WO2007092084A2 - Procédé faisant intervenir un cycle combiné à gazéification intégrée et des membranes à gaz de synthèse - Google Patents
Procédé faisant intervenir un cycle combiné à gazéification intégrée et des membranes à gaz de synthèse Download PDFInfo
- Publication number
- WO2007092084A2 WO2007092084A2 PCT/US2006/048358 US2006048358W WO2007092084A2 WO 2007092084 A2 WO2007092084 A2 WO 2007092084A2 US 2006048358 W US2006048358 W US 2006048358W WO 2007092084 A2 WO2007092084 A2 WO 2007092084A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane
- stream
- gas
- rich
- separation unit
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/501—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/52—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/56—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/047—Composition of the impurity the impurity being carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0485—Composition of the impurity the impurity being a sulfur compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/80—Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
- C01B2203/86—Carbon dioxide sequestration
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1643—Conversion of synthesis gas to energy
- C10J2300/165—Conversion of synthesis gas to energy integrated with a gas turbine or gas motor
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1671—Integration of gasification processes with another plant or parts within the plant with the production of electricity
- C10J2300/1675—Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1678—Integration of gasification processes with another plant or parts within the plant with air separation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1687—Integration of gasification processes with another plant or parts within the plant with steam generation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
Definitions
- the clean hydrogen can be used as a fuel to be converted to electricity in a Combined Cycle (CC) power island consisting of a Gas Turbine (GT), a Heat Recovery Steam Generator (HRSG) and a Steam Turbine (ST).
- CC Combined Cycle
- GT Gas Turbine
- HRSG Heat Recovery Steam Generator
- ST Steam Turbine
- the high purity CO 2 extracted in the solvent absorption steam stripper can be compressed and pumped to a geologic sequestration site.
- the combination of a gasifier and a CC power island is called an Integrated Gasification Combined Cycle or IGCC 5 with or without WGS and solvent absorption units.
- IGCC IGCC power conversion plant technology with CO 2 capture and sequestration
- Adsorption and absorption units respectively, to remove mercury and sulfur containing acid gas compounds from the syngas 3.
- a Water Gas Shift reactor to convert syngas (H 2 and CO) to shift gas (H 2 and CO 2 )
- HRSG Heat Recovery Steam Generator
- a steam turbine connected to an electric generator that uses the high pressure steam from the HRSG to generate electricity
- An IGCC power plant is able to convert low cost abundant fossil fuels, such as coal, into electricity more efficiently and more cleanly than existing Pulverized Coal (PC) power plants.
- PC Pulverized Coal
- Combined cycle power plants in general are more efficient than PC boiler plants, typically about 45% versus about 35%, respectively, before auxiliary or parasitic power deductions.
- the process according to the invention replaces the WGS reactor unit and solvent absorption plant with a perma-selective gas separation Membrane Separation Unit (MSU) having membranes made of polymeric materials such as polysulfone, poyimide, cellulose acetate and polycarbonate.
- MSU perma-selective gas separation Membrane Separation Unit
- the MSU separates the cleaned cooled syngas into a CO rich retentate stream at high pressure and a H 2 rich permeate stream at low pressure.
- the CO rich retentate stream is then pre-mixed in the combined cycle power island with high purity O 2 from the ASU and CO 2 rich exhaust from the HRSG and fired in a gas turbine.
- the outputs of the gas turbine are: 1. Mechanical energy which is used to produce electricity in a connected electric generator
- a Membrane Separation Unit is an equipped process skid that, in addition to membranes in one or two stages, may comprise piping headers, hand valves, control valves, particle filters, pre-coolers, pressure and temperature sensors, control instrumentation, and any other process device to control or enhance the efficient performance of the membranes.
- Intrinsic Permeability is the actual mixed gas permeability that exists in the operating membrane under conditions of temperature, pressure, and mixed gas composition in an MSU, and, in a two stage MSU, is relatively high for the less permeable gas in the gas mixture in an MSU stage compared to the permeability of the less permeable gas in another MSU stage.
