WO2007088580A1 - 通信制御方法、受信局装置、送信局装置および通信システム - Google Patents

通信制御方法、受信局装置、送信局装置および通信システム Download PDF

Info

Publication number
WO2007088580A1
WO2007088580A1 PCT/JP2006/301525 JP2006301525W WO2007088580A1 WO 2007088580 A1 WO2007088580 A1 WO 2007088580A1 JP 2006301525 W JP2006301525 W JP 2006301525W WO 2007088580 A1 WO2007088580 A1 WO 2007088580A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception quality
signal
transmission
null
subcarrier group
Prior art date
Application number
PCT/JP2006/301525
Other languages
English (en)
French (fr)
Inventor
Akihiro Okazaki
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP06712668A priority Critical patent/EP1981191A4/en
Priority to PCT/JP2006/301525 priority patent/WO2007088580A1/ja
Priority to CN2006800510690A priority patent/CN101366216B/zh
Priority to US12/159,859 priority patent/US8077787B2/en
Priority to JP2007556720A priority patent/JP4809373B2/ja
Publication of WO2007088580A1 publication Critical patent/WO2007088580A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a communication control method corresponding to a multicarrier modulation scheme, and more particularly to a communication control method for suppressing interference between subcarriers.
  • the characteristics of the OFDM scheme are greatly degraded due to the occurrence of intersymbol interference and intercarrier interference when a delayed wave exceeding the guard interval arrives.
  • This problem can be solved by adding a guard interval longer than the expected delay time at the transmitter, but in this case, the overhead of the guard interval increases and the transmission efficiency decreases.
  • frequency synchronization and timing synchronization between user signals are performed on an OFDMA (Orthogonal Frequency Division Multiple Access) uplink, which is multiplexed by orthogonalizing multiple user signals (data) using OFDM. If this is insufficient, inter-carrier interference will occur.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • a null carrier power transmission
  • Patent Document 1 a technique for suppressing inter-carrier interference using subcarriers that are not received
  • a transmitting station performs data transmission by inserting a null carrier into a known subcarrier part that causes interference with subcarriers transmitted from other transmitting stations. Avoid interference.
  • Patent Document 1 Japanese Patent Laid-Open No. 9 18433
  • the conventional method described above can avoid interference with other transmitting stations, inter-carrier interference due to delay waves exceeding the frequency offset, timing offset, nonlinear distortion, and guard interval by the own station. It is impossible to adapt to In addition, the conventional method needs to know the position of the subcarrier where the interference occurs, and is difficult to apply to cellular and wireless LAN systems. In addition, the conventional method cannot cope with interference between users in OFDMA.
  • the present invention has been made in view of the above, and is a condition for causing variable interference (for example, frequency offset, timing offset, nonlinear distortion, inter-carrier interference due to a delayed wave exceeding a guard interval).
  • variable interference for example, frequency offset, timing offset, nonlinear distortion, inter-carrier interference due to a delayed wave exceeding a guard interval.
  • the objective is to obtain a communication control method that suppresses inter-carrier interference and realizes data transmission with good communication quality under the conditions that cause interference due to inter-user interference in OFDMA.
  • the present invention employs a multi-carrier modulation method, and in a communication system that suppresses inter-carrier interference using a null carrier,
  • a quality measurement step, and a step of determining the number of null carriers in which the receiving station determines the number of null carriers included in the next transmission signal based on the reception quality obtained as a measurement result! Features.
  • the receiving station controls the number of null carriers to be inserted into the subcarrier group constituting the transmission signal based on the reception quality of the signal transmitted by the transmission station. Even when the subcarriers are not sufficiently orthogonal, such as when affected by nonlinear distortion or when receiving delayed waves that exceed the guard interval, the occurrence of inter-carrier interference is suppressed, and data transmission is performed with good communication quality. There is an effect that it can be performed.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system for realizing a communication control method according to the present invention.
  • FIG. 2-1 is a diagram showing a transmission format example used by the system of the first embodiment.
  • Fig. 2-2 is a diagram showing an example of a transmission format used by the system of the first embodiment.
  • FIGS. 2-3 are diagrams showing an example of a transmission format used by the system of the first embodiment.
  • Fig. 2-4 is a diagram showing an example of a transmission format used by the system of the first embodiment.
  • FIG. 3-1 is a diagram showing an example of the state of inter-carrier interference that occurs in the system of the first embodiment.
  • FIG. 3-2 is a diagram showing an example of the state of inter-carrier interference that occurs in the system of the first embodiment.
  • FIG. 3-3 is a diagram showing an example of the state of inter-carrier interference that occurs in the system of the first embodiment.
  • FIG. 3-4 is a diagram showing an example of the state of inter-carrier interference that occurs in the system of the first embodiment.
  • FIG. 4-1 is a diagram showing an example of the state of inter-carrier interference that occurs in the system of the first embodiment.
  • Fig. 4-2 shows inter-carrier interference that occurs in the system of Embodiment 1. It is a figure which shows an example.
  • FIG. 4-3 is a diagram showing an example of the state of inter-carrier interference that occurs in the system of the first embodiment.
  • Figure 4-4 is a diagram showing an example of a state of inter-carrier interference occurring in the system according to the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of a communication system according to a second embodiment.
  • FIG. 6 is a diagram illustrating a configuration example of a communication system according to a third embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a communication system according to a fourth embodiment.
  • Fig. 8-1 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to two users.
  • FIG. 8-2 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to two users.
  • Fig. 8-3 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to two users.
  • FIG. 8-4 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to two users.
  • Fig. 8-5 shows an example of a transmission format used by the OFDMA system that allocates subcarriers to two users.
  • Fig. 8-6 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to two users.
  • Fig. 8-7 shows an example of a transmission format used by the OFDMA system that allocates subcarriers to two users.
  • Fig. 8-8 shows an example of a transmission format used by the OFDMA system that allocates subcarriers to two users.
  • FIG. 9 1 is a diagram showing an example of inter-carrier interference that occurs when two users transmit data simultaneously.
  • FIG. 9-2 is a diagram showing an example of the state of inter-carrier interference that occurs when two users transmit data simultaneously.
  • FIG. 9-3 is a diagram showing an example of the state of inter-carrier interference that occurs when two users transmit data at the same time.
  • FIG. 9 4 is a diagram showing an example of the state of inter-carrier interference that occurs when two users transmit data simultaneously.
  • FIG. 10-1 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-2 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-3 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-4 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-5 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to three users.
  • FIG. 10-6 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-7 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-8 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-9 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-10 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 10-11 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to three users.
  • FIG. 10-12 shows an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 11-1 is a diagram showing an example of the state of inter-carrier interference that occurs when the data of a specific user is transmitted by a subcarrier with an expanded band.
  • FIG. 11 2 is a diagram showing an example of the state of inter-carrier interference when each user transmits data using transmission format # 3.
  • FIG. 12-1 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 12-2 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to three users.
  • Fig. 12-3 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to three users.
  • Fig. 13-1 is a diagram showing an example of inter-carrier interference when the base station receives data of multiple users.
  • FIG. 13-2 is a diagram showing an example of the state of interference between carriers when the base station receives data of a plurality of users.
  • FIG. 14 is a diagram illustrating a configuration example of a communication system according to a fifth embodiment.
  • FIG. 15 is a diagram illustrating a configuration example of a communication system according to a sixth embodiment.
  • FIG. 16-1 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to three users.
  • FIG. 16-2 is a diagram showing an example of a transmission format used by the OFDMA system that assigns subcarriers to three users.
  • FIG. 16-3 is a diagram showing an example of a transmission format used by the OFDMA system that allocates subcarriers to three users.
  • Fig. 17-1 shows an example of inter-carrier interference when the base station transmits data for multiple users.
  • FIG. 17-2 is a diagram showing an example of inter-carrier interference when the base station transmits data of multiple users.
  • FIG. 18 is a diagram illustrating a configuration example of a communication system according to a seventh embodiment.
  • FIG. 19 is a diagram illustrating a configuration example of a communication system according to an eighth embodiment.
  • FIG. 20 is a diagram illustrating a configuration example of a communication system according to the ninth embodiment.
  • FIG. 21 is a diagram illustrating a configuration example of a communication system according to a tenth embodiment.
  • FIG. 22-1 shows an example of a transmission format used by the system of the tenth embodiment.
  • Fig. 22-2 shows an example of a transmission format used by the system of the tenth embodiment.
  • FIG. 22-3 is a diagram showing an example of a transmission format used by the system of the tenth embodiment.
  • FIG. 22-4 is a diagram showing a transmission format example used by the system of the tenth embodiment.
  • FIG. 1 is a diagram showing a configuration example of a first embodiment of a communication system for realizing a communication control method according to the present invention, and shows a configuration example of an OFDM system that performs one-to-one bidirectional communication.
  • the communication system includes a modulation unit 1 and a transmission format control unit 2.
  • Transmission station apparatus hereinafter referred to as a transmission station
  • a reception station apparatus hereinafter referred to as a reception station
  • the transmitting station and the receiving station include a module for performing transmission processing and reception processing to perform signal transmission / reception processing, and a user signal (data), a transmission source control instruction signal described later. , Receive and transmit reception quality signals. The same applies to a transmitting station and a receiving station according to an embodiment described later.
  • Modulation section 1 in the transmission station creates a transmission signal in which subcarriers are arranged according to the transmission format indicated by the transmission format signal output from transmission format control section 2.
  • the transmission format control unit 2 selects a transmission format according to the transmission source control instruction signal received from the receiving station, and outputs a transmission format signal indicating the selected transmission format.
  • the demodulator 3 in the receiving station demodulates the signal received from the transmitting station via the antenna.
  • the reception quality measuring unit 4 measures the reception quality of the received signal (subcarrier).
  • the transmission source control instruction unit 5 which operates as the null carrier number determination means according to claim 15, transmits data used by the transmission station at the next data transmission to the reception station.
  • a format is determined, and a transmission source control instruction signal including information on the determined transmission format is generated.
  • the generated transmission source control instruction signal is transmitted to the transmission station, and the transmission station performs an operation according to the transmission source control instruction signal as described above.
  • the reception quality measured by the reception quality measurement unit 4 includes received power, signal power to noise ratio (SNR), signal power to interference power ratio (CIR), Error rate, CQI (Channel Quality Indicator), etc. are considered. And the receiving station can know the magnitude of the interference between these reception quality power carriers.
  • SNR signal power to noise ratio
  • CIR signal power to interference power ratio
  • Error rate Error rate
  • CQI Channel Quality Indicator
  • Figure 2-1 to Figure 2-4 show examples of transmission formats used by the system of Embodiment 1.
  • Figure 4 shows four types of transmission formats # 1, # 2, # 3, and # 4 in order from Fig. 2-1. Further, in each format, the broken line portion indicates a null carrier that is a subcarrier to which power is not transmitted, and transmission format # 1 has a configuration in which no null carrier is arranged.
  • Transmission format # 2 is a configuration in which a null carrier is placed in one adjacent subcarrier.
  • Transmission format # 3 has a configuration in which null carriers are arranged in two adjacent subcarriers.
  • Transmission format # 4 has a configuration in which null carriers are arranged in three adjacent subcarriers. Then, the transmission format control unit 2 selects the transmission format indicated by the transmission source control instruction signal notified from the transmission source control instruction unit of the receiving station from the above four types of transmission formats.
  • Fig. 3-1 to Fig. 3-4 are diagrams showing an example of the state of inter-carrier interference that occurs in the system according to the first embodiment, where each transmission format is applied to data transmission under the same conditions. Shows the state of inter-carrier interference occurring in The conditions shown in Fig. 3-1 to Fig. 3-4 correspond to the case where, for example, the subcarrier band is widened due to nonlinear distortion and interference is applied to adjacent subcarriers.
  • the reception quality measurement unit 4 measures the CIR of the received signal as information indicating the magnitude of inter-carrier interference.
  • the transmission source control instruction unit 5 controls the number of null carriers to be inserted into the subcarrier group constituting the transmission signal in order to suppress intercarrier interference. Specifically, based on the CIR magnitude measured by the reception quality measurement unit 4, the transmission format used by the transmission source transmission station of the received signal at the next data transmission is determined. For example, the transmission source control instructing unit 5 compares the measured CIR size with a plurality of predetermined threshold values, and selects a transmission format based on the comparison result.
  • the transmission source control instruction unit 5 generates a transmission source control instruction signal including information on the selected transmission format in order to instruct to perform transmission using the selected transmission format.
  • transmission source control instruction unit 5 indicates the use of transmission format # 3.
  • a transmission source control instruction signal to be shown is generated.
  • Transmission format control unit 2 of the transmission station selects a transmission format according to the received transmission source control instruction signal (here, transmission format # 3 is selected), and a transmission format signal indicating the selected transmission format # 3 Is output.
  • Modulation section 1 creates a transmission signal in which subcarriers are arranged in accordance with transmission format # 3 indicated by the transmission format signal output from transmission format control section 2, and transmits the created signal (data).
  • transmission format # 3 indicated by the transmission format signal output from transmission format control section 2, and transmits the created signal (data).
  • FIGS. 4 to 4 are diagrams showing an example of the state of inter-carrier interference that occurs in the system according to the first embodiment.
  • Each transmission format is used for data transmission under the condition that there is an influence of a delayed wave. It shows the state of inter-carrier interference that occurs when applying.
  • the normal transmission format (equivalent to transmission format # 1) was used because the subcarrier bandwidth was expanded due to the influence of delayed waves exceeding GI. In some cases, inter-carrier interference has occurred.
  • the transmission format # 4 is selected, and the transmission station is instructed to use the selected transmission format # 4. Then, the transmitting station transmits data using transmission format # 4 according to the instruction from the transmission source control instruction unit 5.
  • the transmitting station does not transmit information instead of GI
  • the GB Guard Band
  • the signal inserted between them is frequency-equalized by the equalizer of the receiving station using GB-FEQ, thereby suppressing interference caused by delayed waves exceeding GI.
  • the transmission source control instruction unit 5 selects a transmission format in which inter-carrier interference is completely suppressed (completely eliminated). Instead of this, it is possible to select a transmission format in which inter-carrier interference that can be suppressed by GB-FEQ remains. For example, consider the case where the transmission source control instruction unit 5 selects the transmission format # 2 in the examples shown in FIGS. When the transmission format # 2 is used, inter-carrier interference that overlaps the subcarrier remains. However, transmission format # 2 is configured with 6 null carriers, and these 6 null carriers can be used as GB-FEQ GB.
  • the data modulated by the modulation unit 1 using the transmission format # 2 is demodulated, and the demodulation unit 3 performs equalization processing using GB-F EQ to suppress inter-carrier interference and achieve good communication quality. Data can be received, and data transmission can be performed efficiently.
  • the data receiving station selects a transmission format capable of suppressing inter-carrier interference based on the reception quality of the signal transmitted by the transmitting station, and the selected transmission format is selected.
  • the transmitting station By instructing the transmitting station to transmit data using, the number of null carriers to be inserted into the subcarrier group constituting the transmission signal by the transmitting station is controlled.
  • the occurrence of inter-carrier interference can be suppressed and data can be transmitted with good communication quality even under conditions where the subcarriers are not sufficiently orthogonal, such as when receiving a delayed wave exceeding the guard interval, when affected by nonlinear distortion.
  • interference between transmission carriers in the channel estimation signal is also suppressed, a highly accurate channel estimation result can be obtained.
  • FIG. 5 is a diagram illustrating a configuration example of the communication system according to the second embodiment, and illustrates a configuration example of an OFDM system that performs one-to-one bidirectional communication as in the first embodiment described above.
  • the transmission station of this communication system includes a modulation unit 1 and a transmission format control unit 2, and further includes a transmission source control instruction unit 5 included in the reception station of the communication system of the first embodiment described above.
  • the receiving station includes only the demodulating unit 3 and the reception quality measuring unit 4.
  • the transmission source control instructing unit 5 operates as the null carrier number determining means of claim 18.
  • the reception station transmits the reception quality measurement result of the signal measured by the reception quality measurement unit 4 to the transmission station. Then, the transmission source control instruction unit 5 of the transmitting station determines the transmission format used by the transmitting station at the next data transmission to the receiving station based on the received quality measurement result received by the receiving station. A transmission source control instruction signal is output to the transmission format control unit 2 as a control signal for notification including transmission format information. The operation of other parts is the same as that of the first embodiment described above.
  • the data receiving station transmits the reception quality measurement result of the signal transmitted by the transmitting station to the transmitting station, and based on the reception quality measurement result, the transmitting station Selects the transmission format that can suppress inter-carrier interference, and transmits data using the selected transmission format, thereby controlling the number of null carriers to be inserted in the subcarrier group constituting the transmission signal. It was decided. As a result, the occurrence of inter-carrier interference is suppressed even when the subcarriers are not orthogonal, such as when they are affected by nonlinear distortion or when a delayed wave exceeding the guard interval is received. Transmission can be performed.
  • FIG. 6 is a diagram illustrating a configuration example of a communication system according to the third embodiment, and illustrates a configuration example of an OFDM system that performs one-to-one bidirectional communication as in the first embodiment described above.
  • the transmission station of this communication system includes a modulation unit 1, a transmission format control unit 2, and a transmission source control instruction unit 5 included in the reception station of the communication system of the first embodiment described above, and further, claim 20.
  • a transmission destination quality estimation unit 7 that operates as a reception quality estimation unit.
  • the receiving station includes a demodulator 3 and a quality estimation signal generator 6.
  • the transmission source control instructing unit 5 operates as the null carrier number determining means of claim 20.
  • the transmission station estimates the reception quality of the signal at the reception station, and the transmission format used by the transmission station at the next data transmission to the reception station based on the estimation result. To decide. Specifically, the quality estimation signal generation unit 6 of the receiving station generates a quality estimation signal used by the transmitting station to estimate the reception quality of the signal at the receiving station. Transmit the signal for transmission to the transmitting station.
  • TDD Time Division Duplex
  • the receiving station When applied to the (Duplex) method, the receiving station (quality estimation signal generation unit 6), for example, generates a signal having the same band as the signal transmitted by the transmission station as the quality estimation signal, and generates the generated signal. Send. Further, when the present embodiment is applied to the FDD (Frequency Division Duplex) method, for example, the receiving station returns the signal received from the transmitting station as the quality estimation signal and transmits it. The same applies to the quality estimation signal used in the embodiments described later.
  • FDD Frequency Division Duplex
  • the transmission destination quality estimation unit 7 of the transmission station estimates the reception quality of the signal at the reception station using the received quality estimation signal.
  • the transmission source control instruction unit 5 regards the quality estimation result of the transmission destination quality estimation unit 7 as the signal reception quality measurement result of the reception station, and performs the same operation as in the first embodiment described above, so that the transmission station Determine the transmission format used when sending data.
  • the operation of other parts is the same as that of the first embodiment described above.
  • the transmitting station is for quality estimation transmitted by the receiving station.
  • the signal reception quality at the receiving station is estimated using the signal, and a transmission format capable of suppressing inter-carrier interference is selected based on the estimated signal reception quality.
  • the transmitting station controls the number of null carriers to be inserted into the subcarrier group constituting the transmission signal by transmitting data using the selected transmission format.
  • the transmission source control instruction signal and the reception quality signal transmitted from the receiving station to the transmitting station are not required, the information transmitted to the transmitting station can also be reduced. When this form is applied, the information transmitted to the transmitting station can be greatly reduced.
  • FIG. 7 is a diagram illustrating a configuration example of the communication system according to the fourth embodiment.
  • An uplink system of an OFDMA system that performs one-to-many bidirectional communication, that is, a plurality of mobile stations (transmitting stations) transmit data. Shown is an example of an OFDMA system uplink system configuration in which one base station (receiving station) receives data! /
  • Each mobile station of this communication system includes a modulation unit (corresponding to modulation unit 11, 1, ..., 1N) and a transmission format control unit (transmission format control unit 2-1, ..., 2-N). Equivalent to The base station includes a demodulator 3, a reception quality measurement unit 4 that operates as a reception quality measurement unit of claim 16, a transmission source control instruction unit 5-1 to 5 -N, and a null carrier number determination unit of claim 16. A multiple access control unit 8 is provided.
  • the reception quality measurement unit 4 of the base station measures the reception quality of the signal received from each mobile station.
  • the multiple access control unit 8 determines the number of multiple connections (mobile stations that permit data transmission) and subcarrier allocation (decoding). Subcarriers to be assigned to each mobile station that is permitted to transmit data.
  • the transmission source control instruction units 5-1 to 5-N determine the transmission format to be used by the mobile station controlled by each next time for data transmission and generate a transmission source control instruction signal including the information. To do.
  • the transmission source control instruction signal includes information on the number of multiple connections and the subcarrier position determined by the multiple connection control unit 8 (transmission of the destination mobile station of the transmission source control instruction signal is permitted. Information on subcarriers assigned to the mobile station when transmission is permitted). Then, the base station transmits the generated transmission source control instruction signal to each mobile station.
  • Fig. 8-1 to Fig. 8-8 are examples of transmission formats used by the OFDMA system that allocates subcarriers to two users (two mobile stations). 4 shows the transmission format assigned to user # 1, and the transmission formats assigned to user # 2 by Figure 8-5 to Figure 8-8. This system allocates 6 subcarriers to 2 users (users # 1 and # 2). Then, each user (transmission format control unit of each mobile station) selects the transmission format among the transmission formats # 1 to # 4 based on the information included in the transmission source control instruction signal.
  • transmission formats # 1 to # 4 are obtained by assigning 0, 1, 2, and 3 null carriers to both ends of the subcarrier, respectively.
  • Figure 9-1 to Figure 9-4 show examples of inter-carrier interference that occurs when two users transmit data simultaneously. Each transmission format is applied to data transmission under the same conditions. This shows the state of inter-carrier interference that occurs.
  • the subcarrier group is shifted to the right due to insufficient frequency synchronization of user # 1, and the boundary between the subcarrier groups of user # 1 and user # 2 The orthogonality has collapsed.
  • the reception quality measuring unit 4 first measures CIR as information indicating the magnitude of inter-carrier interference, for example.
  • the transmission source control instruction units 5-1 to 5-N determine the transmission format used by the mobile station based on the measured CIR size, and perform transmission using the determined transmission format. Instruct the mobile station to do so.
  • FIGS. 10-1 to 10-12 are diagrams illustrating transmission format examples used by the OFDMA system that allocates subcarriers to three users (three mobile stations). In this system, four transmission subcarriers are allocated to three users (users # 1 to # 3). Each user (transmission format control unit of each mobile station) selects a transmission format from among transmission formats # 1 to # 4 based on information included in the transmission source control instruction signal.
  • transmission formats # 1 to # 4 there are no null carriers, and both ends of subcarriers of users # 1, # 2, and # 3 are null carriers.
  • FIG. 11-1 is a diagram showing an example of the state of inter-carrier interference that occurs when the data of a specific user is transmitted by subcarriers whose bandwidth is widened. The data transmitted from each user in the base station is shown. The relationship between the state before is synthesized and the state after being synthesized is shown. Such a service The broadening of the subcarrier band is caused by nonlinear distortion, for example.
  • FIG. 11-1 shows a state in which subcarriers of two users (users # 1 and # 3) spread and inter-carrier interference occurs.
  • reception quality measurement section 4 first measures CIR as information indicating the magnitude of inter-carrier interference, for example.
  • the transmission source control instruction units 5-1 to 5-N transmit the transmission format # 3 (Fig. 10-3, Fig. 10-7, Fig. 10-) as a null carrier for the measured subcarrier with a small CIR. 11) is determined as the transmission format used by each user.
  • FIG. 11-2 is a diagram illustrating an example of the state of inter-carrier interference when each user transmits data using the transmission format # 3.
  • Figure 11-2 shows that the base station is able to suppress inter-carrier interference and achieve good communication quality by using transmission format # 3 under conditions where inter-carrier interference occurs as shown in Figure 11-1. Indicates that data can be received.
  • FIGS. 12-1 to 12-3 are diagrams illustrating transmission format examples used by the OFDMA system in which subcarriers are allocated to three users. This system allocates four transmission subcarriers to three users (users # 1 to # 3). Here, for the sake of simplicity, the description will be made with one transmission format.
  • FIG. 13-1 and FIG. 13-2 are diagrams showing an example of inter-carrier interference when the base station receives data of a plurality of users, and sub-carriers of users with insufficient frequency synchronization. This shows the relationship between the state before multiple subcarriers including are combined at the base station and the state after they are combined.
  • Fig. 13-1 shows the state of inter-carrier interference when the base station receives data for 3 users
  • Fig. 13-2 shows data for 2 users selected by executing the operation described later. It shows the state of inter-carrier interference when the base station receives it.
  • the multiple access control unit 8 performs user allocation based on the CIR magnitude measured by the reception quality measurement unit 4 so that intercarrier interference does not occur. Specifically, intercarrier interference is suppressed by assigning subcarriers only to users # 1 and # 3 (see Figure 13-2). Furthermore, the multiple access control unit 8 can obtain a multiuser diversity effect by assigning subcarriers to each user based on the size of the CIR, and the base station can obtain data with good communication quality. Can be received.
  • the base station performs centralized control based on the reception quality of the signal from each user, so that the number of multiple connections, the subcarrier arrangement, and the transmission format (transmission signal We decided to determine the number of null carriers to be inserted into the subcarrier group.
  • transmission signal We decided to determine the number of null carriers to be inserted into the subcarrier group.
  • FIG. 14 is a diagram illustrating a configuration example of the communication system according to the fifth embodiment, and similarly to the fourth embodiment described above, a configuration example of the uplink system of the OFDMA system that performs one-to-many bidirectional communication. Show me.
  • This communication system differs from the communication system of the fourth embodiment described above in that each mobile station has a transmission source control instruction unit (corresponding to transmission source control instruction units 5-1, ..., 5-N). And a multiple access control unit (equivalent to the multiple access control unit 8-1, 1,..., 8-N), and each mobile station has a transmission source quality estimation unit (transmission source quality estimation unit 7-1, ..., equivalent to 7—N).
  • the base station includes a demodulation unit 3 and a quality estimation signal generation unit 6.
  • the multiple access control unit and the transmission source control instructing unit operate as the null carrier number determining means according to claim 21. In the following, only the parts different from the fourth embodiment will be described.
  • the mobile station (corresponding to the transmitting station of the third embodiment) is a base station (corresponding to the receiving station of the third embodiment). ) The mobile station determines the number of multiple access and the transmission format based on the estimation result.
  • the quality estimation signal generation unit 6 of the base station generates a quality estimation signal used by each mobile station to estimate the reception quality of the signal at the base station.
  • the quality estimation signal is transmitted to each mobile station.
  • the transmission destination quality estimation unit of each mobile station estimates the reception quality of the signal at the base station using the received quality estimation signal.
  • a quality estimation signal for example, in the case of a system using the TDD method, the quality estimation signal generation unit 6 uses a signal having the same band as the signal transmitted by all transmitting stations as the quality estimation signal. Send.
  • the quality estimation signal generator 6 returns the signal received from the mobile station as a quality estimation signal and transmits it.
  • the multiple access control unit of each mobile station regards the quality estimation result of the transmission destination quality estimation unit as the signal reception quality measurement result (transmission destination quality) of the base station, and based on the quality estimation result. Determine the number of multiple access and subcarrier arrangement. As an example, assuming a contention-based connection, if the transmission destination quality is high (assuming that the reception quality at the base station is good), the multiple access control unit determines the data transmission probability ( For example, the number of data transmission executions per unit time) is increased. As a result, the number of mobile stations that perform data transmission to the base station (corresponding to the number of multiple access) is appropriately changed based on the transmission destination quality, and the mobile station performs data transmission using a fixed transmission probability. The number of multiple connections can be increased. In addition, the multiple access control unit determines the subcarriers used by the own station so that the transmission destination quality is high. As a result, a multi-user diversity effect can be obtained.
  • the mobile station estimates the signal reception quality at the base station using the quality estimation signal transmitted by the base station, and based on the estimated signal reception quality, The number of multiple access, subcarrier allocation, and transmission format were decided. This ensures that each user and subcarrier are not sufficiently orthogonal. However, inter-carrier interference can be suppressed and data transmission can be performed with good communication quality.In addition, in a contention-based connection, each mobile station can control the number of multiple connections independently. A multi-user diversity effect can be obtained.
  • the transmission source control instruction signal and the reception quality signal transmitted from the base station to the mobile station are not required, the information transmitted from the base station to the mobile station can be reduced. When this form is applied, the information transmitted from the base station to the mobile station can be greatly reduced.
  • FIG. 15 is a diagram illustrating a configuration example of the communication system according to the sixth embodiment.
  • the downlink system of the OFDMA system that performs one-to-many bidirectional communication, that is, one base station (transmitting station) transmits data. Shown below is an example of the OFDMA system downlink system configuration in which multiple mobile stations (receiving stations) receive data! /
  • the base station of this communication system includes a modulation unit 1 and a transmission format control unit 2.
  • the mobile station has a demodulator (corresponding to demodulator 3-1,..., 3N), a reception quality measuring unit (corresponding to reception quality measuring unit 4 1,. (Sender control instruction unit 5—1,..., Equivalent to 5 N) and Multiple access control unit (Multiple access control unit 8 — 1,..., Equivalent to 8 N) are provided.
  • the multiple access control unit and the transmission source control instructing unit operate as the null carrier number determining means of claim 17.
  • the system of the present embodiment adds a multiple access control unit to the transmitting station (mobile station) of the system of the first embodiment described above, so that a plurality of transmitting stations can be simultaneously connected to the receiving station. Is. Hereinafter, parts different from the first embodiment will be described.
  • the multiple access control section of each mobile station determines the number of multiple access based on the reception quality of the received signal of the base station power measured by the reception quality measurement section. And determine subcarrier placement.
  • the multiple access control unit arranges data addressed to itself only on a subcarrier having a reception quality equal to or higher than a certain threshold value. Shiki The higher value is adjusted according to the load of multiple access.
  • the transmission source control instruction unit determines a transmission format to be used when the base station transmits data to itself, and information on the determined transmission format and subcarrier arrangement information determined by the multiple access control unit A transmission source control instruction signal including is generated.
  • the base station that has received the transmission source control instruction signal from each mobile station transmits data using the transmission format and subcarriers instructed by the transmission source control instruction signal.
  • the transmission format control unit adjusts the subcarrier to be used.
  • FIGS. 16-1 to 16-3 are diagrams illustrating exemplary transmission formats used by the OFDMA system that allocates subcarriers to three users.
  • four transmission subcarriers are allocated to three users (users # 1 to # 3).
  • the description will be made with one transmission format.
  • FIGS. 17-1 and 17-2 are diagrams illustrating an example of inter-carrier interference when the base station transmits data of a plurality of users, and a subcarrier whose band is widened due to nonlinear distortion or the like. Shows the state of inter-carrier interference when.
  • inter-carrier interference is suppressed by applying the GB-FEQ described in the first embodiment to! / In the state where such two users are multiplexed. Specifically, demodulating power of user # 1 and user # 3
  • the subcarrier for user # 2 in this embodiment is equalized as a null carrier, that is, a birdband (GB) by GB-FEQ.
  • GB birdband
  • each mobile station determines the number of multiple access, subcarrier arrangement, and transmission format based on the reception quality of the signal received by the base station, and the determined By instructing the base station to transmit data according to the content, the number of null carriers inserted into the subcarrier group constituting the transmission signal by the base station is controlled. As a result, even when the users and subcarriers are not sufficiently orthogonal, inter-carrier interference can be suppressed, data transmission can be performed with good communication quality, and a multi-user diversity effect can be obtained.
  • FIG. 18 is a diagram illustrating a configuration example of a communication system according to the seventh embodiment, and similarly to the sixth embodiment described above, a configuration example of a downlink system of an OFDMA system that performs one-to-many bidirectional communication. Show me.
  • the base station of this communication system includes a modulation unit 1, a transmission format control unit 2, a transmission source control instruction unit 5, and a multiple access control unit 8.
  • the mobile station includes a demodulation unit (corresponding to demodulation units 3-1,..., 3N) and a reception quality measurement unit (corresponding to reception quality measurement units 41,..., 4N).
  • the transmission source control instructing unit 5 and the multiple access control unit 8 operate as the null carrier number determining means of claim 19.
  • the mobile station notifies the base station of the reception quality information of the signal received by the base station. Based on the quality information, the multiple access control unit 8 of the base station determines the number of multiple connections and the subcarrier arrangement, and the transmission source control instruction unit 5 determines the transmission format.
  • the operation of the system of this embodiment to suppress the occurrence of inter-carrier interference during data transmission is the same as that of Embodiment 6 described above.
  • the base station can use reception quality at all mobile stations as prior information. Therefore, the base station can centrally control the number of multiple access, the subcarrier arrangement, and the transmission format, and a more efficient system can be formed as compared with the sixth embodiment.
  • the base station determines the number of multiple access, the subcarrier arrangement, and the transmission format based on the reception quality of the signal notified from the mobile station, and according to the determined contents We decided to send data.
  • the base station determines the number of multiple access, the subcarrier arrangement, and the transmission format based on the reception quality of the signal notified from the mobile station, and according to the determined contents We decided to send data.
  • FIG. 19 is a diagram illustrating a configuration example of the communication system according to the eighth embodiment. Similar to the sixth embodiment described above, a configuration example of the downlink system of the OFDMA system that performs one-to-many bidirectional communication. Show me.
  • the base station of this communication system includes a modulation unit 1, a transmission format control unit 2, a transmission source control instruction unit 5, a multiple access control unit 8, and a transmission destination quality that operates as reception quality estimation means of claim 22.
  • Estimator 7—1 to 7—N are provided.
  • the mobile station has a demodulator (corresponding to demodulator 3-1, ..., 3-N) and a signal generator for quality estimation (corresponding to signal generator 6-6, ..., 6-N for quality estimation) ).
  • the transmission source control instructing unit 5 and the multiple access control unit 8 operate as the null carrier number determining means in claim 22.
  • the base station which is the transmission station, determines the number of multiple access, the subcarrier arrangement, and the transmission format, as in the seventh embodiment.
  • the base station which is the transmission station, determines the number of multiple access, the subcarrier arrangement, and the transmission format, as in the seventh embodiment.
  • the base station of the present embodiment estimates the signal reception quality at each mobile station using the quality estimation signal transmitted from each mobile station, and the number of multiple access based on the estimation result Determine subcarrier arrangement and transmission format.
  • the quality estimation signal generator of each mobile station generates a quality estimation signal used by the base station to estimate the signal reception quality at the mobile station.
  • Each destination quality estimation unit of the base station uses the quality estimation signal generated by the quality estimation signal generation unit of each mobile station, and determines the signal reception quality at the source mobile station of the quality estimation signal.
  • a quality estimation signal for example, in the case of a system using the TDD scheme, the mobile station transmits a signal having the same band as the signal transmitted by the base station as the quality estimation signal. In the case of a system using the FDD method, the mobile station returns the signal received from the base station as a quality estimation signal and transmits it.
  • the multiple access control unit 8 and the transmission source control instruction unit 5 of the base station regard the quality estimation result in each transmission destination quality estimation unit as the signal reception quality measurement result of each mobile station, and By performing the same operation as in step 7, the number of multiple access, subcarrier arrangement, and transmission format are determined.
  • the base station estimates the signal reception quality at the mobile station using the quality estimation signal transmitted by the mobile station, and based on the estimated signal reception quality It was decided to determine the number of multiple access, subcarrier allocation, and transmission format. This makes it possible to suppress inter-carrier interference and perform data transmission with good communication quality even under conditions where each user and subcarrier are not sufficiently orthogonal.
  • FIG. 20 is a diagram illustrating a configuration example of a communication system according to the ninth embodiment, and illustrates a configuration example of an OFDM system that performs one-to-one bidirectional communication as in the first to third embodiments described above.
  • the transmission station of this communication system is A modulation unit 1, a transmission format control unit 2, a transmission source control instruction unit 5, and a pre-estimated quality output unit 9 are provided.
  • the receiving station includes only the demodulator 3.
  • the transmission format to be used is determined based on the signal reception quality at the receiving station estimated by the transmitting station as in the third embodiment described above. The difference is that the information transmitted from the receiving station is not required to determine the format.
  • parts different from the third embodiment will be described.
  • the pre-estimated quality output unit 9 stores the signal reception quality at the receiving station estimated in advance, and outputs the stored signal reception quality when the transmitting station performs data transmission.
  • the pre-estimated quality output unit 9 is notified in advance, for example, at the time of cell design, at the time of cell installation, calibration performed periodically, and signals transmitted for multiple frames such as super frames. Destination reception quality information (signal reception quality) is stored.
  • transmission source control instruction unit 5 regards the output signal from prior estimation quality output unit 9 as the signal reception quality measurement result of the receiving station, and performs the same operation as in Embodiment 3 described above.
  • the pre-estimated quality output unit is applied to an OFDM system that performs one-to-one bidirectional communication.
  • the present invention is not limited to this. It is also possible to apply the pre-estimated quality output unit to the OFDMA system that performs one-to-many bidirectional communication described in 4-8.
  • the destination reception quality information (signal reception quality) stored in the pre-estimated quality output unit is regarded as the signal reception quality at the receiving station, and this information is used in the first embodiment described above. It is possible to perform the same operation as ⁇ 8.
  • the transmitting station configures the transmission signal by determining the transmission format to be used based on the signal reception quality at the receiving station that has been estimated and stored in advance.
  • the transmitting station determines the transmission format
  • the receiving station provides information to the transmitting station. Since there is no need to transmit information, information transmitted from the mobile station to the base station can be reduced.
  • FIG. 21 is a diagram illustrating a configuration example of the communication system according to the tenth embodiment, and illustrates a configuration example of an OFDM system that performs one-to-one bidirectional communication as in the first to third embodiments.
  • the transmission station of this communication system includes a modulation unit 1 and a transmission format control unit 2.
  • the receiving station includes a demodulation unit 3, a reception quality measurement unit 4, a transmission source control instruction unit 5, and a known signal replica generation unit 10.
  • the receiving station determines the transmission format used by the transmitting station based on the reception quality of the signal transmitted from the transmitting station.
  • the difference is that a known signal is placed in the transmission format instead of a null carrier.
  • the known signal replica generation unit 10 generates a known signal component (hereinafter referred to as a known replica signal) in the received signal based on the received quality signal (the received quality of the signal transmitted from the transmitting station). For example, when CIR is used as a reception quality signal, a known replica signal is generated by performing convolution of a known signal sequence and CIR. The receiving station can remove the influence of the known signal included in the received signal by subtracting the received signal power from the known replica signal. That is, by adding the known signal replica generation unit 10, the receiving station can convert the known signal subcarrier into a null carrier.
  • the known signals refer to all signals whose transmission data is known on the receiving station side, such as pilot signals and preamble signals.
  • FIG. 21 and FIGS. 22-1 to 22-4 are diagrams showing examples of transmission formats used in the tenth embodiment.
  • the transmission formats used in the first embodiment described above see Figs. 2-1 to 2-4
  • the null carrier is replaced with a known signal carrier.
  • the receiving station determines the transmission format used by the transmitting station, and the transmitting station uses the transmission format to perform data transmission to the receiving station. Send.
  • the transmission format used at this time uses a known signal carrier in place of the null carrier.
  • the receiving station subtracts the received signal power from the known replica signal generated by the known signal replica generation unit 10 to convert the known signal carrier included in the received signal into a null carrier, and then performs demodulation processing.
  • the known signal replica generation unit is applied to the receiving station of the OFDM system that performs one-to-one bidirectional communication.
  • the present invention is not limited to this. It is also possible to apply a known signal replica generator to the receiving station of an OFDMA system that performs two-to-many bidirectional communication. That is, by applying the known signal replica generation unit, it is possible to use a transmission format using a known carrier instead of a null carrier in the systems of the first to ninth embodiments described above.
  • a known signal component is generated based on the reception quality of a signal that has also been received by the data receiving station, and the known component signal is subtracted from the received signal.
  • the known signal subcarrier included in the received signal is converted to a null carrier, and then demodulation processing is performed.
  • the communication control method according to the present invention is useful for a communication system compatible with the multicarrier modulation method, and in particular, a communication system that suppresses interference between subcarriers and performs data transmission. Suitable for

Abstract

 本発明にかかる通信制御方法は、マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧する通信システムにおいて、受信局が、送信局が送信する送信信号に含まれるヌルキャリアの数を制御する通信制御方法であって、たとえば、前記受信局が、前記送信信号を構成するサブキャリア群の受信品質を測定し、測定結果として得られる受信品質に基づいて、次回の送信信号に含まれるヌルキャリアの数を決定することとした。

Description

明 細 書
通信制御方法、受信局装置、送信局装置および通信システム
技術分野
[0001] 本発明は、マルチキャリア変調方式に対応した通信制御方法に関するものであり、 特に、サブキャリア間の干渉を抑圧する通信制御方法に関するものである。
背景技術
[0002] 従来の無線通信方式として、たとえば、 OFDM (Orthogonal Frequency Division Multiplexing)方式, DMT (Discrete Multitone)方式に代表されるマルチキャリア変 調方式があり、これらは、無線 LAN, ADSL等に利用されている。これらの無線通信 方式は、複数の周波数に直交したキャリアを配置し伝送する方式であり、特徴として は、たとえば、送受信機間の伝搬路等により生じる遅延波の影響を除去する機能とし て、ガードインターバル(Guard Interval)、または、サイクリックプレフィックス(Cyclic Prefix)を有する。受信機では、ガードインターバルを除いた OFDMシンボルに対し て FFTを行うことによって、ガードインターバル内の遅延波の影響を除去し、正しくデ ータを復調する。
[0003] 一方、 OFDM方式において、周波数オフセット,タイミングオフセット,非線形歪等 により、 OFDMのサブキャリアが完全に直交しない場合、特性が劣化する。
[0004] また、 OFDM方式は、ガードインターバルを超える遅延波が到来する状態において は、符号間干渉,キャリア間干渉が発生することにより、特性が大幅に劣化する。この 問題は、送信機において、想定される遅延時間より長いガードインターバルを付加す ることによって解決できるが、この場合、ガードインターバルのオーバヘッドが増加し、 伝送効率が低下する。
[0005] また、 OFDMにより複数ユーザ信号 (データ)を直交させることにより多重化を行つ ている OFDMA (Orthogonal Frequency Division Multiple Access)の上り回線に おいて、各ユーザ信号間の周波数同期,タイミング同期が不十分である場合、キヤリ ァ間干渉が発生する。
[0006] ここで、上述した問題を解決する 1つの手段として、たとえば、ヌルキャリア (電力送 信されないサブキャリア)を利用してキャリア間干渉を抑圧する手法がある(下記特許 文献 1参照)。
[0007] 下記特許文献 1によれば、送信局は、他送信局から送信されたサブキャリアとの間 で干渉が生じる既知のサブキャリア部分にヌルキャリアを挿入してデータ送信を行うこ とにより干渉の発生を回避する。
[0008] 特許文献 1 :特開平 9 18433号公報
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、上記従来の手法は、他送信局との干渉回避は可能であるが、自局に よる周波数オフセット,タイミングオフセット,非線形歪,ガードインターバルを超える 遅延波によるキャリア間干渉に適応することは不可能である。また、従来の手法は、 干渉が生じるサブキャリア位置が既知である必要があり、セルラー系,無線 LAN系の システムへの適用は困難である。また、従来の手法は、 OFDMAにおけるユーザ間 干渉には対応できない。
[0010] 本発明は、上記に鑑みてなされたものであって、変動する干渉が発生する条件 (た とえば、周波数オフセット,タイミングオフセット,非線形歪,ガードインターバルを超 える遅延波によるキャリア間干渉, OFDMAにおけるユーザ間干渉,などにより干渉 が発生する条件)において、キャリア間干渉を抑圧し、良好な通信品質でのデータ伝 送を実現する通信制御方法を得ることを目的とする。
課題を解決するための手段
[0011] 上述した課題を解決し、目的を達成するために、本発明は、マルチキャリア変調方 式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧する通信システムにおいて 、受信局が、送信局が送信する信号 (送信信号)に含まれるヌルキャリアの数を制御 する通信制御方法であって、たとえば、前記受信局が、前記送信信号を構成するサ ブキャリア群の受信品質を測定する受信品質測定ステップと、前記受信局が、測定 結果として得られる受信品質に基づ!/、て、次回の送信信号に含まれるヌルキャリアの 数を決定するヌルキャリア数決定ステップと、を含むことを特徴とする。 発明の効果
[0012] この発明によれば、受信局が、送信局が送信した信号の受信品質に基づいて、送 信信号を構成するサブキャリア群に挿入するヌルキャリアの数を制御することとしたの で、非線形歪みによる影響を受ける場合、ガードインターバルを超える遅延波を受信 する場合、など、十分サブキャリアが直交しない条件においても、キャリア間干渉の発 生を抑圧し、良好な通信品質でデータ伝送を行うことができる、という効果を奏する。 図面の簡単な説明
[0013] [図 1]図 1は、本発明にかかる通信制御方法を実現する通信システムの実施の形態 1 の構成例を示す図である。
[図 2-1]図 2— 1は、実施の形態 1のシステムが使用する送信フォーマット例を示す図 である。
[図 2-2]図 2— 2は、実施の形態 1のシステムが使用する送信フォーマット例を示す図 である。
[図 2-3]図 2— 3は、実施の形態 1のシステムが使用する送信フォーマット例を示す図 である。
[図 2-4]図 2— 4は、実施の形態 1のシステムが使用する送信フォーマット例を示す図 である。
[図 3-1]図 3— 1は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 3-2]図 3— 2は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 3-3]図 3— 3は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 3-4]図 3—4は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 4-1]図 4—1は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 4-2]図 4— 2は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 4-3]図 4— 3は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 4-4]図 4—4は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子 の一例を示す図である。
[図 5]図 5は、実施の形態 2の通信システムの構成例を示す図である。
[図 6]図 6は、実施の形態 3の通信システムの構成例を示す図である。
[図 7]図 7は、実施の形態 4の通信システムの構成例を示す図である。
[図 8-1]図 8—1は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 8-2]図 8— 2は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 8-3]図 8— 3は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 8-4]図 8—4は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 8-5]図 8— 5は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 8-6]図 8— 6は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 8-7]図 8— 7は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 8-8]図 8— 8は、 2ユーザに対してサブキャリアを割り当てる OFDMAシステムが 使用する送信フォーマット例を示す図である。
[図 9-1]図 9 1は、 2ユーザが同時にデータ送信する場合に発生するキャリア間干渉 の様子の一例を示す図である。
[図 9-2]図 9 2は、 2ユーザが同時にデータ送信する場合に発生するキャリア間干渉 の様子の一例を示す図である。 [図 9-3]図 9 3は、 2ユーザが同時にデータ送信する場合に発生するキャリア間干渉 の様子の一例を示す図である。
[図 9-4]図 9 4は、 2ユーザが同時にデータ送信する場合に発生するキャリア間干渉 の様子の一例を示す図である。
[図 10-1]図 10— 1は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-2]図 10— 2は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-3]図 10— 3は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-4]図 10— 4は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-5]図 10— 5は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-6]図 10— 6は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-7]図 10— 7は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-8]図 10— 8は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-9]図 10— 9は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 10-10]図 10— 10は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステ ムが使用する送信フォーマット例を示す図である。
[図 10-11]図 10— 11は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステ ムが使用する送信フォーマット例を示す図である。
[図 10-12]図 10— 12は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステ ムが使用する送信フォーマット例を示す図である。 [図 11-1]図 11— 1は、特定ユーザのデータが帯域の広がったサブキャリアにより送信 された場合に発生するキャリア間干渉の様子の一例を示す図である。
[図 11-2]図 11 2は、各ユーザが送信フォーマット # 3を使用してデータを送信する 場合のキャリア間干渉の様子の一例を示す図である。
[図 12- 1]図 12— 1は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 12- 2]図 12— 2は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 12- 3]図 12— 3は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
圆 13- 1]図 13— 1は、複数ユーザのデータを基地局が受信した場合のキャリア間干 渉の様子の一例を示す図である。
[図 13-2]図 13— 2は、複数ユーザのデータを基地局が受信した場合のキャリア間干 渉の様子の一例を示す図である。
[図 14]図 14は、実施の形態 5の通信システムの構成例を示す図である。
[図 15]図 15は、実施の形態 6の通信システムの構成例を示す図である。
[図 16-1]図 16— 1は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 16-2]図 16— 2は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
[図 16-3]図 16— 3は、 3ユーザに対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。
圆 17- 1]図 17— 1は、複数ユーザのデータを基地局が送信した場合のキャリア間干 渉の様子の一例を示す図である。
[図 17-2]図 17— 2は、複数ユーザのデータを基地局が送信した場合のキャリア間干 渉の様子の一例を示す図である。
[図 18]図 18は、実施の形態 7の通信システムの構成例を示す図である。
[図 19]図 19は、実施の形態 8の通信システムの構成例を示す図である。 [図 20]図 20は、実施の形態 9の通信システムの構成例を示す図である。
[図 21]図 21は、実施の形態 10の通信システムの構成例を示す図である。
[図 22-1]図 22—1は、実施の形態 10のシステムが使用する送信フォーマット例を示 す図である。
[図 22-2]図 22— 2は、実施の形態 10のシステムが使用する送信フォーマット例を示 す図である。
[図 22-3]図 22— 3は、実施の形態 10のシステムが使用する送信フォーマット例を示 す図である。
[図 22-4]図 22— 4は、実施の形態 10のシステムが使用する送信フォーマット例を示 す図である。
符号の説明
1、 1 - 1、 1 - - N 変調部
2、 2- 1、 2- - N 送信フォーマット制御部
3、 3- 1、 3- - N 復調部
4、 4- 1, 4- - N 受信品質測定部
5、 5- 1、 5- - N 送信元制御指示部
6、 6- 1, 6- - N 品質推定用信号生成部
7、 7- 1、 7- - N 送信元品質推定部
8、 8- 1, 8- - N 多元接続制御部
9 事前推定 t 質出力部
10 既知信号レプリカ生成部
発明を実施するための最良の形態
[0015] 以下に、本発明にかかる通信制御方法の実施の形態を図面に基づいて詳細に説 明する。なお、この実施の形態によりこの発明が限定されるものではない。
[0016] 実施の形態 1.
図 1は、本発明にかかる通信制御方法を実現する通信システムの実施の形態 1の 構成例を示す図であり、 1対 1の双方向通信を行う OFDMシステムの構成例を示して いる。そして、この通信システムは、変調部 1および送信フォーマット制御部 2を備え た送信局装置 (以下、送信局と呼ぶ)と、復調部 3、受信品質測定部 4および送信元 制御指示部 5を備えた受信局装置 (以下、受信局と呼ぶ)と、により構成される。なお 、図示していないが、送信局および受信局は、信号の送受信処理を行うために送信 処理および受信処理を行うためのモジュールを備え、ユーザ信号 (データ),後述す る送信元制御指示信号,受信品質信号などの送受信を行う。これは、後述する実施 の形態の送信局および受信局においても同様である。
[0017] 送信局における変調部 1は、送信フォーマット制御部 2から出力された送信フォー マット信号が示す送信フォーマットに従って、サブキャリアを配置した送信信号を作成 する。送信フォーマット制御部 2は、受信局から受け取った送信元制御指示信号に従 V、送信フォーマットを選択し、選択した送信フォーマットを示す送信フォーマット信号 を出力する。
[0018] 受信局における復調部 3は、アンテナを介して送信局から受信した信号を復調する 。受信品質測定部 4は、受信信号 (サブキャリア)の受信品質を測定する。請求項 15 のヌルキャリア数決定手段として動作する送信元制御指示部 5は、受信品質測定部 4 が測定した受信品質に基づいて、当該受信局に対する次回のデータ送信時に当該 送信局が使用する送信フォーマットを決定し、決定した送信フォーマットの情報を含 んだ送信元制御指示信号を生成する。なお、生成された送信元制御指示信号は、 送信局に対して送信され、送信局は、上述したように送信元制御指示信号に従った 動作を行う。
[0019] なお、受信品質測定部 4が測定する受信品質として、受信電力,信号電力対雑音 電力比(SNR: Signal to Noise Ratio) ,信号電力対干渉電力比(CIR : Carrier to Interference Ratio) ,誤り率, CQI (Channel Quality Indicator)等が考えられる。そ して、受信局は、これらの受信品質力 キャリア間干渉の大きさを知ることができる。こ こでは、一例として CIRを用いて説明する。なお、後述する他の実施の形態の受信品 質測定部も同様に、受信品質として CIRを測定することとするが、これに限らず受信 電力、 SNR等を使用してもよい。
[0020] つづいて、送信フォーマット制御部 2の動作例を図 2— 1〜図 2— 4に基づいて説明 する。図 2—1〜図 2—4は、実施の形態 1のシステムが使用する送信フォーマット例 を示す図であり、図 2—1から順番に送信フォーマット # 1、 # 2、 # 3および # 4の 4種 類の送信フォーマットを示している。また、各フォーマットにおいて、破線部は、電力 送信されないサブキャリアであるヌルキャリアを示しており、送信フォーマット # 1は、 ヌルキャリアを配置しない構成である。送信フォーマット # 2は、隣接 1サブキャリアに ヌルキャリアを配置した構成である。送信フォーマット # 3は、隣接 2サブキャリアにヌ ルキャリアを配置した構成である。送信フォーマット # 4は、隣接 3サブキャリアにヌル キャリアを配置した構成である。そして、送信フォーマット制御部 2は、受信局の送信 元制御指示部から通知された送信元制御指示信号により指示された送信フォーマツ トを上記 4種類の送信フォーマットから選択する。
[0021] つづいて、本実施の形態の通信システム力 データ伝送時の干渉発生を抑圧する 動作例を図 3— 1〜図 3— 4に基づいて説明する。図 3— 1〜図 3— 4は、実施の形態 1のシステムにおいて発生するキャリア間干渉の様子の一例を示す図であり、同一条 件下のデータ送信に対して各送信フォーマットを適用した場合に発生するキャリア間 干渉の様子を示している。図 3—1〜図 3—4に示したような条件は、たとえば、非線 形歪によりサブキャリアの帯域が広がり、隣接するサブキャリアに干渉を与える場合に 相当する。
[0022] まず、受信品質測定部 4は、キャリア間干渉の大きさを示す情報として受信信号の CIRを測定する。つぎに、送信元制御指示部 5は、キャリア間干渉を抑圧するために 送信信号を構成するサブキャリア群に挿入するヌルキャリアの数を制御する。具体的 には、受信品質測定部 4が測定した CIRの大きさに基づいて、当該受信信号の送信 元送信局が次回のデータ送信時に使用する送信フォーマットを決定する。たとえば、 送信元制御指示部 5は、測定された CIRの大きさと予め規定されている複数のしきい 値とを比較し、比較結果に基づいて送信フォーマットを選択する。そして、送信元制 御指示部 5は、選択した送信フォーマット使用して送信を行うように指示するために、 選択した送信フォーマットの情報を含んだ送信元制御指示信号を生成する。図 3— 1 〜図 3—4に示した例においては、送信フォーマット # 3以上を用いた場合、キャリア 間干渉が発生しないため、送信元制御指示部 5は、送信フォーマット # 3の使用を指 示する送信元制御指示信号を生成する。 [0023] 送信局の送信フォーマット制御部 2は、受信した送信元制御指示信号に従い送信 フォーマットを選択 (ここでは送信フォーマット # 3を選択)し、選択した送信フォーマ ット # 3を示す送信フォーマット信号を出力する。そして、変調部 1は、送信フォーマツ ト制御部 2から出力された送信フォーマット信号が示す送信フォーマット # 3に従って サブキャリアを配置した送信信号を作成し、作成した信号 (データ)を送信する。この ような動作を行うことにより、たとえば、非線形歪によりサブキャリアの帯域が広がった 場合であっても、キャリア間干渉の発生を抑圧して良好な通信品質でデータ伝送を 行うことができる。
[0024] つづいて、上述したサブキャリアの帯域が広がった場合の例とは異なり、本実施の 形態の通信システム力 GI (Guard Interval)を超える遅延波の影響により発生した 符号間干渉によるキャリア間干渉の発生を抑圧してデータを送信する動作例を図 4 1〜図 4 4に基づいて説明する。図 4 1〜図 4 4は、実施の形態 1のシステム において発生するキャリア間干渉の様子の一例を示す図であり、遅延波の影響が存 在する条件下のデータ送信に対して各送信フォーマットを適用した場合に発生する キャリア間干渉の様子を示している。図 4—1〜図 4— 4に示した状態においては、 GI を超える遅延波の影響によりサブキャリアの帯域が広がっているため、通常の送信フ ォーマット(送信フォーマット # 1に相当)を使用した場合などにおいて、キャリア間干 渉が発生している。
[0025] 図 4 1〜図 4 4に示したような状態において、上記図 3— 1〜図 3— 4に基づいて 説明した動作と同様の動作を行うことにより、送信元制御指示部 5は、受信品質測定 部 4が測定した CIRの大きさに基づ 、て送信フォーマット # 4を選択し、送信局に対し て選択した送信フォーマット # 4の使用を指示する。そして、送信局は、送信元制御 指示部 5からの指示に従い送信フォーマット # 4を使用してデータを送信する。このよ うな動作を行うことにより、 GIを超える遅延波の影響によりサブキャリアの帯域が広が つた場合であっても、キャリア間干渉の発生を抑圧して良好な通信品質でデータを送 信することができる。なお、送信フォーマット # 4を使用した場合、実際にデータ伝送 を行うサブキャリアの出力は、他のデータ伝送を行うサブキャリアの中心周波数にお V、てゼロとなるためキャリア間干渉が発生しな 、。 [0026] また、本実施の形態の通信システムにヌルキャリアを利用して GIを超える遅延波を 抑 J土する技術で fcoGB- FEQ (Frequency Domain Equalizer with Guard Band) を適用した場合の動作例について説明する。ここで、 GB— FEQを適用した等化処 理を行う受信局の復調部は、たとえば、 "「ガードインターバルを超えるマルチノスに 対する周波数等化の一検討」(2005年電子情報通信学会総合大会 B-5-21) "に示さ れる等化器を用いることにより実現できる。具体的には、送信局が GIの代わりに情報 伝送を行わな 、ヌルキャリアである GB (Guard Band)をデータサブキャリア間に挿入 して送信した信号を、受信局の等化器が GB— FEQを用いて周波数等化を行うこと により、 GIを超える遅延波による干渉を抑圧する。
[0027] そのため、復調部 3として GB—FEQを用いた等化器を用いる場合、送信元制御指 示部 5は、キャリア間干渉が完全に抑圧される(完全に無くなる)送信フォーマットを選 択するのではなぐ GB— FEQにより抑圧可能なキャリア間干渉が残留する送信フォ 一マットを選択することが可能である。たとえば、図 3—1〜図 3—4に示した例におい て、送信元制御指示部 5が送信フォーマット # 2を選択した場合を考える。送信フォ 一マット # 2を使用した場合、サブキャリアに重なったキャリア間干渉が残留している 。しかしながら、送信フォーマット # 2は、 6本のヌルキャリアを配置した構成となって おり、これら 6本のヌルキャリアを GB—FEQの GBとして利用可能である。したがって 、変調部 1が送信フォーマット # 2を使用して変調したデータを、復調部 3は、 GB-F EQを用いた等化処理を行うことによりキャリア間干渉を抑圧して良好な通信品質で データを受信することができ、データ伝送を効率的に行うことができる。
[0028] このように、本実施の形態においては、データの受信局が、送信局が送信した信号 の受信品質に基づいてキャリア間干渉を抑圧可能な送信フォーマットを選択し、当該 選択した送信フォーマットを使用してデータを送信するように送信局に対して指示を 行うことにより、送信局が送信信号を構成するサブキャリア群に挿入するヌルキャリア の数を制御することとした。これにより、非線形歪みの影響を受ける場合、ガードイン ターバルを超える遅延波を受信する場合、など、十分サブキャリアが直交しない条件 においても、キャリア間干渉の発生を抑圧し、良好な通信品質でデータ伝送を行うこ とができる [0029] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0030] 実施の形態 2.
つづいて、実施の形態 2について説明する。図 5は、実施の形態 2の通信システム の構成例を示す図であり、上述した実施の形態 1と同様に、 1対 1の双方向通信を行 う OFDMシステムの構成例を示している。この通信システムの送信局は、変調部 1お よび送信フォーマット制御部 2を備え、さらに、上述した実施の形態 1の通信システム の受信局が備えていた送信元制御指示部 5を備える。一方、受信局は、復調部 3お よび受信品質測定部 4のみを備える。なお、送信元制御指示部 5が請求項 18のヌル キャリア数決定手段として動作する。
[0031] 本実施の形態の通信システムにおいては、受信品質測定部 4が測定した信号の受 信品質測定結果を受信局が送信局に対して送信する。そして、送信局の送信元制 御指示部 5は、受信局力 受け取った受信品質測定結果に基づいて、当該受信局 に対する次回のデータ送信時に当該送信局が使用する送信フォーマットを決定し、 決定した送信フォーマットの情報を含んだ通知するための制御信号として送信元制 御指示信号を送信フォーマット制御部 2に対して出力する。なお、他の部分の動作は 上述した実施の形態 1と同様である。
[0032] このように、本実施の形態においては、データの受信局が、送信局が送信した信号 の受信品質測定結果を送信局に対して送信し、当該受信品質測定結果に基づいて 送信局がキャリア間干渉を抑圧可能な送信フォーマットを選択し、さらに当該選択し た送信フォーマットを使用してデータを送信することにより、送信信号を構成するサブ キャリア群に挿入するヌルキャリアの数を制御することとした。これにより、非線形歪み の影響を受ける場合、ガードインターバルを超える遅延波を受信する場合、など、十 分サブキャリアが直交しない条件においても、キャリア間干渉の発生を抑圧し、良好 な通信品質でデータ伝送を行うことができる。
[0033] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0034] 実施の形態 3. つづいて、実施の形態 3について説明する。図 6は、実施の形態 3の通信システム の構成例を示す図であり、上述した実施の形態 1と同様に、 1対 1の双方向通信を行 う OFDMシステムの構成例を示している。また、この通信システムの送信局は、変調 部 1、送信フォーマット制御部 2および上述した実施の形態 1の通信システムの受信 局が備えていた送信元制御指示部 5を備え、さらに、請求項 20の受信品質推定手 段として動作する送信先品質推定部 7を備える。一方、受信局は、復調部 3および品 質推定用信号生成部 6を備える。なお、送信元制御指示部 5が請求項 20のヌルキヤ リア数決定手段として動作する。
[0035] 本実施の形態の通信システムにおいては、送信局が受信局における信号の受信 品質を推定し、推定結果に基づいて当該受信局に対する次回のデータ送信時に当 該送信局が使用する送信フォーマットを決定する。具体的には、受信局の品質推定 用信号生成部 6は、送信局が受信局における信号の受信品質を推定するために使 用する品質推定用信号を生成し、受信局は、当該品質推定用信号を送信局に対し て送信する。
[0036] ここで、品質推定用信号について説明する。本実施の形態を TDD (Time Division
Duplex)方式に適用する場合、受信局(品質推定用信号生成部 6)は、たとえば、送 信局が送信する信号と同一の帯域を持つ信号を品質推定用信号として生成し、生成 した信号を送信する。また、本実施の形態を FDD (Frequency Division Duplex)方 式に適用する場合、受信局は、たとえば、受信局が送信局から受信した信号を品質 推定用信号として折り返して送信する。なお、後述する実施の形態において使用す る品質推定用信号も同様である。
[0037] つぎに、送信局の送信先品質推定部 7は、受信した品質推定用信号を使用して受 信局における信号の受信品質を推定する。送信元制御指示部 5は、送信先品質推 定部 7の品質推定結果を受信局の信号受信品質測定結果とみなして上述した実施 の形態 1と同様の動作を行うことにより当該送信局が次回のデータ送信時に使用する 送信フォーマットを決定する。なお、他の部分の動作は上述した実施の形態 1と同様 である。
[0038] このように、本実施の形態においては、送信局は、受信局が送信した品質推定用 信号を使用して受信局における信号受信品質を推定し、推定した信号受信品質に 基づいてキャリア間干渉を抑圧可能な送信フォーマットを選択する。そして、送信局 は、当該選択した送信フォーマットを使用してデータを送信することにより、送信信号 を構成するサブキャリア群に挿入するヌルキャリアの数を制御することとした。これに より、非線形歪みの影響を受ける場合、ガードインターバルを超える遅延波を受信す る場合、など、十分サブキャリアが直交しない条件においても、キャリア間干渉の発生 を抑圧し、良好な通信品質でデータ伝送を行うことができる。
[0039] また、受信局から送信局に対して伝達する送信元制御指示信号および受信品質 信号が不要となるため、受信局力も送信局へ伝達する情報を削減でき、特に TDD方 式に本実施の形態を適用した場合おいては、受信局力 送信局へ伝達する情報を 大幅に削減できる。
[0040] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0041] 実施の形態 4.
つづいて、実施の形態 4について説明する。図 7は、実施の形態 4の通信システム の構成例を示す図であり、 1対多の双方向通信を行う OFDMAシステムの上り回線 システム、すなわち、複数の移動局 (送信局)がデータを送信し、 1つの基地局 (受信 局)がデータを受信する OFDMAシステムの上り回線システムの構成例を示して!/、る
[0042] この通信システムの各移動局は、変調部(変調部 1 1, · ··, 1 Nに相当)および 送信フォーマット制御部(送信フォーマット制御部 2—1, · ··, 2—Nに相当)を備える 。基地局は、復調部 3、請求項 16の受信品質測定手段として動作する受信品質測定 部 4、送信元制御指示部 5— 1〜5— Nおよび請求項 16のヌルキャリア数決定手段と して動作する多元接続制御部 8を備える。以下、上述した実施の形態 1と異なる部分 について説明する。
[0043] 基地局の受信品質測定部 4は、各移動局から受信した信号の受信品質を測定する 。つぎに、多元接続制御部 8は、受信品質測定部 4が測定した各信号の受信品質に 基づ 、て、多元接続数 (データ送信を許可する移動局)およびサブキャリア配置 (デ ータ送信を許可する各移動局に割り当てるサブキャリア)を決定する。最後に、送信 元制御指示部 5— 1〜5— Nは、それぞれが制御する移動局が次回のデータ送信時 に使用する送信フォーマットを決定し、その情報を含んだ送信元制御指示信号を生 成する。なお、送信元制御指示信号は、送信フォーマット情報に加え、上記多元接 続制御部 8が決定した多元接続数およびサブキャリア位置に関する情報 (送信元制 御指示信号の宛先移動局の送信を許可するかどうかの情報、送信を許可する場合 に当該移動局に対して割り当てるサブキャリアの情報)を含む。そして、基地局は、生 成された送信元制御指示信号を各移動局に対して送信する。
[0044] 基地局力 送信元制御指示信号を受信した各移動局の送信フォーマット制御部は 、データ送信を許可された場合、送信元制御指示信号に含まれる情報に基づいてサ ブキャリアおよび送信フォーマットを選択する。なお、図 8—1〜図 8— 8は、 2ユーザ( 2つの移動局)に対してサブキャリアを割り当てる OFDMAシステムが使用する送信 フォーマット例を示す図であり、図 8— 1〜図 8— 4がユーザ # 1に対して割り当てる送 信フォーマット、図 8— 5〜図 8— 8がユーザ # 2に対して割り当てる送信フォーマット 、を示している。このシステムは、 2ユーザ (ユーザ # 1および # 2)に対してそれぞれ 6本のサブキャリアを割り当てる。そして、各ユーザ (各移動局の送信フォーマット制 御部)は、送信元制御指示信号に含まれる情報に基づいて、送信フォーマット # 1〜 # 4の中力も送信フォーマットを選択する。ここで、送信フォーマット # 1〜# 4は、そ れぞれ、サブキャリアの両端にヌルキャリアを 0, 1, 2, 3本と割り当てたものである。
[0045] つづいて、図 8— 1〜図 8— 8に示したような送信フォーマットを使用する OFDMA システムの動作例を図 9—1〜図 9—4に基づいて説明する。図 9—1〜図 9—4は、 2 ユーザが同時にデータ送信する場合に発生するキャリア間干渉の様子の一例を示 す図であり、同一条件下のデータ送信に対して各送信フォーマットを適用した場合に 発生するキャリア間干渉の様子を示している。図 9—1〜図 9—4の例においては、ュ 一ザ # 1の周波数同期が不十分なためサブキャリア群が右にずれており、ユーザ # 1 とユーザ # 2のサブキャリア群の境界で直交が崩れている。そのため、ユーザ # 1お よび # 2が共に通常の送信フォーマット (送信フォーマット # 1に相当)を使用してデ ータ送信を行う場合、キャリア間干渉が発生する(図 9 1参照)。このキャリア間干渉 は、データを受信した基地局において、ユーザ毎に周波数同期を補正して復調処理 を行っても、残留する。
[0046] このようなキャリア間干渉の発生を抑圧するために、まず受信品質測定部 4は、たと えば、キャリア間干渉の大きさを示す情報として CIRを測定する。つぎに、送信元制 御指示部 5— 1〜5— Nは、測定された CIRの大きさに基づいて移動局が使用する送 信フォーマットを決定し、決定した送信フォーマットを使用して送信を行うように移動 局に対して指示を行う。
[0047] 図 9—1〜図 9—4に示した例においては、送信フォーマット # 2以上を使用した場 合、キャリア間干渉が発生しないため(図 9 2参照)、基地局は、ユーザ # 1および # 2に相当する移動局に対して送信フォーマット # 2を使用するように指示を行う。そ して、ユーザ # 1および # 2は、送信フォーマット # 2を使用してデータを送信する。こ のような動作を行うことにより、たとえば、同時にデータ送信を行う複数ユーザ間の周 波数同期が不十分な場合であっても、基地局は、キャリア間干渉を抑圧して良好な 通信品質でデータを受信することができる。
[0048] つづいて、図 8— 1〜図 8— 8に示した例とは異なる OFDMAシステムにおいて複 数ユーザがデータを送信する場合の動作例について説明する。図 10—1〜図 10— 12は、 3ユーザ(3つの移動局)に対してサブキャリアを割り当てる OFDMAシステム が使用する送信フォーマット例を示す図である。このシステムは、 3ユーザ (ユーザ # 1〜# 3)に対してそれぞれ 4本の送信用サブキャリアを割り当てる。そして、各ユーザ (各移動局の送信フォーマット制御部)は、送信元制御指示信号に含まれる情報に 基づいて、送信フォーマット # 1〜# 4の中から送信フォーマットを選択する。ここで、 送信フォーマット # 1〜# 4は、それぞれ、ヌルキャリアなし,ユーザ # 1, # 2, # 3の サブキャリアの両端をヌルキャリアとしたものである。
[0049] 図 10— 1〜図 10— 12に示したような送信フォーマットを使用する OFDMAシステ ムの動作例を図 11— 1および 11 2に基づいて説明する。図 11— 1は、特定ユーザ のデータが帯域の広がったサブキャリアにより送信された場合に発生するキャリア間 干渉の様子の一例を示す図であり、基地局において、各ユーザから送信されたデー タが合成される前の様子と合成された後の様子との関係を示している。このようなサ ブキャリアの帯域の広がりは、たとえば、非線形歪により発生する。なお、図 11— 1は 、 2ユーザ (ユーザ # 1および # 3)のサブキャリアが広がりキャリア間干渉が発生して いる状態を示している。
[0050] このようなキャリア間干渉を抑圧するために、まず受信品質測定部 4は、たとえば、 キャリア間干渉の大きさを示す情報として CIRを測定する。つぎに、送信元制御指示 部 5— 1〜5—Nは、測定された CIRが小さいサブキャリアをヌルキャリアとして送信す る送信フォーマット # 3 (図 10— 3,図 10— 7,図 10— 11参照)を各ユーザが使用す る送信フォーマットに決定する。なお、図 11— 2は、各ユーザが送信フォーマット # 3 を使用してデータを送信する場合のキャリア間干渉の様子の一例を示す図である。 図 11 2は、図 11— 1に示したようなキャリア間干渉が発生する条件下において、送 信フォーマット # 3を使用することにより、キャリア間干渉を抑圧して良好な通信品質 で基地局がデータを受信できることを示して 、る。
[0051] つづいて、多元接続制御部 8の動作を図 12— 1〜図 12— 3と図 13— 1および図 13
2とに基づいて説明する。図 12—1〜図 12— 3は、 3ユーザに対してサブキャリア を割り当てる OFDMAシステムが使用する送信フォーマット例を示す図である。この システムは、 3ユーザ (ユーザ # 1〜 # 3)に対してそれぞれ 4本の送信用サブキャリア を割り当てる。なお、ここでは、簡略ィ匕のために、送信フォーマットを 1種類として説明 を行う。
[0052] 図 13— 1および図 13— 2は、複数ユーザのデータを基地局が受信した場合のキヤ リア間干渉の様子の一例を示す図であり、周波数同期が不十分なユーザのサブキヤ リアを含む複数のサブキャリアが、基地局において合成される前の様子と合成された 後の様子との関係を示している。なお、図 13—1は、 3ユーザのデータを基地局が受 信した場合のキャリア間干渉の様子を示し、図 13— 2は、後述する動作を実行して選 択した 2ユーザのデータを基地局が受信した場合のキャリア間干渉の様子を示して いる。
[0053] 図 13—1および図 13— 2に示した状態において、ユーザ # 1のサブキャリア群が右 にずれており、ユーザ # 3のサブキャリア群が左にずれている。このような状態で、基 地局が 3ユーザのデータを同時に受信すると、干渉が発生し、受信特性が劣化する( 図 13— 1参照)。そのため、多元接続制御部 8は、受信品質測定部 4が測定した CIR の大きさに基づいて、キャリア間干渉が発生しないようにユーザ割り当てを行う。具体 的には、ユーザ # 1および # 3に対してのみサブキャリアを割り当てることによりキヤリ ァ間干渉を抑圧する(図 13— 2参照)。さらに、多元接続制御部 8は、 CIRの大きさに 基づいて各ユーザに対してサブキャリアを割り当てることにより、マルチユーザダイバ ーシチ効果を得ることができ、基地局は、良好な通信品質でデータを受信することが できる。
[0054] このように、本実施の形態においては、各ユーザからの信号の受信品質に基づい て基地局が集中制御を行うことにより、多元接続数、サブキャリア配置および送信フ ォーマット(送信信号を構成するサブキャリア群に挿入するヌルキャリアの数)を決定 することとした。これにより、十分に各ユーザおよびサブキャリアが直交しない条件に おいても、キャリア間干渉を抑圧し、良好な通信品質でデータ伝送を行うことができ、 さらに、マルチユーザダイバーシチ効果が得られる。
[0055] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0056] 実施の形態 5.
つづいて、実施の形態 5について説明する。図 14は、実施の形態 5の通信システム の構成例を示す図であり、上述した実施の形態 4と同様に、 1対多の双方向通信を行 う OFDMAシステムの上り回線システムの構成例を示して 、る。
[0057] この通信システムは、上述した実施の形態 4の通信システムとは異なり、各移動局 が送信元制御指示部(送信元制御指示部 5— 1, · ··, 5— Nに相当)および多元接続 制御部(多元接続制御部 8— 1, · ··, 8— Nに相当)を備え、さらに、各移動局は、送 信元品質推定部 (送信元品質推定部 7—1, · ··, 7— Nに相当)を備える。一方、基地 局は、復調部 3および品質推定用信号生成部 6を備える。なお、多元接続制御部お よび送信元制御指示部が請求項 21のヌルキャリア数決定手段として動作する。以下 、上述した実施の形態 4と異なる部分にっ 、て説明する。
[0058] また、本実施の形態では、上述した実施の形態 3のシステムと同様に、移動局(実 施の形態 3の送信局に相当)が基地局(実施の形態 3の受信局に相当)における信 号の受信品質を推定し、推定結果に基づいて、移動局が多元接続数および送信フ ォーマットを決定する。
[0059] 具体的には、基地局の品質推定用信号生成部 6は、各移動局が基地局における 信号の受信品質を推定するために使用する品質推定用信号を生成し、基地局は、 当該品質推定用信号を各移動局に対して送信する。そして、各移動局の送信先品 質推定部は、受信した品質推定用信号を使用して基地局における信号の受信品質 を推定する。なお、品質推定用信号として、たとえば、 TDD方式を使用したシステム の場合、品質推定用信号生成部 6は、すべての送信局が送信する信号と同一の帯 域を持つ信号を品質推定用信号として送信する。また、 FDD方式を使用したシステ ムの場合、品質推定用信号生成部 6は、移動局から受信した信号を品質推定用信 号として折り返して送信する。
[0060] つぎに、各異動局の多元接続制御部は、送信先品質推定部の品質推定結果を基 地局の信号受信品質測定結果 (送信先品質)とみなし、当該品質推定結果に基づい て多元接続数およびサブキャリア配置を決定する。一例として、コンテンションベース での接続を想定すると、送信先品質が高い場合 (基地局における受信品質が良好で あると推定した場合)、多元接続制御部は、基地局に対するデータの送信確率 (たと えば、単位時間あたりのデータ送信実行回数)を高くする。この結果、基地局に対し てデータ送信を行う移動局の数 (多元接続数に相当)が送信先品質に基づいて適宜 変更され、移動局が固定の送信確率を使用してデータ送信を行う場合と比較して多 元接続数を高くできる。また、多元接続制御部は、送信先品質が高くなるように、自 局が使用するサブキャリアを決定する。これにより、マルチユーザダイバーシチ効果 が得られる。
[0061] なお、本実施の形態のシステムがデータ伝送時の干渉発生を抑圧する動作は、上 述した実施の形態 4と同様である。
[0062] このように、本実施の形態においては、移動局は、基地局が送信した品質推定用 信号を使用して基地局における信号受信品質を推定し、推定した信号受信品質に 基づいて、多元接続数、サブキャリア配置および送信フォーマットを決定することとし た。これにより、これにより、十分に各ユーザおよびサブキャリアが直交しない条件に おいても、キャリア間干渉を抑圧し、良好な通信品質でデータ伝送を行うことができ、 さらに、コンテンションベースでの接続においては、各移動局が多元接続数を自立分 散制御することにより、マルチユーザダイバーシチ効果が得られる。
[0063] また、基地局から移動局に対して伝達する送信元制御指示信号および受信品質 信号が不要となるため、基地局から移動局へ伝達する情報を削減でき、特に TDD方 式に本実施の形態を適用した場合おいては、基地局から移動局へ伝達する情報を 大幅に削減できる。
[0064] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0065] 実施の形態 6.
つづいて、実施の形態 6について説明する。図 15は、実施の形態 6の通信システム の構成例を示す図であり、 1対多の双方向通信を行う OFDMAシステムの下り回線 システム、すなわち、 1つの基地局 (送信局)がデータを送信し、複数の移動局 (受信 局)がデータを受信する OFDMAシステムの下り回線システムの構成例を示して!/、る
[0066] この通信システムの基地局は、変調部 1および送信フォーマット制御部 2を備える。
移動局は、復調部 (復調部 3— 1, · ··, 3 Nに相当)、受信品質測定部 (受信品質測 定部 4 1, · ··, 4 Nに相当)、送信元制御指示部 (送信元制御指示部 5— 1, · ··, 5 Nに相当)および多元接続制御部(多元接続制御部 8— 1, · ··, 8 Nに相当)を備 える。なお、多元接続制御部および送信元制御指示部が請求項 17のヌルキャリア数 決定手段として動作する。
[0067] また、本実施の形態のシステムは、上述した実施の形態 1システムの送信局 (移動 局)に多元接続制御部を追加し、複数の送信局が受信局に同時接続できるようにし たものである。以下、実施の形態 1と異なる部分について説明する。
[0068] 本実施の形態にシステムにお 、て、各移動局の多元接続制御部は、受信品質測 定部が測定した基地局力 の受信信号の受信品質に基づ 、て、多元接続数および サブキャリア配置を決定する。動作の一例として、多元接続制御部は、あるしきい値 以上の受信品質を有するサブキャリアにのみ自局宛のデータを配置する。なお、しき い値は、多元接続の負荷に応じて調整する。そして、送信元制御指示部は、基地局 が自局に対してデータを送信する際に使用する送信フォーマットを決定し、決定した 送信フォーマットの情報および多元接続制御部が決定したサブキャリア配置の情報 を含んだ送信元制御指示信号を生成する。そして、各移動局から送信元制御指示 信号を受信した基地局は、送信元制御指示信号により指示された送信フォーマット およびサブキャリアを使用してデータを送信する。なお、複数の移動局が同一のサブ キャリアを指示した場合、送信フォーマット制御部は、使用するサブキャリアの調整を 行う。
[0069] つづいて、本実施の形態の OFDMAシステムがデータ伝送時の干渉発生を抑圧 する動作例を図 16— 1〜図 16— 3と図 17— 1および図 17— 2とに基づ 、て説明する
[0070] 図 16— 1〜図 16— 3は、 3ユーザに対してサブキャリアを割り当てる OFDMAシス テムが使用する送信フォーマット例を示す図である。このシステムは、 3ユーザ (ユー ザ # 1〜# 3)に対してそれぞれ 4本の送信用サブキャリアを割り当てる。なお、ここで は、簡略化のために、送信フォーマットを 1種類として説明を行う。
[0071] 図 17—1および図 17— 2は、複数ユーザのデータを基地局が送信した場合のキヤ リア間干渉の様子の一例を示す図であり、非線形歪などにより帯域が広がったサブキ ャリアを多重した場合のキャリア間干渉の様子を示している。
[0072] このようなキャリア間干渉が発生した状態において、基地局が OFDMAにより 3ュ 一ザを多重したデータ送信を行うと、すべてのサブキャリア間において符号間干渉が 生じ、特性は大きく劣化する(図 17— 1参照)。
[0073] 一方、ユーザ # 2向けの信号を多重せずに、 2ユーザ (ユーザ # 1および # 3)を多 重してデータ送信を行った場合、ユーザ # 2向けのサブキャリアは何も送信されず、 ヌルキャリアとして扱うことができる(図 17— 2参照)。
[0074] そのため、このような 2ユーザを多重した状態で、上記実施の形態 1にお!/、て説明し た GB—FEQを適用することによりキャリア間干渉を抑圧する。具体的には、ユーザ # 1およびユーザ # 3の復調部力 本実施の形態におけるユーザ # 2向けのサブキ ャリアをヌルキャリア、すなわちバードバンド (GB)として GB— FEQにより等化するこ とにより、 2ユーザを多重化した場合に残留するキャリア間干渉を抑圧可能である。そ のため、最終的に干渉が発生しない良好な通信品質でデータ伝送を行うことができ る。
[0075] このように、本実施の形態においては、基地局力 受信した信号の受信品質に基 づいて、各移動局が、多元接続数、サブキャリア配置および送信フォーマットを決定 し、当該決定した内容に従いデータを送信するように基地局に対して指示を行うこと により、基地局が送信信号を構成するサブキャリア群に挿入するヌルキャリアの数を 制御することとした。これにより、十分に各ユーザおよびサブキャリアが直交しない条 件においても、キャリア間干渉を抑圧し、良好な通信品質でデータ伝送を行うことが でき、さらに、マルチユーザダイバーシチ効果が得られる。
[0076] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0077] 実施の形態 7.
つづいて、実施の形態 7について説明する。図 18は、実施の形態 7の通信システム の構成例を示す図であり、上述した実施の形態 6と同様に、 1対多の双方向通信を行 う OFDMAシステムの下り回線システムの構成例を示して 、る。
[0078] この通信システムの基地局は、変調部 1、送信フォーマット制御部 2、送信元制御指 示部 5および多元接続制御部 8を備える。移動局は、復調部 (復調部 3— 1, · ··, 3— Nに相当)および受信品質測定部 (受信品質測定部 4 1, · ··, 4 Nに相当)を備え る。なお、送信元制御指示部 5および多元接続制御部 8が請求項 19のヌルキャリア 数決定手段として動作する。以下、上述した実施の形態 6と異なる部分について説明 する。
[0079] 本実施の形態の通信システムは、移動局が基地局力 受信した信号の受信品質 情報を基地局に対して通知する。そして、当該品質情報に基づいて、基地局の多元 接続制御部 8が多元接続数およびサブキャリア配置を決定し、送信元制御指示部 5 が送信フォーマットを決定する。
[0080] なお、本実施の形態のシステムがデータ伝送時のキャリア間干渉の発生を抑圧す る動作は、上述した実施の形態 6と同様である。また、本実施の形態においては、多 元接続制御、サブキャリア割り当て(サブキャリア配置および送信フォーマットの決定 )を行うにあたり、基地局がすべての移動局における受信品質を事前情報として用い ることが可能である。そのため、基地局が多元接続数、サブキャリア配置および送信 フォーマットを集中制御することができ、実施の形態 6と比較して、より高効率なシステ ムを形成可能である。
[0081] このように、本実施の形態においては、移動局から通知された信号の受信品質に 基づいて、基地局が多元接続数、サブキャリア配置および送信フォーマットを決定し 、当該決定した内容に従いデータを送信することとした。これにより、十分に各ユーザ およびサブキャリアが直交しない条件においても、キャリア間干渉を抑圧し、良好な 通信品質でデータ伝送を行うことができ、さらに、マルチユーザダイバーシチ効果が 得られる。
[0082] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0083] 実施の形態 8.
つづいて、実施の形態 8について説明する。図 19は、実施の形態 8の通信システム の構成例を示す図であり、上述した実施の形態 6と同様に、 1対多の双方向通信を行 う OFDMAシステムの下り回線システムの構成例を示して 、る。
[0084] この通信システムの基地局は、変調部 1、送信フォーマット制御部 2、送信元制御指 示部 5、多元接続制御部 8および請求項 22の受信品質推定手段として動作する送 信先品質推定部 7— 1〜7— Nを備える。移動局は、復調部 (復調部 3— 1, · ··, 3— Nに相当)および品質推定用信号生成部(品質推定用信号生成部 6— 1, · ··, 6— N に相当)を備える。なお、送信元制御指示部 5および多元接続制御部 8が請求項 22 のヌルキャリア数決定手段として動作する。
[0085] また、本実施の形態の通信システムは、上述した実施の形態 7と同様に、送信局で ある基地局が多元接続数、サブキャリア配置および送信フォーマットを決定する。以 下、上述した実施の形態 7と異なる部分にっ 、て説明する。
[0086] 本実施の形態の基地局は、各移動局から送信された品質推定用信号を使用して 各移動局における信号の受信品質を推定し、当該推定結果に基づいて多元接続数 、サブキャリア配置および送信フォーマットを決定する。
[0087] 具体的には、各移動局の品質推定用信号生成部は、基地局が移動局における信 号の受信品質を推定するために使用する品質推定用信号を生成する。基地局の各 送信先品質推定部は、各移動局の品質推定用信号生成部が生成した品質推定用 信号を使用して、当該品質推定用信号の送信元の移動局における信号の受信品質 を推定する。なお、品質推定用信号として、たとえば、 TDD方式を使用したシステム の場合、移動局は、基地局が送信する信号と同一の帯域を持つ信号を品質推定用 信号として送信する。また、 FDD方式を使用したシステムの場合、移動局は、基地局 から受信した信号を品質推定用信号として折り返して送信する。
[0088] そして、基地局の多元接続制御部 8および送信元制御指示部 5は、各送信先品質 推定部における品質推定結果を各移動局の信号受信品質測定結果とみなして上述 した実施の形態 7と同様の動作を行うことにより、多元接続数、サブキャリア配置およ び送信フォーマットを決定する。
[0089] このように、本実施の形態においては、基地局は、移動局が送信した品質推定用 信号を使用して移動局における信号の受信品質を推定し、推定した信号受信品質 に基づいて、多元接続数、サブキャリア配置および送信フォーマットを決定することと した。これにより、十分に各ユーザおよびサブキャリアが直交しない条件においても、 キャリア間干渉を抑圧し、良好な通信品質でデータ伝送を行うことができる。
[0090] また、移動局から基地局に対して伝達する送信元制御指示信号および受信品質 信号が不要となるため、移動局から基地局へ伝達する情報を削減でき、特に TDD方 式に本実施の形態を適用した場合おいては、移動局から基地局へ伝達する情報を 大幅に削減できる。
[0091] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0092] 実勢の形態 9.
つづいて、実施の形態 9について説明する。図 20は、実施の形態 9の通信システム の構成例を示す図であり、上述した実施の形態 1〜3と同様に、 1対 1の双方向通信 を行う OFDMシステムの構成例を示している。また、この通信システムの送信局は、 変調部 1、送信フォーマット制御部 2、送信元制御指示部 5および事前推定品質出力 部 9を備える。一方、受信局は、復調部 3のみを備える。
[0093] 本実施の形態の通信システムにおいては、上述した実施の形態 3と同様に、送信 局が自身の推定した受信局における信号受信品質に基づいて使用する送信フォー マットを決定するが、送信フォーマットを決定するにあたり、受信局から送信される情 報を必要としない点が異なる。以下、実施の形態 3と異なる部分について説明する。
[0094] 事前推定品質出力部 9は、事前に推定した受信局における信号受信品質を記憶し ており、送信局がデータ送信を行う際に、記憶している信号受信品質を出力する。な お、事前推定品質出力部 9は、たとえば、セル設計時,セル設置時,定期的に実施さ れるキャリブレーション,スーパフレーム等の複数フレームに対して送信される信号等 により事前に通知された送信先受信品質情報 (信号受信品質)を記憶しておく。これ により、本実施の形態の通信システムは、送信局と受信局との間の受信品質の共有 化を実現する。そして、送信元制御指示部 5は、事前推定品質出力部 9からの出力 信号を受信局の信号受信品質測定結果とみなし、上述した実施の形態 3と同様の動 作を行う。
[0095] なお、本実施の形態においては、 1対 1の双方向通信を行う OFDMシステムに対し て事前推定品質出力部を適用した構成例としたが、これに限らず、上述した実施の 形態 4〜8で説明した 1対多の双方向通信を行う OFDMAシステムに対して事前推 定品質出力部を適用することも可能である。具体的には、事前推定品質出力部に記 憶されている送信先受信品質情報 (信号受信品質)を受信局における信号の受信品 質とみなし、この情報を使用して上述した実施の形態 1〜8と同様の動作を行うことが 可能である。
[0096] このように、本実施の形態においては、送信局は、事前に推定し、記憶しておいた 受信局における信号受信品質に基づいて使用する送信フォーマットを決定すること により送信信号を構成するサブキャリア群に挿入するヌルキャリアの数を制御すること とした。これにより、十分に各ユーザおよびサブキャリアが直交しない条件においても 、キャリア間干渉を抑圧し、良好な通信品質でデータ伝送を行うことができる。
[0097] また、送信局が送信フォーマットを決定するにあたり、受信局が送信局に対して情 報を送信する必要がないため、移動局から基地局へ伝達する情報を削減できる。
[0098] また、チャネル推定信号の送信キャリア間の干渉も抑圧されるため、高精度なチヤ ネル推定結果を得ることができる。
[0099] 実施の形態 10.
つづいて、実施の形態 10について説明する。図 21は、実施の形態 10の通信シス テムの構成例を示す図であり、上述した実施の形態 1〜3と同様に、 1対 1の双方向 通信を行う OFDMシステムの構成例を示している。また、この通信システムの送信局 は、変調部 1および送信フォーマット制御部 2を備える。一方、受信局は、復調部 3、 受信品質測定部 4、送信元制御指示部 5および既知信号レプリカ生成部 10を備える
[0100] 本実施の形態の通信システムにおいては、上述した実施の形態 1と同様に、受信 局が、送信局から送信された信号の受信品質に基づいて送信局が使用する送信フ ォーマットを決定する力 ヌルキャリアに代えて既知信号を送信フォーマットに配置す る点が異なる。以下、実施の形態 1と異なる部分について説明する。
[0101] 既知信号レプリカ生成部 10は、受信品質信号 (送信局から送信された信号の受信 品質)に基づいて受信信号における既知信号成分 (以下、既知レプリカ信号と呼ぶ) を生成する。たとえば、受信品質信号として CIRを使用する場合、既知信号系列と CI Rの畳み込みを実施することにより既知レプリカ信号を生成する。受信局は、この既 知レプリカ信号を受信信号力 減算することにより、受信信号に含まれる既知信号の 影響を除去できる。すなわち、既知信号レプリカ生成部 10を追加したことにより、受 信局において、既知信号サブキャリアをヌルキャリアに変換することが可能となる。な お、既知信号としては、パイロット信号,プリアンブル信号など受信局側で伝送データ が既知である信号全般を指す。
[0102] つぎに、本実施の形態の通信システムが、データ伝送時のキャリア間干渉の発生を 抑圧する動作例を図 21および図 22— 1〜図 22— 4に基づいて説明する。図 22— 1 〜図 22— 4は、実施の形態 10で使用する送信フォーマット例を示す図であり、上述 した実施の形態 1で使用した送信フォーマット(図 2— 1〜図 2—4参照)のヌルキヤリ ァを既知信号キャリアに置き換えたものである。 [0103] 上述した実施の形態 1と同様の動作を行うことにより、受信局は、送信局が使用する 送信フォーマットを決定し、送信局は、受信局に対して当該送信フォーマットを使用 してデータを送信する。なお、このとき使用する送信フォーマットは、ヌルキャリアに代 えて既知信号キャリアを配置したものを使用する。受信局は、既知信号レプリカ生成 部 10が生成した既知レプリカ信号を受信信号力も減算することにより受信信号に含 まれる既知信号キャリアをヌルキャリアに変換後、復調処理を行う。
[0104] なお、本実施の形態においては、 1対 1の双方向通信を行う OFDMシステムの受 信局に対して既知信号レプリカ生成部を適用した構成例としたが、これに限らず、 1 対多の双方向通信を行う OFDMAシステムの受信局に対して既知信号レプリカ生成 部を適用することも可能である。すなわち、既知信号レプリカ生成部を適用することに より上述した実施の形態 1〜9のシステムにおいて、ヌルキャリアの代わりに既知キヤリ ァを使用した送信フォーマットを使用することが可能となる。
[0105] このように、本実施の形態においては、データの受信局が送信局力も受信した信号 の受信品質に基づ 、て既知信号成分を生成し、当該既知成分信号を受信信号から 減算することにより受信信号に含まれる既知信号サブキャリアをヌルキャリアに変換 後、復調処理を行うこととした。これにより、ヌルキャリアに代えて既知信号サブキヤリ ァを使用して上述した実施の形態 1〜9を実現することが可能となり、既知信号サブ キャリアを使用した場合にも上述した実施の形態 1〜9と同様の効果を得ることができ る。
産業上の利用可能性
[0106] 以上のように、本発明に力かる通信制御方法は、マルチキャリア変調方式に対応し た通信システムに有用であり、特に、サブキャリア間の干渉を抑圧してデータ伝送を 行う通信システムに適して 、る。

Claims

請求の範囲
[1] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムにおいて、受信局が、送信局が送信する信号 (送信信号)に含まれる ヌルキャリアの数を制御する通信制御方法であって、
前記受信局が、前記送信信号を構成するサブキャリア群の受信品質を測定する受 信品質測定ステップと、
前記受信局が、測定結果として得られる受信品質に基づいて、次回の送信信号に 含まれるヌルキャリアの数を決定するヌルキャリア数決定ステップと、
を含むことを特徴とする通信制御方法。
[2] 前記通信システムが複数の送信局を含む場合、
前記受信品質測定ステップでは、前記受信局が、前記複数の送信局が送信する信 号の受信品質を測定し、
前記ヌルキャリア数決定ステップでは、前記受信局が、測定結果として得られる各 受信品質に基づいて、次回の送信時にサブキャリア群を割り当てる送信局および当 該送信局に割り当てるサブキャリア群の配置を決定し、さらに、前記各受信品質に基 づいて当該決定したサブキャリア群に含まれるヌルキャリアの数を決定することを特 徴とする請求項 1に記載の通信制御方法。
[3] 前記通信システムが複数の受信局を含む場合、
各受信局は、それぞれ、
前記受信品質測定ステップを実行し、前記ヌルキャリア数決定ステップでは、測定 結果として得られる受信品質に基づいて、自局に対して送信される次回の送信信号 のサブキャリア群の配置を決定し、さらに、当該受信品質に基づいて当該決定したサ ブキャリア群に含まれるヌルキャリアの数を決定することを特徴とする請求項 1に記載 の通信制御方法。
[4] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムにおいて、送信局が、受信局に対して送信する信号 (送信信号)に含 めるヌルキャリアの数を制御する通信制御方法であって、
前記受信局が、前記送信信号を構成するサブキャリア群の受信品質を測定し、測 定により得られた受信品質を前記送信局に対して通知する受信品質測定通知ステツ プと、
前記送信局が、受け取った受信品質に基づいて、次回の送信信号に含めるヌルキ ャリアの数を決定するヌルキャリア数決定ステップと、
を含むことを特徴とする通信制御方法。
[5] 前記通信システムが複数の受信局を含む場合、
各受信局は、それぞれ前記受信品質測定通知ステップを実行し、
前記送信局は、前記ヌルキャリア数決定ステップにおいて、受け取ったそれぞれの 受信品質に基づいて、次回の送信時にサブキャリア群を割り当てる受信局および当 該受信局に割り当てるサブキャリア群の配置を決定し、さらに、前記それぞれの受信 品質に基づいて当該決定したサブキャリア群に含めるヌルキャリアの数を決定するこ とを特徴とする請求項 4に記載の通信制御方法。
[6] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムにおいて、送信局が、受信局に対して送信する信号 (送信信号)に含 めるヌルキャリアの数を制御する通信制御方法であって、
前記受信局が、前記送信信号の受信品質を前記送信局が推定するための品質推 定用信号を生成する品質推定用信号生成ステップと、
前記送信局が、前記品質推定用信号に基づいて、前記送信信号を構成するサブ キャリア群の受信品質を推定する受信品質推定ステップと、
前記送信局が、推定結果として得られる受信品質 (推定受信品質)に基づいて、次 回の送信信号に含まれるヌルキャリアの数を決定するヌルキャリア数決定ステップと、 を含むことを特徴とする通信制御方法。
[7] 前記通信システムが複数の送信局を含む場合、
各送信局は、それぞれ、
前記受信品質推定ステップを実行し、前記ヌルキャリア数決定ステップでは、前記 推定受信品質に基づいて、単位時間あたりのデータ送信実行回数 (データ送信確率 )および次回のデータ送信時に使用するサブキャリア群の配置を決定し、さらに、前 記推定受信品質に基づいて当該決定したサブキャリア群に含めるヌルキャリアの数 を決定することを特徴とする請求項 6に記載の通信制御方法。
[8] 前記通信システムが複数の受信局を含む場合、
各受信局は、それぞれ、前記品質推定用信号生成ステップを実行し、 前記受信品質推定ステップでは、前記送信局が、前記各受信局から受け取った品 質推定用信号に基づいて、品質推定用信号生成元の各受信局におけるサブキヤリ ァ群の受信品質を推定し、
前記ヌルキャリア数決定ステップでは、前記送信局が、前記推定受信品質に基づ いて、次回の送信時にサブキャリア群を割り当てる受信局および当該受信局に割り 当てるサブキャリア群の配置を決定し、さらに、前記推定受信品質に基づいて当該決 定したサブキャリア群に含まれるヌルキャリアの数を決定することを特徴とする請求項
6に記載の通信制御方法。
[9] さらに、
事前に推定し記憶しておいた前記受信局におけるサブキャリア群の事前推定受信 品質を取得する事前推定受信品質取得ステップ、
を含み、
前記ヌルキャリア数決定ステップでは、前記受信品質に代えて前記事前推定受信 品質を使用して処理を行うことを特徴とする請求項 1に記載の通信制御方法。
[10] さらに、
事前に推定し記憶しておいた前記受信局におけるサブキャリア群の事前推定受信 品質を取得する事前推定受信品質取得ステップ、
を含み、
前記ヌルキャリア数決定ステップでは、前記受信品質に代えて前記事前推定受信 品質を使用して処理を行うことを特徴とする請求項 4に記載の通信制御方法。
[11] さらに、
事前に推定し記憶しておいた前記受信局におけるサブキャリア群の事前推定受信 品質を取得する事前推定受信品質取得ステップ、
を含み、
前記ヌルキャリア数決定ステップでは、前記推定受信品質に代えて前記事前推定 受信品質を使用して処理を行うことを特徴とする請求項 6に記載の通信制御方法。
[12] さらに、
既知信号サブキャリアをヌルキャリアに変換するために使用する既知レプリカ信号 を生成する既知レプリカ信号生成ステップ、
を含み、
前記ヌルキャリア数決定ステップでは、送信サブキャリア群に含まれるヌルキャリア の数に代えて送信サブキャリア群に含まれる既知信号サブキャリアの数を決定するこ とを特徴とする請求項 1に記載の通信制御方法。
[13] さらに、
既知信号サブキャリアをヌルキャリアに変換するために使用する既知レプリカ信号 を生成する既知レプリカ信号生成ステップ、
を含み、
前記ヌルキャリア数決定ステップでは、送信サブキャリア群に含まれるヌルキャリア の数に代えて送信サブキャリア群に含まれる既知信号サブキャリアの数を決定するこ とを特徴とする請求項 4に記載の通信制御方法。
[14] さらに、
既知信号サブキャリアをヌルキャリアに変換するために使用する既知レプリカ信号 を生成する既知レプリカ信号生成ステップ、
を含み、
前記ヌルキャリア数決定ステップでは、送信サブキャリア群に含まれるヌルキャリア の数に代えて送信サブキャリア群に含まれる既知信号サブキャリアの数を決定するこ とを特徴とする請求項 6に記載の通信制御方法。
[15] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムにおいて、送信局装置が送信する信号 (送信信号)に含まれるヌルキ ャリアの数を制御する受信局装置であって、
前記送信信号を構成するサブキャリア群の受信品質を測定する受信品質測定手 段と、
前記受信品質に基づ ヽて、次回の送信信号に含まれるヌルキャリアの数を決定す るヌルキャリア数決定手段と、
を備えることを特徴とする受信局装置。
[16] 前記通信システムが複数の送信局装置を含む場合、
前記受信品質測定手段は、前記複数の送信局装置が送信する信号の受信品質を 測定し、
前記ヌルキャリア数決定手段は、前記受信品質測定手段の測定結果として得られ る各受信品質に基づいて、次回の送信時にサブキャリア群を割り当てる送信局装置 および当該送信局装置に割り当てるサブキャリア群の配置を決定し、さらに、前記各 受信品質に基づいて当該決定したサブキャリア群に含まれるヌルキャリアの数を決定 することを特徴とする請求項 15に記載の受信局装置。
[17] 前記ヌルキャリア数決定手段は、前記受信品質測定手段の測定結果として得られ る受信品質に基づ 、て、前記送信局装置から送信される次回の送信信号のサブキ ャリア群の配置および当該サブキャリア群に含まれるヌルキャリアの数を決定すること を特徴とする請求項 15に記載の受信局装置。
[18] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムにおいて、受信局装置に対して送信する信号 (送信信号)に含めるヌ ルキャリアの数を制御する送信局装置であって、
前記受信局装置が測定した前記送信信号を構成するサブキャリア群の受信品質を 受信し、当該受信品質に基づいて、次回の送信信号に含めるヌルキャリアの数を決 定するヌルキャリア数決定手段、
を備えることを特徴とする送信局装置。
[19] 前記通信システムが複数の受信局装置を含む場合、
前記ヌルキャリア数決定手段は、各受信局装置がそれぞれ測定した前記送信信号 を構成するサブキャリア群の受信品質を受信し、当該各受信品質に基づいて、次回 の送信時にサブキャリア群を割り当てる受信局装置および当該受信局装置に割り当 てるサブキャリア群の配置を決定し、さらに、前記それぞれの受信品質に基づいて当 該決定したサブキャリア群に含めるヌルキャリアの数を決定することを特徴とする請求 項 18に記載の送信局装置。
[20] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムにおいて、受信局装置に対して送信する信号 (送信信号)に含めるヌ ルキャリアの数を制御する送信局装置であって、
前記受信局装置が生成した前記送信信号の受信品質を推定するための品質推定 用信号に基づいて、自装置が送信した信号の前記受信局装置における受信品質を 推定する受信品質推定手段と、
前記受信品質推定手段の推定結果として得られる受信品質 (推定受信品質)に基 づ 、て、次回の送信信号に含めるヌルキャリアの数を決定するヌルキャリア数決定手 段と、
を備えることを特徴とする送信局装置。
[21] 前記ヌルキャリア数決定手段は、前記推定受信品質に基づいて、単位時間あたり のデータ送信実行回数 (データ送信確率)および次回のデータ送信時に使用するサ ブキャリア群の配置を決定し、さらに、前記推定受信品質に基づいて当該サブキヤリ ァ群に含めるヌルキャリアの数を決定することを特徴とする請求項 20に記載の送信 局装置。
[22] 前記通信システムが複数の受信局装置を含む場合、
前記受信品質推定手段は、前記各受信局装置が生成した品質推定用信号に基づ いて、品質推定用信号生成元の各受信局装置におけるサブキャリア群の受信品質 を推定し、
前記ヌルキャリア数決定手段は、前記受信品質推定手段にて推定した各受信品質 に基づいて、次回の送信時にサブキャリア群を割り当てる受信局装置および当該受 信局装置に割り当てるサブキャリア群の配置を決定し、さらに、前記推定受信品質に 基づいて当該決定したサブキャリア群に含めるヌルキャリアの数を決定することを特 徴とする請求項 20に記載の送信局装置。
[23] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムであって、
送信信号を構成するサブキャリア群の受信品質を測定し、測定により得られた受信 品質に基づ ヽて、次回の送信信号に含まれるヌルキャリアの数を決定する受信局装 置と、
前記受信局装置が決定したヌルキャリア数に基づ 、て、ヌルキャリアが挿入された 送信信号を作成する送信局装置と、
を備えることを特徴とする通信システム。
[24] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムであって、
送信信号を構成するサブキャリア群の受信品質を測定し、当該測定結果を送信す る受信局装置と、
前記受信局装置が測定したサブキャリア群の受信品質を受信し、当該受信品質に 基づ ヽて、次回の送信信号に含めるヌルキャリアの数を決定する送信局装置と、 を備えることを特徴とする通信システム。
[25] マルチキャリア変調方式を採用し、ヌルキャリアを利用してキャリア間干渉を抑圧す る通信システムであって、
送信信号を構成するサブキャリア群の受信品質を推定するための品質推定用信号 を生成し、当該品質推定用信号を送信する受信局装置と、
前記受信局装置が生成した品質推定用信号を受信し、当該品質推定用信号に基 づいて、自装置が送信した信号の前記受信局装置における受信品質を推定し、さら に、推定結果として得られる受信品質に基づいて、次回の送信信号に含めるヌルキ ャリアの数を決定する送信局装置と、
を備えることを特徴とする通信システム。
PCT/JP2006/301525 2006-01-31 2006-01-31 通信制御方法、受信局装置、送信局装置および通信システム WO2007088580A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06712668A EP1981191A4 (en) 2006-01-31 2006-01-31 COMMUNICATION CONTROL METHOD, RECEPTION STATION APPARATUS, TRANSMISSION STATION APPARATUS, AND COMMUNICATION SYSTEM
PCT/JP2006/301525 WO2007088580A1 (ja) 2006-01-31 2006-01-31 通信制御方法、受信局装置、送信局装置および通信システム
CN2006800510690A CN101366216B (zh) 2006-01-31 2006-01-31 通信控制方法、接收站装置、发送站装置以及通信系统
US12/159,859 US8077787B2 (en) 2006-01-31 2006-01-31 Communication control method, receiving station apparatus, transmitting station apparatus, and communication system
JP2007556720A JP4809373B2 (ja) 2006-01-31 2006-01-31 通信制御方法、受信局装置、送信局装置および通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/301525 WO2007088580A1 (ja) 2006-01-31 2006-01-31 通信制御方法、受信局装置、送信局装置および通信システム

Publications (1)

Publication Number Publication Date
WO2007088580A1 true WO2007088580A1 (ja) 2007-08-09

Family

ID=38327167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301525 WO2007088580A1 (ja) 2006-01-31 2006-01-31 通信制御方法、受信局装置、送信局装置および通信システム

Country Status (5)

Country Link
US (1) US8077787B2 (ja)
EP (1) EP1981191A4 (ja)
JP (1) JP4809373B2 (ja)
CN (1) CN101366216B (ja)
WO (1) WO2007088580A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009050793A1 (ja) * 2007-10-16 2009-04-23 Fujitsu Limited 移動局および無線基地局
JP2010502078A (ja) * 2006-08-21 2010-01-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ キャリア間干渉を相殺する伝送方法及び伝送装置
JP2011504709A (ja) * 2007-11-21 2011-02-10 アウェア, インコーポレイテッド マルチキャリア送受信機のための安定した低電力モード
JP2012514889A (ja) * 2009-01-06 2012-06-28 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムで同期チャンネル生成装置及び方法
CN102763357A (zh) * 2010-01-26 2012-10-31 京瓷株式会社 基站及基站中基准定时的调整方法
JP2014060707A (ja) * 2012-08-24 2014-04-03 Kyocera Corp 通信装置、通信システム及び通信制御方法
JPWO2013018332A1 (ja) * 2011-07-29 2015-03-05 パナソニック株式会社 無線通信端末及び通信制御方法
US9277516B2 (en) 2009-01-06 2016-03-01 Samsung Electronics Co., Ltd. Apparatus and method for generating synchronization channel in a wireless communication system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070149132A1 (en) 2005-12-22 2007-06-28 Junyl Li Methods and apparatus related to selecting control channel reporting formats
US20090274036A1 (en) * 2008-05-05 2009-11-05 Industrial Technology Research Institute Harq based ici coding scheme
US8891701B1 (en) * 2014-06-06 2014-11-18 MagnaCom Ltd. Nonlinearity compensation for reception of OFDM signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918433A (ja) 1995-06-29 1997-01-17 Fujitsu Ten Ltd マルチキャリア変調送信方法およびマルチキャリア変調送信機ならびに受信機
JP2001028577A (ja) * 1999-07-14 2001-01-30 Sumitomo Electric Ind Ltd 路車間通信システム並びに路上通信局及び車載移動局
JP2004254335A (ja) * 2004-04-02 2004-09-09 Toshiba Corp 無線基地局、無線端末

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE228286T1 (de) 1996-09-02 2002-12-15 St Microelectronics Nv Verbesserungen bei, oder in bezug auf mehrträgerübertragungssysteme
US6829307B1 (en) 1999-02-24 2004-12-07 The Board Of Trustees Of Leland Stanford Junior University Express bit swapping in a multicarrier transmission system
CN1210884C (zh) * 1999-07-07 2005-07-13 三菱电机株式会社 接收机和自适应均衡处理方法
JP2001308861A (ja) * 2000-04-18 2001-11-02 Iwatsu Electric Co Ltd 無線lan装置の制御方式
US7263058B2 (en) * 2001-08-27 2007-08-28 Samsung Electronics Co., Ltd. Apparatus and method for generating preamble sequence in a BWA communication system using OFDM
JP3637965B2 (ja) 2001-11-22 2005-04-13 日本電気株式会社 無線通信システム
US20040005010A1 (en) 2002-07-05 2004-01-08 National University Of Singapore Channel estimator and equalizer for OFDM systems
KR100918764B1 (ko) * 2003-07-15 2009-09-24 삼성전자주식회사 다수개의 송신 안테나들을 사용하는 직교 주파수 분할 다중 통신시스템에서 프리앰블 시퀀스 송수신 장치 및 방법
CN1246983C (zh) * 2003-09-19 2006-03-22 清华大学 有效降低子载波间干扰(ici)的分段解调方法
JP2005150945A (ja) * 2003-11-12 2005-06-09 Kawasaki Microelectronics Kk 通信システムおよび送信装置
KR20050053907A (ko) 2003-12-03 2005-06-10 삼성전자주식회사 직교 주파수 분할 다중 접속 방식을 사용하는 이동 통신시스템에서 서브 캐리어 할당 방법
EP1832074B1 (en) * 2004-12-27 2013-11-20 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving a signal in an FFH-OFDM communication system
US7813454B2 (en) * 2005-09-07 2010-10-12 Sirf Technology, Inc. Apparatus and method for tracking symbol timing of OFDM modulation in a multi-path channel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918433A (ja) 1995-06-29 1997-01-17 Fujitsu Ten Ltd マルチキャリア変調送信方法およびマルチキャリア変調送信機ならびに受信機
JP2001028577A (ja) * 1999-07-14 2001-01-30 Sumitomo Electric Ind Ltd 路車間通信システム並びに路上通信局及び車載移動局
JP2004254335A (ja) * 2004-04-02 2004-09-09 Toshiba Corp 無線基地局、無線端末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1981191A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502078A (ja) * 2006-08-21 2010-01-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ キャリア間干渉を相殺する伝送方法及び伝送装置
WO2009050793A1 (ja) * 2007-10-16 2009-04-23 Fujitsu Limited 移動局および無線基地局
JP5029696B2 (ja) * 2007-10-16 2012-09-19 富士通株式会社 移動通信システム
US8406700B2 (en) 2007-10-16 2013-03-26 Fujitsu Limited Mobile station and radio base station
JP2011504709A (ja) * 2007-11-21 2011-02-10 アウェア, インコーポレイテッド マルチキャリア送受信機のための安定した低電力モード
US8837610B2 (en) 2007-11-21 2014-09-16 Tq Delta, Llc Stable low power mode for multicarrier transceivers
JP2012514889A (ja) * 2009-01-06 2012-06-28 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムで同期チャンネル生成装置及び方法
US9277516B2 (en) 2009-01-06 2016-03-01 Samsung Electronics Co., Ltd. Apparatus and method for generating synchronization channel in a wireless communication system
CN102763357A (zh) * 2010-01-26 2012-10-31 京瓷株式会社 基站及基站中基准定时的调整方法
JPWO2013018332A1 (ja) * 2011-07-29 2015-03-05 パナソニック株式会社 無線通信端末及び通信制御方法
JP2014060707A (ja) * 2012-08-24 2014-04-03 Kyocera Corp 通信装置、通信システム及び通信制御方法

Also Published As

Publication number Publication date
EP1981191A1 (en) 2008-10-15
JPWO2007088580A1 (ja) 2009-06-25
EP1981191A4 (en) 2011-01-26
CN101366216A (zh) 2009-02-11
CN101366216B (zh) 2013-03-27
US8077787B2 (en) 2011-12-13
US20090041105A1 (en) 2009-02-12
JP4809373B2 (ja) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4809373B2 (ja) 通信制御方法、受信局装置、送信局装置および通信システム
Zyren et al. Overview of the 3GPP long term evolution physical layer
CN102119570B (zh) 使用具有聚合频谱的中继的方法和系统
US8630359B2 (en) Radio transmission method, radio reception method, radio transmission apparatus and radio reception apparatus
JP2018191309A (ja) シングルキャリアベースの制御チャネル用のハイブリッドfdm−cdm構造の方法および装置
KR101065846B1 (ko) Ofdma에서의 패킷 데이터 전송 방법 및 장치
JP4373977B2 (ja) 無線通信システムおよび無線装置
JP4087812B2 (ja) 多重アンテナを用いる直交周波分割多重システムにおけるチャネルの推定装置及び方法
WO2006020336A1 (en) Channel estimation for a wireless communication system
KR20080031345A (ko) 무선 통신 장치 및 무선 통신 방법
KR20090074824A (ko) 무선 통신을 위한 다중-캐리어 및 단일-캐리어 멀티플렉싱 방식들의 공동 사용
CA2702444A1 (en) Ofdm/ofdma frame structure for communication systems
US9509473B2 (en) Method and device for sending and receiving a reference signal
US9191042B2 (en) Interference cancellation technique for channel estimation in OFDM receivers
US20110110323A1 (en) Method of transmitting or receiving uplink signals and equipment therefor
JP4611385B2 (ja) 無線通信システムおよび通信装置
KR20080023505A (ko) Ofdma 이동통신 시스템의 협력 전송 방법 및 단말
KR100798849B1 (ko) 직교주파수분할다중접속 방식의 이동통신 시스템에서 채널선택적 스케줄링 장치 및 방법
JP4675790B2 (ja) 通信装置および通信システム
US20050007946A1 (en) Multi-carrier transmission
KR101417133B1 (ko) 상향링크 신호의 송신 또는 수신 방법과 이를 위한 장치
JP5569790B2 (ja) 通信装置および通信システム
KR20070094418A (ko) 직교 주파수 분할 다중 접속 시스템의 업 링크에서부반송파의 위상 추적 방법 및 이를 위한 송수신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007556720

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12159859

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680051069.0

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2006712668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006712668

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE