって、 製品のオフ フレーバーとなる'ビシナルジケトン類、 特にダイァセチル生産量を低減させた酵母、 当該酵母を用いた酒類の製造方法などに関する。 背景技術 '  The present invention relates to a gene encoding a acetolactate synthase activity regulatory subunit and use thereof. More particularly, the present invention relates to a brewer's yeast producing a liquor with excellent flavor, a liquor produced using the yeast, a method for producing the same. More specifically, the present invention relates to a product by suppressing the expression level of a gene ILV6 encoding a lactic acid synthase activity-regulating subunit of brewing yeast, particularly the nonScILV6 gene characteristic of bi / yeast. The present invention relates to a vicinal diketone which is an off-flavor of the yeast, particularly a yeast with reduced diacetyl production, and a method for producing an alcoholic beverage using the yeast. Background Technology ''
酒類の香気成分のうち、 ダイァセチル (以下 DA) 臭はビール、 清酒及びワイン等 の醸造酒における代表的オフフレーバーのひとつである。 DA臭 (ビールではムレ臭 またはバター臭、' 清酒ではッヮリ香とも表現される) は DA を主とするビシナルジ ケトン類'(以下 VDK) が製品中に閾値以上存在することによって発生し、 ビールに おける閾値は 0. lppm (Journal of the Inst i tute of Brewing, 76、 486 (1970) ) といわれている。 .  Of the aroma components of liquors, diacetyl (DA) odor is one of the typical off-flavors in brewed liquors such as beer, sake and wine. DA odor (expressed as stuffy odor or butter odor in beer, or scented odor in sake) is caused by the presence of vicinal diketones (hereinafter referred to as VDK) mainly consisting of DA in the product, The threshold is 0. lppm (Journal of the Institute of Brewing, 76, 486 (1970)). .
酒類中の VDKは DA と 2, 3-ペンタンジオン (以下 PD) に大別される。 DA と PDは、 それぞれバリン及びイソロイシン生合成系中間産物の α-ァセ卜乳酸及び ひ-ァセ' 卜ヒドロキシ酪酸を前駆体として、 酵母の関与'しない非酵素的反応によって生成さ れる。  VDKs in liquors are broadly divided into DA and 2,3-pentanedione (PD). DA and PD are produced by non-enzymatic reactions that do not involve yeast, using α-case lactic acid and hyase 'hydroxybutyric acid as precursors, valine and isoleucine biosynthesis intermediates, respectively.
以上のことから、 VM (DA及び PD) 及びその前駆体 -ァセトヒドロキシ酸類 (ひ-ァセト乳酸及び -ァセトヒドロキシ酪酸) 全体が製品に DA臭をもたらす可 能性のあるものとしてとらえることができ、 これらを安定的に低減させる酵母の育 種は酒類の製造管理を容易にするばかりでなく、 新商品開発の可能性を広げること ができる。  Based on the above, VM (DA and PD) and its precursors -acetohydroxy acids (hyacetolactic acid and -acetohydroxybutyric acid) as a whole can be regarded as potentially causing a DA odor to the product. Yeast breeding that stably reduces these can not only facilitate the production management of alcoholic beverages, but also expand the possibilities of new product development.
DA臭の制御方法として、 例えば特開 200卜 204457公報では、 -ァセト乳酸の前 駆体となるピルビン酸濃度の低い酒母を用いることによって DAの生成を抑制する 方法が報告されている。 また、 ァセト乳酸シン夕一ゼはピルビン酸または α-ォキ ソ酪酸をそれぞれ α -ァセト乳酸または α -ァセトヒドロキシ酪酸に変換する酵素で あるが、 酵母のァセト乳酸シンターゼをコードする遺伝子としては ILV2 および ILV6が存在し、 ILV2が活性サブユニットを、 ILV6が調節サブユニットをコードし ていることが知られている。 Journal of Basic Microbiology, 28 (3), 175-183 (1988) では、 この ILV2 に対する変異導入や遺伝子破壊を施し、 上記酵素の活性 を抑制することで前駆体 (ひ-ァセドヒドロキシ酸類) の合成を低下させ、 結果と レて. DA濃度が低減することが報告されている。 調節サブユニットである I lv6p に ついては、 例えば Biochemistry, 38 (16) , 5222-31 (1999) でァセト ¾酸シン夕一 ゼ活性に対する酵素学的解析が行われているが、 DA生成への影響は明らかではなレ^ さらに、 Journal of American Society of Brewing Chemists, Proceeding, 94一 99 (1973) ではパリン ·ロイシン 'イソロイシン要求性酵母で VDK生成量が低減す ることが報告されている力 栄養要求性株では増殖 ·発酵遅延が生じやすい.ことか ら実用化には至っていない。 特開 2002 - 291465号公報ではこれらの分岐アミノ酸の アナログに対して感受性となる変異株を取得し、 それらの中から DA低蓄積株を選 抜するどいう方法が示されている。 Journal of American Society of Brewing Chemis ts, Proceeding, 8卜 84 (1987) では実験室酵母に由来する ILV5遺伝子の発 現量を調節した遺伝子操作酵母が、 また、 European Brewery Convent ion, Proceedings of the 21st EBC congress, Madrid, 553-560 ( 1987 ) では同じく ILV3遺伝子の発現量を調節した遺伝子操作酵母がそれぞれ報告されている。 このと' き ILV5遺伝子がコードするァセトヒドロキシ酸レダクトイソメラーゼの酵素活性 は 5- 7倍増加し、 VM生成量は 4割程度まで減少した。 また、 ILV3遺伝子がコード するジヒドロキシ酸デヒドラ夕ーゼの酵素活性は 5-6倍増加したが、 VM生成量に 有意な減少はみられなかった。 ただし上記 2報告とも合成培地を用いており、 実際 のビール醸造への影響は解析されていない。 一方、 Vi l la らは Journal of American Society of Brewing Chemists, 53: 49-53 (1995) において ILV5 遗伝子、 ILV3遺伝子およびこれら両者の高発現により、 麦汁を用いた発酵試験において VM 生成量がそれぞれ 70%、 40%、 60%減少することを報告している。 また、 Dul ieu らは、 European Brewery Convent ion, Proceedings of the 26tli EBC congress, Maastricht, 455-460 (1997) において -ァセ'ト乳酸脱炭酸酵素を 使用することで DAの前駆体となる α-ァセト乳酸をァセトインに迅速に変換する方 法を提案したが、 遺伝子組み換え技術によってのみ製造されている酵素であり、 日 本では消費者に対するマイナスイメージが強く、 本酵素を使用することは困難であ る。 特開平 2-265488号公報及ぴ特開平 7- 171号公報ではいずれも α-ァセト乳酸脱 炭酸酵素をコードする DNA鎖を用いた遺伝子操作酵母が報告されている。 発明の開示 ' As a method for controlling the DA odor, for example, in Japanese Patent Laid-Open No. 200-204457, before -acetolactic acid A method has been reported to suppress DA production by using a liquor mother with low pyruvic acid concentration as a precursor. In addition, acetolactic acid synthase is an enzyme that converts pyruvate or α-oxobutyric acid to α-acetolactic acid or α-acetohydroxybutyric acid, respectively. As a gene encoding yeast acetolactic acid synthase, It is known that ILV2 and ILV6 exist, ILV2 encodes the active subunit and ILV6 encodes the regulatory subunit. In Journal of Basic Microbiology, 28 (3), 175-183 (1988), the synthesis of precursors (hy- sacedohydroxy acids) is performed by introducing mutations and gene disruptions to ILV2 and suppressing the activity of the above enzymes. It has been reported that the DA concentration is reduced. For the regulatory subunit I lv6p, for example, Biochemistry, 38 (16), 5222-31 (1999) has been subjected to enzymatic analysis on the activity of acetyl acetate synthase. In addition, the Journal of American Society of Brewing Chemists, Proceeding, 94 1 99 (1973) reported that the production of VDK is reduced in palin-leucine 'isoleucine-requiring yeast. Sexual strains are prone to growth / fermentation delay and have not been put to practical use. Japanese Patent Application Laid-Open No. 2002-291465 discloses a method of obtaining mutant strains that are sensitive to analogs of these branched amino acids and selecting a DA low accumulation strain from them. In the Journal of American Society of Brewing Chemis ts, Proceeding, 8 卜 84 (1987) In congress, Madrid, 553-560 (1987), genetically engineered yeasts that regulate the expression level of the ILV3 gene are also reported. At this time, the enzymatic activity of the acetate hydroxy acid reductoisomerase encoded by the ILV5 gene increased 5-7 times, and the amount of VM produced decreased to about 40%. In addition, the enzyme activity of the dihydroxy acid dehydrase encoded by the ILV3 gene increased by 5-6 times, but no significant decrease in VM production was observed. However, in both of the above reports, synthetic media are used, and the effect on actual beer brewing has not been analyzed. On the other hand, in the Journal of American Society of Brewing Chemists, 53: 49-53 (1995), Vi la la et al. Showed high production of ILV5 gene, ILV3 gene, and both, and VM production in wort fermentation tests. Report a decrease of 70%, 40% and 60%, respectively. Also, Dul ieu et al. In the European Brewery Convent ion, Proceedings of the 26tli EBC congress, Maastricht, 455-460 (1997) A method for rapidly converting acetolactic acid to acetoin was proposed, but it is an enzyme produced only by genetic engineering technology. In Japan, it has a strong negative image for consumers and it is difficult to use this enzyme. The JP-A-2-265488 and JP-A-7-171 both report genetically engineered yeasts using DNA strands encoding α-acetolactate decarboxylase. Invention Disclosure ''
本発明の課題は、 酵母において VDK、 特に DA臭の発生を低減させることのできる タンパク質をコードする遺伝子ならびに該タンパク質を利用して VM低生産性の酵 母を育種し、 香味に優れた酒類の製造を可能にすることである。  An object of the present invention is to breed a VDK, particularly a gene encoding a protein capable of reducing the generation of DA odor in yeast, and to cultivate a VM low-productivity yeast using the protein, and to produce an alcoholic beverage with excellent flavor. It is possible to manufacture.
本発明者らは、 上記課題を解決するため鋭意検討を重ねた結果、 ビール酵母から ァセト乳酸シンターゼ活性調節サブュニットをコードする遺伝子を同定 ·単離する ことに成功した。  As a result of intensive studies to solve the above problems, the present inventors have succeeded in identifying and isolating a gene encoding a acetolactic acid synthase activity regulatory subunit from brewer's yeast.
すなわち本発明は、 ピール酵母に特徴的に存在する新規なァセト乳酸シン夕一ゼ 活性調節サブユニットをコードする遺伝子、 該遺伝子がコードするタンパク質、 該 遺伝子の発現が調節された形質転換酵母、 該遺伝子の発現が調節された酵母を用い ることによる製品中の VDK濃度、 特に DA濃度の制御方法などに関する。 本発明は、 具体的には、 次に示すポリヌクレオチド、 該ポリヌクレオチドを含有するべクタ一 あるいは DNA断片、 .該ベクタ一あるいは DNA断片が導入された形質転換酵母、 該形 質転換酵母を用いる酒類の製造方法などを提供する。  That is, the present invention provides a gene encoding a novel acetolactic acid synthase activity regulating subunit characteristically present in peel yeast, a protein encoded by the gene, a transformed yeast in which expression of the gene is regulated, The present invention relates to a method for controlling the VDK concentration in a product, particularly the DA concentration, by using yeast in which gene expression is regulated. Specifically, the present invention uses the following polynucleotide, vector or DNA fragment containing the polynucleotide, transformed yeast introduced with the vector or DNA fragment, and the transformed yeast. Providing methods for producing alcoholic beverages.
( 1 ) 以下の(a)〜( f )からなる群から選択される記載のポリヌクレオチド:  (1) The described polynucleotide selected from the group consisting of the following (a) to (f):
(a)配列番号: 1の塩基配列からなるポリヌクレオチドを含有するポリヌクレオ チド;  (a) a polynucleotide containing a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1;
(W配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレオ チドを含有するポリヌクレオチド;  (W) a polynucleotide containing a polynucleotide encoding a protein consisting of the amino acid sequence of 2;
(c)配列番号: 2のアミノ酸配列において、 1もしくは複数個のアミノ酸が欠失、 置換、 挿入及び/又は付加したアミノ酸配列からなり、 かつァセト乳酸シン夕ーゼ 活性調節能を有するタンパク質をコードするポリヌクレオチドを含有するポリヌク レオチド; (c) the amino acid sequence of SEQ ID NO: 2, consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added, and acetolactic acid synthase A polynucleotide containing a polynucleotide encoding a protein having activity-regulating ability;
(d)配列番号: 2のアミノ酸配列に対して 60%以上の同一性を有するアミノ酸配列 を有し、 かつァセト乳酸シンターゼ活性調節能を有するタンパク質をコードするポ リヌクレオチドを含有するポリヌクレオチド;  (d) a polynucleotide comprising a polynucleotide encoding a protein having an amino acid sequence having 60% or more identity to the amino acid sequence of SEQ ID NO: 2 and having ability to regulate acetolactic acid synthase activity;
(e)配列番号: 1の塩基配列と相補的な塩基配列からなるポリヌクレオチドとスト リンジェントな条件下でハイブリダィズし、 かつァセト乳酸シン夕一ゼ活性調節能 を有するタンパク質をコードするポリヌクレオチドを含有するポリヌクレオチド; 及び. '  (e) a polynucleotide encoding a protein that hybridizes with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 under stringent conditions and has the ability to regulate activity of lactate synthase. A polynucleotide containing; and.
.( f )配列番号: 2のァミノ酸配列からなるタンパク質をコードするポリヌクレオ チドの塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント な条件下でハイブリダィズし、 かつァセト乳酸シン夕ーゼ活性調節能を有するタン パク質をコードするポリヌクレオチドを含有するポリヌクレオチド。  (f) Hybridizes under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO: 2, and is a lactate synthase. A polynucleotide comprising a polynucleotide encoding a protein having activity-regulating ability.
( 2 ) 以下の(g)〜(i)からなる群から選択される上記 (1 ) に記載のポリヌクレオ チド:  (2) The polynucleotide according to the above (1) selected from the group consisting of the following (g) to (i):
(g)配列番号:' 2のアミノ酸配列又は配列番号: 2のアミノ酸配列において 1〜10 個のアミノ酸が欠失、 置換、 挿入及び Z又は付加したアミノ酸配列からなり、 かつ ァセ卜乳酸シンターゼ活性調節能を有するタンパク質をコードするポリヌクレオチ ドを含有するポリヌクレオチド; '  (g) the amino acid sequence of SEQ ID NO: '2 or the amino acid sequence of SEQ ID NO: 2, consisting of an amino acid sequence in which 1 to 10 amino acids are deleted, substituted, inserted and Z or added, and a case of lactate synthase activity A polynucleotide containing a polynucleotide encoding a protein with regulatory ability;
(h) '配列番号: 2のアミノ酸配列に対して 90%以上の同一性を有するアミノ酸配 列を有し、 かつァセ卜乳酸シン夕一ゼ活性調節能を有するタンパク質をコードする' ポリヌクレオチドを含有するポリヌクレオチド;及び  (h) 'polynucleotide encoding a protein having an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 2 and having the ability to regulate activity of a lactose synthase' A polynucleotide comprising: and
(i)配列番号: 1の塩基配列からなるポリヌクレオチド、 又は配列番号: 1の塩 基配列と相補的な塩基配列からなるポリヌクレオチドとハイストリンジェントな条 件下でハイプリダイズし、 かつァセ卜乳酸シンターゼ活性調節能を有するタンパク 質をコ一ドするポリヌクレオチドを含有するポリヌクレオチド。  (i) polynucleotides having a nucleotide sequence of SEQ ID NO: 1 or polynucleotides having a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 are hyperprecipitated under highly stringent conditions; A polynucleotide comprising a polynucleotide that codes for a protein having the ability to regulate lactic acid synthase activity.
( 3 ) 配列番号: 1の塩基配列からなるポリヌクレオチドを含有する上記 (1 ) に 記載のポリヌクレオチド。  (3) The polynucleotide according to (1) above, which comprises a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1.
( 4 ) 配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレオ チドを含有する上記 (1) に記載のポリヌクレオチド。 (4) SEQ ID NO: Polynucleotide encoding a protein consisting of the amino acid sequence of 2. The polynucleotide according to (1) above containing a tide.
(5) DNAである、 上記 (1) 〜 (4) のいずれかに記載のポリ クレオチド。  (5) The polynucleotide according to any one of (1) to (4) above, which is DNA.
(6) 以下の(j)〜(! n)からなる群から選択される記載のポリヌクレオチド:  (6) The described polynucleotide selected from the group consisting of the following (j) to (! N):
(j)上記 (5) に記載のポリヌクレオチド (MA) の転写産物に対して相補的な塩 基配列を有する R Aをコードするポリヌクレオチド;  (j) a polynucleotide encoding RA having a base sequence complementary to the transcription product of the polynucleotide (MA) described in (5) above;
(k)上記 (5) に記載のポリヌクレオチド (DNA) の発現を RNAi効果により抑制す る RNAをコードするポリヌクレオチド;  (k) a polynucleotide encoding RNA that suppresses the expression of the polynucleotide (DNA) according to (5) above by an RNAi effect;
(1) 上記 (5) に記載のポリヌクレオチド (DNA) の転写産物を特異的に切断する 活性を有する RNAをコードするポリヌクレオチド;及び  (1) a polynucleotide encoding an RNA having an activity of specifically cleaving the transcript of the polynucleotide (DNA) described in (5) above; and
(m)上記 (5) に記載のポリヌクレオチド (DM) の発現を共抑制効果により抑制 する Aをコードするポリヌクレオチド。  (m) A polynucleotide encoding A that suppresses the expression of the polynucleotide (DM) according to (5) above by a co-suppression effect.
(7) 上記 (1) 〜 (5) のいずれかに記載のポリヌクレオチドにコードされるタ ンパク質。 ' .  (7) A protein encoded by the polynucleotide according to any one of (1) to (5) above. '.
(8) 上記 (1) 〜 (5) のいずれかに記載のポリヌクレオチドを含有するべクタ —。 ' ·  (8) A vector containing the polynucleotide according to any one of (1) to (5) above. '·
(8 a) 以下の (x)〜(z)の構成要素を含む発現カセットを含む上記 (7) に記載の ベ 7々一 ; (8 a) One of the above-mentioned (7) including an expression cassette comprising the following components (x) to (z) :
(X)酵母細胞内で転写可能なプロモーター  (X) Promoter capable of transcription in yeast cells
(y)該プロモー夕一にアンチセンス方向で結合した、 上記 (1) 〜 (5) のいず れかに記載のポリヌクレオチド;及び  (y) the polynucleotide according to any one of (1) to (5), which is bound to the promoter in the antisense direction; and
(z)RNA分子の転写終結及びポリアデニル化に関し、 酵母で機能するシグナル。 ' (z) Signals that function in yeast for transcription termination and polyadenylation of RNA molecules. '
(9) 上記 (6) に記載のポリヌクレオチドを含有するベクター。 (9) A vector containing the polynucleotide according to (6) above.
(10) 上記 (8) 〜 (9) のいずれかに記載のベクタ一が導入された酵母。  (10) A yeast into which the vector according to any one of (8) to (9) is introduced.
(11) 上記 (8) 〜 (9) のいずれかに記載のベクタ一を導入することによって、 全ビシナルジケトン生産能又は全ダイァセチル生産能が低減された上記(10)に記 載の酵母。  (11) The yeast according to (10) above, wherein the total vicinal diketone-producing ability or the total diacetyl-producing ability is reduced by introducing the vector according to any one of (8) to (9) above.
(12) 上記 (7) に記載のタンパク質の発現量を減少させることによって全ビシ ナルジケ卜ン生産能又は全ダイァセチル生産能が低減された上記 (11) に記載の 酵母。 (1 3) 上記 (8) 〜 (9) のいずれかに記載のベクターを導入することによって、 または、 上記 (5) に記載のポリヌクレオチド (DNA) に係る遺伝子を破壊するこ とによって、 上記 (5) に記載のポリヌクレオチド (DNA) の発現が抑制された酵 母。 · (12) The yeast according to (11), wherein the total vicinal dikenne production capacity or the total diacetyl production capacity is reduced by decreasing the expression level of the protein according to (7). (1 3) By introducing the vector described in any one of (8) to (9) above or by destroying the gene related to the polynucleotide (DNA) described in (5) above, (5) An enzyme wherein expression of the polynucleotide (DNA) according to (5) is suppressed. ·
(14) 上記 (1 0) 〜 (1 3) のいずれかに記載の酵母を用いた酒類の製造方法。 (14) A method for producing an alcoholic beverage using the yeast according to any one of (1 0) to (1 3) above.
(1 5) 醸造する酒類が麦芽飲料である上記 (1 4) に記載の酒類の製造方法。(1 5) The method for producing an alcoholic beverage according to the above (1 4), wherein the alcoholic beverage to be brewed is a malt beverage.
(1 6) 醸造する酒類がワインである上記 (1 4) に記載の酒類の製造方法。 (1 6) The method for producing an alcoholic beverage according to the above (1 4), wherein the alcoholic beverage to be brewed is wine.
(1 7) 上記 (14) 〜 (1 6) のいずれかに記載の方法で製造された酒類。  (1 7) Alcoholic beverages produced by the method according to any one of (14) to (16) above.
,(1 8) 配列番号: 1の塩基配列を有するァセト乳酸シン夕一ゼ活性調節サブュニ ットをコ一ドする遺伝子の塩基配列に基づいて設計したプライマー又はプローブを 用いて、 被検酵母の全ビシナルジケトン生産能又は全ダイァセチル生産能について 評価する方法。 '  , (18) SEQ ID NO: 1 Using a primer or probe designed based on the nucleotide sequence of a gene encoding a subunit that regulates activity of a lactate synthase having the nucleotide sequence of 1, A method for evaluating total vicinal diketone production capacity or total diacetyl production capacity. '
(1 8 a) 上記 (1 8) に記載の.方法によって、 全ビシナルジケトン生産能又は全 ダイァセチル生産能が低い酵母を選別する方法。  (1 8 a) A method for selecting a yeast having a low total vicinal diketone-producing ability or total diacetyl-producing ability by the method described in (18) above.
(1 8 b) 上記 (1 8 a) に記載の方法によって選別された酵母を用いて酒類 (例 えば、 ビール) を製造する方法。  (1 8 b) A method for producing an alcoholic beverage (eg, beer) using the yeast selected by the method described in (1 8 a) above.
(1 9) 被検酵母を培養し、 配列番号: 1の塩基配列を有するァセト乳酸シン夕一 ゼ活性調節サブュニットをコードする遺伝子の発現量を測定することによって、.被 検酵母の全ビシナルジケトン生産能又は全ダイァセチル生産能を評価する方法。  (1 9) Culturing the test yeast and measuring the expression level of the gene encoding the lactate synthase activity regulatory subunit having the nucleotide sequence of SEQ ID NO: 1. By producing the total vicinal diketone of the test yeast Noh or total diacetyl production capacity evaluation method.
(1 9 a) 上記 (1 9) に記載の方法で、 被検酵母を評価し、 ァセト乳酸シンター ゼ活性調節サブユニットをコードする遺伝子の発現量が低い酵母を選別する、 酵母' の選択方法。  (1 9 a) Yeast 'selection method, wherein the test yeast is evaluated by the method described in (1 9) above, and a yeast having a low expression level of a gene encoding a acetyl lactate synthase activity-regulating subunit is selected. .
(1 9 b) 上記 (1 9 a) に記載の方法によって選別された酵母を用いて酒類 (例 えば、 ビール) を製造する方法。  (1 9 b) A method for producing an alcoholic beverage (for example, beer) using the yeast selected by the method described in (1 9 a) above.
(20) 被検酵母を培養して、 上記 (7) に記載のタンパク質を定量または配列番 号: 1の塩基配列を有するァセ卜乳酸シン夕ーゼ活性調節サブユニットをコードす る遺伝子の発現量を測定し、 目的とする全ビシナルジケトン生産能又は全ダイァセ チル生産能に応じた前記タンパク質の生成量または前記遺伝子の発現量の被検酵母 を選択する、 酵母の選択方法。 ( 2 1 ) 基準酵母及び被検酵母を培養して配列番号: 1の塩基配列を有するァセト 乳酸シンターゼ活性調節サブユニットをコードする遺伝子の各酵母における発現量 を測定し、 基準酵母よりも該遺伝子が低発現である被検酵母を選択する、 上記 (2 0 ) に記載の酵母の選択方法。 (20) The test yeast is cultured, and the protein described in (7) above is quantified, or the gene encoding the case-lactic acid synthase activity-regulating subunit having the base sequence of SEQ ID NO: 1. A method for selecting yeast, comprising measuring an expression level and selecting a test yeast having a production amount of the protein or an expression level of the gene according to a target total vicinal diketone production ability or total diacetyl production ability. (2 1) Reference yeast and test yeast are cultured and the expression level of the gene encoding the lactic acid synthase activity regulatory subunit having the nucleotide sequence of SEQ ID NO: 1 is measured in each yeast. The method for selecting yeast according to (20) above, wherein a test yeast having a low expression is selected.
( 2 2 ) 基準酵母及び被検酵母を培養して各酵母における上記 (7 ) に記載のタン パク質を定量し、 基準酵母よりも該タンパク質量の少ない被検酵母を選択する、 上 記 (2 0 ) に記載の酵母の選択方法。 即ち、 複数の酵母を培養して各酵母における 上記 (7 ) に記載のタンパク質を定量し、 その中で該タンパク質量の少ない被検酵 母を選択する、 上記 (2 0 ) に記載の酵母の選択方法。  (2 2) The reference yeast and the test yeast are cultured, the protein described in (7) above in each yeast is quantified, and the test yeast having a smaller amount of the protein than the reference yeast is selected. 20. The method for selecting yeast according to 2). That is, culturing a plurality of yeasts, quantifying the protein described in (7) above in each yeast, and selecting a test mother having a small amount of the protein among them, wherein the yeast described in (20) above is selected Selection method.
( 2 3 ) 上記 (1 0 ) 〜 (1 3 ) に記載の酵母および上記 (2 0 ) 〜 (2 2 ) に記 載の方法により選択された酵母のいずれかの酵母を用いて酒類製造のための発酵を 行い、 全ビシナルジケトン生産量又は全ダイァセチル生産量を調節することを特徴 とする、 酒類め製造方法。 本発明の形質転換酵母を用いる酒類の製造法によれば、 製品中でオフフレーバー となるビシナルジケトン類 (VDK) (例えば、 ダイァセチル (DA) 、 2 , 3—ペン タンジオン (PD) など) 又はその前駆体 (例えば、 ひーァセトヒドロキシ酸類な ど) 、 特にダイァセチル (DA) 又はその前駆体 (例えば、 ひ一ァセト乳酸など) の 生産量を低減させることができるため、 香味に優れた酒類を容易に製造することが 可能どなる。 図面の簡単な説明  (2 3) Alcohol production using the yeast described in (10) to (1 3) above and the yeast selected by the method described in (2 0) to (2 2) above A method for producing an alcoholic beverage, characterized in that the total vicinal diketone production or the total diacetyl production is adjusted. According to the method for producing alcoholic beverages using the transformed yeast of the present invention, vicinal diketones (VDK) (for example, diacetyl (DA), 2,3-pentanedione (PD), etc.) or precursors thereof that become off-flavor in the product. Can reduce the production volume of the body (for example, hyacetohydroxy acids), especially diacetyl (DA) or its precursors (for example, hiaceto lactic acid, etc.) Can be manufactured in Brief Description of Drawings
図 1は、 ビール試験醸造における酵母増殖量の経時変化を示す図である。 横軸は 発酵時間を、 縦軸は 0D660の値を示している。  FIG. 1 is a diagram showing the change over time in the amount of yeast grown in beer test brewing. The horizontal axis shows the fermentation time, and the vertical axis shows the value of 0D660.
図 2は、 ビール試験醸造におけるエキス消費量の経時変化を示す図である。 横軸 は発酵時間、 縦軸は外観エキス濃度 (w/w%) を示している。  Fig. 2 is a diagram showing the change over time in the amount of extract consumed in beer test brewing. The horizontal axis shows fermentation time, and the vertical axis shows appearance extract concentration (w / w%).
図 3は、 ビール試験醸造中の酵母における nonScILV6遺伝子の発現挙動を示す図 である。 横軸は発酵時間、 縦軸は検出されたシグナル輝度を示している。 発明を実施するための最良の形態 FIG. 3 shows the expression behavior of the nonScILV6 gene in yeast during brewing of beer. The horizontal axis shows the fermentation time, and the vertical axis shows the detected signal brightness. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 特開 2004-283169 に開示の方法で解読したビール酵母ゲノム情報 を基に、 ビール酵母特有のァセト乳酸シンターゼ活性調節サブユニットをコードす る nonScILV6遺伝子を単離 ·同定した。 この塩基配列を配列番号: 1に示す。 また この遺伝子によりコ一ドされるタンパク質のアミノ酸配列を配列番号: 2に示す。 • なお、 本明細書中、 VDK とその前駆体である αァセトヒドロキシ酸を総称して、 ' 「全ビシナルジケトン」 ということもある。 また、 DAとその前駆体であるひーァセ 卜乳酸を総称して 「全ダイァセチル」:ということもある。 1: 本発明のポリヌクレオチド  The present inventors have isolated and identified a nonScILV6 gene encoding a acetolactate synthase activity regulatory subunit specific to brewer's yeast, based on the brewer's yeast genome information decoded by the method disclosed in JP-A-2004-283169. This base sequence is shown in SEQ ID NO: 1. The amino acid sequence of the protein encoded by this gene is shown in SEQ ID NO: 2. • In this specification, VDK and its precursor α-acetohydroxy acid are collectively referred to as “all vicinal diketones”. Also, DA and its precursor hyase lactic acid are collectively referred to as “all diacetyl”. 1: Polynucleotide of the present invention
まず、 本発明は、 (a)配列番号: 1の塩基配列からなるポリヌクレオチドを含有 するポリヌクレオチド;及び 0))配 番号: 2のアミノ酸配列からなるタンパク質 をコードするポリヌクレオチドを含有するポリヌクレオチドを提供する。 ポリヌク レオチドは D N Aまたは R N Aであってもよい。  First, the present invention relates to (a) a polynucleotide comprising a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1; and 0)) a polynucleotide comprising a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO: 2. I will provide a. The polynucleotide may be DNA or RNA.
本発明で対象とするポリヌクレオチドは、 上記のビール酵母由来のァセト乳酸シ ン夕ーゼ活性調節サブユニットをコ一ドするポリヌクレオチドに限定されるもので はなく、 このタンパク質と機能的に同等なタンパク質をコードする他のポリヌクレ ォチドを含む。 機能的に同等なタンパク質としては、 例えば、 (c)配列番号: 2の アミノ酸配列において、 1 もしくは複数個のアミノ酸が欠失、 置換、 挿入及び Z又 は付加したアミノ酸配列からなり、 かつァセ卜乳酸シン夕一ゼ活性調節能を有する タンパク質が挙げられる。 ' このようなタンパク質としては、 配列番号: 2のアミノ酸配列において、 例えば、 1〜100個、 1〜90個、 1〜80個、 1〜70個、 1〜60個、 1〜50個、 1〜40個、 1〜39 個、 1〜38個、 1〜37個、 1〜36個、 1〜35個、 1〜34個、 1〜33個、 1〜32個、 1〜 31個、 1〜30個、 1〜29個、 1〜28個、 1〜27個、 1〜26個、 1〜25個、 1〜24個、 1 〜23個、 1〜22個、 1〜21個、 1〜20個、 1~19個、 1〜18個、 1〜17個、 1〜16個、 1〜15個、 1〜14個、 1〜13個、 1〜12個、 1〜11個、 1〜10個、 1〜9個、 1〜8個、 1〜7個、 1〜6個 (1〜数個) 、 1~5個、 1〜4個、 〜 3個、 1〜2個、 1個のアミノ 酸残基が欠失、 置換、 挿入及び 又は付加されたアミノ酸配列からなり、 かつァセ ト乳酸シンターゼ活性調節能を有するタンパク質力挙げられる。 上記アミノ酸残基 の欠失、 置換、 挿入及び Z又は付加の数は、 一般的には小さい程好ましい。 また、 このようなタンパク質としては、 (d)配列番号: 2のアミノ酸配列と約 60%以上、 約 70%以上、 71%以上、 72%以上、 73%以上、 74%以上、 75%.以上、 76%以上、 77%以上、 78%以上、 79%以上、 80%以上、 81%以上、 82%以上、 83%以上、 84%以上、 85%以上、 86%以上、 87%以上、 88%以上、 89%以上、 90%以上、 91%以上、 92%以上、 93%以上、 94%以上、 95%以上、 96%以上、 97%以上、 98%以上、 99%以上、 99. 1%以上、 99. 2%以上、 99. 3%以上、 99. 4%以上、 ' 99. 5%以上、 '99. 6%以上、 99. 7%以上、 99. 8%以上、 99. 9%以 上の同一性を肴するアミノ酸配列 有し、 かつァセト乳酸シン夕一ゼ活性調節能を 有するタンパク質が挙げられる。 上記相同性の数値は一般的に大きい程好ましい。 なお、 ァセト乳酸シンターゼ活性は、 例えば Pang らの方法 (Biochemistry, 38, 5222-5231 (1999)) によって測定することができる。 The polynucleotide targeted by the present invention is not limited to the polynucleotide that codes for the above-mentioned lactic acid synthase activity-regulating subunit derived from brewer's yeast, and is functionally equivalent to this protein. Other polynucleotides that code for various proteins. Examples of functionally equivalent proteins include: (c) an amino acid sequence of SEQ ID NO: 2, consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted, and Z or added; Examples include proteins having the ability to regulate lactic acid synthase activity. 'As such a protein, in the amino acid sequence of SEQ ID NO: 2, for example, 1 to 100, 1 to 90, 1 to 80, 1 to 70, 1 to 60, 1 to 50, 1 -40, 1-39, 1-38, 1-37, 1-36, 1-35, 1-34, 1-33, 1-32, 1-31, 1 -30, 1-29, 1-28, 1-27, 1-26, 1-25, 1-24, 1-23, 1-22, 1-21, 1 -20, 1-19, 1-18, 1-17, 1-16, 1-15, 1-14, 1-13, 1-12, 1-11, 1 -10, 1-9, 1-8, 1-7, 1-6 (1 to several), 1-5, 1-4, -3, 1-2, 1 Consisting of an amino acid sequence in which one amino acid residue is deleted, substituted, inserted and / or added, and A protein having an ability to regulate trilactic acid synthase activity. In general, the smaller the number of amino acid residue deletions, substitutions, insertions and Zs or additions, the better. In addition, such a protein includes (d) the amino acid sequence of SEQ ID NO: 2, about 60% or more, about 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88 % Or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1 % Or higher, 99.2% or higher, 99.3% or higher, 99.4% or higher, '99 .5% or higher, '99 .6% or higher, 99.7% or higher, 99.8% or higher, 99.9 A protein having an amino acid sequence exhibiting at least% identity and having an ability to regulate activity of acetolactic acid synthase. In general, the larger the homology value, the better. The acetate lactate synthase activity can be measured, for example, by the method of Pang et al. (Biochemistry, 38, 5222-5231 (1999)).
また、 本発明は、 (e)配列番号: 1の塩基配列と相補的な塩基配列からなるポリ ヌクレオチドとストリンジェントな条件下でハイプリダイズし、 かつァセト乳酸シ ンターゼ活性調節能を有するタンパク質をコードするポリヌクレオチドを含有する ポリヌクレオチド;及び(ί)配列番号: 2のァミノ酸配列からなるタンパク質をコ 一ドするポリヌクレオチドの塩基配列と相補的な塩基配列からなるポリヌクレオチ ドとストリンジェントな条件下でハイブリダイズし、 かつァセト乳酸シン夕一ゼ活 性調節能を有する夕 パク質をコードするポリヌクレオチドを含有するポリヌクレ ォチドも包含する。  The present invention also relates to (e) a protein that is hybridized under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1, and that has the ability to regulate acetate lactate synthase activity. A polynucleotide comprising a polynucleotide comprising: a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence encoding the protein comprising the amino acid sequence of SEQ ID NO: 2; and a stringent condition Also included are polynucleotides containing a polynucleotide that hybridizes underneath and encodes a protein that has the ability to regulate activity of a lactate synthase.
ここで、 「ストリンジェン卜な条件下でハイブリダィズするポリヌクレオチド」 ■ とは、 配列番号: 1の塩基配列と相補的な塩基配列からなるポリヌクレオチド又は 配列番号: 2のアミノ酸配列をコードするポリヌクレオチドの全部又は一部をプロ ーブとして、 コロニ一ハイブリダィゼ一シヨン法、 プラークハイブリダィゼーショ ン法又はサザンハイブリダイゼーション法などを用いることにより得られるポリヌ クレオチド (例えば D NA) をいう。 ハイブリダィゼ一シヨンの方法としては、 例 えば' Molecular Cloning 3rd Ed.、 Current Protocols in Molecular Biology, John Wi ley & Sons 1987-1997 などに記載されている方法を利用することができる。 本明細書でいう 「ストリンジェントな条件」 は、 低ストリンジェン卜な条件、 中 ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよい。 「低ス トリンジェントな条件」 は、 例えば、 5 X SSC、 5 Xデンハルト 液、 0. 5%SDS、 50% ホルムアミド、 での条件である。 また、 「中ストリンジェン卜な条件」 は、 例え ば、 5 X SS 5 Xデンハルト溶液、 0. 5%SDS、 50%ホルムアミド、 42°Cの条件である。 「高ストリンジェントな条件」 は、 例えば、 5 X SS (:、 5 Xデンハルト溶液、 0. 5%SDS、 50%ホルムアミド.、 50°Cの条件である。 これらの条件において、 温度を上げるほど 高い相同性を有するポリヌクレオチド (例えば D NA) 力 S効率的に得られることが 期待できる。 ただし、 ハイプリダイゼーションのストリンジエンシーに影響する要 素としては温 ¾、 プローブ濃度、 プローブの長さ、 イオン強度、 時間、 塩濃度など 複数の要素が考えられ、 当業者であればこれら.要素を適宜選択することで同様のス トリンジエンシーを実現することが可能である。 Here, “polynucleotide that hybridizes under stringent conditions” 2 is a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 or a polynucleotide encoding the amino acid sequence of SEQ ID NO: 2. A polynucleotide (for example, DNA) obtained by using a colony hybridization method, a plaque hybridization method, a Southern hybridization method, or the like with all or a part of the probe as a probe. As the hybridization method, for example, the method described in 'Molecular Cloning 3rd Ed., Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997, etc. can be used. As used herein, “stringent conditions” refers to low stringency conditions, Either stringent conditions or highly stringent conditions may be used. “Low stringent conditions” are, for example, conditions of 5 X SSC, 5 X Denhardt's solution, 0.5% SDS, 50% formamide. The “medium stringent conditions” are, for example, conditions of 5 X SS 5 X Denhardt's solution, 0.5% SDS, 50% formamide, and 42 ° C. “High stringent conditions” are, for example, 5 X SS (:, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C. Under these conditions, the higher the temperature, Polynucleotides with high homology (eg, DNA) force S can be expected to be obtained efficiently, however, factors that affect the stringency of high-pridition include temperature, probe concentration, and probe length. Several factors such as ionic strength, time, and salt concentration are conceivable, and those skilled in the art can achieve the same stringency by selecting these factors as appropriate.
なお、 ハイプリダイゼーシヨンに市販のキットを用いる場合は、 例えば Alkphos Direct Label l ing Reagents (アマシャムフアルマシア社製) を用いることができ る。 この場合は、 キットに添付のプロトコルにしたがい、 標識したプローブ のィ ンキュベーシヨンを一晩行った後、 メンプレンを 55での条件下で 0. 1% (w/v) SDS を含む 1次洗浄バッファーで洗浄後、 ハイブリダイズしたポリヌクレオチド (例え ば D NA) を検出することができる。  In addition, when using a commercially available kit for high-prisition, for example, Alkphos Direct Labeling Reagents (manufactured by Amersham Almacia) can be used. In this case, follow the protocol attached to the kit, incubate the labeled probe overnight, then remove the membrane in the primary wash buffer containing 0.1% (w / v) SDS under 55 conditions. After washing, the hybridized polynucleotide (eg DNA) can be detected.
これ以外にハイプリダイズ可能なポリヌクレオチドとしては、 FASTA、 BLASTなど の相.同性検索ソフトウェアにより、 デフオル卜のパラメ一夕を用いて計算したとき に、 配列番号: 2のアミノ酸配列をコードするポリヌクレオチドと約 60%以上、 約 70%以上、 71%以上、 .72%以上、 73%以上、 74%以上、 75%以上、 76%以上、 77%以上、 . 78%以上、 79%以上、 80%以上、 81%以上、 82%以上、 83%以上、 84%以上、 85%以上、 86%以上、 87%以上、 88%以上、 89%以上、 90%以上、 91%以上、 92%以上、 93%以上、 94%以上、 95%以上、 96%以上、 97%以上、 98%以上、 99%以上、 99. 1%以上、 99. 2%以上、 99. 3%以上、 99. 4%以上、 99. 5 以上、 99. 6%以上、 99. 7%以上、 99. 8%以上、 99. 9%以 上の同一性を有するポリヌクレオチドをあげることができる。  Other polynucleotides that can be hyper-predicted are those that encode the amino acid sequence of SEQ ID NO: 2 when calculated using the same parameters as FASTA, BLAST, etc. About 60% or more, About 70% or more, 71% or more, .72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, .78% or more, 79% or more, 80 % Or higher, 81% or higher, 82% or higher, 83% or higher, 84% or higher, 85% or higher, 86% or higher, 87% or higher, 88% or higher, 89% or higher, 90% or higher, 91% or higher, 92% or higher 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, 99.2% or more, 99.3% or more, 99.4 Polynucleotides having% or more, 99.5 or more, 99.6 or more, 99.7 or more, 99.8 or more, or 99.9% or more can be mentioned.
なお、 アミノ酸配列や塩基配列の同一性は、 カーリン及びアルチユールによるァ ルゴリズム BLAST (Proc. Nat l. Acad. Sci. USA, 87, 2264-2268, 1990 ; Proc. Nat l. Acad. Sci. USA, 90, 5873, 1993) を用いて決定できる。 BLAST のアルゴリ ズムに基づいた BLASTN や BLASTX と呼ばれるプログラムが開発されている (Al tsc ul SF, et al: J. Mol. Biol. 215: 403, 1990) 。 BLASTNを用いて塩基 配列を解ネ斤する場合は、 パラメ一夕は、 例えば score= 100、 wordlength= 12 とす る。 また、 BLASTXを用いてアミノ酸配列を解析する場合は、 パラメ一夕は、 例えば score=50、 wordlength=3 とする。 BLAST と Gapped BLASTプログラムを用いる場 合は、 各プログラムのデフォルトパラメータを用いる。 The identity of the amino acid sequence and base sequence is determined by the algorithm of Carlin and Arthur BLAST (Proc. Natl. Acad. Sci. USA, 87, 2264-2268, 1990; Proc. Natl. Acad. Sci. USA, 90, 5873, 1993). BLAST algorithm A program called BLASTN or BLASTX based on the theory has been developed (Altsc ul SF, et al: J. Mol. Biol. 215: 403, 1990). When solving a base sequence using BLASTN, parameters are set to score = 100, wordlength = 12, for example. Also, when analyzing amino acid sequences using BLASTX, parameters are set to score = 50 and wordlength = 3, for example. When using BLAST and Gapped BLAST programs, use the default parameters of each program.
さらに、 本発明のポリヌクレオチド'は、 (j ) 上記 (5 ) に記載のポリヌクレオチ ド (MA) の転写^物に対して相補的な塩基配列を有する をコードするポリヌ クレオチド'; ' (k)上記 (S ) に記載のポリヌクレオチド (DNA) の発現を RNAi効果 により抑制する RNA をコードするポリヌクレオチド; (1) 上記 (5 ) に記載のポ リヌクレオチド (MA) の転写産物を特異的に切断する活性を有する RNA をコード するポリヌクレオチド;及び (m)上記 (5 ) に記載のポリヌクレオチド'(DNA) の発 現を共抑制効果により抑制する RNAをコードするポリヌクレオチドを含む。 これら のポリヌクレオチドは、 ベクターに組込まれ、 さらにそのべクタ一が導入された形 質転換細胞において上記(a)〜(i)のポリヌクレオチド (DNA) の発現を抑制するこ とができる。 したがって、 上記ポリヌクレオチド (DNA) の発現を抑制する場合に 好適に利用することができる。  Furthermore, the polynucleotide of the present invention comprises (j) a polynucleotide that encodes a polynucleotide having a base sequence complementary to the transcript of the polynucleotide (MA) described in (5) above; ) A polynucleotide that encodes an RNA that suppresses the expression of the polynucleotide (DNA) described in (S) above by the RNAi effect; (1) a specific transcript of the polynucleotide (MA) described in (5) above; And (m) a polynucleotide encoding an RNA that suppresses the expression of the polynucleotide (DNA) described in (5) above by a co-suppression effect. These polynucleotides can be suppressed in the expression of the polynucleotides (DNA) (a) to (i) in transformed cells into which the vector has been introduced and further incorporated into the vector. Therefore, it can be suitably used for suppressing the expression of the polynucleotide (DNA).
本明細書中、 「DNAの転写産物に対して相補的な塩基配列を有する RNAをコード するポリヌクレオチド:」 とは、 いわゆるアンチセンス DNAのことをいう。 アンチセ ンス技術は、 特定の内在性遺伝子の発現を抑制する方法として公知であり、 種々の 文献に記載ざれている (例えば、 平島および井上: 新生化学実験講座 1核酸 IV遺. 伝子の複製と発現 (日本生化学会編, 東京化学同人) pp. 319- 347, 1993などを参 照) 。 アンチセンス DNAの配列は、 内在性遺伝子またはその一部と相補的な配列で あることが好ましいが、 遺伝子の発現を有効に抑制できる限りにおいて、 完全に相 補的でなくてもよい。 転写された RNAは、 標的遺伝子の転写産物に対して好ましく は 90%以上、 さらに好ましくは 95 %以上の相補性を有する。 アンチセンス DNAの 長さは少なくとも 15塩基以上であり、 好ましくは 100塩基以上であり、 さらに好 ましくは 500塩基以上である。  In the present specification, “polynucleotide encoding RNA having a base sequence complementary to a transcription product of DNA:” refers to so-called antisense DNA. Antisense technology is known as a method for suppressing the expression of specific endogenous genes, and is described in various literatures (for example, Hirashima and Inoue: Shinsei Chemistry Laboratory 1 Nucleic Acid IV Remnants. Expression (refer to pp. 319-347, 1993, etc.). The sequence of the antisense DNA is preferably a sequence complementary to the endogenous gene or a part thereof, but may not be completely complementary as long as the gene expression can be effectively suppressed. The transcribed RNA preferably has a complementarity of 90% or more, more preferably 95% or more, to the transcript of the target gene. The length of the antisense DNA is at least 15 bases or more, preferably 100 bases or more, and more preferably 500 bases or more.
本明細書中、 「DNAの発現を RNAi効果により抑制する NAをコードするポリヌク レオチド」 とは、 A interference (RNAi) によって内在性遺伝子の発現を抑制す るためのポリヌクレオチドのことをいう。 「RNAiJ とは、 標的'遺伝子配列と同一も しくは類似した配列を有する二重鎖 RNAを細胞内に導入すると、 導入した外来遺伝 子および標的内在性遺伝子の発現がいずれも抑制さ lる現象のことを指す。 ここで 用いられる RNAとしては、 例えば、 21〜25塩基長の RNA干渉を生ずる二重鎖 RNA、 例えば、 dsRNA (double strand RNA)、 siRNA (small interfering RNA)又は shRNA (short hairpin RNA)が挙げられる。 このような RNAは、 リボソームなどの 送達システムにより所望の部位に局所送達させることも可能であり、 また上記二重 m RNAが生^されるようなベクターを用いて,これを局所発現させることができる。 このような二重鎖 RNA(dsRNA、 siRNA又は shRNA)の調製方法、 使用方法などは、 多 くの文献から公知である (特表 2002-516062号公報; 米国公開許第 2002/086356A 号; Nature Genetics, 24(2), 180-183, 2000 Feb.; Genesis, 26 (4), 240-244, 2000 April; 'Nature, 407:6802, 319-20, 2002 Sep. 21; Genes & Dev., Vol.16, (8), 948-958, 2002 Apr.15; Proc. Natl. Acad. Sci. USA., 99 (8), 5515-5520, 2002 Apr. 16; Science, 296(5567), 550-553, 2002 Apr. 19; Proc Natl. Acad. Sci. USA, 99:9; 6047-6052, 2002 Apr. 30; Nature Biotechnology, Vol.20 (5), 497-500, - 2002 May; Nature Biotechnology, Vol. 20 (5), 500-505, 2002 May; Nucleic Acids Res., 30:10, e46, 2002 May 15等参照) 。 In this specification, “a DNA encoding NA that suppresses DNA expression by the RNAi effect” “Leotide” refers to a polynucleotide for suppressing the expression of an endogenous gene by A interference (RNAi). `` RNAiJ is a phenomenon in which when a double-stranded RNA having the same or similar sequence as the target gene is introduced into a cell, the expression of the introduced foreign gene and target endogenous gene are both suppressed. Examples of RNA used here include double-stranded RNA that causes RNA interference of 21 to 25 bases, such as dsRNA (double strand RNA), siRNA (small interfering RNA), or shRNA (short hairpin) Such RNA can be locally delivered to a desired site by a delivery system such as a ribosome, and this can be achieved by using a vector that produces the above double mRNA. Methods for preparing and using such double-stranded RNA (dsRNA, siRNA or shRNA) are known from many literatures (Japanese translations of PCT publication No. 2002-516062; published in the US) Konno 2002 / 086356A; Nature Gen etics, 24 (2), 180-183, 2000 Feb .; Genesis, 26 (4), 240-244, 2000 April; 'Nature, 407: 6802, 319-20, 2002 Sep. 21; Genes & Dev., Vol.16, (8), 948-958, 2002 Apr.15; Proc. Natl. Acad. Sci. USA., 99 (8), 5515-5520, 2002 Apr. 16; Science, 296 (5567), 550 -553, 2002 Apr. 19; Proc Natl. Acad. Sci. USA, 99: 9; 6047-6052, 2002 Apr. 30; Nature Biotechnology, Vol. 20 (5), 497-500,-2002 May; Nature Biotechnology , Vol. 20 (5), 500-505, 2002 May; Nucleic Acids Res., 30:10, e46, 2002 May 15 etc.).
本明細書中、 「DNi の転写産物を特異的に切断する活性を有する RNAをコードす るポリヌクレオチド」 とは、 一般に、 リボザィムのことをいう。 リポザィムとは触 媒活性を有する RNA.分子のことをいい、 ターゲッ卜とする MAの転写産物を切断す ることにより、 その遺伝子の機能を阻害する。 リポザィムの設計についても種々の 公知文献を参照することができる (例えば、 FEBS Lett. 228: 228, 1988; FEBS Lett. 239: 285, 1988; Nucl. Acids. Res. 17: 7059, 1989; Nature 323: 349, 1986; Nucl. Acids. Res. 19: 6751, 1991; Protein Eng 3: 733, 1990; Nucl. Acids Res. 19: 3875, 1991; Nucl. Acids Res. 19: 5125, 1991; Bioc em Biophys Res Co匪 un 186: 1271, 1992など参照) 。 また、 「MAの発現を共抑制効 果により抑制する RNAをコードするポリヌクレオチド」 とは、 「共抑制」 によって、 ターゲットとなる DNAの機能を阻害するヌクレオチドをいう。 本明細書中、 「共抑制」 とは、 細胞中に、 標的内在性遺伝子と同一もしくは類似 した配列を有する遺伝子を形質転換により導入することにより: 導入した外来遺伝 子および擦的内在性遺伝子の発現がいずれも抑制される現象のごとをいう。 共抑制 効果を有するポリヌクレオチドの設計についても種々の公知文献を参照することが できる (例えば、 Smyth D : Curr. Biol. 7 : R793, 1997、 Mart ienssen R: Curr. Biol. 6 : 810, 1996など参照) 。 In the present specification, the “polynucleotide encoding RNA having an activity of specifically cleaving DNi transcript” generally refers to a ribozyme. Lipozyme is an RNA molecule that has catalytic activity, and inhibits the function of the gene by cleaving the target MA transcript. Various known literatures can also be referred to for the design of lipozymes (for example, FEBS Lett. 228: 228, 1988; FEBS Lett. 239: 285, 1988; Nucl. Acids. Res. 17: 7059, 1989; Nature 323). : 349, 1986; Nucl. Acids. Res. 19: 6751, 1991; Protein Eng 3: 733, 1990; Nucl. Acids Res. 19: 3875, 1991; Nucl. Acids Res. 19: 5125, 1991; Bioc em Biophys Res Co 匪 un 186: 1271, 1992). The “polynucleotide encoding RNA that suppresses MA expression by co-suppression effect” refers to a nucleotide that inhibits the function of the target DNA by “co-suppression”. In the present specification, “co-suppression” refers to the introduction of a gene having a sequence identical or similar to a target endogenous gene into a cell by transformation: the introduced foreign gene and the frictional endogenous gene. It refers to each phenomenon in which expression is suppressed. Various known literatures can also be referred to for designing a polynucleotide having a co-suppression effect (for example, Smyth D: Curr. Biol. 7: R793, 1997, Martienssen R: Curr. Biol. 6: 810, 1996). Etc.)
2 . 本発明の夕 パク質' - 本発明は、 上記ポリヌクレオチド(a)〜(i)のいずれかにコードされるタンパク質 も提供する。 本発明の好ましいタンパク質は、 .配列番号: 2のアミノ酸配列におい て、 1 もしくは複数個のアミノ酸が欠失、 置換、 挿入及び/又は付加したアミノ酸 配列からなり、 かつァセト乳酸シン夕一ゼ活性調節能を有するタンパク質である。 このようなタンパク質としては、 配列番号: 2のアミノ酸配列において、 上記し たような数のアミノ酸残基が欠失、 置換、 挿入及び/又は付加されたアミノ酸配列 からなり、 かつァセト乳酸シン夕一ゼ活性調節能を有するタンパク質が挙げられる。 また、 このようなタンパク質としては、 配列番号: 2のアミノ酸配列と上記したよ うな相同性を有するアミノ酸配列を有し、 かつァセト乳酸シンターゼ活性調節能を 有するタンパク質が挙げられる。 2. Protein of the Present Invention-The present invention also provides a protein encoded by any of the polynucleotides (a) to (i). A preferred protein of the present invention comprises: an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2; It is a protein having the ability. Such a protein comprises an amino acid sequence in which the number of amino acid residues as described above is deleted, substituted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2, and And a protein having the ability to regulate the activity of the enzyme. Examples of such a protein include a protein having the amino acid sequence having the homology as described above with the amino acid sequence of SEQ ID NO: 2 and having the ability to regulate acetolactic acid synthase activity.
