WO2007086455A1 - Discharge lamp operating device and illuminator - Google Patents

Discharge lamp operating device and illuminator Download PDF

Info

Publication number
WO2007086455A1
WO2007086455A1 PCT/JP2007/051154 JP2007051154W WO2007086455A1 WO 2007086455 A1 WO2007086455 A1 WO 2007086455A1 JP 2007051154 W JP2007051154 W JP 2007051154W WO 2007086455 A1 WO2007086455 A1 WO 2007086455A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
discharge lamp
heating amount
heating
current
Prior art date
Application number
PCT/JP2007/051154
Other languages
French (fr)
Japanese (ja)
Inventor
Go Kato
Kazutoshi Mita
Yuji Takahashi
Masahiko Kamata
Yuuichiro Takahara
Yanbin Sun
Original Assignee
Toshiba Lighting & Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting & Technology Corporation filed Critical Toshiba Lighting & Technology Corporation
Priority to CN2007800013902A priority Critical patent/CN101356861B/en
Priority to JP2007555993A priority patent/JP4985408B2/en
Publication of WO2007086455A1 publication Critical patent/WO2007086455A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps

Definitions

  • the present invention relates to a discharge lamp lighting device that controls the amount of heating of a filament when a hot cathode discharge lamp is dimmed and lit, and an illumination device using the discharge lamp lighting device.
  • the switch means is turned on / off with an on-duty fixed in advance according to the dimming degree.
  • the heating amount of the filament cannot be optimized in accordance with the actual lamp current.
  • the actual heating amount of the filament cannot be confirmed, and the heating amount of the filament may not be optimized.
  • the filaments of each discharge lamp have deviations that are not all the same quality, but the filament heating amount may be inappropriate for filaments with large deviations.
  • the filament heating cannot be optimized by the uniform on-duty control set in advance even due to factors such as manufacturing deviation of the preheating transformer, power supply voltage fluctuation, and ambient temperature fluctuation.
  • the present invention provides a discharge that can optimize the heating amount of the filament according to the degree of dimming even if there is a deviation of the filament, a manufacturing deviation of the preheating transformer, or other disturbance.
  • An object is to provide an electric lamp lighting device and an illumination device.
  • a discharge lamp lighting device includes a variable output lighting device that turns on a hot cathode discharge lamp by converting an output of a DC power supply device into a high-frequency voltage;
  • a filament heating amount corresponding to the dimming degree of the discharge lamp are stored in advance, and according to the dimming signal Control means for controlling the output of the heating means so that the heating amount of the filament detected by the detection means is stored in advance and becomes the filament heating amount. It is characterized by having.
  • the direct current power supply device allows a battery, a commercial power supply voltage that is rectified or smoothed as necessary, or others.
  • a commercial power supply voltage that is rectified or smoothed as necessary, or others.
  • using an active filter mainly composed of a boost chopper is effective in that the harmonic component of the input current can be reduced and the output voltage can be controlled arbitrarily. .
  • the hot cathode type discharge lamp is typically a fluorescent lamp.
  • the present invention is not limited to this, and it can be used for general lighting, sterilization, decoration, display, etc. But it ’s okay.
  • the lighting device only needs to convert the output voltage of the DC power supply device into a high-frequency voltage.
  • an inverter for example, an inverter, a converter or a chipper can be used. Further, even if these inverters, converters or chitsutsuba are used, the circuit system is not limited.
  • the heating means is either energized by a part of the output of the lighting device, energized by the output of the DC power supply or the output of the commercial power source, or another energized by another power source. It may be.
  • a component such as a transformer or a lighting device provided with a filament heating wire, or a component forming a circuit through which a filament heating current flows may be misaligned.
  • the detection means detects the heating amount of the filament, and can be configured to detect the current and voltage of the filament, or to detect the filament temperature.
  • the control means stores in advance a filament heating amount corresponding to the dimming degree.
  • the heating amount of the filament is within a range that can prevent the discharge lamp from being shortened due to underheating, and can prevent blackening of the discharge lamp bulb due to overheating.
  • Such a range can be set according to the type or application of the discharge lamp and the cumulative lighting time of the discharge lamp.
  • Storing the filament heating amount according to the dimming degree in advance may be a form in which the filament heating amount according to the dimming degree is stored in the data table, or an arithmetic expression is stored and You may make it obtain
  • the present invention is characterized in that the stored content itself is not characteristic, and the actual filament heating state is fed back and optimized.
  • the control means changes the output of the lighting device in response to the dimming signal. Specifically, the control means changes the output by changing the output voltage value of the DC power supply device or controlling the operation of the lighting device. be able to. For example, when the lighting device is composed of an inverter, a converter, a chipper, etc., the output can be changed by controlling the switching frequency and on-duty of these switching devices.
  • the control means controls the output of the heating means.
  • the control structure can be formed according to the structure of the heating means. For example, when a transformer is used as described above, it is sufficient to control the input voltage of the transformer. When a filament winding is provided in a component of the inverter, the applied voltage of the component may be controlled. In addition, when using a component that forms a heating current flow path, the impedance value of the component is controlled, or the flow path is opened and closed with a switch.
  • control means as described above is not limited in terms of structure, such as being configured integrally, and the part for controlling the lighting device and the part for controlling the heating means are configured separately. In short, what is necessary is just to perform the above-mentioned action.
  • control means for example, an IC, a microcomputer, a DSP (digital digital processor), and the like, which are configured to perform arithmetic processing, are advantageous in terms of processing speed and small size. Is advantageous. Especially in the case of DSP, it is suitable for controlling the heating amount within about 0.5 seconds when the calculation speed is high.
  • the first aspect of the invention changes the amount of power supplied to the discharge lamp by controlling the output of the lighting device in accordance with the dimming signal. As a result, the discharge lamp is lit at a dimming degree according to the dimming signal.
  • the filament heating amount at this time is detected by the detecting means and controlled so as to be the filament heating amount corresponding to the above-mentioned dimming degree stored in advance. Therefore, the filament is controlled at a preset filament heating amount regardless of filament deviation, manufacturing deviation of heating means, and other disturbance factors.
  • the filament of the discharge lamp is set in advance according to the dimming degree regardless of the deviation of the filament, the manufacturing deviation of the heating means, and other disturbance factors. It is possible to provide a discharge lamp lighting device that can be heated with a heating amount, can achieve a long life of the discharge lamp, and can also save power.
  • a discharge lamp lighting device includes a DC power supply device having a variable output voltage value; a pair of switching devices connected in series to each other and a switching output of the switching device; An inverter that turns on the hot cathode discharge lamp by converting the output voltage of the DC power supply device to a high-frequency voltage; and the filament of the discharge lamp is energized by the switching output of the inverter.
  • the detection means force
  • the output voltage value of the DC power supply device is changed so that the detected filament heating amount becomes the filament calorie heat amount stored in advance.
  • control means for changing the switching frequency of the inverter such that the dimming degree to which the light output is set for the discharge lamp characterized by comprising a.
  • the output of the heating means Means a changing relationship.
  • the configuration is not particularly limited. For example, it can be formed as described in connection with the invention of the first aspect.
  • the discharge lamp lighting device of the second aspect changes the switching frequency of the inverter in accordance with the dimming signal, and changes the resonance output of the series resonance circuit to change the amount of power supplied to the discharge lamp. .
  • the discharge lamp is lit at a dimming degree corresponding to the dimming signal.
  • the heating amount of the filament is detected by the detecting means, and the amount corresponding to the dimming degree stored in advance is detected. Based on the detected value, the output voltage value of the DC power supply is changed so that the amount of iramentation heating is obtained.
  • the switching output of the inverter changes according to the output voltage value of the DC power supply device, the output of the heating means changes, and the filament heating amount is controlled according to the stored dimming degree.
  • Storing the filament heating amount according to the dimming degree in advance may be a form in which the filament heating amount according to the dimming degree is stored in the data table, or an arithmetic expression is stored and Depending on the dimming degree, it may be obtained by calculation each time. If the dimming level of the discharge lamp is about to deviate from the set value due to a change in the output voltage value of the DC power supply device, the set dimming level can be obtained by controlling the switching frequency.
  • the invention of the second aspect in addition to the effect of the invention of the first aspect, it can be configured by controlling the output voltage value of the DC power supply device and controlling the switching frequency of the inverter. It is possible to provide a discharge lamp lighting device in which the overall configuration of the device can be made relatively simple and can be reduced in size and price.
  • a discharge lamp lighting device is the discharge lamp lighting device according to the first or second aspect, wherein the control means includes means for determining the type of the discharge lamp.
  • the filament heating amount is calculated according to the dimming degree and the determination result of the type of the discharge lamp.
  • the type of the discharge lamp can be determined using the identification signal, and the target filament heating amount can be obtained according to the type of the discharge lamp. .
  • a discharge lamp lighting device is the discharge lamp lighting device according to the first or second aspect, wherein the control means includes means for estimating the cumulative lighting time.
  • the lament heating amount is calculated according to the dimming degree and the estimated result of the cumulative lighting time.
  • the cumulative lighting time corresponding to the age of the discharge lamp can be estimated by detecting the filament voltage, the lamp voltage, etc. of the discharge lamp, and the discharge lamp It becomes possible to obtain the target filament heating amount according to the cumulative lighting time of [0028]
  • the discharge lamp lighting device according to the fifth aspect of the present invention is the discharge lamp lighting device according to the third aspect, wherein the setting of the type of the discharge lamp corresponds to the type of the discharge lamp used. It is performed by the code set by the target switch.
  • the discharge lamp lighting device of the fifth aspect it is possible to set using an identification code by means such as a dip switch according to the type of the discharge lamp to be used.
  • a discharge lamp lighting device is the discharge lamp lighting device according to any one of the first to fifth aspects, wherein the detection means detects a discharge lamp current with respect to a dimming degree. And a means for detecting the sum of the discharge lamp current and the filament current, and calculating the feedback lamp current detection result and the sum of the discharge lamp current and the filament current.
  • the detection means for detecting the filament heating amount includes a discharge lamp current that is a discharge lamp current (lamp current) and a filament current that is a filament heating current. By detecting the sum, the amount of power consumed by the filament (heating amount) can be detected approximately.
  • a discharge lamp lighting device is the discharge lamp lighting device according to any one of the first to fifth aspects, wherein the detection means detects the amount of filament heating. It is characterized in that it is performed on the filament with the smallest heating amount among a plurality of filaments.
  • the filament heating amount is detected by detecting a plurality of filaments of the discharge lamp.
  • the heating value is the smallest, it is performed on the filament, and if the detected value exceeds the lower limit of the appropriate amount, it is estimated that all other filaments will exceed the lower limit. Optimal control of quantity is facilitated.
  • the discharge lamp lighting device is the discharge lamp lighting device according to any one of the first to fifth aspects, wherein the control means calculates a ratio of the heating amount of each filament in a plurality of filaments.
  • the detection means can detect the amount of heating of the filament in any filament of the discharge lamp, and the control means uses the detection location of the detection means and the ratio. To calculate the heating amount of the filament It is characterized by that.
  • the heating amount of each filament is estimated as the low potential side and the low potential side. If the lamp current on the potential side is detected, the leakage current can be roughly estimated and the lamp current in each filament can be estimated based on this. Then, the heating amount of each filament is estimated using the estimation of the lamp current in each filament, and the ratio is held in advance. Based on this assumption, for example, if the heating amount is adjusted to the low potential side, if one of them is detected, then control may be performed according to the ratio, or anyway. If one of them is detected, the heating amount of the other filaments can be adjusted to an optimum range by varying it according to the ratio of each.
  • a discharge lamp lighting device is the discharge lamp lighting device according to any one of the first, third to eighth aspects, wherein the lighting devices are connected in series to each other.
  • the filament is heated by arranging, and the control means controls the amount of heating of the filament by increasing or decreasing the current flowing through the filament.
  • the configuration is such that the filament heating current flows through the filament and the resonant capacitor that is part of the series resonant circuit, so that the low potential from the high potential side of the discharge lamp is reduced. Leakage current when the discharge lamp current flows to the side is eliminated, and efficient filament heating control can be performed.
  • a discharge lamp lighting device is the discharge lamp lighting device according to the ninth aspect, wherein the control means is disposed in parallel with the filament of the discharge lamp, and the resonant capacitor. Impedance arranged in series; switch means arranged in series with the impedance to control the inflow current; filament heating amount control means for controlling the heating amount of the filament by turning on and off the switching means; It is characterized by comprising;
  • the filament and the resonant capacitor are used.
  • the current that flows can be turned on and off by the switch means, and the amount of current flowing to the filament is controlled to control the amount of filament heating. it can.
  • a lighting device includes a lighting fixture body; a hot cathode discharge lamp mounted on the lighting fixture body; and any one of the first to tenth modes for lighting the discharge lamp. And two discharge lamp lighting devices.
  • FIG. 1 is a circuit diagram showing a first embodiment of a discharge lamp lighting device according to the present invention.
  • FIG. 2 is an enlarged view illustrating a filament terminal current by cutting out a part of FIG.
  • FIG. 3 is a graph showing the relationship between the lamp current of FIG. 1 and the amount of filament heating.
  • FIG. 4 is a circuit diagram showing a second embodiment of a discharge lamp lighting device according to the present invention.
  • FIG. 5 is a circuit diagram showing a third embodiment of a discharge lamp lighting device according to the present invention.
  • FIG. 6 is a graph showing the relationship between lamp current and filament heating amount for different discharge lamps.
  • FIG. 7 is a circuit diagram of a fourth embodiment of a discharge lamp lighting device according to the present invention.
  • FIG. 8 is a diagram showing an example of a discharge lamp type discriminating means.
  • FIG. 9 is a diagram showing a control flow of a discharge lamp lighting device according to a fifth embodiment of the discharge lamp lighting device of the present invention.
  • FIG. 10 is an explanatory diagram showing a state of control for the discharge lamp type A according to the fifth embodiment.
  • FIG. 11 is an explanatory diagram showing a state of control for the discharge lamp type B according to the fifth embodiment.
  • FIG. 12 is a circuit diagram showing a sixth embodiment of a discharge lamp lighting device according to the present invention.
  • FIG. 13 is an explanatory diagram of filament terminal current detection showing a part of FIG. 12 in an enlarged manner.
  • FIG. 14 is a diagram showing the upper and lower limits of the filament heating amount.
  • FIG. 15 is a diagram showing the position of a lamp current detection point for detecting the heating amount when two lamps are connected in series.
  • FIG. 16 is a circuit diagram showing a seventh embodiment of a discharge lamp lighting device according to the present invention.
  • FIG. 17 is a circuit diagram in which the impedance in FIG. 16 is a capacitor.
  • FIG. 18 is a diagram showing filament currents when! / And the filament switch are controlled to be off and on, respectively.
  • FIG. 19 is a perspective view showing an embodiment of a lighting device according to the present invention.
  • FIG. 1 is a block diagram showing a first embodiment of a discharge lamp lighting device according to the present invention
  • FIG. 2 is an enlarged view illustrating a filament terminal current by cutting a part of FIG. 1
  • FIG. 3 is a diagram illustrating a discharge lamp current ( Hereinafter, it is a figure which shows the relationship between lamp current) and a filament heating amount.
  • Reference numeral 1 denotes a DC power supply device, and a lighting device 2 is connected to the DC power supply device 1.
  • the lighting device 2 converts the output voltage of the DC power supply device 1 into a high-frequency AC voltage of several kHz to several hundred kHz.
  • the lighting device 2 is configured to be capable of changing its output, and includes current limiting means for stably lighting the discharge lamp.
  • the hot cathode discharge lamp 3 is lit by the output of the lighting device 2.
  • Reference numeral 4 denotes a heating means for heating the filament of the discharge lamp 3 and is energized by the output of the lighting device 2 in this embodiment.
  • One filament of the discharge lamp 3 is provided with detection means 5 for detecting the heating amount of the filament.
  • the filament current is detected. Specifically, as shown in FIG. 2, the sum of the square of the sum (Il + If) of the lamp current II and the filament heating current If and the square of the filament heating current If is obtained.
  • FIG. 2 is an enlarged view of a part of FIG. 1.
  • reference numeral 21 represents a power source equivalent to the output of the heating means 4.
  • the discharge lamp 3 is provided with current detection means 6 in series with the lamp current supply path so as to detect the lamp current value.
  • This current detection means 6 may be used as a lighting detection means for the discharge lamp 3.
  • the heating means 4 is provided with a heating amount control switch 7 in series so that the input to the heating means 4 can be controlled.
  • reference numeral 8 denotes control means for controlling the output of the lighting device 2 and the switches. This is for controlling on / off of the switch 7 and for storing the amount of filament heating according to the dimming degree of the discharge lamp 3.
  • the stored content of the present embodiment is a correspondence relationship between the lamp current II and the sum of the square of (11 + If) and the square of the filament heating current If.
  • the lamp current value of the discharge lamp 3 changes according to the degree of dimming, but the appropriate filament heating amount for this lamp current value is set to the square of (Il + If) and the square of the filament heating current If. It is specified in the sum.
  • the shaded area is the appropriate range for heating the filament, and the appropriate range expands as the lamp current increases. However, it may be specified simply by the relationship between the lamp current II and the filament heating current If. In short, it may be defined by the relationship between the signal indicating the filament heating state and the signal indicating the dimming lighting state of the discharge lamp. As a storage form, a data table or an arithmetic expression may be used.
  • the control means 8 can be constituted by an IC, a microcomputer, a digital signal processor (DSP), etc., and its functions include an arithmetic control unit (CPU), a main memory, a program memory, and a nonvolatile memory. Analog Z digital converter (AD converter), interface circuit (IZF circuit), etc. Then, the control means 8 stores a control sequence according to the control sequence at the start of the discharge lamp 3 and the detection signal from the current detection means 6 as necessary, and executes control according to the stored contents. It may be.
  • DSP digital signal processor
  • the control means 8 is supplied with a dimming signal and detection signals from the filament heating amount detection means 5 and the current detection means 6. Then, according to the dimming signal, the output of the lighting device 2 is changed so that the discharge lamp 3 has a predetermined dimming degree. Further, the lamp current is obtained from the detection signal of the current detection means 6, and the ON period of the switch 7 is controlled (on-duty control) so that the amount of filament calorie heat corresponding to the lamp current is obtained.
  • control means 8 outputs the output of the lighting device 2 when the lamp current value detected from the current detection means 6 is out of the value corresponding to the dimming degree set by the dimming signal. May be controlled so as to obtain a predetermined lamp current value.
  • the lighting device 2 performs filament heating output and start voltage output by the start sequence control of the control means 8.
  • the control means 8 is fully turned on. Or, the output control of the lighting device 2 is performed so that the lighting is performed at the set dimming degree.
  • the control means 8 since the lamp current value is detected by the current detection means 6, the control means 8 stores the filament heating amount corresponding to the lamp current value at this time, and stores the data or arithmetic expression. You can know more.
  • the filament heating amount detection means 5 since the filament heating amount is detected by the filament heating amount detection means 5, it is possible to discriminate between coincidence or mismatch by comparison with the stored filament heating amount. For example, when the detected filament heating amount is outside the shaded area in FIG. 3, the on / off on-duty of the switch 7 is controlled so that it is inside the shaded area. That is, when the filament heating amount is determined to be insufficient, the on-duty is increased, and when the filament heating amount is determined to be excessive, the on-duty is decreased.
  • the heating amount of the filament is always within the shaded area in Fig. 3, and the life of the discharge lamp can be shortened due to insufficient heating, and the blackening of the bulb and power loss due to scattering of the emitter due to excessive heating can be eliminated.
  • FIG. 4 is a circuit diagram showing a second embodiment of the discharge lamp lighting device according to the present invention.
  • parts that are the same as or correspond to those in FIG. 4 are the same as or correspond to those in FIG.
  • a half-bridge type inverter is used as the lighting device 40.
  • a pair of MOS FETs 41 and 42 connected in series with each other are connected between the output terminals of the DC power supply device 1, and a series resonance circuit 43 is provided in parallel with one FET 42.
  • the series resonance circuit 43 includes a DC cut capacitor 44, a current limiting and resonance inductor 45, and a resonance capacitor 46.
  • Inductor 45 originally functions as a ballast.
  • the heating means 47 of the present embodiment is formed by a series circuit of a DC cut capacitor 48 and a filament heating transformer 49. Symbols a and b indicate current detection points necessary for heating amount detection in the filament heating amount detection means 5.
  • the control means 8A controls the switching frequency of the pair of MOS type FETs 41 and 42 according to the dimming signal. From this point, the series resonant circuit 43 Since the frequency of the switching output supplied to the lamp changes, the resonance output changes and the power supplied to the discharge lamp 3 changes. That is, the discharge lamp 3 is lit at a predetermined dimming degree set by the dimming signal.
  • the lamp current value in this state is detected by the current detection means 6, the filament heating amount is detected by the filament heating amount detection means 5, and the control means 8A has a filament heating amount corresponding to the lamp current value at this time. Controls on / off of switch 7. Therefore, the operation is the same as in FIG.
  • FIG. 5 is a circuit diagram showing a third embodiment of the discharge lamp lighting device according to the present invention.
  • the DC power supply device 50 of the present embodiment uses an active filter made up of a boosting chiba. That is, the DC power supply 50 includes a rectifier 52 that rectifies the output of the commercial AC power supply 51, a MOS type FET 54 that can short-circuit the output terminals of the rectifier 52 via the inductor 53, and the FET 54 and the diode 55. And a smoothing capacitor 56 connected in parallel via
  • the switch 7 in the first and second embodiments is omitted, and the on-duty of the MOS FET 54 can be controlled by the control means 8B so that the output voltage of the DC power supply device 50 can be controlled. Change the value.
  • the control means 8B controls the switching frequency of the pair of MOS FETs 41 and 42 of the lighting device 40 according to the dimming signal. As a result, the power supplied to the discharge lamp 3 changes, and the discharge lamp 3 is lit at a predetermined dimming degree set by the dimming signal.
  • the lamp current value in this state is detected by the current detection means 6, the filament heating amount is detected by the filament heating amount detection means 5, and the control means 8B has a filament heating amount corresponding to the lamp current value at this time. In addition, it controls the on-duty of the MOS FET54.
  • the output of the DC power supply device 50 is changed by controlling the on-duty of the MOS FET 54 by the control means 8B, the voltage applied to the heating means 47 also changes. Thereby, the filament heating current is controlled, and the filament heating amount can be controlled. [0064] Note that when the output voltage of the DC power supply device 50 changes, the resonance voltage value also changes, and the power supplied to the discharge lamp 3 also changes. By controlling the switching frequency of 40 pairs of MOSFETs 41 and 42 so that the detection value of the current detection means 6 has a predetermined dimming degree, the switching frequency is stabilized to the set value of the lamp power. be able to.
  • FIGS. Figure 6 shows the relationship between lamp current and filament heating for different discharge lamps.
  • the horizontal axis represents the lamp current II of the discharge lamp
  • the vertical axis represents the sum of the square of the current (11+ If) and the square of the filament heating current If, corresponding to the filament heating amount.
  • Fig. 6 shows the upper and lower limits of the filament heating amount for the dimming lamp current II for each of the 40-litre class discharge lamps FLR40S, FL40SS, and FHF32. Therefore, when these discharge lamps are lit in common in the embodiments of FIGS. 1, 4 and 5, the shaded area in FIG. 6 is the appropriate filament heating range for all discharge lamps (common to all discharge lamps). Therefore, the heating amount of the filament is controlled so as to be within this proper range.
  • FIG. 7 shows a circuit diagram of a fourth embodiment of a discharge lamp lighting device according to the present invention
  • FIG. 8 shows an example of a discharge lamp type discriminating means.
  • FIG. 7 is almost the same as the configuration of FIG. 4 described above.
  • the DC power source 1 is converted to AC by an inverter that is a lighting device 40, and a high voltage necessary for lighting the discharge lamp 3 is obtained using the series resonance circuit 43.
  • the filament heating circuit as the heating means 47, a heating circuit capable of controlling the heating amount by a switch 7 using a MOSFET as shown in FIG. 7 is shown.
  • the detection circuit 60 including the filament heating amount detection means detects electrical characteristics such as discharge current or voltage, filament current or voltage.
  • the control circuit 8C which is the control means, In addition to the lighting control for controlling the inverter 40, the filament heating circuit 47 can also be controlled according to the signal.
  • A is a lamp voltage detection point
  • B is a lamp current detection point
  • C is a filament heating amount detection point.
  • a current detection point a minute resistance means that can ignore a voltage drop with respect to the calo heat circuit 47 and the resonance circuit 43 can be used.
  • the filament heating circuit 47 is controlled such that a target value of the filament heating amount corresponding to the dimming degree is given and the filament heating amount corresponding to the target value is obtained.
  • the optimum value of the filament heating amount is generally determined according to the dimming level given by the dimming signal, and the dimming level is also disclosed in Japanese Patent Application Laid-Open No. 2005-235619, which is a prior art.
  • the circuit is controlled to give a filament current value according to the current.
  • the optimum filament heating value itself varies depending on the type of the discharge lamp 3 and the cumulative lighting time, but there was no control taking these into consideration.
  • the filament heating amount is determined from the amount of current flowing into the terminal of the discharge lamp 3, the difference between the upper limit and the lower limit of the heating amount depending on the type of the discharge lamp is as shown in FIG.
  • the target heating amount of the FHF32 lamp is set on the circuit side of the control circuit 8C (or the detection circuit 60) and set near the lower limit in FIG.
  • the filament heating is set below the lower limit of each, leading to a shortened life of the discharge lamp.
  • the region that gives the optimum filament heating amount is the shaded area in the figure, so that the entire range of dimming lamp current II is covered. Can not be optimized.
  • the discharge lamp lighting device is provided with a discharge lamp type discriminating means or an accumulated lighting time estimation means, and a filament heating amount target according to the discharge lamp type and the cumulative lighting time. It is characterized by controlling the filament heating circuit 47 so as to be a value.
  • FIG. 8 shows an example of the dip switch 61 for setting 0 or 1 (black is a set value).
  • the type of the corresponding discharge lamp can be a value obtained by raising 2 to the power of the number of bits.
  • the discharge lamp type discriminating means is not limited to this.
  • the type of discharge lamp is limited to some extent, it can also be determined by detecting the discharge lamp voltage (called lamp voltage) according to the tube diameter. Can do.
  • a spot progress method is known in which the filament wear pressure is also known from the filament voltage during lighting.
  • a method that includes a means for measuring the cumulative lighting time inside or outside the control circuit is also widely known. Using these, it is possible to set the target value of filament heating amount according to the cumulative lighting time
  • the present embodiment it is possible to prevent the discharge lamp from being shortened in life and prematurely blackened by optimizing the amount of filament heating even during discharge lamp dimming.
  • the target value of the filament heating amount can be set according to the dimming level and the discharge lamp type or the cumulative lighting time of the discharge lamp, and the filament heating amount can be further optimized.
  • FIG. 9 is a control flow for explaining a fifth embodiment of the discharge lamp lighting device of the present invention
  • FIGS. 10 and 11 are diagrams for explaining the control of the filament heating amount for different types of discharge lamps. Since the configuration of the discharge lamp lighting device is the same as that of FIG. 7, it will be described with reference to the circuit diagram of FIG.
  • the output voltage of the DC power supply 1 can be converted to AC using an inverter that is the lighting device 40, and a high-frequency discharge voltage can be obtained through the series resonance circuit 43.
  • the filament heating circuit 47 has a configuration in which electric power is transmitted to the filament using a transformer, and the switch 7 controls on / off of the heating current or voltage. The heating amount of the filament can be controlled by controlling the ON period of the switch 7.
  • the detection circuit 60 in FIG. 7 detects electrical characteristics such as the current or voltage of the discharge lamp, the filament current or voltage.
  • the control circuit 8C is connected to the heating circuit 47 so that the difference between the filament heating amount obtained based on the detection value of the detection circuit 60 and the target heating amount set in the control circuit 8C is minimized. Control on-duty.
  • FIG. 9 is a diagram showing a control flow.
  • the heating amount of filament obtained by the heating amount detection circuit of the detection circuit 60 is the difference between the dimming signal, the type of discharge lamp, the cumulative lighting time of the discharge lamp, etc.
  • the control circuit 8C controls the on-duty of the switch connected to the heating circuit 47 so as to minimize it.
  • the target value of the filament heating amount is given as the reference value (Ref) of the error amplifier 62 so that the difference from the detected value of the filament heating amount detected by the detection circuit 60 is minimized. Control.
  • terminal refers to a terminal at both ends of the filament disposed at the end of the discharge lamp.
  • the horizontal axis represents the lamp current II
  • the vertical axis represents the square sum ILH 2 + ILL 2 of the terminal inflow current.
  • Discharge lamps A and B are different types of discharge lamps. ILH is the terminal inflow current on the side where the lamp current II flows in at both ends of the filament, and ILL is the terminal inflow current on the side where II does not flow. At this time, a target line corresponding to the type of discharge lamp can be drawn as shown in discharge lamps A and B in FIGS.
  • (ILH 2 + ILL 2 ) corresponds to the heating amount of the filament.
  • (ILH 2 + ILL 2 ) After obtaining the detected amount, feedback control is performed by giving the target function shown in FIG. 10 and FIG. 11 as the target value in FIG. 9, and the filaments indicated by black circles in FIG. 10 and FIG.
  • the detected value (measured value) of the current heating amount is feedback controlled to the target line that is an appropriate value.
  • Fig. 10 shows the feedback control for discharge lamp A
  • Fig. 11 shows the feedback control for discharge lamp B. It can be seen that the amount of increase in the heating amount, which is the control amount, differs depending on the type of discharge lamp, depending on the feedback control of the two different types of discharge lamps A and B.
  • the present embodiment it is possible to prevent the filament heating from being excessively large or small during dimming of the discharge lamp, to shorten the life of the discharge lamp and to prevent premature blackening of the tube wall.
  • the filament heating amount By controlling the filament heating amount by feedback, it is possible to control the heating means corresponding to the actual heating amount.
  • the target value of the optimum filament heating amount can be set according to the dimming degree, that is, the lamp current, and the optimum filament heating amount target value considering the change in the heating amount depending on the type of discharge lamp and the cumulative lighting time. Can be set.
  • FIG. 12 is a circuit diagram showing a sixth embodiment of the discharge lamp lighting device of the present invention.
  • Fig. 13 is an explanatory diagram of filament terminal current detection, showing a part of Fig. 12 in an enlarged manner
  • Fig. 14 is a diagram showing the upper and lower limits of the filament heating amount with respect to changes in the lamp current
  • Fig. 15 is the heating in series lighting of two lamps. It is a figure which shows the position of the lamp current detection point for quantity detection.
  • the configuration of the discharge lamp lighting device shown in FIG. 12 is the same as that in FIG.
  • As a means for detecting the filament heating amount there is a method using the sum of the lamp current II and the filament current If.
  • Fig. 12 when the sum of II and If is detected as the filament heating amount, the sum of II and If is detected on the low potential side (stable potential side) filament of the discharge lamp lighting device. An example is shown.
  • the DC power supply device 1 is converted into AC by an inverter which is a lighting device 40, and a high-voltage and high-frequency voltage is supplied to the discharge lamp 3 through the series resonance circuit 43. Filament heating is performed using a heating circuit 47.
  • the control circuit 8C controls the inverter 40 according to the dimming signal, dimming the discharge lamp 3, and controlling the switch 7 of the heating circuit 47. Therefore, the optimum filament heating amount is controlled.
  • an Il + If detection circuit is provided as a filament heating amount detection circuit.
  • the detected value of 11+ If can also be calculated by 113 ⁇ 4.
  • the sum of II and If is obtained, and the sum of currents at detection point a on the lowest potential filament is detected. If the detected value exceeds the lower limit, it is estimated that all other filaments (high potential side filaments in Fig. 12) will have a heating amount exceeding the lower limit, making filament optimization control easy.
  • a minute resistance means such that the voltage drop to the heating circuit 47 and the resonance circuit 43 can be ignored can be used.
  • the optimum filament heating amount can be given as an appropriate range in the hatched area of FIG. 14 using the terminal inflow current of the discharge lamp as shown in FIG.
  • the filament heating amount during discharge lamp lighting will be optimized.
  • the heating amount can be detected by looking at I LH 2 + ILL 2 .
  • the sum of Il + If is detected and used for feedback control.
  • the amount of filament heating can be detected by detecting 11 + 1 in an arbitrary filament.
  • 11 + 11 ⁇ may be detected for the high potential side filament (detection point 1), and the low potential side filament is detected. Yes (detection point 3). It may also be detected at a position corresponding to an intermediate potential (detection point 2).
  • this capacitive component is a stray capacitance that exists between the high potential side and the low potential side.
  • the magnitude of the discharge current measured on the current side decreases. The lower the potential, the smaller the discharge current that contributes to filament heating.
  • the control means heats each filament in the plurality of filaments.
  • the heating amount detection means can detect the filament heating amount in any filament of the discharge lamp, and the control means can detect the heating amount detection means.
  • the heating amount of the filament may be set by calculation using the ratio. This is due to the following reason. That is, when multiple discharge lamps are connected in series between the high potential side and the low potential side, if the lamp currents at the high potential side and the low potential side are detected as an estimate of the heating amount of each filament, the leakage current is roughly estimated. Based on this, the lamp current in each filament can be estimated.
  • the heating amount of each filament is estimated using the estimation of the lamp current in each filament, and the ratio is held in advance. In this case, for example, if it is desired to adjust the heating amount to the low potential side, if any one is detected, then control may be performed according to the ratio, or any one is detected. In this case, the heating amount of the other filaments can be adjusted to an optimum range by varying the heating amount according to each ratio.
  • the filament heating amount of the discharge lamp can be detected with a simple circuit configuration.
  • the amount of heating of the discharge lamp filament can be detected for each filament, but by detecting II + 1 on the low potential side (stable potential side) filament, if the detected value exceeds the lower limit, All other filaments can be optimized by giving an optimum filament heating amount exceeding the lower limit.
  • the amount of heating of each filament is estimated using the estimation of the lamp current in each filament, and the ratio is held in advance. If the heating amount of any one of the filaments is detected, the heating amount of the other filaments can be controlled or varied in accordance with the respective ratios to make the optimum heating amount range.
  • FIG. 16 is a circuit diagram showing a seventh embodiment of the discharge lamp lighting device of the present invention.
  • Fig. 17 is a circuit diagram in which the impedance in Fig. 16 is a capacitor
  • Fig. 18 is a diagram showing the filament current when the filament switch is controlled to OFF and ON in Fig. 17, respectively.
  • a lighting device 40 includes a pair of switching devices connected in series with each other and a series resonance circuit 43 to which a switching output of the switching device is supplied (reference numeral 43 is not shown)
  • the heating means includes the resonance capacitor 46 of the series resonance circuit 43 in series with the non-power supply side of the pair of filaments of the discharge lamp 3. Therefore, the control means uses the impedance Zf (Zf is at least one of Zfl and Z1) and the switch SWf (SWf is at least one of SWfl and SWf2). It is possible to control the heating amount of the filament by performing the control to increase or decrease in this manner.
  • the heating means 47 using the preheating transformer of FIG. 7 is eliminated, the resonant capacitor 46 is arranged in series on the non-power supply side of the pair of filaments of the discharge lamp 3, and each filament A series circuit of impedance Zf and switch SWf is connected in parallel at both ends.
  • the half-bridge inverter as the lighting device 40 is configured such that a pair of MOS FETs 41 and 42 connected in series are connected between the output terminals of the DC power supply device 1 and connected to one FET 42.
  • a series resonant circuit 43 is provided in parallel.
  • the series resonance circuit 43 includes a DC cut capacitor 44, a current limiting and resonance inductor 45 (hereinafter abbreviated as Lr), and a resonance capacitor 46 (hereinafter abbreviated as Cr).
  • DC power supply 1 is converted into alternating current using an inverter that is lighting device 40, and series resonance is performed.
  • circuit 43 high-pressure high-frequency power is applied to discharge lamp 3.
  • the discharge lamp 3 is turned on using high-pressure high-frequency generated at both ends of Cr. At this time, since the filament of the discharge lamp 3 is in series with Cr, it is heated by the alternating current flowing through Cr.
  • the heating means of the present embodiment arranges Cr of the series resonance circuit 43 and the filament of the discharge lamp 3 in series, and heats the filament.
  • control circuit 8D as a control means has a function of controlling the output of the inverter 40 in accordance with the dimming signal and controlling the heating amount of the filament by increasing or decreasing the current flowing through the filament.
  • A is a lamp voltage detection point
  • B is a lamp current detection point
  • C is a filament heating amount detection point.
  • the current detection point it is possible to use a very small resistance means such that a voltage drop with respect to the resonance circuit 43 or the like can be ignored.
  • the control means including the control circuit 8D is arranged in parallel with the filament of the discharge lamp 3, and is arranged in series with the resonance capacitor Cr, and is arranged in series with the impedance Zf, and the inflowing current And a filament heating amount control means (a part of the control circuit 8D) for controlling the heating amount of the filament by turning on and off the switch SWf.
  • the current flowing through Cr is also controlled.
  • the amount of heating of the filament changes in accordance with the increase or decrease of the amount of current flowing through Cr.
  • the current flowing through the filament of the lamp and the lamp is determined by the impedance component of Cr given by ⁇ 2 ⁇ ⁇ from the values of the frequency f and Cr during dimming. For this reason, the current flowing through the filament changes by controlling the frequency of the inverter by dimming control. It is necessary that the value of r and the frequency to be controlled are given so that the filament current can obtain the optimum heating amount.
  • the detection circuit 60 includes The electrical characteristics of the discharge lamp's current and voltage and the heating amount of the filament are detected, and the control circuit controls the frequency of the inverter and the on / off of the switches SWfl and SWf2 from the detected values. Impedance Zf is arranged in parallel on the filament of the discharge lamp. In the switch SWi3 ⁇ 4off state, the filament current is determined only by the Cr as described above.
  • the amount of heating of the filament can be controlled because the switches SWfl and SWf2 are turned on and off.
  • the target value of the heating amount is determined by the dimming level, the type of discharge lamp, and the cumulative lighting time, and the on-duty of SWfl and SWf2 is controlled so that the detected heating amount matches the target value.
  • FIG. 17 shows an example in which capacitors (Cfl, C12) are provided as impedance components arranged in parallel with the filament.
  • Cfl capacitors
  • Cfl capacitors
  • the filament When SWfl is turned on, Cfl and the filament are connected in parallel. For this reason, the current used for heating the filament is shunted to the Cfl side and the filament side. Thereby, the filament heating amount can be controlled.
  • the resistance value of the filament when the discharge lamp is lit is generally about 10 ⁇ .
  • FIG. 18 illustrates the effect of SWf control.
  • SW13 ⁇ 4 When SW13 ⁇ 4 is on, the current flowing through the filament decreases compared to when it is off. Therefore, by controlling the ON period of the switch, the current is controlled to be intermediate between the current flowing through the filament when ON and the current flowing through the filament when OFF, and the heating amount is controlled by the absolute value.
  • a capacitor is given as an impedance arranged in parallel to the filament, but it may be an inductor or a combination of a capacitor and an inductor. Resistor components may be placed in parallel, but in order to dissipate effective power, it is better to use a capacitor or inductor.
  • the filament is heated with the current flowing through the resonant capacitor Cr as described above, the effect of the current leaking from the high potential side of the discharge lamp can be ignored, so the amount of filament heating is uniform between the high potential side and the low potential side.
  • the life of the discharge lamp can be shortened and early blackening can be prevented by optimally controlling the heating amount of the filament.
  • the current flowing through the resonant capacitor for heating the filament, the effect of leakage current during dimming of the discharge lamp is suppressed, and the amount of heating varies according to the potential of the filament (high potential side, low potential side). Can be suppressed.
  • the current that flows through the resonant capacitor is used to heat the filament! Even so, the filament heating amount can be controlled.
  • the configuration of the heating means for heating the filament is configured to eliminate the loss of leakage current, the filament heating amount is detected regardless of whether the filament is on the high potential side or the low potential side filament. Therefore, it can be carried out on any filament of the discharge lamp, and the degree of freedom in designing the discharge lamp circuit can be expanded.
  • FIG. 19 is a perspective view showing an embodiment of a lighting device according to the present invention.
  • the lighting device is a ceiling-mounted lighting fixture.
  • Reference numeral 70 denotes a lighting fixture body
  • 71 denotes a socket provided in the lighting fixture body 70
  • 72 denotes a reflector
  • 73 denotes a hot cathode discharge lamp mounted in the socket 71
  • 74 denotes a lamp built in the lighting fixture body 70.
  • the discharge lamp lighting device the one described in any of the first to seventh embodiments is used.
  • the filament heating of the discharge lamp 73 can always be appropriately performed, and the life can be prevented from being shortened and the power loss can be reduced.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Abstract

Current detecting means (6) detects the lamp current value of a discharge lamp (3). Control means (8) determines the filament heating rate corresponding to the then lamp current value from the stored data or by computation . Detecting means (5) detects the filament heating rate and judges whether or not the detected filament heating rate agrees with the stored filament heating rate by comparison between them. If the detected filament heating rate is out of the area shaded with diagonal lines shown in Fig. 3, the on-duty of a switch (7) is controlled so that the detected filament heating rate is within the area. That is, if the filament heating rate is insufficient, the on-duty is increased; if the filament heating rate is judged as excessive, it is decreased.

Description

放電灯点灯装置および照明装置  Discharge lamp lighting device and lighting device
技術分野  Technical field
[0001] 本発明は、熱陰極形の放電灯を調光点灯する場合にフィラメント加熱量を制御する 放電灯点灯装置およびこの放電灯点灯装置を用いた照明装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a discharge lamp lighting device that controls the amount of heating of a filament when a hot cathode discharge lamp is dimmed and lit, and an illumination device using the discharge lamp lighting device.
背景技術  Background art
[0002] 熱陰極形の放電灯を調光点灯する場合、その調光度合に応じてフィラメント加熱量 を変化させることが、放電灯の寿命、または省電力の点で好ましいことが知られてい る。このような要請に応えるものの一例として特開 2005— 235619号公報の記載の ものが提案されている。  [0002] When dimming a hot cathode discharge lamp, it is known that changing the heating amount of the filament in accordance with the dimming degree is preferable from the viewpoint of the life of the discharge lamp or power saving. . As an example of a response to such a request, one described in Japanese Patent Laid-Open No. 2005-235619 has been proposed.
[0003] 特開 2005— 235619号公報に記載された技術は、インバータ回路の出力端に設 けた予熱トランスを入り切りするスィッチ手段を設け、このスィッチ手段のオンデューテ ィを調光度合に応じて制御するものである。  [0003] The technology described in Japanese Patent Application Laid-Open No. 2005-235619 provides switch means for turning on and off a preheating transformer provided at the output end of an inverter circuit, and controls the on-duty of the switch means in accordance with the dimming degree. Is.
[0004] し力しながら、特開 2005— 235619号公報に記載のものでは、調光度合に応じて 予め固定的に設定されたオンデューティでスィッチ手段をオンオフするだけであるか ら、放電灯の実際のランプ電流に対応してフィラメント加熱量を適正化できな 、場合 がある。つまり、実際のフィラメントの加熱量が確認できず、フィラメント加熱量を適正 化できない場合がある。例えば、各放電灯のフィラメントは全てが同一品質ではなぐ 偏差があるが、偏差の大きいフィラメントに対してはフィラメント加熱量が不適切になる ことがある。  However, in the device described in Japanese Patent Laid-Open No. 2005-235619, only the switch means is turned on / off with an on-duty fixed in advance according to the dimming degree. In some cases, the heating amount of the filament cannot be optimized in accordance with the actual lamp current. In other words, the actual heating amount of the filament cannot be confirmed, and the heating amount of the filament may not be optimized. For example, the filaments of each discharge lamp have deviations that are not all the same quality, but the filament heating amount may be inappropriate for filaments with large deviations.
[0005] また、予熱トランスの製造偏差、電源電圧変動、周囲温度の変動等の要因によって も予め設定された一律なオンデューティ制御では、フィラメント加熱の適正化を図れ ないことが考えられる。  [0005] Furthermore, it is conceivable that the filament heating cannot be optimized by the uniform on-duty control set in advance even due to factors such as manufacturing deviation of the preheating transformer, power supply voltage fluctuation, and ambient temperature fluctuation.
[0006] そこで、本発明は、以上のようなフィラメントの偏差、予熱トランスの製造偏差、ある いはその他の外乱があっても、調光度合に応じたフィラメントの加熱量を適正化でき る放電灯点灯装置および照明装置を提供することを目的とする。  [0006] Therefore, the present invention provides a discharge that can optimize the heating amount of the filament according to the degree of dimming even if there is a deviation of the filament, a manufacturing deviation of the preheating transformer, or other disturbance. An object is to provide an electric lamp lighting device and an illumination device.
発明の開示 [0007] 本発明の第 1の態様の放電灯点灯装置は、直流電源装置の出力を高周波電圧に 変換して熱陰極形の放電灯を点灯する出力可変の点灯装置と;前記放電灯のフイラ メントを加熱する出力可変の加熱手段と;前記フィラメントの加熱量を検出する検出手 段と;前記放電灯の調光度合に応じたフィラメント加熱量を予め記憶しており、調光 信号に応じて前記点灯装置の出力を制御するとともに、前記検出手段にて検出され るフィラメントの加熱量が予め記憶されて 、る前記フィラメント加熱量になるように前記 加熱手段の出力を制御する制御手段と;を具備したことを特徴とする。 Disclosure of the invention [0007] A discharge lamp lighting device according to a first aspect of the present invention includes a variable output lighting device that turns on a hot cathode discharge lamp by converting an output of a DC power supply device into a high-frequency voltage; A heating means with variable output for heating the lamp; a detecting means for detecting the heating amount of the filament; and a filament heating amount corresponding to the dimming degree of the discharge lamp are stored in advance, and according to the dimming signal Control means for controlling the output of the heating means so that the heating amount of the filament detected by the detection means is stored in advance and becomes the filament heating amount. It is characterized by having.
なお、第 1の態様の発明および以下の発明において、用語の定義または技術的意 味はつぎのとおりである。  In the invention of the first aspect and the following inventions, the definitions of terms or technical meanings are as follows.
[0008] 直流電源装置は、バッテリ、商用電源電圧を整流、または必要に応じて平滑したも の、あるいはその他のものも許容する。商用電源電圧を整流、平滑する場合、昇圧チ ョッパを主として構成されるアクティブフィルタを用いると、入力電流の高調波成分を 低減でき、また、出力電圧を任意に制御可能である点で有効である。  [0008] The direct current power supply device allows a battery, a commercial power supply voltage that is rectified or smoothed as necessary, or others. When rectifying and smoothing the commercial power supply voltage, using an active filter mainly composed of a boost chopper is effective in that the harmonic component of the input current can be reduced and the output voltage can be controlled arbitrarily. .
[0009] 熱陰極形の放電灯は、代表的には蛍光ランプである力 これに限定されるものでは なぐまた、用途としても一般照明用、殺菌用、装飾用、表示用等どのようなものでも よい。  [0009] The hot cathode type discharge lamp is typically a fluorescent lamp. The present invention is not limited to this, and it can be used for general lighting, sterilization, decoration, display, etc. But it ’s okay.
[0010] 点灯装置は、直流電源装置の出力電圧を高周波電圧に変換するものであればよく [0010] The lighting device only needs to convert the output voltage of the DC power supply device into a high-frequency voltage.
、例えばインバータ、コンバータまたはチヨッパ等を用いて構成することができる。また 、これらインバータ、コンバータまたはチヨツバであっても、回路方式が限定されるもの ではない。 For example, an inverter, a converter or a chipper can be used. Further, even if these inverters, converters or chitsutsuba are used, the circuit system is not limited.
[0011] 加熱手段は、点灯装置の出力の一部によって付勢されるもの、直流電源装置の出 力または商用電源の出力によって付勢されるもの、あるいは別の電源力 付勢される もののいずれであってもよい。また、その具体構成としても、トランス、点灯装置の構 成部品にフィラメント加熱卷線を設けたもの、フィラメント加熱電流を通流する回路を 形成する部品等 、ずれであってもよ ヽ。  [0011] The heating means is either energized by a part of the output of the lighting device, energized by the output of the DC power supply or the output of the commercial power source, or another energized by another power source. It may be. In addition, as a specific configuration thereof, a component such as a transformer or a lighting device provided with a filament heating wire, or a component forming a circuit through which a filament heating current flows may be misaligned.
[0012] 検出手段は、フィラメントの加熱量を検出するものであって、フィラメントの電流、電 圧を検出したり、またはフィラメント温度を検出したりするように構成することができる。  [0012] The detection means detects the heating amount of the filament, and can be configured to detect the current and voltage of the filament, or to detect the filament temperature.
[0013] 制御手段は、調光度合に応じたフィラメント加熱量を予め記憶して 、る。この場合の フィラメントの加熱量は、加熱過少による放電灯の短寿命化を防止でき、加熱過多に よる放電灯バルブの黒ィ匕を防止できる範囲である。このような範囲は、放電灯の種類 あるいは用途や、放電灯の累積点灯時間に応じて設定することができる。調光度合 に応じたフィラメント加熱量を予め記憶するとは、調光度合に応じたフィラメント加熱 量をデータテーブルに記憶する形態であってもよいし、或いは、演算式を記憶して、 そのときの調光度合に応じてその都度演算で求めるようにしてもよい。しかし、本発明 においては、記憶している内容自体が特徴的ではなぐ調光度合に応じて、かつ、実 際のフィラメント加熱状態をフィードバックして適正化する点を特徴としている。 [0013] The control means stores in advance a filament heating amount corresponding to the dimming degree. In this case The heating amount of the filament is within a range that can prevent the discharge lamp from being shortened due to underheating, and can prevent blackening of the discharge lamp bulb due to overheating. Such a range can be set according to the type or application of the discharge lamp and the cumulative lighting time of the discharge lamp. Storing the filament heating amount according to the dimming degree in advance may be a form in which the filament heating amount according to the dimming degree is stored in the data table, or an arithmetic expression is stored and You may make it obtain | require by calculation each time according to the light control degree. However, the present invention is characterized in that the stored content itself is not characteristic, and the actual filament heating state is fed back and optimized.
[0014] また、制御手段は、調光信号に応じて点灯装置の出力を変化するが、具体的には 直流電源装置の出力電圧値の変更、点灯装置の動作の制御などにより出力を変化 することができる。例えば点灯装置が、インバータ、コンバータ、チヨッパ等によって構 成されている場合、これらのスイッチング装置のスイッチング周波数、オンデューティ を制御することにより出力を変化可能である。  [0014] The control means changes the output of the lighting device in response to the dimming signal. Specifically, the control means changes the output by changing the output voltage value of the DC power supply device or controlling the operation of the lighting device. be able to. For example, when the lighting device is composed of an inverter, a converter, a chipper, etc., the output can be changed by controlling the switching frequency and on-duty of these switching devices.
[0015] また、制御手段は加熱手段の出力を制御するが、この場合の制御構成も加熱手段 の構成に応じて形成できるものである。例えば前記のようにトランスを用いる場合には トランスの入力電圧を制御すればよぐインバータの構成部品にフィラメント卷線を設 ける場合には構成部品の印加電圧を制御すればよい。また、加熱電流の通流路を 形成する部品を用いる場合には、前記部品のインピーダンス値を制御したり、前記通 流路をスィッチで開閉したりすればょ 、。  [0015] The control means controls the output of the heating means. In this case, the control structure can be formed according to the structure of the heating means. For example, when a transformer is used as described above, it is sufficient to control the input voltage of the transformer. When a filament winding is provided in a component of the inverter, the applied voltage of the component may be controlled. In addition, when using a component that forms a heating current flow path, the impedance value of the component is controlled, or the flow path is opened and closed with a switch.
[0016] 以上のような制御手段は、一体的に構成されている他、点灯装置を制御する部分と 加熱手段を制御する部分とが別体に構成されている等構造的には特に限定されず、 要は上記の作用を行うものであればよい。  [0016] The control means as described above is not limited in terms of structure, such as being configured integrally, and the part for controlling the lighting device and the part for controlling the heating means are configured separately. In short, what is necessary is just to perform the above-mentioned action.
[0017] また、以上のような制御手段としては、例えば IC、マイコン、 DSP (デジタルシダナ ルプロセッサ)等を用いて構成し、演算処理するようにしたものが処理速度、小形ィ匕 の点で有利である。特に DSPの場合には、演算速度が速ぐ 0. 5秒以内程度で加熱 量制御する場合に好適である。  [0017] Further, as the control means as described above, for example, an IC, a microcomputer, a DSP (digital digital processor), and the like, which are configured to perform arithmetic processing, are advantageous in terms of processing speed and small size. Is advantageous. Especially in the case of DSP, it is suitable for controlling the heating amount within about 0.5 seconds when the calculation speed is high.
[0018] 第 1の態様の発明は、調光信号に応じて点灯装置の出力を制御して放電灯への供 給電力量を変化する。これによつて、放電灯は調光信号に応じた調光度合で点灯す る。このときのフィラメント加熱量は、検出手段にて検出され、予め記憶されている前 記調光度合に応じたフィラメント加熱量となるように制御される。したがって、フィラメン トは、フィラメントの偏差、加熱手段の製造偏差、その他の外乱要因にかかわらず予 め設定したフィラメント加熱量に制御される。 [0018] The first aspect of the invention changes the amount of power supplied to the discharge lamp by controlling the output of the lighting device in accordance with the dimming signal. As a result, the discharge lamp is lit at a dimming degree according to the dimming signal. The The filament heating amount at this time is detected by the detecting means and controlled so as to be the filament heating amount corresponding to the above-mentioned dimming degree stored in advance. Therefore, the filament is controlled at a preset filament heating amount regardless of filament deviation, manufacturing deviation of heating means, and other disturbance factors.
[0019] 従って、第 1の態様の発明によれば、フィラメントの偏差、加熱手段の製造偏差、そ の他の外乱要因にかかわらず、放電灯のフィラメントを調光度合に応じて予め設定し た加熱量で加熱することができ、放電灯の長寿命化を達成できるとともに、省電力化 も可能な放電灯点灯装置を提供することができる。  [0019] Therefore, according to the first aspect of the invention, the filament of the discharge lamp is set in advance according to the dimming degree regardless of the deviation of the filament, the manufacturing deviation of the heating means, and other disturbance factors. It is possible to provide a discharge lamp lighting device that can be heated with a heating amount, can achieve a long life of the discharge lamp, and can also save power.
[0020] 本発明の第 2の態様の放電灯点灯装置は、出力電圧値を可変の直流電源装置と; 互いに直列的に接続された一対のスイッチング装置およびこのスイッチング装置のス イッチング出力を供給される直列共振回路を有し、前記直流電源装置の出力電圧を 高周波電圧に変換して熱陰極形の放電灯を点灯するインバータと;前記インバータ のスイッチング出力により付勢されて前記放電灯のフィラメントを加熱する加熱手段と ;前記フィラメントの加熱量を検出する検出手段と;前記放電灯の調光度合に応じた フィラメント加熱量を予め記憶しており、調光信号により調光度合を設定されたとき、 前記検出手段力 検出されるフィラメント加熱量が予め記憶された前記フィラメントカロ 熱量になるように前記直流電源装置の出力電圧値を変化するとともに、前記放電灯 の光出力が設定された調光度合になるように前記インバータのスイッチング周波数を 変化する制御手段と;を具備したことを特徴とする。  [0020] A discharge lamp lighting device according to a second aspect of the present invention includes a DC power supply device having a variable output voltage value; a pair of switching devices connected in series to each other and a switching output of the switching device; An inverter that turns on the hot cathode discharge lamp by converting the output voltage of the DC power supply device to a high-frequency voltage; and the filament of the discharge lamp is energized by the switching output of the inverter. Heating means for heating; detecting means for detecting the heating amount of the filament; filament heating amount corresponding to the dimming degree of the discharge lamp is stored in advance, and when the dimming degree is set by the dimming signal The detection means force The output voltage value of the DC power supply device is changed so that the detected filament heating amount becomes the filament calorie heat amount stored in advance. Together, and control means for changing the switching frequency of the inverter such that the dimming degree to which the light output is set for the discharge lamp; characterized by comprising a.
[0021] 第 2の態様の発明にお 、て、加熱手段力インバータのスイッチング出力により付勢 されるとは、直流電源装置の出力電圧値を変化した場合に、その結果として加熱手 段の出力が変化する関係になっていることを意味する。その構成は特に限定されるも のではなぐ例えば、第 1の態様の発明に関連して説明したもののように形成すること ができる。  In the second aspect of the invention, being energized by the switching output of the heating means power inverter means that when the output voltage value of the DC power supply is changed, as a result, the output of the heating means Means a changing relationship. The configuration is not particularly limited. For example, it can be formed as described in connection with the invention of the first aspect.
[0022] 第 2の態様の放電灯点灯装置は、調光信号に応じてインバータのスイッチング周波 数を変化し、直列共振回路の共振出力を変化して放電灯への供給電力量を変化さ せる。これによつて、放電灯は調光信号に応じた調光度合で点灯する。一方、フィラメ ント加熱量は検出手段にて検出され、予め記憶されている前記調光度合に応じたフ イラメント加熱量となるように、その検出値に基づいて、直流電源装置の出力電圧値 を変化する。この直流電源装置の出力電圧値に応じてインバータのスイッチング出 力が変化し、加熱手段の出力が変化し、記憶されている調光度合に応じたフィラメン ト加熱量に制御される。調光度合に応じたフィラメント加熱量を予め記憶するとは、調 光度合に応じたフィラメント加熱量をデータテーブルに記憶する形態であってもよい し、或いは、演算式を記憶して、そのときの調光度合に応じてその都度演算で求める ようにしてもよい。なお、直流電源装置の出力電圧値の変化により放電灯の調光度 合が設定値力も外れようとした場合には、スイッチング周波数の制御により、設定され た調光度合とすることができる。 [0022] The discharge lamp lighting device of the second aspect changes the switching frequency of the inverter in accordance with the dimming signal, and changes the resonance output of the series resonance circuit to change the amount of power supplied to the discharge lamp. . As a result, the discharge lamp is lit at a dimming degree corresponding to the dimming signal. On the other hand, the heating amount of the filament is detected by the detecting means, and the amount corresponding to the dimming degree stored in advance is detected. Based on the detected value, the output voltage value of the DC power supply is changed so that the amount of iramentation heating is obtained. The switching output of the inverter changes according to the output voltage value of the DC power supply device, the output of the heating means changes, and the filament heating amount is controlled according to the stored dimming degree. Storing the filament heating amount according to the dimming degree in advance may be a form in which the filament heating amount according to the dimming degree is stored in the data table, or an arithmetic expression is stored and Depending on the dimming degree, it may be obtained by calculation each time. If the dimming level of the discharge lamp is about to deviate from the set value due to a change in the output voltage value of the DC power supply device, the set dimming level can be obtained by controlling the switching frequency.
[0023] 従って、第 2の態様の発明によれば、第 1の態様の発明の効果に加えて、直流電源 装置の出力電圧値の制御およびインバータのスイッチング周波数の制御にて構成で きるので、装置全体の構成を比較的簡単にすることができ、小形化、低価格化が可 能な放電灯点灯装置を提供することができる。  Therefore, according to the invention of the second aspect, in addition to the effect of the invention of the first aspect, it can be configured by controlling the output voltage value of the DC power supply device and controlling the switching frequency of the inverter. It is possible to provide a discharge lamp lighting device in which the overall configuration of the device can be made relatively simple and can be reduced in size and price.
[0024] 本発明の第 3の態様の放電灯点灯装置は、第 1又は第 2の態様の放電灯点灯装置 において、前記制御手段は、前記放電灯の種類の判定を行う手段を備えており、フィ ラメント加熱量を前記調光度合と放電灯の種類の判定結果とに応じて演算することを 特徴とする。  [0024] A discharge lamp lighting device according to a third aspect of the present invention is the discharge lamp lighting device according to the first or second aspect, wherein the control means includes means for determining the type of the discharge lamp. The filament heating amount is calculated according to the dimming degree and the determination result of the type of the discharge lamp.
[0025] 第 3の態様の放電灯点灯装置によれば、放電灯の種類を識別信号を用いて判定 可能とし、放電灯の種類に応じて目標となるフィラメント加熱量を求めることが可能と なる。  According to the discharge lamp lighting device of the third aspect, the type of the discharge lamp can be determined using the identification signal, and the target filament heating amount can be obtained according to the type of the discharge lamp. .
[0026] 本発明の第 4の態様の放電灯点灯装置は、第 1又は第 2の態様の放電灯点灯装置 において、前記制御手段は、前記累積点灯時間を推定する手段を備えており、フィ ラメント加熱量を前記調光度合と前記累積点灯時間の推定結果とに応じて演算する ことを特徴とする。  [0026] A discharge lamp lighting device according to a fourth aspect of the present invention is the discharge lamp lighting device according to the first or second aspect, wherein the control means includes means for estimating the cumulative lighting time. The lament heating amount is calculated according to the dimming degree and the estimated result of the cumulative lighting time.
[0027] 第 4の態様の放電灯点灯装置によれば、放電灯の古さに対応する累積点灯時間を 、放電灯のフィラメント電圧,ランプ電圧等の検出を行うことによって推定可能とし、放 電灯の累積点灯時間に応じて目標となるフィラメント加熱量を求めることが可能となる [0028] 本発明の第 5の態様の放電灯点灯装置は、第 3の態様の放電灯点灯装置におい て、前記放電灯の種類の設定は、使用される放電灯の種類に対応して機械的スイツ チにて設定されるコードによって行われることを特徴とする。 [0027] According to the discharge lamp lighting device of the fourth aspect, the cumulative lighting time corresponding to the age of the discharge lamp can be estimated by detecting the filament voltage, the lamp voltage, etc. of the discharge lamp, and the discharge lamp It becomes possible to obtain the target filament heating amount according to the cumulative lighting time of [0028] The discharge lamp lighting device according to the fifth aspect of the present invention is the discharge lamp lighting device according to the third aspect, wherein the setting of the type of the discharge lamp corresponds to the type of the discharge lamp used. It is performed by the code set by the target switch.
[0029] 第 5の態様の放電灯点灯装置によれば、使用する放電灯の種類に応じてディップ スィッチ等の手段にて識別コードを用いて設定可能とした。  [0029] According to the discharge lamp lighting device of the fifth aspect, it is possible to set using an identification code by means such as a dip switch according to the type of the discharge lamp to be used.
[0030] 本発明の第 6の態様の放電灯点灯装置は、第 1乃至 5の態様のいずれか 1つの放 電灯点灯装置において、前記検出手段は、調光度合に対する放電灯電流を検出す る手段と、放電灯電流とフィラメント電流との和を検出する手段とを有し、前記放電灯 電流の検出結果と前記放電灯電流とフィラメント電流との和とをフィードバックするとと もに演算することを特徴とする。  [0030] A discharge lamp lighting device according to a sixth aspect of the present invention is the discharge lamp lighting device according to any one of the first to fifth aspects, wherein the detection means detects a discharge lamp current with respect to a dimming degree. And a means for detecting the sum of the discharge lamp current and the filament current, and calculating the feedback lamp current detection result and the sum of the discharge lamp current and the filament current. Features.
[0031] 第 6の態様の放電灯点灯装置によれば、フィラメント加熱量を検出する検出手段は 、放電灯電流 (ランプ電流)である放電灯電流と、フィラメント加熱電流であるフィラメ ント電流との和を検出することによって近似的にフィラメントで消費する電力量 (加熱 量)を検出することが可能となる。  [0031] According to the discharge lamp lighting device of the sixth aspect, the detection means for detecting the filament heating amount includes a discharge lamp current that is a discharge lamp current (lamp current) and a filament current that is a filament heating current. By detecting the sum, the amount of power consumed by the filament (heating amount) can be detected approximately.
[0032] 本発明の第 7の態様の放電灯点灯装置は、第 1乃至 5の態様のいずれか 1つの放 電灯点灯装置において、前記検出手段は、フィラメント加熱量の検出を、前記放電 灯の複数あるフィラメントのうち、最も加熱量の小さいフィラメントにおいて行うことを特 徴とする。  [0032] A discharge lamp lighting device according to a seventh aspect of the present invention is the discharge lamp lighting device according to any one of the first to fifth aspects, wherein the detection means detects the amount of filament heating. It is characterized in that it is performed on the filament with the smallest heating amount among a plurality of filaments.
[0033] 第 7の態様の放電灯点灯装置によれば、放電灯電流の変化に対するフィラメント加 熱量の適正量の下限を重視する場合は、フィラメント加熱量の検出を、放電灯の複 数あるフィラメントのうち、最も加熱量の小さ 、フィラメント上で行 、その検出値が適正 量の下限を越えていれば、それ以外のフィラメントでは、全て下限を越えた加熱量と なることが推定され、フィラメント加熱量の最適化制御が容易となる。  [0033] According to the discharge lamp lighting device of the seventh aspect, when the lower limit of the appropriate amount of filament heating with respect to the change in the discharge lamp current is regarded as important, the filament heating amount is detected by detecting a plurality of filaments of the discharge lamp. Of these, if the heating value is the smallest, it is performed on the filament, and if the detected value exceeds the lower limit of the appropriate amount, it is estimated that all other filaments will exceed the lower limit. Optimal control of quantity is facilitated.
[0034] 本発明の第 8の態様の放電灯点灯装置は、第 1乃至 5の態様のいずれか 1つの放 電灯点灯装置において、前記制御手段は、複数のフィラメントにおける各フィラメント 加熱量の比率を予め有しており、前記検出手段は、フィラメント加熱量の検出を、前 記放電灯の任意のフィラメントにおいて実施可能であって、前記制御手段は、前記 検出手段の検出箇所と前記比率とを用いて演算してフィラメントの加熱量を設定する ことを特徴とすることを特徴とする。 [0034] The discharge lamp lighting device according to the eighth aspect of the present invention is the discharge lamp lighting device according to any one of the first to fifth aspects, wherein the control means calculates a ratio of the heating amount of each filament in a plurality of filaments. The detection means can detect the amount of heating of the filament in any filament of the discharge lamp, and the control means uses the detection location of the detection means and the ratio. To calculate the heating amount of the filament It is characterized by that.
[0035] 第 8の態様の放電灯点灯装置によれば、高電位側と低電位側間に複数の放電灯 を直列接続した場合に、各フィラメントの加熱量の推定として、高電位側と低電位側と のランプ電流を検出すると概ね漏れ電流の推定と、これを基にした各フィラメントにお けるランプ電流の推定が行える。そして、この各フィラメントにおけるランプ電流の推 定を用いて各フィラメント加熱量を推定して、その比率を予め保有しておく。このよう な前提にぉ 、て、例えば低電位側に加熱量を合わせた 、とした場合であれば 、ず れか一つを検出すれば後は比率に応じて制御すればよいし、またはいずれか一つ を検出すれば他のフィラメントの加熱量は各々の比率に応じて可変させることによつ て最適な範囲とすることができる。  [0035] According to the discharge lamp lighting device of the eighth aspect, when a plurality of discharge lamps are connected in series between the high potential side and the low potential side, the heating amount of each filament is estimated as the low potential side and the low potential side. If the lamp current on the potential side is detected, the leakage current can be roughly estimated and the lamp current in each filament can be estimated based on this. Then, the heating amount of each filament is estimated using the estimation of the lamp current in each filament, and the ratio is held in advance. Based on this assumption, for example, if the heating amount is adjusted to the low potential side, if one of them is detected, then control may be performed according to the ratio, or anyway. If one of them is detected, the heating amount of the other filaments can be adjusted to an optimum range by varying it according to the ratio of each.
[0036] 本発明の第 9の態様の放電灯点灯装置は、第 1,第 3乃至 8の態様のいずれか 1つ の放電灯点灯装置において、前記点灯装置は、互いに直列的に接続された一対の スイッチング装置およびこのスイッチング装置のスイッチング出力を供給される直列共 振回路を有し、前記加熱手段は、前記直列共振回路の共振コンデンサを前記放電 灯の一対のフィラメントの非電源側に直列に配置することで該フィラメントを加熱し、 前記制御手段は、前記フィラメントに流れる電流を増減させることによって、前記フィ ラメントの加熱量を制御することを特徴とする。  [0036] A discharge lamp lighting device according to a ninth aspect of the present invention is the discharge lamp lighting device according to any one of the first, third to eighth aspects, wherein the lighting devices are connected in series to each other. A pair of switching devices and a series resonance circuit to which a switching output of the switching device is supplied; and the heating means connects the resonance capacitor of the series resonance circuit in series with the non-power supply side of the pair of filaments of the discharge lamp. The filament is heated by arranging, and the control means controls the amount of heating of the filament by increasing or decreasing the current flowing through the filament.
[0037] 第 9の態様の放電灯点灯装置によれば、フィラメント及び直列共振回路の一部であ る共振コンデンサを通してフィラメント加熱電流を流す構成とすることにより、放電灯 の高電位側から低電位側へ放電灯電流が流れる際の漏れ電流を無くし、効率的な フィラメント加熱制御を行うことが可能となる。  [0037] According to the discharge lamp lighting device of the ninth aspect, the configuration is such that the filament heating current flows through the filament and the resonant capacitor that is part of the series resonant circuit, so that the low potential from the high potential side of the discharge lamp is reduced. Leakage current when the discharge lamp current flows to the side is eliminated, and efficient filament heating control can be performed.
[0038] 本発明の第 10の態様の放電灯点灯装置は、第 9の態様の放電灯点灯装置におい て、前記制御手段は、前記放電灯のフィラメントと並列に配置され、前記共振コンデ ンサと直列に配置されたインピーダンスと;前記インピーダンスと直列に配置され、流 入する電流を制御するスィッチ手段と;前記スィッチ手段をオンオフすることによって 、前記フィラメントの加熱量を制御するフィラメント加熱量制御手段と;を具備したこと を特徴とする。  [0038] A discharge lamp lighting device according to a tenth aspect of the present invention is the discharge lamp lighting device according to the ninth aspect, wherein the control means is disposed in parallel with the filament of the discharge lamp, and the resonant capacitor. Impedance arranged in series; switch means arranged in series with the impedance to control the inflow current; filament heating amount control means for controlling the heating amount of the filament by turning on and off the switching means; It is characterized by comprising;
[0039] 第 10の態様の放電灯点灯装置によれば、フィラメント及び共振コンデンサを通して 流すフィラメント加熱電流の一部をインピーダンスとスィッチ手段の直列回路を通して 分流する構成とすることにより、その分流する電流をスィッチ手段にてオンオフでき、 フィラメントに流れる電流量を制御し、フィラメント加熱量を制御できる。 [0039] According to the discharge lamp lighting device of the tenth aspect, the filament and the resonant capacitor are used. By configuring a part of the filament heating current to flow through a series circuit of impedance and switch means, the current that flows can be turned on and off by the switch means, and the amount of current flowing to the filament is controlled to control the amount of filament heating. it can.
[0040] 本発明の一態様の照明装置は、照明器具本体と;この照明器具本体に装着された 熱陰極形の放電灯と;この放電灯を点灯する第 1乃至第 10態様のいずれか 1つの放 電灯点灯装置と;を具備したことを特徴とする。  [0040] A lighting device according to an aspect of the present invention includes a lighting fixture body; a hot cathode discharge lamp mounted on the lighting fixture body; and any one of the first to tenth modes for lighting the discharge lamp. And two discharge lamp lighting devices.
[0041] この一態様の発明によれば、第 1乃至第 10の態様のいずれか 1つの発明の放電灯 点灯装置と同様な効果を奏する照明装置を提供できる。  [0041] According to this aspect of the invention, it is possible to provide an illuminating device that has the same effects as the discharge lamp lighting device of any one of the first to tenth aspects of the invention.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]本発明による放電灯点灯装置の第 1の実施形態を示す回路図。  FIG. 1 is a circuit diagram showing a first embodiment of a discharge lamp lighting device according to the present invention.
[図 2]図 1の一部分を切り出し、フィラメント端子電流を説明する拡大図。  FIG. 2 is an enlarged view illustrating a filament terminal current by cutting out a part of FIG.
[図 3]図 1のランプ電流とフィラメント加熱量との関係を示す図。  FIG. 3 is a graph showing the relationship between the lamp current of FIG. 1 and the amount of filament heating.
[図 4]本発明による放電灯点灯装置の第 2の実施形態を示す回路図。  FIG. 4 is a circuit diagram showing a second embodiment of a discharge lamp lighting device according to the present invention.
[図 5]本発明による放電灯点灯装置の第 3の実施形態を示す回路図。  FIG. 5 is a circuit diagram showing a third embodiment of a discharge lamp lighting device according to the present invention.
[図 6]異なる放電灯に対するランプ電流とフィラメント加熱量との関係を示す図。  FIG. 6 is a graph showing the relationship between lamp current and filament heating amount for different discharge lamps.
[図 7]本発明による放電灯点灯装置の第 4の実施形態の回路図。  FIG. 7 is a circuit diagram of a fourth embodiment of a discharge lamp lighting device according to the present invention.
[図 8]放電灯種類の判別手段の一例を示す図。  FIG. 8 is a diagram showing an example of a discharge lamp type discriminating means.
[図 9]本発明の放電灯点灯装置の第 5の実施形態に係り、放電灯点灯装置の制御フ ローを示す図。  FIG. 9 is a diagram showing a control flow of a discharge lamp lighting device according to a fifth embodiment of the discharge lamp lighting device of the present invention.
[図 10]第 5の実施形態に係り、放電灯種 Aに対する制御の様子を示す説明図。  FIG. 10 is an explanatory diagram showing a state of control for the discharge lamp type A according to the fifth embodiment.
[図 11]第 5の実施形態に係り、放電灯種 Bに対する制御の様子を示す説明図。  FIG. 11 is an explanatory diagram showing a state of control for the discharge lamp type B according to the fifth embodiment.
[図 12]本発明の放電灯点灯装置の第 6の実施形態を示す回路図。  FIG. 12 is a circuit diagram showing a sixth embodiment of a discharge lamp lighting device according to the present invention.
[図 13]図 12の一部を拡大して示すフィラメント端子電流検出の説明図。  FIG. 13 is an explanatory diagram of filament terminal current detection showing a part of FIG. 12 in an enlarged manner.
[図 14]フィラメント加熱量の上限及び下限を示す図。  FIG. 14 is a diagram showing the upper and lower limits of the filament heating amount.
[図 15]2灯直列点灯における加熱量検出のためのランプ電流検出点の位置を示す 図。  FIG. 15 is a diagram showing the position of a lamp current detection point for detecting the heating amount when two lamps are connected in series.
[図 16]本発明の放電灯点灯装置の第 7の実施形態を示す回路図。  FIG. 16 is a circuit diagram showing a seventh embodiment of a discharge lamp lighting device according to the present invention.
[図 17]図 16におけるインピーダンスをコンデンサとした回路図。 [図 18]図 17にお!/、てフィラメントのスィッチをオフ、オンそれぞれに制御した場合のフ イラメント電流を示す図。 FIG. 17 is a circuit diagram in which the impedance in FIG. 16 is a capacitor. [FIG. 18] FIG. 17 is a diagram showing filament currents when! / And the filament switch are controlled to be off and on, respectively.
[図 19]本発明による照明装置の一実施形態を示す斜視図。  FIG. 19 is a perspective view showing an embodiment of a lighting device according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0043] 発明の実施の形態について図面を参照して説明する。  Embodiments of the invention will be described with reference to the drawings.
[0044] [第 1の実施形態]  [0044] [First Embodiment]
以下、本発明による放電灯点灯装置の第 1の実施形態を、図 1乃至図 3を参照して 説明する。図 1は本発明による放電灯点灯装置の第 1の実施形態を示すブロック図、 図 2は図 1の一部分を切り出し、フィラメント端子電流を説明する拡大図、図 3は図 1 の放電灯電流 (以下、ランプ電流)とフィラメント加熱量との関係を示す図である。  Hereinafter, a first embodiment of a discharge lamp lighting device according to the present invention will be described with reference to FIGS. FIG. 1 is a block diagram showing a first embodiment of a discharge lamp lighting device according to the present invention, FIG. 2 is an enlarged view illustrating a filament terminal current by cutting a part of FIG. 1, and FIG. 3 is a diagram illustrating a discharge lamp current ( Hereinafter, it is a figure which shows the relationship between lamp current) and a filament heating amount.
[0045] 符号 1は直流電源装置であり、この直流電源装置 1に点灯装置 2が接続されている 。点灯装置 2は、直流電源装置 1の出力電圧を数 kHz乃至数百 kHzの高周波交流 電圧に変換する。また、点灯装置 2は、その出力を変化可能に構成されているととも に、放電灯を安定点灯するための限流手段を備えている。そして、この点灯装置 2の 出力によって、熱陰極形の放電灯 3が点灯される。  Reference numeral 1 denotes a DC power supply device, and a lighting device 2 is connected to the DC power supply device 1. The lighting device 2 converts the output voltage of the DC power supply device 1 into a high-frequency AC voltage of several kHz to several hundred kHz. In addition, the lighting device 2 is configured to be capable of changing its output, and includes current limiting means for stably lighting the discharge lamp. The hot cathode discharge lamp 3 is lit by the output of the lighting device 2.
[0046] 符号 4は放電灯 3のフィラメントを加熱する加熱手段であって、本実施形態では点 灯装置 2の出力によって付勢されるようになって!/、る。  Reference numeral 4 denotes a heating means for heating the filament of the discharge lamp 3 and is energized by the output of the lighting device 2 in this embodiment.
[0047] 前記放電灯 3の一方のフィラメントには、フィラメントの加熱量を検出する検出手段 5 が設けられている。本実施形態では、フィラメント電流を検出している。詳細には、図 2に示すように、ランプ電流 IIおよびフィラメント加熱電流 Ifの和(Il+If)の 2乗とフイラ メント加熱電流 Ifの 2乗との和を求めるようにしている。なお、図 2は図 1の一部分を切 り出した拡大図であって、図 2において、符号 21は加熱手段 4の出力と等価な電源を 表している。  [0047] One filament of the discharge lamp 3 is provided with detection means 5 for detecting the heating amount of the filament. In this embodiment, the filament current is detected. Specifically, as shown in FIG. 2, the sum of the square of the sum (Il + If) of the lamp current II and the filament heating current If and the square of the filament heating current If is obtained. FIG. 2 is an enlarged view of a part of FIG. 1. In FIG. 2, reference numeral 21 represents a power source equivalent to the output of the heating means 4.
[0048] 図 1に戻って、放電灯 3にはランプ電流の供給路と直列に電流検出手段 6が設けら れ、ランプ電流値を検出するようになっている。この電流検出手段 6を放電灯 3の点 灯検出手段として用いてもよい。また、前記加熱手段 4には直列に加熱量制御用スィ ツチ 7が設けられて 、て、加熱手段 4への入力を制御可能にして 、る。  Returning to FIG. 1, the discharge lamp 3 is provided with current detection means 6 in series with the lamp current supply path so as to detect the lamp current value. This current detection means 6 may be used as a lighting detection means for the discharge lamp 3. The heating means 4 is provided with a heating amount control switch 7 in series so that the input to the heating means 4 can be controlled.
[0049] 次に、符号 8は制御手段であって、前記点灯装置 2の出力の制御および前記スイツ チ 7のオンオフの制御を行うものであり、また、放電灯 3の調光度合に応じたフィラメン ト加熱量を記憶しているものである。本実施形態の記憶内容は、図 3に示すようにラ ンプ電流 IIと、 (11+ If)の 2乗およびフィラメント加熱電流 Ifの 2乗の和との対応関係で ある。すなわち、放電灯 3はその調光度合に応じてランプ電流値が変化するが、この ランプ電流値に対する適正なフィラメント加熱量を (Il+If)の 2乗およびフィラメント加 熱電流 Ifの 2乗の和で規定している。図 3において、斜線部がフィラメント加熱の適正 範囲であり、ランプ電流の増加に従い、適正範囲が拡大していくようになっている。し かし、単純にランプ電流 IIとフィラメント加熱電流 Ifとの関係で規定するようにしてもよ い。要は、フィラメント加熱状態を示す信号と放電灯の調光点灯状態を示す信号との 関係で規定すればよいものである。記憶する形態としては、データテーブルでも演算 式でもよい。 [0049] Next, reference numeral 8 denotes control means for controlling the output of the lighting device 2 and the switches. This is for controlling on / off of the switch 7 and for storing the amount of filament heating according to the dimming degree of the discharge lamp 3. As shown in FIG. 3, the stored content of the present embodiment is a correspondence relationship between the lamp current II and the sum of the square of (11 + If) and the square of the filament heating current If. In other words, the lamp current value of the discharge lamp 3 changes according to the degree of dimming, but the appropriate filament heating amount for this lamp current value is set to the square of (Il + If) and the square of the filament heating current If. It is specified in the sum. In Fig. 3, the shaded area is the appropriate range for heating the filament, and the appropriate range expands as the lamp current increases. However, it may be specified simply by the relationship between the lamp current II and the filament heating current If. In short, it may be defined by the relationship between the signal indicating the filament heating state and the signal indicating the dimming lighting state of the discharge lamp. As a storage form, a data table or an arithmetic expression may be used.
[0050] この制御手段 8としては、 IC、マイコン、デジタルシグナルプロセッサ(DSP)等によ つて構成することができ、その機能として、演算制御部(CPU)、メインメモリ、プロダラ ムメモリ、不揮発性メモリ、アナログ Zデジタル変換器 (AD変換器)、インターフェイス 回路 (IZF回路)等を備えている。そして、この制御手段 8は、必要に応じて、放電灯 3の始動時の制御シーケンス、電流検出手段 6からの検出信号に応じた制御フロー を記憶し、その記憶内容に従って、制御を実行するようにしてもよい。  [0050] The control means 8 can be constituted by an IC, a microcomputer, a digital signal processor (DSP), etc., and its functions include an arithmetic control unit (CPU), a main memory, a program memory, and a nonvolatile memory. Analog Z digital converter (AD converter), interface circuit (IZF circuit), etc. Then, the control means 8 stores a control sequence according to the control sequence at the start of the discharge lamp 3 and the detection signal from the current detection means 6 as necessary, and executes control according to the stored contents. It may be.
[0051] この制御手段 8には、調光信号が入力されるとともに、フィラメント加熱量検出手段 5 および電流検出手段 6の検出信号が入力される。そして、調光信号に応じて、放電 灯 3が所定の調光度合になるように点灯装置 2の出力を変化させる。また、電流検出 手段 6の検出信号によりランプ電流を知り、このランプ電流に対応したフィラメントカロ 熱量になるようにスィッチ 7のオン期間を制御 (オンデューティ制御)する。  [0051] The control means 8 is supplied with a dimming signal and detection signals from the filament heating amount detection means 5 and the current detection means 6. Then, according to the dimming signal, the output of the lighting device 2 is changed so that the discharge lamp 3 has a predetermined dimming degree. Further, the lamp current is obtained from the detection signal of the current detection means 6, and the ON period of the switch 7 is controlled (on-duty control) so that the amount of filament calorie heat corresponding to the lamp current is obtained.
[0052] また、制御手段 8は、必要に応じて、電流検出手段 6から検出したランプ電流値が 調光信号で設定された調光度合に対応した値力 外れた場合に点灯装置 2の出力 を制御して所定のランプ電流値になるよう制御するようにしてもよい。  [0052] Further, if necessary, the control means 8 outputs the output of the lighting device 2 when the lamp current value detected from the current detection means 6 is out of the value corresponding to the dimming degree set by the dimming signal. May be controlled so as to obtain a predetermined lamp current value.
[0053] 次に、本実施形態の作用を説明する。放電灯 3の始動時には制御手段 8の始動シ 一ケンス制御により、点灯装置 2はフィラメント加熱出力、始動電圧出力を行う。電流 検出手段 6の検出信号により放電灯 3の点灯が検出されると、制御手段 8は全点灯ま たは設定された調光度合で点灯するよう点灯装置 2の出力制御を行う。 Next, the operation of this embodiment will be described. When the discharge lamp 3 is started, the lighting device 2 performs filament heating output and start voltage output by the start sequence control of the control means 8. When the lighting of the discharge lamp 3 is detected by the detection signal of the current detection means 6, the control means 8 is fully turned on. Or, the output control of the lighting device 2 is performed so that the lighting is performed at the set dimming degree.
[0054] この状態において、ランプ電流値が電流検出手段 6によって検出されるから、制御 手段 8はこのときのランプ電流値に対応したフィラメント加熱量を、記憶して 、るデ一 タまたは演算式により知ることができる。一方、フィラメント加熱量検出手段 5によって 、フィラメントの加熱量が検出されるから、記憶しているフィラメント加熱量との対比に より一致または不一致を判別できる。例えば、検出したフィラメント加熱量が図 3の斜 線部外であるときには、斜線部内になるようスィッチ 7のオンオフのオンデューティを 制御する。すなわち、フィラメント加熱量が不足と判定された場合にはオンデューティ を大きくし、フィラメント加熱量が過剰と判定された場合にはオンデューティを小さくす る。 In this state, since the lamp current value is detected by the current detection means 6, the control means 8 stores the filament heating amount corresponding to the lamp current value at this time, and stores the data or arithmetic expression. You can know more. On the other hand, since the filament heating amount is detected by the filament heating amount detection means 5, it is possible to discriminate between coincidence or mismatch by comparison with the stored filament heating amount. For example, when the detected filament heating amount is outside the shaded area in FIG. 3, the on / off on-duty of the switch 7 is controlled so that it is inside the shaded area. That is, when the filament heating amount is determined to be insufficient, the on-duty is increased, and when the filament heating amount is determined to be excessive, the on-duty is decreased.
[0055] これにより、フィラメントの加熱量は常に図 3の斜線部内となり、加熱不足による放電 灯の短寿命化や、加熱過剰によるェミッタ飛散によるバルブ黒化や電力損失を解消 できる。  [0055] As a result, the heating amount of the filament is always within the shaded area in Fig. 3, and the life of the discharge lamp can be shortened due to insufficient heating, and the blackening of the bulb and power loss due to scattering of the emitter due to excessive heating can be eliminated.
[0056] [第 2の実施形態]  [0056] [Second Embodiment]
本発明の第 2の実施形態を説明する。図 4は本発明による放電灯点灯装置の第 2 の実施形態を示す回路図である。なお、図 4において、図 1と同じまたは対応する部 分には同じ符号を付して説明を省略する。  A second embodiment of the present invention will be described. FIG. 4 is a circuit diagram showing a second embodiment of the discharge lamp lighting device according to the present invention. In FIG. 4, parts that are the same as or correspond to those in FIG.
[0057] 本実施形態は、点灯装置 40としてハーフブリッジ形のインバータを用いたものであ る。このインバータは、互いに直列接続された一対の MOS形 FET41、 42を直流電 源装置 1の出力端間に接続し、一方の FET42に対して並列関係に、直列共振回路 43を設けている。直列共振回路 43は、直流カットコンデンサ 44、限流用および共振 用のインダクタ 45および共振用のコンデンサ 46を含んでいる。インダクタ 45は本来、 安定器 (バラスト)としても機能するものである。  In the present embodiment, a half-bridge type inverter is used as the lighting device 40. In this inverter, a pair of MOS FETs 41 and 42 connected in series with each other are connected between the output terminals of the DC power supply device 1, and a series resonance circuit 43 is provided in parallel with one FET 42. The series resonance circuit 43 includes a DC cut capacitor 44, a current limiting and resonance inductor 45, and a resonance capacitor 46. Inductor 45 originally functions as a ballast.
[0058] また、本実施形態の加熱手段 47は、直流カット用のコンデンサ 48およびフィラメント 加熱トランス 49の直列回路によって形成されている。符号 a, bは、フィラメント加熱量 検出手段 5における加熱量検出に必要な電流の検出点を示している。  Further, the heating means 47 of the present embodiment is formed by a series circuit of a DC cut capacitor 48 and a filament heating transformer 49. Symbols a and b indicate current detection points necessary for heating amount detection in the filament heating amount detection means 5.
[0059] 次に、本実施形態の作用を説明する。制御手段 8Aは調光信号に応じて一対の M OS形 FET41、 42のスイッチング周波数を制御する。これ〖こより、直列共振回路 43 に供給されるスイッチング出力の周波数が変化するから、共振出力が変化し、放電 灯 3に供給される電力が変化する。すなわち、放電灯 3は調光信号で設定された所 定の調光度合で点灯する。この状態のランプ電流値が電流検出手段 6によって検出 され、またフィラメント加熱量がフィラメント加熱量検出手段 5によって検出され、制御 手段 8Aはこのときのランプ電流値に対応したフィラメント加熱量になるようにスィッチ 7のオンオフを制御する。したがって、図 1と同様な作用となる。 Next, the operation of this embodiment will be described. The control means 8A controls the switching frequency of the pair of MOS type FETs 41 and 42 according to the dimming signal. From this point, the series resonant circuit 43 Since the frequency of the switching output supplied to the lamp changes, the resonance output changes and the power supplied to the discharge lamp 3 changes. That is, the discharge lamp 3 is lit at a predetermined dimming degree set by the dimming signal. The lamp current value in this state is detected by the current detection means 6, the filament heating amount is detected by the filament heating amount detection means 5, and the control means 8A has a filament heating amount corresponding to the lamp current value at this time. Controls on / off of switch 7. Therefore, the operation is the same as in FIG.
[0060] [第 3の実施形態]  [0060] [Third embodiment]
本発明の第 3の実施形態を説明する。図 5は本発明による放電灯点灯装置の第 3 の実施形態を示す回路図である。図 5において、図 1あるいは図 4と同じまたは対応 する部分には同じ符号を付して説明を省略する。  A third embodiment of the present invention will be described. FIG. 5 is a circuit diagram showing a third embodiment of the discharge lamp lighting device according to the present invention. In FIG. 5, the same or corresponding parts as those in FIG. 1 or FIG.
[0061] 本実施形態の直流電源装置 50は、昇圧チヨツバからなるアクティブフィルタを用い たものである。すなわち、直流電源装置 50は、商用交流電源 51の出力を整流する 整流装置 52と、この整流装置 52の出力端間をインダクタ 53を介して短絡可能な MO S形 FET54と、この FET54とダイオード 55を介して並列的に接続された平滑コンデ ンサ 56とを有して!/ヽる。  [0061] The DC power supply device 50 of the present embodiment uses an active filter made up of a boosting chiba. That is, the DC power supply 50 includes a rectifier 52 that rectifies the output of the commercial AC power supply 51, a MOS type FET 54 that can short-circuit the output terminals of the rectifier 52 via the inductor 53, and the FET 54 and the diode 55. And a smoothing capacitor 56 connected in parallel via
[0062] また、本実施形態においては、第 1及び第 2の実施形態におけるスィッチ 7を省略 するとともに、 MOS形 FET54のオンデューティを制御手段 8Bにて制御可能にして 直流電源装置 50の出力電圧値を可変にして 、る。  In the present embodiment, the switch 7 in the first and second embodiments is omitted, and the on-duty of the MOS FET 54 can be controlled by the control means 8B so that the output voltage of the DC power supply device 50 can be controlled. Change the value.
[0063] 本実施形態の作用を説明する。制御手段 8Bは、調光信号に応じて点灯装置 40の 一対の MOS形 FET41、 42のスイッチング周波数を制御する。これにより、放電灯 3 に供給される電力が変化し、放電灯 3は調光信号で設定された所定の調光度合で点 灯する。この状態のランプ電流値が電流検出手段 6によって検出され、またフィラメン ト加熱量がフィラメント加熱量検出手段 5によって検出され、制御手段 8Bはこのときの ランプ電流値に対応したフィラメント加熱量になるように MOS形 FET54のオンデュ 一ティを制御する。直流電源装置 50は、制御手段 8Bによって MOS形 FET54のォ ンデューティが制御されることにより出力が変化するから、加熱手段 47に印加される 電圧も変化する。これによつて、フィラメント加熱電流が制御され、フィラメント加熱量 が制御可能となる。 [0064] なお、直流電源装置 50の出力電圧が変化すると、共振電圧値も変化して放電灯 3 への供給電力も変化しょうとするが、これに対しては、制御手段 8Bは、点灯装置 40 の一対の MOS形 FET41、 42のスイッチング周波数を、電流検出手段 6の検出値が 所定の調光度合のものになるように制御することにより、ランプ電力の設定された値 に安定ィ匕させることができる。 [0063] The operation of the present embodiment will be described. The control means 8B controls the switching frequency of the pair of MOS FETs 41 and 42 of the lighting device 40 according to the dimming signal. As a result, the power supplied to the discharge lamp 3 changes, and the discharge lamp 3 is lit at a predetermined dimming degree set by the dimming signal. The lamp current value in this state is detected by the current detection means 6, the filament heating amount is detected by the filament heating amount detection means 5, and the control means 8B has a filament heating amount corresponding to the lamp current value at this time. In addition, it controls the on-duty of the MOS FET54. Since the output of the DC power supply device 50 is changed by controlling the on-duty of the MOS FET 54 by the control means 8B, the voltage applied to the heating means 47 also changes. Thereby, the filament heating current is controlled, and the filament heating amount can be controlled. [0064] Note that when the output voltage of the DC power supply device 50 changes, the resonance voltage value also changes, and the power supplied to the discharge lamp 3 also changes. By controlling the switching frequency of 40 pairs of MOSFETs 41 and 42 so that the detection value of the current detection means 6 has a predetermined dimming degree, the switching frequency is stabilized to the set value of the lamp power. be able to.
[0065] [第 4の実施形態]  [0065] [Fourth embodiment]
本発明の第 4の実施形態を図 6乃至図 8を参照して説明する。図 6は異なる放電灯 に対するランプ電流とフィラメント加熱量との関係を示す図である。  A fourth embodiment of the present invention will be described with reference to FIGS. Figure 6 shows the relationship between lamp current and filament heating for different discharge lamps.
[0066] 図 6において、横軸は放電灯のランプ電流 II、縦軸はフィラメント加熱量に相当する 、電流(11+ If)の 2乗およびフィラメント加熱電流 Ifの 2乗の和を示す。図 6では、 40ヮ ットクラスの放電灯 FLR40S、 FL40SS、 FHF32それぞれの調光ランプ電流 IIに対 するフィラメント加熱量の上限値および下限値を示している。したがって、図 1、 4、 5 の実施形態でこれら放電灯を共通に点灯する場合、図 6の網かけ部分がいずれの放 電灯に対しても適正なフィラメント加熱範囲(全ての放電灯に共通の適正範囲)となる から、この適正範囲になるようにフィラメント加熱量を制御する。  In FIG. 6, the horizontal axis represents the lamp current II of the discharge lamp, and the vertical axis represents the sum of the square of the current (11+ If) and the square of the filament heating current If, corresponding to the filament heating amount. Fig. 6 shows the upper and lower limits of the filament heating amount for the dimming lamp current II for each of the 40-litre class discharge lamps FLR40S, FL40SS, and FHF32. Therefore, when these discharge lamps are lit in common in the embodiments of FIGS. 1, 4 and 5, the shaded area in FIG. 6 is the appropriate filament heating range for all discharge lamps (common to all discharge lamps). Therefore, the heating amount of the filament is controlled so as to be within this proper range.
[0067] なお、図 6において、ランプ電流が小さい領域では網かけ部分が存在しなくなって いる。したがって、理想的には、網かけ部分が無くなる部分を調光ランプ電流 IIの下 限として調光動作を制限するのがよい。あるいは、放電灯の種類を検知する手段を 設けて、それぞれの放電灯の適正範囲でフィラメント加熱を行うようにしてもょ 、。  [0067] In FIG. 6, no shaded portion exists in the region where the lamp current is small. Therefore, ideally, the dimming operation should be limited with the part where the shaded part disappears as the lower limit of the dimming lamp current II. Alternatively, it is possible to provide means for detecting the type of discharge lamp so that the filament is heated within the appropriate range of each discharge lamp.
[0068] 図 7は本発明による放電灯点灯装置の第 4の実施形態の回路図を示し、図 8は放 電灯種類の判別手段の一例を示している。図 7は前述の図 4の構成とほぼ同様であ る。  FIG. 7 shows a circuit diagram of a fourth embodiment of a discharge lamp lighting device according to the present invention, and FIG. 8 shows an example of a discharge lamp type discriminating means. FIG. 7 is almost the same as the configuration of FIG. 4 described above.
例えば、図 7においては、直流電源 1を点灯装置 40であるインバータにより交流に 変換し、直列共振回路 43を利用して放電灯 3の点灯に必要な高電圧を得る構成をと している。加熱手段 47であるフィラメント加熱回路の一形態として、図 7に示すような MOSFETを用いたスィッチ 7により加熱量を制御することが可能な加熱回路を示す 。フィラメント加熱量検出手段を含む検出回路 60は、放電電流又は電圧、フィラメント 電流又は電圧などの電気特性を検出する。制御手段である制御回路 8Cは、調光信 号に応じて、インバータ 40を制御する点灯制御を行うほか、フィラメント加熱回路 47 の制御も行うことができる。符号 A, B, Cについては、 Aはランプ電圧の検出点、 Bは ランプ電流の検出点、 Cはフィラメント加熱量の検出点である。電流検出点には、カロ 熱回路 47や共振回路 43に対する電圧降下が無視できる程度の微小な抵抗手段な どを用いることができる。 For example, in FIG. 7, the DC power source 1 is converted to AC by an inverter that is a lighting device 40, and a high voltage necessary for lighting the discharge lamp 3 is obtained using the series resonance circuit 43. As one form of the filament heating circuit as the heating means 47, a heating circuit capable of controlling the heating amount by a switch 7 using a MOSFET as shown in FIG. 7 is shown. The detection circuit 60 including the filament heating amount detection means detects electrical characteristics such as discharge current or voltage, filament current or voltage. The control circuit 8C, which is the control means, In addition to the lighting control for controlling the inverter 40, the filament heating circuit 47 can also be controlled according to the signal. For symbols A, B, and C, A is a lamp voltage detection point, B is a lamp current detection point, and C is a filament heating amount detection point. As a current detection point, a minute resistance means that can ignore a voltage drop with respect to the calo heat circuit 47 and the resonance circuit 43 can be used.
[0069] フィラメント加熱回路 47の制御は、調光度合に応じたフィラメント加熱量の目標値を 与え、それに応じたフィラメントの加熱量になるような制御行う。図 7においては、検出 回路 60により与えられるフィラメント加熱量の検出値が制御回路 8C (或いは、検出回 路 60)で設定される加熱量の目標値に近づくように加熱回路 47に接続した加熱量 制御用スィッチ 7のオン期間を制御する。このとき、フィラメント加熱量の最適値は、調 光信号により与えられた調光レベルに応じて決めるのが一般的であり、従来技術であ る特開 2005— 235619号公報等でも、調光レベルに応じたフィラメント電流値を与 えるように回路を制御している。しかし、従来例の技術では、フィラメントが実際に最 適値に達したことを制御手段にフィードバックして確認することはできていなかった。 また、フィラメント加熱の最適値それ自体も放電灯 3の種類や累積点灯時間によって 異なるものであるが、これらを考慮に入れた制御は行われて 、なかった。  [0069] The filament heating circuit 47 is controlled such that a target value of the filament heating amount corresponding to the dimming degree is given and the filament heating amount corresponding to the target value is obtained. In FIG. 7, the heating amount connected to the heating circuit 47 so that the detected value of the filament heating amount given by the detection circuit 60 approaches the target heating amount set by the control circuit 8C (or the detection circuit 60). Controls the ON period of the control switch 7. At this time, the optimum value of the filament heating amount is generally determined according to the dimming level given by the dimming signal, and the dimming level is also disclosed in Japanese Patent Application Laid-Open No. 2005-235619, which is a prior art. The circuit is controlled to give a filament current value according to the current. However, in the conventional technology, it has not been possible to confirm by feedback to the control means that the filament has actually reached the optimum value. Also, the optimum filament heating value itself varies depending on the type of the discharge lamp 3 and the cumulative lighting time, but there was no control taking these into consideration.
[0070] 例えば、フィラメント加熱量を放電灯 3の端子に流入する電流量から判断する場合、 放電灯種類による加熱量の上限,下限の違いは、図 6に示すとおりである。例えば、 制御回路 8C (或いは、検出回路 60)の回路側で、 FHF32ランプの目標加熱量に設 定し、かつ省電力化のために図 6の下限近傍に設定すると、同じ 40W出力の放電灯 である FLR40や FL40においては、それぞれの下限を下回ってフィラメント加熱過小に 設定されることになり、放電灯の短寿命化を招くことになる。また、図 6に挙げた 3種類 のすベての種類にお 、て最適なフィラメント加熱量を与える領域は図中網かけ部分 であるため、調光されるランプ電流 IIの全範囲に渡っての最適化を行うことができない 。同様に、放電灯における例えば 1000時間を越えるような長時間の累積点灯時間の 経過は、フィラメントのェミッタの損耗を促進するため、累積点灯時間の長短によって フィラメント加熱の特性が異なってくる。このため、同一の放電灯においても累積の点 灯時間に応じて加熱量の目標値を定める必要がある。 [0071] そこで、本実施形態では、放電灯点灯装置に、放電灯種類の判別手段または、累 積点灯時間の推定手段を実装し、放電灯種類や累積点灯時間に応じたフィラメント 加熱量の目標値となるようにフィラメント加熱回路 47を制御することを特徴とする。 For example, when the filament heating amount is determined from the amount of current flowing into the terminal of the discharge lamp 3, the difference between the upper limit and the lower limit of the heating amount depending on the type of the discharge lamp is as shown in FIG. For example, when the target heating amount of the FHF32 lamp is set on the circuit side of the control circuit 8C (or the detection circuit 60) and set near the lower limit in FIG. In FLR40 and FL40, the filament heating is set below the lower limit of each, leading to a shortened life of the discharge lamp. In addition, in all three types shown in Fig. 6, the region that gives the optimum filament heating amount is the shaded area in the figure, so that the entire range of dimming lamp current II is covered. Can not be optimized. Similarly, the passage of a long cumulative lighting time, for example, exceeding 1000 hours in a discharge lamp promotes the wear of the filament emitter, and therefore the filament heating characteristics vary depending on the length of the cumulative lighting time. For this reason, it is necessary to determine the target value of the heating amount according to the cumulative lighting time even for the same discharge lamp. Therefore, in the present embodiment, the discharge lamp lighting device is provided with a discharge lamp type discriminating means or an accumulated lighting time estimation means, and a filament heating amount target according to the discharge lamp type and the cumulative lighting time. It is characterized by controlling the filament heating circuit 47 so as to be a value.
[0072] 放電灯種類の判別手段については、図 8に示すように、外部設定スィッチなどを用 いて制御回路 8Cが放電灯 3の種類を認識できるようにする手段を設ける。図 8では、 0または 1を設定するディップスィッチ 61の例(黒色が設定値)を示して 、る。ここでは 、 2bitのディップスィッチを示している力 bit数を増やすと対応する放電灯の種類は 2 を bit数だけ累乗した値まで可能となる。図 8のように外部力 放電灯 A, B, Cの種類 に対応するスィッチ設定を行うことによって、フィラメント加熱量の目標値を放電灯種 類に応じて設定することができる。なお、放電灯種類の判別手段はこの限りではなぐ 放電灯種類がある程度限定されている場合などには、管径に応じた放電灯電圧 (ラ ンプ電圧と呼ばれる)などの検出によっても判定することができる。  [0072] As the means for determining the type of the discharge lamp, as shown in FIG. 8, a means for enabling the control circuit 8C to recognize the type of the discharge lamp 3 using an external setting switch or the like is provided. FIG. 8 shows an example of the dip switch 61 for setting 0 or 1 (black is a set value). Here, if the number of power bits indicating a 2-bit dip switch is increased, the type of the corresponding discharge lamp can be a value obtained by raising 2 to the power of the number of bits. By setting the switches corresponding to the types of external power discharge lamps A, B, and C as shown in Fig. 8, the target value of the filament heating amount can be set according to the discharge lamp type. Note that the discharge lamp type discriminating means is not limited to this. When the type of discharge lamp is limited to some extent, it can also be determined by detecting the discharge lamp voltage (called lamp voltage) according to the tube diameter. Can do.
[0073] 累積点灯時間の推定については、フィラメントの損耗具合を点灯中のフィラメント電 圧力も知るスポット進度法が知られている。また、初期照度補正の要求から、制御回 路内または外に累積点灯時間の計測手段を備える手法も広く知られている。これらを 利用して、累積点灯時間に応じたフィラメント加熱量の目標値を設定することができる  As for the estimation of the cumulative lighting time, a spot progress method is known in which the filament wear pressure is also known from the filament voltage during lighting. In addition, due to the demand for initial illuminance correction, a method that includes a means for measuring the cumulative lighting time inside or outside the control circuit is also widely known. Using these, it is possible to set the target value of filament heating amount according to the cumulative lighting time
[0074] 本実施形態によれば、放電灯調光時においてもフィラメント加熱量を最適化するこ とで放電灯の短寿命化や早期黒化を防ぐことができる。調光レベルと、放電灯種類 又は放電灯の累積点灯時間とに応じてフィラメント加熱量の目標値を設定することが でき、フィラメント加熱量のより一層の最適化が可能となる。 [0074] According to the present embodiment, it is possible to prevent the discharge lamp from being shortened in life and prematurely blackened by optimizing the amount of filament heating even during discharge lamp dimming. The target value of the filament heating amount can be set according to the dimming level and the discharge lamp type or the cumulative lighting time of the discharge lamp, and the filament heating amount can be further optimized.
[0075] [第5の実施形態] [0075] [ Fifth Embodiment]
本発明の第 5の実施形態を図 9乃至図 11を参照して説明する。図 9は本発明の放 電灯点灯装置の第 5の実施形態を説明する制御フロー、図 10及び図 11は種類の異 なる放電灯に対する、フィラメント加熱量の制御を説明する図である。放電灯点灯装 置の構成は、図 7と同様であるので、図 7の回路図を参照して説明する。  A fifth embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a control flow for explaining a fifth embodiment of the discharge lamp lighting device of the present invention, and FIGS. 10 and 11 are diagrams for explaining the control of the filament heating amount for different types of discharge lamps. Since the configuration of the discharge lamp lighting device is the same as that of FIG. 7, it will be described with reference to the circuit diagram of FIG.
[0076] 図 7においては、直流電源装置 1の出力電圧を点灯装置 40であるインバータを用 いて交流に変換し、直列共振回路 43を通して高周波の放電電圧を得ることができる 。フィラメント加熱回路 47は図 7に示した通り、トランスを用いて電力をフィラメントに伝 達する構成を有し、スィッチ 7により加熱電流又は電圧のオン Zオフを制御する。この スィッチ 7のオン期間の制御により、フィラメントの加熱量を制御することができる。 In FIG. 7, the output voltage of the DC power supply 1 can be converted to AC using an inverter that is the lighting device 40, and a high-frequency discharge voltage can be obtained through the series resonance circuit 43. . As shown in FIG. 7, the filament heating circuit 47 has a configuration in which electric power is transmitted to the filament using a transformer, and the switch 7 controls on / off of the heating current or voltage. The heating amount of the filament can be controlled by controlling the ON period of the switch 7.
[0077] 図 7の検出回路 60は、放電灯の電流又は電圧、フィラメント電流又は電圧などの電 気特性を検出する。検出回路 60の検出値に基づいて得られたフィラメント加熱量と 制御回路 8C内に設定された目標加熱量との差が最小になるように制御回路 8Cは加 熱回路 47に接続したスィッチ 7のオンデューティを制御する。  [0077] The detection circuit 60 in FIG. 7 detects electrical characteristics such as the current or voltage of the discharge lamp, the filament current or voltage. The control circuit 8C is connected to the heating circuit 47 so that the difference between the filament heating amount obtained based on the detection value of the detection circuit 60 and the target heating amount set in the control circuit 8C is minimized. Control on-duty.
[0078] 図 9は制御フローを示す図である。検出回路 60の加熱量検出回路により得られた フィラメント加熱量は、調光信号、放電灯の種類、放電灯の累積点灯時間などの要因 力 制御回路 8Cで求まる加熱量の目標値との差を最小にするように制御回路 8Cが 加熱回路 47に接続したスィッチのオンデューティを制御する。図 9では、エラーアン プ 62の参照値 (Ref)として、前述のフィラメント加熱量の目標値を与え、検出回路 60 にて検出されたフィラメント加熱量の検出値との差が最小になるように制御する。  FIG. 9 is a diagram showing a control flow. The heating amount of filament obtained by the heating amount detection circuit of the detection circuit 60 is the difference between the dimming signal, the type of discharge lamp, the cumulative lighting time of the discharge lamp, etc. The control circuit 8C controls the on-duty of the switch connected to the heating circuit 47 so as to minimize it. In Fig. 9, the target value of the filament heating amount is given as the reference value (Ref) of the error amplifier 62 so that the difference from the detected value of the filament heating amount detected by the detection circuit 60 is minimized. Control.
[0079] 図 9の構成は、加熱量を検出して目標加熱量との差をフィードバックする制御を行う ということにおいては、ハード的な構成であってもソフトウェア的な演算処理を施す構 成であっても良い。また、ここでは、一般的なフィードバック制御を用いるため、 Error = (目標値)— (検出値)とし、(制御量) = Kp * Error + Ki J Error * dt (ただし、 Kp, Kiは フィードバックゲインを与える係数、 *は乗算の意)となるように制御をする PI制御等、 汎用的なフィードバック手法を用いて制御することも可能である。  [0079] The configuration in FIG. 9 is a configuration in which software calculation processing is performed even in a hardware configuration in that control for detecting the heating amount and feeding back the difference from the target heating amount is performed. There may be. Since general feedback control is used here, Error = (target value)-(detected value), and (control amount) = Kp * Error + Ki J Error * dt (where Kp and Ki are feedback gains) It is also possible to perform control using a general-purpose feedback method such as PI control that controls the coefficient to give
[0080] 例えば、放電灯の端子流入電流に基づくフィラメント加熱量の最適化の方法を考え る。ここで、端子とは、放電灯の端部に配設されたフィラメント両端の端子を指してい る。図 10及び図 11において、横軸にランプ電流 IIをとり、縦軸には端子流入電流の 2 乗和 ILH2 + ILL2をとつている。放電灯 A, Bは異なった種類の放電灯である。 ILHは、 フィラメント両端のうちのランプ電流 IIが流入する側の端子流入電流、 ILLは IIが流入 しない側の端子流入電流である。このとき、図 10及び図 11の放電灯 A、 Bのように放 電灯の種類に応じた目標ラインを描くことができる。図 9に示した目標値としては、こ のような目標ラインすなわち (ILH2 + ILL2) = a * Il + b (a, bは定数、 *は乗算)の目 標関数が得られる。ここでは、(ILH2 + ILL2)がフィラメントの加熱量に対応する。 (ILH2 + ILL2)の検出量を得た後、図 9の目標値として、図 10及び図 11で示す目標関数を 与えてフィードバック制御することで、図 10及び図 11中では黒丸で示されたフィラメ ント加熱量の検出値 (測定値)が、適正な値である目標ラインにフィードバック制御さ れる。図 10が、放電灯 Aに対するフィードバック制御の様子、図 11が放電灯 Bに対す るフィードバック制御の様子を示している。異なった種類の 2つの放電灯 A, Bそれぞ れのフィードバック制御にぉ 、て、制御量である加熱量の増加分が放電灯種類ごと に異なることが分かる。 [0080] For example, a method for optimizing the filament heating amount based on the terminal inflow current of the discharge lamp is considered. Here, the term “terminal” refers to a terminal at both ends of the filament disposed at the end of the discharge lamp. 10 and 11, the horizontal axis represents the lamp current II, and the vertical axis represents the square sum ILH 2 + ILL 2 of the terminal inflow current. Discharge lamps A and B are different types of discharge lamps. ILH is the terminal inflow current on the side where the lamp current II flows in at both ends of the filament, and ILL is the terminal inflow current on the side where II does not flow. At this time, a target line corresponding to the type of discharge lamp can be drawn as shown in discharge lamps A and B in FIGS. The target value shown in Fig. 9 is such a target line, that is, a target function of (ILH 2 + ILL 2 ) = a * Il + b (a and b are constants, * is multiplication). Here, (ILH 2 + ILL 2 ) corresponds to the heating amount of the filament. (ILH 2 + ILL 2 ) After obtaining the detected amount, feedback control is performed by giving the target function shown in FIG. 10 and FIG. 11 as the target value in FIG. 9, and the filaments indicated by black circles in FIG. 10 and FIG. The detected value (measured value) of the current heating amount is feedback controlled to the target line that is an appropriate value. Fig. 10 shows the feedback control for discharge lamp A, and Fig. 11 shows the feedback control for discharge lamp B. It can be seen that the amount of increase in the heating amount, which is the control amount, differs depending on the type of discharge lamp, depending on the feedback control of the two different types of discharge lamps A and B.
[0081] 本実施形態によれば、放電灯調光時のフィラメント加熱の過大,過小を防ぎ、放電 灯の短寿命化、管壁の早期黒ィ匕を防止することができる。フィラメント加熱量をフィー ドバック制御することで、実際の加熱量に見合った加熱手段の制御を行うことができ る。調光度合すなわちランプ電流に応じた最適なフィラメント加熱量の目標値を設定 することができると共に、放電灯の種類や累積点灯時間の長短による加熱量変化を 加味した最適なフィラメント加熱量の目標値を設定することができる。  [0081] According to the present embodiment, it is possible to prevent the filament heating from being excessively large or small during dimming of the discharge lamp, to shorten the life of the discharge lamp and to prevent premature blackening of the tube wall. By controlling the filament heating amount by feedback, it is possible to control the heating means corresponding to the actual heating amount. The target value of the optimum filament heating amount can be set according to the dimming degree, that is, the lamp current, and the optimum filament heating amount target value considering the change in the heating amount depending on the type of discharge lamp and the cumulative lighting time. Can be set.
[0082] [第 6の実施形態]  [0082] [Sixth Embodiment]
本発明の第 6の実施形態を図 12乃至図 15を参照して説明する。図 12は本発明の 放電灯点灯装置の第 6の実施形態を示す回路図である。図 13は図 12の一部を拡大 して示すフィラメント端子電流検出の説明図、図 14はランプ電流の変化に対するフィ ラメント加熱量の上限及び下限を示す図、図 15は 2灯直列点灯における加熱量検出 のためのランプ電流検出点の位置を示す図である。  A sixth embodiment of the present invention will be described with reference to FIGS. FIG. 12 is a circuit diagram showing a sixth embodiment of the discharge lamp lighting device of the present invention. Fig. 13 is an explanatory diagram of filament terminal current detection, showing a part of Fig. 12 in an enlarged manner, Fig. 14 is a diagram showing the upper and lower limits of the filament heating amount with respect to changes in the lamp current, and Fig. 15 is the heating in series lighting of two lamps. It is a figure which shows the position of the lamp current detection point for quantity detection.
[0083] 図 12に示す放電灯点灯装置の構成は、図 7と同様である。フィラメント加熱量の検 出手段として、ランプ電流 IIとフィラメント電流 Ifの和を利用する方法がある。図 12で は、フィラメント加熱量として IIと Ifの和を検出する際に、放電灯点灯装置における低 電位側(安定電位側)のフィラメント上にぉ ヽて、 IIと Ifの和を検出するようにした例を 示している。  The configuration of the discharge lamp lighting device shown in FIG. 12 is the same as that in FIG. As a means for detecting the filament heating amount, there is a method using the sum of the lamp current II and the filament current If. In Fig. 12, when the sum of II and If is detected as the filament heating amount, the sum of II and If is detected on the low potential side (stable potential side) filament of the discharge lamp lighting device. An example is shown.
[0084] 図 12において、直流電源装置 1を点灯装置 40であるインバータにより交流に変換 し、直列共振回路 43を経て放電灯 3に高圧高周波の電圧を供給する。また、フィラメ ント加熱は加熱回路 47を用いて行う。制御回路 8Cは調光信号に応じてインバータ 4 0を制御し、放電灯 3を調光するとともに、加熱回路 47のスィッチ 7を制御することによ つて、最適なフィラメント加熱量に制御する。 In FIG. 12, the DC power supply device 1 is converted into AC by an inverter which is a lighting device 40, and a high-voltage and high-frequency voltage is supplied to the discharge lamp 3 through the series resonance circuit 43. Filament heating is performed using a heating circuit 47. The control circuit 8C controls the inverter 40 according to the dimming signal, dimming the discharge lamp 3, and controlling the switch 7 of the heating circuit 47. Therefore, the optimum filament heating amount is controlled.
[0085] 図 12に示すように、フィラメント加熱量の検出回路として、 Il+Ifの検出回路を設けて いる。同時に IIを検出することによって、 11+ Ifの検出値力も 11¾算出することができる。 図 12の低電位側(安定電位側)のフィラメントでの検出点 aにおいては、 IIと Ifの和が 得られ、且つこの最も低い電位のフィラメント上の検出点 aの電流の和を検出すること によってその検出値が下限を越えていれば、それ以外のフィラメント(図 12では高電 位側のフィラメント)では全て下限を越えた加熱量となることが推定され、フィラメントの 最適化制御が容易となる。検出点 bにおける IIの検出についても同様なことが言える 。 Il+Ifの検出や IIの検出には、例えば、加熱回路 47や共振回路 43に対する電圧降 下が無視できる程度の微小な抵抗手段などを用いることができる。  As shown in FIG. 12, an Il + If detection circuit is provided as a filament heating amount detection circuit. By detecting II at the same time, the detected value of 11+ If can also be calculated by 11¾. At detection point a on the low potential side (stable potential side) filament in Fig. 12, the sum of II and If is obtained, and the sum of currents at detection point a on the lowest potential filament is detected. If the detected value exceeds the lower limit, it is estimated that all other filaments (high potential side filaments in Fig. 12) will have a heating amount exceeding the lower limit, making filament optimization control easy. Become. The same is true for detection of II at detection point b. For detection of Il + If and detection of II, for example, a minute resistance means such that the voltage drop to the heating circuit 47 and the resonance circuit 43 can be ignored can be used.
[0086] 最適なフィラメント加熱量は、図 13に示すような放電灯の端子流入電流を用いて図 14の斜線の範囲を適正範囲として与えることができる。図 13において、放電電流 IIが 図示加熱回路 47側に分流しない設計であるとすると、 ILH=Il+IfC与えられ、 ILL= Ifで与えられる。このとき、 IIに対する ILH2 + ILL2の値が図 14の下限から上限の間(斜 線の領域)に制御されると、放電灯点灯中のフィラメント加熱量は最適化されること〖こ なる。調光レベル設定に対するランプ電流 IIを検出しているとすると、加熱量検出は I LH2 + ILL2を見ればよい。ここでは、 Il+Ifの和を検出し、フィードバック制御に用いるこ ととする。 The optimum filament heating amount can be given as an appropriate range in the hatched area of FIG. 14 using the terminal inflow current of the discharge lamp as shown in FIG. In FIG. 13, assuming that the discharge current II is not shunted to the illustrated heating circuit 47 side, ILH = Il + IfC is given and ILL = If is given. At this time, if the value of ILH 2 + ILL 2 for II is controlled between the lower limit and the upper limit (shaded area) in FIG. 14, the filament heating amount during discharge lamp lighting will be optimized. . Assuming that the lamp current II is detected for the dimming level setting, the heating amount can be detected by looking at I LH 2 + ILL 2 . Here, the sum of Il + If is detected and used for feedback control.
[0087] !し^ +!し ニ +ェが屮^と書くことができるため、 Il + If=aとすると、 ILH2 + ILL2 = 2 a2— 2all + ll2などと書くことができる。このため、検出した量である a = 11 + Ifと IIの関数 として ILH2 + ILL2が与えられることになり、この値が上限と下限の間になるように加熱 回路 47の制御量を設定すればよい。これによりフィラメント加熱量の検出回路 60Aを 簡略ィ匕しつつもフィラメント加熱量の最適値を得ることができる。 [0087]! Shi +! Since ni + e can be written as 屮 ^, if Il + If = a, ILH 2 + ILL 2 = 2 a 2 — 2all + ll 2 etc. can be written. Therefore, ILH 2 + ILL 2 is given as a function of the detected amount a = 11 + If and II, and the control amount of the heating circuit 47 is set so that this value is between the upper and lower limits. do it. As a result, the optimum value of the filament heating amount can be obtained while simplifying the filament heating amount detection circuit 60A.
[0088] フィラメント加熱量の検出は、一般的には、任意のフィラメントにおいて 11+1 検出す ることで検出可能である。図 15に示す通り、負荷の放電灯を 2灯とし、直列点灯とした 場合について、高電位側のフィラメントについて 11+11^検出しても良く (検出点 1)、低 電位側のフィラメントについて検出しても良い (検出点 3)。また、中間の電位にあたる 位置において検出してもよい (検出点 2)。ただし、特に放電灯の調光時は、高電位側 から容量成分 (この容量成分は、高電位側と低電位側間に存在する浮遊容量である )を通じて漏洩する電流の影響が出るため、高電位側で測定した放電電流の大きさ に対して低電流側で測定した放電電流の大きさは減少し、低電位ほど、フィラメント 加熱に寄与する放電電流が小さくなる。このため、最も低い電位の検出点 3の値を検 出し、その検出値が図 14に示す下限を越えるように制御することで、全てのフィラメン トにおいて、図 14に示す下限値を下回らないフィラメント加熱量を確保することが可 能となる。これにより、どのフィラメントにおいても加熱量が不足することによる放電灯 の短寿命化を防ぐことができる。 [0088] In general, the amount of filament heating can be detected by detecting 11 + 1 in an arbitrary filament. As shown in Fig. 15, when two discharge lamps are used and the lamps are connected in series, 11 + 11 ^ may be detected for the high potential side filament (detection point 1), and the low potential side filament is detected. Yes (detection point 3). It may also be detected at a position corresponding to an intermediate potential (detection point 2). However, especially when controlling the discharge lamp, To the capacitive component (this capacitive component is a stray capacitance that exists between the high potential side and the low potential side). The magnitude of the discharge current measured on the current side decreases. The lower the potential, the smaller the discharge current that contributes to filament heating. For this reason, by detecting the value of detection point 3 at the lowest potential and controlling the detected value to exceed the lower limit shown in FIG. 14, the filaments that do not fall below the lower limit shown in FIG. It is possible to secure a heating amount. As a result, it is possible to prevent the life of the discharge lamp from being shortened due to insufficient heating in any filament.
[0089] なお、例えば図 15に示すように高電位側と低電位側間に複数(図では 2つ)の放電 灯を直列接続した場合において、制御手段は、複数のフィラメントにおける各フィラメ ント加熱量の比率を予め有しており、加熱量の検出手段は、フィラメント加熱量の検 出を、放電灯の任意のフィラメントにおいて実施可能とし、制御手段は、加熱量の検 出手段の検出箇所と前記比率とを用いて演算してフィラメントの加熱量を設定するよ うにしてもよい。 これは、次のような理由による。すなわち、高電位側と低電位側間に 複数の放電灯を直列接続した場合に、各フィラメントの加熱量の推定として、高電位 側と低電位側とのランプ電流を検出すると概ね漏れ電流の推定と、これを基にした各 フィラメントにおけるランプ電流の推定が行える。そして、この各フィラメントにおけるラ ンプ電流の推定を用いて各フィラメント加熱量を推定して、その比率を予め保有して おく。このよう〖こすると、例えば低電位側に加熱量を合わせたい場合であれば、いず れか一つを検出すれば後は比率に応じて制御すればよいし、またはいずれか一つ を検出すれば他のフィラメントの加熱量は各々の比率に応じて可変させることによつ て最適な範囲とすることができる。  [0089] For example, when a plurality of (two in the figure) discharge lamps are connected in series between the high potential side and the low potential side as shown in FIG. 15, the control means heats each filament in the plurality of filaments. The heating amount detection means can detect the filament heating amount in any filament of the discharge lamp, and the control means can detect the heating amount detection means. The heating amount of the filament may be set by calculation using the ratio. This is due to the following reason. That is, when multiple discharge lamps are connected in series between the high potential side and the low potential side, if the lamp currents at the high potential side and the low potential side are detected as an estimate of the heating amount of each filament, the leakage current is roughly estimated. Based on this, the lamp current in each filament can be estimated. Then, the heating amount of each filament is estimated using the estimation of the lamp current in each filament, and the ratio is held in advance. In this case, for example, if it is desired to adjust the heating amount to the low potential side, if any one is detected, then control may be performed according to the ratio, or any one is detected. In this case, the heating amount of the other filaments can be adjusted to an optimum range by varying the heating amount according to each ratio.
[0090] 本実施形態によれば、放電灯調光時のフィラメント加熱を最適化することで放電灯 の短寿命化、早期黒ィ匕を防止することができる。簡単な回路構成により放電灯のフィ ラメント加熱量を検出することができる。放電灯フィラメントの加熱量をそれぞれのフィ ラメントについて検出することができるが、低電位側(安定電位側)のフィラメント上で II + 1 検出することで、その検出値が下限を越えていれば、それ以外のフィラメントで は全て下限を越えて最適なフィラメント加熱量を与えて最適化することができる。従つ て、フィラメント加熱量の検出点を 1点に限定しても、放電灯の短寿命化に至らない加 熱制御を行うことができる。また、高電位側と低電位側間に複数の放電灯を直列接続 した場合に、各フィラメントにおけるランプ電流の推定を用いて各フィラメント加熱量を 推定して、その比率を予め保有しておき、いずれか一つのフィラメントの加熱量を検 出すれば他のフィラメントの加熱量は各々の比率に応じて制御又は可変させることに よって最適な加熱量範囲とすることができる。 [0090] According to the present embodiment, by optimizing filament heating during dimming of the discharge lamp, it is possible to shorten the life of the discharge lamp and prevent early blackening. The filament heating amount of the discharge lamp can be detected with a simple circuit configuration. The amount of heating of the discharge lamp filament can be detected for each filament, but by detecting II + 1 on the low potential side (stable potential side) filament, if the detected value exceeds the lower limit, All other filaments can be optimized by giving an optimum filament heating amount exceeding the lower limit. Follow Thus, even if the filament heating amount detection point is limited to one point, heating control that does not shorten the life of the discharge lamp can be performed. In addition, when a plurality of discharge lamps are connected in series between the high potential side and the low potential side, the amount of heating of each filament is estimated using the estimation of the lamp current in each filament, and the ratio is held in advance. If the heating amount of any one of the filaments is detected, the heating amount of the other filaments can be controlled or varied in accordance with the respective ratios to make the optimum heating amount range.
[0091] [第 7の実施形態]  [0091] [Seventh embodiment]
本発明の第 7の実施形態を図 16乃至図 18を参照して説明する。図 16は本発明の 放電灯点灯装置の第 7の実施形態を示す回路図である。図 17は図 16におけるイン ピーダンスをコンデンサとした回路図、図 18は図 17にお!/、てフィラメントのスィッチを オフ、オンそれぞれに制御した場合のフィラメント電流を示す図である。  A seventh embodiment of the present invention will be described with reference to FIGS. FIG. 16 is a circuit diagram showing a seventh embodiment of the discharge lamp lighting device of the present invention. Fig. 17 is a circuit diagram in which the impedance in Fig. 16 is a capacitor, and Fig. 18 is a diagram showing the filament current when the filament switch is controlled to OFF and ON in Fig. 17, respectively.
[0092] 図 16において、点灯装置 40は、互いに直列的に接続された一対のスイッチング装 置およびこのスイッチング装置のスイッチング出力を供給される直列共振回路 43 (符 号 43は図示していないが、図 7と同様〖こ符号 44, 45, 46を含めたもの)を有し、加熱 手段は、直列共振回路 43の共振コンデンサ 46を放電灯 3の一対のフィラメントの非 電源側に直列に配置することで該フィラメントを加熱する構成となっており、制御手段 は、フィラメントに流れる電流をインピーダンス Zf(Zfは Zfl, Z1 の少なくとも一方)とス イッチ SWf(SWfは SWfl, SWf2の少なくとも一方)を用いて増減させる制御を行うこと によって、フィラメントの加熱量を制御することが可能である。図 7の構成と比較すると 、図 16では、図 7の予熱トランスを用いた加熱手段 47を無くし、共振コンデンサ 46を 放電灯 3の一対のフィラメントの非電源側に直列に配置し、さらに各フィラメントの両 端に並列にインピーダンス Zfとスィッチ SWfの直列回路を接続したものである。  In FIG. 16, a lighting device 40 includes a pair of switching devices connected in series with each other and a series resonance circuit 43 to which a switching output of the switching device is supplied (reference numeral 43 is not shown) As in FIG. 7, the heating means includes the resonance capacitor 46 of the series resonance circuit 43 in series with the non-power supply side of the pair of filaments of the discharge lamp 3. Therefore, the control means uses the impedance Zf (Zf is at least one of Zfl and Z1) and the switch SWf (SWf is at least one of SWfl and SWf2). It is possible to control the heating amount of the filament by performing the control to increase or decrease in this manner. Compared with the configuration of FIG. 7, in FIG. 16, the heating means 47 using the preheating transformer of FIG. 7 is eliminated, the resonant capacitor 46 is arranged in series on the non-power supply side of the pair of filaments of the discharge lamp 3, and each filament A series circuit of impedance Zf and switch SWf is connected in parallel at both ends.
[0093] 本実施形態は、点灯装置 40としてのハーフブリッジ形のインバータは、互いに直列 接続された一対の MOS形 FET41、 42を直流電源装置 1の出力端間に接続し、一 方の FET42に対して並列関係に、直列共振回路 43を設けている。直列共振回路 4 3は、直流カットコンデンサ 44、限流用および共振用のインダクタ 45 (以下、 Lrと略記 )および共振用のコンデンサ 46 (以下、 Crと略記)を含んでいる。  In this embodiment, the half-bridge inverter as the lighting device 40 is configured such that a pair of MOS FETs 41 and 42 connected in series are connected between the output terminals of the DC power supply device 1 and connected to one FET 42. On the other hand, a series resonant circuit 43 is provided in parallel. The series resonance circuit 43 includes a DC cut capacitor 44, a current limiting and resonance inductor 45 (hereinafter abbreviated as Lr), and a resonance capacitor 46 (hereinafter abbreviated as Cr).
[0094] 直流電源装置 1を点灯装置 40であるインバータを用いて交流に変換し、直列共振 回路 43を用いて放電灯 3に高圧高周波電力を与える。 Crの両端に発生する高圧高 周波を利用して放電灯 3を点灯させる。このとき、放電灯 3のフィラメントは、 Crと直列 になるので、 Crを流れる交流電流により加熱される。 [0094] DC power supply 1 is converted into alternating current using an inverter that is lighting device 40, and series resonance is performed. Using circuit 43, high-pressure high-frequency power is applied to discharge lamp 3. The discharge lamp 3 is turned on using high-pressure high-frequency generated at both ends of Cr. At this time, since the filament of the discharge lamp 3 is in series with Cr, it is heated by the alternating current flowing through Cr.
[0095] 従って、本実施形態の加熱手段は、直列共振回路 43の Crと放電灯 3のフィラメント とを直列に配置し、該フィラメントを加熱するものである。  [0095] Therefore, the heating means of the present embodiment arranges Cr of the series resonance circuit 43 and the filament of the discharge lamp 3 in series, and heats the filament.
[0096] また、制御手段である制御回路 8Dは、調光信号に応じてインバータ 40の出力を制 御すると共に、フィラメントに流れる電流を増減させることによって、フィラメントの加熱 量を制御する機能を有するものである。符号 A, B, Cについては、 Aはランプ電圧の 検出点、 Bはランプ電流の検出点、 Cはフィラメント加熱量の検出点である。電流検出 点には、共振回路 43などに対する電圧降下が無視できる程度の微小な抵抗手段な どを用いることができる。  [0096] Further, the control circuit 8D as a control means has a function of controlling the output of the inverter 40 in accordance with the dimming signal and controlling the heating amount of the filament by increasing or decreasing the current flowing through the filament. Is. For symbols A, B, and C, A is a lamp voltage detection point, B is a lamp current detection point, and C is a filament heating amount detection point. For the current detection point, it is possible to use a very small resistance means such that a voltage drop with respect to the resonance circuit 43 or the like can be ignored.
[0097] 図 16の構成では、図 7及び図 12のように浮遊容量を介して高電位側力も漏洩する 電流を抑制し、両フィラメントにはランプ電流のほか共振コンデンサ Crを介してフイラ メント加熱電流としての電流が流れる。  [0097] In the configuration of Fig. 16, as shown in Fig. 7 and Fig. 12, the current that also leaks the high potential side force via the stray capacitance is suppressed, and the filament is heated to the filament via the resonant capacitor Cr in addition to the lamp current. A current as a current flows.
[0098] 前記制御回路 8Dを含む制御手段は、放電灯 3のフィラメントと並列に配置され、共 振コンデンサ Crと直列に配置されたインピーダンス Zfと、このインピーダンス Zfと直列 に配置され、流入する電流を制御するスィッチ SWfと、このスィッチ SWfをオンオフ することによって、フィラメントの加熱量を制御するフィラメント加熱量制御手段 (制御 回路 8Dの一部)とを含んで 、る。  [0098] The control means including the control circuit 8D is arranged in parallel with the filament of the discharge lamp 3, and is arranged in series with the resonance capacitor Cr, and is arranged in series with the impedance Zf, and the inflowing current And a filament heating amount control means (a part of the control circuit 8D) for controlling the heating amount of the filament by turning on and off the switch SWf.
[0099] 放電灯 3の調光をインバータ 40の周波数により制御すると Crを流れる電流も制御さ れる。これにより、調光するとフィラメント加熱量は、 Crを流れる電流量の増減に合わ せて変化する。この方式においては、調光時の周波数 fと Crの値から、 ΐΖ2 π ίΟ·で 与えられる Crのインピーダンス成分によって Crおよび放電灯のフィラメントを流れる 電流が決まる。このため、調光制御によりインバータの周波数を制御することで、フィ ラメントを流れる電流が変化する。このフィラメント電流が最適な加熱量を得るようにじ rの値、制御する周波数などが与えられて 、ることが必要である。  [0099] When the dimming of the discharge lamp 3 is controlled by the frequency of the inverter 40, the current flowing through Cr is also controlled. As a result, when the light is adjusted, the amount of heating of the filament changes in accordance with the increase or decrease of the amount of current flowing through Cr. In this method, the current flowing through the filament of the lamp and the lamp is determined by the impedance component of Cr given by ΐΖ2 π ίΟ from the values of the frequency f and Cr during dimming. For this reason, the current flowing through the filament changes by controlling the frequency of the inverter by dimming control. It is necessary that the value of r and the frequency to be controlled are given so that the filament current can obtain the optimum heating amount.
[0100] しかし、実際には、前述のように Crの値、制御周波数などを決定しても、実際の加 熱量と最適な加熱量との乖離が生じる。このため、本実施形態では、検出回路 60に おいて、放電灯の電流'電圧の電気特性とフィラメントの加熱量を検出し、その値から 制御回路において、インバータの周波数、スィッチ SWflおよび SWf2のオンオフを制 御することを特徴とする。放電灯のフィラメントには、並列にインピーダンス Zfが配置 されている。スィッチ SWi¾オフの状態では、フィラメントは前述の通り Crによっての みフィラメント電流が決定される。一方、スィッチ SWl^オンにすると、インピーダンス Z fに分流する電流が生じるため、フィラメントを流れる電流を減少させることができる。こ のように図 16においては、スィッチ SWfl及び SWf2をオン,オフすることから、フィラメ ントの加熱量を制御することができる。加熱量の目標値は、調光レベル,放電灯の種 類,累積点灯時間によって決定され、検出される加熱量が目標値に合致するように S Wfl及び SWf2のオンデューティが制御される。 [0100] However, in practice, even if the Cr value, the control frequency, etc. are determined as described above, there is a difference between the actual heating amount and the optimum heating amount. Therefore, in the present embodiment, the detection circuit 60 includes The electrical characteristics of the discharge lamp's current and voltage and the heating amount of the filament are detected, and the control circuit controls the frequency of the inverter and the on / off of the switches SWfl and SWf2 from the detected values. Impedance Zf is arranged in parallel on the filament of the discharge lamp. In the switch SWi¾off state, the filament current is determined only by the Cr as described above. On the other hand, when the switch SWl ^ is turned on, a current is shunted to the impedance Zf, so that the current flowing through the filament can be reduced. Thus, in FIG. 16, the amount of heating of the filament can be controlled because the switches SWfl and SWf2 are turned on and off. The target value of the heating amount is determined by the dimming level, the type of discharge lamp, and the cumulative lighting time, and the on-duty of SWfl and SWf2 is controlled so that the detected heating amount matches the target value.
[0101] 図 17は、フィラメントに並列に配置するインピーダンス成分としてコンデンサ (Cfl、 C 12)を与えた例を示す。 SWflをオンとすると、 Cflとフィラメントは並列に接続された状 態となる。このため、フィラメント加熱に用いられていた電流は、 Cfl側とフィラメント側 に分流する。これによつて、フィラメント加熱量を制御することができる。例えば、放電 灯点灯時のフィラメントの抵抗値は一般的に 10 Ω程度である。これに対して、点灯周 波数 fを 50kHz、 Cfl = 0. 47uFとすると、 1/2 π ίΟί1 = 6. 77 Ωとなるのでフィラメン トの抵抗値のオーダーになる。  [0101] FIG. 17 shows an example in which capacitors (Cfl, C12) are provided as impedance components arranged in parallel with the filament. When SWfl is turned on, Cfl and the filament are connected in parallel. For this reason, the current used for heating the filament is shunted to the Cfl side and the filament side. Thereby, the filament heating amount can be controlled. For example, the resistance value of the filament when the discharge lamp is lit is generally about 10 Ω. On the other hand, if the lighting frequency f is 50 kHz and Cfl = 0.47 uF, 1/2 π ίΟί1 = 6. 77 Ω, which is the order of the resistance value of the filament.
[0102] 図 18に SWfの制御による効果を図示する。 SW1¾オンのときは、オフのときと比較 して、フィラメントに流れる電流が減少している。従って、スィッチのオン期間を制御す ることでオンの場合にフィラメントに流れる電流とオフの場合にフィラメントに流れる電 流との中間の状態に制御され、その絶対値によって加熱量が制御される。  [0102] Figure 18 illustrates the effect of SWf control. When SW1¾ is on, the current flowing through the filament decreases compared to when it is off. Therefore, by controlling the ON period of the switch, the current is controlled to be intermediate between the current flowing through the filament when ON and the current flowing through the filament when OFF, and the heating amount is controlled by the absolute value.
[0103] また、図 17では、フィラメントに並列に配置するインピーダンスとしてコンデンサの例 を与えているが、インダクタであっても、コンデンサとインダクタの組み合わせであって もよい。抵抗成分を並列に配置してもよいが、実効的な電力を消費するため、コンデ ンサまたはインダクタで構成するのが良 、。  [0103] In Fig. 17, an example of a capacitor is given as an impedance arranged in parallel to the filament, but it may be an inductor or a combination of a capacitor and an inductor. Resistor components may be placed in parallel, but in order to dissipate effective power, it is better to use a capacitor or inductor.
[0104] 以上のように共振コンデンサ Crを流れる電流でフィラメントを加熱すると、放電灯の 高電位側から漏洩する電流の効果を無視できるので、高電位側と低電位側とで均一 なフィラメント加熱量を得ることができる利点もある。 [0105] 本実施形態によれば、放電灯において、フィラメントの加熱量を最適に制御すること で、放電灯の短寿命化、早期黒ィ匕を防止できる。共振コンデンサを流れる電流をフィ ラメントの加熱に利用することで、放電灯調光時の漏洩電流の影響を抑制し、フィラメ ントの電位 (高電位側,低電位側)に応じた加熱量のバラつきを抑制できる。また、こ のように共振コンデンサを流れる電流をフィラメントの加熱に利用する方式にお!ヽても 、フィラメント加熱量の制御を実現できる。 [0104] When the filament is heated with the current flowing through the resonant capacitor Cr as described above, the effect of the current leaking from the high potential side of the discharge lamp can be ignored, so the amount of filament heating is uniform between the high potential side and the low potential side. There is also an advantage that can be obtained. According to this embodiment, in the discharge lamp, the life of the discharge lamp can be shortened and early blackening can be prevented by optimally controlling the heating amount of the filament. By using the current flowing through the resonant capacitor for heating the filament, the effect of leakage current during dimming of the discharge lamp is suppressed, and the amount of heating varies according to the potential of the filament (high potential side, low potential side). Can be suppressed. In addition, the current that flows through the resonant capacitor is used to heat the filament! Even so, the filament heating amount can be controlled.
[0106] さらに、本実施形態によれば、フィラメントを加熱する加熱手段の構成を漏れ電流 の損失を無くする構成としたので、フィラメント加熱量の検出を、高電位側,低電位側 フィラメントに関わらず、放電灯の任意のフィラメントにおいて実施することが可能とな り、放電灯回路設計の自由度を広げることができる。  Furthermore, according to the present embodiment, since the configuration of the heating means for heating the filament is configured to eliminate the loss of leakage current, the filament heating amount is detected regardless of whether the filament is on the high potential side or the low potential side filament. Therefore, it can be carried out on any filament of the discharge lamp, and the degree of freedom in designing the discharge lamp circuit can be expanded.
[0107] 次に、本発明による照明装置の一実施形態を図 19を参照して説明する。図 19は 本発明による照明装置の一実施形態を示す斜視図である。図 19の場合、照明装置 は天井直付形の照明器具である。符号 70は照明器具本体、 71は照明器具本体 70 に設けられたソケット、 72は反射板、 73はソケット 71に装着された熱陰極形の放電 灯、 74は照明器具本体 70に内蔵された放電灯点灯装置である。放電灯点灯装置と しては、第 1乃至第 7の実施形態のいずれかで述べたものを使用する。  Next, an embodiment of a lighting device according to the present invention will be described with reference to FIG. FIG. 19 is a perspective view showing an embodiment of a lighting device according to the present invention. In the case of Fig. 19, the lighting device is a ceiling-mounted lighting fixture. Reference numeral 70 denotes a lighting fixture body, 71 denotes a socket provided in the lighting fixture body 70, 72 denotes a reflector, 73 denotes a hot cathode discharge lamp mounted in the socket 71, and 74 denotes a lamp built in the lighting fixture body 70. It is an electric lamp lighting device. As the discharge lamp lighting device, the one described in any of the first to seventh embodiments is used.
[0108] このような構成の照明装置では、放電灯 73のフィラメント加熱を常に適正に行え、 短寿命化防止や電力損失の軽減を図ることができる。  In the illuminating device having such a configuration, the filament heating of the discharge lamp 73 can always be appropriately performed, and the life can be prevented from being shortened and the power loss can be reduced.
[0109] 尚、本出願 ίま、 2006年 1月 25曰〖こ曰本国【こ出願された特願 2006— 016653号を 優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請 求の範囲に引用されるものとする。  [0109] This application is filed on January 25, 2006. This application was filed on the basis of priority claim claiming Japanese Patent Application No. 2006-016653. It shall be cited in the specification of this application and the scope of claims.

Claims

請求の範囲 The scope of the claims
[1] 直流電源装置の出力を高周波電圧に変換して熱陰極形の放電灯を点灯する出力 可変の点灯装置と;  [1] A variable output lighting device that turns on the hot cathode discharge lamp by converting the output of the DC power supply device to a high-frequency voltage;
前記放電灯のフィラメントを加熱する出力可変の加熱手段と;  Variable output heating means for heating the filament of the discharge lamp;
前記フィラメントの加熱量を検出する検出手段と;  Detection means for detecting the heating amount of the filament;
前記放電灯の調光度合に応じたフィラメント加熱量を予め記憶しており、調光信号 に応じて前記点灯装置の出力を制御するとともに、前記検出手段にて検出されるフィ ラメントの加熱量が予め記憶されて 、る前記フィラメント加熱量になるように前記加熱 手段の出力を制御する制御手段と;  The filament heating amount corresponding to the dimming degree of the discharge lamp is stored in advance, the output of the lighting device is controlled according to the dimming signal, and the heating amount of the filament detected by the detection means is Control means for controlling the output of the heating means so as to obtain the filament heating amount stored in advance;
を具備したことを特徴とする放電灯点灯装置。  A discharge lamp lighting device comprising:
[2] 出力電圧値を可変の直流電源装置と;  [2] A DC power supply with variable output voltage value;
互いに直列的に接続された一対のスイッチング装置およびこのスイッチング装置の スイッチング出力を供給される直列共振回路を有し、前記直流電源装置の出力電圧 を高周波電圧に変換して熱陰極形の放電灯を点灯するインバータと;  A pair of switching devices connected in series with each other and a series resonance circuit to which the switching output of the switching device is supplied, and the output voltage of the DC power supply device is converted into a high-frequency voltage to produce a hot cathode type discharge lamp. A lighted inverter;
前記インバータのスイッチング出力により付勢されて前記放電灯のフィラメントをカロ 熱する加熱手段と;  Heating means energized by the switching output of the inverter to heat the filament of the discharge lamp;
前記フィラメントの加熱量を検出する検出手段と;  Detection means for detecting the heating amount of the filament;
前記放電灯の調光度合に応じたフィラメント加熱量を予め記憶しており、調光信号 により調光度合を設定されたとき、前記検出手段力 検出されるフィラメント加熱量が 予め記憶された前記フィラメント加熱量になるように前記直流電源装置の出力電圧値 を変化するとともに、前記放電灯の光出力が設定された調光度合になるように前記ィ ンバータのスイッチング周波数を変化する制御手段と;  The filament heating amount corresponding to the dimming degree of the discharge lamp is stored in advance, and when the dimming degree is set by the dimming signal, the filament heating amount detected by the detection means force is stored in advance. Control means for changing an output voltage value of the DC power supply device so as to be a heating amount and changing a switching frequency of the inverter so that a light output of the discharge lamp has a set dimming degree;
を具備したことを特徴とする放電灯点灯装置。  A discharge lamp lighting device comprising:
[3] 前記制御手段は、前記放電灯の種類の判定を行う手段を備えており、フィラメント 加熱量を前記調光度合と放電灯の種類の判定結果とに応じて演算することを特徴と する請求項 1又は 2に記載の放電灯点灯装置。 [3] The control means includes means for determining the type of the discharge lamp, and calculates the amount of heating of the filament according to the dimming degree and the determination result of the type of the discharge lamp. The discharge lamp lighting device according to claim 1 or 2.
[4] 前記制御手段は、前記累積点灯時間を推定する手段を備えており、フィラメントカロ 熱量を前記調光度合と前記累積点灯時間の推定結果とに応じて演算することを特徴 とする請求項 1又は 2に記載の放電灯点灯装置。 [4] The control means includes means for estimating the cumulative lighting time, and calculates a filament calorie heat amount according to the dimming degree and the estimation result of the cumulative lighting time. The discharge lamp lighting device according to claim 1 or 2.
[5] 前記放電灯の種類の設定は、使用される放電灯の種類に対応して機械的スィッチ にて設定されるコードによって行われることを特徴とする請求項 3に記載の放電灯点 灯装置。 [5] The discharge lamp lamp according to claim 3, wherein the setting of the type of the discharge lamp is performed by a code set by a mechanical switch corresponding to the type of the discharge lamp used. apparatus.
[6] 前記検出手段は、調光度合に対する放電灯電流を検出する手段と、放電灯電流と フィラメント電流との和を検出する手段とを有し、前記放電灯電流の検出結果と前記 放電灯電流とフィラメント電流との和とをフィードバックするとともに演算することを特 徴とする請求項 1乃至 5のいずれか 1つに記載の放電灯点灯装置。  [6] The detection means includes a means for detecting a discharge lamp current with respect to a dimming degree, and a means for detecting the sum of the discharge lamp current and the filament current. The detection result of the discharge lamp current and the discharge lamp 6. The discharge lamp lighting device according to claim 1, wherein the sum of the current and the filament current is fed back and calculated.
[7] 前記検出手段は、フィラメント加熱量の検出を、前記放電灯の複数あるフィラメント のうち、最も加熱量の小さいフィラメントにおいて行うことを特徴とする請求項 1乃至 5 のいずれか 1つに記載の放電灯点灯装置。  [7] The detection means according to any one of [1] to [5], wherein the filament heating amount is detected in a filament with the smallest heating amount among a plurality of filaments of the discharge lamp. Discharge lamp lighting device.
[8] 前記制御手段は、複数のフィラメントにおける各フィラメント加熱量の比率を予め有 しており、前記検出手段は、フィラメント加熱量の検出を、前記放電灯の任意のフイラ メントにおいて実施可能であって、  [8] The control means has a ratio of each filament heating amount in a plurality of filaments in advance, and the detection means can detect the filament heating amount in any filament of the discharge lamp. And
前記制御手段は、前記検出手段の検出箇所と前記比率とを用いて演算してフイラ メントの加熱量を設定することを特徴とする請求項 1乃至 5のいずれ力 1つに記載の 放電灯点灯装置。  The discharge lamp lighting according to any one of claims 1 to 5, wherein the control means sets the heating amount of the filament by calculating using the detection location of the detection means and the ratio. apparatus.
[9] 前記点灯装置は、互いに直列的に接続された一対のスイッチング装置およびこの スイッチング装置のスイッチング出力を供給される直列共振回路を有し、  [9] The lighting device includes a pair of switching devices connected in series with each other and a series resonant circuit to which a switching output of the switching device is supplied,
前記加熱手段は、前記直列共振回路の共振コンデンサを前記放電灯の一対のフ イラメントの非電源側に直列に配置することで該フィラメントを加熱し、  The heating means heats the filament by arranging a resonance capacitor of the series resonance circuit in series on the non-power supply side of the pair of filaments of the discharge lamp,
前記制御手段は、前記フィラメントに流れる電流を増減させることによって、前記フィ ラメントの加熱量を制御することを特徴とする請求項 1,第 3乃至 8のいずれか 1つに 記載の放電灯点灯装置。  9. The discharge lamp lighting device according to claim 1, wherein the control unit controls the heating amount of the filament by increasing or decreasing a current flowing through the filament. 10. .
[10] 前記制御手段は、 [10] The control means includes
前記放電灯のフィラメントと並列に配置され、前記共振コンデンサと直列に配置され たインピーダンスと;  An impedance arranged in parallel with the filament of the discharge lamp and arranged in series with the resonant capacitor;
前記インピーダンスと直列に配置され、流入する電流を制御するスィッチ手段と; 前記スィッチ手段をオンオフすることによって、前記フィラメントの加熱量を制御する フィラメント加熱量制御手段と; Switch means arranged in series with said impedance to control the incoming current; Filament heating amount control means for controlling the heating amount of the filament by turning on and off the switch means;
を具備したことを特徴とする請求項 9に記載の放電灯点灯装置。  10. The discharge lamp lighting device according to claim 9, further comprising:
照明器具本体と;  A lighting fixture body;
この照明器具本体に装着された熱陰極形の放電灯と;  A hot-cathode discharge lamp mounted on the luminaire body;
この放電灯を点灯する請求項 1乃至 10のいずれか 1つに記載の放電灯点灯装置と を具備したことを特徴とする照明装置。  An illumination device comprising: the discharge lamp lighting device according to any one of claims 1 to 10 for lighting the discharge lamp.
PCT/JP2007/051154 2006-01-25 2007-01-25 Discharge lamp operating device and illuminator WO2007086455A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800013902A CN101356861B (en) 2006-01-25 2007-01-25 Discharge lamp lightening device and illuminator
JP2007555993A JP4985408B2 (en) 2006-01-25 2007-01-25 Discharge lamp lighting device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-016653 2006-01-25
JP2006016653 2006-01-25

Publications (1)

Publication Number Publication Date
WO2007086455A1 true WO2007086455A1 (en) 2007-08-02

Family

ID=38309243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051154 WO2007086455A1 (en) 2006-01-25 2007-01-25 Discharge lamp operating device and illuminator

Country Status (3)

Country Link
JP (1) JP4985408B2 (en)
CN (1) CN101356861B (en)
WO (1) WO2007086455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815392A (en) * 2009-02-23 2010-08-25 松下电工株式会社 High pressure discharge lamp lighting apparatus, ligthing paraphernalia and illuminator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102458027B (en) 2010-10-22 2014-05-07 台达电子工业股份有限公司 Control method for lighting circuit and applicable lighting circuit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568100U (en) * 1992-02-19 1993-09-10 松下電工株式会社 Discharge lamp lighting device
JPH0822893A (en) * 1994-07-07 1996-01-23 Canon Inc Fluorescent lamp dimmer
JPH11238586A (en) * 1998-02-24 1999-08-31 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2003168582A (en) * 2001-11-30 2003-06-13 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2004178943A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2005510834A (en) * 2001-11-23 2005-04-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Discharge lamp electrode heating device
JP2005235619A (en) * 2004-02-20 2005-09-02 Mitsubishi Electric Corp Discharge lamp lighting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889675A1 (en) * 1997-07-02 1999-01-07 MAGNETEK S.p.A. Electronic ballast with lamp tyre recognition
US6531831B2 (en) * 2000-05-12 2003-03-11 O2Micro International Limited Integrated circuit for lamp heating and dimming control

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568100U (en) * 1992-02-19 1993-09-10 松下電工株式会社 Discharge lamp lighting device
JPH0822893A (en) * 1994-07-07 1996-01-23 Canon Inc Fluorescent lamp dimmer
JPH11238586A (en) * 1998-02-24 1999-08-31 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2005510834A (en) * 2001-11-23 2005-04-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Discharge lamp electrode heating device
JP2003168582A (en) * 2001-11-30 2003-06-13 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2004178943A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2005235619A (en) * 2004-02-20 2005-09-02 Mitsubishi Electric Corp Discharge lamp lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815392A (en) * 2009-02-23 2010-08-25 松下电工株式会社 High pressure discharge lamp lighting apparatus, ligthing paraphernalia and illuminator

Also Published As

Publication number Publication date
JP4985408B2 (en) 2012-07-25
JPWO2007086455A1 (en) 2009-06-18
CN101356861A (en) 2009-01-28
CN101356861B (en) 2012-06-06

Similar Documents

Publication Publication Date Title
US7589472B2 (en) Electronic ballast with lamp type determination
EP2296448B1 (en) Illumination lighting device, illuminating device, and illuminating system
JP2004507871A (en) Recognition of Gas Discharge Lamp Type Based on Electrical Characteristics of Embedded Lamp
WO1998047323A1 (en) Discharge lamp lighting device and illumination device
US8129920B2 (en) Discharge lamp ballast and fixture with controlled preheating
WO2007086455A1 (en) Discharge lamp operating device and illuminator
CN102084725A (en) Detecting the type of a gas discharge lamp connected to an operational device
JP5121517B2 (en) Discharge lamp lighting device, lighting device
JP5122882B2 (en) Lighting device
TWI382788B (en) Control method and system for hid electronic ballast
JP2004178943A (en) Discharge lamp lighting device
JP2009152167A (en) Discharge lamp lighting device
JP2008027643A (en) Discharge lamp lighting device and luminaire
CA2795735A1 (en) Method of controlling an electrical dimming ballast during low temperature conditions
JP4810994B2 (en) Discharge lamp lighting device and lighting fixture
JP2007066629A (en) Discharge lamp lighting device and lighting system
JP2007294282A (en) Discharge lamp lighting device and illuminating device
JP5163892B2 (en) Discharge lamp lighting device
JP2007080740A (en) Discharge lamp lighting device and lighting system
JP4120211B2 (en) Discharge lamp lighting device
JP2007123262A (en) Discharge lamp lighting apparatus and illumination equipment
JP4711127B2 (en) Discharge lamp lighting device and lighting device
JP2005353382A (en) Fluorescent lamp lighting device and lighting control system
US8896213B1 (en) Adaptive lamp warm up control for dimming ballast based on lamp impedance sensing
JP2002299089A (en) Discharge lamp lighting device and luminaire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780001390.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007555993

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707401

Country of ref document: EP

Kind code of ref document: A1