- Selectivity is equal to the Intrinsic Permeability of the more permeable gas divided by the Intrinsic Permeability of the less permeable gas. Relatively high selectivity is calculated for the more permeable gas over the less permeable gas under the conditions of operation in an MSU stage, compared to the selectivity for the same selectivity ratio in another MSU stage.
- Syngas from the gasifier is already at high pressure thus obviating the need for a feed gas compressor in the MSU.
- FIG. 1 compares the main process steps of an IGCC having a syngas membrane to the main process steps of an IGCC having a Water Gas Shift (WGS) and a solvent absorption, wherein it is illustrated that a syngas membrane replaces a WGS and an solvent absorption, and carbon dioxide is captured in the combined cycle of the former and the solvent absorption of the latter.
- WGS Water Gas Shift
- FIG. 2 illustrates a preferred embodiment of the invention comprising a single stage Membrane Separation Unit (MSU).
- MSU Membrane Separation Unit
- FIG. 4 illustrates a preferred embodiment of the invention comprising a two stage Membrane Separation Unit (MSU) wherein the first stage retentate is fed to the second stage and the second stage permeate is recycled to the first stage.
- MSU Membrane Separation Unit
- the CO rich retentate in stream 1 1 is combined in a gas turbine 12 with a mixture of high purity O 2 in stream 5 and a cooled CO 2 rich stream 13, which is cooled gas turbine Exhaust Gas Recirculation (EGR) from stream 19.
- Stream 19 from HRSG 18 is the net cooled CO 2 in exhaust stream 14 after EGR stream 13 is re- circulated.
- the CO rich stream 11 is combusted in gas turbine 12 to produce mechanical energy to be converted to electricity in a connected electric generator, which is not shown.
- the high temperature exhaust in stream 14 is fed to HRSG 18 to make high pressure steam in stream 22.
- the net flow of cooled high purity CO 2 in stream 19 is sent to a compression and sequestration unit, which is not shown.
- the H 2 rich stream 10 is combined in a gas turbine 15 with air in stream 16, and combusted in gas turbine 15 to produce mechanical energy to be converted to electricity in a connected electric generator, which is not shown.
- the high temperature exhaust in stream 17 is fed to HRSG 20 to make high pressure steam in stream 22.
- the total flow of cooled excess moist air and a small amount of un-captured CO 2 in stream 21 is sent to a vent stack, which is not shown.
- High pressure steam in stream 22 is fed to steam turbine 23 to produce mechanical energy to be converted to electricity in a connected electric generator, which is not shown.
- Steam condensate in stream 24 is returned to HRSG 18 and 20 to make more steam.
- the cleaned cooled Syngas at high pressure in stream 8 is fed to the primary stage of Membrane Separation Unit (MSU) 9 comprising a membrane having a relatively high selectivity for the more permeable gas which yields a H 2 rich permeate at low pressure in stream 10 and an intermediate purity CO retentate at high pressure in stream 10a.
- Stream 10a is directed to the secondary stage Membrane Separation Unit (MSU) yielding a CO rich retentate at high pressure in stream 1 1 and low pressure .
- intermediate purity hydrogen permeate 11a which permeate is compressed in compressor 9a, the discharge of which is recycled to feed stream 8.
- the remaining stream flow and process unit designations in Fig. 4 are the same as those in the detailed description of Fig. 2.
- coal in stream 1 , high purity O 2 in stream 4, which is produced in an air separation unit (ASU) 3, and water in stream 4 are reacted in a partial oxidation reaction in gasifier 2 to produce syngas in stream 8 and vitreous slag in stream 7.
- the syngas in stream 8 exiting gasifier 2 is generally at a temperature of about 1 ,400 ° C and a pressure of about 1,000 psig and comprises about 52.0% CO, 35.0% H 2 , 1 1.0% CO 2 , 1.0% N 2 , 0.6% H 2 S, 0.4% Ar and a trace of Hg.
- High pressure retentate stream 11 is expanded in expander 1 Ia yielding a reduced pressure retentate in stream 1 Ib 3 which pressure is equal to the fuel pressure required in gas turbine 12.
- Expander 1 Ia is mechanically connected to compressor 10a and supplies power to compressor 10a.
- Low pressure permeate in stream 10 is compressed in compressor 10a yielding an increased pressure permeate in stream 10b, which pressure is equal to the fuel pressure required in gas turbine 15.
- Cooled exhaust in stream 19e comprising predominantly CC> 2 plus un-combusted O 2 and small amounts Of H 2 O, N 2 and Ar is compressed to about 1,000 psig in compressor 19d yielding a compressed gas and liquid exhaust mixture in stream 19c.
- the gas phase in stream 19c comprises predominantly un-condensed CO 2 plus the non-condensable gases O 2 , N 2 and Ar.
- the liquid phase in stream 19c comprises most of the CO 2 as a critical fluid with a small amount of dissolved water.
- the gas and liquid phases of compressed gas and liquid exhaust mixture 19c is separated in gas / liquid separator 19a. Separator head pressure due to non- condensable gas build-up is controlled by bleeding small amounts of non-condensable gas through bleed valve 19b.
- Uncondensed exhaust gas stream 13 comprising un-condensed CO 2 plus the non-condensable gases O 2 , N 2 and Ar is reduced in pressure by pressure reduction valve 13a before being mixed with O 2 in stream 5 and re-circulated to gas turbine 12.
- Compressed CO 2 liquid at about 1 ,000 psig in stream 19 is directed to sequestration or other uses.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
L'invention concerne un procédé et un appareil faisant intervenir une unité de séparation à membranes (Membrane Separation Unit / MSU) et un cycle combiné à gazéification intégrée. Selon l'invention, un gaz de synthèse produit est séparé dans la MSU en un gaz perméat riche en hydrogène et un gaz rétentat riche en monoxyde de carbone, le gaz perméat riche en hydrogène est brûlé avec de l'air dans un cycle combiné à turbine à gaz, pour produire de l'électricité et un gaz d'échappement pauvre en dioxyde de carbone qui peut être rejeté dans l'atmosphère, et le gaz rétentat riche en monoxyde de carbone est brûlé avec de l'oxygène et du gaz d'échappement remis en circulation, dans un cycle combiné à turbine à gaz, pour produire de l'électricité et un gaz d'échappement riche en dioxyde de carbone qui peut être capté.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75199805P | 2005-12-21 | 2005-12-21 | |
US60/751,998 | 2005-12-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007092084A2 true WO2007092084A2 (fr) | 2007-08-16 |
WO2007092084A3 WO2007092084A3 (fr) | 2007-12-21 |
Family
ID=38345601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/048358 WO2007092084A2 (fr) | 2005-12-21 | 2006-12-20 | Procédé faisant intervenir un cycle combiné à gazéification intégrée et des membranes à gaz de synthèse |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007092084A2 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010031366A2 (fr) | 2008-09-19 | 2010-03-25 | Forschungszentrum Jülich GmbH | Centrale igcc (gazéification intégrée à un cycle combiné) avec recyclage des gaz de fumée et gaz de balayage |
WO2011019477A1 (fr) * | 2009-08-10 | 2011-02-17 | General Electric Company | Section d'épuration du gaz de synthèse par capture de carbone et membrane sélective vis-à-vis de l'hydrogène |
WO2011039059A1 (fr) * | 2009-09-30 | 2011-04-07 | Uhde Gmbh | Procédé permettant de faire fonctionner un processus de centrale igcc à séparation de co2 intégrée |
WO2011050789A3 (fr) * | 2009-11-02 | 2011-07-07 | Mahnken & Partner Gbr. | Petite centrale et procédé et dispositif pour récupérer de l'hydrogène de grande pureté |
FR2971544A1 (fr) * | 2011-02-11 | 2012-08-17 | Gen Electric | Systeme de recuperation de chaleur et methode associee |
DE102011110213A1 (de) * | 2011-08-16 | 2013-02-21 | Thyssenkrupp Uhde Gmbh | Verfahren und Vorrichtung zur Rückführung von Abgas aus einer Gasturbine mit nachfolgendem Abhitzekessel |
CN106914117A (zh) * | 2017-04-18 | 2017-07-04 | 长沙紫宸科技开发有限公司 | 适应于水泥窑烟气中二氧化碳连续捕集及发电的装置 |
US11149636B2 (en) * | 2019-03-01 | 2021-10-19 | Richard Alan Callahan | Turbine powered electricity generation |
US11149634B2 (en) * | 2019-03-01 | 2021-10-19 | Richard Alan Callahan | Turbine powered electricity generation |
US20230265794A1 (en) * | 2022-02-24 | 2023-08-24 | Richard Alan Callahan | Tail Gas Recycle Combined Cycle Power Plant |
US11994063B2 (en) | 2019-10-16 | 2024-05-28 | Richard Alan Callahan | Turbine powered electricity generation |
EP4400564A1 (fr) * | 2023-01-13 | 2024-07-17 | Mash Makes A/S | Production d'hydrogène à partir d'un gaz de synthèse à base de biomasse |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223931A1 (en) * | 2002-05-30 | 2003-12-04 | Narayan Raghu S. | Synthesis gas production |
US20040123601A1 (en) * | 2002-09-17 | 2004-07-01 | Foster Wheeler Energia Oy | Advanced hybrid coal gasification cycle utilizing a recycled working fluid |
-
2006
- 2006-12-20 WO PCT/US2006/048358 patent/WO2007092084A2/fr active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030223931A1 (en) * | 2002-05-30 | 2003-12-04 | Narayan Raghu S. | Synthesis gas production |
US20040123601A1 (en) * | 2002-09-17 | 2004-07-01 | Foster Wheeler Energia Oy | Advanced hybrid coal gasification cycle utilizing a recycled working fluid |
Non-Patent Citations (1)
Title |
---|
BAKER ET AL.: 'The design of membranes vapor/gas separation systems' JOURNAL OF MEMBRANE SCIENCE vol. 151, no. 9, December 1998, pages 55 - 62 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010031366A3 (fr) * | 2008-09-19 | 2011-03-10 | Forschungszentrum Jülich GmbH | Centrale igcc (gazéification intégrée à un cycle combiné) avec recyclage des gaz de fumée et gaz de balayage |
WO2010031366A2 (fr) | 2008-09-19 | 2010-03-25 | Forschungszentrum Jülich GmbH | Centrale igcc (gazéification intégrée à un cycle combiné) avec recyclage des gaz de fumée et gaz de balayage |
US8893506B2 (en) | 2008-09-19 | 2014-11-25 | Forschungszentrum Juelich Gmbh | IGCC power plant having flue gas recirculation and flushing gas |
WO2011019477A1 (fr) * | 2009-08-10 | 2011-02-17 | General Electric Company | Section d'épuration du gaz de synthèse par capture de carbone et membrane sélective vis-à-vis de l'hydrogène |
US8495882B2 (en) | 2009-08-10 | 2013-07-30 | General Electric Company | Syngas cleanup section with carbon capture and hydrogen-selective membrane |
CN102712469B (zh) * | 2009-09-30 | 2014-08-13 | 蒂森克虏伯伍德有限公司 | 运行带有集成co2分离装置的igcc发电厂过程的方法 |
WO2011039059A1 (fr) * | 2009-09-30 | 2011-04-07 | Uhde Gmbh | Procédé permettant de faire fonctionner un processus de centrale igcc à séparation de co2 intégrée |
CN102712469A (zh) * | 2009-09-30 | 2012-10-03 | 蒂森克虏伯伍德有限公司 | 运行带有集成co2分离装置的igcc发电厂过程的方法 |
WO2011050789A3 (fr) * | 2009-11-02 | 2011-07-07 | Mahnken & Partner Gbr. | Petite centrale et procédé et dispositif pour récupérer de l'hydrogène de grande pureté |
FR2971544A1 (fr) * | 2011-02-11 | 2012-08-17 | Gen Electric | Systeme de recuperation de chaleur et methode associee |
DE102011110213A1 (de) * | 2011-08-16 | 2013-02-21 | Thyssenkrupp Uhde Gmbh | Verfahren und Vorrichtung zur Rückführung von Abgas aus einer Gasturbine mit nachfolgendem Abhitzekessel |
CN106914117A (zh) * | 2017-04-18 | 2017-07-04 | 长沙紫宸科技开发有限公司 | 适应于水泥窑烟气中二氧化碳连续捕集及发电的装置 |
CN106914117B (zh) * | 2017-04-18 | 2022-08-12 | 长沙紫宸科技开发有限公司 | 适应于水泥窑烟气中二氧化碳连续捕集及发电的装置 |
US11149636B2 (en) * | 2019-03-01 | 2021-10-19 | Richard Alan Callahan | Turbine powered electricity generation |
US11149634B2 (en) * | 2019-03-01 | 2021-10-19 | Richard Alan Callahan | Turbine powered electricity generation |
US11994063B2 (en) | 2019-10-16 | 2024-05-28 | Richard Alan Callahan | Turbine powered electricity generation |
US20230265794A1 (en) * | 2022-02-24 | 2023-08-24 | Richard Alan Callahan | Tail Gas Recycle Combined Cycle Power Plant |
US11808206B2 (en) * | 2022-02-24 | 2023-11-07 | Richard Alan Callahan | Tail gas recycle combined cycle power plant |
EP4400564A1 (fr) * | 2023-01-13 | 2024-07-17 | Mash Makes A/S | Production d'hydrogène à partir d'un gaz de synthèse à base de biomasse |
WO2024149901A1 (fr) | 2023-01-13 | 2024-07-18 | Mash Makes A/S | Production d'hydrogène et utilisation de gaz de dégagement à partir d'un gaz de synthèse à base de biomasse |
Also Published As
Publication number | Publication date |
---|---|
WO2007092084A3 (fr) | 2007-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007092084A2 (fr) | Procédé faisant intervenir un cycle combiné à gazéification intégrée et des membranes à gaz de synthèse | |
US10054046B2 (en) | System and method for high efficiency power generation using a nitrogen gas working fluid | |
US9856769B2 (en) | Gas separation process using membranes with permeate sweep to remove CO2 from combustion exhaust | |
US10245551B2 (en) | Membrane technology for use in a power generation process | |
US8220247B2 (en) | Power generation process with partial recycle of carbon dioxide | |
US8220248B2 (en) | Power generation process with partial recycle of carbon dioxide | |
US8034168B2 (en) | Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases | |
US8016923B2 (en) | Combustion systems, power plants, and flue gas treatment systems incorporating sweep-based membrane separation units to remove carbon dioxide from combustion gases | |
JP5043602B2 (ja) | 二酸化炭素の単離を伴う発電用システム及び方法 | |
TWI579507B (zh) | 利用廢氣再循環對富集之空氣進行化學計量燃燒之系統和方法 | |
US7909898B2 (en) | Method of treating a gaseous mixture comprising hydrogen and carbon dioxide | |
US8177885B2 (en) | Gas separation process using membranes with permeate sweep to remove CO2 from gaseous fuel combustion exhaust | |
US20070006592A1 (en) | Systems and methods for power generation with carbon dioxide isolation | |
US10439242B2 (en) | Hybrid high-temperature swing adsorption and fuel cell | |
JP2002531364A (ja) | Co2の回収方法 | |
US12098658B2 (en) | Cogeneration of chemical products | |
JP2011068891A (ja) | 炭素捕獲冷却系及び方法 | |
US20100024432A1 (en) | Method for improved efficiency for IGCC | |
AU2010300123B2 (en) | Method for operating an IGCC power plant process having integrated CO2 separation | |
US9458014B2 (en) | Sytems and method for CO2 capture and H2 separation with three water-gas shift reactions and warm desulfurization | |
US20110020188A1 (en) | Igcc with constant pressure sulfur removal system for carbon capture with co2 selective membranes | |
WO2004026445A1 (fr) | Procede et installation de separation du co2 du gaz d'echappement resultant de la combustion d'un materiau carbone | |
EP2965006B1 (fr) | Centrale thermique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06849979 Country of ref document: EP Kind code of ref document: A2 |