このよ,うなタンパ 質は、 「モレキュラークローニング第 3版」 、 「カレント ' プロトコ一ルズ'イン 'モレキュラー 'バイオロジー」 、 "Nuc. Acids. Res. , 10, 6487 (1982) " 、 "Pioc. Nat l. Acad. Sci. USA, 79, 6409 (1982) " 、 "Gene, 34, 315 (1985) " 、 "Nuc. Acids. Res. , 13, 4431 (1985) " 、 "Pro Nat l. Acad. Sci. USA, 82, 488 (1985) "等に記載の部位特異的変異導入法を用いて、 取得する ことができる。  Such untamed proteins are described in "Molecular Cloning 3rd Edition", "Current 'Protocols' in 'Molecular' Biology", "Nuc. Acids. Res., 10, 6487 (1982)", "Pioc. Nat l. Acad. Sci. USA, 79, 6409 (1982) "," Gene, 34, 315 (1985) "," Nuc. Acids. Res., 13, 4431 (1985) "," Pro Nat l. Acad Sci. USA, 82, 488 (1985) "can be obtained using the site-directed mutagenesis method described in".
本発明のタンパク質のアミノ酸配列において 1以上のアミノ酸残基が欠失、 置換、 挿入及び Z又は付加されたとは、 同一配列中の任意かつ 1 もしくは複数のアミノ酸 配列中の位置において、 1 又は複数のアミノ酸残基の欠失、 置換、 挿入及び 又は 付加があることを意味し、 欠失、 置換、 挿入及び付加のうち 2種以上が同時に生じ てもよい。 以下に、 相互に置換可能なアミノ酸残基の例を示す。 同一群に含まれるアミノ酸 残基は相互に置換可能である。 A群:ロイシン、 イソロイシン、 ノルロイシン、 ノ リン、 ノルパリン、 ァラニン、 2-アミノブタン酸、 メチォニン、 0-メチルセリン、 t-ブチルグリシン、 卜ブチルァラニン、 シクロへキシルァラニン; B群:ァスパラ ギン酸、 グルタミン酸、 イソァスパラギン酸、 イソグルタミン酸、 2-アミノアジピ ン酸、 2-アミノスべリン酸; C群:ァスパラギン.、 グルタミン; D群: リジン、 アルギニン、 オル二チン、 2, 4-ジァミノブタン酸、 2, 3-ジァミノプロピオン酸; E群:プロリン、 3-ヒドロキシプロリン、 4-ヒドロキシプロリン; F群:セリン、 スレオニン、 モセリン; G群:フエ二ルァラニン、 チロシン。 The deletion, substitution, insertion and Z or addition of one or more amino acid residues in the amino acid sequence of the protein of the present invention means that one or more amino acid residues in one or more amino acid sequences in the same sequence It means that there are amino acid residue deletion, substitution, insertion and / or addition, and two or more of deletion, substitution, insertion and addition may occur simultaneously. Examples of amino acid residues that can be substituted with each other are shown below. Amino acid residues contained in the same group can be substituted for each other. Group A: Leucine, Isoleucine, Norleucine, Norin, Norpaline, Alanine, 2-Aminobutanoic acid, Methionine, 0-Methylserine, t-Butylglycine, N-Butylalanin, Cyclohexylalanin; Group B: Aspartic acid, Glutamic acid, Isoaspartic acid , Isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid; group C: asparagine, glutamine; group D: lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diamino Propionic acid; Group E: proline, 3-hydroxyproline, 4-hydroxyproline; Group F: serine, threonine, moserin; Group G: phenylalanin, tyrosine.
また、 本発明のタンパク質は、 Fmoc 法 (フルォレニルメチルォキジカルポニル 法) 、 tBoc法 (t -ブチルォキシカルポニル法) 等の化学合成法によっても製造する ことができる。 また、 ァドバンスドケムテック社製、 パーキンエルマ一社製、 ファ ルマシア社製、' プロテインテクノロジーインストウルメント社製、 シンセセルーべ ガ社製、 パーセプティブ社製、 島津製作所社製等のペプチド合成機を利用して化学 合成することもできる。  The protein of the present invention can also be produced by chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method). Peptide synthesizers manufactured by Advans Dochemtech, Perkin Elma, Pharmacia, Protein Technology Instrument, Synthesel Vega, Perceptive, Shimadzu, etc. It can also be chemically synthesized using.
3 . 本発明のベクタ一及びこれを導入した形質転換酵母 3. Vector of the present invention and transformed yeast introduced with the vector
次に、 本発明は、 上記したポリヌクレオチドを含有するべクタ一を提供する。 本 発明のベクタ一は、 上記(a)〜(i)のいずれかに記載のポリヌクレオチド (例えば DNA) を含有する。 また、 本発明のベクターは、 通常、 上記(a)〜(i)のいずれかに 記載のポリヌクレオチド (DNA) の発現を抑制するように、 (X)酵母細胞内で転写可 能なプロモータ一; (y)該プロモーターにアンチセンス方向で結合した、 上記(a)〜 (i)のいずれかに記載のポリヌクレオチド (例えば DNA) ;及び (z) RNA分子の転写 終結及びポリアデニル化に関し、 酵母で機能するシグナルを構成要素として含む発 現カセットを含むように構成される。 また、 上記(j)〜(! II)のいずれかに記載のポリ ヌクレオチドを含有するベクターには、 これらのポリヌクレオチドが、 発現可能な ように導入される。 なお、 本発明においては、 ターゲットとする上記遺伝子 Next, the present invention provides a vector containing the above-described polynucleotide. A vector according to the present invention contains the polynucleotide (for example, DNA) described in any one of (a) to (i) above. In addition, the vector of the present invention usually has (X) a promoter that can be transcribed in yeast cells so as to suppress the expression of the polynucleotide (DNA) described in any of (a) to (i) above. (Y) the polynucleotide (eg, DNA) according to any one of the above (a) to (i) bound to the promoter in an antisense direction; and (z) transcription termination and polyadenylation of an RNA molecule. It is configured to include an expression cassette that includes a signal that functions as a component. Moreover, these polynucleotides are introduced into a vector containing the polynucleotide according to any one of (j) to (! II) so that the polynucleotide can be expressed. In the present invention, the target gene
(DNA) を破壊することによって、 上記 DNA の発現または上記タンパク質の発現を 抑制することができる。 遺伝子の破壊は、 ターゲットとする遺伝子における遺伝子 産物の発現に関与する領域、 例えば、 コード領域^3プロモーター領域の内部へ単一 あるいは複数の塩基を付加あるいは欠失させたり、 これらの領域全体を欠失させる ことにより行うことができる。 このような遺伝子破壊の手法は、 公知の文献を参照 することができる (例えば、 Proc. Natl. Acad. Sci. USA, 76, 4951 (1979) 、 Methods in Enzymology, 101, 202 (1983)、 特開平 6-253826号公報など参照) 。 酵母に導入する際に用いるベクタ一としては、 多コピー型 (YEp型) 、 単コピー 型 (YCp 型) 、 染色体組み込み型 (Yip 型) のいずれもが利用可能である。 例えば、 YEp 型べク タ一と しては YEp24 (J. . Broach et al. , Experimental Manipulat ion of Gene Express ion, Academic Press, New York, 83, 1983) 、 YCp 型ぺクタ一としては YCp50 (M. D. Rose et al. , gene, 60, 237, 1987) 、 Yip型 ベクターとしては YIp5 (K. Struhl et al. , Proc. Nat l. Acad. Sci. USA, 76, 1035, 1979) が知られており、 容易に入手することができる。. By destroying (DNA), the expression of the DNA or the expression of the protein can be suppressed. Gene destruction is the gene in the target gene This can be done by adding or deleting single or multiple bases within the region involved in the expression of the product, for example, the coding region ^ 3 promoter region, or by deleting these entire regions. For such gene disruption methods, known literature can be referred to (for example, Proc. Natl. Acad. Sci. USA, 76, 4951 (1979), Methods in Enzymology, 101, 202 (1983), (See Kaihei 6-253826). As a vector used for introduction into yeast, any of a multicopy type (YEp type), a single copy type (YCp type), and a chromosomal integration type (Yip type) can be used. For example, YEp24 (J.. Broach et al., Experimental Manipulat ion of Gene Express ion, Academic Press, New York, 83, 1983) is used as a YEp type vector, and YCp50 ( MD Rose et al., Gene, 60, 237, 1987) and YIp5 (K. Struhl et al., Proc. Natl. Acad. Sci. USA, 76, 1035, 1979) are known as Yip type vectors. And can be easily obtained. .
酵母での遺伝子発現を調節するためのプロモーター Zターミネータ一としては、 醸造用酵母中で機能するとともに、 もろみ中の成分に影響を受けなければ、 任意の 組み合わせでよい。 例えばダリセルアルデヒド 3 リン酸デヒドロゲナ一ゼ遺伝子 (TDH3) のプロモータ一、 3-ホスホダリセレートキナ ゼ遺伝子 (PGK1) のプロモ 一ターなどが利用可能である。 これらの遺伝子はすでにクロ一ニングされており、 例えば M. F. Tui te et al. , ΕΜΒΟ J. , 1, 603 (1982) に詳細に記載されており、 既知の方法により容易に入手することができる。  As a promoter Z terminator for regulating gene expression in yeast, any combination may be used as long as it functions in brewing yeast and is not affected by components in mash. For example, a promoter of the dalyceraldehyde 3 phosphate dehydrogenase gene (TDH3) and a promoter of the 3-phosphodarylate kinase gene (PGK1) can be used. These genes have already been cloned, and are described in detail, for example, in M. F. Tuite et al., ΕΜΒΟ J., 1, 603 (1982), and can be easily obtained by known methods.
形質転換の際に用いる選択マーカーとしては、 醸造用酵母の場合は栄養要求性マ 一力一が利用できないので、 ジエネチシン耐性遺伝子 (G418r) 、 銅耐性遺伝子. As selectable markers for transformation, dieneticin resistance gene (G418r) and copper resistance gene are not available in the case of brewer's yeast.
(CUP1) (Marin et al. , Proc. Nat l. Acad. Sci. USA, 81, 337 1984) 、 セルレ ニン耐性遺伝子 (fas2ni, PDR4) (それぞれ猪腰淳嗣ら, 生化学, 64, 660, 1992 ; Hussain et al. , gene, 101, 149, 1991) などが利用可能である。 (CUP1) (Marin et al., Proc. Natl. Acad. Sci. USA, 81, 337 1984), cerulenin resistance gene (fas2ni, PDR4) (Ashigaki, et al., Biochemistry, 64, 660, 1992, respectively) Hussain et al., Gene, 101, 149, 1991) can be used.
上記のように構築されるべクタ一は、 宿主酵母に導入される。 宿主酵母としては、 醸造用に使用可能な任意の酵母、 例えばビール、 ワイン、 清酒等の醸造用酵母等が 挙げられる。 具体的には、 サッカロマイセス (Saccharomyces) 属等の酵母が挙げ られるが、 本発明においては、 ビール酵母、 例えばサッカロマイセス パストリア ヌス (Saccharomyces pas torianus) W34/70等、 サッカロマイセス カールスベル ゲンシス (Saccharomyces carl sbergens is) NCYC453、 NCYC456等、 サッカロマイセ ス セレピシェ(Saccharomyces cerevis iae) NBRC195 NB C1952 , NBRC1953 , NBRC1954'等が使用できる。 さらにウィスキー酵母、 例えばサッカロマイセス セレ ピシェ NCYC90等、 ワイン酵母、 例えば協会ぶどう酒用、 1号、 同 3号、 同 4号等、 清酒酵母、 例えば協会酵母 清酒用 7号、 同 9号等も用いることができるが、 これ に限定されない。 本発明においては、 ビール酵母、 例えばサッカロマイセス パス トリアヌスが好ましく用いられる。 The vector constructed as described above is introduced into the host yeast. Examples of the host yeast include any yeast that can be used for brewing, for example, brewery yeast for beer, wine, sake and the like. Specific examples include yeasts of the genus Saccharomyces, and in the present invention, beer yeasts such as Saccharomyces pas torianus W34 / 70, Saccharomyces carlsberg, etc. Saccharomyces carl sbergens is NCYC453, NCYC456 etc., Saccharomyces cerevis iae NBRC195 NB C1952, NBRC1953, NBRC1954 'etc. can be used. In addition, whiskey yeasts such as Saccharomyces cerevisiae NCYC90, wine yeasts such as association wine, No. 1, 3 and 4, etc., sake yeasts such as association yeast sake 7 and 9 etc. Yes, but not limited to this. In the present invention, beer yeast such as Saccharomyces pastorianus is preferably used.
酵母の形質転換方法どしては一般に用いられる公知の方法が利用できる。 例えば、 エレクトロボレ一シヨン法 " Meth. Enzymol. , 194, pl82 (1990) " 、 スフエロプラ スト法 "Proc. Nat l. Acad. Sci. USA, 75 p 1.929 (1978) " 、 酢酸リチウム法 "L Bacteriology, 153, pl63 (1983) " 、 Proc. Nat l. Acad. Sci. USA, 75 pl929 (1978) 、 Methods in yeast genet ics, 2000 Edi t ion : A Cold Spring Harbor Laboratory Course Manualなどに記載の方法で実施可能であるが、 これに限定され ない。  As a yeast transformation method, a publicly known method can be used. For example, the electroboration method "Meth. Enzymol., 194, pl82 (1990)", the Spheroplast method "Proc. Natl. Acad. Sci. USA, 75 p 1.929 (1978)", the lithium acetate method "L Bacteriology , 153, pl63 (1983) ", Proc. Natl. Acad. Sci. USA, 75 pl929 (1978), Methods in yeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manual It can be implemented, but is not limited to this.
. より具体的には、 宿主酵母を標準酵母栄養培地 (例えば YEPD 培地 "Genet ic Engineering. Vol. 1, Plenum Press, New York, 117 (1979) " ) で、 OD600nmの値 力 s 1〜6 となるように培養する。 この培養酵母を遠心分離して集め、 洗浄し、 濃度 約 1〜2Mのアルカリ金属イオン、 好ましくはリチウムイオンで前処理する。 この細 胞を約 3(TCで、 約 60分間静置した後、 導入する DNA (約 1〜20 g) とともに約 30°Cで、 約 60分間静置する。 ポリエチレングリコール、 好ましくは約 4, 000 ダル トンのポリエチレングリコールを、 最終濃度が約 20%〜50%となるように加える。 約. 30°Cで、 約 30分間静置した後、 この細胞を約 42°Cで約 5分間加熱処理する。 好ま しくは、 この細胞懸濁液を標準酵母栄養培地で洗浄し、 所定量の新鮮な標準酵母栄 養培地に入れて、 約 3(TCで約 60分間静置する。 その後、 選択マーカーとして用い る抗生物質等を含む標準寒天培地上に植えつけ、 形質転換体を取得する。  More specifically, the host yeast is transformed into a standard yeast nutrient medium (for example, YEPD medium "Genetic Engineering. Vol. 1, Plenum Press, New York, 117 (1979)") with an OD600nm value of s 1-6. Incubate to The cultured yeast is collected by centrifugation, washed, and pretreated with alkali metal ions, preferably lithium ions, at a concentration of about 1-2 M. The cells are allowed to stand for about 3 (about 60 minutes at TC and then with the DNA to be introduced (about 1 to 20 g) at about 30 ° C. for about 60 minutes. Polyethylene glycol, preferably about 4, Add 000 daltons of polyethylene glycol to a final concentration of about 20% to 50% .. About 30 minutes at 30 ° C, then heat the cells for about 5 minutes at about 42 ° C. Preferably, this cell suspension is washed with standard yeast nutrient medium, placed in a predetermined amount of fresh standard yeast nutrient medium, and allowed to stand for about 3 (about 60 minutes at TC. Then select Transformants are obtained by planting on a standard agar medium containing antibiotics used as markers.
その他、 一般的なクローニング技術に関しては、 「モレキュラークローニング第 3 版」 、 Methods in Yeast Genet ics、 A laboratory manual (Cold Spring Harbor Laboratory Press> Cold Spring Harbor, NY) " 等を参照することができる。 4. 本発明の酒類の製法及びその製法によって得られる酒類 For other general cloning techniques, “Molecular Cloning 3rd Edition”, Methods in Yeast Genetics, A laboratory manual (Cold Spring Harbor Laboratory Press> Cold Spring Harbor, NY) ”can be referred to. 4. Process for producing alcoholic beverages of the present invention and alcoholic beverages obtained by the process
本発明においては、 上述した本発明のポリヌクレオチド (D ) の発現が抑制さ れた醸造用酵母などを用いることによって、 所望の酒類で VDK、 特に A生成量が減 少し、 香味に優れた酒類を製造することができる。 具体的には、 上述した本発明の ベクターを導入した酵母、 上述した本発明のポリヌクレオチド (DNA) の発現が抑 制された酵母または下記の本発明の酵母の評価方法によって選択された酵母を用い て酒類製造のための発酵を行い、 VDK生成量、 特に DA生成量を低減させることによ つて、所望の酒類 かつ' VDK含量、 特に DA含量が低減された酒類を製造すること ができる。 対象となる酒類としては、 これらに限定されないが、 例えば、 ビール、 発泡酒などのビールテイストドリンク、 ワイン、 ウィスキー、 清酒などが挙げられ る。  In the present invention, by using the brewing yeast or the like in which the expression of the polynucleotide (D) of the present invention described above is suppressed, the desired liquor is reduced in the amount of VDK, particularly A, and excellent in flavor. Can be manufactured. Specifically, a yeast introduced with the above-described vector of the present invention, a yeast in which expression of the above-described polynucleotide (DNA) of the present invention is suppressed, or a yeast selected by the yeast evaluation method of the present invention described below is selected. It is possible to produce a desired liquor and a liquor with a reduced VDK content, particularly DA content, by performing fermentation for liquor production and reducing the VDK production amount, particularly DA production amount. Examples of alcoholic beverages to be covered include, but are not limited to, beer-taste drinks such as beer and happoshu, wine, whiskey, and sake.
これらの酒類を製造する場合は、 親株の代わりに本発明において得られた醸造酵 母を用いる以外は公知の手法を利用することができる。 したがって、 原料、 製造設 備、 製造管理等は従来法と全く同一でよく、 VDK、 特に DA生成量が減少した酒類を 製造するためのコストを増加させることはない。 つまり、 本発明によれば、 香味に 優れた酒類を、 既存の施設を用い、 コストを増加させることなく製造することがで きる。  In producing these alcoholic beverages, a known method can be used except that the brewing mother obtained in the present invention is used in place of the parent strain. Therefore, the raw materials, production equipment, production management, etc. may be exactly the same as the conventional method, and it does not increase the cost for producing VDK, especially alcoholic beverages with reduced DA production. That is, according to the present invention, alcoholic beverages with excellent flavor can be produced using existing facilities without increasing costs.
5 . 本発^の酵母の評価方法 5. Method for evaluating the original yeast
本発明は、 配列番号: 1の塩基配列を有するァセト乳酸シンターゼ活性調節サブ ュニットをコ一ドする遺伝子の塩基配列に基づいて設計したプライマ一又はプロ一. ブを用いて、 被検酵母の VM又は DA生成能について評価する方法に関する。 この ような評価方法の一般的手法は公知であり、 例えば、 W001Z040514号公報、 特開 平 8— 205900号公報などに記載されている。 以下、 この評価方法について簡単に説 明する。  The present invention uses a primer or a probe designed on the basis of a nucleotide sequence of a gene that codes for a lactate synthase activity regulatory unit having the nucleotide sequence of SEQ ID NO: 1. Or, it relates to a method for evaluating DA production ability. A general method of such an evaluation method is known, and is described in, for example, W001Z040514, JP-A-8-205900, and the like. This evaluation method is briefly explained below.
まず、 被検酵母のゲノムを調製する。.調製方法は、 Hereford法や酢酸カリウム法 など、 公知の如何なる方法を用いることができる (例えば、 Methods in Yeast Genet ics, Cold Spring Harbor Laboratory Press, pl30 (1990) ) 。 得られたゲノ ムを対象にして、 ァセト乳酸シンターゼ活性調節サブュニットをコードする遺伝子 の塩基配列 (好ましくは、 0RF配列) に基づいて設計したプライマー又はプローブ を用いて、 被検酵母のゲノムにその遺伝子あるいはその遺伝子-に特異的な配列が存 在するか否かを調べる。 プライマ一又はプローブの設計は公知の手法を用いて行う ことができる。 . , First, prepare the test yeast genome. As a preparation method, any known method such as Hereford method or potassium acetate method can be used (for example, Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, pl30 (1990)). A gene encoding a acetolactate synthase activity regulatory subunit in the obtained genome Using a primer or probe designed based on the nucleotide sequence (preferably 0RF sequence), it is examined whether the gene or the gene-specific sequence exists in the genome of the test yeast. The primer or probe can be designed using a known method. ,
遺伝子又は特異的な配列の検出は、 公知の手法を用いて実施することができる。 例えば、 特異的 列の一部又は全部を含むポリヌクレオチド又はその塩基配列に対 して相補的な塩基配列を含むポリヌクレオチドを一つのプライマ一として用い、 も う一方のプライ 一としてこの配列よりも上流あるいは下流の配列の一部又は全部 を含 ポリヌクレオチド又はその塩基配列に して相補的な塩基配列を含むポリヌ クレオチドを用いて、 PCR法によって酵母の核酸を増幅し、 増幅物の有無、 増幅物 の分子量の大きさなどを測定する。 プライマーに使用するポリヌクレオチドの塩基 数は、 通常、 10bp以上であり、 15〜25bp であることが好ましい。 また、 挟み込む 部分の塩基数は、 通常、 300〜2000bpが適当である。  Detection of a gene or a specific sequence can be carried out using a known method. For example, a polynucleotide containing a part or all of a specific sequence or a polynucleotide containing a base sequence complementary to the base sequence is used as one primer, and the other primer is more than this sequence. Amplification of yeast nucleic acid by PCR using a polynucleotide containing a part or all of the upstream or downstream sequence or a polynucleotide containing a base sequence complementary to the base sequence, and the presence or absence of the amplified product Measure the molecular weight of an object. The number of bases of the polynucleotide used for the primer is usually 10 bp or more, preferably 15 to 25 bp. In addition, the base number of the sandwiched portion is usually 300 to 2000 bp.
PCR法の反応条件は、 特に限定されないが、 例えば、 変性温度: 90〜95°C、 ァニ ーリング温度: 40〜60°C、 伸長温度: 60〜75で、 サイクル数: 10回以上などの条件 を用いることができる。 得られる反応生成物はァガロースゲルなどを用いた電気泳 動法等によって分離され、 増幅産物の分子量を測定することができる。 この方法に より、 増幅産物の分子量が特異部分の DNA分子を含む大きさかどうかによつて、 そ の酵母の舍ビシナルジケトン (VDK) 生成能又は全ダイァセチル (DA) 生成能につ いて予測 ·評価する。 また、 増幅物の塩基配列を分析することによって、 さらに上 記性能についてより疋確に予測 ·評価することが可能である。  The reaction conditions of the PCR method are not particularly limited. For example, denaturation temperature: 90 to 95 ° C, annealing temperature: 40 to 60 ° C, extension temperature: 60 to 75, cycle number: 10 times or more, etc. Conditions can be used. The obtained reaction product is separated by electrophoretic method using agarose gel or the like, and the molecular weight of the amplified product can be measured. This method predicts and evaluates the ability of the yeast to produce vicinal diketone (VDK) or total diacetyl (DA) depending on whether the molecular weight of the amplified product is large enough to include the DNA molecules of the specific part. . Further, by analyzing the base sequence of the amplified product, the above performance can be predicted and evaluated more accurately.
また、 本発明においては、 被検酵母を培養し、 配列番号: 1の塩基配列を有する ァセト乳酸シンターゼ活性調節サブュニットをコ一ドする遺伝子の発現量を測定す ることによって、 被検酵母の全ビシナルジケトン (VDK) 生成能又は全ダイァセチ ル (DA) 生成能を評価することもできる。 ァセト乳酸シン夕一ゼ活性調節サブュニ ットをコードする遺伝子の発現量の測定は、 被検酵母を培養し、 ァセト乳酸シン夕 ーゼ活性調節サブュニットをコードする遺伝子の転写産物である niRNA又はタンパ ク質を定量することによって可能である。 πι Α又はタンパク質の定量は、 公知の手 法を用いて行うことができる。 mRNAの定量は例えばノーザンハイブリダィゼ一ショ ンゃ定量的 RT- PCR によって、 タンパク質の定量は例えばウェスタンブロッテイン ヮによって行うことができる(Current Protocols in Molecular Biology, John Wi ley & Sons 1994-2003) . ' Further, in the present invention, the test yeast is cultured, and the expression level of the gene coding for the acetate lactate synthase activity regulatory unit having the base sequence of SEQ ID NO: 1 is measured, whereby all of the test yeast is obtained. The ability to produce vicinal diketone (VDK) or total diacetyl (DA) can also be evaluated. The expression level of the gene encoding the lactic acid synthase activity-regulating subunit can be measured by culturing the test yeast, and then measuring the transcript of the gene encoding the acetolactic acid synthase activity-regulating unit. It is possible by quantifying the quality. Quantification of πιΑ or protein can be performed using a known method. Quantification of mRNA is, for example, Northern Hybridization By quantitative RT-PCR, protein quantification can be performed, for example, by Western blotting (Current Protocols in Molecular Biology, John Wiley & Sons 1994-2003).
さらに、 被検酵母を培養して、 配列番号: 1の塩基配列を有するァセト乳酸シン 夕ーゼ活性調節サブユニットをコードする遺伝子の発現量を測定し、 目的とする全 ビシナルジケトン (VDK) 生成能又は全ダイァセチル (DA) 生成能に応じた前記遺 伝子発現量の酵母を選択することによって、 所望の酒類の醸造に好適な酵母を選択 することができ^)。 まだ、 基準酵母 (例えば、 ゲノム解読株サッカロマイセス パ ストリアヌス' バイへンステフアン 34/70株) 及び被検酵母を培養して配列番号: 1の塩基配列を有^"る遺伝子の各酵母における発現量を測定し、 基準酵母よりも該 遺伝子の発現が抑制されている (すなわち低発現である) 被検酵母を選択すること によって、 所望の酒類の醸造に好適な酵母を選択することができる。  Furthermore, the test yeast is cultured, and the expression level of the gene encoding the acetolactic acid synthase activity-regulating subunit having the nucleotide sequence of SEQ ID NO: 1 is measured, and the desired total vicinal diketone (VDK) production ability Alternatively, a yeast suitable for brewing a desired liquor can be selected by selecting a yeast having the gene expression level according to the total diacetyl (DA) production ability ^). Although the reference yeast (eg, genome decoding strain Saccharomyces pastorianus' byhenstefan 34/70) and the test yeast are cultured, the expression level of the gene having the nucleotide sequence of SEQ ID NO: 1 in each yeast is determined. By measuring and selecting a test yeast in which the expression of the gene is suppressed (that is, low expression) compared to the reference yeast, a yeast suitable for brewing a desired liquor can be selected.
