WO2007088821A1 - Impact tool - Google Patents

Impact tool Download PDF

Info

Publication number
WO2007088821A1
WO2007088821A1 PCT/JP2007/051415 JP2007051415W WO2007088821A1 WO 2007088821 A1 WO2007088821 A1 WO 2007088821A1 JP 2007051415 W JP2007051415 W JP 2007051415W WO 2007088821 A1 WO2007088821 A1 WO 2007088821A1
Authority
WO
WIPO (PCT)
Prior art keywords
striking
tool
motion
striker
impact
Prior art date
Application number
PCT/JP2007/051415
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Furusawa
Original Assignee
Makita Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corporation filed Critical Makita Corporation
Priority to EP07707646.1A priority Critical patent/EP1980371B1/en
Publication of WO2007088821A1 publication Critical patent/WO2007088821A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D11/00Portable percussive tools with electromotor or other motor drive
    • B25D11/06Means for driving the impulse member
    • B25D11/12Means for driving the impulse member comprising a crank mechanism
    • B25D11/125Means for driving the impulse member comprising a crank mechanism with a fluid cushion between the crank drive and the striking body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/06Hammer pistons; Anvils ; Guide-sleeves for pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/08Means for retaining and guiding the tool bit, e.g. chucks allowing axial oscillation of the tool bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2211/00Details of portable percussive tools with electromotor or other motor drive
    • B25D2211/003Crossed drill and motor spindles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2216/00Details of portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D2216/0007Details of percussion or rotation modes
    • B25D2216/0015Tools having a percussion-only mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2216/00Details of portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit
    • B25D2216/0007Details of percussion or rotation modes
    • B25D2216/0023Tools having a percussion-and-rotation mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0011Details of anvils, guide-sleeves or pistons
    • B25D2217/0023Pistons
    • B25D2217/0026Double pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2217/00Details of, or accessories for, portable power-driven percussive tools
    • B25D2217/0073Arrangements for damping of the reaction force
    • B25D2217/0076Arrangements for damping of the reaction force by use of counterweights
    • B25D2217/0088Arrangements for damping of the reaction force by use of counterweights being mechanically-driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/275Tools having at least two similar components

Definitions

  • the present invention relates to a striking tool that performs a predetermined machining operation by a striking operation of a tool bit in a long axis direction.
  • An electric hammer as a striking tool that performs a predetermined machining operation by a striking operation of a tool bit driven by a motor in the long axis direction is widely known.
  • Such an electric hammer is disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-335046.
  • the rotation output of the motor is converted into a linear motion of the piston by the crank mechanism, and the striker linearly moves through the air panel that fluctuates due to the linear motion of the piston to strike the tool bit.
  • the present invention has an object to provide a technique effective in improving the working efficiency of a striking tool in view of the power.
  • the impact tool includes a motor, a first motion conversion mechanism, a first impact mechanism, a second motion conversion mechanism, a second impact mechanism, and a tip tool member.
  • the first motion mechanism is configured to convert the rotational output of the motor into linear motion
  • the first striking mechanism is configured to perform linear motion by being driven by the first motion mechanism.
  • Second The motion variation m «mechanism is configured to convert the rotational output of the motor into linear motion
  • the second striking mechanism is configured to perform linear motion by being driven by the second motion mechanism.
  • the tip tool member is struck by the first and second striking mechanisms and moves linearly to perform a predetermined machining operation on the workpiece.
  • the tip tool member is preferably struck alternately by each striking mechanism.
  • an electric hammer or a tip tool member that performs a hammering operation on a workpiece by performing only a straight striking motion in the long axis direction of the tip tool member is used.
  • first motion conversion mechanism and the “second motion conversion mechanism” in the present invention typically have a mechanism that converts the rotational output of the motor into a linear motion of the piston by the crank mechanism.
  • a mechanism that converts the rotational motion of the rotating body rotated by the motor into the swing motion of the swing member, and then converts the swing motion of the swing member into the linear motion of the piston or It preferably includes a mechanism for converting to linear movement of the piston using a swash plate rotated by a motor.
  • first striking mechanism and the “second striking mechanism” in the present invention typically include a striking element that performs a linear motion by a change in air pressure of an air chamber due to a linear linear motion of a piston, Furthermore, although it is set as the structure which has an intermediate
  • first and second motion conversion mechanisms means that there are at least two motion conversion mechanisms, and in addition to the first and second motion conversion mechanisms, a third motion conversion mechanism is included.
  • An embodiment having a conversion mechanism and further a fourth motion conversion mechanism is suitably included.
  • first and second striking mechanisms means that there are at least two striking mechanisms.
  • the third striking mechanism and further the fourth striking mechanism is suitably included.
  • the “tip tool member” in the present invention suitably includes any of an aspect constituted by a single tool bit or an aspect constituted by a plurality of tool bits.
  • a mode in which a single tool bit is struck by a plurality of striking mechanisms, and a plurality of tool bits have the same number of striking mechanisms as the plurality of tool bits.
  • Any of a mode in which a plurality of tool bits are struck by a larger number of striking mechanisms than the plurality of tool bits, and a mode in which a plurality of tool bits are struck by a smaller number of striking mechanisms than the plurality of tool bits. Preferably included.
  • the first motion conversion mechanism and the first striking mechanism driven by the motor, and the second motion mechanism and the second striking mechanism driven by the motor can be hit to perform a predetermined processing operation. For this reason, the working efficiency is improved as compared with the conventional impact tool in which the tip tool member is driven by a single motion conversion mechanism and impact mechanism.
  • the rotational speed of the motor, the motion conversion mechanism driven by the motor, and the drive speed of the striking mechanism can be reduced. It is possible to reduce the wear of the sliding portion and improve the durability without reducing the working efficiency.
  • the first striking mechanism and the second striking mechanism in the striking tool are configured to perform a linear motion opposite to each other.
  • the other striking mechanism moves linearly in opposition to the one striking mechanism, so that it functions as a counterweight.
  • the vibration in the long axis direction of the tip tool member is reasonably reduced, which is effective for lowering the vibration of the impact tool in addition to improving work efficiency.
  • the first striking mechanism has a cylindrical first striking element that linearly moves to drive the tip tool member, and the second striking mechanism linearly moves to drive the tip tool member.
  • a second striker that is cylindrical and has approximately the same mass as the first striker.
  • the first striker and the second striker are configured to linearly move in opposition to each other.
  • the tip tool member is alternately struck by the first and second strikers and linearly moves, thereby increasing the number of strikes of the tip tool per unit time and further increasing the number of strikes from the first and second strikers.
  • the counterweight function between the two strikers can be further enhanced.
  • the first hitting mechanism and the second hitting mechanism are arranged in parallel in the vertical direction. This makes it possible to further improve the tool drive balance.
  • FIG. 1 is a side sectional view showing the overall configuration of the electric hammer according to the present embodiment.
  • the electric hammer 101 according to the present embodiment generally has a main body 103 that forms an outline of the electric hammer 101 and a tip region (left side in the drawing) of the main body 103.
  • the hammer bit 163 corresponds to the “tip tool member” in the present invention.
  • the hammer bit 163 side is referred to as the front
  • the hand grip 109 side is referred to as the rear.
  • the main body 103 constituting the tool main body includes a motor housing 105 containing a drive motor 111, first and second sets of crank mechanisms 113 and 115, and first and second sets of two.
  • a gear housing 107 that houses the striking elements 117 and 119 is formed.
  • the rotational output of the drive motor 111 is appropriately converted into linear motion by the first and second crank mechanisms 113, 115 and then transmitted to the first and second striking elements 117, 119, and the first and second An impact force in the major axis direction of the hammer bit 163 (left and right direction in FIG. 1) is generated via the second striking elements 117 and 119.
  • the drive motor 111 corresponds to the “motor” in the present invention.
  • the first crank mechanism 113 corresponds to the “first motion variable shelf” in the present invention
  • the second crank mechanism 115 corresponds to the “second motion variable structure” in the present invention
  • the first striking element 117 corresponds to the “first striking mechanism” in the present invention
  • the second striking element 119 corresponds to the “second striking mechanism” in the present invention.
  • the drive motor 111 is energized and driven by a pulling operation of a trigger 109a disposed on the handgrip 109.
  • FIG. 2 is a sectional view showing an enlarged state of the main part of the electric hammer 101
  • FIG. 3 shows a sectional structure based on the sectional instruction line of FIG.
  • the first and second clan The gear mechanisms 113 and 115 are arranged in parallel in the gear housing 107 in the vertical direction.
  • the first crank mechanism 113 includes a first crank plate 125 that is rotatable in a horizontal plane, a first eccentric shaft 127 that is shifted from the center of rotation to the first crank plate 125, and one end of the first eccentric shaft 127. Is connected to the other end of the first crank arm 129 via a first connecting shaft 131 so as to be relatively rotatable. Consists of the subject.
  • the first crank plate 125 is formed in a circular shape, and has a driven gear 125 a on the outer peripheral surface thereof.
  • the driven gear 125 a is engaged with and engaged with a drive gear 121 that is rotationally driven by the drive motor 111.
  • the first piston 133 is slidably disposed in the first bore 151a of the cylinder 151, and when the drive motor 111 is energized and driven, the long axis direction of the cylinder 151 (the non-mabit long axis direction) ) Perform a linear motion.
  • the second crank mechanism 115 includes a second crank plate 137 that is rotatable in a horizontal plane, a second eccentric shaft 139 that is arranged with a rotational center force shifted to the second crank plate 137, and a second eccentric shaft.
  • a second crank arm 141 one end of which is connected to the shaft 139 in a loose fit, and a second driver as a second driver attached to the other end of the second crank arm 141 via a second connecting shaft 143 so as to be relatively rotatable.
  • the second piston 145 is slidably disposed in the second bore 151b of the cylinder 151 !.
  • the first crank plate 125 and the second crank plate 137 are set so that their rotational axes are the same axis.
  • the shift amount of the first eccentric shaft 127 from the rotation center of the first crank plate 125 and the shift amount of the second eccentric shaft 139 from the rotation center of the second crank plate 137 are both set equal.
  • the first eccentric shaft 127 and the second eccentric shaft 139 are connected by a connecting member 147 so as to have a phase difference of approximately 180 degrees in the rotational direction of the first crank plate 125. That is, the second crank mechanism 115 is driven from the first crank mechanism 113 driven by the drive motor 111 via the connecting member 147, and the second piston 145 is substantially at a crank angle with respect to the first piston 133. It is configured to perform opposing linear motion with a delay of 180 degrees.
  • the first and second striking elements 117, 119 are arranged in parallel in the vertical direction.
  • the first striking element 117 includes a first striker 153 as a first striking element slidably disposed in the first bore 151a of the cylinder 151 and moving linearly in the longitudinal direction of the cylinder 151, and a cylindrical tool.
  • the holder 161 is slidably disposed, and is configured mainly with an impact bolt 157 as an intermediate that transmits the kinetic energy of the first striker 153 to the hammer bit 163.
  • the first striker 153 is driven through the fluctuation of the air pressure in the first air chamber 151c of the cylinder 151 accompanying the sliding movement of the first piston 133, that is, through the air panel, and collides (hits) with the impact bolt 157.
  • the striking force is transmitted to the non-mabit 163 held in the tool holder 161. That is, the first striking element 117 is driven by the first crank mechanism 113.
  • the second striking element 119 is slidably disposed in the second bore 151b of the cylinder 151, and the second striker 155 as a second striker that linearly moves in the longitudinal direction of the cylinder 151; No. impact bolt 157.
  • the second striker 155 is driven through the air panel of the second air chamber 151d of the cylinder 151 accompanying the sliding motion of the second piston 145, and collides with the impact bolt 157 to hit the impact bolt 157.
  • the striking force is transmitted to the retained non-mabit 163. That is, the second striking element 117 is driven by the second crank mechanism 115.
  • the impact bolt 157 receives a striking motion of the first striker 153 in the radially lower region of the rear end portion in the long axis direction and receives a striking motion of the second striker 155 in the radially upper region.
  • the impact surface 157a is as large as possible.
  • the cylinder 151 has a circular first bore 151a in which the first piston 133 and the first striker 153 are slidably arranged, and a circle in which the second piston 145 and the second striker 155 are slidably arranged.
  • the second bore 151b is attached to the gear housing 107 in a state where movement in the long axis direction and the circumferential direction is restricted.
  • FIG. 3 shows the cross-sectional structure of the cylinder 151.
  • the tool holder 161 is attached to the distal end portion of the gear housing 107 in a state where movement in the long axis direction and the circumferential direction is restricted.
  • the hammer bit 163 is held by the tool holder 161 in a state where relative movement in the major axis direction is allowed.
  • the first air chamber 151c is caused to fluctuate in the air pressure in the first air chamber 151c.
  • the striker 153 moves linearly in the cylinder 151. Then, the first striker 153 collides with the impact bolt 157 to transmit the kinetic energy (striking force) to the hammer bit 163, which causes the hammer bit 163 to slide in the tool holder 161 and to be covered. Perform hammering work on the workpiece.
  • the second eccentric shaft 139 is connected to the second eccentric shaft 139 via the connecting member 147 in conjunction with the rotating operation of the first eccentric shaft 127 accompanying the rotation of the first crank plate 125.
  • Crank plate 137 circulates around the center of rotation.
  • the second crank arm 141 swings and the second piston 145 slides in the second bore 151b of the cylinder 151.
  • the first eccentric shaft 127 and the second eccentric shaft 139 have a phase difference of approximately 180 degrees in terms of crank angle. Therefore, the second piston 145 is slid linearly within the second bore 151b of the cylinder 151 with a delay of about 180 degrees with respect to the first piston 133.
  • a single hammer bit 163 can be struck twice by one crank rotation. For this reason, the number of hits of the hammer bit 163 is doubled when the number of revolutions of the drive motor 111 is set to be equal to that of a conventional electric hammer that performs a single hitting operation with one crank rotation. Work efficiency is improved. In other words, when the number of hammer bits 163 hit per unit time is set to the same level as the conventional one, the rotational speed of the drive motor 111 and the first and second cranks driven by the drive motor 111 are changed.
  • the driving speed of the mechanisms 113, 115 and the first and second striking elements 117, 119 can be reduced at low speeds, resulting in a sliding part without reducing work efficiency.
  • Durability can be improved by reducing wear on sliding parts such as materials or O-rings.
  • the first piston 133 and the second piston 145 are configured to be driven with a phase difference of approximately 180 degrees in terms of crank angle.
  • the first striker 153 and the second striker 155 perform linear movements that face each other. Therefore, when one, for example, the first strike force 153 linearly moves to the side hitting the hammer bit 163 (front), the other, for example, the second striker 155 goes straight to the side away from the hammer bit 163 (rear). In operation, it functions as a counterweight. As a result, the vibration in the long axis direction of the hammer bit that occurs during the carpentry work is reasonably reduced, which is effective in reducing the vibration of the electric hammer 101.
  • the electric hammer 101 according to the second embodiment is a two-bit type using the first hammer bit 173 and the second hammer bit 175 as the tip tool members, and is the same as that described above except for the configuration related thereto.
  • the configuration is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the first hammer bit 173 corresponds to the “first tool bit” in the present invention
  • the second hammer bit 175 corresponds to the “second tool bit” in the present invention.
  • FIG. 4 shows the overall configuration of the electric hammer 101
  • FIG. 5 shows the configuration of the main part.
  • the tool holder 171 of the second embodiment has two cylindrical holes for attaching the first hammer bit 173 and the second hammer bit 175, and the tip of the gear housing 107. Mounted on the side (front end side) in a state where movement in the long axis direction and circumferential direction of the hammer bit is restricted. The first hammer bit 173 and the second hammer bit 175 are held by the tool holder 171 in a state where relative movement in the major axis direction is allowed.
  • the first striking element 117 is slidable in the tool holder 171 and the first striker 153 as a first striking element that linearly moves in the first bore 151a of the cylinder 151 in the longitudinal direction of the hammer bit. Arranged to transmit the kinetic energy of the first striker 153 to the first hammer bit 173. It is mainly composed of a first impact bolt 177 as a meson. The first striker 153 is driven through the air panel of the first air chamber 151c of the cylinder 151 as the first piston 133 slides, and collides (hits) with the first impact bolt 177. The striking force is transmitted to the first hammer bit 173 held by the tool holder 171.
  • the first striking element 117 corresponds to the “first striking mechanism” in the present invention.
  • the second striking element 119 is slidable in the tool holder 171 and a second striker 155 as a second striking element that linearly moves in the second bore 151b of the cylinder 151 in the longitudinal direction of the hammer bit.
  • the second impact bolt 179 as a second meson that is arranged and transmits the kinetic energy of the second striker 155 to the second hammer bit 175 is mainly configured.
  • the second striker 155 is driven through the air panel of the second air chamber 151d of the cylinder 151 accompanying the sliding movement of the second piston 145 and collides (hits) with the second impact bolt 179.
  • the striking force is transmitted to the second hammer bit 175 held by the tool holder 171.
  • the second striking element 119 corresponds to the “second striking mechanism” in the present invention.
  • the first crank mechanism 113 that drives the first striking element 117 and the second crank mechanism 115 that drives the second striking element 119 are configured in the same manner as in the first embodiment described above. Therefore, when the drive motor 111 is energized, the first striking element 117 is driven by the first crank mechanism 113, and the second striking element 119 is driven by the second crank mechanism 115. For this reason, the first hammer bit 173 and the second hammer bit 175 perform one hitting operation each time the crank rotates. That is, the total number of hitting operations by the first hammer bit 173 and the second hammer bit 175 is performed twice in one rotation of the crank, and work efficiency can be improved as in the first embodiment.
  • the rotational speed of the driving motor 111 and the first and second driving motors 111 are driven.
  • the driving speed of the crank mechanisms 11 3, 115 and the first and second striking elements 117, 119 can be reduced, so that the sliding parts such as sliding members or O-rings can be moved without reducing the working efficiency. Wear can be reduced and durability can be improved.
  • the first piston 133 of the first crank mechanism 113 and the second piston 145 of the second crank mechanism 115 are configured to linearly move in the cylinder 151 with a phase difference of 180 degrees in terms of crank angle. Yes.
  • the vibration in the long axis direction of the hammer bit that occurs during the machining operation can be rationally reduced, and this is effective in reducing the vibration of the electric hammer 101.
  • the construction work is performed using the first and second two hammer bits 173 and 175, so that a wide range is simultaneously checked as compared with the case of one. be able to.
  • crank mechanisms 113 and 115 are employed as means for converting the rotational output of the drive motor 111 into the linear motion of the pistons 133 and 145.
  • the present invention is not limited to this, and for example, the drive motor 111 After the rotating motion of the rotating body rotated by is converted into the swinging motion of the swinging member, the swinging motion of this swinging member is converted to the linear motion of the pistons 133, 145 or rotated by the drive motor 111.
  • a mechanism that converts the pistons 133 and 145 into linear motion using a swash plate may be used.
  • the case where the two crank mechanisms 113 and 115 and the two striking elements 117 and 119 are provided has been described. However, these may be further added.
  • the present embodiment is not limited to the force described with the electric hammer 101 as an example of a striking tool, and the umbilits 163, 173, and 175 are not limited to the striking motion in the long axis direction. It can be applied to a hammer drill that performs rotational movement.
  • FIG. 1 is a side sectional view showing an overall configuration of an electric hammer according to a first embodiment of the present invention.
  • FIG. 2 is a side sectional view showing a main part of the electric hammer.
  • FIG. 3 is a longitudinal sectional view based on the line AA in FIG.
  • FIG. 4 is a side sectional view showing an overall configuration of an electric hammer according to a second embodiment of the present invention.
  • FIG. 5 is a side sectional view showing a main part of the electric hammer.
  • FIG. 6 is a cross-sectional view based on the line BB in FIG.
  • FIG. 7 is a cross-sectional view based on the line CC in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

An impact tool (101) comprises a motor (111), a first motion conversion mechanism (113) for converting the rotational output of the motor (111) into a linear motion, a first impact mechanism (117) driven by the first motion conversion mechanism (113) for performing linear motions, a second motion conversion mechanism (115) for converting the rotational output of the motor (111) into a linear motion, a second impact mechanism (119) driven by the second motion conversion mechanism (115) for performing linear motions, and a tip tool member (163) caused by the first and second impact mechanisms (117, 119) to perform alternate impact actions. With these alternate impacts by the first and second impact mechanisms (117, 119), the number of impacts of the tip tool member (163) per unit time is increased, and the first impact mechanism (117) and the second impact mechanism (119) alternately function as a counter weight.

Description

明 細 書  Specification
打撃工具  Impact tool
技術分野  Technical field
[0001] 本発明は、工具ビットが長軸方向に打撃動作することで所定の加工作業を行う打 撃工具に関する。  The present invention relates to a striking tool that performs a predetermined machining operation by a striking operation of a tool bit in a long axis direction.
背景技術  Background art
[0002] モータによって駆動される工具ビットが長軸方向に打撃動作することで所定の加工 作業を行う打撃工具としての電動ハンマは、広く一般に知られている。このような電動 ハンマは、例えば特開 2005— 335046号公報に開示されている。この電動ハンマは 、モータの回転出力をクランク機構によってピストンの直線運動に変換し、当該ピスト ンの直線運動により変動する空気室内の空気パネを介して打撃子が直線運動して 工具ビットに打撃を与える。  An electric hammer as a striking tool that performs a predetermined machining operation by a striking operation of a tool bit driven by a motor in the long axis direction is widely known. Such an electric hammer is disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-335046. In this electric hammer, the rotation output of the motor is converted into a linear motion of the piston by the crank mechanism, and the striker linearly moves through the air panel that fluctuates due to the linear motion of the piston to strike the tool bit. give.
[0003] 上記打撃工具において、作業効率をアップさせるには、モータの回転数を上げて 工具ビットを高速で駆動することが必要になる。しかしモータによって駆動されるクラ ンク機構あるいは打撃機構等の工具ビットの駆動に用いられる機械動作部について は、例えばモータの回転速度に対する追従性の面で限界があり、モータ回転数を上 げることでは対応できず、この点でなお改良の余地がある。  [0003] In the above impact tool, in order to increase the work efficiency, it is necessary to drive the tool bit at a high speed by increasing the number of rotations of the motor. However, the mechanical operation part used to drive the tool bit, such as a crank mechanism or a striking mechanism driven by a motor, has a limit in terms of followability with respect to the rotational speed of the motor, for example. However, there is still room for improvement in this regard.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、力かる点に鑑み、打撃工具の作業効率を向上する上で有効な技術を提 供することを目的とする。 The present invention has an object to provide a technique effective in improving the working efficiency of a striking tool in view of the power.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を達成するため、各請求項記載の発明が構成される。 [0005] In order to achieve the above-described object, the invention described in each claim is configured.
本発明に係る打撃工具は、モータと、第 1の運動変換機構と、第 1の打撃機構と、 第 2の運動変換機構と、第 2の打撃機構と、先端工具部材とを有する。第 1の運動変 構は、モータの回転出力を直線運動に変換する構成とされ、第 1の打撃機構は 、第 1の運動変 構によって駆動されることで直線運動を行う構成とされる。第 2の 運動変 m«構は、モータの回転出力を直線運動に変換する構成とされ、第 2の打撃 機構は、第 2の運動変 構によって駆動されることで直線運動を行う構成とされる 。そして先端工具部材は、第 1および第 2の打撃機構によって打撃されて直線動作し 、被加工材に所定の加工作業を行う構成とされる。先端工具部材は、各打撃機構に よって交互に打撃されるのが好ましい。本発明における「打撃工具」としては、典型的 には、先端工具部材が長軸方向に直線状の打撃動作のみを行うことによって被加工 材にハンマ作業を遂行する電動ハンマ、あるいは先端工具部材が長軸方向の打撃 動作と長軸方向周りの回転動作とを行うことで被加工材にハンマドリル作業を遂行す る電動ハンマドリルがこれに該当する。 The impact tool according to the present invention includes a motor, a first motion conversion mechanism, a first impact mechanism, a second motion conversion mechanism, a second impact mechanism, and a tip tool member. The first motion mechanism is configured to convert the rotational output of the motor into linear motion, and the first striking mechanism is configured to perform linear motion by being driven by the first motion mechanism. Second The motion variation m «mechanism is configured to convert the rotational output of the motor into linear motion, and the second striking mechanism is configured to perform linear motion by being driven by the second motion mechanism. The tip tool member is struck by the first and second striking mechanisms and moves linearly to perform a predetermined machining operation on the workpiece. The tip tool member is preferably struck alternately by each striking mechanism. As the “blow tool” in the present invention, typically, an electric hammer or a tip tool member that performs a hammering operation on a workpiece by performing only a straight striking motion in the long axis direction of the tip tool member is used. This applies to electric hammer drills that perform hammer drill work on workpieces by performing a long-axis striking motion and a rotational motion around the long-axis direction.
[0006] また本発明における「第 1の運動変換機構」および「第 2の運動変換機構」は、典型 的には、モータの回転出力をクランク機構によってピストンの直線運動に変換する機 構がこれに該当する力 これに限らず、モータによって回転される回転体の回転動作 を揺動部材の揺動運動に変換後、この揺動部材の揺動運動をピストンの直線運動に 変換する機構、あるいはモータによって回転される斜板を利用してピストンの直線運 動に変換する機構等を好適に包含する。また本発明における「第 1の打撃機構」およ び「第 2の打撃機構」は、典型的には、ピストンの直線状の直線運動による空気室の 空気圧の変動によって直線運動を行なう打撃子、さらには当該打撃子の直線運動を 先端工具部材に伝達する中間子を有する構成とされるが、中間子を有しない構成を 好適に包含する。 [0006] In addition, the "first motion conversion mechanism" and the "second motion conversion mechanism" in the present invention typically have a mechanism that converts the rotational output of the motor into a linear motion of the piston by the crank mechanism. Not limited to this, a mechanism that converts the rotational motion of the rotating body rotated by the motor into the swing motion of the swing member, and then converts the swing motion of the swing member into the linear motion of the piston, or It preferably includes a mechanism for converting to linear movement of the piston using a swash plate rotated by a motor. Further, the “first striking mechanism” and the “second striking mechanism” in the present invention typically include a striking element that performs a linear motion by a change in air pressure of an air chamber due to a linear linear motion of a piston, Furthermore, although it is set as the structure which has an intermediate | middle which transmits the linear motion of the said striker to a tip tool member, the structure which does not have an intermediate is included suitably.
[0007] また本発明において、「第 1および第 2の運動変換機構」は、少なくとも 2つの運動 変換機構を有するという意味であり、第 1および第 2の運動変換機構に加えて第 3の 運動変換機構、更には第 4の運動変換機構を有する態様を好適に包含する。同様 に「第 1および第 2の打撃機構」は、少なくとも 2つの打撃機構を有するという意味であ り、第 1および第 2の打撃機構に加えて第 3の打撃機構、更には第 4の打撃機構を有 する態様を好適に包含する。また本発明における「先端工具部材」は、単一の工具ビ ットによって構成される態様、あるいは複数の工具ビットによって構成される態様のい ずれをも好適に包含する。その場合において、単一の工具ビットを複数の打撃機構 によって打撃する態様、複数の工具ビットを当該複数の工具ビットと同数の打撃機構 によって打撃する態様、複数の工具ビットを当該複数の工具ビットよりも多数の打撃 機構によって打撃する態様、複数の工具ビットを当該複数の工具ビットよりも少数の 打撃機構によって打撃する態様のいずれをも好適に包含する。 In the present invention, “first and second motion conversion mechanisms” means that there are at least two motion conversion mechanisms, and in addition to the first and second motion conversion mechanisms, a third motion conversion mechanism is included. An embodiment having a conversion mechanism and further a fourth motion conversion mechanism is suitably included. Similarly, “first and second striking mechanisms” means that there are at least two striking mechanisms. In addition to the first and second striking mechanisms, the third striking mechanism and further the fourth striking mechanism. An embodiment having a mechanism is suitably included. In addition, the “tip tool member” in the present invention suitably includes any of an aspect constituted by a single tool bit or an aspect constituted by a plurality of tool bits. In that case, a mode in which a single tool bit is struck by a plurality of striking mechanisms, and a plurality of tool bits have the same number of striking mechanisms as the plurality of tool bits. Any of a mode in which a plurality of tool bits are struck by a larger number of striking mechanisms than the plurality of tool bits, and a mode in which a plurality of tool bits are struck by a smaller number of striking mechanisms than the plurality of tool bits. Preferably included.
[0008] 本発明によれば、モータによって駆動される第 1の運動変換機構および第 1の打撃 機構と、モータによって駆動される第 2の運動変 構および第 2の打撃機構とによ つて、先端工具部材を打撃し、所定の加工作業を行うことができる。このため、単一の 運動変換機構および打撃機構によって先端工具部材を駆動する構成の従来の打撃 工具に比べて作業効率が向上する。換言すれば、単位時間当たりの先端工具部材 の打撃数を従来と同程度に設定したときは、モータの回転速度およびモータによって 駆動される運動変換機構および打撃機構の駆動速度の低速化が可能となり、作業 効率を低下することなく摺動部位の摩耗を軽減して耐久性を向上することができる。  [0008] According to the present invention, the first motion conversion mechanism and the first striking mechanism driven by the motor, and the second motion mechanism and the second striking mechanism driven by the motor, The tip tool member can be hit to perform a predetermined processing operation. For this reason, the working efficiency is improved as compared with the conventional impact tool in which the tip tool member is driven by a single motion conversion mechanism and impact mechanism. In other words, when the number of strikes of the tip tool member per unit time is set to the same level as before, the rotational speed of the motor, the motion conversion mechanism driven by the motor, and the drive speed of the striking mechanism can be reduced. It is possible to reduce the wear of the sliding portion and improve the durability without reducing the working efficiency.
[0009] 上記打撃工具における第 1の打撃機構と第 2の打撃機構とは、互いに対向状に直 線運動を行うように構成するのが好ましい。これにより、一方の打撃機構が先端工具 部材を打撃する際、当該一方の打撃機構に対して他方の打撃機構が対向状に直線 動作することで、いわばカウンタウェイトとして機能し、これにより加工作業時に生ずる 先端工具部材長軸方向の振動が合理的に低減されることになり、作業効率の向上に カロえて、打撃工具の低振動化に有効となる。  [0009] It is preferable that the first striking mechanism and the second striking mechanism in the striking tool are configured to perform a linear motion opposite to each other. As a result, when one striking mechanism strikes the tip tool member, the other striking mechanism moves linearly in opposition to the one striking mechanism, so that it functions as a counterweight. As a result, the vibration in the long axis direction of the tip tool member is reasonably reduced, which is effective for lowering the vibration of the impact tool in addition to improving work efficiency.
[0010] 例えば、第 1の打撃機構は、先端工具部材を駆動するべく直線運動する円柱状の 第 1の打撃子を有し、第 2の打撃機構は、先端工具部材を駆動するべく直線運動す る円柱状かつ第 1の打撃子と略同じ質量を有する第 2の打撃子を有するのが好まし い。この場合、第 1の打撃子と第 2の打撃子とは互いに対向状に直線運動するよう構 成するのが好ましい。これにより、先端工具部材が第 1および第 2の打撃子によって 交互に打撃されて直線動作することで、単位時間当たりの前記先端工具の打撃数を 増大しつつ、さらに第 1の打撃子と第 2の打撃子との間のカウンタウェイトの機能を一 段と高めることができる。  [0010] For example, the first striking mechanism has a cylindrical first striking element that linearly moves to drive the tip tool member, and the second striking mechanism linearly moves to drive the tip tool member. It is preferable to have a second striker that is cylindrical and has approximately the same mass as the first striker. In this case, it is preferable that the first striker and the second striker are configured to linearly move in opposition to each other. As a result, the tip tool member is alternately struck by the first and second strikers and linearly moves, thereby increasing the number of strikes of the tip tool per unit time and further increasing the number of strikes from the first and second strikers. The counterweight function between the two strikers can be further enhanced.
[0011] また上記打撃工具においては、第 1の打撃機構と第 2の打撃機構とは、上下に並列 状に配置するのが好ましい。これにより工具の駆動バランスを一層向上することが可 會とされる。 発明の効果 [0011] In the hitting tool, it is preferable that the first hitting mechanism and the second hitting mechanism are arranged in parallel in the vertical direction. This makes it possible to further improve the tool drive balance. The invention's effect
[0012] 本発明によれば、打撃工具の作業効率を向上する上で有効な技術が提供されるこ ととなつた。  [0012] According to the present invention, a technique effective in improving the working efficiency of the impact tool has been provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] (本発明の第 1の実施形態)  (First embodiment of the present invention)
以下、本発明の第 1の実施形態につき、図 1〜図 3を参照しつつ詳細に説明する。 本実施の形態は、打撃工具の一例として電動ハンマを用いて説明する。図 1は本実 施の形態に係る電動ハンマの全体構成を示す側断面図である。図 1に示すように、 本実施の形態に係る電動ハンマ 101は、概括的に見て、電動ハンマ 101の外郭を形 成する本体部 103と、当該本体部 103の先端領域(図示左側)に中空状のツールホ ルダ 161を介して着脱自在に取り付けられた単一のハンマビット 163と、本体部 103 のハンマビット 163の反対側に連接された作業者が握るハンドグリップ 109とを主体と して構成されている。ハンマビット 163は、本発明における「先端工具部材」に対応す る。なお説明の便宜上、ハンマビット 163側を前、ハンドグリップ 109側を後という。  Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3. This embodiment will be described using an electric hammer as an example of an impact tool. FIG. 1 is a side sectional view showing the overall configuration of the electric hammer according to the present embodiment. As shown in FIG. 1, the electric hammer 101 according to the present embodiment generally has a main body 103 that forms an outline of the electric hammer 101 and a tip region (left side in the drawing) of the main body 103. Mainly composed of a single hammer bit 163 detachably attached via a hollow tool holder 161 and a hand grip 109 gripped by an operator connected to the opposite side of the hammer bit 163 of the main body 103. It is configured. The hammer bit 163 corresponds to the “tip tool member” in the present invention. For convenience of explanation, the hammer bit 163 side is referred to as the front, and the hand grip 109 side is referred to as the rear.
[0014] 工具本体を構成する本体部 103は、駆動モータ 111を収容したモータハウジング 1 05と、第 1と第 2の二組のクランク機構 113, 115、および第 1と第 2の二組の打撃要 素 117, 119を収容するギアハウジング 107とによって構成されている。駆動モータ 1 11の回転出力は、第 1および第 2クランク機構 113, 115によって直線運動に適宜変 換された上で、第 1および第 2の打撃要素 117, 119に伝達され、当該第 1および第 2打撃要素 117, 119を介してハンマビット 163の長軸方向(図 1における左右方向) への衝撃力を発生する。駆動モータ 111は、本発明における「モータ」に対応する。 第 1クランク機構 113は、本発明における「第 1の運動変棚構」に対応し、第 2クラン ク機構 115は、本発明における「第 2の運動変擁構」に対応する。また第 1打撃要 素 117は、本発明における「第 1の打撃機構」に対応し、第 2打撃要素 119は、本発 明における「第 2の打撃機構」に対応する。なお駆動モータ 111は、ハンドグリップ 10 9に配置されたトリガ 109aの引き操作によって通電駆動される。  [0014] The main body 103 constituting the tool main body includes a motor housing 105 containing a drive motor 111, first and second sets of crank mechanisms 113 and 115, and first and second sets of two. A gear housing 107 that houses the striking elements 117 and 119 is formed. The rotational output of the drive motor 111 is appropriately converted into linear motion by the first and second crank mechanisms 113, 115 and then transmitted to the first and second striking elements 117, 119, and the first and second An impact force in the major axis direction of the hammer bit 163 (left and right direction in FIG. 1) is generated via the second striking elements 117 and 119. The drive motor 111 corresponds to the “motor” in the present invention. The first crank mechanism 113 corresponds to the “first motion variable shelf” in the present invention, and the second crank mechanism 115 corresponds to the “second motion variable structure” in the present invention. The first striking element 117 corresponds to the “first striking mechanism” in the present invention, and the second striking element 119 corresponds to the “second striking mechanism” in the present invention. The drive motor 111 is energized and driven by a pulling operation of a trigger 109a disposed on the handgrip 109.
[0015] 図 2には電動ハンマ 101の主要部を拡大した状態が断面図で示され、図 3には図 2 の断面指示線に基づく断面構造が示される。図 2に示すように、第 1および第 2クラン ク機構 113, 115は、ギアハウジング 107内に上下に並列状に配置されている。第 1 クランク機構 113は、水平面内にて回転可能とされた第 1クランク板 125、第 1クランク 板 125に回転中心からシフトして配置された第 1偏心軸 127、第 1偏心軸 127に一端 が遊嵌状に連接された第 1クランクアーム 129、第 1クランクアーム 129の他端に第 1 連結軸 131を介して相対回動可能に連結された第 1駆動子としての第 1ピストン 133 を主体に構成される。第 1クランク板 125は、円形に形成されるとともに、その外周面 に被動ギア 125aを有し、この被動ギア 125aが駆動モータ 111によって回転駆動さ れる駆動ギア 121と嚙合い係合されている。第 1ピストン 133は、シリンダ 151の第 1 ボア 151 a内に摺動自在に配置され、駆動モータ 111が通電駆動されることに伴!、当 該シリンダ 151の長軸方向(ノヽンマビット長軸方向)に直線動作を行う。 FIG. 2 is a sectional view showing an enlarged state of the main part of the electric hammer 101, and FIG. 3 shows a sectional structure based on the sectional instruction line of FIG. As shown in Figure 2, the first and second clan The gear mechanisms 113 and 115 are arranged in parallel in the gear housing 107 in the vertical direction. The first crank mechanism 113 includes a first crank plate 125 that is rotatable in a horizontal plane, a first eccentric shaft 127 that is shifted from the center of rotation to the first crank plate 125, and one end of the first eccentric shaft 127. Is connected to the other end of the first crank arm 129 via a first connecting shaft 131 so as to be relatively rotatable. Consists of the subject. The first crank plate 125 is formed in a circular shape, and has a driven gear 125 a on the outer peripheral surface thereof. The driven gear 125 a is engaged with and engaged with a drive gear 121 that is rotationally driven by the drive motor 111. The first piston 133 is slidably disposed in the first bore 151a of the cylinder 151, and when the drive motor 111 is energized and driven, the long axis direction of the cylinder 151 (the non-mabit long axis direction) ) Perform a linear motion.
[0016] 第 2クランク機構 115は、水平面内にて回転可能とされた第 2クランク板 137、第 2ク ランク板 137に回転中心力もシフトして配置された第 2偏心軸 139、第 2偏心軸 139 に一端が遊嵌状に連接された第 2クランクアーム 141、第 2クランクアーム 141の他端 に第 2連結軸 143を介して相対回動可能に取り付けられた第 2駆動子としての第 2ピ ストン 145を主体に構成される。第 2ピストン 145は、シリンダ 151の第 2ボア 151b内 に摺動自在に配置されて!、る。  [0016] The second crank mechanism 115 includes a second crank plate 137 that is rotatable in a horizontal plane, a second eccentric shaft 139 that is arranged with a rotational center force shifted to the second crank plate 137, and a second eccentric shaft. A second crank arm 141, one end of which is connected to the shaft 139 in a loose fit, and a second driver as a second driver attached to the other end of the second crank arm 141 via a second connecting shaft 143 so as to be relatively rotatable. Mainly composed of 2 pistons 145. The second piston 145 is slidably disposed in the second bore 151b of the cylinder 151 !.
[0017] 第 1クランク板 125および第 2クランク板 137は、その回転軸線が同一軸線となるよう に設定される。また第 1クランク板 125の回転中心からの第 1偏心軸 127のシフト量と 、第 2クランク板 137の回転中心からの第 2偏心軸 139のシフト量は、共に等しく設定 されている。そして第 1偏心軸 127と第 2偏心軸 139とは、第 1クランク板 125の回転 方向にお 、て、概ね 180度の位相差を有するように連結部材 147によって連結され ている。すなわち、第 2クランク機構 115は、駆動モータ 111によって駆動される第 1ク ランク機構 113から連結部材 147を介して駆動されるとともに、第 2ピストン 145が第 1 ピストン 133に対してクランク角度で概ね 180度の遅れをもって対向状の直線動作を 行う構成とされる。  [0017] The first crank plate 125 and the second crank plate 137 are set so that their rotational axes are the same axis. The shift amount of the first eccentric shaft 127 from the rotation center of the first crank plate 125 and the shift amount of the second eccentric shaft 139 from the rotation center of the second crank plate 137 are both set equal. The first eccentric shaft 127 and the second eccentric shaft 139 are connected by a connecting member 147 so as to have a phase difference of approximately 180 degrees in the rotational direction of the first crank plate 125. That is, the second crank mechanism 115 is driven from the first crank mechanism 113 driven by the drive motor 111 via the connecting member 147, and the second piston 145 is substantially at a crank angle with respect to the first piston 133. It is configured to perform opposing linear motion with a delay of 180 degrees.
[0018] 第 1および第 2打撃要素 117, 119は、上下に並列状に配置されている。第 1打撃 要素 117は、シリンダ 151の第 1ボア 151a内に摺動自在に配置されてシリンダ 151 の長軸方向に直線動作する第 1打撃子としての第 1ストライカ 153と、筒状のツール ホルダ 161内に摺動自在に配置されるとともに、第 1ストライカ 153の運動エネルギを ハンマビット 163に伝達する中間子としてのインパクトボルト 157とを主体にして構成 される。第 1ストライカ 153は、第 1ピストン 133の摺動動作に伴うシリンダ 151の第 1 空気室 151cの空気圧の変動、つまり空気パネを介して駆動され、インパクトボルト 15 7に衝突(打撃)することでツールホルダ 161に保持されたノヽンマビット 163に打撃力 を伝達する。すなわち、第 1打撃要素 117は、第 1クランク機構 113によって駆動され る。 [0018] The first and second striking elements 117, 119 are arranged in parallel in the vertical direction. The first striking element 117 includes a first striker 153 as a first striking element slidably disposed in the first bore 151a of the cylinder 151 and moving linearly in the longitudinal direction of the cylinder 151, and a cylindrical tool. The holder 161 is slidably disposed, and is configured mainly with an impact bolt 157 as an intermediate that transmits the kinetic energy of the first striker 153 to the hammer bit 163. The first striker 153 is driven through the fluctuation of the air pressure in the first air chamber 151c of the cylinder 151 accompanying the sliding movement of the first piston 133, that is, through the air panel, and collides (hits) with the impact bolt 157. The striking force is transmitted to the non-mabit 163 held in the tool holder 161. That is, the first striking element 117 is driven by the first crank mechanism 113.
[0019] また第 2打撃要素 119は、シリンダ 151の第 2ボア 151b内に摺動自在に配置され てシリンダ 151の長軸方向に直線動作する第 2打撃子としての第 2ストライカ 155と、 上記のインパクトボルト 157とを主体にして構成される。第 2ストライカ 155は、第 2ビス トン 145の摺動動作に伴うシリンダ 151の第 2空気室 151dの空気パネを介して駆動 され、インパクトボルト 157に衝突(打撃)することで当該インパクトボルト 157に保持さ れたノヽンマビット 163に打撃力を伝達する。すなわち、第 2打撃要素 117は、第 2クラ ンク機構 115によって駆動される。  Further, the second striking element 119 is slidably disposed in the second bore 151b of the cylinder 151, and the second striker 155 as a second striker that linearly moves in the longitudinal direction of the cylinder 151; No. impact bolt 157. The second striker 155 is driven through the air panel of the second air chamber 151d of the cylinder 151 accompanying the sliding motion of the second piston 145, and collides with the impact bolt 157 to hit the impact bolt 157. The striking force is transmitted to the retained non-mabit 163. That is, the second striking element 117 is driven by the second crank mechanism 115.
[0020] なおインパクトボルト 157は、長軸方向後端部のうち、径方向の下部領域において 第 1ストライカ 153の打撃動作を受け、径方向の上部領域において第 2ストライカ 155 の打撃動作を受けることが可能な広さの被打撃面 157aを有する。  [0020] The impact bolt 157 receives a striking motion of the first striker 153 in the radially lower region of the rear end portion in the long axis direction and receives a striking motion of the second striker 155 in the radially upper region. The impact surface 157a is as large as possible.
[0021] シリンダ 151は、第 1ピストン 133および第 1ストライカ 153が摺動自在に配置される 円形の第 1ボア 151aと、第 2ピストン 145および第 2ストライカ 155が摺動自在に配置 される円形の第 2ボア 151bとを有するとともに、ギアハウジング 107に長軸方向およ び周方向の移動が規制された状態で装着されて!ヽる。なお図 3にはシリンダ 151の 横断面構造が示される。ツールホルダ 161は、ギアハウジング 107の先端部に長軸 方向および周方向の移動が規制された状態で装着されている。ハンマビット 163は、 ツールホルダ 161にその長軸方向の相対移動が許容された状態で保持される。  [0021] The cylinder 151 has a circular first bore 151a in which the first piston 133 and the first striker 153 are slidably arranged, and a circle in which the second piston 145 and the second striker 155 are slidably arranged. The second bore 151b is attached to the gear housing 107 in a state where movement in the long axis direction and the circumferential direction is restricted. FIG. 3 shows the cross-sectional structure of the cylinder 151. The tool holder 161 is attached to the distal end portion of the gear housing 107 in a state where movement in the long axis direction and the circumferential direction is restricted. The hammer bit 163 is held by the tool holder 161 in a state where relative movement in the major axis direction is allowed.
[0022] 次に、上記のように構成される電動ハンマ 101の作用について説明する。図 1に示 す駆動モータ 111が通電駆動されると、その回転出力により、駆動ギア 121が回動動 作する。これに伴い駆動ギア 121と嚙合い係合する被動ギア 123を介して第 1クラン ク板 125が回転される。すると、第 1クランク板 125に配置された第 1偏心軸 127が周 回動作し、これによつて第 1クランクアーム 129が揺動し、当該第 1クランクアーム 129 の先端に取り付けられた第 1ピストン 133がシリンダ 151内を直線状に摺動動作され る。第 1ピストン 133が非圧縮側(図 1および図 2の右側)からハンマビット 163側へ摺 動動作すると、それに伴う第 1空気室 151c内の空気圧の変動、すなわち空気パネの 作用により、第 1ストライカ 153はシリンダ 151内を直線運動する。そして第 1ストライカ 153は、インパクトボルト 157に衝突することで、その運動エネルギ(打撃力)をハンマ ビット 163に伝達し、これによつてハンマビット 163がツールホルダ 161内を摺動動作 して被加工材に対するハンマ作業を遂行する。 Next, the operation of the electric hammer 101 configured as described above will be described. When the drive motor 111 shown in FIG. 1 is energized, the drive gear 121 rotates by the rotation output. Accordingly, the first crank plate 125 is rotated via the driven gear 123 that meshes with and engages with the drive gear 121. Then, the first eccentric shaft 127 arranged on the first crank plate 125 rotates. This causes the first crank arm 129 to swing, and the first piston 133 attached to the tip of the first crank arm 129 is slid linearly within the cylinder 151. When the first piston 133 slides from the non-compression side (the right side in FIGS. 1 and 2) to the hammer bit 163 side, the first air chamber 151c is caused to fluctuate in the air pressure in the first air chamber 151c. The striker 153 moves linearly in the cylinder 151. Then, the first striker 153 collides with the impact bolt 157 to transmit the kinetic energy (striking force) to the hammer bit 163, which causes the hammer bit 163 to slide in the tool holder 161 and to be covered. Perform hammering work on the workpiece.
[0023] 一方、第 2クランク機構 115側においては、第 1クランク板 125の回転に伴う第 1偏 心軸 127の周回動作に連動して第 2偏心軸 139が連結部材 147を介して第 2クラン ク板 137の回転中心周りを周回動作する。これにより、第 2クランクアーム 141が揺動 動作し、第 2ピストン 145がシリンダ 151の第 2ボア 151b内を摺動動作する。本実施 の形態においては、第 1偏心軸 127と第 2偏心軸 139とは、クランク角度で概ね 180 度の位相差を有する。このため、第 2ピストン 145は、第 1ピストン 133に対し概ね 180 度の遅れをもってシリンダ 151の第 2ボア 151b内を直線状に摺動動作される。そして 第 2ピストン 145が非圧縮側力もハンマビット 163側へ摺動動作すると、それに伴う第 2空気室 151dの空気パネの作用により、第 2ストライカ 155がシリンダ 151内を直線 運動してインパクトボルト 157に衝突し、その運動エネルギ(打撃力)をハンマビット 1 63に伝達する。これによつてハンマビット 163がツールホルダ 161内を摺動動作して 被加工材に対するハンマ作業を遂行する。  On the other hand, on the second crank mechanism 115 side, the second eccentric shaft 139 is connected to the second eccentric shaft 139 via the connecting member 147 in conjunction with the rotating operation of the first eccentric shaft 127 accompanying the rotation of the first crank plate 125. Crank plate 137 circulates around the center of rotation. As a result, the second crank arm 141 swings and the second piston 145 slides in the second bore 151b of the cylinder 151. In the present embodiment, the first eccentric shaft 127 and the second eccentric shaft 139 have a phase difference of approximately 180 degrees in terms of crank angle. Therefore, the second piston 145 is slid linearly within the second bore 151b of the cylinder 151 with a delay of about 180 degrees with respect to the first piston 133. Then, when the second piston 145 slides to the hammer bit 163 side also with the non-compression side force, the second striker 155 moves linearly in the cylinder 151 due to the action of the air panel of the second air chamber 151d, and the impact bolt 157 The kinetic energy (striking force) is transmitted to the hammer bit 1 63. As a result, the hammer bit 163 slides in the tool holder 161 to perform a hammering operation on the workpiece.
[0024] 上記のように、本実施の形態によれば、単一のハンマビット 163に対してクランク一 回転で 2回の打撃動作を行わせることができる。このため、クランク一回転で一回の打 撃動作を行う従来の電動ハンマに比べて、駆動モータ 111の回転数を同一に設定し たときのハンマビット 163の打撃数が 2倍になるため、作業効率が向上する。また見 方を変えれば、単位時間当たりのハンマビット 163の打撃数を従来と同程度に設定し たときは、駆動モータ 111の回転速度および当該駆動モータ 111によって駆動され る第 1および第 2クランク機構 113, 115、第 1および第 2打撃要素 117, 119の駆動 速度につき、それぞれ低速ィ匕が可能となる結果、作業効率を低下することなく摺動部 材あるいはオーリング等の摺動部位の摩耗を軽減して耐久性を向上することができる [0024] As described above, according to the present embodiment, a single hammer bit 163 can be struck twice by one crank rotation. For this reason, the number of hits of the hammer bit 163 is doubled when the number of revolutions of the drive motor 111 is set to be equal to that of a conventional electric hammer that performs a single hitting operation with one crank rotation. Work efficiency is improved. In other words, when the number of hammer bits 163 hit per unit time is set to the same level as the conventional one, the rotational speed of the drive motor 111 and the first and second cranks driven by the drive motor 111 are changed. The driving speed of the mechanisms 113, 115 and the first and second striking elements 117, 119 can be reduced at low speeds, resulting in a sliding part without reducing work efficiency. Durability can be improved by reducing wear on sliding parts such as materials or O-rings.
[0025] また本実施の形態では、第 1ピストン 133と第 2ピストン 145がクランク角度で概ね 1 80度の位相差で駆動される構成としている。これにより、第 1ストライカ 153と第 2スト ライカ 155が互いに対向状の直線運動を行う。このため、一方の、例えば第 1ストライ 力 153がハンマビット 163を打撃する側(前方)へと直線動作するとき、他方の例えば 第 2ストライカ 155がハンマビット 163から離れる側 (後方)へと直線動作することで、 いわばカウンタウェイトとして機能する。このことによってカ卩工作業時に生ずるハンマ ビット長軸方向の振動が合理的に低減されることになり、電動ハンマ 101の低振動化 に有効となる。 In the present embodiment, the first piston 133 and the second piston 145 are configured to be driven with a phase difference of approximately 180 degrees in terms of crank angle. As a result, the first striker 153 and the second striker 155 perform linear movements that face each other. Therefore, when one, for example, the first strike force 153 linearly moves to the side hitting the hammer bit 163 (front), the other, for example, the second striker 155 goes straight to the side away from the hammer bit 163 (rear). In operation, it functions as a counterweight. As a result, the vibration in the long axis direction of the hammer bit that occurs during the carpentry work is reasonably reduced, which is effective in reducing the vibration of the electric hammer 101.
[0026] (本発明の第 2の実施形態)  (Second Embodiment of the Present Invention)
次に、本発明の第 2の実施形態につき、図 4〜図 7を参照しつつ説明する。この第 2 の実施形態に係る電動ハンマ 101は、先端工具部材として、第 1ハンマビット 173と 第 2ハンマビット 175を用いる 2ビットタイプとしたものであり、これに関連する構成を除 いては前述した第 1の実施形態と同様に構成される。したがって、第 1の実施形態と 同等な構成部材については、同一符号を付してその説明を省略あるいは簡略にする 。第 1ハンマビット 173は、本発明における「第 1の工具ビット」に対応し、第 2ハンマビ ット 175は、本発明における「第 2の工具ビット」に対応する。  Next, a second embodiment of the present invention will be described with reference to FIGS. The electric hammer 101 according to the second embodiment is a two-bit type using the first hammer bit 173 and the second hammer bit 175 as the tip tool members, and is the same as that described above except for the configuration related thereto. The configuration is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified. The first hammer bit 173 corresponds to the “first tool bit” in the present invention, and the second hammer bit 175 corresponds to the “second tool bit” in the present invention.
[0027] 図 4には電動ハンマ 101の全体構成が示され、図 5には主要部の構成が示される。  FIG. 4 shows the overall configuration of the electric hammer 101, and FIG. 5 shows the configuration of the main part.
また図 6および図 7には、それぞれ図 5における断面指示線に基づく断面構造が示さ れる。図 4および図 5に示すように、第 2の実施形態のツールホルダ 171は、第 1ハン マビット 173装着用と第 2ハンマビット 175装着用の 2つの筒孔を有し、ギアハウジン グ 107の先端側 (前端側)にハンマビット長軸方向および周方向の移動が規制された 状態で装着される。第 1ハンマビット 173と第 2ハンマビット 175は、ツールホルダ 171 にその長軸方向の相対移動が許容された状態で保持される。  6 and 7 each show a cross-sectional structure based on the cross-section indicating line in FIG. As shown in FIGS. 4 and 5, the tool holder 171 of the second embodiment has two cylindrical holes for attaching the first hammer bit 173 and the second hammer bit 175, and the tip of the gear housing 107. Mounted on the side (front end side) in a state where movement in the long axis direction and circumferential direction of the hammer bit is restricted. The first hammer bit 173 and the second hammer bit 175 are held by the tool holder 171 in a state where relative movement in the major axis direction is allowed.
[0028] 第 1打撃要素 117は、シリンダ 151の第 1ボア 151a内をハンマビット長軸方向に直 線動作する第 1打撃子としての第 1ストライカ 153と、ツールホルダ 171内に摺動自在 に配置され、第 1ストライカ 153の運動エネルギを第 1ハンマビット 173に伝達する第 1中間子としての第 1インパクトボルト 177とを主体にして構成される。そして第 1ストラ イカ 153は、第 1ピストン 133の摺動動作に伴うシリンダ 151の第 1空気室 151cの空 気パネを介して駆動され、第 1インパクトボルト 177に衝突 (打撃)することで当該ツー ルホルダ 171に保持された第 1ハンマビット 173に打撃力を伝達する。第 1打撃要素 117は、本発明における「第 1の打撃機構」に対応する。 [0028] The first striking element 117 is slidable in the tool holder 171 and the first striker 153 as a first striking element that linearly moves in the first bore 151a of the cylinder 151 in the longitudinal direction of the hammer bit. Arranged to transmit the kinetic energy of the first striker 153 to the first hammer bit 173. It is mainly composed of a first impact bolt 177 as a meson. The first striker 153 is driven through the air panel of the first air chamber 151c of the cylinder 151 as the first piston 133 slides, and collides (hits) with the first impact bolt 177. The striking force is transmitted to the first hammer bit 173 held by the tool holder 171. The first striking element 117 corresponds to the “first striking mechanism” in the present invention.
[0029] 第 2打撃要素 119は、シリンダ 151の第 2ボア 151b内をハンマビット長軸方向に直 線動作する第 2打撃子としての第 2ストライカ 155と、ツールホルダ 171内に摺動自在 に配置され、第 2ストライカ 155の運動エネルギを第 2ハンマビット 175に伝達する第 2中間子としての第 2インパクトボルト 179とを主体にして構成される。そして第 2ストラ イカ 155は、第 2ピストン 145の摺動動作に伴うシリンダ 151の第 2空気室 151dの空 気パネを介して駆動され、第 2インパクトボルト 179に衝突 (打撃)することで当該ツー ルホルダ 171に保持された第 2ハンマビット 175に打撃力を伝達する。第 2打撃要素 119は、本発明における「第 2の打撃機構」に対応する。  [0029] The second striking element 119 is slidable in the tool holder 171 and a second striker 155 as a second striking element that linearly moves in the second bore 151b of the cylinder 151 in the longitudinal direction of the hammer bit. The second impact bolt 179 as a second meson that is arranged and transmits the kinetic energy of the second striker 155 to the second hammer bit 175 is mainly configured. The second striker 155 is driven through the air panel of the second air chamber 151d of the cylinder 151 accompanying the sliding movement of the second piston 145 and collides (hits) with the second impact bolt 179. The striking force is transmitted to the second hammer bit 175 held by the tool holder 171. The second striking element 119 corresponds to the “second striking mechanism” in the present invention.
[0030] 第 1打撃要素 117を駆動する第 1クランク機構 113、および第 2打撃要素 119を駆 動する第 2クランク機構 115については、前述した第 1の実施形態と同様に構成され ている。したがって、駆動モータ 111が通電駆動されると、第 1クランク機構 113によ つて第 1打撃要素 117が駆動され、第 2クランク機構 115によって第 2打撃要素 119 が駆動される。このため、第 1ハンマビット 173と第 2ハンマビット 175は、クランク一回 転で各一回の打撃動作を行う。すなわち、第 1ハンマビット 173と第 2ハンマビット 17 5とによるトータルでの打撃動作数がクランク一回転で 2回行われ、第 1の実施形態と 同様、作業効率を向上することができる。他方、第 1ハンマビット 173と第 2ハンマビッ ト 175のトータルでの打撃動作数を従来と同程度に設定したときは、駆動モータ 111 の回転速度および駆動モータ 111によって駆動される第 1および第 2クランク機構 11 3, 115、第 1および第 2打撃要素 117, 119の駆動速度につき、それぞれ低速化が 可能となる結果、作業効率を低下することなく摺動部材あるいはオーリング等の摺動 部位の摩耗を軽減して耐久性を向上することができる。  [0030] The first crank mechanism 113 that drives the first striking element 117 and the second crank mechanism 115 that drives the second striking element 119 are configured in the same manner as in the first embodiment described above. Therefore, when the drive motor 111 is energized, the first striking element 117 is driven by the first crank mechanism 113, and the second striking element 119 is driven by the second crank mechanism 115. For this reason, the first hammer bit 173 and the second hammer bit 175 perform one hitting operation each time the crank rotates. That is, the total number of hitting operations by the first hammer bit 173 and the second hammer bit 175 is performed twice in one rotation of the crank, and work efficiency can be improved as in the first embodiment. On the other hand, when the total number of striking motions of the first hammer bit 173 and the second hammer bit 175 is set to the same level as in the prior art, the rotational speed of the driving motor 111 and the first and second driving motors 111 are driven. The driving speed of the crank mechanisms 11 3, 115 and the first and second striking elements 117, 119 can be reduced, so that the sliding parts such as sliding members or O-rings can be moved without reducing the working efficiency. Wear can be reduced and durability can be improved.
[0031] また第 1クランク機構 113の第 1ピストン 133と、第 2クランク機構 115の第 2ピストン 1 45とは、クランク角度で 180度の位相差でシリンダ 151内を直線動作する構成として いる。このため、第 1の実施形態と同様、加工作業時に生ずるハンマビット長軸方向 の振動を合理的に低減でき、電動ハンマ 101の低振動化に有効となる。また本実施 の形態においては、第 1と第 2の 2本のハンマビット 173, 175を用いてカ卩工作業を行 う構成のため、 1本の場合に比べて同時に広範囲をカ卩ェすることができる。 [0031] The first piston 133 of the first crank mechanism 113 and the second piston 145 of the second crank mechanism 115 are configured to linearly move in the cylinder 151 with a phase difference of 180 degrees in terms of crank angle. Yes. For this reason, as in the first embodiment, the vibration in the long axis direction of the hammer bit that occurs during the machining operation can be rationally reduced, and this is effective in reducing the vibration of the electric hammer 101. Further, in this embodiment, the construction work is performed using the first and second two hammer bits 173 and 175, so that a wide range is simultaneously checked as compared with the case of one. be able to.
[0032] なお上述した実施の形態においては、駆動モータ 111の回転出力をピストン 133, 145の直線動作に変換する手段としてクランク機構 113, 115を採用したが、これに 限らず、例えば駆動モータ 111によって回転される回転体の回転動作を揺動部材の 揺動運動に変換後、この揺動部材の揺動運動をピストン 133, 145の直線動作に変 換する機構、あるいは駆動モータ 111によって回転される斜板を利用してピストン 13 3, 145の直線動作に変換する機構等を採用してもよい。また上述した実施の形態で は、二組のクランク機構 113, 115と、二組の打撃要素 117, 119とを有する場合で 説明したが、これらを更に増設しても構わない。 In the embodiment described above, the crank mechanisms 113 and 115 are employed as means for converting the rotational output of the drive motor 111 into the linear motion of the pistons 133 and 145. However, the present invention is not limited to this, and for example, the drive motor 111 After the rotating motion of the rotating body rotated by is converted into the swinging motion of the swinging member, the swinging motion of this swinging member is converted to the linear motion of the pistons 133, 145 or rotated by the drive motor 111. A mechanism that converts the pistons 133 and 145 into linear motion using a swash plate may be used. In the above-described embodiment, the case where the two crank mechanisms 113 and 115 and the two striking elements 117 and 119 are provided has been described. However, these may be further added.
また本実施の形態は、打撃工具の一例として、電動ハンマ 101を例にとって説明し た力 これに限らず、ノ、ンマビット 163, 173, 175が長軸方向の打撃動作に加えて 長軸方向周りの回転動作を行うハンマドリルに適用してもょ 、。  In addition, the present embodiment is not limited to the force described with the electric hammer 101 as an example of a striking tool, and the umbilits 163, 173, and 175 are not limited to the striking motion in the long axis direction. It can be applied to a hammer drill that performs rotational movement.
図面の簡単な説明  Brief Description of Drawings
[0033] [図 1]本発明の第 1の実施形態に係る電動ハンマの全体構成を示す側断面図である  FIG. 1 is a side sectional view showing an overall configuration of an electric hammer according to a first embodiment of the present invention.
[図 2]電動ハンマの主要部を示す側断面図である。 FIG. 2 is a side sectional view showing a main part of the electric hammer.
[図 3]図 2における A— A線に基づく縦断面図である。  FIG. 3 is a longitudinal sectional view based on the line AA in FIG.
[図 4]本発明の第 2の実施形態に係る電動ハンマの全体構成を示す側断面図である  FIG. 4 is a side sectional view showing an overall configuration of an electric hammer according to a second embodiment of the present invention.
[図 5]電動ハンマの主要部を示す側断面図である。 FIG. 5 is a side sectional view showing a main part of the electric hammer.
[図 6]図 5における B—B線に基づく断面図である。  6 is a cross-sectional view based on the line BB in FIG.
[図 7]図 5における C— C線に基づく断面図である。  FIG. 7 is a cross-sectional view based on the line CC in FIG.
符号の説明  Explanation of symbols
[0034] 101 電動ハンマ(打撃工具) 105 モータハウジング[0034] 101 Electric hammer (blow tool) 105 Motor housing
107 ギアノヽウジング107 Gearno
109 ハンドグリップ109 Hand grip
109ε 1 トリガ 109ε 1 trigger
111 駆動モータ 111 Drive motor
113 第 1クランク機構113 1st crank mechanism
115 第 2クランク機構115 2nd crank mechanism
117 第 1打撃要素117 First Strike Element
119 第 2打撃要素119 Second strike element
121 駆動ギア 121 Drive gear
125 第 1クランク板 125 1st crank plate
125a . 被動ギア125a. Driven gear
127 第 1偏心軸127 First eccentric shaft
129 第 1クランクアーム129 1st crank arm
131 第 1連結軸131 1st connecting shaft
133 第 1ピストン133 1st piston
137 第 2クランク板137 2nd crank plate
139 第 2偏心軸139 Second eccentric shaft
141 第 2クランクアーム141 2nd crank arm
143 第 2連結軸143 Second connecting shaft
145 第 2ピストン145 2nd piston
147 連結部材 147 Connecting member
151 シリンダ  151 cylinders
151a 第 1ボア  151a 1st bore
151b 第 2ボア  151b 2nd bore
151c 第 1空気室 151c 1st air chamber
151d 第 2空気室151d 2nd air chamber
153 第 1ストライカ 155 第 2ストライカ 153 First striker 155 Second striker
157 インパクトボルト 157 impact bolt
157a 被打撃面 157a Impact surface
161 ツールホルダ 161 Tool holder
163 ハンマビット (先端工具部材、工具ビット)  163 Hammer bit (tip tool member, tool bit)
171 ツールホルダ 171 Tool holder
173 第 1ハンマビット (先端工具部材、第 1の工具ビット) 175 第 2ハンマビット (先端工具部材、第 2の工具ビット) 177 第 1インパクトボルト  173 First hammer bit (tip tool member, first tool bit) 175 Second hammer bit (tip tool member, second tool bit) 177 First impact bolt
179 第 2インパクトボルト 179 2nd impact bolt

Claims

請求の範囲 The scope of the claims
[1] モータと、  [1] a motor;
前記モータの回転出力を直線運動に変換する第 1の運動変換機構と、 前記第 1の運動変 構によって駆動されることで直線運動を行う第 1の打撃機構 と、  A first motion conversion mechanism that converts the rotational output of the motor into a linear motion; a first striking mechanism that performs a linear motion by being driven by the first motion mechanism;
前記モータの回転出力を直線運動に変換する第 2の運動変換機構と、 前記第 2の運動変 構によって駆動されることで直線運動を行う第 2の打撃機構 と、  A second motion converting mechanism that converts the rotational output of the motor into a linear motion; a second striking mechanism that performs a linear motion by being driven by the second motion mechanism;
前記第 1および第 2の打撃機構によって打撃されて直線動作し、被加工材に所定 の加工作業を行う先端工具部材を有することを特徴とする打撃工具。  A striking tool comprising a tip tool member that is struck by the first and second striking mechanisms and linearly moves to perform a predetermined processing operation on a workpiece.
[2] 請求項 1に記載の打撃工具であって、 [2] The impact tool according to claim 1,
前記第 1の打撃機構は、前記先端工具部材を駆動するべく直線運動する第 1の打 撃子を有し、  The first striking mechanism has a first striking element that moves linearly to drive the tip tool member;
前記第 2の打撃機構は、前記先端工具部材を駆動するべく直線運動するとともに、 前記第 1の打撃子と略同じ質量を有する第 2の打撃子を有し、  The second striking mechanism has a second striking element that linearly moves to drive the tip tool member and has substantially the same mass as the first striking element,
前記第 1の打撃子と第 2の打撃子とは互いに対向状に直線運動するよう構成され、 前記先端工具部材は、被加工材に対し所定の加工作業を行う単一の工具ビットに よって構成されるとともに、前記第 1および第 2の打撃子によって交互に打撃されて直 線動作することで、単位時間当たりの前記先端工具の打撃数を増大しつつ、さらに 前記第 1の打撃子と前記第 2の打撃子とが相互にカウンタウェイトとして機能するよう に構成されて ヽることを特徴とする打撃工具。  The first striker and the second striker are configured to linearly move in opposition to each other, and the tip tool member is configured by a single tool bit that performs a predetermined machining operation on the workpiece. In addition, the first striker and the second striker are alternately struck and operated in a straight line, thereby increasing the number of strikes of the tip tool per unit time, and further, the first striker and the A striking tool characterized in that the second striking element is configured so as to function as a counterweight.
[3] 請求項 2に記載の打撃工具であって、 [3] The impact tool according to claim 2,
前記第 1の打撃子と第 2の打撃子とは、ともに円柱状に形成されるとともに略同径と されて 、ることを特徴とする打撃工具。  The striking tool characterized in that the first striking element and the second striking element are both formed in a cylindrical shape and have substantially the same diameter.
[4] 請求項 1に記載の打撃工具であって、 [4] A striking tool according to claim 1,
前記先端工具部材として、前記第 1の打撃機構によって打撃される第 1の工具ビッ トと、前記第 2の打撃機構によって打撃される第 2の工具ビットとを備えることを特徴と する打撃工具。 A striking tool comprising, as the tip tool member, a first tool bit striking by the first striking mechanism and a second tool bit striking by the second striking mechanism.
[5] 請求項 4に記載の打撃工具であって、 [5] The impact tool according to claim 4,
前記第 1の打撃機構と前記第 2の打撃機構とは、互いに対向状に直線運動を行うよ うに構成されて 、ることを特徴とする打撃工具。  The striking tool, wherein the first striking mechanism and the second striking mechanism are configured to perform linear motions in opposition to each other.
[6] 請求項 1から 5までのいずれかに記載の打撃工具であって、前記第 1の打撃機構と 前記第 2の打撃機構とは、上下に並列状に配置されていることを特徴とする打撃ェ 具。 [6] The striking tool according to any one of claims 1 to 5, wherein the first striking mechanism and the second striking mechanism are arranged in parallel vertically. Blow tool to perform.
V、ることを特徴とする打撃工具。  V, a striking tool characterized by that.
PCT/JP2007/051415 2006-01-31 2007-01-29 Impact tool WO2007088821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07707646.1A EP1980371B1 (en) 2006-01-31 2007-01-29 Impact tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006022446A JP2007203388A (en) 2006-01-31 2006-01-31 Impact tool
JP2006-022446 2006-01-31

Publications (1)

Publication Number Publication Date
WO2007088821A1 true WO2007088821A1 (en) 2007-08-09

Family

ID=38327394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051415 WO2007088821A1 (en) 2006-01-31 2007-01-29 Impact tool

Country Status (3)

Country Link
EP (1) EP1980371B1 (en)
JP (1) JP2007203388A (en)
WO (1) WO2007088821A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2127820A1 (en) * 2008-05-26 2009-12-02 Max Co., Ltd. Driving tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPN20110067A1 (en) * 2011-10-11 2013-04-12 Giovanni Zago DRILLING EQUIPMENT-PLURI-CYLINDRICAL DEMOLITION FOR ELECTRO-PNEUMATIC ACTION
DE102015203487A1 (en) * 2015-02-26 2016-09-01 Ecoroll Ag Werkzeugtechnik Clamping device for influencing workpieces and associated method
US20230027574A1 (en) * 2021-07-26 2023-01-26 Makita Corporation Striking tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS308287Y1 (en) * 1953-01-17 1955-06-15
JPS4963601A (en) * 1972-10-21 1974-06-20
JPS516583U (en) * 1974-07-02 1976-01-17
JPS6033636B2 (en) * 1979-07-04 1985-08-03 日立工機株式会社 electric hammer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE830332C (en) * 1950-02-11 1952-02-04 Moenninghoff Maschf Pneumatically operated pick hammer
DE967868C (en) * 1955-03-31 1957-12-19 Robel & Co G Impact device
JPS6033636A (en) * 1983-08-04 1985-02-21 Nec Corp Inferential device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS308287Y1 (en) * 1953-01-17 1955-06-15
JPS4963601A (en) * 1972-10-21 1974-06-20
JPS516583U (en) * 1974-07-02 1976-01-17
JPS6033636B2 (en) * 1979-07-04 1985-08-03 日立工機株式会社 electric hammer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2127820A1 (en) * 2008-05-26 2009-12-02 Max Co., Ltd. Driving tool
US7921933B2 (en) 2008-05-26 2011-04-12 Max Co., Ltd. Impact driving tool

Also Published As

Publication number Publication date
EP1980371B1 (en) 2014-03-19
EP1980371A1 (en) 2008-10-15
JP2007203388A (en) 2007-08-16
EP1980371A4 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP4593387B2 (en) Electric tool
JP4195818B2 (en) Electric hammer
JP4863942B2 (en) Impact tool
JP6441588B2 (en) Impact tool
RU2434733C2 (en) Hand tool, mainly, perforator and/or buster
RU2510326C2 (en) Percussion tool
US8016047B2 (en) Electrical power tool with anti-vibration mechanisms of different types
JP4793755B2 (en) Electric tool
EP2428323B1 (en) Impact tool
WO2013111460A1 (en) Striking tool
WO2009154171A1 (en) Work tool
WO2014034862A1 (en) Impact tool
RU2009128742A (en) ELECTRIC HAND MACHINE
US6739405B2 (en) Hammer
CN107206584B (en) Working tool
WO2007088821A1 (en) Impact tool
JP2007175836A (en) Striking tool
WO2012144568A1 (en) Impact tool
JP4805288B2 (en) Electric hammer
WO2013061835A1 (en) Striking tool
JP5058726B2 (en) Impact tool
JP5913009B2 (en) Impact tool
JP5913010B2 (en) Impact tool
JP2012232371A (en) Hammering tool
JP2007175837A (en) Hammering tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707646

Country of ref document: EP