WO2007086441A1 - Process for producing glass composition for lamp, glass composition for lamp, and lamp - Google Patents

Process for producing glass composition for lamp, glass composition for lamp, and lamp Download PDF

Info

Publication number
WO2007086441A1
WO2007086441A1 PCT/JP2007/051106 JP2007051106W WO2007086441A1 WO 2007086441 A1 WO2007086441 A1 WO 2007086441A1 JP 2007051106 W JP2007051106 W JP 2007051106W WO 2007086441 A1 WO2007086441 A1 WO 2007086441A1
Authority
WO
WIPO (PCT)
Prior art keywords
lamp
glass
glass composition
mol
hydroxide
Prior art date
Application number
PCT/JP2007/051106
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Motoya
Yasurou Niguma
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007555984A priority Critical patent/JPWO2007086441A1/en
Publication of WO2007086441A1 publication Critical patent/WO2007086441A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps

Definitions

  • the present invention relates to a method for producing a glass composition for lamps, a glass composition for lamps produced using this method, and a lamp produced using this glass composition for lamps.
  • a fluorescent lamp is used as a light source in a backlight of a transmissive liquid crystal display element such as a liquid crystal TV or a personal computer display.
  • the fluorescent lamp for backlight has basically the same configuration as the fluorescent lamp for general illumination, but the tube diameter of the glass bulb is smaller and the wall thickness is thinner. Therefore, such fluorescent lamps for backlight use borosilicate hard glass (hereinafter simply referred to as “borosilicate glass”) having high mechanical strength and excellent electrical insulation.
  • arsenic antimony is an environmentally hazardous substance that adversely affects the environment. Therefore, glass with arsenic antimony added is not suitable for recycling. In addition, arsenic and antimony-added glass must be handled with care in manufacturing and disposal plants, and requires extensive facilities for detoxification of etching wastewater.
  • Patent Document 1 contains SO, CI, and F as fining agents.
  • a method for producing glass in which an effective amount of a salt is added is disclosed. With this method, it is possible to obtain a glass with less bubbles without adding an environmental load substance. It is also known that a clarification effect can be obtained by adding nitrates such as Na NO and KNO to the glass.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2004-284949 Disclosure of the invention
  • Patent Document 1 generates a gas harmful to the human body such as a sulfide-based gas or a halogen-based gas during the glass melting step. Such harmful gas generation is preferable because it deteriorates the working environment of glass production.
  • NOx nitric acid gas
  • a method for producing a glass composition for a lamp according to an embodiment of the present invention is such that an oxide of a predetermined element and a hydroxide of the predetermined element are oxide / hydroxide.
  • a melting step of melting a raw material mixture added at a molar ratio of 1/3 to 1 into a glass state, and in the melting step, H 0 or H Heating the raw material mixture so that a gas comprising at least one of the above is generated is a special number.
  • a glass composition for a lamp according to an embodiment of the present invention is a glass composition for a lamp produced by the above-described method for producing a glass composition for a lamp, and transmits infrared light in the wavelength region near 3620 cm- 1 . It is characterized by a minimum value of 3.0 to 4.5% at a sample thickness of 2 mm.
  • a lamp according to an embodiment of the present invention is characterized by including a glass bulb formed of the above glass composition for a lamp.
  • a method for producing a glass composition for a lamp according to the present invention comprises the steps of: Since a gas composed of at least one of HO and H is generated from the hydroxide, it has the effect of being able to produce glass with few bubbles without generating harmful gas. The effect will be described in detail below.
  • the present inventors have replaced a part of the oxide of the predetermined element added to the raw material mixture with the hydroxide of the predetermined element, thereby melting the raw material mixture into a glass state.
  • gas was generated from the hydroxide, and bubbles in the glass melt were removed by the gas, and a clarification effect was obtained.
  • the gas generated from the hydroxide is generated by a decomposition reaction of the hydroxide and consists of at least one of H 0 and H. Temperature range where the vitrification reaction starts 500
  • a clarification effect is obtained by the decomposition reaction of the hydroxide occurring at ⁇ 1000 ° C.
  • the bubbles present in the glass are those in which the gas such as CO generated when the raw material mixture melts into the glass state remains without being able to escape from the glass melt.
  • the gas such as CO generated when the raw material mixture melts into the glass state remains without being able to escape from the glass melt.
  • the CO bubbles are small in diameter, have a low buoyancy, and are difficult to lift from the glass melt, so they cannot easily escape from the glass melt and remain in the glass.
  • the glass for a lamp according to the present invention generates H 0 or H force gas from the hydroxide of a predetermined element. This H 0 or H
  • the present inventors set the mixing ratio of the oxide and the hydroxide in the range of 1/3 to 1, thereby causing re-foaming while obtaining a sufficient clarification effect. Can be difficult I found out.
  • the mixing ratio When the mixing ratio is large, the clarification effect is insufficient because the generation amount of H 0 or H force gas is small. On the other hand, if the mixing ratio is less than 1/3, re-foaming is likely to occur during heat processing, which is not suitable for lamps.
  • the predetermined element boron (B), aluminum (A1), calcium (Ca), and the like are conceivable.
  • the hydroxide of the predetermined element is H BO, Al (OH), respectively.
  • the hydroxide according to the present invention includes a hydroxide in a narrow sense, that is, a compound having a hydrogen element and an oxygen element in a broad sense that includes only a compound having a hydroxyl group.
  • a hydroxide in a narrow sense that is, a compound having a hydrogen element and an oxygen element in a broad sense that includes only a compound having a hydroxyl group.
  • H BO B
  • the oxide and the hydroxide have a content of the predetermined element in the glass composition for a lamp of 8 to 17 mol% in terms of oxide.
  • the method for producing a glass composition for a lamp according to the present invention is such that the hydroxide has a content of the predetermined element in the glass composition for a lamp of 5 to 10.5 mol% in terms of oxide.
  • the hydroxide has a content of the predetermined element in the glass composition for a lamp of 5 to 10.5 mol% in terms of oxide.
  • the clarification effect is particularly remarkable.
  • H BO which is a hydroxide of boron, decomposes in a wide temperature range of 300 to 800 ° C.
  • the decomposition reaction of HBO is represented by the following (formula 1) and (formula 2).
  • the use of inexpensive HBO has the effect that glass can be produced at a low cost, and HBO has the effect that even if a large amount of glass is added, the glass is not colored.
  • the borosilicate glass is a glass having a high Young's modulus and Vickers hardness and excellent mechanical strength, and specifically, a glass containing 6 to 20 mol% of B 0 in terms of oxide. Means.
  • Lamp glass composition according to the present invention the thermal expansion coefficient (a) is 34 X 10- 7 / K ⁇ 43 X 1
  • a knocklight lamp uses a lead wire made of tungsten or Kovar alloy that can withstand the high temperatures caused by discharge. Therefore, in order to increase the reliability of the hermetic seal of the lead-in wire, it is preferable to make the thermal expansion coefficient of the glass composition for lamps close to the thermal expansion coefficient of tungsten or Kovar alloy.
  • thermal expansion coefficient (alpha) is 34 X 10- 7 / ⁇ 43 X 10- 7 / ⁇ , about the same as the thermal expansion coefficient of tungsten feedthrough, because high chemical durability, The reliability of the airtight seal of the lead-in line is high.
  • thermal expansion coefficient (a) is 43 X 10- 7 / K ⁇ 55 X 10- 7 / ⁇ , about the same as the thermal expansion coefficient of Kovar alloy feedthrough, because high chemical resistance, lead- High reliability of hermetic seal.
  • the lamp according to the present invention includes a glass bulb formed from the above glass composition for a lamp. Therefore, the lamp with few bubbles in the glass of the glass bulb is hardly damaged.
  • FIG. 1 shows the composition and properties of a glass composition according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a main configuration of a cold cathode fluorescent lamp according to an embodiment of the present invention.
  • FIG. 3 shows the composition and properties of a glass composition according to a comparative example.
  • FIG. 4 shows the infrared transmittance of a glass composition according to one embodiment of the present invention in the range of 2800 cm- 1 to 3800 cm- 1 .
  • FIG. 5 shows the infrared transmittance of a glass composition according to one embodiment of the present invention in the range of 3600 cm- 1 to 3800 cm- 1 .
  • a glass composition for a lamp, a method for producing the glass composition for a lamp, and a lamp according to an embodiment of the present invention will be described with reference to the drawings.
  • composition of the glass composition according to the present embodiment is as shown in Examples 1 to 5 in FIG. Note that “%” in FIG. 1 means “mol%”.
  • composition of the glass composition according to the present invention is not limited to the compositions shown in Examples 1 to 5, but in order to maintain the characteristics as a glass composition for a lamp, it is substantially converted in terms of oxide. , Si 0: 55 to 75 mol%, Al O: l to 10 mol%, BO + H BO: 8 to 17 mol%, Li O + Na O + KO: 0 to 12
  • boron (B) contained in the glass composition is added to the raw material mixture as a boron oxide and added to the raw material mixture as a boron hydroxide.
  • B 0 is used for those added as oxides
  • H BO is used for those added as hydroxides.
  • FIG. 1 and FIG. 3 described later.
  • B 0 + H BO The meaning described as 8 to 17 mol% means the glass composition
  • the reason for determining the glass composition for a lamp of the present invention as described above is as follows.
  • SiO is a component that forms a glass skeleton, and its content ranges from 55 to 75 mol%.
  • A10 is a component added for the purpose of improving the weather resistance and devitrification of glass.