あるいは、 被検酵母を培養して、 全ビシナルジケトン (VDK) 生成能又は全ダイ ァセチル (DA) 生成能の低い、 あるいはァセト乳酸シンターゼ活性の低い酵母を選 択することによって、 所望の酒類の醸造に好適な被検酵母を選択することができる これらの場合、 被検酵母または基準酵母としては、 例えば、 上述した本発明のベ クタ一を導入した酵母、 上述した本発明のポリヌクレオチド (DNA) の発現が抑制 された酵^、 上述した本発明のタンパク貧の発現が抑制された酵母、 突然変異処理 が施された酵母、 自然変異した酵母などが使用され得る。 VDK又は DA生成能は、 公 知の方法によって測定することができる。 例えば、 全ビシナルジケトン量の定量は , Drews et al. , Μοη. fur Brau. , 34, 1966に記載の方法によって行うことができ る。 全ダイァセチル量の定量は、 例えば、 J Agric Food Chem. 50 (13) : 3647-53, 2002に記載の方法によって行うことができる。 ァセト乳酸シンターゼ活性は、 例え ば、 Pangらの方法 (Biochemistry, 38, 5222-5231 (1999)) によって測定することができ る。 突然変異処理は、 例えば、 紫外線照射や放射線照射などの物理的方法、 E M S (ェチルメタンスルホネート) 、 N—メチルー N—ニトロソグァ二ジンなどの薬剤 処理による化学的方法など、 いかなる方法を用いてもよい (例えば、 大嶋泰治編著 、 生物化学実験法 39 酵母分子遺伝学実験法、 p 67- 75、 学会出版センターなど参 照) 。 Alternatively, by culturing the test yeast and selecting a yeast having a low ability to produce total vicinal diketone (VDK) or total diacetyl (DA), or a low acetolactate synthase activity, the desired alcoholic beverage can be brewed. A suitable test yeast can be selected. In these cases, examples of the test yeast or the reference yeast include a yeast introduced with the vector of the present invention described above, and the above-described polynucleotide (DNA) of the present invention. Fermentation in which expression is suppressed, yeast in which the expression of protein poor according to the present invention described above is suppressed, yeast that has been subjected to mutation treatment, naturally-mutated yeast, and the like can be used. VDK or DA production ability can be measured by known methods. For example, the amount of total vicinal diketone can be determined by the method described in Drews et al., Μοη. Fur Brau., 34, 1966. Quantification of the total amount of diacetyl can be carried out, for example, by the method described in J Agric Food Chem. 50 (13): 3647-53, 2002. The acetate lactate synthase activity can be measured, for example, by the method of Pang et al. (Biochemistry, 38, 5222-5231 (1999)). Mutation treatment can be performed by any method, for example, physical methods such as ultraviolet irradiation and radiation irradiation, chemical methods using chemical treatment such as EMS (ethyl methanesulfonate), N-methyl-N-nitrosoguanidine, etc. Good (for example, edited by Taiji Oshima, Biochemical Experimental Method 39 Yeast Molecular Genetics Experimental Method, p 67-75, Society Press) See)
なお、 基準酵母、 被検酵母として使用され得る酵母としては、 醸造用に使用可能 な任意の酵母、 例えばビール、 ワイン、 清酒等の醸造用酵母等が挙げられる。 具体 的には、 サッカロマイセス (Saccharomyces) 属等の酵母 (例えば、 サッカロマイ セス パストリアヌス、 サッカロマイセス セレピシェ、 およびサッカロマイセス 力一ルスべルゲ /シス) が挙げられるが、 本発明においては、 ビール酵母、 例えば サッカロマイセス パストリアヌス (Saccharomyces pas tor ianus) W34/70等、 サ ッカ口マイセス' カー Jレスべ Jレゲン シス ( Saccharomyces carlsbergens i s ) NCYC453、 NCYC456 等、 サッカ ロマイセス セレピシェ (Saccharomyces cerevis iae) NBRC195 L NBRC1952, NBRC1953, NBRC1954等が使用できる。 さらにヮ イン酵母、 例えば協会ぶどう酒用 1号、 同 3号、 同 4号等、 清酒酵母、 例えば協会 酵母 清酒用 7号、 同 9号等も用いることができる力 これに限定されない。 本発 明においては、' ビール酵母、 例えばサッカロマイセス パストリアヌスが好ましく 用いられる。 基準酵母、 被検酵母は、 上記酵母から任意の組み合わせで選択レても 良い。 実 施 例  Examples of yeast that can be used as the reference yeast or the test yeast include any yeast that can be used for brewing, for example, brewery yeast for beer, wine, sake and the like. Specific examples include yeasts of the genus Saccharomyces (for example, Saccharomyces pastorianus, Saccharomyces cerevisiae, and Saccharomyces cerevisiae / cis). In the present invention, beer yeasts such as Saccharomyces pastorianus ( Saccharomyces pas tor ianus) W34 / 70, Saccharomyces carlsbergens is NCYC453, NCYC456, Saccharomyces cerevis iae NBRC195 L 195RC4, NB Can be used. Further, the ability to use grape yeast, for example, association wine sake No. 1, 3, 4 etc., sake yeast, for example, association yeast sake no. 7, 9 etc. is not limited to this. In the present invention, beer yeasts such as Saccharomyces pastorianus are preferably used. The reference yeast and the test yeast may be selected from any combination of the above yeasts. Example
以下、 実施例によって本発明の詳細を述べるが、 本発明は以下の実施例に限定さ れるものではない。 , - 実施例 1 :ビール試醸中の nonScILV6遺伝子発現解析  Hereinafter, the details of the present invention will be described by way of examples, but the present invention is not limited to the following examples. ,-Example 1: Analysis of nonScILV6 gene expression in beer brewing
ビール酵母サッカロマイセス パストリアヌス バイへンステフアン W34/70 株 を用いてビール試醸を行った。 麦汁エキス濃度 12. 69%  The beer was brewed using the brewer's yeast Saccharomyces pastorianus bihenstefan W34 / 70. Wort extract concentration 12. 69%
麦汁容量 70L  Wort capacity 70L
麦汁溶存酸素濃度 8. 6ppm  Wort dissolved oxygen concentration 8.6 ppm
発酵温度  Fermentation temperature
酵母投入量 12. 8 x l06cel ls/mL 発酵液を経時的にサンプリングし、 酵母増殖量 (図 1) 、 観エキス濃度 (図 2) の経時変化を観察した。 またこれと同時に酵母菌体をサンプリングし、 調製し た mRNAをピオチンラベルして、 ビール酵母 MAマイクロアレイにハイブリダィズ させた。 シグナルの検出はジーンチップオペレーティ ングシステム (GCOS;GeneChip, Operating Software 1.0、 ァフィメトリクス社製) を用いて行つ た。 nonScILV6遺伝子の発現パターンを図 3に示す。 この結果より、 通常のビール 発酵において non'ScILV6遺伝子が発現していることを確認した。 実施例 2 : nonScILV6遺伝子の破壌 Yeast input 12.8 x l0 6 cel ls / mL The fermentation broth was sampled over time, and changes in the yeast growth (Fig. 1) and extract concentration (Fig. 2) over time were observed. At the same time, yeast cells were sampled, and the prepared mRNA was labeled with piotin and hybridized to a beer yeast MA microarray. Signal detection was performed using a GeneChip operating system (GCOS; GeneChip, Operating Software 1.0, manufactured by Affymetrix). The expression pattern of the nonScILV6 gene is shown in FIG. From this result, it was confirmed that the non'ScILV6 gene was expressed in normal beer fermentation. Example 2: NonScILV6 gene disruption
文献 (Goldstein et al. , yeast. 15 1541 (1999)) の方法にしたがい、 薬剤耐 性マ一カーを含むプラスミド(pFA6a (G418r), pAG25 (natl),pAG32 (hph) ) をテン プレートとした PCRによって遺伝子破壊用断片を作製する。 PCR用のプライマーと して、 nonScILV6_delta_for (配列番号: 3) 、 nonScILV6_del ta _rv (配列番号: 4) を用いる。  The plasmids (pFA6a (G418r), pAG25 (natl), pAG32 (hph)) containing drug-resistant markers were used as templates according to the method of the literature (Goldstein et al., Yeast. 15 1541 (1999)). Gene disruption fragments are prepared by PCR. NonScILV6_delta_for (SEQ ID NO: 3) and nonScILV6_delta_rv (SEQ ID NO: 4) are used as primers for PCR.
上述の方法で作製した遺伝子破壊用断片でビール酵母サッカロマイセス パスト リアヌス W34/70株より分離した胞子クローン株 (W34/70- 2) を形質転換する。 形 質転換は特開平 07-303475 号公報に記載された方法で行い、 ジエネチシン (Genet icin) 300mg/Lあるいはノ一セォスリシン (Nourseoihricin) 50mg/Lあるいは ハイグロマイシン B (Hygroiycin B) 200mg/Lを含む YPD平板培地 (1%酵母エキス、 The spore clone strain (W34 / 70-2) isolated from the brewer's yeast Saccharomyces pastorianus strain W34 / 70 is transformed with the gene disruption fragment prepared by the method described above. Transformation is carried out by the method described in Japanese Patent Application Laid-Open No. 07-303475, and includes dieneticin (300 mg / L), nourseoihricin (50 mg / L) or hygromycin B (Hygroiycin B) (200 mg / L). YPD plate medium (1% yeast extract,
2%ポリぺプドン、' 2%グルコース、 寒天) で形質転換体を選択する。 実施例 3 : ビール試験醸造における VDK生成量の解析 Select transformants with 2% polypepdon, '2% glucose, agar). Example 3: Analysis of VDK production in beer test brewing
親株ならびに実施例 2で得られる nonScILV6破壊株を用いた発酵試験を以下の条 件で行う。 麦汁エキス濃度 11.85%  A fermentation test using the parent strain and the nonScILV6-disrupted strain obtained in Example 2 is performed under the following conditions. Wort extract concentration 11.85%
麦汁容量 2L  Wort capacity 2L
麦汁溶存酸素濃度 8ppm 発酵温度 15°C—定 Wort dissolved oxygen concentration 8ppm Fermentation temperature 15 ° C—Constant
酵母投入 5g湿酵母菌体 ZL麦汁 発酵醪を経時的にサンプリングし、 酵母増殖量 (OD660) 、 エキス消費量の経時 変化を調べる。 醪中の全 VDKの定量は、 VDK (DA及び PD) をヒドロキシルァミンと 反応させ、 生成したダリオキシム誘導体と 2価鉄イオンが反応して生じる錯体の吸 光度を測定することによって行う (Drews et al. , Mon. fur Brau. , 34, 1966) 。 この時、 前駆体 ある α -ァセ卜乳酸及び α-ァセトヒドロキシ酪酸をあらかじめ ガス洗い法 (酸化的脱炭酸反応) によってそれぞれ DA、 PD に変換しておくことに より、 これらを含めた全 VDK量とする。 産業上の利用可能性  Yeast input 5g Wet yeast cells ZL wort Sampling fermented koji over time, and examine changes in yeast growth (OD660) and extract consumption over time. The total amount of VDK in the cocoon is determined by reacting VDK (DA and PD) with hydroxylamine and measuring the absorbance of the complex formed by the reaction of the resulting darioxime derivative with divalent iron ions (Drews et al. al., Mon. fur Brau., 34, 1966). At this time, the precursors α-acetolactic acid and α-acetohydroxybutyric acid are converted into DA and PD by gas scrubbing (oxidative decarboxylation) in advance, respectively. VDK amount. Industrial applicability
本発明の酒類製造法によれば、 製品中でオフフレーバーとなる VDK、 特に DA生産 量が低減され、 香味に優れた酒類を容易に製造することが可能となる。  According to the method for producing alcoholic beverages of the present invention, the production amount of VDK, which is off-flavor in the product, particularly DA production is reduced, and it becomes possible to easily produce alcoholic beverages with excellent flavor.

Claims

請求の範囲 The scope of the claims
1 . 以下の(a)〜(ί)からなる群から選択される記載のポリヌ'クレオチド:  1. The polynucleotide described in the following group selected from the group consisting of (a) to (ί):
(a)配列番号: 1の塩基配列からなるポリヌクレオチドを含有するポリヌクレオ チド;  (a) a polynucleotide containing a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1;
(b)配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレオ チドを含有するポリヌクレオチド;  (b) a polynucleotide containing a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2;
(c)配列番号: 2のアミノ酸配列において、 1もしくは複数個のアミノ酸が欠失、 置換、 挿入及びズ.又は付加したアミノ酸配列からなり、 かつァセト乳酸シンターゼ 活性調節能を有するタンパク質を ードするポリヌクレオチドを含有するポリヌク レす ド; '  (c) In the amino acid sequence of SEQ ID NO: 2, a protein consisting of an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and inserted, or added, and which has the ability to regulate acetolactate synthase activity. A polynucleotide containing the polynucleotide;
(d) 配列番号: 2のアミノ酸配列に対して 60%以上の同一性を有するアミノ酸配 列を有し、 かつァセト乳酸シンターゼ活性調節.能を有するタンパク質をコードする ポリヌクレオチドを含有するポリヌクレオチド;  (d) a polynucleotide comprising a polynucleotide having an amino acid sequence having 60% or more identity to the amino acid sequence of SEQ ID NO: 2 and encoding a protein having ability to regulate acetolactic acid synthase activity;
(e〉配列番¥: 1の塩基配列と相補的な塩基配列からなるポリヌクレオチドとス トリンジェントな条件下でハイプリダイズし、 かつァセト乳酸シン夕ーゼ活性調節 能を有するタンパク質をコードするポリヌクレオチドを含有するポリヌクレオチ ド;及び  (e) a polynucleotide encoding a protein that is hybridized under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 and that has the ability to regulate acetolactic acid synthase activity A polynucleotide containing nucleotides; and
(f)配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレオ チドの塩基配列と相補的な塩基配列からなるポリヌクレオチドとストリンジェント な条件下でハイブリ ィズし、 かつァセト乳酸シンターゼ活性調節能を有するタン パク質をコードするポリヌクレオチドを含有するポリヌクレオチド。  (f) ability to hybridize under stringent conditions with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO: 2 and to regulate the activity of lactate synthase A polynucleotide comprising a polynucleotide encoding a protein having
2 . 以下の (g)〜 ωからなる群から選択される請求項 1に記載のポリヌクレオチ. ドヽ:  2. The polynucleotide of claim 1 selected from the group consisting of (g) to ω:
(g)配列番号: 2のアミノ酸配列又は配列番号: 2のアミノ酸配列において 1〜10 個のアミノ酸が欠失、 置換、 揷入及び Z又は付加したアミノ酸配列からなり、 かつ ァセト乳酸シンタ一ゼ活性調節能を有するタンパク質をコ一ドするポリヌクレオチ ドを含有するポリヌクレオチド;  (g) the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2, consisting of an amino acid sequence in which 1 to 10 amino acids are deleted, substituted, inserted, and Z or added, and a lactate synthase activity A polynucleotide comprising a polynucleotide that codes for a protein having regulatory ability;
(h) 配列番号: 2のアミノ酸配列に対して 90%以上の同一性を有するアミノ酸配 列を有し、 かつァセト乳酸シンターゼ活性調節能を有するタンパク質をコードする ポリヌクレオチドを含有するポリヌクレオチド;及び  (h) a polynucleotide comprising a polynucleotide having an amino acid sequence having 90% or more identity to the amino acid sequence of SEQ ID NO: 2 and encoding a protein having ability to regulate acetolactic acid synthase activity; and
(i)配列番号: 1の塩基配列からなるポリヌクレオチド、 又は配列番号: 1の塩 基配列と相補的な塩基配列からなるポリヌクレオチドとハイストリンジェントな条 件下でハイプリダイズし、 かつァセト乳酸シン夕ーゼ活性調節'能を有するタンパク 質をコードするポリヌクレオチドを含有するポリヌクレオチド。 (i) a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1 or a salt of SEQ ID NO: 1 A polynucleotide comprising a polynucleotide consisting of a nucleotide sequence complementary to the base sequence and a polynucleotide encoding a protein that is hybridized under highly stringent conditions and has the ability to regulate acetolactic acid synthase activity .
3 . 配列番号: 1の塩基配列からなるポリヌクレオチドを含有する請求項 1に記 載のポリヌクレオチド。  3. The polynucleotide according to claim 1, comprising a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1.
4. 配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレオ チドを含有する請求項 1に記載のポリヌクレオチド。  4. The polynucleotide according to claim 1, comprising a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2.
5 . DNAである、. 請求項 1〜4のいずれかに記載のポリヌクレオチド。  5. The polynucleotide according to any one of claims 1 to 4, which is DNA.
6 . 以下の(j)〜(! n)からなる群から選択される記載のポリヌクレオチド:  6. The described polynucleotide selected from the group consisting of (j) to (! N):
(j) '請求項 5に記載のポリヌクレオチド (MA) の転写産物に対して相補的な塩基 配列を有する Aをコードするポリヌクレオチド;  (j) 'a polynucleotide encoding A having a base sequence complementary to the transcription product of the polynucleotide (MA) of claim 5;
(k)請求項 5に記載のポリヌクレオチド (DNA) .の発現を RNAi効果により抑制する R Aをコードするポリヌクレオチド;  (k) a polynucleotide encoding RA that suppresses the expression of the polynucleotide (DNA) according to claim 5 by RNAi effect;
(1) 請求項 5に記載のポリヌクレオチド (MA) の転写産物を特異的に切断する活 性を有する RNAをコードするポリヌクレオチド;及び  (1) a polynucleotide encoding RNA having an activity of specifically cleaving the transcript of the polynucleotide (MA) of claim 5; and
(m)請求項 5に記載のポリヌクレオチド (DNA) の発現を共抑制効果により抑制す る RNAをコードするポリヌクレオチド。  (m) A polynucleotide encoding RNA that suppresses the expression of the polynucleotide (DNA) according to claim 5 by a co-suppression effect.
7 . 請求項 1〜 5のいずれかに記載のポリヌクレオチドにコードされる夕ンパク 質。  7. A protein encoded by the polynucleotide according to any one of claims 1 to 5.
8 . 請求項 1〜5 いずれかに記載のポリヌクレオチドを含有するベクター。 9 . 請求項 6に記載のポリヌクレオチドを含有するベクター。 8. A vector containing the polynucleotide according to any one of claims 1 to 5. 9. A vector containing the polynucleotide according to claim 6.
1 0 . 請求項 8ま は 9に記載のベクターが導入された酵母。 . 10. A yeast into which the vector according to claim 8 or 9 has been introduced. .
1 1 . 請求項 8または 9に記載のベクターを導入することによって、 全ビシナル ジケ卜ン生産能又は全ダイァセチル生産能が低減された請求項 1 0に記載の酵母。 1 2 . 請求項 7に記載のタンパク質の発現量を減少させることによって、 全ビシ ナルジケトン生産能又は全ダイァセチル生産能が低減された請求項 1 1に記載の酵 母。 11. The yeast according to claim 10, wherein the total vicinal dikenne production capacity or the total diacetyl production capacity is reduced by introducing the vector according to claim 8 or 9. 1 2. The enzyme according to claim 11, wherein the total vicinal diketone-producing ability or the total diacetyl-producing ability is reduced by decreasing the expression level of the protein according to claim 7.
1 3 . 請求項 8もしくは 9に記載のベクタ一を導入することによって、 または、 請求項 5に記載のポリヌクレオチド (DNA) に係る遺伝子を破壊することによって、 請求項 5に記載のポリヌクレオチド (DNA) の発現が抑制された酵母。  1 3. The polynucleotide according to claim 5 by introducing the vector according to claim 8 or 9, or by destroying a gene related to the polynucleotide (DNA) according to claim 5. Yeast with suppressed expression of DNA.
1 4. 請求項 1 0から 1 3のいずれかに記載の酵母を用いた酒類の製造方法。 1 4. A method for producing an alcoholic beverage using the yeast according to any one of claims 10 to 13.
1 5 . 醸造する酒類が麦芽飲料である請求項 1 4に記載の酒類の製造方法。 15. The method for producing an alcoholic beverage according to claim 14, wherein the alcoholic beverage to be brewed is a malt beverage.
1 6 . 醸造する酒類がワインである請求項 1 4に記載の酒類め製造方法。  16. The method of producing a liquor according to claim 14, wherein the brewed liquor is wine.
1 7 . 請求項 1 4〜1 6のいずれかに記載の方法で製造された酒類。 1 7. Alcoholic beverages produced by the method according to any one of claims 14 to 16.
1 8 . 配列番号: 1の塩基配列を有するァセト乳酸シンターゼ活性調節サブュニ ットをコ一ドする遺伝子の塩基配列に基づいて設計したプライマ一又はプローブを 用いて、 被検酵母の全ビシナルジケトン生産能又は全ダイァセチル生産能について 評価する方法。  1 8. The ability of the test yeast to produce all vicinal diketones using a primer or probe designed based on the nucleotide sequence of a gene encoding a subunit that regulates the activity of a lactate synthase having the nucleotide sequence of SEQ ID NO: 1. Alternatively, a method for evaluating the total diacetyl production capacity.
1 9 . 被検酵母を培養し、 配列番号: 1の塩基配列を有するァセト乳酸シンター ゼ活性調節サブュニットをコードする遺伝子の発現量を測定することによって、 被 検酵每の全ビシナルジケトン生産能又は全ダイァセチル生産能を評価する方法。 1 9. Culturing the test yeast and measuring the expression level of the gene encoding the lactate synthase activity regulatory unit having the nucleotide sequence of SEQ ID NO: 1. A method to evaluate diacetyl production capacity.
2 0 . 被検酵母を培養して、 請求項 7に記載のタンパク質を定量または配列番 号: 1の塩基配列を有するァセ卜乳酸シンターゼ活性調節サブュニットをコードす る遺伝子の発現量を測定し、 目的とする全ビシナルジケトン生産能又は全ダイァセ チル生産能に じた前記タンパク質の生成量または前記遺伝子の発現量の被検酵母 を選択する、 酵母の選択方法。 20. Culturing the test yeast, quantifying the protein according to claim 7 or measuring the expression level of a gene encoding a case lactic acid synthase activity regulatory subunit having the nucleotide sequence of SEQ ID NO: 1. A method for selecting a yeast, comprising selecting a test yeast having a production amount of the protein or an expression amount of the gene according to a target total vicinal diketone production ability or total diacetyl production ability.
2 1 . 基準酵母及び被検酵母を培養して配列番号: 1の塩基配列を有するァセト 乳酸シンターゼ活性調節サブュニットをコ一ドする遺伝子の各酵母における発現量 を測定し、 基準酵母よりも該遺伝子が低発現である被検酵母を選択する、 請求項 2 0に記載の酵母の選択方法。  2 1. Culturing the reference yeast and the test yeast, the expression level in each yeast of the gene encoding the lactate synthase activity regulatory subunit having the nucleotide sequence of SEQ ID NO: 1 is measured. The method for selecting a yeast according to claim 20, wherein a test yeast having a low expression is selected.
2 2 . 基準酵母及び被検酵母を培養して各酵母における請求項 7に記載のタンパ ク質を定量し、 基準酵母よりも該タンパク質量の少ない被検酵母を選択する、 請求 項 2 0に記載の^母の選択方法。 2 2. The reference yeast and the test yeast are cultured, the protein according to claim 7 in each yeast is quantified, and the test yeast having a smaller amount of the protein than the reference yeast is selected. How to select my mother.
2. 3 . 請求項 1 0〜 1 3に記載の酵母および請求項 2 0〜 2 2に記載の方法によ り選択された酵母のいずれかの酵母を用いて酒類製造のための発酵を行い、 全ビシ ナルジケトン生産量又は全ダイァセチル生産量を調節することを特徴とする、 酒類 の製造方法。  2.3. Fermentation for liquor production is performed using any one of the yeast according to claims 10 to 13 and the yeast selected by the method according to claims 20 to 22. A method for producing an alcoholic beverage, comprising adjusting the total amount of vicinal diketone or the total amount of diacetyl.
PCT/JP2006/322059 2006-02-23 2006-10-30 Gene encoding regulatory subunit of acetolactate synthase activity and use thereof WO2007097073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-047566 2006-02-23
JP2006047566A JP2009165351A (en) 2006-02-23 2006-02-23 Gene encoding acetolactate synthase and use thereof

Publications (1)

Publication Number Publication Date
WO2007097073A1 true WO2007097073A1 (en) 2007-08-30

Family

ID=38437129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322059 WO2007097073A1 (en) 2006-02-23 2006-10-30 Gene encoding regulatory subunit of acetolactate synthase activity and use thereof

Country Status (2)

Country Link
JP (1) JP2009165351A (en)
WO (1) WO2007097073A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CULLIN C. ET AL.: "Functional Analysis of YCL09C: Evidence for a Role as the Regulatory Subunit of Acetolactate Synthase", YEAST, vol. 12, 1996, pages 1511 - 1518, XP003017234 *
SIEW SIEW PANG ET AL.: "Expression, Purification, Characterization, and Reconstitution of the Large and Small Subunits of Yeast Acetohydroxyacid Synthase", BIOCHEMISTRY, vol. 38, 1999, pages 5222 - 5231, XP003017235 *

Also Published As

Publication number Publication date
JP2009165351A (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP2009504131A (en) Dihydroxy acid dehydratase gene and use thereof
JP5091867B2 (en) Glycerol 3-phosphate dehydrogenase gene and use thereof
JP4478716B2 (en) Catalase gene and its use
JP4460006B2 (en) Branched-chain amino acid aminotransferase gene and use thereof
JP2009527216A (en) Acyl CoA: ethanol O-acyltransferase / esterase gene and uses thereof
JP2009527218A (en) Gene encoding acetolactate synthase and use thereof
JP4887367B2 (en) Alcohol acetyltransferase gene and use thereof
JP2009060790A (en) Gene encoding protein having activity of imparting drying resistance and/or low-temperature storage resistance to yeast, and use thereof
JP4460007B2 (en) Gene encoding vicinal diketone or protein having diacetyl-reducing activity and use thereof
JP2009528024A (en) Gene encoding transcription inducing factor of maltase and maltose transporter gene and use thereof
JP2009528019A (en) Gene encoding trehalose-6-phosphate phosphatase and use thereof
JP4870089B2 (en) Esterase gene and its use
JP4478717B2 (en) Catalase gene and its use
WO2007097073A1 (en) Gene encoding regulatory subunit of acetolactate synthase activity and use thereof
JP4478718B2 (en) Gene encoding glycogen synthesis initiation factor and use thereof
JP4460004B2 (en) Cysteine synthase gene and uses thereof
JPWO2007026956A1 (en) Gene for enhancing low temperature fermentability and / or freezing tolerance and use thereof
JP2009504133A (en) Adenylyl sulfate transferase gene and use thereof
WO2007026958A1 (en) Tryptophan transporter gene and use thereof
JP2008530977A (en) O-acetylhomoserine sulfhydrylase gene and use thereof
JP2009506751A (en) Glycerol channel gene and its use
JP2009528018A (en) Gene encoding a protein having trehalose synthesis promoting activity and use thereof
JP2009528020A (en) Gene encoding glycogen branching enzyme and use thereof
JP2007044016A (en) 3-isopropylmalic acid dehydrogenase gene and its use
WO2007097095A1 (en) Aromatic amino acid transporter gene and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP