WO2007093798A1 - Polyester film - Google Patents

Polyester film Download PDF

Info

Publication number
WO2007093798A1
WO2007093798A1 PCT/GB2007/000527 GB2007000527W WO2007093798A1 WO 2007093798 A1 WO2007093798 A1 WO 2007093798A1 GB 2007000527 W GB2007000527 W GB 2007000527W WO 2007093798 A1 WO2007093798 A1 WO 2007093798A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
film
sealable
copolyester
dicarboxylic acid
Prior art date
Application number
PCT/GB2007/000527
Other languages
French (fr)
Inventor
William J. Brennan
Stephen William Sankey
Mark Russell Hodgson
Original Assignee
Dupont Teijin Films U.S. Limited Partnership
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dupont Teijin Films U.S. Limited Partnership filed Critical Dupont Teijin Films U.S. Limited Partnership
Priority to EP20070705211 priority Critical patent/EP1984177B1/en
Priority to JP2008554842A priority patent/JP2009526672A/en
Priority to US12/279,585 priority patent/US8202612B2/en
Priority to KR1020087022546A priority patent/KR101379122B1/en
Priority to CN2007800055483A priority patent/CN101384430B/en
Publication of WO2007093798A1 publication Critical patent/WO2007093798A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2822Wax containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2826Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • This invention relates to a multi-layer polymeric film suitable for use as packaging for a container, particularly a container of ready-prepared ovenable meals.
  • the invention relates to a multi-layer film which is heat-sealable to and peelable from a container.
  • Plastic containers have been increasingly used in packaging applications, such as food packaging, and in particular for packaging convenience foods, for example ready-prepared ovenable meals which may be warmed either in a microwave oven or in a conventional oven or in either.
  • a container which is suitable for use either in a microwave oven or a conventional oven is generally referred to as "dual-ovenable".
  • the plastic container is an APET/CPET tray (a composite material having an amorphous polyethylene terephthalate layer on top of a crystalline polyethylene terephthalate layer).
  • Polystyrene and polypropylene containers have also been used.
  • the plastic container is generally used in association with a lid which seals the container in order to prevent leakage and drying out of the packaged contents during storage.
  • lid should not stick to the packaged contents and should be able to withstand the heat generated in the oven.
  • container lids normally comprise a multi-layer film, often referred to as a "lidding film", which comprises a flexible polymeric substrate, such as biaxially oriented polyester film, and a heat-sealable coating layer.
  • the manufacture of sealed containers using lidding films involves the formation of a seal between the lidding film and the container.
  • This seal is formed by placing the lid on top of the container and applying heat and pressure in order to soften or melt the sealable coating layer so that it adheres to the surface of the container and forms an effective seal between the Hd and the container.
  • the seal must be strong enough to prevent leakage of the contents.
  • the film lid should be peelable from the container by the consumer and in such cases the seal must be strong enough to prevent leakage of the contents but not too strong to result in difficulties in removing the lid when the container is to be opened. In particular, the lid should not tear during peeling, which could result in portions of the film lid falling into the contents of the container thereby spoiling the food.
  • a strong seal and easy-peeling properties, i.e. a clean peel may be required at both low, e.g. ambient, and high temperatures, e.g. after heating the packaged food contents in an oven.
  • a further desirable sealing property is the characteristic of good "hot-tack" adhesion.
  • This property essentially measures the speed at which a heat-seal bond is formed when a heated and softened (or molten) heat-sealable film is contacted with the surface to which it is to be sealed.
  • Hot-tack adhesion essentially therefore corresponds to the property of heat-bond seal strength, but wherein hot-tack adhesion is measured after a much smaller time interval (typically 0.1 second) after the heat-seal bond is initiated.
  • Heat-seal bond strength is measured once the heat-seal bond has completely formed, and normally after the heat-seal bond has cooled to ambient temperature, and can be referred to as the "cold heat-seal bond strength".
  • hot-tack adhesion is important for quick, efficient and reliable packaging.
  • the formation of a rapid heat-seal bond is desired.
  • hot-tack adhesion is approximately proportional to the cold heat-seal bond strength, but while it is desirable to maximise hot-tack adhesion, if the hot-tack adhesion is too high then the cold heat-seal bond strength may be too strong to allow an easy and clean peel.
  • the hot-tack adhesion increases as the molecular weight of the heat- sealable polymer increases.
  • Many thermoplastic polymers display hot-tack adhesion to some degree, albeit at different temperatures and viscosities.
  • the heat-sealable layer is applied to the substrate using either an organic solvent, or an aqueous dispersion or solution.
  • organic solvents are generally disadvantageous because they may be harmful, hazardous in use, or toxic and detrimental to the environment.
  • films made in this way often contain a residual amount of solvent, and so may not be suitable for use in applications where they come into contact with food products.
  • the use of organic solvents usually involves an "off-line” coating step, i.e. after any stretching and subsequent heat-setting operation employed during the manufacture of the substrate, since such solvents can cause sticking or blocking of the film during the normal winding operations used during film manufacture.
  • an aqueous dispersion or solution such as in the process of WO-A-96/19333, avoids the use of substantial amounts of organic solvents; allows the use of a more efficient "in-line” coating process, i.e. wherein the coating layer is applied either before the film substrate is stretched or between the stretching steps of a biaxial stretching process; but is limited to coating compositions which are soluble or adequately dispersible in water.
  • An in-line process avoids the use of the further heating or drying steps which are encountered in offline coating processes, particularly off-line solvent-coating processes. These processes can embrittle the film and deteriorate the tensile properties. In general, an in-line coated film has therefore superior mechanical properties.
  • Heat-sealable films have also been manufactured by other in-line coating techniques.
  • GB-2024715 discloses the application of a polyolefmic material onto a polyolefinic substrate using an extrusion-coating technique between the longitudinal and transverse stretching operations ("inter-draw" coating).
  • a process for the in-line inter- draw extrusion-coating of polyolefins onto a polyester substrate to produce a heat-sealable film is disclosed in GB-1077813.
  • US-4333968 discloses a method for the inter-draw extrusion coating of an ethylene-vinyl acetate (EVA) copolymer onto a polypropylene substrate to provide a heat-sealable peelable film.
  • EVA ethylene-vinyl acetate
  • a heat-sealable, peelable, coextruded composite polymeric film comprising a substrate layer of polymeric material having on a surface thereof a heat-sealable layer, wherein: (i) said heat-sealable layer comprises a copolyester of least one aromatic dicarboxylic acid, at least one aliphatic dicarboxylic acid and one or more glycol(s);
  • the thickness of said heat-sealable layer is in the range of from about 0.3 to about 3 ⁇ m;
  • the heat-sealable layer comprises one or more wax(es).
  • a process for the production of a heat-sealable, peelable, composite polymeric film which comprises the steps of coextruding a polymeric substrate and a heat-sealable layer, wherein:
  • said heat-sealable layer comprises a copolyester of least one aromatic dicarboxylic acid, at least one aliphatic dicarboxylic acid and one or more glycol(s);
  • the thickness of said heat-sealable layer is in the range of from about 0.3 to about 3 ⁇ m
  • the heat-sealable layer comprises one or more wax(es).
  • the films of the present invention exhibit a surprisingly high hot-tack adhesion strength, despite the low thickness of the heat-seal layer. It is surprising that suitable hot-tack adhesion strength can be achieved with such a low thickness of heat-seal layer. In addition, it is surprising that, when compared to films in which similar heat-sealable polymers are disposed on the substrate via a solvent-coated route, correspondingly suitable heat-seal bond strengths are achieved at a lower thickness of the heat-sealable layer.
  • the hot-tack adhesion of the film may be adjusted to ensure good performance of the film in use on a tray filling and lidding line.
  • a film which shows good hot-tack on a filling line has a preferred hot-tack value, measured as described hereinbelow, of at least 3 Newtons, preferably at least 4 Newtons, but preferably no more than about 5 Newtons, and is preferably in the range of from about 3 to about 5 Newtons.
  • the composite film described herein is a heat-sealable, peelable film.
  • the term "heat-sealable peelable film” refers to a film which is capable of forming a seal to a surface under the application of heat, wherein the seal is breakable without fracture of the film. The peelable characteristic of the films described herein distinguishes them from high-seal strength or "weldable" films.
  • a composite film according to the present invention typically exhibits a heat-seal strength (at ambient temperature) in the range of from about 200 to about 1400g/25mm, preferably in the range of from about 200 to about 1000g/25mm, and more preferably in the range of from about 400 to about 900 g/25mm when sealed to the APET side of a typical APET/CPET tray.
  • Typical heat seal strengths of the film to itself are in the range of from about 200 to about 700g/25mm, preferably in the range of from about 400 to about 600g/25mm.
  • the shrinkage of the film is preferably less than 5%, more preferably less than 3%, and most preferably less than 2%, in the machine dimension and/or the transverse dimension.
  • the substrate layer is a self-supporting film or sheet by which is meant a film or sheet capable of independent existence in the absence of a supporting base.
  • the substrate layer preferably comprises film-forming thermoplastic polymeric material.
  • the film-forming polymeric resin is the major component of the substrate, and the polymeric resin makes up at least 50%, preferably at least 65%, preferably at least 80%, preferably at least 90%, and preferably at least 95% by weight of the total weight of the substrate.
  • Suitable materials include a homopolymer or copolymer of a 1 -olefin, such as ethylene, propylene and but-1- ene, polyamides, polycarbonates, polyesters (including copolyesters), PVC, PVA, polystyrenes, polyacrylates, celluloses and nylon (including nylon 6 and nylon 6,6).
  • a polyester material particularly a synthetic linear polyester.
  • the synthetic linear polyesters useful for the substrate layer may be obtained by condensing one or more dicarboxylic acids or their lower alkyl diesters, e.g.
  • terephthalic acid isophthalic acid, phthalic acid, 2,5-, 2,6- or 2,7-naphthalenedicarboxylic acid, succinic acid, sebacic acid, adipic acid, azelaic acid, 4,4'-diphenyldicarboxylic acid, hexahydro-terephthalic acid or 1,2-bis-p-carboxyphenoxyethane (optionally with a monocarboxylic acid, such as pivalic acid) with one or more glycols, particularly an aliphatic or cycloaliphatic glycol, e.g.
  • the substrate layer comprises polyethylene terephthalate (PET), or copolyesters in which the major repeat unit is ethlyene terephthalate.
  • the substrate layer may contain recycle material up to a level of 50% by weight of the substrate layer, and preferably at least 10%, preferably at least 25%, and more preferably at least 40% by weight of the substrate layer.
  • recycle material we mean waste material consisting of the composite film of the present invention, and such waste material may be derived from edge-trimming (typically the edge portions of the film which are held by the stenter clips during film manufacture), from excess film left over after the film has been slit along its longitudinal dimension, from start-up film (i.e. the film produced at the start of a manufacturing run), or from film that has been failed for other reasons, as is well- known in the art. It is surprising that recycle material may be used in the substrate layer in such high proportions given that it contains the wax from the heat-sealable layer without causing problems in the film making process.
  • the substrate may comprise one or more discrete coextruded layers of the above film- forming materials.
  • the polymeric materials of the respective layers may be the same or different.
  • the substrate may comprise one, two, three, four or five or more layers and typical multi-layer structures may be of the AB, ABA, ABC, ABAB, ABABA or ABCBA type.
  • the substrate comprises one layer.
  • the heat-sealable layer is capable of forming a heat-seal bond to the surfaces of the container.
  • the heat-sealable layer predominantly comprises copolyester material and this softens to a sufficient extent that its viscosity becomes low enough to allow adequate wetting for it to adhere to the surface to which it is being bonded.
  • the heat-seal bond is effected by heating to soften the copolyester material of the heat-sealable layer, and applying pressure, without melting the other layers in the film.
  • the copolyester of the heat-sealable layer should begin to soften at a temperature such that the heat-seal bond can be formed at a temperature which is less than the melting temperature of the polymeric material of the substrate.
  • the copolyester of the heat-sealable layer should begin to soften at a temperature such that the heat-seal bond can be formed at a temperature which is between about 5 and 5O 0 C below, preferably between about 5 and 3O 0 C below, and preferably at least about 1O 0 C below the melting temperature of the polymer material of the substrate.
  • the heat-sealable layer comprises a copolyester resin derived from at least one (and preferably only one) aromatic dicarboxylic acid and at least one (and preferably only one) aliphatic dicarboxylic acid (or their lower alkyl (i.e. up to 14 carbon atoms) diesters) with one or more glycol(s). Formation of the copolyester is conveniently effected in known manner by condensation, or ester-interchange, at temperatures generally up to 275 0 C.
  • the copolyester resin is the major component of the heat-sealable layer, and the copolyester makes up at least 50%, preferably at least 65%, preferably at least 80%, preferably at least 90%, and preferably at least 95% by weight of the total weight of the heat-sealable layer.
  • Preferred aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, and 2,5-, 2,6- or 2,7-naphthalenedicarboxylic acid, and preferably the aromatic dicarboxylic acid is terephthalic acid.
  • Preferred aliphatic dicarboxylic acids are saturated aliphatic dicarboxylic acids of the general formula C n H 2n (COOH) 2 wherein n is 2 to 8, such as succinic acid, sebacic acid, adipic acid, azelaic acid, suberic acid or pimelic acid, preferably sebacic acid, adipic acid and azelaic acid, and more preferably azelaic acid.
  • Preferred glycols are aliphatic or cycloaliphatic glycols, preferably an aliphatic glycol, and more preferably an alkylene glycol.
  • suitable glycol(s) include aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3 -butane diol, 1,4-butane diol, 1,5-pentane diol, 2,2-dimethyl-l,3-propane diol, neopentyl glycol and 1,6- hexane diol, and cycloaliphatic diols such as 1,4-cyclohexanedimethanol and 1,4- cyclohexane diol. Ethylene glycol or 1,4-butanediol is preferred.
  • the concentration of the aromatic dicarboxylic acid present in the copolyester is preferably no more than about 90 mole%, preferably no more than about 80 mole%, and preferably in the range from 45 to 80 mole%, more preferably 50 to 70 mole%, and particularly 55 to 65 mole % based on the dicarboxylic acid components of the copolyester.
  • the concentration of the aliphatic dicarboxylic acid present in the copolyester is preferably at least about 10 mole%, preferably at least about 20 mole%, and preferably in the range from 20 to 55, more preferably 30 to 50, and particularly 35 to 45 mole % based on the dicarboxylic acid components of the copolyester.
  • copolyesters are (i) copolyesters of azelaic acid and terephthalic acid with an aliphatic glycol, preferably ethylene glycol; (ii) copolyesters of adipic acid and terephthalic acid with an aliphatic glycol, preferably ethylene glycol; and (iii) copolyesters of sebacic acid and terephthalic acid with an aliphatic glycol, preferably butylene glycol.
  • Preferred polymers include a copolyester of sebacic acid/terephthalic acid/butylene glycol (preferably having the components in the relative molar ratios of 45-55/55-45/100, more preferably 50/50/100) having a glass transition point (T g ) of -40°C and a melting point (T m ) of 117°C), and a copolyester of azelaic acid/terephthalic acid/ethylene glycol (preferably having the components in the relative molar ratios of 40-50/60-50/100, more preferably 45/55/100) having a T g of-15°C and a T m of 150°C.
  • the T g of the copolyester of the heat-sealable layer is no more than about 20°C, preferably no more than about 10°C, preferably no more than about 0°C, and preferably no more than about -10°C.
  • the melting point T m of the copolyester of the heat-sealable layer is preferably no more than about 160°C, preferably no more than about 150 0 C, and more preferably no more than about 140°C.
  • the heat-sealable layer comprises one or more waxes, and typically only one type of wax.
  • the wax may be a natural or synthetic wax, and preferably has a melting point of at least 5O 0 C.
  • Natural waxes are preferably either vegetable waxes (such as carnauba wax) or mineral waxes (such as montan waxes and ozocerite). Paraffin waxes (highly-refined low- molecular weight waxes comprising straight-chain hydrocarbons) may also be used.
  • Examples of synthetic waxes include Fischser-Tropsch waxes (produced by coal gasification, and having a molecular weight in the range from about 300 to about 1400 g/mol)), and oxidised and non-oxidised (preferably oxidised) low molecular weight polyethylene waxes (having a molecular weight in the range from about 500 to about 3000 g/mol) as well as the corresponding polypropylene waxes.
  • a preferred class of waxes are amide waxes.
  • Amidic waxes are generally immiscible with the base copolyester of the heat-sealable layer.
  • the amide wax may be a primary, secondary, tertiary or bis (fatty) amide, such as oleamide and erucamide.
  • the different types include primary fatty amides such as erucamide, behenamide, oleamide or stearamide; secondary fatty amides such as stearylerucamide, erucylerucamide, oleylpalmitamide, stearylstearamide or erucyistearamide; tertiary fatty amides such as dimethylstearamide or diethylstearamide; and N 3 N' -bis (fatty) amides such as N,N'-ethylene bis(stearamide), N,N'-methylene bis(stearamide), N,N'-propylene bis(stearamide), N,N'-ethylene bis(oleamide), N,N'-methylene bis(oleamide), or N,N'-propylene bis(oleamide).
  • the wax is selected from N,N'-bis (fatty) amides, and more preferably from N,N'-ethylene bis(oleamide) and N,N'-ethylene bis(stearamide).
  • the wax assists in the manufacture by coextrusion of the composite film comprising the heat-sealable layer referred to above.
  • the wax is present at a level of from about 0.1 to about 3 wt%, preferably from about 0.5 to about 3 wt%, preferably no more than 2 wt%, and typically from about 1 to about 2 wt% of the total weight of the heat-sealable layer.
  • the thickness of the composite film is preferably from about 5 to 300 ⁇ m, more preferably from about 5 to 100 ⁇ m, preferably from about 5 to about 50 ⁇ m, preferably from about 10 to 30 ⁇ m, and typically from about 12 to about 25 ⁇ m in thickness.
  • the substrate layer is significantly thicker than the heat-sealable layer.
  • the thickness of the heat-sealable layer is from about 0.3 to about 3 ⁇ m, preferably from about 0.4 ⁇ m to about 2 ⁇ m, more preferably from about 0.5 to about 1.5 ⁇ m, more preferably from about 0.5 to about l.O ⁇ m, more preferably from about 0.5 to about 0.9 ⁇ m, and most preferably from about 0.5 to about 0.7 ⁇ m.
  • Heat-sealable layers which have a thickness below about 0.3 ⁇ m, and more typically below about 0.5 ⁇ m, exhibit insufficient hot-tack and cold heat seal strength adhesion. Heat-sealable layers which have a thickness above about 3 ⁇ m, more typically above about 1.5 ⁇ m, and more typically above about 1 ⁇ m, exhibit heat-seal bond strengths which are too strong and cause tearing of the film when the film is peeled from the container to which it was heat-sealed.
  • the composite sheet preferably has an ultimate tensile strength (UTS) in the range of from 14 to 26 Kg/mm 2 .
  • the extrusion process comprises the steps of extruding one or more layers of molten polymer, quenching the extrudate and orienting the quenched extrudate in at least one direction.
  • the film may be uniaxially-oriented, but is preferably biaxially-oriented.
  • Orientation may be effected by any process known in the art for producing an oriented film, for example a tubular or flat film process.
  • Biaxial orientation is effected by drawing in two mutually perpendicular directions in the plane of the film to achieve a satisfactory combination of mechanical and physical properties.
  • simultaneous biaxial orientation may be effected by extruding a thermoplastic tube which is subsequently quenched, reheated and then expanded by internal gas pressure to induce transverse orientation, and withdrawn at a rate which will induce longitudinal orientation.
  • the film-forming polymer is extruded through a slot die and rapidly quenched upon a chilled casting drum to ensure that the polymer is quenched to the amorphous state.
  • Orientation is then effected by stretching the quenched extrudate in at least one direction at a temperature above the glass transition temperature of the substrate polyester.
  • Sequential orientation may be effected by stretching a flat, quenched extrudate Firstly in one direction, usually the longitudinal direction, i.e. the forward direction through the film stretching machine, and then in the transverse direction. Forward stretching of the extrudate is conveniently effected over a set of rotating rolls or between two pairs of nip rolls, transverse stretching then being effected in a stenter apparatus.
  • the cast film may be stretched simultaneously in both the forward and transverse directions in a biaxial stenter. Stretching is generally effected so that the dimension of the oriented film, particularly a polyester film, is from 2 to 5 times, generally at least 2.5 times, preferably no more than 4.5 times, more preferably no more than 3.5 times its original dimension in the or each direction of stretching. Stretching in the machine direction is effected at temperatures higher than the Tg of the polymeric material of the substrate layer, typically less than 30°C above Tg, preferably less than 2O 0 C above Tg and more preferably less than 15°C above Tg of the polymeric material of the substrate layer.
  • Stretching in the transverse direction is typically effected at temperatures in the range of 100 to 130°C after preheating in the range of 80 to 100°C, and in any case higher than the Tg of the polymeric material of the substrate layer, typically less than 80°C above Tg, preferably less than 60 0 C above Tg and more preferably less than 50 0 C above Tg of the polymeric material of the substrate layer. It is not necessary to stretch equally in the machine and transverse directions although this is preferred if balanced properties are desired.
  • a stretched film may be, and preferably is, dimensionally stabilised by heat-setting under dimensional restraint at a temperature above the glass transition temperature of the substrate polyester but below the melting temperature thereof, to induce crystallisation of the substrate polyester.
  • Heat-setting has the effect of providing dimensional stability to a stretched film, and "locking" the film in its stretched state.
  • the shrinkage behaviour of a film under the action of heat depends on whether, and to what extent, the film was heat-set after any stretching operation(s) effected during its manufacture. In general, a film which has experienced a temperature Ti during the heat-setting operation will exhibit substantially no shrinkage below temperature T 1 when subsequently exposed to heat after manufacture. In applications where film shrinkage is not of significant concern, the film may be heat set at relatively low temperatures or not at all.
  • the tear resistance of the film may change.
  • the actual heat set temperature and time will vary depending on the composition of the film but should not be selected so as to substantially degrade the tear resistant properties of the film.
  • a heat-set temperature of about 100 to 250 0 C, preferably about 120 to 230 0 C, is generally desirable.
  • Dimensional relaxation (“toe-in”), wherein the film is allowed to relax in a given dimension by up to about 5% and typically about 2-4% during the heat-setting step, may be used to modulate shrinkage of the film.
  • the composite film of the present invention comprising a substrate and a heat-sealable layer is effected by coextrusion, either by simultaneous coextrusion of the respective film- forming layers through independent orifices of a multi-orifice die, and thereafter uniting the still molten layers, or, preferably, by single-channel coextrusion in which molten streams of the respective polymers are first united within a channel leading to a die manifold, and thereafter extruded together from the die orifice under conditions of streamline flow without intermixing thereby to produce a multi-layer polymeric film, which may be oriented and heat-set as hereinbefore described.
  • One or more of the layers of the film may conveniently contain any of the additives conventionally employed in the manufacture of polymeric films.
  • agents such as cross-linking agents, dyes, pigments, voiding agents, lubricants, anti-oxidants, radical scavengers, UV absorbers, thermal stabilisers, anti-blocking agents, surface active agents, slip aids, optical brighteners, gloss improvers, prodegradents, viscosity modifiers and dispersion stabilisers may be incorporated as appropriate.
  • the composite film may comprise a particulate filler which may, for example, be a particulate inorganic filler or an incompatible resin filler or a mixture of two or more such fillers. Such fillers are well-known in the art.
  • Particulate inorganic fillers include conventional inorganic fillers, and particularly metal or metalloid oxides, such as alumina, talc, silica (especially precipitated or diatomaceous silica and silica gels) and titania, calcined china clay and alkaline metal salts, such as the carbonates and sulphates of calcium and barium.
  • the particulate inorganic fillers may be of the voiding or non-voiding type. Suitable particulate inorganic fillers may be homogeneous and consist essentially of a single filler material or compound, such as titanium dioxide or barium sulphate alone. Alternatively, at least a proportion of the filler may be heterogeneous, the primary filler material being associated with an additional modifying component.
  • the primary filler particle may be treated with a surface modifier, such as a pigment, soap, surfactant coupling agent or other modifier to promote or alter the degree to which the filler is compatible with the polymer layer.
  • a surface modifier such as a pigment, soap, surfactant coupling agent or other modifier to promote or alter the degree to which the filler is compatible with the polymer layer.
  • Preferred particulate inorganic fillers include titanium dioxide and silica.
  • the inorganic filler should be finely-divided, and the volume distributed median particle diameter (equivalent spherical diameter corresponding to 50% of the volume of all the particles, read on the cumulative distribution curve relating volume % to the diameter of the particles - often referred to as the "D(v,0.5)" value) thereof is preferably in the range from 0.01 to 10 ⁇ m, more preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 1.5 ⁇ m, and particularly 0.15 to 1.2 ⁇ m.
  • Preferably at least 90%, more preferably at least 95% by volume of the inorganic filler particles are within the range of the volume distributed median particle diameter ⁇ 0.8 ⁇ m, and particularly ⁇ 0.5 ⁇ m.
  • Particle size of the filler particles may be measured by electron microscope, coulter counter, sedimentation analysis and static or dynamic light scattering. Techniques based on laser light diffraction are preferred.
  • the median particle size may be determined by plotting a cumulative distribution curve representing the percentage of particle volume below chosen particle sizes and measuring the 50th percentile.
  • the heat-sealable layer comprises at least about 0.5%, and no more than about 5% by weight (based on the total weight of the layer), preferably no more than about 2% by weight, and preferably no more than about 1.5% weight, of inorganic filler particles.
  • the filler particles are selected from the filler particles referred to hereinabove, and are preferably selected from silica and talc, preferably silica.
  • the windability of the film i.e. the absence of blocking or sticking when the film is would up into a roll
  • filler added at a level of from about 0.5 to about 5% by weight provides advantages in terms of the peelability of the film, in that if the upper thresholds of filler as described herein are exceeded, then the film is susceptible to tearing when peeled from the container to which it has been heat-sealed. While the inventors do not intend to be bound by theory, it is believed that the filler particles are very tightly bound to the copolyester used for the heat-sealable layer in the present invention, and that these filler particles are acting as tear-initiation points.
  • the components of the composition of a layer may be mixed together in a conventional manner. For example, by mixing with the monomeric reactants from which the layer polymer is derived, or the components may be mixed with the polymer by tumble or dry blending or by compounding in an extruder, followed by cooling and, usually, comminution into granules or chips. Masterbatching technology may also be employed.
  • the film of the present invention is optically clear, preferably having a % of scattered visible light (haze) of ⁇ 10%, preferably ⁇ 8%, and particularly ⁇ 6%, measured according to the standard ASTM D 1003.
  • the film is opaque and highly filled, preferably exhibiting a Transmission Optical Density (TOD) (Sakura Densitometer; type PDA 65; transmission mode) in the range from 0.1 to 2.0, more preferably 0.2 to 1.5, more preferably from 0.25 to 1.25, more preferably from 0.35 to 0.75 and particularly 0.45 to 0.65.
  • TOD Transmission Optical Density
  • the film is conveniently rendered opaque by incorporation into the polymer blend of an effective amount of an opacifying agent.
  • Suitable opacifying agents include an incompatible resin filler, a particulate inorganic filler or a mixture of two or more such fillers, as hereinbefore described.
  • the amount of filler present in a given layer is preferably in the range from 1% to 30%, more preferably 3% to 20%, particularly 4% to 15%, and especially 5% to 10% by weight, based on the weight of the layer polymer.
  • the surface of an opaque film preferably exhibits a whiteness index, measured as herein described, in the range from 60 to 120, more preferably 80 to 110, particularly 90 to 105, and especially 95 to 100 units.
  • the surface of the substrate in contact with the heat sealable layer is referred to herein as the primary side.
  • the surface of the substrate opposite to the surface which is in contact with the heat-sealable layer is referred to herein as the secondary side.
  • the secondary side of the substrate may have thereon one or more further polymeric layers or coating materials. Any coating of the secondary side is preferably performed "in-line”.
  • the composite film of the invention is intended to be manufactured, stored, sold and used without any additional layers on the exposed surface of the heat-sealable layer.
  • the additional coating on the secondary side may comprise a "slip coating" in order to improve the handling and windability of the film, particularly when the film substrate is a PET polyester substrate.
  • a suitable slip coating may be, for instance a discontinuous layer of an acrylic and/or methacrylic polymeric resin optionally further comprise a cross-linking agent, such as described in EP-A-0408197, the disclosure of which is incorporated herein by reference.
  • An alternative slip coating may comprise a potassium silicate coating, for instance as disclosed in US Patent Nos. 5925428 and 5882798, the disclosures of which are incorporated herein by reference.
  • the secondary side of the substrate has disposed thereon a printable or ink-receiving layer, and optionally a primer layer (such as that disclosed in EP- 0680409, EP-0429179, EP-0408197, EP-0576179 or WO-97/37849, the disclosures of which are incorporated herein by reference) between the substrate and the printable or ink- receiving layer in order to increase adhesion.
  • a printable or ink-receiving layers are disclosed in, for instance, EP-0696516, US-5888635, US-5663030, EP-0289162, EP- 0349141, EP-Ol 11819 and EP-0680409, the disclosures of which are incorporated herein by reference.
  • a preferred ink-receiving layer comprises an acrylic and/or methacrylic polymeric resin, as disclosed in EP-A-0408197.
  • a preferred receiving layer polymer comprises alkyl acrylate monomer units and alkyl methacrylate monomer units, preferably ethyl acrylate and alkyl methacrylate (preferably methyl methacrylate).
  • the alkyl acrylate monomer units are present in a proportion from about 30 to about 65 mole % and the alkyl methacrylate monomer units are present in a proportion from about 20 to about 60 mole %.
  • the polymer comprises about 35 to 60 mole % ethyl acrylate, about 30 to 55 mole % methyl methacrylate and about 2 to 20 mole % methacrylamide.
  • Such polymers are preferably applied to the substrate as an aqueous dispersion or alternatively as a solution in organic solvent.
  • the polymer composition may be applied to an already oriented film substrate. However, application is preferably effected before or during the stretching operation(s).
  • the ink-receiving layer is preferably applied between the two stages (longitudinal and transverse) of the biaxial stretching operation.
  • the composite film consists of a substrate and a heat-sealable layer, as defined herein, that is to say that the no other layers are present in the film.
  • the composite film consists of a substrate, a heat-sealable layer, and on the secondary surface of the substrate a printable or ink-receiving layer, and optionally an adhesion-promoting primer layer between the substrate and the printable or ink-receiving layer.
  • the composite film of the present invention is particularly intended for use in association with a container or receptacle for a food product, particularly ready prepared convenience foods which may be warmed in an oven, particularly a microwave oven.
  • the invention is also applicable for ready-prepared meals which are intended to be warmed in any other type of oven, such as a conventional convection oven, a direct radiation oven and a forced hot air oven.
  • the container may be, for instance, a thermoformed tray, thermoformed bowl or blow- moulded bottle.
  • the container may be formed of polyester, such as polyethylene terephthalate, or of polypropylene, polystyrene, or may be PVDC coated, or may be glass.
  • the invention is particularly suitable for use with an APET/CPET container, especially a thermoformed tray, which is suitable for packaging food or drink.
  • Other suitable types of container include a metallised tray and a tray formed from PET-coated cartonboard or paperboard.
  • trays formed from metallised (particularly flash- metallised) PET cartonboard are examples of particular utility.
  • the tray may be produced from PET which has been metallised to an optical density in the range of about 0.01 to 4.0 and which is laminated to cartonboard.
  • the tray is a susceptor tray made from materials such as those disclosed in GB-A-2280342, EP-A-0563442 or GB-A-2250408, or is a susceptor tray produced in accordance with the disclosures of these documents, which are incorporated herein by reference.
  • a lidding film suitable for heat-sealing to a receptacle containing a food product, particularly a ready-prepared ovenable meal.
  • the invention further provides a sealed container comprising a receptacle containing a food product, particularly an ovenable meal, and a lid formed from a composite film as defined herein.
  • the sealed container is produced by techniques well-known to those skilled in the art. Once the food to be packaged has been introduced into the receptacle, the heat- sealable film lid is affixed using temperature and/or pressure using conventional techniques and equipment.
  • the invention further provides a packaged food product, particularly an ovenable meal, wherein the packaging comprises a film as defined herein.
  • Heat-seal strength is measured as follows.
  • the film is sealed, by means of the heat- sealable layer, to a typical APET/CPET tray (obtained from Faerch A/S, Denmark) using a Microseal PA 201 (obtained from Packaging Automation Ltd, England) tray sealer at a temperature of 18O 0 C, and pressure of 80 psi for two seconds.
  • Strips (25 mm wide) of the sealed film and tray are cut out at 90° to the seal, and the load required to pull the seal apart measured using an Instron operating at a crosshead speed of 0.25 mmin "1 .
  • the procedure is generally repeated 4 times, and a mean value of 5 results calculated.
  • Heat-seal strength of the composite film to itself to itself is measured by positioning together and heating the heat-sealable layers of two samples of the film at 16O 0 C for 0.5 second under a pressure of 80 psi.
  • the sealed film is cooled to room temperature, and the sealed composite cut into 25mm wide strips.
  • the heat- seal strength is determined by measuring the force required under linear tension per unit width of seal to peel the layers of the film apart at a constant speed of 0.25 mmin "1 .
  • Hot-tack adhesion is measured according to ASTM F 1921-98 ("Standard test methods for the hot seal strength (hot tack) of thermoplastics polymers and blends comprising the sealing surface of flexible webs") using a Davinor J&B hot tack tester. Strips of the composite film (25 mm wide) are sealed in the machine to an APET/CPET surface (obtained from Faerch A/S, Denmark) at defined conditions of seal temperature and force and the resulting seal strength is measured at a given peel speed at defined times after the seal has been made.
  • the seal temperature was 150°C
  • the seal pressure was lN/mm 2
  • the seal time was 0.5 seconds
  • the cool time i.e.
  • a composite film was manufactured by coextrusion in which the first (substrate) layer was unfilled polyethylene terephthalate (PET), and the second layer was a heat-sealable copolyester of azelaic acid/terephthalic acid/ethylene glycol (45/55/100) having a T g of - 15°C and a T m of 150°C.
  • PET polyethylene terephthalate
  • the second layer was a heat-sealable copolyester of azelaic acid/terephthalic acid/ethylene glycol (45/55/100) having a T g of - 15°C and a T m of 150°C.
  • the heat-sealable layer further comprised 1.5% by weight (relative to the total composition of the layer) of an N,N'-ethylene bis(oleamide) wax (EBO; obtained as Crodamide EBO from Croda), and 3% by weight (relative to the total composition of the layer) of silica filler particles with an average particle size of 1 ⁇ m.
  • EBO N,N'-ethylene bis(oleamide) wax
  • the copolyesters were coextuded using separate streams supplied from separate extruders, to a single channel coextrusion assembly.
  • the polymer layers were extruded through a film-forming die on to a water-cooled rotating, quenching drum at various line speeds to yield an amorphous cast composite extrudate.
  • the cast extrudate was heated to a temperature in the range of about 50 to 80°C and then stretched longitudinally at a forward draw ratio of about 3:1.
  • the polymeric film was passed into a stenter oven at a temperature of about HO 0 C, where the sheet was stretched in the sideways direction to approximately 4 times its original dimensions, and then heat-set at temperatures between 210 and 225 0 C.
  • the final thickness of the film was 25 ⁇ m, in which the second (heat- sealable) layer was 0.65 ⁇ m in thickness.
  • the film was clear with a haze of 6%.
  • the hot- tack adhesion of the film was 5 Newtons.
  • the heat-seal strength of the film to itself was 500 g/25mm.
  • the film exhibited an easy and clean manual peel from the tray.
  • Example 1 was repeated except that the heat-sealable layer comprised 6 % filler.
  • the film was susceptible to tearing when peeled from the tray.
  • Example 1 was repeated except that the heat-sealable layer was 3.5 ⁇ m thick, and exhibited high hot tack and a high cold peel strength, and was susceptible to tearing when peeled from the tray.
  • Example 1 was repeated except that the heat-sealable layer was 0.2 ⁇ m thick, and exhibited an insufficiently low cold peel strength.

Landscapes

  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A heat-sealable, peelable, coextruded composite polymeric film comprising a substrate layer of polymeric material having on a surface thereof a heat-sealable layer, wherein said heat-sealable layer comprises a copolyester of least one aromatic dicarboxylic acid, at least one aliphatic dicarboxylic acid and one or more glycol(s); the thickness of said heat-sealable layer is in the range of from about 0.3 to about 3 µm; and the heat-sealable layer comprises one or more wax(es) is described.

Description

POLYESTER FILM
This invention relates to a multi-layer polymeric film suitable for use as packaging for a container, particularly a container of ready-prepared ovenable meals. In particular, the invention relates to a multi-layer film which is heat-sealable to and peelable from a container.
Plastic containers have been increasingly used in packaging applications, such as food packaging, and in particular for packaging convenience foods, for example ready-prepared ovenable meals which may be warmed either in a microwave oven or in a conventional oven or in either. A container which is suitable for use either in a microwave oven or a conventional oven is generally referred to as "dual-ovenable". Often the plastic container is an APET/CPET tray (a composite material having an amorphous polyethylene terephthalate layer on top of a crystalline polyethylene terephthalate layer). Polystyrene and polypropylene containers have also been used. The plastic container is generally used in association with a lid which seals the container in order to prevent leakage and drying out of the packaged contents during storage. In addition, the lid should not stick to the packaged contents and should be able to withstand the heat generated in the oven. Such container lids normally comprise a multi-layer film, often referred to as a "lidding film", which comprises a flexible polymeric substrate, such as biaxially oriented polyester film, and a heat-sealable coating layer.
The manufacture of sealed containers using lidding films involves the formation of a seal between the lidding film and the container. This seal is formed by placing the lid on top of the container and applying heat and pressure in order to soften or melt the sealable coating layer so that it adheres to the surface of the container and forms an effective seal between the Hd and the container. The seal must be strong enough to prevent leakage of the contents. The film lid should be peelable from the container by the consumer and in such cases the seal must be strong enough to prevent leakage of the contents but not too strong to result in difficulties in removing the lid when the container is to be opened. In particular, the lid should not tear during peeling, which could result in portions of the film lid falling into the contents of the container thereby spoiling the food. A strong seal and easy-peeling properties, i.e. a clean peel, may be required at both low, e.g. ambient, and high temperatures, e.g. after heating the packaged food contents in an oven.
In addition, when disposing a food product in the container to be sealed, solids or liquids from the food product or other contaminants may come into contact with, and remain on, the top surface of the lip of the container which is to be sealed to the lidding film. This may result in poor seal properties between the container and the lid, and eventually a weak overall package. A film which performs well in this respect, i.e. which shows good seal properties despite the presence of contaminants between the lid and the container, is said to exhibit good "seal through contamination", and this is a further desirable property for these heat-sealable lidding films. In conventional lidding films, this problem is typically addressed by increasing the thickness of the heat-seal layer, for instance, to about 25 μm or above, which is economically disadvantageous.
A further desirable sealing property is the characteristic of good "hot-tack" adhesion. This property essentially measures the speed at which a heat-seal bond is formed when a heated and softened (or molten) heat-sealable film is contacted with the surface to which it is to be sealed. Hot-tack adhesion essentially therefore corresponds to the property of heat-bond seal strength, but wherein hot-tack adhesion is measured after a much smaller time interval (typically 0.1 second) after the heat-seal bond is initiated. Heat-seal bond strength is measured once the heat-seal bond has completely formed, and normally after the heat-seal bond has cooled to ambient temperature, and can be referred to as the "cold heat-seal bond strength". Good hot-tack adhesion is important for quick, efficient and reliable packaging. In addition, in circumstances where the food to be packaged is sufficiently bulky that it protrudes above the lip of the container, the formation of a rapid heat-seal bond is desired. Typically, hot-tack adhesion is approximately proportional to the cold heat-seal bond strength, but while it is desirable to maximise hot-tack adhesion, if the hot-tack adhesion is too high then the cold heat-seal bond strength may be too strong to allow an easy and clean peel. In general, the hot-tack adhesion increases as the molecular weight of the heat- sealable polymer increases. Many thermoplastic polymers display hot-tack adhesion to some degree, albeit at different temperatures and viscosities. In many prior art lidding films, the heat-sealable layer is applied to the substrate using either an organic solvent, or an aqueous dispersion or solution. The use of organic solvents is generally disadvantageous because they may be harmful, hazardous in use, or toxic and detrimental to the environment. In addition, films made in this way often contain a residual amount of solvent, and so may not be suitable for use in applications where they come into contact with food products. The use of organic solvents usually involves an "off-line" coating step, i.e. after any stretching and subsequent heat-setting operation employed during the manufacture of the substrate, since such solvents can cause sticking or blocking of the film during the normal winding operations used during film manufacture. The use of an aqueous dispersion or solution, such as in the process of WO-A-96/19333, avoids the use of substantial amounts of organic solvents; allows the use of a more efficient "in-line" coating process, i.e. wherein the coating layer is applied either before the film substrate is stretched or between the stretching steps of a biaxial stretching process; but is limited to coating compositions which are soluble or adequately dispersible in water. An in-line process avoids the use of the further heating or drying steps which are encountered in offline coating processes, particularly off-line solvent-coating processes. These processes can embrittle the film and deteriorate the tensile properties. In general, an in-line coated film has therefore superior mechanical properties.
Heat-sealable films have also been manufactured by other in-line coating techniques. For instance, GB-2024715 discloses the application of a polyolefmic material onto a polyolefinic substrate using an extrusion-coating technique between the longitudinal and transverse stretching operations ("inter-draw" coating). A process for the in-line inter- draw extrusion-coating of polyolefins onto a polyester substrate to produce a heat-sealable film is disclosed in GB-1077813. US-4333968 discloses a method for the inter-draw extrusion coating of an ethylene-vinyl acetate (EVA) copolymer onto a polypropylene substrate to provide a heat-sealable peelable film.
It is an object of the present invention to address one or more of the aforementioned problems and provide an improved and more economical packaging means for a ready- prepared ovenable meal. It is a further object of this invention to provide a heat-sealable and peelable film suitable for use as a packaging means for a ready-prepared ovenable meal. According to the present invention there is provided a heat-sealable, peelable, coextruded composite polymeric film comprising a substrate layer of polymeric material having on a surface thereof a heat-sealable layer, wherein: (i) said heat-sealable layer comprises a copolyester of least one aromatic dicarboxylic acid, at least one aliphatic dicarboxylic acid and one or more glycol(s);
(ii) the thickness of said heat-sealable layer is in the range of from about 0.3 to about 3 μm; and
(iii) the heat-sealable layer comprises one or more wax(es).
According to a further aspect of the present invention there is provided a process for the production of a heat-sealable, peelable, composite polymeric film which comprises the steps of coextruding a polymeric substrate and a heat-sealable layer, wherein:
(i) said heat-sealable layer comprises a copolyester of least one aromatic dicarboxylic acid, at least one aliphatic dicarboxylic acid and one or more glycol(s);
(ii) the thickness of said heat-sealable layer is in the range of from about 0.3 to about 3 μm, and
(iii) the heat-sealable layer comprises one or more wax(es).
The films of the present invention exhibit a surprisingly high hot-tack adhesion strength, despite the low thickness of the heat-seal layer. It is surprising that suitable hot-tack adhesion strength can be achieved with such a low thickness of heat-seal layer. In addition, it is surprising that, when compared to films in which similar heat-sealable polymers are disposed on the substrate via a solvent-coated route, correspondingly suitable heat-seal bond strengths are achieved at a lower thickness of the heat-sealable layer.
The hot-tack adhesion of the film may be adjusted to ensure good performance of the film in use on a tray filling and lidding line. A film which shows good hot-tack on a filling line has a preferred hot-tack value, measured as described hereinbelow, of at least 3 Newtons, preferably at least 4 Newtons, but preferably no more than about 5 Newtons, and is preferably in the range of from about 3 to about 5 Newtons. The composite film described herein is a heat-sealable, peelable film. As used herein, the term "heat-sealable peelable film" refers to a film which is capable of forming a seal to a surface under the application of heat, wherein the seal is breakable without fracture of the film. The peelable characteristic of the films described herein distinguishes them from high-seal strength or "weldable" films.
A composite film according to the present invention typically exhibits a heat-seal strength (at ambient temperature) in the range of from about 200 to about 1400g/25mm, preferably in the range of from about 200 to about 1000g/25mm, and more preferably in the range of from about 400 to about 900 g/25mm when sealed to the APET side of a typical APET/CPET tray. Typical heat seal strengths of the film to itself are in the range of from about 200 to about 700g/25mm, preferably in the range of from about 400 to about 600g/25mm.
The shrinkage of the film, measured as described herein, is preferably less than 5%, more preferably less than 3%, and most preferably less than 2%, in the machine dimension and/or the transverse dimension. Methods of controlling shrinkage in the final film by varying process parameters during the stretching and heat-setting steps of film manufacture are well-known to the skilled person.
The respective layers of the composite film are described in more detail below.
The substrate layer is a self-supporting film or sheet by which is meant a film or sheet capable of independent existence in the absence of a supporting base. The substrate layer preferably comprises film-forming thermoplastic polymeric material. The film-forming polymeric resin is the major component of the substrate, and the polymeric resin makes up at least 50%, preferably at least 65%, preferably at least 80%, preferably at least 90%, and preferably at least 95% by weight of the total weight of the substrate. Suitable materials include a homopolymer or copolymer of a 1 -olefin, such as ethylene, propylene and but-1- ene, polyamides, polycarbonates, polyesters (including copolyesters), PVC, PVA, polystyrenes, polyacrylates, celluloses and nylon (including nylon 6 and nylon 6,6). Particularly preferred is a polyester material, and particularly a synthetic linear polyester. The synthetic linear polyesters useful for the substrate layer may be obtained by condensing one or more dicarboxylic acids or their lower alkyl diesters, e.g. terephthalic acid, isophthalic acid, phthalic acid, 2,5-, 2,6- or 2,7-naphthalenedicarboxylic acid, succinic acid, sebacic acid, adipic acid, azelaic acid, 4,4'-diphenyldicarboxylic acid, hexahydro-terephthalic acid or 1,2-bis-p-carboxyphenoxyethane (optionally with a monocarboxylic acid, such as pivalic acid) with one or more glycols, particularly an aliphatic or cycloaliphatic glycol, e.g. ethylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol and 1,4-cyclohexanedimethanol. Aromatic dicarboxylic acids are preferred. Aliphatic glycols are preferred. In a preferred embodiment, the substrate layer comprises polyethylene terephthalate (PET), or copolyesters in which the major repeat unit is ethlyene terephthalate.
The substrate layer may contain recycle material up to a level of 50% by weight of the substrate layer, and preferably at least 10%, preferably at least 25%, and more preferably at least 40% by weight of the substrate layer. By "recycle material", we mean waste material consisting of the composite film of the present invention, and such waste material may be derived from edge-trimming (typically the edge portions of the film which are held by the stenter clips during film manufacture), from excess film left over after the film has been slit along its longitudinal dimension, from start-up film (i.e. the film produced at the start of a manufacturing run), or from film that has been failed for other reasons, as is well- known in the art. It is surprising that recycle material may be used in the substrate layer in such high proportions given that it contains the wax from the heat-sealable layer without causing problems in the film making process.
The substrate may comprise one or more discrete coextruded layers of the above film- forming materials. The polymeric materials of the respective layers may be the same or different. For instance, the substrate may comprise one, two, three, four or five or more layers and typical multi-layer structures may be of the AB, ABA, ABC, ABAB, ABABA or ABCBA type. Preferably, the substrate comprises one layer.
The heat-sealable layer is capable of forming a heat-seal bond to the surfaces of the container. The heat-sealable layer predominantly comprises copolyester material and this softens to a sufficient extent that its viscosity becomes low enough to allow adequate wetting for it to adhere to the surface to which it is being bonded. The heat-seal bond is effected by heating to soften the copolyester material of the heat-sealable layer, and applying pressure, without melting the other layers in the film. Thus, the copolyester of the heat-sealable layer should begin to soften at a temperature such that the heat-seal bond can be formed at a temperature which is less than the melting temperature of the polymeric material of the substrate. In one embodiment, the copolyester of the heat-sealable layer should begin to soften at a temperature such that the heat-seal bond can be formed at a temperature which is between about 5 and 5O0C below, preferably between about 5 and 3O0C below, and preferably at least about 1O0C below the melting temperature of the polymer material of the substrate.
The heat-sealable layer comprises a copolyester resin derived from at least one (and preferably only one) aromatic dicarboxylic acid and at least one (and preferably only one) aliphatic dicarboxylic acid (or their lower alkyl (i.e. up to 14 carbon atoms) diesters) with one or more glycol(s). Formation of the copolyester is conveniently effected in known manner by condensation, or ester-interchange, at temperatures generally up to 2750C. The copolyester resin is the major component of the heat-sealable layer, and the copolyester makes up at least 50%, preferably at least 65%, preferably at least 80%, preferably at least 90%, and preferably at least 95% by weight of the total weight of the heat-sealable layer.
Preferred aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, and 2,5-, 2,6- or 2,7-naphthalenedicarboxylic acid, and preferably the aromatic dicarboxylic acid is terephthalic acid.
Preferred aliphatic dicarboxylic acids are saturated aliphatic dicarboxylic acids of the general formula CnH2n(COOH)2 wherein n is 2 to 8, such as succinic acid, sebacic acid, adipic acid, azelaic acid, suberic acid or pimelic acid, preferably sebacic acid, adipic acid and azelaic acid, and more preferably azelaic acid.
Preferred glycols are aliphatic or cycloaliphatic glycols, preferably an aliphatic glycol, and more preferably an alkylene glycol. Thus, suitable glycol(s) include aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3 -butane diol, 1,4-butane diol, 1,5-pentane diol, 2,2-dimethyl-l,3-propane diol, neopentyl glycol and 1,6- hexane diol, and cycloaliphatic diols such as 1,4-cyclohexanedimethanol and 1,4- cyclohexane diol. Ethylene glycol or 1,4-butanediol is preferred.
The concentration of the aromatic dicarboxylic acid present in the copolyester is preferably no more than about 90 mole%, preferably no more than about 80 mole%, and preferably in the range from 45 to 80 mole%, more preferably 50 to 70 mole%, and particularly 55 to 65 mole % based on the dicarboxylic acid components of the copolyester. The concentration of the aliphatic dicarboxylic acid present in the copolyester is preferably at least about 10 mole%, preferably at least about 20 mole%, and preferably in the range from 20 to 55, more preferably 30 to 50, and particularly 35 to 45 mole % based on the dicarboxylic acid components of the copolyester. Particularly preferred examples of such copolyesters are (i) copolyesters of azelaic acid and terephthalic acid with an aliphatic glycol, preferably ethylene glycol; (ii) copolyesters of adipic acid and terephthalic acid with an aliphatic glycol, preferably ethylene glycol; and (iii) copolyesters of sebacic acid and terephthalic acid with an aliphatic glycol, preferably butylene glycol. Preferred polymers include a copolyester of sebacic acid/terephthalic acid/butylene glycol (preferably having the components in the relative molar ratios of 45-55/55-45/100, more preferably 50/50/100) having a glass transition point (Tg) of -40°C and a melting point (Tm) of 117°C), and a copolyester of azelaic acid/terephthalic acid/ethylene glycol (preferably having the components in the relative molar ratios of 40-50/60-50/100, more preferably 45/55/100) having a Tg of-15°C and a Tm of 150°C.
Preferably, the Tg of the copolyester of the heat-sealable layer is no more than about 20°C, preferably no more than about 10°C, preferably no more than about 0°C, and preferably no more than about -10°C. In one embodiment, the melting point Tm of the copolyester of the heat-sealable layer is preferably no more than about 160°C, preferably no more than about 1500C, and more preferably no more than about 140°C.
The heat-sealable layer comprises one or more waxes, and typically only one type of wax. The wax may be a natural or synthetic wax, and preferably has a melting point of at least 5O0C. Natural waxes are preferably either vegetable waxes (such as carnauba wax) or mineral waxes (such as montan waxes and ozocerite). Paraffin waxes (highly-refined low- molecular weight waxes comprising straight-chain hydrocarbons) may also be used. Examples of synthetic waxes include Fischser-Tropsch waxes (produced by coal gasification, and having a molecular weight in the range from about 300 to about 1400 g/mol)), and oxidised and non-oxidised (preferably oxidised) low molecular weight polyethylene waxes (having a molecular weight in the range from about 500 to about 3000 g/mol) as well as the corresponding polypropylene waxes. However, a preferred class of waxes are amide waxes. Amidic waxes are generally immiscible with the base copolyester of the heat-sealable layer. The amide wax may be a primary, secondary, tertiary or bis (fatty) amide, such as oleamide and erucamide. Examples of the different types include primary fatty amides such as erucamide, behenamide, oleamide or stearamide; secondary fatty amides such as stearylerucamide, erucylerucamide, oleylpalmitamide, stearylstearamide or erucyistearamide; tertiary fatty amides such as dimethylstearamide or diethylstearamide; and N3N' -bis (fatty) amides such as N,N'-ethylene bis(stearamide), N,N'-methylene bis(stearamide), N,N'-propylene bis(stearamide), N,N'-ethylene bis(oleamide), N,N'-methylene bis(oleamide), or N,N'-propylene bis(oleamide). Preferably, the wax is selected from N,N'-bis (fatty) amides, and more preferably from N,N'-ethylene bis(oleamide) and N,N'-ethylene bis(stearamide). The wax assists in the manufacture by coextrusion of the composite film comprising the heat-sealable layer referred to above.
In a preferred embodiment, the wax is present at a level of from about 0.1 to about 3 wt%, preferably from about 0.5 to about 3 wt%, preferably no more than 2 wt%, and typically from about 1 to about 2 wt% of the total weight of the heat-sealable layer.
The thickness of the composite film is preferably from about 5 to 300 μm, more preferably from about 5 to 100 μm, preferably from about 5 to about 50 μm, preferably from about 10 to 30 μm, and typically from about 12 to about 25 μm in thickness. The substrate layer is significantly thicker than the heat-sealable layer. The thickness of the heat-sealable layer is from about 0.3 to about 3 μm, preferably from about 0.4 μm to about 2μm, more preferably from about 0.5 to about 1.5μm, more preferably from about 0.5 to about l.Oμm, more preferably from about 0.5 to about 0.9 μm, and most preferably from about 0.5 to about 0.7μm. Heat-sealable layers which have a thickness below about 0.3 μm, and more typically below about 0.5 μm, exhibit insufficient hot-tack and cold heat seal strength adhesion. Heat-sealable layers which have a thickness above about 3 μm, more typically above about 1.5 μm, and more typically above about 1 μm, exhibit heat-seal bond strengths which are too strong and cause tearing of the film when the film is peeled from the container to which it was heat-sealed.
The composite sheet preferably has an ultimate tensile strength (UTS) in the range of from 14 to 26 Kg/mm2.
Formation of the composite is effected by conventional extrusion techniques well-known in the art, and in accordance with the procedure described below. In general terms, the extrusion process comprises the steps of extruding one or more layers of molten polymer, quenching the extrudate and orienting the quenched extrudate in at least one direction.
The film may be uniaxially-oriented, but is preferably biaxially-oriented. Orientation may be effected by any process known in the art for producing an oriented film, for example a tubular or flat film process. Biaxial orientation is effected by drawing in two mutually perpendicular directions in the plane of the film to achieve a satisfactory combination of mechanical and physical properties. In a tubular process, simultaneous biaxial orientation may be effected by extruding a thermoplastic tube which is subsequently quenched, reheated and then expanded by internal gas pressure to induce transverse orientation, and withdrawn at a rate which will induce longitudinal orientation.
In the preferred flat film process, the film-forming polymer is extruded through a slot die and rapidly quenched upon a chilled casting drum to ensure that the polymer is quenched to the amorphous state. Orientation is then effected by stretching the quenched extrudate in at least one direction at a temperature above the glass transition temperature of the substrate polyester. Sequential orientation may be effected by stretching a flat, quenched extrudate Firstly in one direction, usually the longitudinal direction, i.e. the forward direction through the film stretching machine, and then in the transverse direction. Forward stretching of the extrudate is conveniently effected over a set of rotating rolls or between two pairs of nip rolls, transverse stretching then being effected in a stenter apparatus. Alternatively, the cast film may be stretched simultaneously in both the forward and transverse directions in a biaxial stenter. Stretching is generally effected so that the dimension of the oriented film, particularly a polyester film, is from 2 to 5 times, generally at least 2.5 times, preferably no more than 4.5 times, more preferably no more than 3.5 times its original dimension in the or each direction of stretching. Stretching in the machine direction is effected at temperatures higher than the Tg of the polymeric material of the substrate layer, typically less than 30°C above Tg, preferably less than 2O0C above Tg and more preferably less than 15°C above Tg of the polymeric material of the substrate layer. Stretching in the transverse direction is typically effected at temperatures in the range of 100 to 130°C after preheating in the range of 80 to 100°C, and in any case higher than the Tg of the polymeric material of the substrate layer, typically less than 80°C above Tg, preferably less than 600C above Tg and more preferably less than 500C above Tg of the polymeric material of the substrate layer. It is not necessary to stretch equally in the machine and transverse directions although this is preferred if balanced properties are desired.
A stretched film may be, and preferably is, dimensionally stabilised by heat-setting under dimensional restraint at a temperature above the glass transition temperature of the substrate polyester but below the melting temperature thereof, to induce crystallisation of the substrate polyester. Heat-setting has the effect of providing dimensional stability to a stretched film, and "locking" the film in its stretched state. The shrinkage behaviour of a film under the action of heat depends on whether, and to what extent, the film was heat-set after any stretching operation(s) effected during its manufacture. In general, a film which has experienced a temperature Ti during the heat-setting operation will exhibit substantially no shrinkage below temperature T1 when subsequently exposed to heat after manufacture. In applications where film shrinkage is not of significant concern, the film may be heat set at relatively low temperatures or not at all. On the other hand, as the temperature at which the film is heat set is increased, the tear resistance of the film may change. Thus, the actual heat set temperature and time will vary depending on the composition of the film but should not be selected so as to substantially degrade the tear resistant properties of the film. Within these constraints, a heat-set temperature of about 100 to 2500C, preferably about 120 to 2300C, is generally desirable. Dimensional relaxation ("toe-in"), wherein the film is allowed to relax in a given dimension by up to about 5% and typically about 2-4% during the heat-setting step, may be used to modulate shrinkage of the film. The composite film of the present invention comprising a substrate and a heat-sealable layer is effected by coextrusion, either by simultaneous coextrusion of the respective film- forming layers through independent orifices of a multi-orifice die, and thereafter uniting the still molten layers, or, preferably, by single-channel coextrusion in which molten streams of the respective polymers are first united within a channel leading to a die manifold, and thereafter extruded together from the die orifice under conditions of streamline flow without intermixing thereby to produce a multi-layer polymeric film, which may be oriented and heat-set as hereinbefore described.
One or more of the layers of the film may conveniently contain any of the additives conventionally employed in the manufacture of polymeric films. Thus, agents such as cross-linking agents, dyes, pigments, voiding agents, lubricants, anti-oxidants, radical scavengers, UV absorbers, thermal stabilisers, anti-blocking agents, surface active agents, slip aids, optical brighteners, gloss improvers, prodegradents, viscosity modifiers and dispersion stabilisers may be incorporated as appropriate. In particular the composite film may comprise a particulate filler which may, for example, be a particulate inorganic filler or an incompatible resin filler or a mixture of two or more such fillers. Such fillers are well-known in the art.
Particulate inorganic fillers include conventional inorganic fillers, and particularly metal or metalloid oxides, such as alumina, talc, silica (especially precipitated or diatomaceous silica and silica gels) and titania, calcined china clay and alkaline metal salts, such as the carbonates and sulphates of calcium and barium. The particulate inorganic fillers may be of the voiding or non-voiding type. Suitable particulate inorganic fillers may be homogeneous and consist essentially of a single filler material or compound, such as titanium dioxide or barium sulphate alone. Alternatively, at least a proportion of the filler may be heterogeneous, the primary filler material being associated with an additional modifying component. For example, the primary filler particle may be treated with a surface modifier, such as a pigment, soap, surfactant coupling agent or other modifier to promote or alter the degree to which the filler is compatible with the polymer layer. Preferred particulate inorganic fillers include titanium dioxide and silica. The inorganic filler should be finely-divided, and the volume distributed median particle diameter (equivalent spherical diameter corresponding to 50% of the volume of all the particles, read on the cumulative distribution curve relating volume % to the diameter of the particles - often referred to as the "D(v,0.5)" value) thereof is preferably in the range from 0.01 to 10 μm, more preferably 0.01 to 5 μm, more preferably 0.05 to 1.5 μm, and particularly 0.15 to 1.2 μm. Preferably at least 90%, more preferably at least 95% by volume of the inorganic filler particles are within the range of the volume distributed median particle diameter ± 0.8 μm, and particularly ± 0.5 μm. Particle size of the filler particles may be measured by electron microscope, coulter counter, sedimentation analysis and static or dynamic light scattering. Techniques based on laser light diffraction are preferred. The median particle size may be determined by plotting a cumulative distribution curve representing the percentage of particle volume below chosen particle sizes and measuring the 50th percentile.
In a preferred embodiment, the heat-sealable layer comprises at least about 0.5%, and no more than about 5% by weight (based on the total weight of the layer), preferably no more than about 2% by weight, and preferably no more than about 1.5% weight, of inorganic filler particles. The filler particles are selected from the filler particles referred to hereinabove, and are preferably selected from silica and talc, preferably silica. In this embodiment, the windability of the film (i.e. the absence of blocking or sticking when the film is would up into a roll) is improved, without an unacceptable reduction in haze or other optical properties. It has surprisingly been found that filler added at a level of from about 0.5 to about 5% by weight provides advantages in terms of the peelability of the film, in that if the upper thresholds of filler as described herein are exceeded, then the film is susceptible to tearing when peeled from the container to which it has been heat-sealed. While the inventors do not intend to be bound by theory, it is believed that the filler particles are very tightly bound to the copolyester used for the heat-sealable layer in the present invention, and that these filler particles are acting as tear-initiation points. It is believed that when the film undergoes a peel, a sufficiently high concentration of filler particles causes the local stress in the polymeric matrix to exceed a critical level and, instead of delamination, the filler adheres to the copolyester, causing a tear.
The components of the composition of a layer may be mixed together in a conventional manner. For example, by mixing with the monomeric reactants from which the layer polymer is derived, or the components may be mixed with the polymer by tumble or dry blending or by compounding in an extruder, followed by cooling and, usually, comminution into granules or chips. Masterbatching technology may also be employed.
In one embodiment, the film of the present invention is optically clear, preferably having a % of scattered visible light (haze) of <10%, preferably <8%, and particularly <6%, measured according to the standard ASTM D 1003.
In an alternative embodiment, the film is opaque and highly filled, preferably exhibiting a Transmission Optical Density (TOD) (Sakura Densitometer; type PDA 65; transmission mode) in the range from 0.1 to 2.0, more preferably 0.2 to 1.5, more preferably from 0.25 to 1.25, more preferably from 0.35 to 0.75 and particularly 0.45 to 0.65. The film is conveniently rendered opaque by incorporation into the polymer blend of an effective amount of an opacifying agent. Suitable opacifying agents include an incompatible resin filler, a particulate inorganic filler or a mixture of two or more such fillers, as hereinbefore described. The amount of filler present in a given layer is preferably in the range from 1% to 30%, more preferably 3% to 20%, particularly 4% to 15%, and especially 5% to 10% by weight, based on the weight of the layer polymer. The surface of an opaque film preferably exhibits a whiteness index, measured as herein described, in the range from 60 to 120, more preferably 80 to 110, particularly 90 to 105, and especially 95 to 100 units.
The surface of the substrate in contact with the heat sealable layer is referred to herein as the primary side. The surface of the substrate opposite to the surface which is in contact with the heat-sealable layer is referred to herein as the secondary side. The secondary side of the substrate may have thereon one or more further polymeric layers or coating materials. Any coating of the secondary side is preferably performed "in-line". The composite film of the invention is intended to be manufactured, stored, sold and used without any additional layers on the exposed surface of the heat-sealable layer.
In one embodiment, the additional coating on the secondary side may comprise a "slip coating" in order to improve the handling and windability of the film, particularly when the film substrate is a PET polyester substrate. A suitable slip coating may be, for instance a discontinuous layer of an acrylic and/or methacrylic polymeric resin optionally further comprise a cross-linking agent, such as described in EP-A-0408197, the disclosure of which is incorporated herein by reference. An alternative slip coating may comprise a potassium silicate coating, for instance as disclosed in US Patent Nos. 5925428 and 5882798, the disclosures of which are incorporated herein by reference.
In a further embodiment, the secondary side of the substrate has disposed thereon a printable or ink-receiving layer, and optionally a primer layer (such as that disclosed in EP- 0680409, EP-0429179, EP-0408197, EP-0576179 or WO-97/37849, the disclosures of which are incorporated herein by reference) between the substrate and the printable or ink- receiving layer in order to increase adhesion. Suitable printable or ink-receiving layers are disclosed in, for instance, EP-0696516, US-5888635, US-5663030, EP-0289162, EP- 0349141, EP-Ol 11819 and EP-0680409, the disclosures of which are incorporated herein by reference. A preferred ink-receiving layer comprises an acrylic and/or methacrylic polymeric resin, as disclosed in EP-A-0408197. A preferred receiving layer polymer comprises alkyl acrylate monomer units and alkyl methacrylate monomer units, preferably ethyl acrylate and alkyl methacrylate (preferably methyl methacrylate). In a preferred embodiment, the alkyl acrylate monomer units are present in a proportion from about 30 to about 65 mole % and the alkyl methacrylate monomer units are present in a proportion from about 20 to about 60 mole %. In a particularly preferred embodiment, the polymer comprises about 35 to 60 mole % ethyl acrylate, about 30 to 55 mole % methyl methacrylate and about 2 to 20 mole % methacrylamide. Such polymers are preferably applied to the substrate as an aqueous dispersion or alternatively as a solution in organic solvent. The polymer composition may be applied to an already oriented film substrate. However, application is preferably effected before or during the stretching operation(s). Where the substrate is biaxially oriented, the ink-receiving layer is preferably applied between the two stages (longitudinal and transverse) of the biaxial stretching operation.
In one embodiment, the composite film consists of a substrate and a heat-sealable layer, as defined herein, that is to say that the no other layers are present in the film. In an alternative embodiment, the composite film consists of a substrate, a heat-sealable layer, and on the secondary surface of the substrate a printable or ink-receiving layer, and optionally an adhesion-promoting primer layer between the substrate and the printable or ink-receiving layer. The composite film of the present invention is particularly intended for use in association with a container or receptacle for a food product, particularly ready prepared convenience foods which may be warmed in an oven, particularly a microwave oven. However, the invention is also applicable for ready-prepared meals which are intended to be warmed in any other type of oven, such as a conventional convection oven, a direct radiation oven and a forced hot air oven.
The container may be, for instance, a thermoformed tray, thermoformed bowl or blow- moulded bottle. The container may be formed of polyester, such as polyethylene terephthalate, or of polypropylene, polystyrene, or may be PVDC coated, or may be glass. The invention is particularly suitable for use with an APET/CPET container, especially a thermoformed tray, which is suitable for packaging food or drink. Other suitable types of container include a metallised tray and a tray formed from PET-coated cartonboard or paperboard. Of particular utility are trays formed from metallised (particularly flash- metallised) PET cartonboard. For example, the tray may be produced from PET which has been metallised to an optical density in the range of about 0.01 to 4.0 and which is laminated to cartonboard. In one embodiment, the tray is a susceptor tray made from materials such as those disclosed in GB-A-2280342, EP-A-0563442 or GB-A-2250408, or is a susceptor tray produced in accordance with the disclosures of these documents, which are incorporated herein by reference.
According to a further aspect of the invention, there is provided the use of the composite film described herein as, or in the manufacture of, a lidding film suitable for heat-sealing to a receptacle containing a food product, particularly a ready-prepared ovenable meal.
The invention further provides a sealed container comprising a receptacle containing a food product, particularly an ovenable meal, and a lid formed from a composite film as defined herein. The sealed container is produced by techniques well-known to those skilled in the art. Once the food to be packaged has been introduced into the receptacle, the heat- sealable film lid is affixed using temperature and/or pressure using conventional techniques and equipment. The invention further provides a packaged food product, particularly an ovenable meal, wherein the packaging comprises a film as defined herein.
The following test methods may be used to determine certain properties of the polymeric film:
(i) Wide angle haze is measured using a Hazegard System XL-211, according to ASTM D 1003-61.
(ii) Whiteness index is measured using a Colorgard System 2000, Model/45 (manufactured by Pacific Scientific) based on the principles described in ASTM D313.
(iii) Heat-seal strength is measured as follows. The film is sealed, by means of the heat- sealable layer, to a typical APET/CPET tray (obtained from Faerch A/S, Denmark) using a Microseal PA 201 (obtained from Packaging Automation Ltd, England) tray sealer at a temperature of 18O0C, and pressure of 80 psi for two seconds. Strips (25 mm wide) of the sealed film and tray are cut out at 90° to the seal, and the load required to pull the seal apart measured using an Instron operating at a crosshead speed of 0.25 mmin"1. The procedure is generally repeated 4 times, and a mean value of 5 results calculated.
(iv) Heat-seal strength of the composite film to itself to itself is measured by positioning together and heating the heat-sealable layers of two samples of the film at 16O0C for 0.5 second under a pressure of 80 psi. The sealed film is cooled to room temperature, and the sealed composite cut into 25mm wide strips. The heat- seal strength is determined by measuring the force required under linear tension per unit width of seal to peel the layers of the film apart at a constant speed of 0.25 mmin"1.
(v) Hot-tack adhesion is measured according to ASTM F 1921-98 ("Standard test methods for the hot seal strength (hot tack) of thermoplastics polymers and blends comprising the sealing surface of flexible webs") using a Davinor J&B hot tack tester. Strips of the composite film (25 mm wide) are sealed in the machine to an APET/CPET surface (obtained from Faerch A/S, Denmark) at defined conditions of seal temperature and force and the resulting seal strength is measured at a given peel speed at defined times after the seal has been made. In this work, the seal temperature was 150°C; the seal pressure was lN/mm2; the seal time was 0.5 seconds; the cool time (i.e. the time between making the seal and performing the seal strength measurement) was 0.1 seconds; and the peel speed was 120 mm/s. (vi) Shrinkage is measured by placing the sample in an oven at a temperature of 190°C for 5 minutes. The shrinkage behaviour is assessed using 5 film samples. (vii) Ultimate tensile strength is measured according to ASTM D882-88, taking the average of the values in the longitudinal and transverse dimensions of the film.
The invention is further illustrated by the following examples. It will be appreciated that the examples are for illustrative purposes only and are not intended to limit the invention as described above. Modification of detail may be made without departing from the scope of the invention.
EXAMPLES
Example 1
A composite film was manufactured by coextrusion in which the first (substrate) layer was unfilled polyethylene terephthalate (PET), and the second layer was a heat-sealable copolyester of azelaic acid/terephthalic acid/ethylene glycol (45/55/100) having a Tg of - 15°C and a Tm of 150°C. The heat-sealable layer further comprised 1.5% by weight (relative to the total composition of the layer) of an N,N'-ethylene bis(oleamide) wax (EBO; obtained as Crodamide EBO from Croda), and 3% by weight (relative to the total composition of the layer) of silica filler particles with an average particle size of 1 μm.
The copolyesters were coextuded using separate streams supplied from separate extruders, to a single channel coextrusion assembly. The polymer layers were extruded through a film-forming die on to a water-cooled rotating, quenching drum at various line speeds to yield an amorphous cast composite extrudate. The cast extrudate was heated to a temperature in the range of about 50 to 80°C and then stretched longitudinally at a forward draw ratio of about 3:1. The polymeric film was passed into a stenter oven at a temperature of about HO0C, where the sheet was stretched in the sideways direction to approximately 4 times its original dimensions, and then heat-set at temperatures between 210 and 225 0C. The final thickness of the film was 25 μm, in which the second (heat- sealable) layer was 0.65 μm in thickness. The film was clear with a haze of 6%. The hot- tack adhesion of the film was 5 Newtons. The heat-seal strength of the film to itself was 500 g/25mm. The film exhibited an easy and clean manual peel from the tray.
Comparative Example 1 Example 1 was repeated except that no wax was added. The film stuck to the casting drum, making manufacture impossible.
Comparative Example 2
Example 1 was repeated except that the heat-sealable layer comprised 6 % filler. The film was susceptible to tearing when peeled from the tray.
Comparative Example 3
Example 1 was repeated except that the heat-sealable layer was 3.5 μm thick, and exhibited high hot tack and a high cold peel strength, and was susceptible to tearing when peeled from the tray.
Comparative Example 4
Example 1 was repeated except that the heat-sealable layer was 0.2 μm thick, and exhibited an insufficiently low cold peel strength.

Claims

1. A heat-sealable, peelable, coextruded composite polymeric film comprising a substrate layer of polymeric material having on a surface thereof a heat-sealable layer, wherein:
(i) said heat-sealable layer comprises a copolyester of least one aromatic dicarboxylic acid, at least one aliphatic dicarboxylic acid and one or more glycol(s);
(ii) the thickness of said heat-sealable layer is in the range of from about 0.3 to about 3 μm; and
(iii) the heat-sealable layer comprises one or more wax(es).
2. A film according to claim 1 wherein the substrate comprises polyester.
3. A film according to claim 1 wherein the substrate comprises poly(ethylene terephthalate).
4. A film according to any preceding claim wherein the aromatic dicarboxylic acid of the heat-sealable copolyester is terephthalic acid.
5. A film according to any preceding claim wherein the aliphatic dicarboxylic acid of the heat-sealable copolyester is a saturated aliphatic dicarboxylic acid of formula CnH2n(COOH)2 wherein n is 2 to 8.
6. A film according to claim 5 wherein said aliphatic dicarboxylic acid is selected from the group consisting of sebacic acid, adipic acid and azelaic acid.
7. A film according to any preceding claim wherein the glycol of the heat-sealable copolyester is ethylene glycol.
8. A film according to any preceding claim wherein the aromatic dicarboxylic acid is present in the heat-sealable copolyester in the range from 45 to 80 mole % based on the dicarboxylic acid components of the copolyester.
9. A film according to claim 8 wherein said aromatic dicarboxylic acid is present in the copolyester in the range from 55 to 65 mole % based on the dicarboxylic acid components of the copolyester.
10. A film according to any preceding claim wherein the aliphatic dicarboxylic acid is present in the heat-sealable copolyester in the range from 20 to 55 mole % based on the dicarboxylic acid components of the copolyester.
11. A film according to claim 10 wherein the aliphatic dicarboxylic acid is present in the heat-sealable copolyester in the range from 35 to 45 mole % based on the dicarboxylic acid components of the copolyester.
12. A film according to any preceding claim wherein the copolyester of the heat- sealable layer is a copolyester of azelaic acid and terephthalic acid with ethylene glycol; wherein the relative molar ratios of azelaic acid/terephthalic acid/ethylene glycol are in the range 40-50/60-50/100.
13. A film according to any preceding claim wherein the total thickness of the composite film is in the range of from about 5 to about 50 μm.
14. A film according to any preceding claim wherein the thickness of the heat-sealable layer is in the range of from about 0.5 to about 0.9 μm.
15. A film according to any preceding claim wherein the shrinkage of the film at 190°C for 5 minutes is less then 5%.
16. A film according to any preceding claim which is biaxially oriented.
17. A process for the production of a heat-sealable, peelable, composite polymeric film which comprises the steps of coextruding a polymeric substrate and a heat-sealable layer, wherein: (i) said heat-sealable layer comprises a copolyester of least one aromatic dicarboxylic acid, at least one aliphatic dicarboxylic acid and one or more glycol(s); (ii) the thickness of said heat-sealable layer is in the range of from about 0.3 to about 3 μm, and (iii) the heat-sealable layer comprises one or more wax(es).
18. A film or process according to any preceding claim wherein said wax is selected from mineral, vegetable and synthetic waxes.
19. A film or process according to claim 18 wherein said wax is an amide wax.
20. A film or process according to claim 18 wherein said wax is selected from N5N'- ethylene bis(oleamide) and N,N'-ethylene bis(stearamide).
21. The use of a composite film as defined in any of claims 1 to 16 or 18 to 20 as, or in the manufacture of, a lidding film for heat-sealing to a receptacle containing a food product.
22. A sealed container comprising a receptacle containing a food product, said container further comprising a lid formed from a composite film as defined in any of claims 1 to 16 or 18 to 20.
23. A packaged food product wherein the packaging comprises a film as defined in any of claims 1 to 16 or 18 to 20.
PCT/GB2007/000527 2006-02-17 2007-02-14 Polyester film WO2007093798A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20070705211 EP1984177B1 (en) 2006-02-17 2007-02-14 Polyester film
JP2008554842A JP2009526672A (en) 2006-02-17 2007-02-14 Polyester film
US12/279,585 US8202612B2 (en) 2006-02-17 2007-02-14 Polyester film
KR1020087022546A KR101379122B1 (en) 2006-02-17 2007-02-14 Polyester film
CN2007800055483A CN101384430B (en) 2006-02-17 2007-02-14 Polyester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0603254.4 2006-02-17
GB0603254A GB0603254D0 (en) 2006-02-17 2006-02-17 Polyester film

Publications (1)

Publication Number Publication Date
WO2007093798A1 true WO2007093798A1 (en) 2007-08-23

Family

ID=36142053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/000527 WO2007093798A1 (en) 2006-02-17 2007-02-14 Polyester film

Country Status (8)

Country Link
US (1) US8202612B2 (en)
EP (3) EP1984177B1 (en)
JP (1) JP2009526672A (en)
KR (1) KR101379122B1 (en)
CN (1) CN101384430B (en)
GB (1) GB0603254D0 (en)
TW (1) TWI410448B (en)
WO (1) WO2007093798A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053205A1 (en) * 2006-11-01 2008-05-08 Dupont Teijin Films U.S. Limited Partnership Heat-sealable composite polyester film
WO2009032627A2 (en) * 2007-08-30 2009-03-12 Dupont Teijin Films U.S. Limited Partership Dual ovenable food package having a thermoformable polyester film lid
WO2009056473A1 (en) * 2007-10-29 2009-05-07 Cryovac, Inc. Easy-open package
US7871696B2 (en) 2006-11-21 2011-01-18 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US7871697B2 (en) 2006-11-21 2011-01-18 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US8202612B2 (en) 2006-02-17 2012-06-19 Dupont Teijin Films U.S. Limited Partnership Polyester film
US8389596B2 (en) 2010-02-26 2013-03-05 Kraft Foods Global Brands Llc Low-tack, UV-cured pressure sensitive adhesive suitable for reclosable packages
US8398306B2 (en) 2005-11-07 2013-03-19 Kraft Foods Global Brands Llc Flexible package with internal, resealable closure feature
US8763890B2 (en) 2010-02-26 2014-07-01 Intercontinental Great Brands Llc Package having an adhesive-based reclosable fastener and methods therefor
EP2990455A1 (en) * 2013-04-26 2016-03-02 Toyobo Co., Ltd. Polyester film for sealant use, laminate, and packaging bag
US9532584B2 (en) 2007-06-29 2017-01-03 Kraft Foods Group Brands Llc Processed cheese without emulsifying salts
US9533472B2 (en) 2011-01-03 2017-01-03 Intercontinental Great Brands Llc Peelable sealant containing thermoplastic composite blends for packaging applications
EP4079964A1 (en) * 2021-04-21 2022-10-26 Drewsen Spezialpapiere GmbH & Co. KG Method for producing a heat-sealable paper

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046781A1 (en) * 2008-09-11 2010-03-18 Mitsubishi Polyester Film Gmbh Sealable, biaxially oriented polyester film
KR101523277B1 (en) * 2008-12-12 2015-05-28 에스케이씨 주식회사 White porous multi-layer polyester film and preparation thereof
EP2398847A4 (en) * 2009-02-23 2014-04-16 Graphic Packaging Int Inc Low crystallinity susceptor films
US9284108B2 (en) 2009-02-23 2016-03-15 Graphic Packaging International, Inc. Plasma treated susceptor films
US20110011854A1 (en) * 2009-02-23 2011-01-20 Middleton Scott W Low crystallinity susceptor films
GB0908300D0 (en) * 2009-05-14 2009-06-24 Dupont Teijin Films Us Ltd Polyester films
GB201019212D0 (en) * 2010-11-12 2010-12-29 Dupont Teijin Films Us Ltd Polyester film
WO2013015260A1 (en) * 2011-07-28 2013-01-31 東レ株式会社 Layered polyester film and method for manufacturing same
US9656447B2 (en) * 2012-08-31 2017-05-23 Toray Plastics (America), Inc. Lidding structure based on aromatic polyester film, extrusion-coated with a sealable/peelable copolyester layer
US9415990B2 (en) * 2013-02-13 2016-08-16 Cryovac, Inc. Bag-in-box system for use in dispensing a pumpable product
GB201310837D0 (en) 2013-06-18 2013-07-31 Dupont Teijin Films Us Ltd Polyester film -IV
US9334099B2 (en) 2013-08-22 2016-05-10 M&Q Ip Leasing, Inc. Covers and containment systems and methods for food service pans
US8950622B1 (en) 2014-04-25 2015-02-10 M & Q Ip Leasing, Inc. Covers and containment systems and methods for food service pans
JP6439984B2 (en) * 2013-09-30 2018-12-19 東洋紡株式会社 Crystalline copolyester, aqueous polyester resin dispersion, and heat sealant using the same
GB201317705D0 (en) 2013-10-07 2013-11-20 Dupont Teijin Films Us Ltd Copolyesters
US10251770B2 (en) 2014-01-03 2019-04-09 Hollister Incorporated Lubricated valve for ostomy pouch
GB201411044D0 (en) 2014-06-20 2014-08-06 Dupont Teijin Films Us Ltd Copolyestermides and films made therefrom
EP3305682B1 (en) * 2015-05-28 2021-07-21 Toppan Printing Co., Ltd. Layered film and packing bag
FR3038863B1 (en) * 2015-07-17 2020-01-31 Bostik Sa MULTILAYER FILM FOR RECLOSABLE PET PACKAGING
US11707925B2 (en) 2016-03-18 2023-07-25 Toyobo Co., Ltd. Polyester film, laminate, and package
WO2017174605A1 (en) * 2016-04-04 2017-10-12 Cryovac, Inc. Thermoplastic film for vacuum skin packaging, method of packaging and uses thereof
JP6635119B2 (en) * 2016-07-27 2020-01-22 東洋紡株式会社 White polyester film, laminate and packaging bag
DE102017117328A1 (en) 2017-07-31 2019-01-31 Mitsubishi Polyester Film Gmbh Peelable polyester film, process for its preparation and its use
PH12018000046A1 (en) * 2018-02-13 2019-09-09 Multi Forms Corp WATER and OIL IMPERMEABLE PAPER PRODUCTS, PAPER BAGS AND THE PROCESS FOR MANUFACTURING THE SAME
GB202015009D0 (en) 2020-09-23 2020-11-04 Dupont Teijin Films Us Lp Fibrous containers for ovenable products
DE102021130530A1 (en) * 2021-11-22 2023-05-25 Mitsubishi Polyester Film Gmbh Recyclable PET film
KR20230168919A (en) * 2022-06-08 2023-12-15 에코밴스 주식회사 Biodegradable polyester resin composition, biodegradable polyester film comprising same and biodegradable mold product comprising same
WO2023229213A1 (en) * 2022-05-21 2023-11-30 에코밴스 주식회사 Biodegradable molded article, biodegradable polyester resin composition, and biodegradable polyester film

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077813A (en) 1964-06-12 1967-08-02 United Carr Inc Electric switch
GB2024715A (en) 1978-07-10 1980-01-16 Moplefan Spa Process for the preparation of thermoweldable polyolefinic films
US4333968A (en) 1980-01-25 1982-06-08 Mobil Oil Corporation Thermoplastic packaging films with improved heat-seal characteristics
EP0111819A2 (en) 1982-12-17 1984-06-27 Gebr. Happich GmbH Sun visor, especially for vehicles, and method for its manufacture
EP0289162A2 (en) 1987-04-24 1988-11-02 Imperial Chemical Industries Plc Receiver sheet
EP0349141A2 (en) 1988-06-29 1990-01-03 Imperial Chemical Industries Plc Receiver sheet
EP0408197A2 (en) 1989-07-13 1991-01-16 Imperial Chemical Industries Plc Electrostatic image receiving copy film
EP0429179A2 (en) 1989-11-07 1991-05-29 Imperial Chemical Industries Plc Polymeric film
GB2250408A (en) 1990-12-01 1992-06-03 Waddingtons Cartons Ltd Food package with overlapping microwave susceptor layers
EP0563442A1 (en) 1992-04-03 1993-10-06 Waddingtons Cartons Limited Packaging container for use in a microwave oven
EP0576179A1 (en) 1992-06-12 1993-12-29 Donnelly Corporation Vehicular panel assembly
EP0581970A1 (en) * 1992-02-25 1994-02-09 Toray Industries, Inc. Biaxially oriented, laminated polyester film
WO1994025527A2 (en) 1993-05-04 1994-11-10 E.I. Du Pont De Nemours And Company Improved bonding resin and methods relating thereto
EP0680409A1 (en) 1993-01-25 1995-11-08 Ici Plc Receiver sheet.
EP0696516A1 (en) 1994-08-08 1996-02-14 Arkwright Inc. A full range ink jet recording medium
EP0712719A1 (en) * 1989-01-19 1996-05-22 Toyo Boseki Kabushiki Kaisha A polyester laminated film
WO1996019333A1 (en) 1994-12-20 1996-06-27 Imperial Chemical Industries Plc Polymeric film coated with a polyester composition
US5663030A (en) 1996-01-24 1997-09-02 Xerox Corporation Electrostatic imaging process
WO1997037849A1 (en) 1996-04-10 1997-10-16 Imperial Chemical Industries Plc Multilayer card
US5882798A (en) 1996-05-22 1999-03-16 Hoechst Trespaphan Gmbh Lithium and potassium copolysilicate barrier coatings
US5925428A (en) 1996-06-12 1999-07-20 Hoechst Trespaphan Gmbh Vapor barrier coating for polymeric articles
US20050100729A1 (en) 2003-11-10 2005-05-12 Herbert Peiffer Peelable polyester film having improved oxygen barrier, process for its production and its use
US6939584B2 (en) * 2001-01-25 2005-09-06 Stephen William Sankey Process for the production of coated polymeric film

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120741A (en) 1984-07-09 1986-01-29 東レ株式会社 Easily adhesive polyester film
US4590125A (en) 1985-01-24 1986-05-20 Mobil Oil Corporation Heat-sealable multi-layer film structures and methods of forming the same
US4681803A (en) * 1985-10-18 1987-07-21 Mobil Oil Corporation Pigmented, heat-sealable coating composition for application to oriented polyolefin films
US4820536A (en) 1986-04-21 1989-04-11 Oscar Mayer Foods Corporation Method for cooking meat in a bag
KR940000794B1 (en) 1991-02-11 1994-01-31 제일합섬 주식회사 Surface treated and biaxially oriented polyester film
US5552169A (en) 1991-04-25 1996-09-03 Sealed Air Corporation Food package adapted for microwave or other cooking
JP3198669B2 (en) 1992-10-23 2001-08-13 東レ株式会社 Easy adhesion polyester film
JP3298252B2 (en) 1993-03-11 2002-07-02 東レ株式会社 Easy adhesion polyester film
US6623821B1 (en) 1995-03-31 2003-09-23 E. I. Du Pont De Nemours And Company Heat-shrinkable, heat-sealable polyester film for packaging
EP1322709A1 (en) * 2000-09-18 2003-07-02 Basf Aktiengesellschaft Polyester film
GB0023927D0 (en) 2000-09-29 2000-11-15 Dupont Teijin Films Us Ltd Multilayer polymeric film
US7338691B2 (en) 2001-07-27 2008-03-04 Cryovac, Inc. Cook-in patch bag and process for using same
WO2003026892A1 (en) 2001-09-24 2003-04-03 Dupont Teijin Films U.S. Limited Partnership Multi-layer polymeric film for packaging ovenable meals
GB0201764D0 (en) 2002-01-25 2002-03-13 Dupont Teijin Films Us Ltd Multi-layer polymeric film III
DE10318097A1 (en) 2003-04-22 2004-11-11 Mitsubishi Polyester Film Gmbh Coextruded, heat-sealable and peelable polyester film, process for its production and its use
US7288312B2 (en) * 2003-04-22 2007-10-30 Mitsubishi Polyester Film Gmbh Coextruded, hot-sealable and peelable polyester film having low peeling resistance, process for its production and its use
JP2005068238A (en) 2003-08-21 2005-03-17 Toyobo Co Ltd Polyester film for molding and dummy container obtained from the same
JP2005066939A (en) 2003-08-21 2005-03-17 Toyobo Co Ltd Molding polyester film and dummy container obtained therefrom
JP2006007746A (en) 2003-10-30 2006-01-12 Toyobo Co Ltd Polyester film for coating metal sheet, polyester film coated metal sheet and polyester film coated metal container
JP2006007745A (en) 2003-10-30 2006-01-12 Toyobo Co Ltd Polyester film for coating metal sheet, polyester film coated metal sheet and polyester film coated metal container
DE10352431A1 (en) 2003-11-10 2005-06-09 Mitsubishi Polyester Film Gmbh Peelable polyester film with automatic venting, process for their preparation and their use
GB0603254D0 (en) 2006-02-17 2006-03-29 Dupont Teijin Films Us Ltd Polyester film

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1077813A (en) 1964-06-12 1967-08-02 United Carr Inc Electric switch
GB2024715A (en) 1978-07-10 1980-01-16 Moplefan Spa Process for the preparation of thermoweldable polyolefinic films
US4333968A (en) 1980-01-25 1982-06-08 Mobil Oil Corporation Thermoplastic packaging films with improved heat-seal characteristics
EP0111819A2 (en) 1982-12-17 1984-06-27 Gebr. Happich GmbH Sun visor, especially for vehicles, and method for its manufacture
EP0289162A2 (en) 1987-04-24 1988-11-02 Imperial Chemical Industries Plc Receiver sheet
EP0349141A2 (en) 1988-06-29 1990-01-03 Imperial Chemical Industries Plc Receiver sheet
EP0712719A1 (en) * 1989-01-19 1996-05-22 Toyo Boseki Kabushiki Kaisha A polyester laminated film
EP0408197A2 (en) 1989-07-13 1991-01-16 Imperial Chemical Industries Plc Electrostatic image receiving copy film
EP0429179A2 (en) 1989-11-07 1991-05-29 Imperial Chemical Industries Plc Polymeric film
GB2250408A (en) 1990-12-01 1992-06-03 Waddingtons Cartons Ltd Food package with overlapping microwave susceptor layers
GB2280342A (en) 1990-12-01 1995-01-25 Waddingtons Cartons Ltd Improvements relating to microwaveable packaging for foodstuff
EP0581970A1 (en) * 1992-02-25 1994-02-09 Toray Industries, Inc. Biaxially oriented, laminated polyester film
EP0563442A1 (en) 1992-04-03 1993-10-06 Waddingtons Cartons Limited Packaging container for use in a microwave oven
EP0576179A1 (en) 1992-06-12 1993-12-29 Donnelly Corporation Vehicular panel assembly
EP0680409A1 (en) 1993-01-25 1995-11-08 Ici Plc Receiver sheet.
WO1994025527A2 (en) 1993-05-04 1994-11-10 E.I. Du Pont De Nemours And Company Improved bonding resin and methods relating thereto
EP0696516A1 (en) 1994-08-08 1996-02-14 Arkwright Inc. A full range ink jet recording medium
US5888635A (en) 1994-08-08 1999-03-30 Arkwright Incorporated Full range ink jet recording medium
WO1996019333A1 (en) 1994-12-20 1996-06-27 Imperial Chemical Industries Plc Polymeric film coated with a polyester composition
US5663030A (en) 1996-01-24 1997-09-02 Xerox Corporation Electrostatic imaging process
WO1997037849A1 (en) 1996-04-10 1997-10-16 Imperial Chemical Industries Plc Multilayer card
US5882798A (en) 1996-05-22 1999-03-16 Hoechst Trespaphan Gmbh Lithium and potassium copolysilicate barrier coatings
US5925428A (en) 1996-06-12 1999-07-20 Hoechst Trespaphan Gmbh Vapor barrier coating for polymeric articles
US6939584B2 (en) * 2001-01-25 2005-09-06 Stephen William Sankey Process for the production of coated polymeric film
US20050100729A1 (en) 2003-11-10 2005-05-12 Herbert Peiffer Peelable polyester film having improved oxygen barrier, process for its production and its use

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8398306B2 (en) 2005-11-07 2013-03-19 Kraft Foods Global Brands Llc Flexible package with internal, resealable closure feature
US8202612B2 (en) 2006-02-17 2012-06-19 Dupont Teijin Films U.S. Limited Partnership Polyester film
WO2008053205A1 (en) * 2006-11-01 2008-05-08 Dupont Teijin Films U.S. Limited Partnership Heat-sealable composite polyester film
US8470397B2 (en) 2006-11-21 2013-06-25 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US9309027B2 (en) 2006-11-21 2016-04-12 Intercontinental Great Brands Llc Peelable composite thermoplastic sealants in packaging films
US7871696B2 (en) 2006-11-21 2011-01-18 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US7871697B2 (en) 2006-11-21 2011-01-18 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US8110286B2 (en) 2006-11-21 2012-02-07 Kraft Foods Global Brands Llc Peelable composite thermoplastic sealants in packaging films
US9532584B2 (en) 2007-06-29 2017-01-03 Kraft Foods Group Brands Llc Processed cheese without emulsifying salts
CN101939165A (en) * 2007-08-30 2011-01-05 杜邦泰吉恩胶卷美国有限公司 Have thermoformable polyester membrane cover can two methods bakings food Package
WO2009032627A3 (en) * 2007-08-30 2010-04-08 Dupont Teijin Films U.S. Limited Partnership Dual ovenable food package having a thermoformable polyester film lid
WO2009032627A2 (en) * 2007-08-30 2009-03-12 Dupont Teijin Films U.S. Limited Partership Dual ovenable food package having a thermoformable polyester film lid
JP2016094256A (en) * 2007-08-30 2016-05-26 デュポン・テイジン・フィルムズ・ユー・エス・リミテッド・パートナーシップ Dual ovenable food packaging having thermo-formed polyester film cover
JP2010537901A (en) * 2007-08-30 2010-12-09 デュポン・テイジン・フィルムズ・ユー・エス・リミテッド・パートナーシップ Dual openable food packaging with thermoformed polyester film lid
WO2009056473A1 (en) * 2007-10-29 2009-05-07 Cryovac, Inc. Easy-open package
US9096780B2 (en) 2010-02-26 2015-08-04 Intercontinental Great Brands Llc Reclosable fasteners, packages having reclosable fasteners, and methods for creating reclosable fasteners
US8763890B2 (en) 2010-02-26 2014-07-01 Intercontinental Great Brands Llc Package having an adhesive-based reclosable fastener and methods therefor
US9382461B2 (en) 2010-02-26 2016-07-05 Intercontinental Great Brands Llc Low-tack, UV-cured pressure sensitive adhesive suitable for reclosable packages
US8389596B2 (en) 2010-02-26 2013-03-05 Kraft Foods Global Brands Llc Low-tack, UV-cured pressure sensitive adhesive suitable for reclosable packages
US10287077B2 (en) 2010-02-26 2019-05-14 Intercontinental Great Brands Llc Low-tack, UV-cured pressure sensitive adhesive suitable for reclosable packages
US9533472B2 (en) 2011-01-03 2017-01-03 Intercontinental Great Brands Llc Peelable sealant containing thermoplastic composite blends for packaging applications
EP2990455A1 (en) * 2013-04-26 2016-03-02 Toyobo Co., Ltd. Polyester film for sealant use, laminate, and packaging bag
EP2990455A4 (en) * 2013-04-26 2016-05-11 Toyo Boseki Polyester film for sealant use, laminate, and packaging bag
US10421835B2 (en) 2013-04-26 2019-09-24 Toyobo Co., Ltd. Polyester film for sealant use, laminate, and packaging bag
EP4079964A1 (en) * 2021-04-21 2022-10-26 Drewsen Spezialpapiere GmbH & Co. KG Method for producing a heat-sealable paper

Also Published As

Publication number Publication date
KR20080094730A (en) 2008-10-23
EP2431177A1 (en) 2012-03-21
US8202612B2 (en) 2012-06-19
EP1984177B1 (en) 2012-07-11
EP2431176A1 (en) 2012-03-21
GB0603254D0 (en) 2006-03-29
TW200740891A (en) 2007-11-01
EP2431176B1 (en) 2014-03-26
TWI410448B (en) 2013-10-01
CN101384430B (en) 2011-12-21
EP1984177A1 (en) 2008-10-29
KR101379122B1 (en) 2014-03-31
JP2009526672A (en) 2009-07-23
EP2431177B1 (en) 2017-04-26
US20100003377A1 (en) 2010-01-07
CN101384430A (en) 2009-03-11

Similar Documents

Publication Publication Date Title
EP1984177B1 (en) Polyester film
EP2077943B1 (en) Heat-sealable composite polyester film
EP1362075B1 (en) Process for the production of coated polymeric film
US8394470B2 (en) Heat-sealable and shrinkable multi-layer polymeric film
EP1322468B1 (en) Multi-layer polymeric film
EP1907206B1 (en) Heat-sealable composite polymeric film
JP4990797B2 (en) Self-venting composite polymer film
WO2009032627A2 (en) Dual ovenable food package having a thermoformable polyester film lid
KR20050045866A (en) Process for producing a coextruded, peelable polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007705211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780005548.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12279585

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008554842

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087022546

Country of ref document: KR