WO2007095811A1 - Method for transmitting video gamma characteristic parameter and device thereof - Google Patents

Method for transmitting video gamma characteristic parameter and device thereof Download PDF

Info

Publication number
WO2007095811A1
WO2007095811A1 PCT/CN2006/003378 CN2006003378W WO2007095811A1 WO 2007095811 A1 WO2007095811 A1 WO 2007095811A1 CN 2006003378 W CN2006003378 W CN 2006003378W WO 2007095811 A1 WO2007095811 A1 WO 2007095811A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
discrete value
video
input
gamma
Prior art date
Application number
PCT/CN2006/003378
Other languages
French (fr)
Chinese (zh)
Inventor
Zhong Luo
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2007095811A1 publication Critical patent/WO2007095811A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/202Gamma control

Definitions

  • the present invention relates to video communication technologies, and more particularly to a method and apparatus for transmitting video gamma characteristic parameters in video communication.
  • Video communication is currently being widely used with the rapid development of broadband networks.
  • video conferencing and video telephony services are becoming the basic services on NGN (Next Generation Network).
  • NGN Next Generation Network
  • a key issue in developing such a business is to improve the end-to-end user experience (User Experience, or Quality of Experience).
  • quality of service Loss, delay, jitter, etc.
  • the distortion of the luminance signal caused by the Gamma nonlinear problem caused by each link in the video is also an important factor affecting the end user experience.
  • an optical signal from a scene (person, background, file, etc.) that needs to be transmitted enters the camera/camera, and is converted into a digital image signal by A/D. After being compressed and encoded, it is transmitted and sent to the other terminal, and then decompressed and decoded to be restored to a digital image signal, and then displayed on the display device, and finally becomes an optical signal that is perceived by the human eye.
  • a scene person, background, file, etc.
  • the image brightness signal (Luminance, a generalized brightness signal, that is, the initial light signal, the electrical signal, and then the digitized image brightness/gray signal, the signal of each stage contains the information of the brightness signal, Therefore, in a broad sense, the luminance signal has gone through multiple links.
  • Figure 1 is a schematic diagram of the model of the link Gamma.
  • the Gamma feature is The luminance signal input-output relationship of a link is not linear, but a nonlinearity.
  • the influence of Gamma nonlinear link distortion is shown in Fig. 2.
  • the brightness of the above-mentioned one is 0.4 linearly increasing from 0.1 to 1.0.
  • the lower line is distorted by the Gamma nonlinear link.
  • the brightness is increased according to the power function. of.
  • Figure 3 shows the cascade of multiple links (Cascading, or tandem).
  • G CT ⁇ .) G m (.).
  • CT indicates Cascaded Total, which is the meaning of cascading total Gamma.
  • Gamma characteristic correction requires more than two communication terminals.
  • the video of terminal A is transmitted to terminal B, and then the correction of the video frequency involves both the Gamma link on terminal A and the Gamma link on terminal B.
  • the Gamma correction method described above is implemented.
  • the premise is that the Gamma parameters of the Gamma link need to be transferred between the terminals participating in the multimedia communication.
  • the function representation method is generally used to represent the Gamma parameter, and the form of the Gamma non-linear function is roughly:
  • the function representation is too simplistic and idealized, so it is not accurate enough, and for the sake of simplification, it can be used in the case where the accuracy of the gamma correction is not high.
  • the ITU-R BT.709 standard defines the following piecewise function model:
  • the formula (6) is the Gamma characteristic representation of the camera
  • the formula (7) is the Gamma characteristic representation of the CRT display.
  • the segmentation method is more accurate, it has a narrow scope of application and can only be used for high-end (so-called broadcast-grade) devices. It is not very useful for a large number of mid-range and low-end devices, especially cameras. Therefore, although the function representation method is adopted, communication of gamma characteristic parameters can be facilitated between communication terminals, but it can only be used in high-end equipment and standard equipment.
  • Embodiments of the present invention provide a method and apparatus for transmitting video gamma characteristic parameters to solve the problem of how to reduce the amount of discretized Gamma parameter data transmitted between communication terminals when performing gamma correction using discretized Gamma parameters in the prior art.
  • the embodiment of the present invention further provides a video gamma characteristic parameter transmission device, including:
  • the input brightness discrete value determining module is configured to select the input brightness discrete value according to the brightness discrete probability distribution density function of the video, so that the selected input brightness discrete value points in any given range account for the proportion of all input brightness discrete value points and the range
  • the brightness distribution probability of the video is substantially proportional;
  • the output brightness discrete value determining module is connected to the input brightness discrete value selecting module for respectively determining the output brightness discrete value corresponding to each selected input brightness discrete value;
  • the video code stream transmitting module is configured to connect the output brightness discrete value selecting module, and configured to write the selected input brightness discrete value and the output brightness discrete value into the video code stream for transmission.
  • the embodiment of the invention selects the input luminance discrete value according to the discrete probability distribution density function of the brightness of the video, so that the ratio of the input luminance discrete value points in any given range to the total input luminance discrete value points and the brightness of the video in the range
  • the distribution probability is basically proportional, making full use of the relevant statistical information of the video content, so that the selected discretized Gamma parameters are all valid parameters, saving the transmission data amount, improving the transmission efficiency of Gamma parameters and the precision during reconstruction, thereby ensuring The accuracy of the Gamma correction.
  • Figure 1 is a general model of the link Gamma characteristics
  • 2 is a schematic diagram of luminance signal distortion caused by link Gamma characteristics
  • Figure 3 is a general model of the multi-link cascaded Gamma characteristics
  • Figure 4 is a schematic diagram of the Gamma characteristic for correcting a single link
  • Figure 5 is a schematic diagram of the Gamma characteristics for correcting a plurality of given links
  • Figure 6 is a schematic diagram showing the probability distribution of the luminance histogram
  • FIG. 7 and FIG. 8 are flowcharts of a method for transmitting a Gamma parameter according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a binary format of a Gamma parameter information area according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a Gamma parameter transmission apparatus according to an embodiment of the present invention. detailed description
  • the discretization Gamma parameter represented by the look-up table is simple, and can be adapted to any function form, and has good versatility.
  • the Gamma property is a function
  • its domain the range of values of Lin
  • the range of values the range of values of Lout
  • the key to the lookup table is two sets (or sequences) ⁇ L in (i)
  • 0 ⁇ i ⁇ Nl ⁇ is the set of Discrete Values of input Luminance; ⁇ L.
  • ut (i) 0 ⁇ i ⁇ Nl ⁇ is a discrete output brightness value set (Set of Discrete Values of out Luminance ).
  • L in L.
  • the ut ⁇ value must be in the interval [0,1].
  • the input and output brightness of each Gamma link may not be taken in the [0,1] range.
  • the input is first normalized during processing.
  • the luminance signal with the value in the interval [0,1] is called the normalized luminance L n in , the superscript n represents normalized, and the luminance signal with the value between 0 and MaxL a in is called actual.
  • the actual brightness is mapped to the [0,1] interval.
  • the output luminance signal is restored from the normalized value to the actual value (inverse).
  • the brightness level may also increase. From a technical implementation point of view, it is generally increased to an integer power of 2, such as 512 or even 1024.
  • the general form is 2 D and D is a natural number.
  • 0 ⁇ i ⁇ Nl ⁇ also belongs to ⁇ 0, 1, 2, 3, 4, ...,
  • the original Gamma property value range is a subinterval of [0,1], such as [0.1, 0.9], so that some values on [0, 1] are not available;
  • the inverse normalization process a rounding error, destroyed the original Gamma characteristic function one to one characteristic, it may lead to a corresponding plurality of discrete values L in a same L.
  • Ut ca n't get it.
  • the Gamma characteristic parameter table of 0-255 level can be measured.
  • the Gamma characteristic parameter measured by the measuring instrument may be less than 256 levels, such as 16, 32, 64, etc.
  • the embodiment of the present invention defines a mode to be transmitted in the 0-255 level as a normal mode, and transmits a mode of less than 256 levels (generally less than 128 levels): defined as a sparse mode.
  • a mode of less than 256 levels generally less than 128 levels: defined as a sparse mode.
  • the data structure in sparse mode is shown in Table 3:
  • both the input luminance discrete value set and the output luminance value set must be transmitted. If the luminance value is 256 levels, the total number of input and output discrete value parameters is less than 256 when the transmitted input luminance value points N ⁇ 128, which can be achieved.
  • the normal mode is more efficient. In sparse mode, not every integer between 0 and 255 is included in the input luminance discrete value set ⁇ L in (i)
  • the brightness value of the video is mainly distributed in a certain range.
  • the brightness of more than 95% of the pixels is in the range of 64-192.
  • the brightness of 0, 16, 32, 48, 208, 224, 240, 255 Discrete values are actually useless. Therefore, if the input luminance discrete value set constructed by the uniform interval selection method will result in insufficient information of effective information and waste of invalid information.
  • the discretization form is defined as the luminance histogram of the video.
  • the luminance histogram is represented by the function LH (Luminance Histogram).
  • LH Luminance Histogram
  • the range of the argument of the LH function (the domain of definition) is an integer from 0 to 255, and the range of values of the function value (value range) is the interval [0, 1].
  • the brightness histogram of any image or video is full
  • FIG. 6 An example of a luminance histogram distribution curve is shown in Figure 6, which plots the luminance histograms with luminance values of 96 and 128.
  • the embodiment of the present invention provides an optimization method for calculating a Gamma parameter representation based on a luminance histogram of a video.
  • the ratio of the number of points of the selected input luminance discrete value to the number of points of the input luminance is proportional to the probability of the luminance distribution of the video luminance histogram in this range, and the input luminance discrete value
  • the probability of brightness distribution in the range ab is:
  • the specific selection method of inputting the discrete value of the brightness includes the following steps:
  • V — ⁇ , — 2) + l — ⁇
  • the output luminance discrete values of each gamma link can be respectively determined, and then the input luminance discrete value and the output luminance discrete value of each gamma link are respectively correspondingly written into the video bitstream. Transmit; or a set of output luminance discrete values based on the cascaded gamma links of all gamma links.
  • the obtaining of the video luminance histogram to be used in the embodiment of the present invention belongs to the prior art, and is not further described herein.
  • the specific method of using the luminance histogram in the embodiment of the present invention has the following description:
  • the brightness histogram of the entire image does not change significantly. Therefore, this feature can be utilized.
  • the scene changes once every time, so in the communication process, motion estimation and the like are able to perceive a significant change in the scene. After each scene changes significantly, the brightness histogram of the current scene is recalculated, and then the histogram data is used until the next scene changes.
  • the video Gamma characteristic parameter transmission method of the embodiment of the present invention includes the following steps:
  • S300 Write the input luminance discrete value set and the output luminance discrete value set to the video code stream for transmission.
  • step S100 further includes:
  • N an integer greater than zero and less than 2 13 ⁇ 1 ;
  • embodiments of the present invention provide a binary stream representation format based on look-up table Gamma parameterization.
  • the Gamma parameter information is transmitted.
  • the general method is to define a block (block or Region) in the data area of the communication protocol allowing extension and custom content, and to store the binary stream representation of the Gamma parameter continuously. .
  • the block is then encapsulated and transmitted in the code stream of the protocol. This area is called the Gamma parameter information area. Therefore, what is presented here is actually a binary format of Gamma parameter information representation that is independent of the specific protocol.
  • the Gamma parameter information area can be defined as the format shown in Figure 9, including: Start flag: 16 bits (2 bytes), which can be OxOFFO; End flag: 16 bits (2 bytes), which can be OxFOOF;
  • Total area length 16 bits (2 bytes), the total length of the Gamma parameter information area in bytes (including the start and end flags).
  • the combination of the above three can locate the location of the Gamma information area in the code stream.
  • Total number of Gamma links 8 bits (1 byte) is represented by T. There can be up to 256 Gamma links, which is sufficient in practical applications.
  • Transfer mode 8 bits (1 byte), 0x00 can be used to indicate normal mode; 0x01 means sparse mode; other values are illegal;
  • Sub-area length 16 bits (2 bytes), the length of the sub-area in bytes (including the transfer mode byte).
  • the format of the Gamma parameter information area that does not depend on a specific bearer protocol is defined above.
  • the following embodiment of the present invention combines the H.264 protocol to provide a method for carrying Gamma parameter information by using the H.264 message extension mechanism.
  • H.264 A variety of mechanisms for message extension are provided in H.264, wherein an SEI is more suitable for use in embodiments of the present invention.
  • SEI Supplemental Enhancement Information
  • H.264 Data representation area is independent of video coding data. Its usage is described in the description of NAL (Network Abstraction Layer) in H.264 protocol. Given.
  • the basic unit of H.264 code stream is NALU (NAL Unit, Network Abstraction Layer Unit).
  • NALU can carry various H.264 data types, such as video sequence parameters (Sequence Parameters).
  • Video sequence Parameters Like Picture Parameters Slice data (ie specific image data) and SEI message data.
  • SEI is used to deliver various messages and support message extension.
  • SEI domain is used to transmit messages customized for a specific purpose without affecting the compatibility based on the H.264 frequency communication system.
  • the NALU carrying the SEI message is called SEI NALIL - one SEI NALU contains one or more SEI messages.
  • Each SEI message contains variables, mainly Payload Type and Payload Size, which indicate the type and size of the message payload.
  • the grammar and semantics of some commonly used H.264 SEI messages are defined in H.264 Annex D.8, D.9.
  • RBSP Raw-Byte Sequence Payload
  • SEI is a type of RBSP. According to the definition of H.264 7.3, the grammar structure of SEI RBSP is shown in Table 4:
  • SEI RBSP in a NALU can contain multiple SEI messages, where: The structure of an SEI message is shown in Table 5: Table 5. Schematic diagram of the H.264 SEI message grammar
  • H.264 Annex D.8 defines a grammar message structure that retains SEI messages for future expansion, such as Table 6 shows: Table 6. H.264 reserved SEI message payload part of the grammatical structure
  • each SEI field contains one or more SEI messages, which in turn consist of SEI header information and SEI payload.
  • the SEI header information includes two codewords: one codeword gives the type of payload in the SEI message, and the other codeword gives the size of the payload.
  • the payload type is between 0 and 255, it is represented by a byte 0x00 to OxFE.
  • the type is between 256 and 511, it can be represented by two bytes OxFFOO to OxFFFF.
  • the type is greater than 511, the method is deduced by analogy. This allows the user to customize any of a variety of load types.
  • Type 0 to type 18 have been defined as specific information such as cache period, image timing, and so on.
  • the type may be defined as 0xFFFF (511), and then the Gamma parameter information area is directly placed into the SEI payload. This completes the use of the SEI message extension mechanism to implement the bearer and transmission of the Gamma parameter information area.
  • the value of the SEI payload type is OxFFFF, which is only one embodiment of the present invention. For other values, it is also within the scope of the present invention.
  • the receiver's terminal extracts the gamma parameters from the bearer protocol (not necessarily H.264), it needs to reconstruct the gamma parameters of the links using the sparse transmission mode to form 256-level complete. Check the table to be applied in the later gamma correction.
  • the purpose of the reconstruction is to use the Gamma parameter to look up the existing entries of the table to construct the missing entries.
  • the missing entries are located between two adjacent existing entries.
  • Interpolation is generally used for reconstruction.
  • the interpolation methods that can be used are:
  • the embodiments of the present invention solve some basic problems of Gamma correction in multimedia communication, and these problems are prerequisites for realizing correction. It solves the problem of representation of Gamma parameter information, the binary format problem of Gamma parameter information area that does not depend on the specific bearer protocol, and the Gamma parameter information transmission problem based on H.264 SEI extended message mechanism.
  • the in-band mechanism of H.264 can be directly utilized without relying on other protocols.
  • the optimized Gamma parameter representation method based on video statistical characteristics proposed by the embodiment of the present invention can provide an optimal Gamma parameter representation under the premise of saving the amount of transmitted data, thereby improving the accuracy of the Gamma correction.
  • a more efficient parameterization method provided by the embodiments of the present invention adopts a sparse transmission mode.
  • 0 ⁇ i ⁇ Nl ⁇ may be much less than 256, such as 16, 32, 64, and so on.
  • 0 ⁇ i ⁇ Nl ⁇ and ⁇ L are transmitted.
  • 0 ⁇ i ⁇ Nl ⁇ take up space is 2 N bytes, sparse mode than the normal mode in order to save space, and must 2N ⁇ 256, i.e. N ⁇ 128. Otherwise it makes no sense.
  • the instrument can only measure fewer points on the Gamma curve, and the coordinates of each point are a pair of corresponding points.
  • the video described herein includes not only a motion picture sequence (a narrow definition of video), but also a still image, a computer graphic, an animation (such as a Flash animation, an animated GIF, etc.).
  • a transmitting apparatus 100 for implementing the above-described video gamma parameter transmitting method according to an embodiment of the present invention includes:
  • the input brightness discrete value determining module 101 is configured to select an input brightness discrete value according to a brightness discrete probability distribution density function of the video, so that the selected input brightness discrete value points in any given range account for the proportion of all input brightness discrete value points and the range
  • the brightness distribution probability of the inner video is substantially proportional;
  • the output brightness discrete value determining module 102 is connected to the input brightness discrete value selecting module 101 for respectively determining the output brightness discrete value corresponding to each selected input brightness discrete value;
  • a video stream transmission module 103 connected to the output luminance discrete value selection module 102, for The selected input luminance discrete value and the output luminance discrete value are correspondingly transmitted in the write video stream.
  • the input luminance discrete value determining module 101 further includes:
  • a video luminance histogram acquisition sub-module 1011 configured to obtain a video luminance histogram of the video
  • an input luminance discrete value escape condition storage sub-module 1012 configured to store a selection condition of the input luminance discrete value
  • the input luminance discrete value selection sub-module 1013 is configured to select an input luminance discrete value that satisfies the selection condition from among all levels of input luminance discrete values.
  • the conditions determined by the formulas (12) to (17) can be directly written into the determination program in the input luminance discrete value selection sub-module 1013, and if the user is allowed to set the conditions according to the needs, The user can write the expression of the relevant component to the input luminance discrete value selection condition storage sub-module 1012, and the input luminance discrete value selection sub-module 1013 reads the determination program for selection.
  • the output luminance discrete value determining module 102 connects each gamma link through which the video stream passes, for example, m gamma links as shown in the figure, for respectively detecting the input of the input luminance discrete value to each gamma link.
  • the output luminance discrete value determining module may further include:
  • the input luminance discrete value input sub-module 1021 is configured to generate an input luminance discrete value and input it to each Gamma link;
  • the output luminance discrete value detecting sub-module 1022 is configured to detect an output luminance discrete value corresponding to the input luminance dispersion value of each Gamma link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

A method for transmitting video gamma characteristic parameters in video communication includes the following steps: selecting input luminance discrete values according to the function of the density distribution of the video luminance discrete probability, such that the ratio of the points of the selected input luminance discrete values selected at any given area to the total points of the input luminance discrete values is substantially proportional to the video luminance distribution probability at the area; and determining a corresponding output luminance discrete value to each selected input luminance discrete value respectively; and writing the selected input luminance discrete values and the output luminance discrete values into the video stream to transmit. A corresponding device for transmitting video gamma characteristic parameters includes a determining module for determining the input luminance discrete values, a determining module for determining the output luminance discrete values, and a transmitting module for transmitting the video stream. By using the method or the device, the high accuracy gamma parameters may be obtained and transmitted between the communication terminals.

Description

一种视频伽玛特性参数传送方法和装置 技术领域  Video gamma characteristic parameter transmission method and device
本发明涉及视频通信技术, 特别涉及视频通信中的视频伽玛特性参数的 传送方法和装置。  The present invention relates to video communication technologies, and more particularly to a method and apparatus for transmitting video gamma characteristic parameters in video communication.
背景技术 Background technique
视频通信目前正在随着宽带网络的迅速发展而得到日益广泛的应用, 在 国内和国际上, 视频会议和可视电话业务正在成为 NGN ( Next Generation Network, 下一代网络)上的基本业务。 发展此类业务的一个关键问题是提高 端到端 (End-to-end ) 的用户体验 ( User Experience , 或者叫做 Quality of Experience )0 用户体验中除了网络的服务质量(丟包, 延迟, 抖动, R因子 等)外,视频中因为各个环节引起的 Gamma非线性问题造成的亮度信号的畸 变(Distortion ), 也是影响最终用户体验的重要因素。 但是, 目前提高端到端 用户体验的方法和技术主要集中在保证网络服务质量和视频压缩编码相关的 前后处理 ( Pre-processing, Post-processing )方面, 而对于 Gamma特性引起 的亮度畸变问题缺乏关注和系统的解决方法。 Video communication is currently being widely used with the rapid development of broadband networks. At home and internationally, video conferencing and video telephony services are becoming the basic services on NGN (Next Generation Network). A key issue in developing such a business is to improve the end-to-end user experience (User Experience, or Quality of Experience). 0 In addition to the quality of service (loss, delay, jitter, etc.) in the user experience. In addition to the R factor, etc., the distortion of the luminance signal caused by the Gamma nonlinear problem caused by each link in the video is also an important factor affecting the end user experience. However, the current methods and techniques for improving the end-to-end user experience mainly focus on ensuring network service quality and pre-processing (Post-processing) related to video compression coding, but lack of attention to the luminance distortion problem caused by Gamma characteristics. And system solutions.
视频通信过程中, 在一个视频通信终端 (以下筒称终端) 中, 从需要被 传送的场景(人物、背景、文件等)的光信号进入到摄像机 /摄像头,经过 A/D 转换成数字图像信号, 再经过压缩编码, 传送出去到达对方终端后, 经过去 压缩(Decompression )解码还原为数字图像信号, 然后再在显示设备上显示 出来,最终又变成光信号被人眼感知。这个过程中图像亮度信号(Luminance, 一种广义的亮度信号, 即一开始的光信号, 到电信号, 再到数字化的图像亮 度 /灰度信号, 每个阶段的信号都含有亮度信号的信息, 因此广义来说, 亮度 信号经过了多个环节)经过了多个环节。  In the video communication process, in a video communication terminal (hereinafter referred to as a terminal), an optical signal from a scene (person, background, file, etc.) that needs to be transmitted enters the camera/camera, and is converted into a digital image signal by A/D. After being compressed and encoded, it is transmitted and sent to the other terminal, and then decompressed and decoded to be restored to a digital image signal, and then displayed on the display device, and finally becomes an optical signal that is perceived by the human eye. In this process, the image brightness signal (Luminance, a generalized brightness signal, that is, the initial light signal, the electrical signal, and then the digitized image brightness/gray signal, the signal of each stage contains the information of the brightness signal, Therefore, in a broad sense, the luminance signal has gone through multiple links.
如图 1所示, 图 1为环节 Gamma特性的模型示意图, Gamma特性就是 一个环节的亮度信号输入-输出关系不是线性的, 而是一种非线性。 Gamma非 线性环节畸变的影响如图 2所示, 上面的一 4于灰度方块亮度是线性递增的, 从 0.1到 1.0, 下面一行是经过 Gamma非线性环节畸变的, 亮度是按照幂函 数规律递增的。 As shown in Figure 1, Figure 1 is a schematic diagram of the model of the link Gamma. The Gamma feature is The luminance signal input-output relationship of a link is not linear, but a nonlinearity. The influence of Gamma nonlinear link distortion is shown in Fig. 2. The brightness of the above-mentioned one is 0.4 linearly increasing from 0.1 to 1.0. The lower line is distorted by the Gamma nonlinear link. The brightness is increased according to the power function. of.
在实际中, Gamma非线性是由不同原因引起的,例如: CRT ( Cathode Ray Tube, 阴极射线管)显示器的 Gamma特性在理想状况下满足公式 1:  In practice, Gamma nonlinearity is caused by different reasons. For example: The Gamma characteristic of CRT (Cathode Ray Tube) display satisfies the formula under ideal conditions 1:
L。ut= L|n (1) L. Ut = L|n (1)
而对应的摄像机 /摄像头的理想 Gamma满足公式 2: The corresponding camera/camera ideal Gamma satisfies the formula 2:
Figure imgf000004_0001
Figure imgf000004_0001
从 Gamma问题的起源来看, 起源于 CRT显示器, 因为其 Gamma值是 2.2, 为了补偿掉这个非线性, 在摄像机中人为引入了 Gamma值 0.45。 如杲在系统 中只存在两个 Gamma环节: CRT显示器和摄像机,,那么可以实现完全的 Gamma 校正。 需要说明的是, 这里的输入和输出亮度信号都是在各自的坐标空间中 进行了规一化(Normalized ) , 即 0≤L。ut≤l, 0≤Lin≤l。 而其它类型的显示器, 比如液晶显示器的 Gamma函数形式或者不同、 或者虽然形式上也是幂函数但 是参数不同。 From the origin of the Gamma problem, it originated from the CRT display, because its Gamma value is 2.2. In order to compensate for this nonlinearity, a Gamma value of 0.45 was artificially introduced in the camera. If there are only two Gamma links in the system: CRT monitors and cameras, then full Gamma correction can be achieved. It should be noted that the input and output luminance signals here are normalized in their respective coordinate spaces, that is, 0 ≤ L. ut ≤l, 0≤L in ≤l. Other types of displays, such as the gamma function of liquid crystal displays, are either different or, although formally, power functions but differ in parameters.
如图 3所示, 图 3为多个环节级联(Cascading, 或者叫做串联)起来环节 As shown in Figure 3, Figure 3 shows the cascade of multiple links (Cascading, or tandem).
Gamma特性的模型示意图, 总的 Gamma特性等于各个环节 Gamma函数的复合Schematic diagram of the Gamma characteristic model, the total Gamma characteristic is equal to the composite of each link Gamma function
(Composition), 满足公式 3: (Composition), satisfies the formula 3:
GCT {.) = Gm (.)。 G(2) O G(3)(.)……- Gin-l)(.) °G CT {.) = G m (.). G (2) OG (3) (.)......- G in - l) (.) °
Gcr(lin) = 2) ( ....... G(^ (G(1> (/,, ))))) (3) G cr (l in ) = 2) ( ....... G ( ^ (G (1 > (/,)))))) (3 )
"。 "表示函数的复合运算。 CT表示 Cascaded Total, 即级联总 Gamma的意 思。 "." means a compound operation of a function. CT indicates Cascaded Total, which is the meaning of cascading total Gamma.
理想的情况是输入光信号从进入摄像头到最终在显示屏上显示输出光信 号, 输入和输出亮度信号之间存在线性关系, 即: L。ut= Lin, 这样人看到的景 物才和原来的完全一样, 用户体验最好。 Ideally, there is a linear relationship between the input optical signal from the entry of the camera to the final display of the output optical signal on the display, and the input and output luminance signals, ie: L. Ut = L in , so that the scene that people see is exactly the same as the original, and the user experience is the best.
要获得线性关系, 必须对于具有非线性 Gamma特性环节进行 Gamma校正 ( Gamma Correction )。 如图 4所示,对于一个环节来说, 其 Gamma特性给定, 那么可以用另外一个校正环节和它进行级联, 来使得级联后总的 Gamma特性 称为真正的线性关系, 从而达到了补偿掉给定环节非线性的目的, 校正环节 的模型为 Gamma特性等效模型的逆模型, 如果等效模型可以用函数关系式表 示, 则逆模型的函数关系式为其反函数。 显然, Gg(.)和 Gc(.)互为反函数。 一般 情况下, 对于一个函数, 要获得其反函数不一定有解(或者即使解存在, 也 无法用计算的方法获得)。 To obtain a linear relationship, Gamma correction must be performed for links with nonlinear Gamma characteristics. (Gamma Correction). As shown in Figure 4, for a link, the Gamma characteristic is given, then another correction link can be used to cascade it, so that the total Gamma characteristic after the cascade is called a true linear relationship, thus achieving To compensate for the nonlinearity of a given link, the model of the correction link is the inverse model of the Gamma characteristic equivalent model. If the equivalent model can be expressed by a function relation, the function relation of the inverse model is its inverse function. Obviously, Gg (.) And G c (.) Function are inverted. In general, for a function, the inverse function does not necessarily have a solution (or even if the solution exists, it cannot be obtained by calculation).
实际应用中更多的情况如图 5所示, 校正环节需要插入到前后两个给定环 节之间,此时 Gc(.)情况更加复杂, Gc(.)和 Ga(.)或者 Gp(.)不再是简单的反函数关 系。 More cases in the actual application are shown in Figure 5. The correction link needs to be inserted between the two given links. The G c (.) situation is more complicated, G c (.) and G a (.) or G p (.) is no longer a simple inverse function relationship.
在视频通信的一般情况下, Gamma特性校正需要涉及到两个以上的通信 终端。 比如在一个两方视频通信中, 终端 A的视频传送到终端 B, 那么这路视 频的校正就同时涉及到终端 A上的 Gamma环节和终端 B上的 Gamma环节。实现 以上所述的 Gamma校正方法,. 前提是需要在参加多媒体通信的终端之间相互 传递 Gamma环节的 Gamma参数。  In the general case of video communication, Gamma characteristic correction requires more than two communication terminals. For example, in a two-party video communication, the video of terminal A is transmitted to terminal B, and then the correction of the video frequency involves both the Gamma link on terminal A and the Gamma link on terminal B. The Gamma correction method described above is implemented. The premise is that the Gamma parameters of the Gamma link need to be transferred between the terminals participating in the multimedia communication.
现有的技术中, 一般采用函数表示方法表示 Gamma参数, 表示 Gamma非 线性函数的形式大致有:  In the prior art, the function representation method is generally used to represent the Gamma parameter, and the form of the Gamma non-linear function is roughly:
1、 纯指数函数: 1, pure exponential function:
Figure imgf000005_0001
Figure imgf000005_0001
2、 带有偏移量 (bias)的指数函数:  2. Exponential function with offset (bias):
Lout= Lj+b (5) L out = Lj+b (5)
理想状态是很难获得的, 因此用纯指数形式或者带有偏移的指数形式来 表示 Gamma特性, 在有些情况下可能是很不精确的。 比如如果摄像头是廉价 的摄像头, 可能其 Gamma特性就不是指数形式。  The ideal state is difficult to obtain, so the expression of Gamma in pure exponential form or in exponential form with offset may be very inaccurate in some cases. For example, if the camera is a cheap camera, the Gamma feature may not be exponential.
函数表示过于简单化和理想化, 因此都不够精确, 出于简化的需要, 在 对于 Gamma校正精度要求不高的情况下是可以用的。 但是, 在一些对于质量 要求很高的应用场景下, 比如广播电视 (尤其是高清晰度电视 HDTV)中的节目 制作和交换, 就不能满足要求了。 因此, ITU-R的 BT.709标准定义了以下的分 段函数模型: The function representation is too simplistic and idealized, so it is not accurate enough, and for the sake of simplification, it can be used in the case where the accuracy of the gamma correction is not high. However, in some high-quality applications, such as programs in broadcast television (especially high-definition television HDTV) Production and exchange can not meet the requirements. Therefore, the ITU-R BT.709 standard defines the following piecewise function model:
Figure imgf000006_0001
Figure imgf000006_0001
其中, 公式 (6)是摄像机的 Gamma特性表示, 公式 (7)是 CRT显示器的 Gamma特性表示。  Among them, the formula (6) is the Gamma characteristic representation of the camera, and the formula (7) is the Gamma characteristic representation of the CRT display.
分段表示方法虽然比较精确, 但是适用范围狭窄, 只能适合高端 (所谓广 播级)设备, 对于大量中端和低端的设备, 尤其是摄像头无法很好使用。 因此 尽管采用函数表示方法时, 通信终端之间可以方便进行伽玛特性参数的传送, 但是只能用于高端设备和标准设备中。  Although the segmentation method is more accurate, it has a narrow scope of application and can only be used for high-end (so-called broadcast-grade) devices. It is not very useful for a large number of mid-range and low-end devices, especially cameras. Therefore, although the function representation method is adopted, communication of gamma characteristic parameters can be facilitated between communication terminals, but it can only be used in high-end equipment and standard equipment.
由于 Gamma函数的定义域和值域都是 [0,1]区间, 因此还可以采用离散化 的方式来表示这种函数关系。 如表 1所示, 该表的形式是两列 N行。 左边是 Lin 的 N个离散值, 右边是对应的 L。ut的 N的离散值。 因此, 要根据 Lin的数值来计 算对应的!^^, 只要查表就可以完成了。 如杲 Lin的数值不在左列中, 可以采用. 插值的方法来计算对应的 L。ut值。 Since the domain and the range of the Gamma function are both [0, 1] intervals, it is also possible to represent this functional relationship in a discretized manner. As shown in Table 1, the form of the table is two columns of N rows. Left L in the N discrete values, corresponding to the right is L. The discrete value of N of ut . Thus, according to a corresponding calculated value of L in! ^^, as long as the table is checked, it can be completed. If the value of 杲L in is not in the left column, the interpolation method can be used to calculate the corresponding L. Ut value.
表 1.Gamma参数的查表表示方法  Table 1. Table representation of Gamma parameters
Figure imgf000006_0002
Figure imgf000006_0002
查表法的应用不受终端设备的限制, 但是在通信终端之间需要传送的离 散化 Gamma参数数据量很大。 发明内容 本发明实施例提供一种视频伽玛特性参数的传送方法和装置, 以解决现 有技术利用离散化 Gamma参数进行 Gamma校正时, 如何減少通信终端之间 传送的离散化 Gamma参数数据量的问题。 The application of the look-up table method is not limited by the terminal device, but the amount of discretized Gamma parameter data that needs to be transmitted between communication terminals is large. Summary of the invention Embodiments of the present invention provide a method and apparatus for transmitting video gamma characteristic parameters to solve the problem of how to reduce the amount of discretized Gamma parameter data transmitted between communication terminals when performing gamma correction using discretized Gamma parameters in the prior art.
一种视频伽玛特性参数传送方法, 包括如下步驟:  A video gamma characteristic parameter transmission method includes the following steps:
根据视频的亮度的离散概率分布密度函数选择输入亮度离散值, 使任意 给定范围中选取的输入亮度离散值点数占全部输入亮度离散值点数的比例与 该范围内视频的亮度分布概率基本成正比;  Selecting the input luminance discrete value according to the discrete probability distribution density function of the brightness of the video, so that the ratio of the selected input luminance discrete value points in any given range to the total input luminance discrete value points is substantially proportional to the luminance distribution probability of the video in the range. ;
分别确定选取的每一个输入亮度离散值对应的输出亮度离散值; 将选取的输入亮度离散值和输出亮度离散值对应写入视频码流传送。 基于同一扶术构思, 本发明实施例还提供一种视频伽玛特性参数传送装 置, 包括:  Determining, respectively, the output luminance discrete values corresponding to each of the selected input luminance discrete values; and respectively inputting the selected input luminance discrete values and the output luminance discrete values into the video stream transmission. The embodiment of the present invention further provides a video gamma characteristic parameter transmission device, including:
输入亮度离散值确定模块, 用于根据视频的亮度离散概率分布密度函数 选择输入亮度离散值, 使任意给定范围中选取的输入亮度离散值点数占全部 输入亮度离散值点数的比例与该范围内视频的亮度分布概率基本成正比; 输出亮度离散值确定模块, 连接所述输入亮度离散值选取模块, 用于分 别确定选取的每一个输入亮度离散值对应的输出亮度离散值;  The input brightness discrete value determining module is configured to select the input brightness discrete value according to the brightness discrete probability distribution density function of the video, so that the selected input brightness discrete value points in any given range account for the proportion of all input brightness discrete value points and the range The brightness distribution probability of the video is substantially proportional; the output brightness discrete value determining module is connected to the input brightness discrete value selecting module for respectively determining the output brightness discrete value corresponding to each selected input brightness discrete value;
视频码流传送模块, 连接所述输出亮度离散值选取模块, 用于将选取的 输入亮度离散值和输出亮度离散值对应写入视频码流中传送。  The video code stream transmitting module is configured to connect the output brightness discrete value selecting module, and configured to write the selected input brightness discrete value and the output brightness discrete value into the video code stream for transmission.
' 本发明实施例根据视频的亮度的离散概率分布密度函数选择输入亮度离 散值, 使任意给定范围中选取的输入亮度离散值点数占全部输入亮度离散值 点数的比例与该范围内视频的亮度分布概率基本成正比, 充分利用了视频内 容的相关统计信息, 使选取的离散化 Gamma参数全部为有效参数, 节省了传 输数据量, 提高了 Gamma参数的传输效率和重构时的精度, 从而保证了 Gamma校正的精度。 附图说明  The embodiment of the invention selects the input luminance discrete value according to the discrete probability distribution density function of the brightness of the video, so that the ratio of the input luminance discrete value points in any given range to the total input luminance discrete value points and the brightness of the video in the range The distribution probability is basically proportional, making full use of the relevant statistical information of the video content, so that the selected discretized Gamma parameters are all valid parameters, saving the transmission data amount, improving the transmission efficiency of Gamma parameters and the precision during reconstruction, thereby ensuring The accuracy of the Gamma correction. DRAWINGS
图 1为环节 Gamma特性的一般模型; 图 2为环节 Gamma特性引起的亮度信号畸变的示意图; Figure 1 is a general model of the link Gamma characteristics; 2 is a schematic diagram of luminance signal distortion caused by link Gamma characteristics;
3为多环节级联 Gamma特性的一般模型; Figure 3 is a general model of the multi-link cascaded Gamma characteristics;
图 4为校正单个环节的 Gamma特性示意图;  Figure 4 is a schematic diagram of the Gamma characteristic for correcting a single link;
图 5为校正多个给定环节的 Gamma特性示意图;  Figure 5 is a schematic diagram of the Gamma characteristics for correcting a plurality of given links;
图 6为亮度直方图分布概率示意图;  Figure 6 is a schematic diagram showing the probability distribution of the luminance histogram;
图 7、 图 8为本发明实施例所述 Gamma参数传送方法流程图;  7 and FIG. 8 are flowcharts of a method for transmitting a Gamma parameter according to an embodiment of the present invention;
图 9为本发明实施例所述 Gamma参数信息区域二进制格式示意图;  9 is a schematic diagram of a binary format of a Gamma parameter information area according to an embodiment of the present invention;
图 10为本发明实施例所述 Gamma参数传送装置结构示意图。 具体实施方式  FIG. 10 is a schematic structural diagram of a Gamma parameter transmission apparatus according to an embodiment of the present invention. detailed description
尽管函数表示简洁, 传递参数量很少, 但是计算麻烦, 尤其计算浮点数 的非整数次方是非常耗时的。 而采用查表表示的离散化 Gamma参数, 计算简 洁, 并且可以适应任意函数形式, 通用性好。  Although the function representation is succinct, the amount of parameters passed is small, but computational troubles, especially the calculation of non-integer powers of floating-point numbers, are very time consuming. The discretization Gamma parameter represented by the look-up table is simple, and can be adapted to any function form, and has good versatility.
因为 Gamma特性作为一个函数, 其定义域 (Lin的取值范围)和值域 (Lout的 取值范围)都是区间 [0,1]或者其某个子区间, 比如 [0.1,0.9]。 查表法的关键是两 个集合(或者叫做序列) {Lin(i)|0≤i≤N-l }和 {L。ut(i)|0≤i≤N-l}, 以及它们的元素 之间的对应关系。 定义 {Lin(i)|0≤i≤N-l}为输入亮度离散值集合(Set of Discrete Values of input Luminance ) ; {L。ut(i)|0≤i≤N-l}为输出亮度离散值集合(Set of Discrete Values of out Luminance )。 虽然从 Gamma特性作为一个函数的定义域 ^ 和值域的要求来说, Lin, L。ut ^又值必须在 [0,1]区间上。 但是, 在实际应用中, 每个 Gamma环节的输入和输出亮度的取制范围可能并不是 [0,1]区间。 这样为 了保持和 Gamma定义的一致, 实际上对于基于函数形式的 Gamma特性, 在处 理的时候是要首先把输入进行规一化处理。 将取值在 [0,1]区间上的亮度信号 叫做规一化亮度 Ln in, 上标 n表示规一化(Normalized ) , 而取值在 0- MaxLa in 之间的亮度信号叫做实际亮度 La in, 上标 a表示实际 (Actual ) 。 而将实际的亮 度映射到 [0,1]区间, 采用的方法是: Ln in=Lin MaxLa in (8) Because the Gamma property is a function, its domain (the range of values of Lin) and the range of values (the range of values of Lout) are all intervals [0, 1] or some subinterval, such as [0.1, 0.9]. The key to the lookup table is two sets (or sequences) {L in (i)|0≤i≤Nl } and {L. ut (i) | 0≤i≤Nl}, and the correspondence between their elements. The definition {L in (i)|0 ≤ i ≤ Nl} is the set of Discrete Values of input Luminance; {L. ut (i) | 0≤i≤Nl} is a discrete output brightness value set (Set of Discrete Values of out Luminance ). Although from the Gamma property as a function of the domain ^ and the value domain requirements, L in , L. The ut ^ value must be in the interval [0,1]. However, in practical applications, the input and output brightness of each Gamma link may not be taken in the [0,1] range. In order to maintain the same definition as the Gamma definition, in fact, for the function based Gamma feature, the input is first normalized during processing. The luminance signal with the value in the interval [0,1] is called the normalized luminance L n in , the superscript n represents normalized, and the luminance signal with the value between 0 and MaxL a in is called actual. The brightness L a in , the superscript a indicates the actual (Actual). The actual brightness is mapped to the [0,1] interval. The method used is: L n in =L in MaxL a in (8)
相应地, 输出的亮度信号要从规一化的值还原到实际的值 (逆规一化)。计算公 式如下: Accordingly, the output luminance signal is restored from the normalized value to the actual value (inverse). Calculated as follows:
Ln out=Lout a/MaxLa out (9) L n out =L out a /MaxL a out (9)
目前摄像机 /摄像头、 显示器和中间的数字视频交换格式采用的都是 256 级亮度, 比如 CIF(Common Interchange Format), 即实际的输入输出亮度取值 都是 0-255的整数, 即: MaxLV=MaxLaut=255。 当然亮度等级也可能会增加, 从技术实现角度来说, 一般会增加为 2的整数次方, 比如 512甚至 1024。 一般 形式是 2D, D为自然数。 那么在规一化处理时: At present, the camera/camera, display and intermediate digital video exchange formats use 256 levels of brightness, such as CIF (Common Interchange Format), that is, the actual input and output brightness values are all integers from 0 to 255, namely: MaxLV=MaxL a . Ut = 255. Of course, the brightness level may also increase. From a technical implementation point of view, it is generally increased to an integer power of 2, such as 512 or even 1024. The general form is 2 D and D is a natural number. Then in the normalization process:
Ln in=Lin72D (10)L n in =L in 72 D (10)
Figure imgf000009_0001
Figure imgf000009_0001
但是在构造 {Lin(i)|0≤i≤N-l }和 {L。ut(i)|0≤i≤N- 1 }的时候,必须考虑实际的应 用场景,在当前的视频通信技术中,亮度信号的等级为 256级,亮度值为 0-255, 用 8比特表示(一个字节), 于是, '集合 {Lin(i)|0≤i≤N-l}={0, 1, 2, 3 , 4, ......,But in the construction {L in (i)|0 ≤ i ≤ Nl } and {L. When ut (i)|0≤i≤N-1 }, the actual application scenario must be considered. In the current video communication technology, the level of the luminance signal is 256, and the luminance value is 0-255, which is represented by 8 bits. (one byte), then, 'set {L in (i)|0≤i≤Nl}={0, 1, 2, 3, 4, ...,
254, 255},而集合 {L。ut(i)|0≤i≤N-l}中的每个数值也都属于 {0, 1, 2, 3, 4, ...... ,254, 255}, and the collection {L. Each value in ut (i)|0 ≤ i ≤ Nl} also belongs to {0, 1, 2, 3, 4, ...,
254, 255}, 只是排列顺序可能不同(除非 Gamma特性^ L。ut=Lin ) , 并且不是 {0, 1 , 2, 3, 4, ......, 254, 255}中的每个数值都能取到, 原因在于: 254, 255}, but the ordering may be different (unless the Gamma property ^ L. ut =L in ), and not every of {0, 1 , 2, 3, 4, ..., 254, 255} Each value can be obtained because:
第一,原来的 Gamma特性函数值域就是 [0,1]的一个子区间,比如 [0.1,0.9], 这样有些 [0,1]上的值是无法取到的;  First, the original Gamma property value range is a subinterval of [0,1], such as [0.1, 0.9], so that some values on [0, 1] are not available;
第二, 逆规一化过程中 ]入的舍入误差 , 破坏了原来 Gamma特性函数一 一对应的特性, 导致可能多个 Lin离散值对应同一个 L。ut离散值, 而有些 {0, 1 , 2, 3, 4, , 254, 255}上的离散值 L。ut却取不到。 Second, the inverse normalization process] a rounding error, destroyed the original Gamma characteristic function one to one characteristic, it may lead to a corresponding plurality of discrete values L in a same L. Ut discrete values, and some discrete values L on {0, 1, 2, 3, 4, , 254, 255}. Ut ca n't get it.
因此, 在以上假设下, 以亮度信号的等级为 256级为例, Gamma特性查表 表示的数据结构如表 2所示:  Therefore, under the above assumption, taking the level of the luminance signal as 256 as an example, the data structure represented by the Gamma characteristic look-up table is as shown in Table 2:
表 2.适用于亮度信号的等级为 256级的 Gamma参数的查表表示  Table 2. Look-up table representation of Gamma parameters for level 256 levels of luminance signals
Lin (输入)离散值 L。ut (输出)对应值 L in (input) Discrete value L. Ut (output) corresponding value
0 Lout(0)
Figure imgf000010_0001
0 Lout(0)
Figure imgf000010_0001
具体的计算机程序实现采用的数据结构, 最简单就是线性表(Linear Table )来实现上面的表示, 也就是数组(Array ) 。  The specific data structure of the computer program implementation, the simplest is the Linear Table to achieve the above representation, which is an array (Array).
进一步分析发现, 因为表 2的左列 (Left Column)的数值都是固定的, 必然 是 {0, 1 , 2, 3 , 4, ...... , 254, 255}的顺序, 因为通信双方都知道这个集合 和顺序, 所以在通信中可以不传送表 2的左列。  Further analysis found that because the values of the left column of Table 2 are fixed, it must be the order of {0, 1, 2, 3, 4, ..., 254, 255} because of communication Both parties know this set and order, so the left column of Table 2 may not be transmitted during communication.
以上描述的是一般情况, 即假设能够测量得到 0-255级的 Gamma特性参数 查表, 而实际中, 测量仪器测量的 Gamma特性参数, 可能只有不到 256级, 比 如 16、 32、 64级等, 或者为了节省传送数据量, 也没有必要把全部表项都传 送, 而是在接收端通过插值等方法从有限的表象来获得全部 0-255级表项。 在 这种情况下, 可能需要传送很少的表项就够了, 那么 {Lin(i)|0≤i≤N-l}的内容 和顺序通信接收端是事先不知道的, 所以需要传送。  The above description is the general case, that is, it can be measured that the Gamma characteristic parameter table of 0-255 level can be measured. In practice, the Gamma characteristic parameter measured by the measuring instrument may be less than 256 levels, such as 16, 32, 64, etc. Or, in order to save the amount of data transferred, it is not necessary to transmit all the entries, but at the receiving end, all the 0-255-level entries are obtained from the limited representation by interpolation or the like. In this case, it may be necessary to transmit a small number of entries, and then the content of {Lin(i)|0 ≤ i ≤ N-l} and the serial communication receiving end are not known in advance, so that transmission is required.
为方便描述, 本发明实施例将 0-255级都要传送的模式定义为正常模式, 将传送少于 256级(一般少于 128级)表项的模式:定义为稀疏模式。 稀疏模式 下的数据结构如表 3所示:  For convenience of description, the embodiment of the present invention defines a mode to be transmitted in the 0-255 level as a normal mode, and transmits a mode of less than 256 levels (generally less than 128 levels): defined as a sparse mode. The data structure in sparse mode is shown in Table 3:
表 3.稀疏模式下的 Gamma参数的查表表示  Table 3. Lookup table representation of Gamma parameters in sparse mode
Figure imgf000010_0002
Figure imgf000010_0002
在稀疏模式下, 输入亮度离散值集合和输出亮度值集合都必须传送, 如 果亮度值为 256级, 则当传输的输入亮度值点数 N<128时输入输出离散值参数 总数小于 256, 可以达到比正常模式更高的效率。 在稀疏模式下, 不是每个 0-255之间的整数都被列入输入亮度离散值集合 {Lin(i)|0<i<N-l} , 一般均匀间隔选取, 就是在 0-255范围内, 每间隔大约 [256/(Ν-1)] (函数 [X]表示对于实数变量 x, 返回小于或等于 X的最大整数, 比如 [5.3]=5 )选取一个离散值 , 比如 N=l 7 , 那么 [256/(N-l )]=16, 因此均匀间隔的 选取方法给出的输入亮度离散值集合是 {0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255} , 集合中共 17个离散点。 In the sparse mode, both the input luminance discrete value set and the output luminance value set must be transmitted. If the luminance value is 256 levels, the total number of input and output discrete value parameters is less than 256 when the transmitted input luminance value points N<128, which can be achieved. The normal mode is more efficient. In sparse mode, not every integer between 0 and 255 is included in the input luminance discrete value set {L in (i)|0<i<Nl}, which is generally evenly spaced, which is in the range of 0-255. , about [256/(Ν-1)] every interval (function [X] means for the real variable x, return the largest integer less than or equal to X, such as [5.3]=5), choose a discrete value, such as N=l 7 , then [256/(Nl )]=16, so the uniform interval selection method gives a set of input luminance discrete values of {0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255}, a total of 17 discrete points in the collection.
这种方法计算简单直观, 但是有一个严重的缺点: 没有充分利用视频内 容相关的统计信息。比如视频的亮度值主要分布在某个范围内, 比如 95%以上 的像素亮度都在 64- 192范围内, 那么上述例子中, 0、 16、 32、 48、 208、 224、 240、 255这些亮度离散值实际上是没有用的。 因此如果按照均匀间隔选取方 法构造的输入亮度离散值集合将造成有效信息的不足和无效信息的浪费。  This method is simple and straightforward to calculate, but has one serious drawback: It does not take full advantage of the video content related statistics. For example, the brightness value of the video is mainly distributed in a certain range. For example, the brightness of more than 95% of the pixels is in the range of 64-192. In the above example, the brightness of 0, 16, 32, 48, 208, 224, 240, 255 Discrete values are actually useless. Therefore, if the input luminance discrete value set constructed by the uniform interval selection method will result in insufficient information of effective information and waste of invalid information.
视频像素亮度的概率分布密度函数( PDF=Probability Density Function ) 离散化形式定义为该视频的亮度直方图。 亮度直方图用函数 LH(Luminance Histogram)表示, LH函数的自变量取值范围 (定义域)是 0-255的整数, 函数 值的取值范围 (值域)为 [0,1]区间, 对于任何图像或视频的亮度直方图都满  The probability distribution density function of video pixel brightness (PDF=Probability Density Function) The discretization form is defined as the luminance histogram of the video. The luminance histogram is represented by the function LH (Luminance Histogram). The range of the argument of the LH function (the domain of definition) is an integer from 0 to 255, and the range of values of the function value (value range) is the interval [0, 1]. The brightness histogram of any image or video is full
T LH(i) = l T LH(i) = l
足规一化条件: ^ , 比如: Foot conditions: ^ , for example:
LH(0)=0  LH(0)=0
LH(1)=0  LH(1)=0
LH(64)=0.005 LH(64)=0.005
LH(65)=0.006  LH(65)=0.006
LH(96)=0.1 LH(96)=0.1
LH(128)=0.15 LH(128)=0.15
LH(190)=0.006 LH(191)=0.005 LH(190)=0.006 LH(191)=0.005
LH(192)=0.001  LH (192) = 0.001
LH(193)=0  LH(193)=0
LH(255)=0。 LH (255) = 0.
亮度直方图分布曲线示例如图 6所示, 图中绘制了亮度值为 96和 128的亮 度直方图。 本发明实施例基于视频的亮度直方图提供一种计算 Gamma参数表 示的优化方法, 采用稀疏模式, 优化的原则是在 0-255范围内, 任意一个范围 a-b ( 0<=a<b<=255 , a、 b为整数) 内被选取的输入亮度离散值的点数占全部 输入亮度离散值点数的比例 (百分比)基本和视频亮度直方图在这个范围内 的亮度分布概率成正比, 输入亮度离散值在范围 a-b内的亮度分布概率是:  An example of a luminance histogram distribution curve is shown in Figure 6, which plots the luminance histograms with luminance values of 96 and 128. The embodiment of the present invention provides an optimization method for calculating a Gamma parameter representation based on a luminance histogram of a video. The sparse mode is adopted, and the optimization principle is in the range of 0-255, and any range ab (0<=a<b<=255) , a, b is an integer) The ratio of the number of points of the selected input luminance discrete value to the number of points of the input luminance is proportional to the probability of the luminance distribution of the video luminance histogram in this range, and the input luminance discrete value The probability of brightness distribution in the range ab is:
∑LH(i)。 ∑LH(i).
i=a i=a
假设离散点数为 N, 因为要选的对称, 一般 N=2n+1 , 指数 n要相应小于等 于 6, 比如 N=l、 3、 5、 9、 17、 33、 65、 129等, 根据上述技术构思, 输入亮 度离散值的具体选取方法包括如下步骤: Assume that the number of discrete points is N, because the symmetry to be selected is generally N=2 n +1 , and the index n should be correspondingly less than or equal to 6, such as N=l, 3, 5, 9, 17, 33, 65, 129, etc., according to the above Technical idea, the specific selection method of inputting the discrete value of the brightness includes the following steps:
1、 寻找第一个离散值 lin(0)的方法如下: 1. Find the first discrete value l in (0) as follows:
从 0开始, 逐次扫描 0-255中的整数, 第一个满足公式 (12)、 (13)或 (14)的整 数 k就是 lin(0): Starting from 0, the integers in 0-255 are scanned one by one, and the first integer k that satisfies the formula (12), (13) or (14) is l in (0):
∑LH(i) = (12)或者 ∑LH(i) = (12) or
N - l  N - l
1  1
∑LH(i)≤ --—≤∑LH( 并且 (13)或者 ∑LH(i)≤ ---≤∑LH (and (13) or
Figure imgf000012_0001
Figure imgf000012_0001
1  1
^LH(i)≤ -—≤∑LH{i) 并且  ^LH(i)≤ -——≤∑LH{i) and
/=o 一 1 =o /=o a 1 = o
1 ^-1 1  1 ^-1 1
l ) -W ) - (1 ) 以上三个关系是互斥的, 不可能同时满足两个或者两个以上, 只要满足 其中任意一个就可以, 首先应判断是否存在满足公式(12)的整数 k, 如果没 有, 再判断是否满足公式(13)或(14)的整数 k。 l ) -W ) - (1 ) The above three relationships are mutually exclusive, and it is impossible to satisfy two or more at the same time, as long as they satisfy Either one of them can be used. First, it is judged whether or not there is an integer k satisfying the formula (12). If not, it is judged whether or not the integer k of the formula (13) or (14) is satisfied.
2、 寻找第 p(p>=2)个离散值 lin(p-l)的方法如下: 2. Find the p(p>=2) discrete values l in (pl) as follows:
从 lin(p-2)+l开始, 逐次扫描 lin(p-2)+l-255中的整数, 第一个满足如下关系 的整数 k就是 lin(p-l): Starting from l in (p-2)+l, the integers in l in (p-2)+l-255 are sequentially scanned. The first integer k that satisfies the following relationship is l in (pl):
∑ZH(/) = - - (15)或者 ∑ZH(/) = - - (15) or
∑LHd)≤1 -≤ ∑LH(i) 并且 I ∑IH( -^-|≤l ∑LH(i)-- -\ (16)或者 ∑LHd)≤ 1 -≤ ∑LH(i) and I ∑IH( -^-|≤l ∑LH(i)-- -\ (16) or
i=/w(p-2)+l iV i /=//«( ^-2) -1 V— 1  i=/w(p-2)+l iV i /=//«( ^-2) -1 V-1
∑LH(i)≤ -—≤ ∑ZH( 并且 ∑LH(i)≤ -——≤ ∑ZH( and
=/«( -2)+i ly ~i 'W/rt(p- 2)+l  =/«( -2)+i ly ~i 'W/rt(p- 2)+l
I ∑LH(i)--^~ \≤\ ∑LH(i) - -i- I (17) I ∑LH(i)--^~ \≤\ ∑LH(i) - -i- I (17)
V — 丄 , = — 2) + l — 丄  V — 丄 , = — 2) + l — 丄
以上三个关系是互斥的, 不可能同时满足两个或者两个以上, 只要满足 其中任意一个就行, 首先应判断是否存在满足公式(15)的整数 k, 如果没有, 再判断是否满足公式(16)或(17)的整数 k。 重复进行该步骤, 直到所有的 N个输入亮度离散值都找到后, 构成稀疏模式的输入亮度离散值集合。  The above three relationships are mutually exclusive. It is impossible to satisfy two or more at the same time. As long as any one of them is satisfied, it is first judged whether there is an integer k that satisfies the formula (15). If not, it is judged whether the formula is satisfied ( 16) or the integer k of (17). This step is repeated until all of the N input luminance discrete values are found, forming a set of input luminance discrete values for the sparse mode.
当视频经过至少两个伽玛环节时, 可以分別确定每一个伽玛环节的输出 亮度离散值, 然后将每一个伽玛环节的输入亮度离散值和输出亮度离散值分 别对应写入视频码流中传送; 或者根据所有伽玛环节的级联伽玛环节确定一 组输出亮度离散值。  When the video passes through at least two gamma links, the output luminance discrete values of each gamma link can be respectively determined, and then the input luminance discrete value and the output luminance discrete value of each gamma link are respectively correspondingly written into the video bitstream. Transmit; or a set of output luminance discrete values based on the cascaded gamma links of all gamma links.
本发明实施例需要使用的视频亮度直方图的获取属于已有技术, 这里不 再赞述, 本发明实施例在利用亮度直方图的具体方法上, 有如下说明:  The obtaining of the video luminance histogram to be used in the embodiment of the present invention belongs to the prior art, and is not further described herein. The specific method of using the luminance histogram in the embodiment of the present invention has the following description:
1、 利用现有技术, 对于当前被编码压缩和传送的图像或视频, 实时统计 计算获得其亮度直方图;  1. Using the prior art, real-time statistical calculation of the image or video currently encoded and compressed to obtain a luminance histogram;
2、 根据图像和视频的类别, 比如头肩图像, 自然风景图像等等, 来直接 使用这类图像有代表性的亮度直方图。 这样可以不用对于每一幅图像或者每 段枧频进行实时的统计计算, 节省计算时间。 其实, 每一类视频, 在统计特 性上都存在相似性, 因此这种近似代替方法是可行的; 2, according to the type of images and videos, such as head and shoulders images, natural landscape images, etc., directly A representative brightness histogram using such images. This eliminates the need for real-time statistical calculations for each image or per-segment frequency, saving computation time. In fact, each type of video has similarities in statistical properties, so this approximate replacement method is feasible;
3、 另外, 在相同的场景下, 即使其中部分图像发生了变化, 比如前景对 象(物体或者人)运动, 但是整个图像的亮度直方图不会有显著变化。 因此, 这个特性是可以加以利用的。 在通信过程中, 尤其是视频通信中, 场景是每 一段时间变化一次的, 因此在通信过程中, 运动估计等计算是能够感知到场 景的显著变化。 在每次场景显著变化后, 重新统计计算当前场景的亮度直方 图, 然后使用这个直方图数据直到下次场景再发生变化。  3. In addition, in the same scene, even if some of the images change, such as the foreground object (object or person), the brightness histogram of the entire image does not change significantly. Therefore, this feature can be utilized. In the communication process, especially in video communication, the scene changes once every time, so in the communication process, motion estimation and the like are able to perceive a significant change in the scene. After each scene changes significantly, the brightness histogram of the current scene is recalculated, and then the histogram data is used until the next scene changes.
上述三种方法可以单独使用, 也可以混合使用。  The above three methods may be used singly or in combination.
如图 7所示,基于以上构思, 本发明实施例的所述视频 Gamma特性参数传 输方法包括如下步驟:  As shown in FIG. 7, based on the above concept, the video Gamma characteristic parameter transmission method of the embodiment of the present invention includes the following steps:
5100、 根据视频亮度直方图分布概率选择输入亮度离散值并构造为输入 亮度离散值集合, 使任意给定范围中分布的输入亮度离散值点数与亮度直方 图分布概率基本成正比;  5100. Select an input luminance discrete value according to a video luminance histogram distribution probability and construct a set of input luminance discrete values, so that the input luminance discrete value points distributed in any given range are substantially proportional to the luminance histogram distribution probability;
S200、 确定每一个输入亮度离散值对应的输出亮度离散值并构造为输出 亮度离散值集合;  S200. Determine an output luminance discrete value corresponding to each input luminance discrete value and construct the output luminance discrete value set.
S300、 将输入亮度离散值集合和输出亮度离散值集合对应写入视频码流 中发送。  S300: Write the input luminance discrete value set and the output luminance discrete value set to the video code stream for transmission.
如图 8所示, 步骤 S100进一步包括:  As shown in FIG. 8, step S100 further includes:
5101、 确定需要选取的输入亮度离散值总点数 N, N为大于零小于 213·1 的整数; 5101. Determine an input luminance discrete value total point number N to be selected, where N is an integer greater than zero and less than 2 13 · 1 ;
5102、确定第一个输入亮度离散值 lin(0): 从 0开始, 逐次扫描 0-255中的整 数,将第一个满足等式 ^^·) - "1"的整数 k作为 lin(0); 否则将第一个满足不 等式∑Li ≤ -J-≤∑LH(i) 和 I X LHii) -- - |<|∑ LH(i) - ^ i的整数 k作为 lin(0) 、 或 者将第 一个 满 足不 等 式 ≤丄≤^ 和 5102. Determine a first input luminance discrete value l in (0): start from 0, sequentially scan the integers in 0-255, and use the first integer k satisfying the equation ^^·) - " 1 " as l in (0); otherwise the first integer k satisfying the inequalities ∑Li ≤ -J-≤∑LH(i) and IX LHii) -- - |<|∑ LH(i) - ^ i l in (0) , or the first one satisfies the inequality ≤ 丄 ≤ ^ and
N— I =0 N— I =0
Figure imgf000015_0001
Figure imgf000015_0001
S103、 分别确定笫二个输入亮度离散值 lin(l)至第 N个输入亮度离散值 lin(N - 1)之间的任意一个输入亮度离散值 lin(p-l) , 其中 2≤p≤N: 从 lin(p-2)+l 升始,逐次扫描 lin(p-2)+l到 255中的整数,将第一个满足等式 ^卿) =丄 的整数 k作为 lin(p-l); 否则将第一个满足不等式 ± ≤丄≤ LH(i) 和 I ^^H(/)— ^ |≤| iJi(o- 的整数 k作为 lin(p-l)、或者满足不等式S103. Determine, respectively, an input luminance discrete value l in (pl) between the two input luminance discrete values l in (1) to the Nth input luminance discrete value l in (N − 1 ), where 2≤p ≤N: From l in (p-2)+l, successively scan the integers in l in (p-2)+l to 255, and the first integer k that satisfies the equality ^qing)=丄 as l In (pl); Otherwise, the first one satisfies the inequality ± ≤ 丄 ≤ LH(i) and I ^^H ( /) - ^ | ≤ | iJi (the integer k of o- is taken as l in (pl), or the inequality is satisfied
/=/κ(ρ ·ΖΥ— 1 Ν -~ ϊ /=/κ(ρ ·ΖΥ— 1 Ν -~ ϊ
∑LH(i)≤ ≤ ∑XH( 和 I ^H(0 - ^ |≤| H -^L^的整 数 k作为 lin(p-l)。 ∑LH(i)≤ ≤ ∑XH( and I ^H ( 0 - ^ | ≤| H -^L^ The integer k is taken as l in (pl).
为实现 S300, 本发明实施例在此提供基于查表法 Gamma参数化的二进制 码流表示格式。 在通信协议中传送 Gamma参数信息, 不论是什么协议, 一般 方法就是在通信协议允许扩展和自定义内容的数据区内定义一个块( Block或 者 Region ) , 用于连续存放 Gamma参数的二进制码流表示。 然后该块被封装 在协议的码流中传送。 这个区域叫做 Gamma参数信息区域。 因此, 这里提出 的其实是一种和具体协议无关的 Gamma参数信息表示的二进制格式。  To implement S300, embodiments of the present invention provide a binary stream representation format based on look-up table Gamma parameterization. In the communication protocol, the Gamma parameter information is transmitted. Regardless of the protocol, the general method is to define a block (block or Region) in the data area of the communication protocol allowing extension and custom content, and to store the binary stream representation of the Gamma parameter continuously. . The block is then encapsulated and transmitted in the code stream of the protocol. This area is called the Gamma parameter information area. Therefore, what is presented here is actually a binary format of Gamma parameter information representation that is independent of the specific protocol.
多媒体通信终端中可能有包括摄像机 /摄像头和显示设备在内的多个 Gamma环节。 因此, 对于一个终端要把自己的全部 Gamma参数信息传送给其 它通信终端或者网络上其它设备比如多点控制单元等, 那么就应该把自身的 全部 Gamma环节, 按照它们从前到后级联的顺序, 将其 Gamma特性参数写入 到 Gamma参数信息区域。 而接收的终端或者其它网络设备就可以从用于承载 Gamma参数信息的特定协议的 Gamma参数信息区域中按顺序提取出 Gamma 参数信息。 携带 Gamma参数信息区域可以定义为如图 9所示的格式, 包括: 开始标志: 16比特 (2字节), 可以取值为 OxOFFO; 结束标志: 16比特 (2字节), 可以取值为 OxFOOF; There may be multiple Gamma links including a camera/camera and a display device in the multimedia communication terminal. Therefore, for a terminal to transmit all its Gamma parameter information to other communication terminals or other devices on the network, such as multi-point control units, then all of its gamma links should be in the order of their cascading from front to back. Write its Gamma property parameters to the Gamma parameter information area. The receiving terminal or other network device can extract the Gamma parameter information in order from the Gamma parameter information area of the specific protocol for carrying the Gamma parameter information. The Gamma parameter information area can be defined as the format shown in Figure 9, including: Start flag: 16 bits (2 bytes), which can be OxOFFO; End flag: 16 bits (2 bytes), which can be OxFOOF;
区域总长度: 16比特 (2字节), 以字节为单位的 Gamma参数信息区域的总 长度 (包含开始标志和结束标志在内)。  Total area length: 16 bits (2 bytes), the total length of the Gamma parameter information area in bytes (including the start and end flags).
以上三者结合起来, 可以定位出在码流中 Gamma信息区域的位置。  The combination of the above three can locate the location of the Gamma information area in the code stream.
Gamma环节总数: 8比特 (1字节)以 T表示。 最多可以有 256个 Gamma环节, 在实际应用中 够的。  Total number of Gamma links: 8 bits (1 byte) is represented by T. There can be up to 256 Gamma links, which is sufficient in practical applications.
环节 1〜T ^:子区域: 这样的子区域共有 Τ个, 分别对应于 Τ个 Gamma环 节, 每个子区域的结构是这样定义的:  Link 1~T ^: Sub-area: There are a total of such sub-areas, corresponding to one Gamma ring, and the structure of each sub-area is defined as follows:
传送模式: 8比特(1字节) , 可以用 0x00表示正常模式; 0x01表示稀疏 模式; 其他值为非法;  Transfer mode: 8 bits (1 byte), 0x00 can be used to indicate normal mode; 0x01 means sparse mode; other values are illegal;
子区域长度: 16比特(2个字节), 以字节为单位的子区域长度(包含传 送模式字节在内 )。  Sub-area length: 16 bits (2 bytes), the length of the sub-area in bytes (including the transfer mode byte).
如果传送模式 =0x00, 即为正常模式的话, 后面的参数连续存放: L。ut(0)、If the transmission mode = 0x00, that is, the normal mode, the following parameters are stored continuously: L. Ut (0),
Lout(l) L0Ui(Nr4),i=l、 2 T, 因为在正常模式下, 有 256个表项, 因此, Ni此时等于 259。 L out (l) L 0Ui (N r 4), i=l, 2 T, because in normal mode, there are 256 entries, so Ni is now equal to 259.
如果传送模式 =0x01 , 即为稀疏模式的话, 后面的参数连续存放: Lin(0)、If the transmission mode = 0x01, that is, the sparse mode, the following parameters are stored continuously: L in (0),
Lin(l) Lin((Nr5)/2); Lout(0)、 Lout(l) Lout((N 5)/2), i= 2 L in (l) L in ((N r 5)/2); L out (0), L out (l) L out ((N 5)/2), i= 2
T。  T.
上面定义了不依赖具体承载协议的 Gamma参数信息区域的格式。 下面本 发明实施例结合 H.264协议给出利用 H.264消息扩展机制承载 Gamma参数信息 的方法。  The format of the Gamma parameter information area that does not depend on a specific bearer protocol is defined above. The following embodiment of the present invention combines the H.264 protocol to provide a method for carrying Gamma parameter information by using the H.264 message extension mechanism.
H.264中提供了多种可以进行消息扩展的机制, 其中比较适合本发明实施 例使用的是 SEI。 H.264中定义了 SEI ( Supplement Enhancement Information, 补充增强信息) , 它的数据表示区域与视频编码数据独立, 它的使用方法在 H.264协议中 NAL ( Network Abstraction Layer 网络抽象层)的描述中给出。 H.264码流的基本单位是 NALU ( NAL Unit, 即网络抽象层单元) , NALU可 以承载各种 H.264数据类型, 比如视频序列参数(Sequence Parameters ) , 图 像参数 ( Picture Parameters) ) Slice数据(即具体图像数据) 以及 SEI消息数 据。 SEI用于传递各种消息, 支持消息扩展。 因此 SEI域内用于传送为特定目 的而自定义的消息, 而不会影响基于 H.264枧频通信系统的兼容性。 承载 SEI 消息的 NALU叫做 SEI NALIL —个 SEI NALU含有一个或多个 SEI消息。 每个 SEI消息含有一些变量, 主要是 Payload Type和 Payload Size, 这些变量指明 了消息载荷的类型和大小。在 H.264 Annex D.8, D.9中定义了一些常用的 H.264 SEI消息的文法和语意。 A variety of mechanisms for message extension are provided in H.264, wherein an SEI is more suitable for use in embodiments of the present invention. SEI (Supplement Enhancement Information) is defined in H.264. Its data representation area is independent of video coding data. Its usage is described in the description of NAL (Network Abstraction Layer) in H.264 protocol. Given. The basic unit of H.264 code stream is NALU (NAL Unit, Network Abstraction Layer Unit). NALU can carry various H.264 data types, such as video sequence parameters (Sequence Parameters). Like Picture Parameters Slice data (ie specific image data) and SEI message data. SEI is used to deliver various messages and support message extension. Therefore, the SEI domain is used to transmit messages customized for a specific purpose without affecting the compatibility based on the H.264 frequency communication system. The NALU carrying the SEI message is called SEI NALIL - one SEI NALU contains one or more SEI messages. Each SEI message contains variables, mainly Payload Type and Payload Size, which indicate the type and size of the message payload. The grammar and semantics of some commonly used H.264 SEI messages are defined in H.264 Annex D.8, D.9.
NALU中包含的载荷叫做 Raw-Byte Sequence Payload(RBSP), SEI是 RBSP 的一种类型。 按照 H.264 7.3的定义, SEI RBSP的文法结构如表 4所示:  The payload contained in the NALU is called Raw-Byte Sequence Payload (RBSP), and SEI is a type of RBSP. According to the definition of H.264 7.3, the grammar structure of SEI RBSP is shown in Table 4:
表 4. H.264 SEI RBSP文法结构示意  Table 4. Schematic diagram of H.264 SEI RBSP grammar structure
Figure imgf000017_0001
Figure imgf000017_0001
可见, 一个 NALU中的 SEI RBSP是可以包含多个 SEI消息的, 其中: 一个 SEI消息的结构如表 5所示: 表 5. H.264 SEI消息文法结构示意  It can be seen that the SEI RBSP in a NALU can contain multiple SEI messages, where: The structure of an SEI message is shown in Table 5: Table 5. Schematic diagram of the H.264 SEI message grammar
Figure imgf000017_0002
Figure imgf000017_0002
H.264 Annex D.8定义了保留用于今后扩展的 SEI消息的文法消息结构如 表 6所示: 表 6. H.264预留 SEI消息 payload部分文法结构示意H.264 Annex D.8 defines a grammar message structure that retains SEI messages for future expansion, such as Table 6 shows: Table 6. H.264 reserved SEI message payload part of the grammatical structure
Figure imgf000018_0001
Figure imgf000018_0001
在本发明实施例的描述中, 将 SEI的数据表示区域简称为 SEI域。 每个 SEI 域包含一个或多个 SEI消息, 而 SEI消息又由 SEI头信息和 SEI有效载荷組成。 SEI头信息包括两个码字: 一个码字给出 SEI消息中载荷的类型, 另一个码字 给出载荷的大小。 当载荷类型在 0到 255之间时用一个字节 0x00到 OxFE表示, 当类型在 256到 511之间时可以用两个字节 OxFFOO到 OxFFFF表示, 当类型大于 511时表示方法以此类推, 这样用户可以自定义任意多种载荷类型。 其中类型 0到类型 18标准中已定义为特定的信息如緩存周期、 图像定时等。 对于本发明 实施例要承载的 Gamma参数信息区域, 可以定义类型为 0xFFFF(511), 然后 Gamma参数信息区域直接放入到 SEI载荷中去。 这样就完成了利用 SEI消息扩 展机制实现 Gamma参数信息区域的承载和传送。  In the description of the embodiment of the present invention, the data representation area of the SEI is simply referred to as an SEI domain. Each SEI field contains one or more SEI messages, which in turn consist of SEI header information and SEI payload. The SEI header information includes two codewords: one codeword gives the type of payload in the SEI message, and the other codeword gives the size of the payload. When the payload type is between 0 and 255, it is represented by a byte 0x00 to OxFE. When the type is between 256 and 511, it can be represented by two bytes OxFFOO to OxFFFF. When the type is greater than 511, the method is deduced by analogy. This allows the user to customize any of a variety of load types. Type 0 to type 18 have been defined as specific information such as cache period, image timing, and so on. For the Gamma parameter information area to be carried in the embodiment of the present invention, the type may be defined as 0xFFFF (511), and then the Gamma parameter information area is directly placed into the SEI payload. This completes the use of the SEI message extension mechanism to implement the bearer and transmission of the Gamma parameter information area.
应该说明, 将 SEI载荷类型取值为 OxFFFF, 只是本发明一个实.施例, 对于 其他的取值, 也在本发明保护范围内。  It should be noted that the value of the SEI payload type is OxFFFF, which is only one embodiment of the present invention. For other values, it is also within the scope of the present invention.
如果采用稀疏传送模式, 接收方的终端在从承载协议(不一定是 H.264 ) 中提取出 Gamma参数后, 需要对于那些采用稀疏传送模式的环节的 Gamma参 数进行重构, 形成 256级完整的查表, 才能在后面的 Gamma校正中应用。  If the sparse transmission mode is adopted, after the receiver's terminal extracts the gamma parameters from the bearer protocol (not necessarily H.264), it needs to reconstruct the gamma parameters of the links using the sparse transmission mode to form 256-level complete. Check the table to be applied in the later gamma correction.
重构的目的是利用 Gamma参数查表的已有表项来构造出缺少的表项。 缺 少的表项位于相邻的两个已有表项之间。  The purpose of the reconstruction is to use the Gamma parameter to look up the existing entries of the table to construct the missing entries. The missing entries are located between two adjacent existing entries.
一般采用插值 (Interpolation ) 法进行重构, 可以采用的插值方法有: Interpolation is generally used for reconstruction. The interpolation methods that can be used are:
1、 线性插值; 1, linear interpolation;
2、 双线性插值;  2, bilinear interpolation;
3、 双三次插值;  3. Double cubic interpolation;
4、 一般化的拉格朗曰插值; 5、 样条插值等。 4. Generalized Lagrangian interpolation; 5, spline interpolation and so on.
本发明实施例解决了多媒体通信中 Gamma校正的一些基本问题, 这些问 题是实现校正的前提条件。 解决了 Gamma参数信息的表示问题、 不依赖具体 承载协议的 Gamma参数信息区域二进制格式问题, 以及基于 H.264 SEI扩展消 息机制的 Gamma参数信息传送问题。 能够直接利用 H.264的带内机制, 不需要 依赖其它协议。  The embodiments of the present invention solve some basic problems of Gamma correction in multimedia communication, and these problems are prerequisites for realizing correction. It solves the problem of representation of Gamma parameter information, the binary format problem of Gamma parameter information area that does not depend on the specific bearer protocol, and the Gamma parameter information transmission problem based on H.264 SEI extended message mechanism. The in-band mechanism of H.264 can be directly utilized without relying on other protocols.
本发明实施例提出的基于视频统计特性的优化 Gamma参数表示方法, 能 够在节省传输数据量的前提下,提供最优的 Gamma参数表示,从而提高 Gamma 校正的精度。  The optimized Gamma parameter representation method based on video statistical characteristics proposed by the embodiment of the present invention can provide an optimal Gamma parameter representation under the premise of saving the amount of transmitted data, thereby improving the accuracy of the Gamma correction.
本发明实施例提供的更加高效的参数化方法, 是采用稀疏的传送模式。 这个时候, {Lin(i)|0≤i≤N-l }和 {L。ut(i)|0≤i≤N-l }中离散值的个数可能远远少于 256, 比如 16、 32、 64等。 此时传送 {Lta(i)|0≤i≤N-l }和 {L。ut(i)|0≤i≤N-l }需要占 用的空间是 2 N字节, 稀疏模式为了比正常模式节省空间, 因此必须 2N<256, 也就是 N<128。 否则就没有意义。 另外, 也可能是在对于 Gamma环节测量过 程中, 仪器只能测量 Gamma曲线上较少的一些点, 每个点的坐标是一对对应 的
Figure imgf000019_0001
A more efficient parameterization method provided by the embodiments of the present invention adopts a sparse transmission mode. At this time, {L in (i)|0≤i≤Nl } and {L. The number of discrete values in ut (i)|0 ≤ i ≤ Nl } may be much less than 256, such as 16, 32, 64, and so on. At this time, {L ta (i)|0 ≤ i ≤ Nl } and {L are transmitted. ut (i) | 0≤i≤Nl} take up space is 2 N bytes, sparse mode than the normal mode in order to save space, and must 2N <256, i.e. N <128. Otherwise it makes no sense. In addition, it is also possible that during the measurement of the Gamma link, the instrument can only measure fewer points on the Gamma curve, and the coordinates of each point are a pair of corresponding points.
Figure imgf000019_0001
需要说明的是本文所述的视频不仅仅包括运动图像序列 (Motion Picture Sequence,即视频的狹义定义),还包括静止图像、计算机图形,动画(如 Flash 动画, GIF动画等)等。  It should be noted that the video described herein includes not only a motion picture sequence (a narrow definition of video), but also a still image, a computer graphic, an animation (such as a Flash animation, an animated GIF, etc.).
如图 10所示, 实现本发明实施例上述的视频伽玛参数传送方法的传送装 置 100包括:  As shown in FIG. 10, a transmitting apparatus 100 for implementing the above-described video gamma parameter transmitting method according to an embodiment of the present invention includes:
输入亮度离散值确定模块 101 ,用于根据视频的亮度离散概率分布密度函 数选择输入亮度离散值, 使任意给定范围中选取的输入亮度离散值点数占全 部输入亮度离散值点数的比例与该范围内视频的亮度分布概率基本成正比; 输出亮度离散值确定模块 102, 连接所述输入亮度离散值选取模块 101 , 用于分别确定选取的每一个输入亮度离散值对应的输出亮度离散值;  The input brightness discrete value determining module 101 is configured to select an input brightness discrete value according to a brightness discrete probability distribution density function of the video, so that the selected input brightness discrete value points in any given range account for the proportion of all input brightness discrete value points and the range The brightness distribution probability of the inner video is substantially proportional; the output brightness discrete value determining module 102 is connected to the input brightness discrete value selecting module 101 for respectively determining the output brightness discrete value corresponding to each selected input brightness discrete value;
视频码流传送模块 103, 连接所述输出亮度离散值选取模块 102, 用于将 选取的输入亮度离散值和输出亮度离散值对应写入视频码流中传送。 a video stream transmission module 103, connected to the output luminance discrete value selection module 102, for The selected input luminance discrete value and the output luminance discrete value are correspondingly transmitted in the write video stream.
其中, 输入亮度离散值确定模块 101中还包括:  The input luminance discrete value determining module 101 further includes:
视频亮度直方图获取子模块 1011 , 用于获取视频的视频亮度直方图; 输入亮度离散值逸取条件存储子模块 1012, 用于存储输入亮度离散值的 选取条件; 和  a video luminance histogram acquisition sub-module 1011, configured to obtain a video luminance histogram of the video; and an input luminance discrete value escape condition storage sub-module 1012, configured to store a selection condition of the input luminance discrete value; and
输入亮度离散值选择子模块 1013 , 用于从所有等级的输入亮度离散值中 选择出满足所述选取条件的输入亮度离散值。  The input luminance discrete value selection sub-module 1013 is configured to select an input luminance discrete value that satisfies the selection condition from among all levels of input luminance discrete values.
对于本发明实施例所述方法, 公式(12 )至公式(17 )确定的条件可以 直接写入输入亮度离散值选择子模块 1013中的判断程序中 , 如果允许用户根 据需要自行设定条件, 则用户可以将相关奈件的表达式写入输入亮度离散值 选取条件存储子模块 1012, 由输入亮度离散值选择子模块 1013读入判断程序 进行选择。  For the method according to the embodiment of the present invention, the conditions determined by the formulas (12) to (17) can be directly written into the determination program in the input luminance discrete value selection sub-module 1013, and if the user is allowed to set the conditions according to the needs, The user can write the expression of the relevant component to the input luminance discrete value selection condition storage sub-module 1012, and the input luminance discrete value selection sub-module 1013 reads the determination program for selection.
并且, 输出亮度离散值确定模块 102连接视频流经过的每一个伽玛环节, 例如图中所示的 m个伽玛环节, 用于分别检测向每一个伽玛环节输入所述输 入亮度离散值时对应的输出亮度离散值, 因此该输出亮度离散值确定模块进 一步还可以包括:  Moreover, the output luminance discrete value determining module 102 connects each gamma link through which the video stream passes, for example, m gamma links as shown in the figure, for respectively detecting the input of the input luminance discrete value to each gamma link. Corresponding output luminance discrete values, so the output luminance discrete value determining module may further include:
输入亮度离散值输入子模块 1021 , 用于生成输入亮度离散值并输入给各 Gamma环节; 和  The input luminance discrete value input sub-module 1021 is configured to generate an input luminance discrete value and input it to each Gamma link; and
输出亮度离散值检测子模块 1022, 用于检测各 Gamma环节的输入亮度离 散值对应的输出亮度离散值。  The output luminance discrete value detecting sub-module 1022 is configured to detect an output luminance discrete value corresponding to the input luminance dispersion value of each Gamma link.
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不 脱离本发明实施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变 型属于本发明权利要求及其等同技术的范围之内, 则本发明实施例也意图包 含这些改动和变型在内。  It is apparent that those skilled in the art can make various modifications and changes to the embodiments of the present invention without departing from the spirit and scope of the embodiments of the present invention. Therefore, it is intended that the present invention cover the modifications and variations of the embodiments of the present invention.

Claims

权 利 要 求 Rights request
1、 一种视频伽玛特性参数传送方法, 其特征在于, 包括如下步驟: 根据视频亮度的离散概率分布密度函数选择输入亮度离散值, 使任意给 定范围中选取的输入亮度离散值点数占全部输入亮度离散值点数的比例与该 范围内视频的亮度分布概率基本成正比; A video gamma characteristic parameter transmission method, comprising the steps of: selecting an input luminance discrete value according to a discrete probability distribution density function of a video brightness, so that the input luminance discrete value points selected in any given range account for all The ratio of the input luminance discrete value points is substantially proportional to the luminance distribution probability of the video in the range;
分别确定选取的每一个输入亮度离散值对应的输出亮度离散值; 将选取的输入亮度离散值和输出亮度离散值对应写入视频码流中传送。 Determining, respectively, an output luminance discrete value corresponding to each selected input luminance discrete value; and respectively inputting the selected input luminance discrete value and the output luminance discrete value into the video code stream for transmission.
2、 如权利要求 1所迷的方法, 其特征在于: 2. The method of claim 1 wherein:
所述亮度离散值为大于等于 0小于等于 2D-1的整数, D为自然数; 所述的离散亮度概率分布密度函数为视频的亮度直方图, 该亮度直方图 在给定范围 a-b内的亮度分布概率是: , 其中整数&、 b为给定范围的两
Figure imgf000021_0001
The luminance discrete value is an integer greater than or equal to 0 less than or equal to 2 D -1, and D is a natural number; the discrete luminance probability distribution density function is a luminance histogram of the video, and the luminance histogram is within a given range ab The distribution probability is: , where the integers &, b are two for a given range
Figure imgf000021_0001
个端点, a<b, LH为视频像素亮度的离散概率分布密度函数, i为求和指标, i 为大于等于 a并且小于等于 b的整数。 End points, a<b, LH is the discrete probability distribution density function of video pixel brightness, i is the summation index, and i is an integer greater than or equal to a and less than or equal to b.
3、 如权利要求 2所述的方法, 其特征在于, 所述根据视频亮度的离散概 率分布密度函数选择输入亮度离散值的方法包括如下子步骤:  3. The method according to claim 2, wherein the method of selecting an input luminance discrete value according to a discrete probability distribution density function of video luminance comprises the following substeps:
确定需要选取的输入亮度离散值总点数 N, N为大于零小于 2D_l的整数; 确定第一个输入亮度离散值 lin(0): 从 0开始, 逐次扫描 0-255中的整数, 将 第一个满足等式 LH(f) =一^的整数 k作为 lin(0); 否则将第一个满足不等式 Determine the total number of input luminance discrete values to be selected N, N is an integer greater than zero less than 2 D _ l ; determine the first input luminance discrete value l in (0): start from 0, successively scan the integers in 0-255 , the first integer k that satisfies the equation LH(f) = a ^ is treated as l in (0); otherwise the first one satisfies the inequality
∑LH(i)≤ -≤∑L (i) 和 的整数 k作为
Figure imgf000021_0002
∑LH(i)≤ -≤∑L (i) and the integer k as
Figure imgf000021_0002
t ^ k-\ 、 k  t ^ k-\ , k
li„(0) 、 或 者 将 第 一 个 满 足 不 等 式 ±卿≤ ≤±卿) 和 k k~l Li„(0) , or the first one will satisfy the inequality ± ≤ ≤ ≤ ± qing) and k k~l
I∑LH(i) - - -- 1<!∑LH(i)― -i- 1的整数 k作为 lin(0); I∑LH(i) - - -- 1<!∑LH(i)― The integer k of -i-1 is taken as l in (0);
to N-l to N-l  To N-l to N-l
分别确定第二个输入亮度离散值 lin(l)至第 Ν个输入亮度离散值 - 1)的 任意一个输入亮度离散值 lin(p-l) , 其中 2≤p≤N: 从 lin(p- 2)+1开始, 逐次扫描 1ίη(ρ-2)+1至 255的整数, 的整数 k作为
Figure imgf000022_0001
p-1) ; 否则将第一个满足不等式 ZH(0≤^≤ ∑IH(0 和 I ∑LH(i) -~^- \≤\ H(0- 的整数 k作为 lin(p-l)、 或者将满足不等式 - I的整
Figure imgf000022_0002
Determining any one of the input luminance discrete values l in (l) to the second input luminance discrete value - 1) respectively, respectively, the input luminance discrete value l in (pl), where 2 ≤ p ≤ N: from l in (p - 2) +1 start, successive scan 1 ίη (ρ-2) +1 to 255 integer, the integer k is taken as
Figure imgf000022_0001
P-1) ; otherwise the first one satisfies the inequality ZH (0 ≤ ^ ≤ ∑ IH (0 and I ∑ LH(i) -~^- \ ≤ \ H (the integer k of 0- is taken as l in (pl), Or will satisfy the inequality - I
Figure imgf000022_0002
数 k作为 lin(p-l)。 The number k is taken as l in (pl).
4、 如权利要求 1所述的方法, 其特征在于, 当视频经过至少两个伽玛环 节时,  4. The method of claim 1 wherein when the video passes through at least two gamma loops,
所述的输入亮度离散值和输出亮度离散值分别根据每一个伽玛环节确 定; 以及, 将每一个伽玛环节的输入亮度离散值和输出亮度离散值分别 应 写入枧频码流中传送; 或者  The input luminance discrete value and the output luminance discrete value are respectively determined according to each gamma link; and, the input luminance discrete value and the output luminance discrete value of each gamma link are respectively written into the chirp frequency stream for transmission; Or
所述的输出亮度离散值根据所有伽玛环节的级联伽玛环节确定。  The output luminance discrete value is determined according to a cascaded gamma link of all gamma links.
5、 如权利要求 1所述的方法, 其特征在于, 所迷方法还包括: 在视频码 流中扩展伽玛参数信息域, 将所述输入亮度信号离散值和输出亮度信号离散 值组成二进制码流并携带在所述伽玛参数信息域中进行传送。  The method according to claim 1, wherein the method further comprises: expanding a gamma parameter information field in the video code stream, and forming the input luminance signal discrete value and the output luminance signal discrete value into a binary code. The stream is carried and carried in the gamma parameter information field for transmission.
6、 如权利要求 5所述的方法, 其特征在于, 所述伽玛参数信息域分别包 括伽玛参数信息和位于该伽玛参数信息两端的起始定界符和结束定界符, 该 起始定界符和结束定界符用于确定该信息域的范围。  6. The method according to claim 5, wherein the gamma parameter information fields respectively include gamma parameter information and a start delimiter and an end delimiter located at both ends of the gamma parameter information, The delimiter and end delimiter are used to determine the extent of the information field.
7、如权利要求 1所述的方法,其特征在于, 当所述视频码流为采用 R264 协议编码时, 在 Η.264码流的补充增强信息 SEI域中扩展用于携带所述伽玛 参数信息的消息。  The method according to claim 1, wherein when the video code stream is encoded by the R264 protocol, it is extended in the supplementary enhancement information SEI field of the 264.264 code stream for carrying the gamma parameter. Information message.
8 如权利要求 2所述的方法, 其特征在于, 所述 D等于 8。  The method of claim 2 wherein said D is equal to eight.
9、 如权利要求 1所述的方法, 其特征在于, 所述视频亮度直方图的获取 方法为下述之一或任意組合:  9. The method according to claim 1, wherein the method for obtaining the video luminance histogram is one or any combination of the following:
根据视频中的每一帧图像进行实时统计并计算; 选择视频中具有代表性的图像进行统计并计算; Real-time statistics and calculations based on each frame of image in the video; Select a representative image in the video for statistics and calculation;
用统计特性上可以归为同一类视频中的典型视频数据或其它视频数据的 亮度直方图替代。  Statistically, it can be classified as a luminance histogram of typical video data or other video data in the same type of video.
10、 一种视频伽玛特性参数传送装置, 其特征在于, 包括:  10. A video gamma characteristic parameter transmitting apparatus, comprising:
输入亮度离散值确定模块, 用于根据视频的亮度离散概率分布密度函数 选择输入亮度离散值, 使任意给定范围中选取的输入亮度离散值点数占全部 输入亮度离散值点数的比例与该范围内视频的亮度分布概率基本成正比; 输出亮度离散值确定模块, 连接所迷输入亮度离散值选取模块, 用于分 别确定选取的每一个输入亮度离散值对应的输出亮度离散值;  The input brightness discrete value determining module is configured to select the input brightness discrete value according to the brightness discrete probability distribution density function of the video, so that the selected input brightness discrete value points in any given range account for the proportion of all input brightness discrete value points and the range The brightness distribution probability of the video is substantially proportional; the output brightness discrete value determining module is connected to the input brightness discrete value selecting module for respectively determining the output brightness discrete value corresponding to each selected input brightness discrete value;
. 视频码流传送模块, 连接所述输出亮度离散值选取模块, 用于将选取的 输入亮度离散值和输出亮度离散值对应写入视频码流中传送。  The video code stream transmitting module is configured to connect the output brightness discrete value selecting module, and configured to write the selected input brightness discrete value and the output brightness discrete value into the video code stream for transmission.
11、 如权利要求 10所述的传送装置, 其特征在于, 所述输入亮度离散值 确定模块中还包括:  The transmission device according to claim 10, wherein the input luminance discrete value determining module further comprises:
视频亮度直方图袭取子模块, 用于获取视频的视频亮度直方图; 输入亮度离散值选取条件存储子模块, 用于存储输入亮度离散值的选取 条件; 和  a video luminance histogram capture sub-module, configured to obtain a video brightness histogram of the video; and input a luminance discrete value selection condition storage sub-module for storing a selection condition of the input luminance discrete value; and
输入亮度离散值选择子模块, 用于从所有等级的输入亮度离散值中选择 出满足所述选取条件的输入亮度离散值。  The input luminance discrete value selection sub-module is configured to select an input luminance discrete value that satisfies the selection condition from among all levels of input luminance discrete values.
12、 如权利要求 10所述的传送装置, 其特征在于, 所述输出亮度离散值 确定模块中还包括:  The transmission device according to claim 10, wherein the output luminance discrete value determining module further comprises:
输入亮度离散值输入子模块, 用于生成输入亮度离散值并输出; 和 输出亮度离散值检测子模块, 用于检测输入亮度离散值对应输出亮度离 散值。  The input brightness discrete value input sub-module is configured to generate an input brightness discrete value and output; and the output brightness discrete value detecting sub-module is configured to detect the input brightness discrete value corresponding to the output brightness discrete value.
PCT/CN2006/003378 2006-02-20 2006-12-12 Method for transmitting video gamma characteristic parameter and device thereof WO2007095811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610009194A CN101026773B (en) 2006-02-20 2006-02-20 Video gamma characteristic parameter transmitting method and device
CN200610009194.7 2006-02-20

Publications (1)

Publication Number Publication Date
WO2007095811A1 true WO2007095811A1 (en) 2007-08-30

Family

ID=38436926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003378 WO2007095811A1 (en) 2006-02-20 2006-12-12 Method for transmitting video gamma characteristic parameter and device thereof

Country Status (2)

Country Link
CN (1) CN101026773B (en)
WO (1) WO2007095811A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300368A4 (en) * 2015-06-09 2018-07-04 Huawei Technologies Co., Ltd. Video encoding and decoding method, and video encoder/decoder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670275A (en) * 1992-08-17 1994-03-11 Sony Corp Electronic still camera device
JPH06303633A (en) * 1993-04-13 1994-10-28 Matsushita Electric Ind Co Ltd Gamma processing unit
CN1158531A (en) * 1996-01-18 1997-09-03 三星电子株式会社 Adaptive gamma correction device using integral look-up table
JP2000069327A (en) * 1998-08-24 2000-03-03 Matsushita Electric Ind Co Ltd Gamma-correction device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997786B2 (en) * 2002-01-24 2007-10-24 ソニー株式会社 Imaging device, display device, image recording device, and image quality correction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670275A (en) * 1992-08-17 1994-03-11 Sony Corp Electronic still camera device
JPH06303633A (en) * 1993-04-13 1994-10-28 Matsushita Electric Ind Co Ltd Gamma processing unit
CN1158531A (en) * 1996-01-18 1997-09-03 三星电子株式会社 Adaptive gamma correction device using integral look-up table
JP2000069327A (en) * 1998-08-24 2000-03-03 Matsushita Electric Ind Co Ltd Gamma-correction device

Also Published As

Publication number Publication date
CN101026773A (en) 2007-08-29
CN101026773B (en) 2010-05-12

Similar Documents

Publication Publication Date Title
US8111333B2 (en) Video bit-stream gamma-correction method and a multipoint control unit
US20220167019A1 (en) Method and device for reconstructing image data from decoded image data
EP3367685B1 (en) Method and device for reconstructing image data from decoded image data
TW201026054A (en) Method and system for motion-compensated framrate up-conversion for both compressed and decompressed video bitstreams
JP7483634B2 (en) Method and device for processing a medium dynamic range video signal in SL-HDR2 format - Patents.com
US11062432B2 (en) Method and device for reconstructing an HDR image
US10600163B2 (en) Method and device for reconstructing a display adapted HDR image
Azimi et al. Compression efficiency of HDR/LDR content
CN111386704B (en) Method and apparatus for color correction during HDR to SDR conversion
BR112019022968A2 (en) method and device for color gamma mapping
TW201026056A (en) Image capturing device and image delivery method
WO2007095811A1 (en) Method for transmitting video gamma characteristic parameter and device thereof
CN111434113B (en) Saturation control for high dynamic range reconstruction
EP3657770A1 (en) Method for generating a bitstream relative to image/video signal, bitstream carrying specific information data and method for obtaining such specific information
WO2007137479A1 (en) Method and appratus for correcting the gamma character of video stream
WO2007006209A1 (en) Method, system and terminal for negotiating to correct the gamma characteristic
JP2019097013A (en) Method for restructuring display-adaptive hdr image and device
WO2024051299A1 (en) Encoding method and apparatus, and decoding method and apparatus
JP7464537B2 (en) Method and apparatus for encoding an image - Patents.com
Li et al. Buffer map message compression based on relevant window in p2p streaming media system
WO2008025252A1 (en) A method,apparatus for acquiring gamma characteristic parameter in gamma link
BR102017025044A2 (en) METHOD AND DEVICE FOR RECONSTRUCTING AN HDR IMAGE ADAPTED FOR DISPLAY
JP2000151636A (en) Image transmission method and image transmitter using same
Baskaran et al. Performance study of multiple source video streaming via wireless 5.8 GHz for intelligent traffic management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06828300

Country of ref document: EP

Kind code of ref document: A1