  • the content is preferably in the range of l ⁇ 10mol%. If the amount is less than lmol%, the above action is difficult to obtain. On the other hand, if it exceeds 10 mol%, the meltability of the glass deteriorates. Its content is particularly preferably 2-7 mol%.
  • BO is an essential component of this embodiment, which is added for the purpose of improving the meltability of the glass, adjusting the expansion coefficient, and adjusting the viscosity.
  • HBO is an essential component of the present embodiment, which is added for the purpose of improving the meltability of glass, adjusting the expansion coefficient, adjusting the viscosity, and promoting the clarification effect.
  • B 0 + H BO is preferably in the range of 8-17 mol%.
  • B 0 + H BO force Less than S8 mol%, the melting property of the glass deteriorates, the viscosity and expansion coefficient increase, and it becomes difficult to seal the lead-in wire. On the other hand, if it exceeds 17 mol%, the glass undergoes phase separation, making it difficult to produce the glass.
  • the total content is particularly preferably 10 to 16 mol%.
  • Li 0, Na 2 O and K 2 alkali metal oxides reduce the viscosity of the glass and
  • the content is preferably in the range of 0 to 10 mol%. If it exceeds 10 mol%, the thermal expansion coefficient of the glass becomes too large. In addition, since alkali components are easily eluted from the glass, when a fluorescent lamp is produced using the glass, the glass reacts with the phosphor or mercury to reduce the luminous flux of the fluorescent lamp.
  • the content of each component is preferably Li 2 O: 0 to 5 mol%, Na 2 O: 0 to 8 mol%, and K 0: 0 to 12 mol%.
  • Alkaline earth metal oxides of MgO and CaO are added for the purpose of improving electrical insulation and chemical durability.
  • the MgO content is preferably in the range of 0.5 to 5 mol%.
  • the CaO content is preferably in the range of 0.5 to 10 mol%. If the MgO force is less than S0.5 mol% or CaO is less than 0.5 mol%, the above objective may not be achieved. On the other hand, when MgO is more than 5 mol% or CaO is more than 10 mol%, the glass tends to devitrify.
  • SrO and BaO are added for the purpose of improving the meltability of the glass and the bulb processability during the production of the fluorescent lamp.
  • the content of SrO is preferably 0 to 8 mol%.
  • the content of BaO is preferably 0 to 10 mol%. If SrO is more than 8 mol% or BaO is more than lOmol%, the glass tends to devitrify. CeO is added for the purpose of effectively absorbing ultraviolet rays and suppressing solarization. Its content is preferably in the range of 0.01 to 2 mol%. If the amount is less than 0.01 mol%, the above-mentioned purpose cannot be achieved. If the amount is more than 2 mol%, the glass is devitrified, making it difficult to produce a fluorescent lamp having a desired lamp luminous flux. Its content is particularly preferably in the range of 0.01 to lmol%.
  • Fe 0 is added for the purpose of obtaining an ultraviolet absorption effect.
  • the content is preferably in the range of 0 to 0.2 mol%. If it exceeds 0.2 mol%, the transmittance in the visible region is lowered, and therefore the luminous flux of the fluorescent lamp is lowered.
  • SnO is added for the purpose of promoting the valence change of Ce ions from 4+ to 3+. Its content is preferably in the range of 0.01-5 mol%. If the amount is less than 0.01 mol%, the effect cannot be obtained. If the amount is more than 5 mol%, the mechanical strength of the glass decreases, and the yield decreases in the glass tube drawing process. The range of 0.1 to 3 mol% is particularly preferable.
  • the glass according to the present invention may contain other components as long as the content of each component is substantially within the above range as long as the composition does not deviate from the above range. Les.
  • other components include ZrO, ZnO, P 2 O, TiO, and WO.
  • CeO is known as one of the fining agents.
  • a clarification effect cannot be obtained unless a large amount of CeO is added.
  • a large amount is added to obtain a clarification effect, the problem of coloring the glass occurs. Therefore, even if only CeO is added as a clarifier
  • SnO is the same as CeO, which is known as one of the fining agents, and if it is not added in a large amount, the fining effect cannot be obtained. However, if a large amount is added to obtain a clarification effect, the problem of devitrification of the glass occurs. For this reason, even if SnO is added as a clarifier, it is difficult to produce a glass with no devitrification and few remaining bubbles.
  • a plurality of types of glass raw materials are prepared within the range of the composition of the glass composition for a lamp according to the present invention to obtain a raw material mixture.
  • the raw material mixture is put into a glass melting furnace and melted at 1500 to 1600 ° C. for 5 to 8 hours in an air atmosphere to obtain a glass melt. At that time, do not perform stirring or publishing. Absent.
  • the glass melt is formed into a tubular shape by a tube drawing method such as the Danner method and cut into a predetermined size to obtain a glass tube for a lamp.
  • the glass tube is heat-processed to produce a glass bulb, and various lamps are produced.
  • FIG. 2 is a schematic diagram showing a main configuration of the cold cathode fluorescent lamp according to the present embodiment.
  • the structure of the cold cathode fluorescent lamp 1 basically conforms to the structure of the cold cathode fluorescent lamp according to the prior art.
  • the glass bulb 2 of the cold cathode fluorescent lamp 1 is formed of the glass composition for a lamp according to the present embodiment, and has an outer diameter of about 4.0 mm, an inner diameter of about 3.0 mm, The length is about 730mm.
  • the outer diameter, inner diameter and overall length of the glass bulb 2 are not limited to the above, but the outer diameter of the glass bulb 2 for the cold cathode fluorescent lamp 1 is 1.8 because it is desired that the tube diameter is small and the wall thickness is thin.
  • the inner diameter is preferably 1.4;) to 6.0 (the inner diameter is 5.0) mm.
  • Both ends of the glass bulb 2 are hermetically sealed by the bead glass 3, respectively.
  • lead wires 4 made of tungsten metal or Kovar alloy and having a diameter of about 0.8 mm are hermetically sealed so as to penetrate the bead glass 3.
  • a nickel or niobium cup-shaped electrode 5 whose surface is coated with an electron radioactive substance is attached to the end of each lead-in wire 4 on the inner side of the glass bulb 2.
  • a rare earth phosphor (Y 0: Eu 3+ , LaPO: Ce 3+ , Tb 3+ , BaMg Al 2 O 3 ) mixed with red, green and blue-green phosphors. : Eu 2+ , Mn 2+ )
  • a phosphor layer 6 is formed.
  • the glass bulb 2 is filled with 0.8 to 2.5 mg of mercury (not shown) and a rare gas (not shown) such as xenon.
  • the straight tube type cold cathode fluorescent lamp 1 has been specifically described above based on the embodiment, the content of the present invention is not limited to the above embodiment.
  • Each glass composition is prepared by weighing 17 g of the raw material mixture adjusted to the composition shown in the figure, placing it in a platinum crucible, heating and melting at 1500 ° C. for 3 hours in an electric furnace, and then taking it out from the electric furnace. The bottom was brought into contact with cold water and quenched to peel off the interface between the glass and the crucible.
  • thermomechanical analyzer manufactured by Rigaku, model number: TAS300 T MA8140C was used to measure the average linear expansion coefficient in the temperature range of 30 to 380 ° C.
  • the number of bubbles was counted using image processing software for the number of bubbles confirmed in the central section of the glass composition at 120 mm 2 and the plate thickness of 3 mm. Only bubbles with a diameter of 30 ⁇ or more were counted as bubbles.
  • the number of bubbles was cut into 120mm 2 (longitudinal lOmm x width 12mm) and plate thickness 3mm at the center of the cross section of the glass composition, and then both sides of the glass were # 400, # 800, # 1000, # 1500, # 2000 Polished step by step, finished to a mirror surface, and made a glass sumnoire.
  • the number of bubbles confirmed in the glass sample was counted using image processing software. Only bubbles with a diameter of 30 ⁇ or more were counted as bubbles.
  • Re-foaming during heat processing is when the glass composition is heat-processed and bubbles with a diameter of 30 / m or more in the overheated part are judged as “X” with re-foaming, and no re-foaming has occurred. Was determined to be “ ⁇ ”.
  • the infrared transmittance was measured in a wavelength range of 2800 to 3800 cm- 1 using a FT-IR (FTIR-8200, manufactured by Shimadzu Corporation) for a glass composition having a sample thickness of 2 mm and mirror polished on both sides. .
  • FT-IR FTIR-8200, manufactured by Shimadzu Corporation
  • the glass bulb was softened at a temperature of the glass bulb softening point + 20 ° C for 3 hours to soften the bulb to produce a glass plate having a thickness of 2 mm.
  • the glass plate is then cut into a 15mm x 15mm square, 15mm x 15mm x 2mm thick
  • Both surfaces of the sample for evaluation were polished step by step to # 400, # 800, # 1000, # 1500, and # 2 000, and finished to a mirror surface.
  • Fig. 4 shows the measurement results.
  • the infrared transmittance was performed for the purpose of evaluating the amount of water remaining in the glass composition.
  • the water remaining in the glass composition is generated by the decomposition reaction of HBO, and a part of it is dissolved in the glass composition. If the amount of water dissolved in the glass composition is large, the water dissolved when the glass composition is heated is gasified and re-foaming occurs.
  • the amount of water in the glass composition can be confirmed by the minimum value of infrared transmittance in the vicinity of 3620 cm- 1 , that is, the size of the absorption peak of OH— confirmed in the vicinity of 3620 cm- 1 .
  • the smaller the minimum value of the infrared transmittance in the vicinity of 3620 cm- 1 the greater the amount of water remaining in the glass composition.
  • 3620Cm- 1 to facilitate Verify minimum value of the infrared transmittance near is an enlarged view of a measurement result of the infrared transmittance in the wavelength range of 3600c m- 1 ⁇ 3800cm- 1.
  • the method for producing a glass composition for a lamp, the glass composition for a lamp and a lamp according to the present invention can be widely used for all lamps.
  • it is suitable for backlight cold cathode fluorescent lamps of transmissive liquid crystal display elements that require high-quality display such as liquid crystal TVs, personal computer displays, and in-vehicle liquid crystal panels.
  • the method for producing a glass composition for a lamp, the glass composition for a lamp, and the lamp according to the present invention substantially do not contain environmentally hazardous substances such as arsenic, antimony, lead, etc.

Abstract

A process for producing a glass composition for lamps which includes a melting step in which a raw-material mixture containing an oxide of a given element and a hydroxide of the given element in an oxide/hydroxide proportion of from 1/3 to 1 by mole is melted and brought into a vitreous state. In the melting step, the raw-material mixture is heated so that the hydroxide undergoes a decomposition reaction to generate a gas comprising at least either of H2O and H2. Thus, a glass reduced in bubble inclusions can be produced without generating any harmful gas.

Description

明 細 書  Specification
ランプ用ガラス組成物の製造方法、ランプ用ガラス組成物およびランプ 技術分野  Technical field of manufacturing glass composition for lamp, glass composition for lamp and lamp technical field
[0001] 本発明は、ランプ用ガラス組成物の製造方法、この方法を用いて作製されるランプ 用ガラス組成物、このランプ用ガラス組成物を用いて製造されるランプに関する。 背景技術  The present invention relates to a method for producing a glass composition for lamps, a glass composition for lamps produced using this method, and a lamp produced using this glass composition for lamps. Background art
[0002] 一般に、液晶 TV、パソコン用ディスプレイ等のような透過型液晶表示素子のバック ライトには、光源として蛍光ランプが用いられている。バックライト用の蛍光ランプは、 基本的に一般照明用の蛍光ランプと同様の構成を有するが、ガラスバルブの管径が より小さく肉厚がより薄い。そのため、このようなバックライト用の蛍光ランプには、機械 的強度が高く電気絶縁性に優れたホウケィ酸系の硬質ガラス(以下、単に「ホウケィ 酸ガラス」と称する。)が用いられている。  In general, a fluorescent lamp is used as a light source in a backlight of a transmissive liquid crystal display element such as a liquid crystal TV or a personal computer display. The fluorescent lamp for backlight has basically the same configuration as the fluorescent lamp for general illumination, but the tube diameter of the glass bulb is smaller and the wall thickness is thinner. Therefore, such fluorescent lamps for backlight use borosilicate hard glass (hereinafter simply referred to as “borosilicate glass”) having high mechanical strength and excellent electrical insulation.
[0003] ところで、ガラスバルブのガラス中に気泡が存在すると、当該ガラスバルブの機械的 強度が低下して破損が起こり易い。このような強度低下は、特に管径が小さく肉厚の 薄いガラスバルブにおいて深刻な問題となる。そのため、従来から、清澄剤としてヒ素 やアンチモンをガラスに添加し、ガラスから気泡を取り除く (ガラスを清澄する)ことが行 われている。  [0003] By the way, if air bubbles are present in the glass of the glass bulb, the mechanical strength of the glass bulb is reduced and breakage is likely to occur. Such a decrease in strength becomes a serious problem particularly in a glass bulb having a small tube diameter and a small thickness. Therefore, conventionally, arsenic or antimony is added to glass as a fining agent, and bubbles are removed from the glass (glass is clarified).
[0004] しかし、上記ヒ素ゃアンチモンは、環境に悪影響を与える環境負荷物質である。そ のため、ヒ素ゃアンチモンを添加したガラスはリサイクルに適していなレ、。また、ヒ素ゃ アンチモンを添加したガラスは、製造工場や廃棄処理工場内での取り扱いに注意を 要し、エッチング廃液の無害化処理等のための多大な設備を必要とする。  However, the arsenic antimony is an environmentally hazardous substance that adversely affects the environment. Therefore, glass with arsenic antimony added is not suitable for recycling. In addition, arsenic and antimony-added glass must be handled with care in manufacturing and disposal plants, and requires extensive facilities for detoxification of etching wastewater.
この種の問題に対処するため、特許文献 1には、清澄剤として S〇 、 CI、 Fを含有す  In order to deal with this type of problem, Patent Document 1 contains SO, CI, and F as fining agents.
3  Three
る塩を有効量添加するガラスの製造方法が開示されている。この方法であれば、環 境負荷物質を添加することなく気泡の少ないガラスを得ることが可能である。また、 Na NOや KNO等の硝酸塩をガラスに添加することで、清澄効果が得られることも知られ A method for producing glass in which an effective amount of a salt is added is disclosed. With this method, it is possible to obtain a glass with less bubbles without adding an environmental load substance. It is also known that a clarification effect can be obtained by adding nitrates such as Na NO and KNO to the glass.
3 3 3 3
ている。  ing.
特許文献 1 :特開 2004— 284949号公報 発明の開示 Patent Document 1: Japanese Unexamined Patent Application Publication No. 2004-284949 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかし、特許文献 1の製造方法は、ガラスの溶融工程にぉレ、て、硫化物系ガスゃハ ロゲン系ガス等の人体に有害なガスが発生する。このような有害ガスの発生は、ガラ ス製造の作業環境を悪化させるため好ましくなレ、。  [0005] However, the manufacturing method of Patent Document 1 generates a gas harmful to the human body such as a sulfide-based gas or a halogen-based gas during the glass melting step. Such harmful gas generation is preferable because it deteriorates the working environment of glass production.
また、硝酸塩を添加する場合も、人体に有害な硝酸系ガス (NOx)が発生してガラス 製造の作業環境を悪化させるため好ましくなレ、。  Also, when nitrate is added, nitric acid gas (NOx) harmful to the human body is generated and the working environment for glass production is deteriorated.
[0006] 本発明の目的は、有害なガスを発生させることなく残存気泡が少ないガラスを製造 することが可能なランプ用ガラス組成物の製造方法を提供することにある。また、本発 明の他の目的は、有害なガスを発生させることなく製造可能な気泡の少ないランプ用 ガラス組成物、および、そのランプ用ガラス組成物で形成された破損の起こり難いラ ンプを提供することにある。  [0006] An object of the present invention is to provide a method for producing a glass composition for a lamp capable of producing a glass with few remaining bubbles without generating harmful gas. Another object of the present invention is to provide a glass composition for a lamp with few bubbles that can be produced without generating harmful gases, and a lamp that is formed from the glass composition for a lamp and is less likely to break. It is to provide.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するために、本発明の一実施形態に係るランプ用ガラス組成物の 製造方法は、所定元素の酸化物と前記所定元素の水酸化物とが酸化物/水酸化物 = 1/3〜1のモル比で添加された原料混合物を、ガラス状態に溶融する溶融工程を 含み、前記溶融工程では、前記水酸化物の分解反応によって、前記水酸化物から H 0または Hの少なくとも一方からなるガスが発生するように前記原料混合物を加熱す ることを特 ί数とする。  [0007] In order to achieve the above object, a method for producing a glass composition for a lamp according to an embodiment of the present invention is such that an oxide of a predetermined element and a hydroxide of the predetermined element are oxide / hydroxide. = A melting step of melting a raw material mixture added at a molar ratio of 1/3 to 1 into a glass state, and in the melting step, H 0 or H Heating the raw material mixture so that a gas comprising at least one of the above is generated is a special number.
[0008] 本発明の一実施形態に係るランプ用ガラス組成物は、上記ランプ用ガラス組成物 の製造方法により作製されたランプ用ガラス組成物であって、波長領域 3620cm— 1付 近における赤外線透過率の極小値が試料厚み 2mmにおいて 3.0〜4.5%であることを 特徴とする。 [0008] A glass composition for a lamp according to an embodiment of the present invention is a glass composition for a lamp produced by the above-described method for producing a glass composition for a lamp, and transmits infrared light in the wavelength region near 3620 cm- 1 . It is characterized by a minimum value of 3.0 to 4.5% at a sample thickness of 2 mm.
本発明の一実施形態に係るランプは、上記ランプ用ガラス組成物で形成されたガラ スバルブを備えてレ、ることを特徴とする。  A lamp according to an embodiment of the present invention is characterized by including a glass bulb formed of the above glass composition for a lamp.
発明の効果  The invention's effect
[0009] 本発明に係るランプ用ガラス組成物の製造方法は、溶融工程において所定元素の 水酸化物から H Oまたは Hの少なくとも一方からなるガスが発生するため、有害なガ スを発生させることなく気泡の少なレ、ガラスを製造することができるとレ、つた効果を有 する。以下にその効果について詳細に説明する。 [0009] A method for producing a glass composition for a lamp according to the present invention comprises the steps of: Since a gas composed of at least one of HO and H is generated from the hydroxide, it has the effect of being able to produce glass with few bubbles without generating harmful gas. The effect will be described in detail below.
本発明者等は、種々の検討を重ねた結果、原料混合物に添加する所定元素の酸 化物の一部を前記所定元素の水酸化物に置き換えることによって、前記原料混合物 をガラス状態に溶融する溶融工程において、前記水酸化物からガスが発生し、その ガスによってガラス融液中の気泡が取り除かれ、清澄効果が得られることを見出した 。前記水酸化物から発生するガスは、前記水酸化物の分解反応で発生するものであ つて、 H 0または Hの少なくとも一方からなる。ガラス化反応が開始される温度域 500 As a result of various studies, the present inventors have replaced a part of the oxide of the predetermined element added to the raw material mixture with the hydroxide of the predetermined element, thereby melting the raw material mixture into a glass state. In the process, it was found that gas was generated from the hydroxide, and bubbles in the glass melt were removed by the gas, and a clarification effect was obtained. The gas generated from the hydroxide is generated by a decomposition reaction of the hydroxide and consists of at least one of H 0 and H. Temperature range where the vitrification reaction starts 500
〜1000°Cにおいて前記水酸化物の分解反応が生じることによって、清澄効果が得ら れる。 A clarification effect is obtained by the decomposition reaction of the hydroxide occurring at ˜1000 ° C.
[0010] そもそも、ガラス中に存在する気泡は、原料混合物がガラス状態に溶融する際に発 生する COなどのガスが、ガラス融液中から抜けきれずに残存したものである。特に、 [0010] In the first place, the bubbles present in the glass are those in which the gas such as CO generated when the raw material mixture melts into the glass state remains without being able to escape from the glass melt. In particular,
COの気泡は小径であり、浮力が小さくガラス融液中から浮上し難いため、ガラス融 液中から抜けきれずガラス中に残存し易い。 The CO bubbles are small in diameter, have a low buoyancy, and are difficult to lift from the glass melt, so they cannot easily escape from the glass melt and remain in the glass.
このような小径の気泡を取り除くために、本発明に係るランプ用ガラスの製造方法で は、所定元素の水酸化物から H 0や H力 なるガスを発生させている。この H 0や H  In order to remove such small-sized bubbles, the glass for a lamp according to the present invention generates H 0 or H force gas from the hydroxide of a predetermined element. This H 0 or H
2 2 2 2 力 なるガスの気泡は、 CO等の気泡よりも径が大きいため、浮力がより大きぐガラス 融液中力 容易に抜け出しガラス中には残存し難い。そして、 H 0や Hからなるガス の気泡は、ガラス融液中から浮上する際に CO等の気泡を取り込むため、 CO等から なる小径の気泡もガラス中から取り除かれる。  2 2 2 2 Gas bubbles with a larger diameter are larger than bubbles of CO, etc., so the buoyancy is greater. Glass melt melt force Easily escapes and does not remain in the glass. Since the gas bubbles composed of H 0 and H take in bubbles such as CO when rising from the glass melt, small diameter bubbles composed of CO and the like are also removed from the glass.
[0011] ただし、 H 0や H力 なるガスがガラス融液中で発生すると、ガラス中に水分が残存 し易くなるという問題がある。ガラス中の水分残存量が多いと、加熱した際にその水分 が気化して再発泡(リボイル)が起こり易ぐこのようなガラスでランプを製造すると、熱 加工時にバーナー等で過熱した部分に再発泡が起こってスローリークやクラックの原 因となる。 [0011] However, when a gas having H 0 or H force is generated in the glass melt, there is a problem that moisture tends to remain in the glass. If a lamp has a large amount of water remaining in the glass and the water vaporizes when heated, refoaming (reboiling) is likely to occur. Foaming can cause slow leaks and cracks.
[0012] この問題に対し、本発明者等は、酸化物と水酸化物の混合比を 1/3〜1の範囲に規 定することにより、清澄効果を十分に得ながら、再発泡が起こり難くすることが可能で あることを見出した。 [0012] In order to solve this problem, the present inventors set the mixing ratio of the oxide and the hydroxide in the range of 1/3 to 1, thereby causing re-foaming while obtaining a sufficient clarification effect. Can be difficult I found out.
前記混合比がはり大きい場合は、 H 0や H力 なるガスの発生量が少ないため清 澄効果が不十分である。一方、前記混合比が 1/3より小さい場合は、熱加工時の再 発泡が起こり易くランプ用として不適である。  When the mixing ratio is large, the clarification effect is insufficient because the generation amount of H 0 or H force gas is small. On the other hand, if the mixing ratio is less than 1/3, re-foaming is likely to occur during heat processing, which is not suitable for lamps.
[0013] なお、所定元素としては、ホウ素 (B)、アルミニウム (A1)およびカルシウム (Ca)等が考 えられ、その場合、前記所定元素の水酸化物は、それぞれ H BO、 Al(OH)および Ca [0013] As the predetermined element, boron (B), aluminum (A1), calcium (Ca), and the like are conceivable. In this case, the hydroxide of the predetermined element is H BO, Al (OH), respectively. And Ca
3 3 3  3 3 3
(OH)を意味する。  Means (OH).
なお、本発明に係る水酸化物には、狭義の水酸化物すなわち水酸基を有する化合 物だけでなぐ広義の水酸化物すなわち水素元素および酸素元素を有する化合物も 含まれる。例えば、 Al(OH)や Ca(OH)といった狭義の水酸化物だけでなぐ H BO (B Note that the hydroxide according to the present invention includes a hydroxide in a narrow sense, that is, a compound having a hydrogen element and an oxygen element in a broad sense that includes only a compound having a hydroxyl group. For example, H BO (B
(〇H)と標記することもできる。 )のような広義の水酸化物をも含む。 It can also be marked as (OH). ) And a broad hydroxide.
[0014] 本発明に係るランプ用ガラス組成物の製造方法は、前記酸化物および水酸化物が 、ランプ用ガラス組成物中の前記所定元素の含有量が酸化物換算で 8〜: 17mol%とな るよう前記原料混合物に添加される場合には、溶融性および導入線の封着性が良好 であり、かつ、分相をおこし難いランプ用ガラス組成物を得ることができる。  [0014] In the method for producing a glass composition for a lamp according to the present invention, the oxide and the hydroxide have a content of the predetermined element in the glass composition for a lamp of 8 to 17 mol% in terms of oxide. Thus, when added to the raw material mixture, it is possible to obtain a glass composition for a lamp that is excellent in meltability and sealing property of the lead-in wire and that hardly causes phase separation.
本発明に係るランプ用ガラス組成物の製造方法は、前記水酸化物が、ランプ用ガラ ス組成物中の前記所定元素の含有量が酸化物換算で 5〜: 10. 5mol%となるよう前記 原料混合物に添加される場合には、気泡が少なぐ熱カ卩ェ時に再発泡が起こり難い ランプ用ガラス組成物を得ることができる。  The method for producing a glass composition for a lamp according to the present invention is such that the hydroxide has a content of the predetermined element in the glass composition for a lamp of 5 to 10.5 mol% in terms of oxide. When added to the raw material mixture, it is possible to obtain a glass composition for a lamp in which re-foaming hardly occurs at the time of heat caching with few bubbles.
[0015] 本発明に係るランプ用ガラス組成物の製造方法は、ランプ用ガラス組成物がホウケ ィ酸ガラスであり、所定元素がホウ素である場合には、特に清澄効果が顕著である。 例えば、ホウ素の水酸化物である H BOは、 300〜800°Cの広い温度域で、分解反応  [0015] In the method for producing a glass composition for a lamp according to the present invention, when the glass composition for a lamp is a borosilicate glass and the predetermined element is boron, the clarification effect is particularly remarkable. For example, H BO, which is a hydroxide of boron, decomposes in a wide temperature range of 300 to 800 ° C.
3 3  3 3
により H 0または Hの少なくとも一方からなるガスを発生させるため、溶融工程におい て温度管理が容易である。 H BOの分解反応を下記の(式 1)および (式 2)表す。  As a result, a gas composed of at least one of H 0 and H is generated, so that temperature control is easy in the melting step. The decomposition reaction of HBO is represented by the following (formula 1) and (formula 2).
[0016] 2H BO→3H 0+B〇 · · ·(式 1)  [0016] 2H BO → 3H 0 + B ○ · · · (Formula 1)
2H BO→3/20 +3H +B〇 · · ·(式 2)  2H BO → 3/20 + 3H + B〇 (2)
さらに、安価な H BOの使用により低コストでガラスを製造することができるという効 果、および、 H BOは多量に添カ卩してもガラスが着色しないといった効果も有する。 なお、本発明においてホウケィ酸ガラスとは、ヤング率ゃビッカース硬度が高ぐ機 械的強度に優れたガラスであって、具体的には、酸化物換算で B 0を 6〜20mol%含 有するガラスを意味する。 Furthermore, the use of inexpensive HBO has the effect that glass can be produced at a low cost, and HBO has the effect that even if a large amount of glass is added, the glass is not colored. In the present invention, the borosilicate glass is a glass having a high Young's modulus and Vickers hardness and excellent mechanical strength, and specifically, a glass containing 6 to 20 mol% of B 0 in terms of oxide. Means.
[0017] 本発明に係るランプ用ガラス組成物は、熱膨張係数 ( a )が 34 X 10— 7/K〜43 X 1[0017] Lamp glass composition according to the present invention, the thermal expansion coefficient (a) is 34 X 10- 7 / K~43 X 1
0_7/Κの場合、または、 43 X 10— 7/Κ〜55 X 10— 7/Κの場合に下記の効果を奏する。 一般に、ノ ックライト用ランプには、放電による高温に耐え得るタングステン製あるい はコバール合金製の導入線が用いられる。したがって、導入線の気密封着の信頼性 を高めるためには、ランプ用ガラス組成物の熱膨張係数を、タングステンあるいはコ バール合金の熱膨張係数に近づけることが好ましい。 For 0_ 7 / kappa, or, the following effects in the case of 43 X 10- 7 / Κ~55 X 10- 7 / Κ. In general, a knocklight lamp uses a lead wire made of tungsten or Kovar alloy that can withstand the high temperatures caused by discharge. Therefore, in order to increase the reliability of the hermetic seal of the lead-in wire, it is preferable to make the thermal expansion coefficient of the glass composition for lamps close to the thermal expansion coefficient of tungsten or Kovar alloy.
[0018] 熱膨張係数( α )が 34 X 10— 7/Κ〜43 X 10— 7/Κの場合、タングステン製導入線の 熱膨張係数と同程度であり、化学的耐久性も高いため、導入線の気密封着の信頼 性が高い。 [0018] If the thermal expansion coefficient (alpha) is 34 X 10- 7 / Κ~43 X 10- 7 / Κ, about the same as the thermal expansion coefficient of tungsten feedthrough, because high chemical durability, The reliability of the airtight seal of the lead-in line is high.
熱膨張係数 ( a )が 43 X 10— 7/K〜55 X 10— 7/Κの場合、コバール合金製導入線の 熱膨張係数と同程度であり、化学的耐久性も高いため、導入線の気密封着の信頼 性が高い。 If the thermal expansion coefficient (a) is 43 X 10- 7 / K~55 X 10- 7 / Κ, about the same as the thermal expansion coefficient of Kovar alloy feedthrough, because high chemical resistance, lead- High reliability of hermetic seal.
本発明に係るランプは、上記ランプ用ガラス組成物で形成されたガラスバルブを備 えている。したがって、ガラスバルブのガラスに気泡が少なぐランプが破損し難い。 図面の簡単な説明  The lamp according to the present invention includes a glass bulb formed from the above glass composition for a lamp. Therefore, the lamp with few bubbles in the glass of the glass bulb is hardly damaged. Brief Description of Drawings
[0019] [図 1]本発明の一実施の形態に係るガラス組成物の組成及び特性を示す。  FIG. 1 shows the composition and properties of a glass composition according to an embodiment of the present invention.
[図 2]本発明の一実施形態に係る冷陰極蛍光ランプの要部構成を示す概略図である  FIG. 2 is a schematic view showing a main configuration of a cold cathode fluorescent lamp according to an embodiment of the present invention.
[図 3]比較例に係るガラス組成物の組成および特性を示す。 FIG. 3 shows the composition and properties of a glass composition according to a comparative example.
[図 4]本発明の一実施形態に係るガラス組成物の 2800cm―1〜 3800cm— 1の範囲におけ る赤外線透過率を示す。 FIG. 4 shows the infrared transmittance of a glass composition according to one embodiment of the present invention in the range of 2800 cm- 1 to 3800 cm- 1 .
[図 5]本発明の一実施形態に係るガラス組成物の 3600cm―1〜 3800cm— 1の範囲におけ る赤外線透過率を示す。 FIG. 5 shows the infrared transmittance of a glass composition according to one embodiment of the present invention in the range of 3600 cm- 1 to 3800 cm- 1 .
符号の説明  Explanation of symbols
[0020] 1 ランプ 発明を実施するための最良の形態 [0020] 1 lamp BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の実施の形態に係るランプ用ガラス組成物、ランプ用ガラス組成物の製造 方法、およびランプについて、図面に基づき説明する。 [0021] A glass composition for a lamp, a method for producing the glass composition for a lamp, and a lamp according to an embodiment of the present invention will be described with reference to the drawings.
(ランプ用ガラス組成物の説明)  (Description of glass composition for lamp)
本実施の形態に係るガラス組成物の組成は、図 1における実施例 1〜5に示すとお りである。なお、図 1における「%」は「mol%」を意味する。  The composition of the glass composition according to the present embodiment is as shown in Examples 1 to 5 in FIG. Note that “%” in FIG. 1 means “mol%”.
[0022] 本発明に係るガラス組成物の組成は、実施例 1〜5に示す組成に限定されないが、 ランプ用のガラス組成物としての特性を保っためには、実質的に、酸化物換算で、 Si 0 :55〜75mol%、 Al O : l〜10mol%、 B O +H BO :8〜17mol%、 Li O+Na O+K O:0〜12[0022] The composition of the glass composition according to the present invention is not limited to the compositions shown in Examples 1 to 5, but in order to maintain the characteristics as a glass composition for a lamp, it is substantially converted in terms of oxide. , Si 0: 55 to 75 mol%, Al O: l to 10 mol%, BO + H BO: 8 to 17 mol%, Li O + Na O + KO: 0 to 12
2 2 3 2 3 3 3 2 2 2 mol%、 Li O : 0〜5mol%、 Na O : 0〜8mol%、 K O : 0〜12mol%、 MgO:0.5〜5mol%、 Ca 2 2 3 2 3 3 3 2 2 2 mol%, LiO: 0-5 mol%, NaO: 0-8 mol%, KO: 0-12 mol%, MgO: 0.5-5 mol%, Ca
2 2 2  2 2 2
O:0.5〜10mol%、 SrO:0〜8mol%、 BaO:0〜10mol%、 CeO :0.01〜2mol%、 Fe O :0〜0  O: 0.5-10 mol%, SrO: 0-8 mol%, BaO: 0-10 mol%, CeO: 0.01-2 mol%, FeO: 0-0
2 2 3 2 2 3
.2mol%、 SnO:0.01〜5mol%であることが好ましい。 It is preferable that they are 0.2 mol% and SnO: 0.01-5 mol%.
[0023] なお、本実施の形態において、ガラス組成物に含有されるホウ素 (B)には、ホウ素の 酸化物として原料混合物に添加されたものと、ホウ素の水酸化物として原料混合物 に添加されたものとがある力 これらを区別するために、酸化物として添加されるもの に関しては「B 0」と、水酸化物として添加されるものに関しては「H BO」と表記する In the present embodiment, boron (B) contained in the glass composition is added to the raw material mixture as a boron oxide and added to the raw material mixture as a boron hydroxide. In order to distinguish these, “B 0” is used for those added as oxides, and “H BO” is used for those added as hydroxides.
2 3 3 3  2 3 3 3
。これらは、図 1および、後述する図 3においても同様である。  . The same applies to FIG. 1 and FIG. 3 described later.
[0024] したがって、上記において、 B〇 +H BO :8〜17mol%と記載した意味は、ガラス組成 Therefore, in the above description, B 0 + H BO: The meaning described as 8 to 17 mol% means the glass composition
2 3 3 3  2 3 3 3
物中における、酸化物として添加されたホウ素と水酸化物として添加されたホウ素と の総量を酸化物換算した値力 〜 17mol%であることを意味する。  This means that the total amount of boron added as an oxide and boron added as a hydroxide in the product is 17 mol% in terms of oxide.
本発明のランプ用ガラス組成物を上記のように定めた理由は以下のとおりである。  The reason for determining the glass composition for a lamp of the present invention as described above is as follows.
SiOは、ガラス骨格を形成する成分であって、その含有量は 55〜75mol%の範囲が SiO is a component that forms a glass skeleton, and its content ranges from 55 to 75 mol%.
2 2
好ましレ、。 55mol%より少ないと熱膨張係数が高くなり過ぎ、化学的耐久性も劣化する 。一方、 75mol%より多いと熱膨張係数が低くなり過ぎて加工成形が困難となる。  I like it. If it is less than 55 mol%, the thermal expansion coefficient becomes too high, and the chemical durability deteriorates. On the other hand, if it exceeds 75 mol%, the coefficient of thermal expansion becomes too low, making it difficult to process.
[0025] A1 0は、ガラスの耐候性および失透性を向上させる目的で添加する成分であって [0025] A10 is a component added for the purpose of improving the weather resistance and devitrification of glass.
2 3  twenty three
、その含有量は l〜10mol%の範囲が好ましレ、。 lmol%より少ないと前記作用が得られ 難レ、。一方、 10mol%より多いとガラスの溶融性が悪化する。その含有量は、特に 2〜 7mol%であることが好ましレ、。 B Oは、ガラスの溶融性向上、膨張係数の調整および粘度の調整の目的で添カロ する本実施例の必須成分である。 The content is preferably in the range of l ~ 10mol%. If the amount is less than lmol%, the above action is difficult to obtain. On the other hand, if it exceeds 10 mol%, the meltability of the glass deteriorates. Its content is particularly preferably 2-7 mol%. BO is an essential component of this embodiment, which is added for the purpose of improving the meltability of the glass, adjusting the expansion coefficient, and adjusting the viscosity.
[0026] H BOは、ガラスの溶融性向上、膨張係数の調整、粘度の調整および清澄効果を 促進する目的で添加する本実施例の必須成分である。 [0026] HBO is an essential component of the present embodiment, which is added for the purpose of improving the meltability of glass, adjusting the expansion coefficient, adjusting the viscosity, and promoting the clarification effect.
B 0 +H BOは、 8〜17mol%の範囲が好ましレヽ。 B 0 +H BO力 S8mol%より少なレヽと、 ガラスの溶融性が悪化するとともに、粘度および膨張係数が上昇して導入線の封着 が困難になる。一方、 17mol%より多いとガラスが分相をおこしガラスの作製が困難に なる。総含有量は、特に 10〜16mol%であることが好ましい。  B 0 + H BO is preferably in the range of 8-17 mol%. B 0 + H BO force Less than S8 mol%, the melting property of the glass deteriorates, the viscosity and expansion coefficient increase, and it becomes difficult to seal the lead-in wire. On the other hand, if it exceeds 17 mol%, the glass undergoes phase separation, making it difficult to produce the glass. The total content is particularly preferably 10 to 16 mol%.
[0027] B 0および H BOは、 B 0 /H BO = 1/3〜1のモル比となるように添加する。前記 モル比が 1/3より小さいと、蛍光ランプの熱加工時にバーナーによる過熱部に再発泡 が起こり、スローリークやクラックの原因となる。また前記モル比がはり大きいとガラス の清澄効果が不十分となる。 [0027] B 0 and H BO are added so as to have a molar ratio of B 0 / H BO = 1/3 to 1. If the molar ratio is less than 1/3, re-foaming occurs in the overheated part by the burner during the thermal processing of the fluorescent lamp, causing slow leaks and cracks. If the molar ratio is large, the glass refining effect will be insufficient.
Li 0、 Na Oおよび K Οのアルカリ金属酸化物は、ガラスの粘性を低下させ、溶融加 Li 0, Na 2 O and K 2 alkali metal oxides reduce the viscosity of the glass and
2 2 2 2 2 2
ェ性を向上させる目的で添加する。その含有量は 0〜10mol%の範囲であることが好ま しい。 10mol%より多くなるとガラスの熱膨張係数が大きくなり過ぎる。また、ガラスから アルカリ成分が溶出し易くなるため、当該ガラスを用いて蛍光ランプを作製すると、ガ ラスが蛍光体や水銀と反応して蛍光ランプの光束が低下する。各成分の含有量は、 Li O : 0〜5mol%、 Na O : 0〜8mol%、 K 0 : 0〜12mol%とすることが好ましい。  It is added for the purpose of improving the wettability. The content is preferably in the range of 0 to 10 mol%. If it exceeds 10 mol%, the thermal expansion coefficient of the glass becomes too large. In addition, since alkali components are easily eluted from the glass, when a fluorescent lamp is produced using the glass, the glass reacts with the phosphor or mercury to reduce the luminous flux of the fluorescent lamp. The content of each component is preferably Li 2 O: 0 to 5 mol%, Na 2 O: 0 to 8 mol%, and K 0: 0 to 12 mol%.
[0028] MgOおよび CaOのアルカリ土類金属酸化物は、電気絶縁性および化学的耐久性 を向上させる目的で添加する。 MgOの含有量は 0.5〜5mol%の範囲であることが好ま しぐ CaOの含有量は 0.5〜10mol%であることが好ましい。 MgO力 S0.5mol%より少ない 場合や CaOが 0.5mol%より少ない場合は、前記目的が達成できない場合がある。一 方、 MgOが 5mol%より多い場合や Ca〇が 10mol%より多い場合は、ガラスが失透する 傾向が強くなる。  [0028] Alkaline earth metal oxides of MgO and CaO are added for the purpose of improving electrical insulation and chemical durability. The MgO content is preferably in the range of 0.5 to 5 mol%. The CaO content is preferably in the range of 0.5 to 10 mol%. If the MgO force is less than S0.5 mol% or CaO is less than 0.5 mol%, the above objective may not be achieved. On the other hand, when MgO is more than 5 mol% or CaO is more than 10 mol%, the glass tends to devitrify.
[0029] SrOおよび Ba〇は、ガラスの溶融性および蛍光ランプ製造時のバルブ加工性を向 上させる目的で添加する。 SrOの含有量は 0〜8mol%であることが好ましぐ Ba〇の含 有量は 0〜10mol%であることが好ましレ、。 Sr〇が 8mol%より多い場合や BaOが lOmol %より多い場合は、ガラスが失透し易くなる。 CeOは紫外線を効果的に吸収し、ソラリゼーシヨンを抑制する目的で添加する。そ の含有量は 0.01〜2mol%の範囲が好ましレ、。 0.01mol%より少ないと前記目的が達成 できず、 2mol%よりも多いとガラスの失透が起こり、所望のランプ光束を有する蛍光ラ ンプを作製することが困難になる。その含有量は、特に 0.01〜lmol%の範囲が好まし レ、。 [0029] SrO and BaO are added for the purpose of improving the meltability of the glass and the bulb processability during the production of the fluorescent lamp. The content of SrO is preferably 0 to 8 mol%. The content of BaO is preferably 0 to 10 mol%. If SrO is more than 8 mol% or BaO is more than lOmol%, the glass tends to devitrify. CeO is added for the purpose of effectively absorbing ultraviolet rays and suppressing solarization. Its content is preferably in the range of 0.01 to 2 mol%. If the amount is less than 0.01 mol%, the above-mentioned purpose cannot be achieved. If the amount is more than 2 mol%, the glass is devitrified, making it difficult to produce a fluorescent lamp having a desired lamp luminous flux. Its content is particularly preferably in the range of 0.01 to lmol%.
[0030] Fe 0は、紫外線吸収効果が得る目的で添加する。その含有量は 0〜0.2mol%の範 囲が好ましい。 0.2mol%より多くなると可視域の透過率を低下させるため、蛍光ランプ の光束が低下するので好ましくない。  [0030] Fe 0 is added for the purpose of obtaining an ultraviolet absorption effect. The content is preferably in the range of 0 to 0.2 mol%. If it exceeds 0.2 mol%, the transmittance in the visible region is lowered, and therefore the luminous flux of the fluorescent lamp is lowered.
Sn〇は、 Ceイオンの価数変化を 4+から 3+へ促進する目的で添加する。その含有量 は 0.01〜5mol%の範囲が好ましレ、。 0.01mol%より少ないとその効果は得られず、 5mol %より多いとガラスの機械的強度が低下し、ガラス管引き工程において歩留りが低下 するなどの問題がある。特に 0.1〜3mol%の範囲が好ましい。  SnO is added for the purpose of promoting the valence change of Ce ions from 4+ to 3+. Its content is preferably in the range of 0.01-5 mol%. If the amount is less than 0.01 mol%, the effect cannot be obtained. If the amount is more than 5 mol%, the mechanical strength of the glass decreases, and the yield decreases in the glass tube drawing process. The range of 0.1 to 3 mol% is particularly preferable.
[0031] なお、本発明に係るガラスは、実質的に各成分の含有率が上記の範囲内であれば 良ぐ上記組成の範囲を逸脱しない限度において、他の成分が含有されていても良 レ、。他の成分としては、例えば、 ZrO、 ZnO、 P O、 TiO、 WO等が挙げられる。 [0031] The glass according to the present invention may contain other components as long as the content of each component is substantially within the above range as long as the composition does not deviate from the above range. Les. Examples of other components include ZrO, ZnO, P 2 O, TiO, and WO.
従来から、清澄剤の一つとして CeOが知られている力 多量に添加しなければ清 澄効果を得る事ができない。しかし、清澄効果を得る為に多量に添加すると、ガラス が着色する課題が発生する。その為、清澄剤として実質的に CeOのみを添加しても Conventionally, CeO is known as one of the fining agents. A clarification effect cannot be obtained unless a large amount of CeO is added. However, if a large amount is added to obtain a clarification effect, the problem of coloring the glass occurs. Therefore, even if only CeO is added as a clarifier
、無色かつ残存気泡が少ないガラスを作製することは困難である。 It is difficult to produce glass that is colorless and has few remaining bubbles.
[0032] また、 SnOも清澄剤の一つとして知られている力 CeOと同様で多量に添カ卩しなけ れば清澄効果を得る事ができない。しかし、清澄効果を得る為に多量に添加すると、 ガラスが失透するという課題が発生する。その為、清澄剤として実質的に SnOのみを 添加しても、失透がなく残存気泡も少なレ、ガラスを作製することは困難である。 [0032] Also, SnO is the same as CeO, which is known as one of the fining agents, and if it is not added in a large amount, the fining effect cannot be obtained. However, if a large amount is added to obtain a clarification effect, the problem of devitrification of the glass occurs. For this reason, even if SnO is added as a clarifier, it is difficult to produce a glass with no devitrification and few remaining bubbles.
(ランプ用ガラス組成物の製造方法の説明)  (Description of manufacturing method of glass composition for lamp)
本実施形態に係るランプ用ガラス組成物の製造方法では、まず、複数種類のガラス 原料を本発明に係るランプ用ガラス組成物の組成の範囲内で調合し原料混合物を 得る。次に、原料混合物をガラス溶融窯に投入し、大気雰囲気下 1500〜1600°Cで 5 〜8h溶融させてガラス融液を得る。その際、攪拌やパブリング等の処理は行ってはい ない。その後、ガラス融液をダンナー法等の管引き法によって管状に成形し、所定の 寸法に切断加工して、ランプ用のガラス管とする。さらに、当該ガラス管を熱加工して ガラスバルブを作製し、各種ランプを作製する。 In the method for producing a glass composition for a lamp according to the present embodiment, first, a plurality of types of glass raw materials are prepared within the range of the composition of the glass composition for a lamp according to the present invention to obtain a raw material mixture. Next, the raw material mixture is put into a glass melting furnace and melted at 1500 to 1600 ° C. for 5 to 8 hours in an air atmosphere to obtain a glass melt. At that time, do not perform stirring or publishing. Absent. Thereafter, the glass melt is formed into a tubular shape by a tube drawing method such as the Danner method and cut into a predetermined size to obtain a glass tube for a lamp. Furthermore, the glass tube is heat-processed to produce a glass bulb, and various lamps are produced.
[0033] なお、ガラス原料を調合して原料混合物としてからガラス溶融窯に投入する手順に 限定されず、一部のガラス原料を、他のガラス原料とはタイミングをずらしてガラス溶 融窯に投下し、ガラス溶融釜内で原料混合物を調合することも考えられる。  [0033] It is not limited to the procedure of preparing a glass raw material to prepare a raw material mixture and then throwing it into the glass melting kiln, and dropping some glass raw materials into the glass melting kiln at a different timing from other glass raw materials. It is also possible to prepare the raw material mixture in a glass melting pot.
(ランプの説明)  (Lamp description)
本発明に係るランプの一実施形態として、直管形の冷陰極蛍光ランプについて図 面に基づき説明する。図 2は、本実施の形態に係る冷陰極蛍光ランプの要部構成を 示す概略図である。当該冷陰極蛍光ランプ 1の構造は、基本的に従来技術による冷 陰極蛍光ランプの構造に準ずる。  As an embodiment of the lamp according to the present invention, a straight tube type cold cathode fluorescent lamp will be described with reference to the drawings. FIG. 2 is a schematic diagram showing a main configuration of the cold cathode fluorescent lamp according to the present embodiment. The structure of the cold cathode fluorescent lamp 1 basically conforms to the structure of the cold cathode fluorescent lamp according to the prior art.
[0034] 冷陰極蛍光ランプ 1のガラスバルブ 2は、上記本実施の形態に係るランプ用ガラス 組成物によって形成されたものであって、その外径は約 4.0mm、内径は約 3.0mm、全 長は約 730mmである。なお、ガラスバルブ 2の外径、内径および全長は、上記に限定 されないが、冷陰極蛍光ランプ 1用のガラスバルブ 2は、管径が小さく肉厚が薄いこと が望まれるため、外径は 1.8 (内径は 1.4;)〜 6.0 (内径は 5.0) mmであることが好ましい。  [0034] The glass bulb 2 of the cold cathode fluorescent lamp 1 is formed of the glass composition for a lamp according to the present embodiment, and has an outer diameter of about 4.0 mm, an inner diameter of about 3.0 mm, The length is about 730mm. The outer diameter, inner diameter and overall length of the glass bulb 2 are not limited to the above, but the outer diameter of the glass bulb 2 for the cold cathode fluorescent lamp 1 is 1.8 because it is desired that the tube diameter is small and the wall thickness is thin. The inner diameter is preferably 1.4;) to 6.0 (the inner diameter is 5.0) mm.
[0035] ガラスバルブ 2は、その両端部がそれぞれビードガラス 3によって気密封止されてい る。また、ガラスバルブ 2の両端部には、タングステン金属或いはコバール合金からな る直径約 0.8mmの導入線 4が、ビードガラス 3を貫通するようにして気密封止されてい る。そして、各導入線 4のガラスバルブ 2内部側の端部には、表面に電子放射性物質 が塗布されたニッケル或いはニオブ製のカップ状の電極 5が取り付けられている。  [0035] Both ends of the glass bulb 2 are hermetically sealed by the bead glass 3, respectively. In addition, at both ends of the glass bulb 2, lead wires 4 made of tungsten metal or Kovar alloy and having a diameter of about 0.8 mm are hermetically sealed so as to penetrate the bead glass 3. Then, a nickel or niobium cup-shaped electrode 5 whose surface is coated with an electron radioactive substance is attached to the end of each lead-in wire 4 on the inner side of the glass bulb 2.
[0036] ガラスバルブ 2の内面には、赤発光、緑発光および青緑発光の蛍光体を混合した 希土類蛍光体 (Y 0: Eu3+、 LaPO: Ce3+,Tb3+、 BaMg Al O : Eu2+,Mn2+)を塗布してなる [0036] On the inner surface of the glass bulb 2, a rare earth phosphor (Y 0: Eu 3+ , LaPO: Ce 3+ , Tb 3+ , BaMg Al 2 O 3 ) mixed with red, green and blue-green phosphors. : Eu 2+ , Mn 2+ )
2 3 4 2 16 27  2 3 4 2 16 27
蛍光体層 6が形成されている。また、ガラスバルブ 2の内部には、 0.8〜2.5mgの水銀( 不図示)と、キセノン等の希ガス(不図示)とが封入されてレ、る。  A phosphor layer 6 is formed. The glass bulb 2 is filled with 0.8 to 2.5 mg of mercury (not shown) and a rare gas (not shown) such as xenon.
以上、本発明に係る直管形の冷陰極蛍光ランプ 1を実施の形態に基づいて具体的 に説明してきたが、本発明の内容は、上記の実施の形態に限定されない。  Although the straight tube type cold cathode fluorescent lamp 1 according to the present invention has been specifically described above based on the embodiment, the content of the present invention is not limited to the above embodiment.
[0037] (実験の説明) 図 1に示す本実施の形態に係るランプ用ガラス組成物、および、図 3に示す比較例 に係るランプ用ガラス組成物を作製し、それらの特性を評価し比較した。 [0037] (Explanation of experiment) A glass composition for a lamp according to the present embodiment shown in FIG. 1 and a glass composition for a lamp according to a comparative example shown in FIG. 3 were prepared, and their characteristics were evaluated and compared.
各ガラス組成物は、図中の組成となるように調整した原料混合物を、 17gを秤量して 白金坩堝に入れ電気炉中で 1500°Cで 3h加熱溶融し、その後電気炉内から取り出し、 坩堝底面を冷水に接触し急冷し、ガラスと坩堝との界面を剥離することにより作製し た。  Each glass composition is prepared by weighing 17 g of the raw material mixture adjusted to the composition shown in the figure, placing it in a platinum crucible, heating and melting at 1500 ° C. for 3 hours in an electric furnace, and then taking it out from the electric furnace. The bottom was brought into contact with cold water and quenched to peel off the interface between the glass and the crucible.
[0038] 熱膨張係数 (ひ )及びガラス転移点は、各ガラス組成物を直径 5.0mm、長さ 15m mの円柱状に成形したものを試料とし、熱機械分析装置(リガク製 型番: TAS300 T MA8140C)にて、 30〜380°Cの温度範囲の平均線膨張係数を測定した。  [0038] The thermal expansion coefficient (f) and glass transition point were obtained by molding each glass composition into a cylindrical shape having a diameter of 5.0 mm and a length of 15 mm, and using a thermomechanical analyzer (manufactured by Rigaku, model number: TAS300 T MA8140C) was used to measure the average linear expansion coefficient in the temperature range of 30 to 380 ° C.
泡数は、ガラス組成物の断面中央部 120mm2、板厚 3mm中に確認される気泡数を画 像処理ソフトを使用しカウントした。気泡は、直径が 30 μ πι以上の気泡のみを気泡とし てカウントした。 The number of bubbles was counted using image processing software for the number of bubbles confirmed in the central section of the glass composition at 120 mm 2 and the plate thickness of 3 mm. Only bubbles with a diameter of 30 μπι or more were counted as bubbles.
[0039] 泡数は、ガラス組成物の断面中央部 120mm2 (縦 lOmm X横 12mm)、板厚 3mmに切り 、その後、ガラスの両面を#400,#800,#1000,#1500,#2000番まで段階的に研磨し、鏡 面に仕上げ、ガラスサンプノレを作成した。そして、そのガラスサンプル中に確認される 気泡数を画像処理ソフトを使用しカウントした。気泡は、直径が 30 μ πι以上の気泡の みを気泡としてカウントした。 [0039] The number of bubbles was cut into 120mm 2 (longitudinal lOmm x width 12mm) and plate thickness 3mm at the center of the cross section of the glass composition, and then both sides of the glass were # 400, # 800, # 1000, # 1500, # 2000 Polished step by step, finished to a mirror surface, and made a glass sumnoire. The number of bubbles confirmed in the glass sample was counted using image processing software. Only bubbles with a diameter of 30 μπι or more were counted as bubbles.
[0040] 残存気泡判定は、気泡数が 350個を超えるものを「 X」と判定し、気泡数が 350個以 下のものを「〇」と判定した。これは、気泡数が 350個を超えるガラス組成物でランプを 作製すると、著しい歩留まりの低下が起こることを確認したからである。  [0040] In the remaining bubble determination, a bubble having more than 350 bubbles was judged as "X", and a bubble having less than 350 bubbles was judged as "O". This is because it has been confirmed that when a lamp is produced with a glass composition having more than 350 bubbles, a significant decrease in yield occurs.
熱加工時の再発泡は、ガラス組成物を熱加工した際、過熱部分に直径 30 / m以上 の泡が生じた場合を再発泡ありとして「 X」と判定し、再発泡が生じなかった場合を「 〇」と判定した。  Re-foaming during heat processing is when the glass composition is heat-processed and bubbles with a diameter of 30 / m or more in the overheated part are judged as “X” with re-foaming, and no re-foaming has occurred. Was determined to be “◯”.
[0041] 赤外線透過率は、 FT— IR (株式会社島津製作所製 FTIR-8200)を用いて、両面を 鏡面研磨した試料厚み 2mmのガラス組成物について、波長 2800〜3800cm— 1の範囲 で測定した。実バルブを評価する場合は、ガラスバルブの軟化点 +20°Cの温度で 3h 処理を行い、バルブを軟ィ匕させ、板厚 2mmのガラス板を作製した。その後、当該ガラ ス板を、縦 15mm X横 15mmの正方形にカット加工し、縦 15mm X横 15mm X厚み 2mm の評価用サンプルを得た。その評価用サンプルの両面を #400,#800,#1000,#1500,#2 000番まで段階的に研磨し、鏡面に仕上げた。 [0041] The infrared transmittance was measured in a wavelength range of 2800 to 3800 cm- 1 using a FT-IR (FTIR-8200, manufactured by Shimadzu Corporation) for a glass composition having a sample thickness of 2 mm and mirror polished on both sides. . When evaluating an actual bulb, the glass bulb was softened at a temperature of the glass bulb softening point + 20 ° C for 3 hours to soften the bulb to produce a glass plate having a thickness of 2 mm. The glass plate is then cut into a 15mm x 15mm square, 15mm x 15mm x 2mm thick A sample for evaluation was obtained. Both surfaces of the sample for evaluation were polished step by step to # 400, # 800, # 1000, # 1500, and # 2 000, and finished to a mirror surface.
[0042] 測定結果を図 4に示す。赤外線透過率は、ガラス組成物中に残存する水分量を評 価する目的で行った。ガラス組成物中に残存する水分は、 H BOの分解反応時によ つて発生したものであって、その一部はガラス組成物中に溶存する。ガラス組成物中 に溶存する水分量が多いとガラス組成物を熱カ卩ェ時した際に溶存していた水分がガ ス化し再発泡が起こる。 [0042] Fig. 4 shows the measurement results. The infrared transmittance was performed for the purpose of evaluating the amount of water remaining in the glass composition. The water remaining in the glass composition is generated by the decomposition reaction of HBO, and a part of it is dissolved in the glass composition. If the amount of water dissolved in the glass composition is large, the water dissolved when the glass composition is heated is gasified and re-foaming occurs.
ガラス組成物中の水分量は、 3620cm— 1付近における赤外線透過率の極小値、すな わち 3620cm— 1付近に確認される OH—の吸収ピークの大きさにより確認することができ る。具体的には、 3620cm— 1付近における赤外線透過率の極小値が小さい程、ガラス 組成物中に残存する水分量が多いことを意味する。図 5は、 3620cm— 1付近における 赤外線透過率の極小値を確認し易いように、赤外線透過率の測定結果を波長 3600c m―1〜 3800cm— 1の範囲で拡大表示したものである。 The amount of water in the glass composition can be confirmed by the minimum value of infrared transmittance in the vicinity of 3620 cm- 1 , that is, the size of the absorption peak of OH— confirmed in the vicinity of 3620 cm- 1 . Specifically, the smaller the minimum value of the infrared transmittance in the vicinity of 3620 cm- 1 , the greater the amount of water remaining in the glass composition. 5, 3620Cm- 1 to facilitate Verify minimum value of the infrared transmittance near is an enlarged view of a measurement result of the infrared transmittance in the wavelength range of 3600c m- 1 ~ 3800cm- 1.
[0043] 比較例:!〜 5は、 3620cm— 1付近の赤外線透過率が 7.8〜8.0%と比較的高い。これは 、 H BOが添加されておらず、ガラス組成物中の水分残存量が少ないからである。し かし、比較例 1〜5は、 H BOが添加されていないため、所望の清澄効果が得られず[0043] Comparative Examples:! To 5 have a relatively high infrared transmittance of 37.8 cm- 1 near 7.8 to 8.0%. This is because H BO is not added and the remaining amount of water in the glass composition is small. However, Comparative Examples 1 to 5 cannot obtain the desired clarification effect because HBO is not added.
、またガラス組成物中に多量の気泡が残存している。よって、ランプ用として不適であ る。 In addition, a large amount of bubbles remain in the glass composition. Therefore, it is not suitable for lamps.
比較例 6および 7は、 H BOの添加量が多いため、ガラス組成物中の水分残存量が 多ぐ 3620cm— 1付近の赤外線透過率は 2%である。このようにガラス組成物中の水分残 存量が多いと、熱カ卩ェ時に再発泡が起こるためランプ用として不適である。 In Comparative Examples 6 and 7, since the amount of HBO added is large, the amount of residual water in the glass composition is large, and the infrared transmittance near 3620 cm- 1 is 2%. Thus, if there is a large amount of water remaining in the glass composition, re-foaming occurs during the heat treatment, which is not suitable for lamps.
[0044] 比較例 8には、 B 0と H BOの両方が添加されている。し力し、 B 0 /H BOの混合 比力 より小さいため、ガラス組成物中の水分残存量が多ぐ 3620cm— 1付近の赤外 線透過率は 2%である。このようにガラス組成物中の水分残存量が多いと、熱加工時 に再発泡が起こるためランプ用として不適である。 [0044] In Comparative Example 8, both B 0 and H BO are added. However, since it is smaller than the mixing specific force of B 0 / H BO, the infrared ray transmittance in the vicinity of 3620 cm- 1 where the residual amount of water in the glass composition is large is 2%. Thus, if the amount of water remaining in the glass composition is large, refoaming occurs during heat processing, which is not suitable for lamps.
比較例 9には、 B 0と H BOの両方が添加されている。し力し、 B 0 /H BOの混合 比がはり大きいため、清澄効果が不十分であり、ガラス組成物中に多量の泡が残存 し、ランプ用として不適である。 [0045] 実施例 1〜3には、 B Oと H BO力 1/3〜1の範囲の混合比で添加されている。その ため、清澄効果が高くガラス組成物中に気泡が少なレ、。また、 3620cm— 1付近の赤外 線透過率は 3.0〜4.5%の範囲であり、ガラス組成物中の水分残存量が少なく熱加工 時の再発泡が起こり難い。したがって、ランプ用として好適である。 In Comparative Example 9, both B 0 and H BO are added. However, since the mixing ratio of B 0 / H BO is large, the clarification effect is insufficient, and a large amount of bubbles remain in the glass composition, which is not suitable for lamps. [0045] In Examples 1 to 3, BO and H BO forces are added at a mixing ratio in the range of 1/3 to 1. For this reason, the glass composition has a high fining effect and few bubbles in the glass composition. Further, the infrared ray transmittance around 3620 cm- 1 is in the range of 3.0 to 4.5%, and the residual amount of water in the glass composition is small, so that re-foaming is difficult to occur during heat processing. Therefore, it is suitable for lamps.
産業上の利用可能性  Industrial applicability
[0046] 本発明に係るランプ用ガラス組成物の製造方法、ランプ用ガラス組成物およびラン プは、ランプ全般に広く利用できる。特に、液晶 TV、パソコン用ディスプレイ、車載用 液晶パネル等のように高品位な表示が要求される透過形液晶表示素子のバックライ トの冷陰極蛍光ランプ等に適している。また、本発明に係るランプ用ガラス組成物の 製造方法、ランプ用ガラス組成物およびランプは、実質的に、ヒ素、アンチモン、鉛等 の環境負荷物質を添加しないことで、地球環境保護の社会ニーズにも応えるものと すること力 Sできる。 [0046] The method for producing a glass composition for a lamp, the glass composition for a lamp and a lamp according to the present invention can be widely used for all lamps. In particular, it is suitable for backlight cold cathode fluorescent lamps of transmissive liquid crystal display elements that require high-quality display such as liquid crystal TVs, personal computer displays, and in-vehicle liquid crystal panels. In addition, the method for producing a glass composition for a lamp, the glass composition for a lamp, and the lamp according to the present invention substantially do not contain environmentally hazardous substances such as arsenic, antimony, lead, etc. The power to respond to

Claims

請求の範囲 The scope of the claims
[1] 所定元素の酸化物と前記所定元素の水酸化物とが酸化物 Z水酸化物 = 1/3〜1の モル比で添加された原料混合物を、ガラス状態に溶融する溶融工程を含み、 前記溶融工程では、前記水酸化物の分解反応によって、前記水酸化物から H〇ま たは Hの少なくとも一方からなるガスが発生するように前記原料混合物を加熱するこ とを特徴とするランプ用ガラス組成物の製造方法。  [1] A melting step of melting a raw material mixture in which an oxide of a predetermined element and a hydroxide of the predetermined element are added in a molar ratio of oxide Z hydroxide = 1/3 to 1 into a glass state. In the melting step, the lamp is characterized in that the raw material mixture is heated so that a gas composed of at least one of H 0 or H is generated from the hydroxide by a decomposition reaction of the hydroxide. For producing a glass composition for use.
[2] 前記酸化物および水酸化物は、ランプ用ガラス組成物中の前記所定元素の含有 量が酸化物換算で 8〜: 17mol%となるよう前記原料混合物に添加されることを特徴と する請求項 1記載のランプ用ガラス組成物の製造方法。 [2] The oxide and hydroxide are added to the raw material mixture so that the content of the predetermined element in the glass composition for a lamp is 8 to 17 mol% in terms of oxide. The method for producing a glass composition for a lamp according to claim 1.
[3] 前記水酸化物は、ランプ用ガラス組成物中の前記所定元素の含有量が酸化物換 算で 5〜: 10. 5mol%となるよう前記原料混合物に添加されることを特徴とする請求項 2 記載のランプ用ガラス組成物の製造方法。 [3] The hydroxide is added to the raw material mixture so that the content of the predetermined element in the glass composition for a lamp is 5 to: 10.5 mol% in terms of oxide conversion. The manufacturing method of the glass composition for lamps of Claim 2.
[4] 前記ランプ用ガラス組成物はホウケィ酸ガラスであり、前記所定元素はホウ素である ことを特徴とする請求項 3記載のランプ用ガラス組成物の製造方法。 4. The method for producing a glass composition for a lamp according to claim 3, wherein the glass composition for a lamp is borosilicate glass, and the predetermined element is boron.
[5] 前記水酸化物は、ランプ用ガラス組成物中の前記所定元素の含有量が酸化物換 算で 5〜: 10. 5mol%となるよう前記原料混合物に添加されることを特徴とする請求項 1 記載のランプ用ガラス組成物の製造方法。 [5] The hydroxide is added to the raw material mixture so that the content of the predetermined element in the glass composition for a lamp is 5 to: 10.5 mol% in terms of oxide conversion. The manufacturing method of the glass composition for lamps of Claim 1.
[6] 前記ランプ用ガラス組成物はホウケィ酸ガラスであり、前記所定元素はホウ素である ことを特徴とする請求項 1記載のランプ用ガラス組成物の製造方法。 6. The method for producing a glass composition for a lamp according to claim 1, wherein the glass composition for a lamp is borosilicate glass, and the predetermined element is boron.
[7] 請求項 1記載のランプ用ガラス組成物の製造方法により作製されたランプ用ガラス 組成物であって、 [7] A glass composition for a lamp produced by the method for producing a glass composition for a lamp according to claim 1,
波長領域 3620cm— 1付近における赤外線透過率の極小値が試料厚み 2mmにおいて 3.0〜4.5%であることを特徴とするランプ用ガラス組成物。 A glass composition for a lamp, characterized in that a minimum value of infrared transmittance in the wavelength region of 3620 cm- 1 is 3.0 to 4.5% at a sample thickness of 2 mm.
[8] 30〜380°Cにおける熱膨張係数(ひ )が 34 X 10— 7/K〜43 X 10— 7/Κであることを特 徴とする請求項 7に記載のランプ用ガラス組成物。 [8] 30 to 380 ° coefficient of thermal expansion C (shed) lamp glass composition according to claim 7, feature that it is a 34 X 10- 7 / K~43 X 10- 7 / Κ .
[9] 30〜380°Cにおける熱膨張係数( α )が 43 X 10— 7/Κ〜55 X 10— 7/Κであることを特 徴とする請求項 7に記載のランプ用ガラス組成物。 [9] 30 to 380 thermal expansion coefficient in ° C (alpha) is the lamp glass composition according to claim 7, feature that it is a 43 X 10- 7 / Κ~55 X 10- 7 / Κ .
[10] 請求項 4記載のランプ用ガラス組成物の製造方法により作製されたランプ用ガラス 組成物であって、 [10] A glass for a lamp produced by the method for producing a glass composition for a lamp according to claim 4. A composition comprising:
波長領域 3620cm— 1付近における赤外線透過率の極小値が試料厚み 2mmにおいて 3.0〜4.5%であることを特徴とするランプ用ガラス組成物。 A glass composition for a lamp, characterized in that a minimum value of infrared transmittance in the wavelength region of 3620 cm- 1 is 3.0 to 4.5% at a sample thickness of 2 mm.
[11] 30〜380°Cにおける熱膨張係数(ひ )が 34 X 10— 7/K〜43 X 10— 7/Kであることを特 徴とする請求項 10に記載のランプ用ガラス組成物。 [11] 30 to 380 thermal expansion coefficient in ° C (shed) lamp glass composition according to claim 10, feature that it is a 34 X 10- 7 / K~43 X 10- 7 / K .
[12] 30〜380°Cにおける熱膨張係数(ひ )が 43 X 10— 7/K〜55 X 10— 7/Κであることを特 徴とする請求項 10に記載のランプ用ガラス組成物。 [12] 30 to 380 ° thermal expansion coefficient (ratio) of C lamp glass composition according to claim 10, feature that it is a 43 X 10- 7 / K~55 X 10- 7 / Κ .
[13] 請求項 7記載のランプ用ガラス組成物で形成されたガラスバルブを備えていること を特徴とするランプ。 [13] A lamp comprising the glass bulb formed of the glass composition for a lamp according to claim 7.
[14] 請求項 10記載のランプ用ガラス組成物で形成されたガラスバルブを備えていること を特徴とするランプ。  [14] A lamp comprising the glass bulb formed of the glass composition for a lamp according to [10].
PCT/JP2007/051106 2006-01-30 2007-01-24 Process for producing glass composition for lamp, glass composition for lamp, and lamp WO2007086441A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007555984A JPWO2007086441A1 (en) 2006-01-30 2007-01-24 Method for producing glass composition for lamp, glass composition for lamp and lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006021252 2006-01-30
JP2006-021252 2006-01-30

Publications (1)

Publication Number Publication Date
WO2007086441A1 true WO2007086441A1 (en) 2007-08-02

Family

ID=38309230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051106 WO2007086441A1 (en) 2006-01-30 2007-01-24 Process for producing glass composition for lamp, glass composition for lamp, and lamp

Country Status (3)

Country Link
JP (1) JPWO2007086441A1 (en)
CN (1) CN101374776A (en)
WO (1) WO2007086441A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084073A (en) * 2007-09-27 2009-04-23 Asahi Glass Co Ltd Method for producing glass
JP2011195449A (en) * 2007-08-03 2011-10-06 Nippon Electric Glass Co Ltd Tempered glass substrate and method for producing the same
JP2012092000A (en) * 2010-09-28 2012-05-17 Nippon Electric Glass Co Ltd Method of manufacturing borosilicate glass
JP2012197226A (en) * 2008-02-26 2012-10-18 Corning Inc Fining agent for silicate glass
WO2016088778A1 (en) * 2014-12-02 2016-06-09 旭硝子株式会社 Glass plate and heater using same
JP2017048092A (en) * 2015-09-03 2017-03-09 日本電気硝子株式会社 Borosilicate glass for pharmaceutical container
JP2017214272A (en) * 2016-04-25 2017-12-07 ショット アクチエンゲゼルシャフトSchott AG Device and method for producing glass product from glass melt, while avoiding bubble formation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237233A (en) * 2010-05-05 2011-11-09 泰利时冷阴极工业股份有限公司 Processing and manufacturing method of trace-free large-diameter cold cathode discharge lamp tube
CN104140205A (en) * 2014-07-31 2014-11-12 安徽力华光电玻璃科技有限公司 Method for preparing high-transparency high borosilicate glass tube

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076336A (en) * 1999-09-08 2001-03-23 Hoya Corp Glass substrate for information recording medium and information recording medium using the same
JP2002068775A (en) * 2000-08-30 2002-03-08 Asahi Techno Glass Corp Glass envelope for illumination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001076336A (en) * 1999-09-08 2001-03-23 Hoya Corp Glass substrate for information recording medium and information recording medium using the same
JP2002068775A (en) * 2000-08-30 2002-03-08 Asahi Techno Glass Corp Glass envelope for illumination

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195449A (en) * 2007-08-03 2011-10-06 Nippon Electric Glass Co Ltd Tempered glass substrate and method for producing the same
JP2011241143A (en) * 2007-08-03 2011-12-01 Nippon Electric Glass Co Ltd Tempered glass substrate and method of producing the same
US8168295B2 (en) 2007-08-03 2012-05-01 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US8679631B2 (en) 2007-08-03 2014-03-25 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US9034469B2 (en) 2007-08-03 2015-05-19 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
US9054250B2 (en) 2007-08-03 2015-06-09 Nippon Electric Glass Co., Ltd Tempered glass substrate and method of producing the same
US9299869B2 (en) 2007-08-03 2016-03-29 Nippon Electric Glass Co., Ltd. Tempered glass substrate and method of producing the same
JP2009084073A (en) * 2007-09-27 2009-04-23 Asahi Glass Co Ltd Method for producing glass
US10040715B2 (en) 2008-02-26 2018-08-07 Corning Incorporated Silicate glasses having low seed concentration
JP2012197226A (en) * 2008-02-26 2012-10-18 Corning Inc Fining agent for silicate glass
US9073779B2 (en) 2008-02-26 2015-07-07 Corning Incorporated Fining agents for silicate glasses
US10626042B2 (en) 2008-02-26 2020-04-21 Corning Incorporated Fining agents for silicate glasses
JP2012092000A (en) * 2010-09-28 2012-05-17 Nippon Electric Glass Co Ltd Method of manufacturing borosilicate glass
WO2016088778A1 (en) * 2014-12-02 2016-06-09 旭硝子株式会社 Glass plate and heater using same
JP2017048092A (en) * 2015-09-03 2017-03-09 日本電気硝子株式会社 Borosilicate glass for pharmaceutical container
JP2017214272A (en) * 2016-04-25 2017-12-07 ショット アクチエンゲゼルシャフトSchott AG Device and method for producing glass product from glass melt, while avoiding bubble formation

Also Published As

Publication number Publication date
JPWO2007086441A1 (en) 2009-06-18
CN101374776A (en) 2009-02-25

Similar Documents

Publication Publication Date Title
WO2007086441A1 (en) Process for producing glass composition for lamp, glass composition for lamp, and lamp
TWI363745B (en) Uv-absorbing borosilicate glass for a gas discharge lamp, process for manufacturing same and gas discharge lamp made with same
JP5146897B2 (en) Glass for lighting
JPWO2007007651A1 (en) Glass composition for lamp, glass component for lamp, lamp and method for producing glass composition for lamp
CN101146749A (en) Glass composition for lamp, lamp, backlight unit and method for producing glass composition for lamp
WO2005015606A1 (en) Vessel for external electrode fluorescent lamp
EP1870385A1 (en) Glass composition for lamp, lamp, backlight unit and method for producing glass composition for lamp
WO2006103942A1 (en) Ultraviolet absorbing glass, glass tube for fluorescent lamp using same, and method for producing ultraviolet absorbing glass for fluorescent lamp
JP2002137935A (en) Glass for fluorescent lamp, glass tube for fluorescent lamp and fluorescent lamp
KR20080109727A (en) Glass for illumination
WO2002072492A1 (en) Mantle tube for fluorescent lamp
JP3818571B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP2002068775A (en) Glass envelope for illumination
JPWO2008038779A1 (en) Glass composition and glass article using the same
JP4919399B2 (en) Ultraviolet absorbing glass for fluorescent lamp, glass tube for fluorescent lamp using the same, and method for producing ultraviolet absorbing glass for fluorescent lamp
JP2006265068A (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
CN101511747A (en) Ultraviolet-absorbing glass tube for fluorescent lamp and glass tube comprising the same for fluorescent lamp
JP3925897B2 (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP3925898B2 (en) Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same
JP3786397B2 (en) Glass suitable for sealing Fe-Ni-Co alloys
JP2004315280A (en) Glass for fluorescent lamp
JP2002060241A (en) Glass for sealing tungsten
JP2002060240A (en) Glass for sealing tungsten
JP2002075274A (en) Glass envelope for illumination
WO2007069527A1 (en) Lighting glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007555984

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780003568.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707353

Country of ref document: EP

Kind code of ref document: A1