WO2007086286A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2007086286A1
WO2007086286A1 PCT/JP2007/050566 JP2007050566W WO2007086286A1 WO 2007086286 A1 WO2007086286 A1 WO 2007086286A1 JP 2007050566 W JP2007050566 W JP 2007050566W WO 2007086286 A1 WO2007086286 A1 WO 2007086286A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance circuit
power supply
circuit
voltage
switch
Prior art date
Application number
PCT/JP2007/050566
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Ikeda
Tamiji Nagai
Original Assignee
Mitsumi Electric Co., Ltd.
Nagai, Toshio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co., Ltd., Nagai, Toshio filed Critical Mitsumi Electric Co., Ltd.
Publication of WO2007086286A1 publication Critical patent/WO2007086286A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source

Definitions

  • the present invention relates to a power supply device that divides an input voltage by a capacitor to generate an output voltage.
  • a power supply circuit which receives an AC voltage such as AC 100 V or AC 200 V and divides the AC voltage with a capacitor to generate a DC voltage such as 3.3 V to 9 V.
  • an input capacitor and an output capacitor are connected in series between the input terminals of the alternating voltage, and the divided alternating voltage generated between the electrodes of the output capacitor is rectified by a diode bridge and output.
  • the output power is determined to some extent by the frequency of the AC voltage and the capacitance ratio of the input capacitor and the output capacitor, so that the load fluctuates or the peak voltage of the input voltage Fluctuation may cause the output voltage to jump temporarily or drop temporarily.
  • An object of the present invention is to provide a power supply apparatus capable of obtaining a stable output against fluctuations in input voltage and fluctuations in load in a capacitor division type power supply apparatus.
  • a plurality of capacitors are connected between terminals to which a first voltage (Vin) of alternating current or pulsating current is inputted.
  • a power supply device (10) generating an output voltage from a voltage across a portion of a capacitor (C2), the discharging means capable of discharging the charge stored in one or more of the plurality of capacitors.
  • the amount of discharge of the capacitor is changed by the discharging means, thereby changing the amount of current that can be sent to the input side power output side in each cycle of the input voltage. Can do. Therefore, by controlling this amount of current, it is possible to stabilize the output against load fluctuation and fluctuation of input voltage.
  • the control circuit includes a detection circuit (11) for detecting the output voltage, and the control circuit is configured to control the discharging unit based on an output of the detection circuit. Further, the control circuit is configured to determine the timing of turning on / off the discharge means in accordance with the phase of the first voltage (Vin). Further, a rectifying element (D 1) is connected which restricts the charging direction of one or more capacitors among the plurality of capacitors in one direction.
  • the discharging means may be constituted by a switch (S1) for electrically connecting or disconnecting one terminal of one or more of the plurality of capacitors to the other connection point.
  • At least a first capacitance circuit (C1) and a second capacitance circuit (C2) are connected in series between input terminals of an alternating voltage (Vin), and A power supply (10) for generating an output voltage from voltages at both ends, the rectifying element (D1) connected between the first capacitance circuit and the second capacitance circuit, and the first capacitance circuit
  • a switch (S1) for electrically connecting or disconnecting the output terminal of the switch to another connection point, a detection circuit (11) for detecting the output voltage, and a switch (S1) based on the output of the detection circuit
  • a control circuit (12) for performing on-Z off control.
  • the switch (S1) is connected between the output-side terminal of the first capacitance circuit (C1) and one input terminal of the AC voltage (Vin).
  • the power supply device (10A: FIG. 4) of the present invention comprises a plurality of rectifying elements (Dl l, D12, D15, D16) connected in a form for full-wave rectifying an AC voltage, and a plurality of these A first capacitance circuit (C11) provided on a path for flowing current when the alternating voltage is a positive voltage between the rectifying elements, and a current when the alternating voltage is negative between the plurality of rectifying elements And a third capacitance circuit (C13) connected between the terminals from which the voltage full-wave rectified by the plurality of rectifying elements is output.
  • the switch (S11) is configured to be connected between the output side terminals of the first capacitance circuit and the second capacitance circuit and one terminal of the third capacitance circuit. Between the switch and the first capacitance circuit, and a rectifying element (D13, D14) for flowing discharge current from the first capacitance circuit and the second capacitance circuit between the switch and the second capacitance circuit. It is good.
  • voltage can be output by supplying current to the third capacitance circuit using both the period in which the AC voltage is positive and the period in which the AC voltage is negative. It can.
  • At least a first capacitance circuit (C21) and a second capacitance circuit (C22) are connected in series between the input terminals of the AC voltage (Vin).
  • a control circuit (12) for on-off control of the means is provided in the power supply device (10B: FIG. 8) of the present invention.
  • the discharge means is provided with a rectifying element (D21, D22) that allows current to flow only in the first direction to the first capacitance circuit and the second capacitance circuit between the input terminals of the AC voltage.
  • a switch (S21) for conducting Z-disconnection of the first current path.
  • the first diode (D21), the first capacitance circuit (C21), the second diode (D22), and the second capacitance circuit (C22) are sequentially arranged between the input terminals of the AC voltage (Vin).
  • the switch (S21) is connected in series between the connection point of the first diode and the first capacitance circuit and the connection point of the second diode and the second capacitance circuit, and the first capacitance is connected.
  • a third diode (D23) is connected between a connection point between the circuit and the second diode and the terminal on the input terminal side of the second capacitance circuit, and the first diode and the second diode are connected.
  • a rectifying element for flowing current only in the first direction is constituted, and the switch, the second capacitance A path in which the path, the third diode, and the first capacitance circuit are connected in series constitutes the first current path, and the third diode regulates the flow direction of the current in the first current path. Is to be configured.
  • the first capacitive circuit is discharged by switch control and the second capacitance Since the second capacitance circuit is charged by being input to the circuit, it is possible to reduce the loss due to the discharge of the first capacitance circuit.
  • the output is stabilized against load fluctuations and variations in input voltage. It has the effect of being able to
  • FIG. 1 is a block diagram showing a power supply apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a waveform chart showing an example of the operation of the power supply device of the first embodiment.
  • FIG. 3 A graph comparing the output characteristics of the power supply device of the first embodiment and the power supply circuit of the conventional capacitor division system, (a) is an output characteristic graph of the power supply device of the first embodiment, These are the output characteristic graphs of the conventional capacitor division type power supply circuit.
  • FIG. 5 An explanatory view showing a current path of each state of the power supply device of the second embodiment.
  • FIG. 6 A waveform diagram for explaining the operation in each state of FIG.
  • FIG. 7 is a waveform chart showing an example of the operation of the power supply device of the second embodiment.
  • FIG. 8 is a block diagram showing a power supply device according to a third embodiment of the present invention.
  • FIG. 9 An explanatory view showing a current path of each state in the power supply device of the third embodiment.
  • FIG. 10 is a waveform diagram for explaining the operation of the power supply device of the third embodiment.
  • FIG. 1 is a configuration diagram of a power supply device according to a first embodiment of the present invention.
  • the power supply device 10 of this embodiment generates a DC output voltage Vout from an AC power supply 30 according to a capacitor division system and outputs it to a load circuit 31.
  • the power supply device 10 includes a first capacitor Cl, a first diode D1, a second capacitor C2, and a switch S1 for flowing a discharge current of the first capacitor C1, which are sequentially connected in series between the input terminals of the AC power supply 30.
  • a detection circuit 11 for detecting the output voltage Vout and a control circuit 12 for controlling on / off of the switch S 1 based on the output of the detection circuit 11 are also configured. Then, the voltage between both electrodes of the second capacitor C2 is output as the output voltage Vout.
  • the above-mentioned first diode D1 is connected in a direction in which current flows from the first capacitor C1 to the side of the second capacitor C2.
  • a capacitor with a small capacity is applied to the first capacitor C1
  • an electrolytic capacitor with a large capacity is applied to the second capacitor C2.
  • these first and second The type and capacity ratio of the capacitors CI and C2 can be changed as appropriate.
  • the switch S1 connects the terminal on the output side of the first capacitor C1 to the other input terminal of the AC power supply 30, for example, with the AC power supply 30 side as the input side and the load circuit 31 side as the output side.
  • a MOSFET can be applied as the switch S1.
  • bipolar transistors and various switch elements may be used! ,.
  • the detection circuit 11 converts the output voltage Vout into a detection voltage by, for example, a dividing resistor and outputs the detection voltage to the control circuit 12.
  • the control circuit 12 controls the timing and the length of time that the switch S1 is turned on based on the detected voltage.
  • a signal representing the timing when the voltage of the AC power supply 30 has a predetermined phase is input to the control circuit 12, and from this signal, the switch S is switched to correspond to the voltage phase of the AC power supply 30. Configure to determine the on period of one.
  • the operation in the case where the switch S1 is not turned on will be described.
  • the first capacitor Cl, the diode D1 and the second capacitor C2 are sent accordingly.
  • the current flows to charge the first capacitor C1 and the second capacitor C2.
  • a voltage Vout is generated between the electrodes of the second capacitor C2, and a current is output to the load circuit 31.
  • the switch S1 since the switch S1 is turned on to discharge the first capacitor C1, current can be supplied from the AC power supply 30 to the second capacitor C2 during the next charging period. Furthermore, the amount of discharge of the first capacitor C1 can be changed by changing the phase timing and the time length for turning on the switch S1, so that the amount of current supplied to the second capacitor C2 can be controlled. It can.
  • FIG. 2 shows an example of the operation waveform of the power supply device 10 of FIG.
  • the first half shows the operation waveform with the control pattern when the output load is large
  • the second half shows the operation waveform with the control pattern when the output load is small.
  • the control circuit 12 performs control of a period during which the switch S1 is turned on within a range where the input voltage Vin also has a peak voltage of 0 V as shown by the S1-GATE voltage in FIG. In FIG. 2, switch SI is turned on when the SI-- GATE voltage is high. Then, when the output load becomes large and the detected value of the output voltage Vout becomes low, the period for turning on the switch S1 is shifted to the side where the input voltage Vin force S0V. Conversely, if the output load force and the detected value of the output voltage Vout become higher, the period in which the switch S1 is turned on is shifted to the side where the input voltage Vin becomes the peak voltage.
  • the operation waveforms in FIG. 2 show the waveforms when the load circuit 31 is executed with the same load resistance connected, and therefore, there are two kinds of control patterns: large output and small output.
  • large output and small output Although the magnitude of the output voltage Vout is different, by controlling based on the detection of the output voltage Vout, the output voltage Vout can be maintained at a substantially constant value.
  • FIG. 3 shows a graph comparing the output characteristics of the power supply device 10 of the first embodiment and a conventional capacitor division type power supply circuit.
  • the magnitude of the output power is substantially determined by the capacitance ratio of the division capacitors, so load fluctuation and input voltage
  • the peak fluctuation of the output voltage Vout significantly fluctuates.
  • the load current can be changed while keeping the output voltage Vout constant. Even if there is a peak voltage fluctuation, the output voltage Vout can be stabilized.
  • a control period in which the switch S1 is turned on is within a range where the input voltage Vin drops to 0 V as well, for example, a range where the input voltage Vin is 0 V or less is included. It is good.
  • the length of time for turning on the switch S1 may not be short and constant, for example, it may be kept on until the phase timing at which the input voltage Vin becomes a peak voltage and the off timing is controlled. It is also possible to change the discharge amount of the first capacitor C1 by changing the time length for turning on S1.
  • the voltage of the AC power supply 30 is directly input as the input voltage Vin, the same operation can be obtained by inputting the voltage of the pulsating current after being rectified by the rectification circuit.
  • FIG. 4 is a block diagram showing a power supply apparatus 10A according to a second embodiment of the present invention
  • FIG. 5 is an explanatory view showing current paths in each state of the power supply apparatus 10A
  • FIG. It is the wave form diagram which showed the operation waveform.
  • the power supply device 10A of the second embodiment enables charging and discharging of the capacitor using a full wave portion (both portions where the input voltage Vin is a positive voltage and a negative voltage) of the AC power supply 30. With things is there.
  • the power supply device 10A performs full-wave rectification of the AC power supply 30, for example, first and second diodes Dl l, D12 and fifth and sixth diodes connected in the same connection configuration as the diode bridge.
  • a switch S11 for discharging the capacitor C12, and diodes D13 and D14 for causing current to flow in the discharge direction of the first capacitor C11 and the second capacitor C12 when the switch S11 is on, are provided.
  • the inter-electrode voltage of the third capacitor C13 is output as an output voltage Vout.
  • a detection circuit 11 and a control circuit 12 are also provided to the power supply device 10A as in the first embodiment.
  • the first capacitor C11 is provided on a current path through which current flows when the input voltage Vin is a positive voltage among the connection paths of the diodes Dl l, D12, D15, D16, and the second capacitor C12 is
  • the current path is provided on a current path through which current flows when the input voltage Vin is a negative voltage.
  • the output voltage Vout can be supplied from the third capacitor C13 to the load circuit.
  • switch S 11 While switch S 11 is in the off state, as shown in FIGS. 5 (a) and 5 (b), the input voltage Vin is shifted. If it moves, as shown in Figures 6 (a) and 6 (b), the first capacitor C11 and the second capacitor C12 will be fully charged at the first oscillation of the input voltage Vin, and then will not be discharged. The input current from the AC power supply 30 is zero, and the current supply to the third capacitor C13 is also cut off. Therefore, the output voltage Vout gradually decreases, and then the output current also stops.
  • the amount of discharge of the first capacitor C11 and the second capacitor C12 is changed by changing the phase timing at which the switch S11 is turned on to supply the AC power supply 30 to the third capacitor C13. It is possible to control the amount of current flow.
  • FIG. 7 shows an example of operation waveforms of the power supply device 10A of the second embodiment.
  • the operation waveform by the control pattern when the output load is large is shown in the first half, and the operation waveform by the control pattern when the output load is small V is shown in the second half.
  • the control circuit 12 performs control to shift the phase timing for turning on the switch S11 according to the output load, as indicated by the SLl-GATE voltage in FIG. 7. That is, when the output load increases and the detected value of the output voltage Vout decreases, the period in which the switch S11 is turned on is shifted to the side where the input voltage Vin becomes a positive or negative peak voltage. On the other hand, when the output load decreases and the detected value of the output voltage Vout becomes high, the period in which the switch S11 is turned on is shifted to the side where the input voltage Vin becomes the force.
  • the operation waveforms in FIG. 7 show waveforms when two control patterns are executed with the same load resistance connected as a load, so the output voltage Vout is obtained in the first half and the second half.
  • the output voltage Vout can be maintained at a substantially constant value by performing control based on detection of the force output voltage Vout having different magnitudes of.
  • the output voltage Vout can be stabilized against load fluctuation and peak fluctuation of the input voltage, and the full-wave portion of the AC power supply 30 is used. There is an advantage that the current can be supplied.
  • FIG. 8 is a block diagram showing a power supply 10B according to a third embodiment of the present invention
  • FIG. 9 is an explanatory view showing a current path in the power supply 10B
  • FIG. 10 is an operation waveform diagram of the power supply 10B. .
  • the power supply device 10 B of the third embodiment is intended to reduce the loss due to discharge by supplying the discharge current of the capacitor under switch control to another capacitor.
  • a power supply device 10 B includes a first diode D 21, a first capacitor C 21, a second diode D 22, a second capacitor C 22, and a first diode D 21 serially connected in series between input terminals of an AC power supply 30.
  • a switch S21 for discharging the capacitor C21 and a third diode D23 for limiting the direction of the discharge current are provided.
  • a detection circuit 11 for detecting the output voltage Vout and a control circuit 12 for performing on / off control of the switch S 21 based on the output of the detection circuit 11 are provided. Is output to the load circuit 31 as an output voltage Vout.
  • the first and second diodes D21 and D22 described above are connected in a direction (first direction) in which current flows when the input voltage Vin is a positive voltage.
  • the switch S21 and the third diode D23 are connected in such a manner that current flows in the path and direction connected to the first capacitor C21, the switch S21, the second capacitor C22, and the third diode D23 in this order. It will be continued. Furthermore, in this current path, the current flows in the direction opposite to the above first direction with respect to the first capacitor C21, and in the same direction as the above first direction with respect to the second capacitor C22. Be done.
  • the first capacitor C21 is not discharged, as long as no current flows from the AC power supply 30 to the first capacitor C21. Since the current is not sent, the supply of current from the AC power supply 30 to the second capacitor C22 is also stopped.
  • the control circuit 12 performs on-control of the switch S21 with a discharge range in which the input voltage Vin becomes lower than the output voltage Vout (for example, the phase when the input voltage Vin becomes a negative voltage). . If it is turned on at any other phase, the input voltage Vin is directly output to the output terminal through the first diode D21.
  • the first capacitor C21 discharges the second capacitor C22 through the current path shown in FIG. 9 (b). In this discharge path, the charge discharged from the first capacitor C21 moves to the second capacitor C22 to charge the second capacitor C22.
  • the discharge amount of the first capacitor C21 is changed by lengthening or shortening the on period of the switch S21 within the discharge range, whereby the AC power supply 30 supplies the second capacitor C22.
  • the output voltage Vout can be stabilized even if there is load fluctuation or peak fluctuation of the input voltage.
  • the first capacitor C21 is It is also possible to reduce the loss due to the discharge of
  • the present invention can be used, for example, in a power supply device that generates a power supply voltage for an IC such as an AC power supply.
  • a power supply device that supplies power supply voltage to various electronic circuits and electronic devices.

Abstract

Provided is a power supply device capable of supplying a stable output for fluctuation of an input voltage or fluctuation of a load in a power supply device of the capacitor division type. A plurality of capacitors (C1, C2) are connected between terminals to which AC voltage is inputted. The power supply device generates an output voltage (Vout) from voltages of the both electrodes of one capacitor (C2) among the plurality of capacitors. The power supply device includes a rectification element (D1) for limiting the charge direction of the plurality of capacitors (C1, C2) to one direction, a switch (S1) for discharging electric charge from the capacitor (C1), and a control circuit (12) for turning ON/OFF the switch (S1) according to the output voltage.

Description

明 細 書  Specification
電源装置  Power supply
技術分野  Technical field
[0001] 本発明は、コンデンサにより入力電圧を分割して出力電圧を生成する電源装置に 関する。  The present invention relates to a power supply device that divides an input voltage by a capacitor to generate an output voltage.
背景技術  Background art
[0002] 従来、例えば AC100Vや AC200Vなどの交流電圧を入力し、この交流電圧をコン デンサで分割して 3. 3V〜9Vなどの直流電圧を生成する電源回路がある。例えば、 交流電圧の入力端子間に入力コンデンサと出力コンデンサとを直列に接続し、出力 コンデンサの電極間に発生した分割され電圧値の低下した交流電圧をダイオードブ リッジなどで整流して出力するように構成される。  Conventionally, there is a power supply circuit which receives an AC voltage such as AC 100 V or AC 200 V and divides the AC voltage with a capacitor to generate a DC voltage such as 3.3 V to 9 V. For example, an input capacitor and an output capacitor are connected in series between the input terminals of the alternating voltage, and the divided alternating voltage generated between the electrodes of the output capacitor is rectified by a diode bridge and output. Configured
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0003] 上記従来のコンデンサ分割方式の電源回路では、交流電圧の周波数と入力コンデ ンサと出力コンデンサの容量比により出力電力量がある程度決まってしまうため、負 荷が変動したり入力電圧のピーク電圧が変動したりすることで、出力電圧が一次的に 跳ね上がってしまったり一次的に低下してしまう恐れがあった。  In the conventional capacitor division type power supply circuit, the output power is determined to some extent by the frequency of the AC voltage and the capacitance ratio of the input capacitor and the output capacitor, so that the load fluctuates or the peak voltage of the input voltage Fluctuation may cause the output voltage to jump temporarily or drop temporarily.
[0004] この発明の目的は、コンデンサ分割方式の電源装置において入力電圧の変動や 負荷の変動に対して安定した出力が得られるようにする電源装置を提供することにあ る。  [0004] An object of the present invention is to provide a power supply apparatus capable of obtaining a stable output against fluctuations in input voltage and fluctuations in load in a capacitor division type power supply apparatus.
課題を解決するための手段  Means to solve the problem
[0005] 本発明は、上記目的を達成するため、交流又は脈流の第 1電圧 (Vin)が入力され る端子間に複数のコンデンサ(CI, C2)が接続され、これら複数のコンデンサのうち 一部のコンデンサ(C2)の両端の電圧から出力電圧を生成する電源装置(10)であ つて、前記複数のコンデンサのうち 1個又は複数のコンデンサに充電された電荷を放 電可能な放電手段 (S1)と、該放電手段の放電作用をオン Zオフ制御する制御回路 (12)とを備えたものである。 [0006] このような電源装置によれば、上記放電手段によりコンデンサの放電量を変化させ ることで、入力電圧の各周期で入力側力 出力側に送ることのできる電流量を変化さ せることが出来る。したがって、この電流量を制御することで、負荷変動や入力電圧 の変動に対して出力の安定を図ることが出来る。 [0005] In order to achieve the above object, according to the present invention, a plurality of capacitors (CI, C2) are connected between terminals to which a first voltage (Vin) of alternating current or pulsating current is inputted. What is claimed is: 1. A power supply device (10) generating an output voltage from a voltage across a portion of a capacitor (C2), the discharging means capable of discharging the charge stored in one or more of the plurality of capacitors. (S1) and a control circuit (12) for on / off controlling the discharge action of the discharge means. According to such a power supply device, the amount of discharge of the capacitor is changed by the discharging means, thereby changing the amount of current that can be sent to the input side power output side in each cycle of the input voltage. Can do. Therefore, by controlling this amount of current, it is possible to stabilize the output against load fluctuation and fluctuation of input voltage.
[0007] 具体的には、前記出力電圧を検出する検出回路(11)を備え、前記制御回路は、 検出回路の出力に基づいて前記放電手段を制御するように構成する。また、前記制 御回路は、前記第 1電圧 (Vin)の位相に対応させて前記放電手段をオン Zオフさせ るタイミングを決定するように構成する。また、前記複数のコンデンサのうち 1個又は 複数のコンデンサの充電方向を一方向に制限する整流素子 (D 1 )を接続する。前記 放電手段は、前記複数のコンデンサのうち 1個又は複数のコンデンサの一方の端子 を他の接続点に電気的に接続または切断するスィッチ(S 1)により構成することが出 来る。  Specifically, the control circuit includes a detection circuit (11) for detecting the output voltage, and the control circuit is configured to control the discharging unit based on an output of the detection circuit. Further, the control circuit is configured to determine the timing of turning on / off the discharge means in accordance with the phase of the first voltage (Vin). Further, a rectifying element (D 1) is connected which restricts the charging direction of one or more capacitors among the plurality of capacitors in one direction. The discharging means may be constituted by a switch (S1) for electrically connecting or disconnecting one terminal of one or more of the plurality of capacitors to the other connection point.
[0008] また、本発明の電源装置は、交流電圧 (Vin)の入力端子間に少なくとも第 1容量回 路 (C1)および第 2容量回路 (C2)が直列に接続され、第 2容量回路の両端の電圧か ら出力電圧を生成する電源装置(10)であって、前記第 1容量回路と前記第 2容量回 路との間に接続された整流素子 (D1)と、前記第 1容量回路の出力側の端子を他の 接続点に電気的に接続または切断するスィッチ(S1)と、前記出力電圧を検出する 検出回路( 11 )と、該検出回路の出力に基づいてスィッチ (S 1)のオン Zオフ制御を 行う制御回路(12)とを備えた構成とした。具体的には、スィッチ (S1)は、第 1容量回 路 (C1)の出力側の端子と交流電圧 (Vin)の一方の入力端子との間に接続する。  In the power supply device of the present invention, at least a first capacitance circuit (C1) and a second capacitance circuit (C2) are connected in series between input terminals of an alternating voltage (Vin), and A power supply (10) for generating an output voltage from voltages at both ends, the rectifying element (D1) connected between the first capacitance circuit and the second capacitance circuit, and the first capacitance circuit A switch (S1) for electrically connecting or disconnecting the output terminal of the switch to another connection point, a detection circuit (11) for detecting the output voltage, and a switch (S1) based on the output of the detection circuit And a control circuit (12) for performing on-Z off control. Specifically, the switch (S1) is connected between the output-side terminal of the first capacitance circuit (C1) and one input terminal of the AC voltage (Vin).
[0009] このような電源装置によれば、上記の作用 ·効果に加えて、回路素子数が少なぐ シンプルな構成となり、スィッチの制御も複雑にならな 、と 、う利点が得られる。  According to such a power supply apparatus, in addition to the above-described effects and effects, the number of circuit elements is reduced to a simple configuration, and the control of switches is also simplified.
[0010] また、本発明の電源装置(10A:図 4)は、交流電圧を全波整流する形態に接続さ れた複数の整流素子(Dl l, D12, D15, D16)と、これら複数の整流素子の間で前 記交流電圧が正電圧のときに電流を流す経路上に設けられた第 1容量回路 (C11) と、前記複数の整流素子の間で前記交流電圧がマイナスのときに電流を流す経路上 に設けられた第 2容量回路 (C12)と、前記複数の整流素子により全波整流された電 圧が出力される端子間に接続された第 3容量回路 (C13)と、前記第 1容量回路およ び前記第 2容量回路の一端を別の接続点に電気的に接続または切断するスィッチ( S11)と、前記スィッチのオン Zオフ制御を行う制御回路とを備え、前記 3容量回路の 両端の電圧から出力電圧を生成する構成とした。 Further, the power supply device (10A: FIG. 4) of the present invention comprises a plurality of rectifying elements (Dl l, D12, D15, D16) connected in a form for full-wave rectifying an AC voltage, and a plurality of these A first capacitance circuit (C11) provided on a path for flowing current when the alternating voltage is a positive voltage between the rectifying elements, and a current when the alternating voltage is negative between the plurality of rectifying elements And a third capacitance circuit (C13) connected between the terminals from which the voltage full-wave rectified by the plurality of rectifying elements is output. First capacitance circuit and And a switch (S11) for electrically connecting or disconnecting one end of the second capacitance circuit to another connection point, and a control circuit for performing on / off control of the switch, the voltage across the three capacitance circuit To generate an output voltage.
[0011] 具体的には、前記スィッチ (S11)は、前記第 1容量回路および前記第 2容量回路 の出力側の端子と前記第 3容量回路の一方の端子との間に接続するように構成し、 前記スィッチと前記第 1容量回路ならびに前記スィッチと前記第 2容量回路の間に、 これら第 1容量回路および第 2容量回路からの放電電流を流す整流素子 (D13, D1 4)をそれぞれ設けると良い。  Specifically, the switch (S11) is configured to be connected between the output side terminals of the first capacitance circuit and the second capacitance circuit and one terminal of the third capacitance circuit. Between the switch and the first capacitance circuit, and a rectifying element (D13, D14) for flowing discharge current from the first capacitance circuit and the second capacitance circuit between the switch and the second capacitance circuit. It is good.
[0012] このような構成により、交流電圧が正の電圧となる期間と負の電圧となる期間の両 方の期間を使用して第 3容量回路に電流を供給して電圧出力を行うことが出来る。  [0012] With such a configuration, voltage can be output by supplying current to the third capacitance circuit using both the period in which the AC voltage is positive and the period in which the AC voltage is negative. It can.
[0013] また、本発明の電源装置(10B :図 8)は、交流電圧 (Vin)の入力端子間に少なくと も第 1容量回路 (C21)および第 2容量回路 (C22)が直列に接続され、第 2容量回路 の両端の電圧から出力電圧を生成する電源装置であって、前記第 1容量回路から前 記第 2容量回路へ放電が可能な放電手段 (S21, D23)と、該放電手段のオン Zォ フ制御を行う制御回路(12)とを備えたものである。  In the power supply device (10B: FIG. 8) of the present invention, at least a first capacitance circuit (C21) and a second capacitance circuit (C22) are connected in series between the input terminals of the AC voltage (Vin). A power supply device for generating an output voltage from the voltage across the second capacitance circuit, the discharging means (S21, D23) capable of discharging the first capacitance circuit to the second capacitance circuit; And a control circuit (12) for on-off control of the means.
[0014] 具体的には、前記交流電圧の入力端子間で前記第 1容量回路および前記第 2容 量回路に第 1方向にのみ電流を流す整流素子 (D21, D22)を備え、前記放電手段 は、前記第 1容量回路に対しては前記第 1方向と逆の方向で、前記第 2容量回路に 対しては前記第 1方向と同一方向に電流を流す第 1電流経路および整流素子 (D23 )と、前記第 1電流経路を導通 Z切断するスィッチ (S21)とから構成することが出来る  Specifically, the discharge means is provided with a rectifying element (D21, D22) that allows current to flow only in the first direction to the first capacitance circuit and the second capacitance circuit between the input terminals of the AC voltage. A first current path and a rectifying element for causing current to flow in the direction opposite to the first direction with respect to the first capacitance circuit and in the same direction with respect to the second capacitance circuit with respect to the second capacitance circuit (D23 And a switch (S21) for conducting Z-disconnection of the first current path.
[0015] より具体的には、交流電圧 (Vin)の入力端子間に第 1ダイオード (D21)、第 1容量 回路 (C21)、第 2ダイオード (D22)、第 2容量回路 (C22)が順に直列に接続され、 前記第 1ダイオードおよび前記第 1容量回路の接続点と前記第 2ダイオードおよび前 記第 2容量回路の接続点との間に前記スィッチ (S21)が接続され、前記第 1容量回 路と前記第 2ダイオードとの接続点と前記第 2容量回路の前記入力端子側の端子と の間に第 3ダイオード (D23)が接続され、前記第 1ダイオードおよび前記第 2ダイォ 一ドが第 1方向にのみ電流を流す整流素子を構成し、前記スィッチ、前記第 2容量回 路、前記第 3ダイオード、前記第 1容量回路を直列に接続された経路が前記第 1電流 経路を構成し、前記第 3ダイオードが前記第 1電流経路の電流の流れる方向を規制 する前記整流素子を構成するようにされる。 More specifically, the first diode (D21), the first capacitance circuit (C21), the second diode (D22), and the second capacitance circuit (C22) are sequentially arranged between the input terminals of the AC voltage (Vin). The switch (S21) is connected in series between the connection point of the first diode and the first capacitance circuit and the connection point of the second diode and the second capacitance circuit, and the first capacitance is connected. A third diode (D23) is connected between a connection point between the circuit and the second diode and the terminal on the input terminal side of the second capacitance circuit, and the first diode and the second diode are connected. A rectifying element for flowing current only in the first direction is constituted, and the switch, the second capacitance A path in which the path, the third diode, and the first capacitance circuit are connected in series constitutes the first current path, and the third diode regulates the flow direction of the current in the first current path. Is to be configured.
[0016] このような手段によれば、負荷変動や入力電圧の変動に対して出力の安定を図る ことが出来ることに加えて、スィッチ制御によって第 1容量回路力 放電される電流が 第 2容量回路に入力されて第 2容量回路を充電させるので、第 1容量回路の放電に よる損失を低減することが出来る。 According to such a means, in addition to the ability to stabilize the output against load fluctuations and fluctuations in input voltage, the first capacitive circuit is discharged by switch control and the second capacitance Since the second capacitance circuit is charged by being input to the circuit, it is possible to reduce the loss due to the discharge of the first capacitance circuit.
[0017] なお、この項目にお 、て、実施形態との対応関係を表わす符号を括弧書きで記し たが、理解を容易にするため参考として付したものであり、本発明はこれに制限され るものではない。 [0017] In this item, the reference numerals representing the correspondence with the embodiment are shown in parentheses, but this is added as a reference for ease of understanding, and the present invention is not limited thereto. It is not a thing.
発明の効果  Effect of the invention
[0018] 以上説明したように、本発明に従うと、コンデンサにより入力電圧を分割して出力電 圧を生成するコンデンサ分割方式の電源装置において、負荷変動や入力電圧の変 動に対して出力を安定ィ匕させることが出来るという効果がある。  As described above, according to the present invention, in a capacitor division type power supply device in which an input voltage is divided by a capacitor to generate an output voltage, the output is stabilized against load fluctuations and variations in input voltage. It has the effect of being able to
図面の簡単な説明  Brief description of the drawings
[0019] [図 1]本発明の第 1実施形態の電源装置を示す構成図である。 FIG. 1 is a block diagram showing a power supply apparatus according to a first embodiment of the present invention.
[図 2]第 1実施形態の電源装置における動作の一例を示す波形図である。  FIG. 2 is a waveform chart showing an example of the operation of the power supply device of the first embodiment.
[図 3]第 1実施形態の電源装置と従来のコンデンサ分割方式の電源回路との出力特 性を比較したグラフで、(a)は第 1実施形態の電源装置の出力特性グラフ、(b)は従 来のコンデンサ分割方式の電源回路の出力特性グラフである。  [FIG. 3] A graph comparing the output characteristics of the power supply device of the first embodiment and the power supply circuit of the conventional capacitor division system, (a) is an output characteristic graph of the power supply device of the first embodiment, These are the output characteristic graphs of the conventional capacitor division type power supply circuit.
圆 4]本発明の第 2実施形態の電源装置を示す構成図である。  (4) It is a block diagram which shows the power supply device of 2nd Embodiment of this invention.
[図 5]第 2実施形態の電源装置の各状態の電流経路を示した説明図である。  [FIG. 5] An explanatory view showing a current path of each state of the power supply device of the second embodiment.
[図 6]図 5の各状態における動作を説明する波形図である。  [FIG. 6] A waveform diagram for explaining the operation in each state of FIG.
[図 7]第 2実施形態の電源装置における動作の一例を示す波形図である。  FIG. 7 is a waveform chart showing an example of the operation of the power supply device of the second embodiment.
[図 8]本発明の第 3実施形態の電源装置を示す構成図である。  FIG. 8 is a block diagram showing a power supply device according to a third embodiment of the present invention.
[図 9]第 3実施形態の電源装置における各状態の電流経路を示した説明図である。  [FIG. 9] An explanatory view showing a current path of each state in the power supply device of the third embodiment.
[図 10]第 3実施形態の電源装置における動作を説明する波形図である。  FIG. 10 is a waveform diagram for explaining the operation of the power supply device of the third embodiment.
符号の説明 [0020] 10, 10A, 10B 電源装置 Explanation of sign 10, 10A, 10B power supply
11 検出回路  11 Detection circuit
12 制御回路  12 Control circuit
30 交流電源  30 AC power supply
31 負荷回路  31 load circuit
CI, C2 コンデンサ  CI, C2 capacitor
D1 ダイオード  D1 diode
C11〜C13 コンデンサ  C11 to C13 capacitors
D11〜D16 ダイオード  D11 to D16 diodes
C21, C22 コンデンサ  C21, C22 capacitor
D21〜D23 ダイオード  D21 to D23 diodes
SI, Sl l, S21 スィッチ  SI, Sl l, S21 switch
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 以下、本発明の実施の形態を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described based on the drawings.
[0022] [第 1の実施の形態]  First Embodiment
図 1は、本発明の第 1実施形態の電源装置の構成図である。  FIG. 1 is a configuration diagram of a power supply device according to a first embodiment of the present invention.
[0023] この実施の形態の電源装置 10は、交流電源 30からコンデンサ分割方式により直流 の出力電圧 Voutを生成して負荷回路 31に出力するものである。この電源装置 10は 、交流電源 30の入力端子間に順に直列に接続された第 1コンデンサ Cl、第 1ダイォ ード Dl、第 2コンデンサ C2と、第 1コンデンサ C1の放電電流を流すスィッチ S1と、出 力電圧 Voutを検出する検出回路 11と、検出回路 11の出力に基づ 、てスィッチ S 1 のオン Zオフ制御をする制御回路 12等力も構成される。そして、第 2コンデンサ C2 の両極間の電圧を出力電圧 Voutとして出力する。  The power supply device 10 of this embodiment generates a DC output voltage Vout from an AC power supply 30 according to a capacitor division system and outputs it to a load circuit 31. The power supply device 10 includes a first capacitor Cl, a first diode D1, a second capacitor C2, and a switch S1 for flowing a discharge current of the first capacitor C1, which are sequentially connected in series between the input terminals of the AC power supply 30. A detection circuit 11 for detecting the output voltage Vout and a control circuit 12 for controlling on / off of the switch S 1 based on the output of the detection circuit 11 are also configured. Then, the voltage between both electrodes of the second capacitor C2 is output as the output voltage Vout.
[0024] 上記の第 1ダイオード D1は、第 1コンデンサ C1から第 2コンデンサ C2の側へ電流 を流す向きに接続される。  The above-mentioned first diode D1 is connected in a direction in which current flows from the first capacitor C1 to the side of the second capacitor C2.
[0025] 入力電圧 Vinと出力電圧 Voutの関係に応じて、例えば、第 1コンデンサ C1には容 量の小さなコンデンサを、第 2コンデンサ C2には容量の大きな電解コンデンサなどを 適用する。出力電圧 Voutや出力負荷の大きさによっては、これら第 1および第 2コン デンサ CI, C2の種類や容量比は適宜変更可能である。 For example, according to the relationship between the input voltage Vin and the output voltage Vout, a capacitor with a small capacity is applied to the first capacitor C1, and an electrolytic capacitor with a large capacity is applied to the second capacitor C2. Depending on the output voltage Vout and the size of the output load, these first and second The type and capacity ratio of the capacitors CI and C2 can be changed as appropriate.
[0026] スィッチ S1は、交流電源 30側を入力側、負荷回路 31側を出力側として、例えば、 第 1コンデンサ C1の出力側の端子を交流電源 30の他方の入力端子に接続 Z切断 するように接続する。スィッチ S1としては例えば MOSFETを適用することが出来る。 その他、バイポーラトランジスタや種々のスィッチ素子を用いてもよ!、。  [0026] The switch S1 connects the terminal on the output side of the first capacitor C1 to the other input terminal of the AC power supply 30, for example, with the AC power supply 30 side as the input side and the load circuit 31 side as the output side. Connect to For example, a MOSFET can be applied as the switch S1. In addition, bipolar transistors and various switch elements may be used! ,.
[0027] 検出回路 11は、例えば分割抵抗により出力電圧 Voutを検出電圧に変換して制御 回路 12に出力する。  The detection circuit 11 converts the output voltage Vout into a detection voltage by, for example, a dividing resistor and outputs the detection voltage to the control circuit 12.
[0028] 制御回路 12は、検出電圧に基づいてスィッチ S1がオン状態となるタイミングおよび 時間長を制御する。また、図示は省略するが、制御回路 12には、交流電源 30の電 圧が所定位相となったタイミングを表わす信号が入力され、この信号から交流電源 3 0の電圧位相に対応させてスィッチ S 1のオン期間を決定するように構成する。  The control circuit 12 controls the timing and the length of time that the switch S1 is turned on based on the detected voltage. Although not shown, a signal representing the timing when the voltage of the AC power supply 30 has a predetermined phase is input to the control circuit 12, and from this signal, the switch S is switched to correspond to the voltage phase of the AC power supply 30. Configure to determine the on period of one.
[0029] 次に、上記構成の電源装置 10の動作原理を説明する。  Next, the operation principle of the power supply device 10 configured as described above will be described.
[0030] 先ず、スィッチ S1がオンされない場合の動作を説明する。第 1および第 2コンデン サ CI, C2が充電されていない初期状態で、入力電圧 Vinが 0V力もピーク電圧まで 上昇していくと、それに伴い、第 1コンデンサ Cl、ダイオード Dl、第 2コンデンサ C2 へと電流が流れて、第 1コンデンサ C1と第 2コンデンサ C2とが充電される。そして、 第 2コンデンサ C2の電極間に電圧 Voutが生じて負荷回路 31に電流が出力される。  First, the operation in the case where the switch S1 is not turned on will be described. In the initial state where the first and second capacitors CI and C2 are not charged, as the input voltage Vin rises to 0V power as well to the peak voltage, the first capacitor Cl, the diode D1 and the second capacitor C2 are sent accordingly. The current flows to charge the first capacitor C1 and the second capacitor C2. Then, a voltage Vout is generated between the electrodes of the second capacitor C2, and a current is output to the load circuit 31.
[0031] 続いて、入力電圧 Vinがピーク電圧から降下すると、ダイオード D1の整流作用によ り第 1コンデンサ C1から電荷は放出されずに、第 1コンデンサ C1は満充電のままとな る。したがって、この状態で、再び、入力電圧 Vinが 0Vからピーク電圧まで上昇する と、第 1コンデンサ C1は満充電なので第 1コンデンサ Cl、ダイオード Dl、第 2コンデ ンサ C2にかけて電流が流れない。すなわち、交流電源 30から第 2コンデンサ C2へ の電流の供給が断たれる。したがって、この状態で、第 2コンデンサ C2から負荷回路 31に電流が出力されていけば、出力電圧 Voutは徐々に低くなり、その後、出力電 流も停止する。  Subsequently, when the input voltage Vin falls from the peak voltage, no charge is discharged from the first capacitor C1 due to the rectifying action of the diode D1, and the first capacitor C1 remains fully charged. Therefore, in this state, when the input voltage Vin rises from 0 V to the peak voltage again, no current flows through the first capacitor Cl, the diode D1 and the second capacitor C2 because the first capacitor C1 is fully charged. That is, the supply of current from the AC power supply 30 to the second capacitor C2 is cut off. Therefore, if a current is output from the second capacitor C2 to the load circuit 31 in this state, the output voltage Vout gradually decreases, and then the output current also stops.
[0032] 次に、スィッチ S1をオン Zオフ制御した場合の動作について説明する。上記のよう に第 1コンデンサ C 1が満充電された状態において、入力電圧 Vinがピーク電圧より 低い電圧のときにスィッチ S1がオンされると、スィッチ S1を介して第 1コンデンサ C1 力 放電電流が流れて第 1コンデンサの充電量が減少する。 Next, an operation in the case where the switch S1 is subjected to the on-Z off control will be described. As described above, when the switch S1 is turned on when the input voltage Vin is lower than the peak voltage in a state where the first capacitor C1 is fully charged, the first capacitor C1 is switched via the switch S1. The force discharge current flows and the charge amount of the first capacitor decreases.
[0033] そして、第 1コンデンサ C1の充電量が減少した状態で、再び、入力電圧 Vinが OV 力 ピーク電圧まで上昇すると、第 1コンデンサ C1が満充電となるまで、第 1コンデン サ Cl、ダイオード Dl、第 2コンデンサ C2にかけて電流が流れ、交流電源 30から第 2 コンデンサ C2に電流が供給される。それにより、出力電圧 Voutが上昇し、負荷回路 31への電流出力も続けられる。  Then, when the input voltage Vin rises again to the OV power peak voltage while the charge amount of the first capacitor C1 decreases, the first capacitor Cl and the diode are fully charged until the first capacitor C1 is fully charged. A current flows from D1 to the second capacitor C2, and a current is supplied from the AC power supply 30 to the second capacitor C2. As a result, the output voltage Vout rises, and the current output to the load circuit 31 is also continued.
[0034] すなわち、スィッチ S1をオンさせて第 1コンデンサ C1の放電を行った分、次の充電 期間に交流電源 30から第 2コンデンサ C2に電流を供給することが出来る。さらに、ス イッチ S1をオンさせる位相タイミングや時間長を変化させることで、第 1コンデンサ C1 の放電量を変化させることが出来るので、これにより第 2コンデンサ C2への電流供給 量を制御することが出来る。  That is, since the switch S1 is turned on to discharge the first capacitor C1, current can be supplied from the AC power supply 30 to the second capacitor C2 during the next charging period. Furthermore, the amount of discharge of the first capacitor C1 can be changed by changing the phase timing and the time length for turning on the switch S1, so that the amount of current supplied to the second capacitor C2 can be controlled. It can.
[0035] 図 2には、図 1の電源装置 10の動作波形の一例を示す。前半部分に出力負荷が 大きいときの制御パターンによる動作波形を、後半部分に出力負荷が小さいときの制 御パターンによる動作波形を示して 1ヽる。  [0035] FIG. 2 shows an example of the operation waveform of the power supply device 10 of FIG. The first half shows the operation waveform with the control pattern when the output load is large, and the second half shows the operation waveform with the control pattern when the output load is small.
[0036] 制御回路 12は、図 2の S1— GATE電圧に示すように、入力電圧 Vinがピーク電圧 力も 0Vとなる範囲内でスィッチ S1をオンさせる期間の制御を行う。図 2においては、 SI— GATE電圧がハイレベルのときにスィッチ S1がオンされる。そして、出力負荷 が大きくなつて出力電圧 Voutの検出値が低くなつていけば、スィッチ S1をオンさせる 期間を入力電圧 Vin力 S0Vとなる側にずらす。逆に、出力負荷力 、さくなつて出力電 圧 Voutの検出値が高くなつていけば、スィッチ S1をオンさせる期間を入力電圧 Vin がピーク電圧となる側にずらす。  The control circuit 12 performs control of a period during which the switch S1 is turned on within a range where the input voltage Vin also has a peak voltage of 0 V as shown by the S1-GATE voltage in FIG. In FIG. 2, switch SI is turned on when the SI-- GATE voltage is high. Then, when the output load becomes large and the detected value of the output voltage Vout becomes low, the period for turning on the switch S1 is shifted to the side where the input voltage Vin force S0V. Conversely, if the output load force and the detected value of the output voltage Vout become higher, the period in which the switch S1 is turned on is shifted to the side where the input voltage Vin becomes the peak voltage.
[0037] このような制御により、図 2の前半部分の動作波形に示されるように、出力負荷が大 きなときには、入力電圧 Vinの低いときにスィッチ S1がオン駆動されて、第 1コンデン サ C1の放電が多く行われる。そして、その分、次の充電期間に第 2コンデンサ C2に 多くの電流が供給されて、大きな出力負荷に対応することが出来る。  By such control, as shown in the operation waveform in the first half of FIG. 2, when the output load is large, switch S1 is driven on when the input voltage Vin is low, and the first capacitor Many discharges of C1 are performed. As a result, a large amount of current is supplied to the second capacitor C2 during the next charging period to cope with a large output load.
[0038] 一方、図 2の後半部分の動作波形に示されるように、出力負荷が小さなときには、 入力電圧 Vinの高!、ときにスィッチ S 1がオン駆動されて、第 1コンデンサ C 1の放電 が少なく行われる。そして、その分、次の充電期間に第 2コンデンサ C2に少ない電流 が供給されて、小さな出力負荷に対応することが出来る。 On the other hand, as shown in the operation waveform in the second half of FIG. 2, when the output load is small, the input voltage Vin is high !, and when the switch S1 is driven on, the discharge of the first capacitor C1 is performed. Is done less. And by that amount, less current in the second capacitor C2 during the next charging period Can be supplied to handle small output loads.
[0039] なお、図 2の動作波形では、負荷回路 31として同一の負荷抵抗を接続した状態で 実行したときの波形を示しているため、出力大と出力小の 2種類の制御パターンにお ける出力電圧 Voutの大きさが異なっているが、出力電圧 Voutの検出に基づいて制 御することで、出力電圧 Voutをほぼ一定値に維持することが出来る。  The operation waveforms in FIG. 2 show the waveforms when the load circuit 31 is executed with the same load resistance connected, and therefore, there are two kinds of control patterns: large output and small output. Although the magnitude of the output voltage Vout is different, by controlling based on the detection of the output voltage Vout, the output voltage Vout can be maintained at a substantially constant value.
[0040] 図 3には、第 1実施形態の電源装置 10と従来のコンデンサ分割方式の電源回路と の出力特性を比較したグラフを示す。  FIG. 3 shows a graph comparing the output characteristics of the power supply device 10 of the first embodiment and a conventional capacitor division type power supply circuit.
[0041] 図 3 (b)に示すように、従来のコンデンサ分割方式の電源回路では、出力電力の大 きさは分割コンデンサの容量比によりほぼ決まってしまって 、たため、負荷の変動や 入力電圧のピーク変動によって出力電圧 Voutが大きく変動してしまう。  As shown in FIG. 3 (b), in the conventional capacitor division type power supply circuit, the magnitude of the output power is substantially determined by the capacitance ratio of the division capacitors, so load fluctuation and input voltage The peak fluctuation of the output voltage Vout significantly fluctuates.
[0042] それに対して、この実施形態の電源装置 10では、図 3 (a)に示すように、出力電圧 Voutを一定に維持したまま負荷電流を変化させることが出来るので、負荷変動や入 力電圧のピーク変動があっても出力電圧 Voutを安定ィ匕することが出来る。  On the other hand, in the power supply device 10 of this embodiment, as shown in FIG. 3 (a), the load current can be changed while keeping the output voltage Vout constant. Even if there is a peak voltage fluctuation, the output voltage Vout can be stabilized.
[0043] なお、この実施形態において、スィッチ S1をオンする制御期間を、入力電圧 Vinが ピーク電圧力も 0Vに降下する範囲内としている力 例えば、入力電圧 Vinが 0V以下 となる範囲が含まれていても良い。また、スィッチ S1をオンにする時間長も短い一定 長とせず、例えば、入力電圧 Vinがピーク電圧となるタイミングカゝらオフ制御する位相 タイミングまでずっとオンさせるようにしても良いし、或いは、スィッチ S1をオンさせる 時間長を変化させることで第 1コンデンサ C1の放電量を変化させるようにしても良い  In this embodiment, a control period in which the switch S1 is turned on is within a range where the input voltage Vin drops to 0 V as well, for example, a range where the input voltage Vin is 0 V or less is included. It is good. In addition, the length of time for turning on the switch S1 may not be short and constant, for example, it may be kept on until the phase timing at which the input voltage Vin becomes a peak voltage and the off timing is controlled. It is also possible to change the discharge amount of the first capacitor C1 by changing the time length for turning on S1.
[0044] また、入力電圧 Vinとして交流電源 30の電圧を直接に入力して ヽるが、整流回路 により整流した後の脈流の電圧を入力しても同様の動作を得ることが出来る。 Although the voltage of the AC power supply 30 is directly input as the input voltage Vin, the same operation can be obtained by inputting the voltage of the pulsating current after being rectified by the rectification circuit.
[0045] [第 2の実施の形態] Second Embodiment
図 4は、本発明の第 2実施形態の電源装置 10Aを示す構成図、図 5はこの電源装 置 10Aの各状態における電流経路を示した説明図、図 6は図 5の各状態における動 作波形を示した波形図である。  FIG. 4 is a block diagram showing a power supply apparatus 10A according to a second embodiment of the present invention, FIG. 5 is an explanatory view showing current paths in each state of the power supply apparatus 10A, and FIG. It is the wave form diagram which showed the operation waveform.
[0046] 第 2実施形態の電源装置 10Aは、交流電源 30の全波部分 (入力電圧 Vinが正電 圧と負電圧となる両方の部分)を使用して、コンデンサの充放電を可能とするもので ある。 The power supply device 10A of the second embodiment enables charging and discharging of the capacitor using a full wave portion (both portions where the input voltage Vin is a positive voltage and a negative voltage) of the AC power supply 30. With things is there.
[0047] そのため、この電源装置 10Aは、交流電源 30を全波整流する例えばダイオードブ リッジと同様の接続形態にされた第 1と第 2のダイオード Dl l, D12および第 5と第 6 のダイオード D15, D16と、これらのダイオードの間に接続された第 1コンデンサ C11 および第 2コンデンサ C12と、ダイオードブリッジとしてみたときの出力端子間に接続 された第 3コンデンサ C13と、第 1コンデンサ C11および第 2コンデンサ C12の放電を 行うためのスィッチ S11と、スィッチ S11がオンのときに第 1コンデンサ C11および第 2 コンデンサ C12の放電方向に電流を流すダイオード D13, D14とを備えている。そし て、第 3コンデンサ C13の電極間電圧を出力電圧 Voutとして出力するように構成さ れている。  Therefore, the power supply device 10A performs full-wave rectification of the AC power supply 30, for example, first and second diodes Dl l, D12 and fifth and sixth diodes connected in the same connection configuration as the diode bridge. D15, D16, a first capacitor C11 and a second capacitor C12 connected between these diodes, and a third capacitor C13 connected between the output terminals when viewed as a diode bridge, a first capacitor C11 and a second 2) A switch S11 for discharging the capacitor C12, and diodes D13 and D14 for causing current to flow in the discharge direction of the first capacitor C11 and the second capacitor C12 when the switch S11 is on, are provided. The inter-electrode voltage of the third capacitor C13 is output as an output voltage Vout.
[0048] また、図示は省略するが、この電源装置 10Aについても、第 1実施形態と同様に検 出回路 11や制御回路 12が設けられている。  Further, although not shown, a detection circuit 11 and a control circuit 12 are also provided to the power supply device 10A as in the first embodiment.
[0049] 第 1コンデンサ C11は、ダイオード Dl l, D12, D15, D16の接続経路のうち、入 力電圧 Vinが正電圧のときに電流が流れる電流経路上に設けられ、第 2コンデンサ C 12は、入力電圧 Vinが負電圧のときに電流が流れる電流経路上に設けられている。  The first capacitor C11 is provided on a current path through which current flows when the input voltage Vin is a positive voltage among the connection paths of the diodes Dl l, D12, D15, D16, and the second capacitor C12 is The current path is provided on a current path through which current flows when the input voltage Vin is a negative voltage.
[0050] 次に、この電源装置 10Aの動作原理を説明する。  Next, the operation principle of the power supply device 10A will be described.
[0051] 第 1および第 2コンデンサ Cl l, C12が充電されていない初期状態において、先ず [0051] In the initial state in which the first and second capacitors Cl l, C12 are not charged, first,
、入力電圧 Vinが正電圧 V になった場合、図 5 (a)に示すように、第 1コンデンサ C1 When the input voltage Vin becomes a positive voltage V, as shown in FIG. 5 (a), the first capacitor C1 is
+  +
1、ダイオード D15、第 3コンデンサ C13、グランドを介してダイオード D 12の経路で 電流が流れて、第 1コンデンサ C11と第 3コンデンサ C13を充電する。ここで、第 2コ ンデンサ C12には電圧は印加されない。  1. A current flows in the path of the diode D12 through the diode D15, the third capacitor C13, and the ground to charge the first capacitor C11 and the third capacitor C13. Here, no voltage is applied to the second capacitor C12.
[0052] 続いて、入力電圧 Vinが負電圧 V になった場合、図 5 (b)に示すように、第 2コンデ ンサ C12、ダイオード D16、第 3コンデンサ C13、グランドを介してダイオード D11の 経路で電流が流れて、第 2コンデンサ C12と第 3コンデンサ C13を充電する。ここで、 第 1コンデンサ C 11には電圧は印加されな 、。 Subsequently, when the input voltage Vin becomes a negative voltage V, as shown in FIG. 5 (b), a path of the diode D11 through the second capacitor C12, the diode D16, the third capacitor C13, and the ground. Current flows to charge the second capacitor C12 and the third capacitor C13. Here, no voltage is applied to the first capacitor C11.
[0053] このようにして第 3コンデンサ C13が充電されることにより、第 3コンデンサ C13から 負荷回路へ出力電圧 Voutを供給することが出来る。 By charging the third capacitor C13 in this way, the output voltage Vout can be supplied from the third capacitor C13 to the load circuit.
[0054] ここで、スィッチ S 11がオフ状態のままで、図 5 (a) , (b)のように入力電圧 Vinが振 動した場合、図 6 (a) , (b)に示すように、入力電圧 Vinの 1回目の振動で第 1コンデ ンサ C11と第 2コンデンサ C12とが満充電となり、その後、放電がなされないので、交 流電源 30からの入力電流はゼロとなり、第 3コンデンサ C13への電流供給も断たれ る。そのため、出力電圧 Voutは徐々に低くなり、その後、出力電流も停止する。 Here, while switch S 11 is in the off state, as shown in FIGS. 5 (a) and 5 (b), the input voltage Vin is shifted. If it moves, as shown in Figures 6 (a) and 6 (b), the first capacitor C11 and the second capacitor C12 will be fully charged at the first oscillation of the input voltage Vin, and then will not be discharged. The input current from the AC power supply 30 is zero, and the current supply to the third capacitor C13 is also cut off. Therefore, the output voltage Vout gradually decreases, and then the output current also stops.
[0055] 一方、入力電圧 Vinが正電圧のときにスィッチ S11がオン制御されることで、図 5 (c )に示すように、第 1コンデンサ Cl l、ダイオード D15、第 3コンデンサ C13、グランド を介してダイオード D14、第 2コンデンサ C12の経路で電流が流れ、図 6 (c)に示す ように、第 2コンデンサ C12の放電が行われる。そして、図 6 (d)に示すように、このと きに交流電源 30から入力電流が流れて、これが第 3コンデンサ C13に供給されること となる。 On the other hand, when the input voltage Vin is a positive voltage and the switch S11 is on-controlled, as shown in FIG. 5 (c), the first capacitor Cl l, the diode D15, the third capacitor C13, and the ground are A current flows through the path of the diode D14 and the second capacitor C12, and as shown in FIG. 6 (c), the second capacitor C12 is discharged. At this time, as shown in FIG. 6 (d), an input current flows from the AC power supply 30 and is supplied to the third capacitor C13.
[0056] また、入力電圧 Vinが負電圧のときにスィッチ S 11をオンさせれば、上下対称の経 路で同様に電流が流れて、第 1コンデンサ C11の放電が行われ、同様に第 3コンデ ンサ C 13に電流が供給されることとなる。  Also, when the switch S11 is turned on when the input voltage Vin is a negative voltage, a current flows in the same way in the upper and lower symmetrical path, and the first capacitor C11 is discharged, and the third The current is supplied to the capacitor C13.
[0057] そして、上記のスィッチ S 11をオンさせる位相タイミングを変化させることで、第 1コン デンサ C11や第 2コンデンサ C12の放電量を変化させて、交流電源 30から第 3コン デンサ C13へ供給される電流量を制御することが可能となる。  Then, the amount of discharge of the first capacitor C11 and the second capacitor C12 is changed by changing the phase timing at which the switch S11 is turned on to supply the AC power supply 30 to the third capacitor C13. It is possible to control the amount of current flow.
[0058] 図 7には、第 2実施形態の電源装置 10Aの動作波形の一例を示す。前半部分に出 力負荷が大きいときの制御パターンによる動作波形を、後半部分に出力負荷が小さ V、ときの制御パターンによる動作波形を示して 、る。  FIG. 7 shows an example of operation waveforms of the power supply device 10A of the second embodiment. The operation waveform by the control pattern when the output load is large is shown in the first half, and the operation waveform by the control pattern when the output load is small V is shown in the second half.
[0059] 制御回路 12は、図 7の Sl l— GATE電圧に示すように、出力負荷に応じてスイツ チ S11をオンさせる位相タイミングをずらす制御を行う。すなわち、出力負荷が大きく なって出力電圧 Voutの検出値が低くなって 、けば、スィッチ S 11をオンさせる期間 を入力電圧 Vinが正又は負のピーク電圧となる側にずらす。逆に、出力負荷が小さく なって出力電圧 Voutの検出値が高くなつていけば、スィッチ S 11をオンさせる期間 を入力電圧 Vin力 となる側にずらす。  The control circuit 12 performs control to shift the phase timing for turning on the switch S11 according to the output load, as indicated by the SLl-GATE voltage in FIG. 7. That is, when the output load increases and the detected value of the output voltage Vout decreases, the period in which the switch S11 is turned on is shifted to the side where the input voltage Vin becomes a positive or negative peak voltage. On the other hand, when the output load decreases and the detected value of the output voltage Vout becomes high, the period in which the switch S11 is turned on is shifted to the side where the input voltage Vin becomes the force.
[0060] このような制御により、図 7の前半部分の動作波形に示されるように、出力負荷が大 きなときには、入力電圧 Vinが正負のピーク電圧に近いときにスィッチ S11がオン駆 動され、それにより、交流電源 30からの入力電流が多くなつて、大きな出力負荷に対 応することが出来る。 By such control, as shown in the operation waveform in the first half of FIG. 7, when the output load is large, switch S11 is driven on when input voltage Vin is close to the positive and negative peak voltage. As a result, when the input current from the AC power supply 30 is large, the large output load is used. It can respond.
[0061] 一方、図 7の後半部分の動作波形に示されるように、出力負荷が小さなときには、 入力電圧 Vinが 0Vに近いときにスィッチ S 11がオン駆動され、それにより、交流電源 30からの入力電流が少なくなつて、小さな出力負荷に対応することが出来る。  On the other hand, as shown in the operation waveform in the second half of FIG. 7, when the output load is small, the switch S11 is driven on when the input voltage Vin is close to 0 V, whereby the AC power supply 30 As the input current is reduced, small output loads can be accommodated.
[0062] なお、図 7の動作波形では、負荷として同一の負荷抵抗を接続した状態で 2種類の 制御パターンを実行したときの波形を示しているため、前半部分と後半部分とで出力 電圧 Voutの大きさが異なっている力 出力電圧 Voutの検出に基づいて制御を行う ことで、出力電圧 Voutをほぼ一定値に維持することが出来る。  The operation waveforms in FIG. 7 show waveforms when two control patterns are executed with the same load resistance connected as a load, so the output voltage Vout is obtained in the first half and the second half. The output voltage Vout can be maintained at a substantially constant value by performing control based on detection of the force output voltage Vout having different magnitudes of.
[0063] このような第 2実施形態の電源装置 10Aによれば、負荷変動や入力電圧のピーク 変動に対して出力電圧 Voutを安定させることが出来るとともに、交流電源 30の全波 部分を使用して電流供給を行うことが出来るという利点がある。  According to the power supply device 10A of the second embodiment, the output voltage Vout can be stabilized against load fluctuation and peak fluctuation of the input voltage, and the full-wave portion of the AC power supply 30 is used. There is an advantage that the current can be supplied.
[0064] [第 3の実施の形態]  Third Embodiment
図 8は、本発明の第 3実施形態の電源装置 10Bを示す構成図、図 9はこの電源装 置 10Bにおける電流経路を示した説明図、図 10はこの電源装置 10Bの動作波形図 である。  FIG. 8 is a block diagram showing a power supply 10B according to a third embodiment of the present invention, FIG. 9 is an explanatory view showing a current path in the power supply 10B, and FIG. 10 is an operation waveform diagram of the power supply 10B. .
[0065] 第 3実施形態の電源装置 10Bは、スィッチ制御によるコンデンサの放電電流を別の コンデンサに供給することで放電による損失の低減を図ったものである。  The power supply device 10 B of the third embodiment is intended to reduce the loss due to discharge by supplying the discharge current of the capacitor under switch control to another capacitor.
[0066] この第 3実施形態の電源装置 10Bは、交流電源 30の入力端子間に順に直列接続 された第 1ダイオード D21、第 1コンデンサ C21、第 2ダイオード D22、第 2コンデンサ C22と、第 1コンデンサ C21の放電を行わせるスィッチ S21と、放電電流の向きを制 限する第 3ダイオード D23等を備えている。また、出力電圧 Voutを検出する検出回 路 11と、検出回路 11の出力に基づ!/、てスィッチ S 21のオン Zオフ制御を行う制御回 路 12を備え、第 2コンデンサ C22の両極間の電圧を出力電圧 Voutとして負荷回路 3 1に出力するように構成される。  A power supply device 10 B according to the third embodiment includes a first diode D 21, a first capacitor C 21, a second diode D 22, a second capacitor C 22, and a first diode D 21 serially connected in series between input terminals of an AC power supply 30. A switch S21 for discharging the capacitor C21 and a third diode D23 for limiting the direction of the discharge current are provided. In addition, a detection circuit 11 for detecting the output voltage Vout and a control circuit 12 for performing on / off control of the switch S 21 based on the output of the detection circuit 11 are provided. Is output to the load circuit 31 as an output voltage Vout.
[0067] 上記の第 1および第 2のダイオード D21, D22は、入力電圧 Vinが正電圧のときに 電流が流れる向き (第 1方向)に接続される。  The first and second diodes D21 and D22 described above are connected in a direction (first direction) in which current flows when the input voltage Vin is a positive voltage.
[0068] スィッチ S21と第 3ダイオード D23は、順に、第 1コンデンサ C21、スィッチ S21、第 2コンデンサ C22、第 3ダイオード D23と連なる経路および向きで電流を流すように接 続される。さらに、この電流経路において、第 1コンデンサ C21に対しては上記の第 1 方向と逆の方向に、第 2コンデンサ C22に対しては上記の第 1方向と同一の方向に 電流が流れるように接続される。 The switch S21 and the third diode D23 are connected in such a manner that current flows in the path and direction connected to the first capacitor C21, the switch S21, the second capacitor C22, and the third diode D23 in this order. It will be continued. Furthermore, in this current path, the current flows in the direction opposite to the above first direction with respect to the first capacitor C21, and in the same direction as the above first direction with respect to the second capacitor C22. Be done.
[0069] このような電源装置 10Bにおいては、スィッチ S21がオフの状態で入力電圧 Vinが ピーク電圧まで上昇するとき、図 9 (a)に示すように電流が流れて、第 1コンデンサ C2 1と第 2コンデンサ C22とを充電する。そして、第 2コンデンサ C22から負荷回路 31へ 電流が出力される。 In such a power supply device 10B, when the input voltage Vin rises to the peak voltage with the switch S21 turned off, a current flows as shown in FIG. 9 (a), and the first capacitor C21 and Charge the second capacitor C22. Then, the current is output from the second capacitor C22 to the load circuit 31.
[0070] ー且、入力電圧 Vinがピーク電圧となって第 1コンデンサ C21が満充電となったら、 第 1コンデンサ C21の放電が行われな 、限り、交流電源 30から第 1コンデンサ C 21 に電流が送られな 、ので、交流電源 30から第 2コンデンサ C22への電流の供給も停 止される。  If the input voltage Vin reaches the peak voltage and the first capacitor C21 is fully charged, then the first capacitor C21 is not discharged, as long as no current flows from the AC power supply 30 to the first capacitor C21. Since the current is not sent, the supply of current from the AC power supply 30 to the second capacitor C22 is also stopped.
[0071] 図 10に示すように、制御回路 12は、入力電圧 Vinが出力電圧 Voutよりも低くなる 位相(例えば入力電圧 Vinが負電圧となる位相)を放電範囲としてスィッチ S21をォ ン制御する。それ以外の位相でオンすると第 1ダイオード D21を介して入力電圧 Vin が出力端子に直接出力されてしまうからである。  As shown in FIG. 10, the control circuit 12 performs on-control of the switch S21 with a discharge range in which the input voltage Vin becomes lower than the output voltage Vout (for example, the phase when the input voltage Vin becomes a negative voltage). . If it is turned on at any other phase, the input voltage Vin is directly output to the output terminal through the first diode D21.
[0072] この放電範囲内でスィッチ S21がオンされると、図 9 (b)に示す電流経路で、第 1コ ンデンサ C21から第 2コンデンサ C22に放電がなされる。この放電経路では、第 1コ ンデンサ C21から放電された電荷は第 2コンデンサ C22に移動して第 2コンデンサ C 22を充電させる。  When the switch S21 is turned on within this discharge range, the first capacitor C21 discharges the second capacitor C22 through the current path shown in FIG. 9 (b). In this discharge path, the charge discharged from the first capacitor C21 moves to the second capacitor C22 to charge the second capacitor C22.
[0073] そして、放電後、再び入力電圧 Vinがピーク電圧まで上昇すると、入力電圧 Vinが 0Vカゝらピーク電圧に上昇する位相(図 10の充電範囲)で、交流電源 30から第 1コン デンサ C21に電流が流れて第 1コンデンサ C21が再び充電される。そして、この電流 が第 2コンデンサ C22にも供給される。  Then, after discharging, when the input voltage Vin rises to the peak voltage again, the input voltage Vin rises to 0 V and the peak voltage (charging range in FIG. 10). A current flows in C21 and the first capacitor C21 is charged again. Then, this current is also supplied to the second capacitor C22.
[0074] さらに、スィッチ S21のオン期間を放電範囲内で長くしたり短くしたりすることで、第 1コンデンサ C21の放電量が変わるので、それにより、交流電源 30から第 2コンデン サ C22に供給される電流量を制御して、負荷変動や入力電圧のピーク変動があって も出力電圧 Voutを安定させることが出来る。  Further, the discharge amount of the first capacitor C21 is changed by lengthening or shortening the on period of the switch S21 within the discharge range, whereby the AC power supply 30 supplies the second capacitor C22. By controlling the amount of current that is output, the output voltage Vout can be stabilized even if there is load fluctuation or peak fluctuation of the input voltage.
[0075] このように構成された第 3実施形態の電源装置 10Bによれば、第 1コンデンサ C21 の放電による損失の低減も図ることが出来る。 According to the power supply device 10B of the third embodiment configured as described above, the first capacitor C21 is It is also possible to reduce the loss due to the discharge of
産業上の利用可能性 Industrial applicability
本発明は、例えば交流電源カゝら IC用の電源電圧を生成する電源装置に利用する ことが出来る。その他、種々の電子回路、電子機器に電源電圧を供給する電源装置 に利用することが出来る。  The present invention can be used, for example, in a power supply device that generates a power supply voltage for an IC such as an AC power supply. In addition, it can be used as a power supply device that supplies power supply voltage to various electronic circuits and electronic devices.

Claims

請求の範囲 The scope of the claims
[1] 交流又は脈流の第 1電圧が入力される端子間に複数のコンデンサが接続され、こ れら複数のコンデンサのうち一部のコンデンサの両端の電圧から出力電圧を生成す る電源装置であって、  [1] A power supply device in which a plurality of capacitors are connected between terminals to which a first voltage of alternating current or pulsating current is input, and an output voltage is generated from the voltage across some of the plurality of capacitors. And
前記複数のコンデンサのうち 1個又は複数のコンデンサに充電された電荷を放電 可能な放電手段と、  Discharge means capable of discharging the charge stored in one or more capacitors among the plurality of capacitors;
該放電手段の放電作用をオン Zオフ制御する制御回路と、  A control circuit that performs on / off control of the discharge action of the discharge means;
を備えたことを特徴とする電源装置。  A power supply apparatus comprising:
[2] 前記出力電圧を検出する検出回路を備え、  [2] A detection circuit for detecting the output voltage is provided,
前記制御回路は、前記検出回路の出力に基づき前記放電手段の制御を行うことを 特徴とする請求の範囲第 1項に記載の電源装置。  The power supply device according to claim 1, wherein the control circuit controls the discharge means based on an output of the detection circuit.
[3] 前記制御回路は、前記第 1電圧の位相に対応させて前記放電手段をオン Zオフさ せるタイミングを決定することを特徴とする請求の範囲第 1項又は第 2項に記載の電 源装置。 [3] The discharge according to claim 1 or 2, wherein the control circuit determines the timing of turning on / off the discharge means in accordance with the phase of the first voltage. Source device.
[4] 前記複数のコンデンサのうち 1個又は複数のコンデンサの充電方向を一方向に制 限する整流素子が設けられていることを特徴とする請求の範囲第 1項〜第 3項の何 れかに記載の電源装置。  [4] The rectifier according to any one of claims 1 to 3, characterized in that a rectifying element for limiting the charging direction of one or more of the plurality of capacitors in one direction is provided. Power supply device described in.
[5] 前記放電手段は、前記複数のコンデンサのうち 1個又は複数のコンデンサの一方 の端子を他の接続点に電気的に接続または切断するスィッチにより構成されることを 特徴とする請求の範囲第 1項〜第 4項の何れかに記載の電源装置。 [5] The discharge means is characterized by comprising a switch electrically connecting or disconnecting one terminal of one or more of the plurality of capacitors to another connection point. The power supply device according to any one of items 1 to 4.
[6] 交流電圧の入力端子間に少なくとも第 1容量回路および第 2容量回路が直列に接 続され、第 2容量回路の両端の電圧力 出力電圧を生成する電源装置であって、 前記第 1容量回路と前記第 2容量回路との間に接続された整流素子と、 前記第 1容量回路の出力側の端子を他の接続点に電気的に接続または切断する スィッチと、 [6] A power supply device in which at least a first capacitance circuit and a second capacitance circuit are connected in series between input terminals of alternating voltage, and a voltage power output voltage is generated across the second capacitance circuit. A rectifying element connected between a capacitance circuit and the second capacitance circuit, and a switch electrically connecting or disconnecting the terminal on the output side of the first capacitance circuit to another connection point;
前記出力電圧を検出する検出回路と、  A detection circuit that detects the output voltage;
該検出回路の出力に基づいて前記スィッチのオン Zオフ制御を行う制御回路と、 を備えたことを特徴とする電源装置。 A control circuit for performing on / off control of the switch based on an output of the detection circuit.
[7] 前記スィッチは、前記第 1容量回路の出力側の端子と前記交流電圧の一方の入力 端子との間に接続されていることを特徴とする請求の範囲第 6項に記載の電源装置。 [7] The power supply device according to claim 6, wherein the switch is connected between the output-side terminal of the first capacitance circuit and one of the input terminals of the AC voltage. .
[8] 交流電圧を全波整流する形態に接続された複数の整流素子と、 [8] A plurality of rectifying elements connected in a form for full-wave rectifying AC voltage;
これら複数の整流素子の間で前記交流電圧が正電圧のときに電流を流す経路上 に設けられた第 1容量回路と、  A first capacitance circuit provided on a path through which current flows when the alternating voltage is a positive voltage among the plurality of rectifying elements;
前記複数の整流素子の間で前記交流電圧がマイナスのときに電流を流す経路上 に設けられた第 2容量回路と、  A second capacitance circuit provided on a path through which current flows when the alternating voltage is negative between the plurality of rectifying elements;
前記複数の整流素子により全波整流された電圧が出力される端子間に接続された 第 3容量回路と、  A third capacitance circuit connected between terminals to which a voltage full-wave rectified by the plurality of rectifying elements is output;
前記第 1容量回路および前記第 2容量回路の一端を別の接続点に電気的に接続 または切断するスィッチと、  A switch electrically connecting or disconnecting one end of the first capacitance circuit and one end of the second capacitance circuit to another connection point;
前記スィッチのオン Zオフ制御を行う制御回路とを備え、  A control circuit for performing on / off control of the switch;
前記 3容量回路の両端の電圧カゝら出力電圧を生成することを特徴とする電源装置  A power supply apparatus characterized by generating an output voltage at both ends of the three capacitance circuit.
[9] 前記スィッチは、前記第 1容量回路および前記第 2容量回路の出力側の端子と前 記第 3容量回路の一方の端子との間に接続され、 [9] The switch is connected between terminals on the output side of the first capacitance circuit and the second capacitance circuit and one terminal of the third capacitance circuit.
前記スィッチと前記第 1容量回路ならびに前記スィッチと前記第 2容量回路の間に 、これら第 1容量回路および第 2容量回路からの放電電流を流す整流素子がそれぞ れ設けられていることを特徴とする請求の範囲第 8項に記載の電源装置。  Between the switch and the first capacitance circuit and between the switch and the second capacitance circuit, there are respectively provided rectifying elements for causing discharge currents from the first capacitance circuit and the second capacitance circuit to flow. The power supply device according to claim 8, which is assumed to be.
[10] 交流電圧の入力端子間に少なくとも第 1容量回路および第 2容量回路とが直列に 接続され、第 2容量回路の両端の電圧カゝら出力電圧を生成する電源装置であって、 前記第 1容量回路から前記第 2容量回路へ放電が可能な放電手段と、 該放電手段のオン Zオフ制御を行う制御回路と、 [10] A power supply device in which at least a first capacitance circuit and a second capacitance circuit are connected in series between input terminals of alternating voltage, and a voltage cut-off output voltage is generated across the second capacitance circuit, A discharge means capable of discharging the first capacity circuit to the second capacity circuit; a control circuit for performing on-z-off control of the discharge means;
を備えて!/ヽることを特徴とする電源装置。  Power supply device characterized by having!
[11] 前記交流電圧の入力端子間で前記第 1容量回路および前記第 2容量回路に第 1 方向にのみ電流を流す整流素子を備え、 [11] A rectifying element that allows current to flow only in the first direction to the first capacitance circuit and the second capacitance circuit between input terminals of the alternating voltage,
前記放電手段は、  The discharge means is
前記第 1容量回路に対しては前記第 1方向と逆の方向で、前記第 2容量回路に対 しては前記第 1方向と同一方向に電流を流す第 1電流経路および整流素子と、 前記第 1電流経路を導通 Z切断するスィッチと、 With respect to the first capacitance circuit, the second capacitance circuit is opposed to the second capacitance circuit in the direction opposite to the first direction. Then, a first current path and a rectifying element for causing a current to flow in the same direction as the first direction, and a switch for conducting and Z-disconnecting the first current path,
力も構成されることを特徴とする請求の範囲第 10項に記載の電源装置。  The power supply according to claim 10, wherein the force is also configured.
[12] 交流電圧の入力端子間に第 1ダイオード、第 1容量回路、第 2ダイオード、第 2容量 回路とが順に直列に接続され、 [12] A first diode, a first capacitance circuit, a second diode, and a second capacitance circuit are connected in series in order between the AC voltage input terminals,
前記第 1ダイオードおよび前記第 1容量回路の接続点と前記第 2ダイオードおよび 前記第 2容量回路の接続点との間に前記スィッチが接続され、  The switch is connected between a connection point of the first diode and the first capacitance circuit and a connection point of the second diode and the second capacitance circuit,
前記第 1容量回路と前記第 2ダイオードとの接続点と前記第 2容量回路の前記入力 端子側の端子との間に第 3ダイオードが接続され、  A third diode is connected between a connection point between the first capacitance circuit and the second diode and a terminal on the input terminal side of the second capacitance circuit.
前記第 1ダイオードおよび前記第 2ダイオードが第 1方向にのみ電流を流す整流素 子を構成し、  The first diode and the second diode constitute a rectifying element that allows current to flow only in the first direction,
前記スィッチ、前記第 2容量回路、前記第 3ダイオード、前記第 1容量回路を直列に 接続された経路が前記第 1電流経路を構成し、  A path in which the switch, the second capacitance circuit, the third diode, and the first capacitance circuit are connected in series constitutes the first current path.
前記第 3ダイオードが前記第 1電流経路の電流の流れる方向を規制する前記整流 素子を構成することを特徴とする請求の範囲第 11項に記載の電源装置。  12. The power supply device according to claim 11, wherein the third diode constitutes the rectifying element that regulates the flow direction of the current in the first current path.
[13] 前記出力電圧を検出する検出回路を備え、 [13] A detection circuit for detecting the output voltage is provided,
前記制御回路は該検出回路の出力に基づいて前記スィッチのオン Zオフ制御を 行うことを特徴とする請求の範囲第 8項,第 9項,第 11項,第 12項の何れかに記載の 電源装置。  The control circuit performs on / off control of the switch on the basis of the output of the detection circuit, The control circuit according to any one of claims 8, 9, 11 and 12, characterized in that Power supply.
[14] 前記制御回路は、前記交流電圧の位相に対応させて前記スィッチをオン Zオフさ せるタイミングを決定することを特徴とする請求の範囲第 6項〜第 10項,第 12項,第 13項の何れかに記載の電源装置。  [14] The control circuit determines the timing for turning on / off the switch in accordance with the phase of the alternating voltage, the sixth to tenth, twelfth, tenth, and twelfth aspects of the present invention. The power supply device according to any one of items 13.
PCT/JP2007/050566 2006-01-26 2007-01-17 Power supply device WO2007086286A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006017929A JP2007202305A (en) 2006-01-26 2006-01-26 Power supply unit
JP2006-017929 2006-01-26

Publications (1)

Publication Number Publication Date
WO2007086286A1 true WO2007086286A1 (en) 2007-08-02

Family

ID=38309081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050566 WO2007086286A1 (en) 2006-01-26 2007-01-17 Power supply device

Country Status (2)

Country Link
JP (1) JP2007202305A (en)
WO (1) WO2007086286A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213475A (en) * 1987-03-02 1988-09-06 Tokin Corp Dc power source circuit
JPH01308170A (en) * 1988-06-03 1989-12-12 Mitsubishi Electric Corp Charging circuit for inverter apparatus
JPH02168867A (en) * 1988-09-06 1990-06-28 Toshiba Corp Power supply device using pwm control
JPH0426372A (en) * 1990-05-17 1992-01-29 Yaskawa Electric Corp Power rising system
JPH06178530A (en) * 1992-12-11 1994-06-24 Sony Corp Rectifying and smoothing circuit
JP2000125565A (en) * 1998-10-13 2000-04-28 Daihen Corp Power supply device
JP2003284344A (en) * 2002-03-20 2003-10-03 Kawasaki Heavy Ind Ltd Method and device for controlling rectifier

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213475A (en) * 1987-03-02 1988-09-06 Tokin Corp Dc power source circuit
JPH01308170A (en) * 1988-06-03 1989-12-12 Mitsubishi Electric Corp Charging circuit for inverter apparatus
JPH02168867A (en) * 1988-09-06 1990-06-28 Toshiba Corp Power supply device using pwm control
JPH0426372A (en) * 1990-05-17 1992-01-29 Yaskawa Electric Corp Power rising system
JPH06178530A (en) * 1992-12-11 1994-06-24 Sony Corp Rectifying and smoothing circuit
JP2000125565A (en) * 1998-10-13 2000-04-28 Daihen Corp Power supply device
JP2003284344A (en) * 2002-03-20 2003-10-03 Kawasaki Heavy Ind Ltd Method and device for controlling rectifier

Also Published As

Publication number Publication date
JP2007202305A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US8988053B2 (en) Multiphase DC-to-DC converter
JP5645109B2 (en) Two-wire load control device
US20090168476A1 (en) Bridgeless power factor correction circuit
CN107979265B (en) Interleaved power supply and corresponding control method
CN107408892A (en) Power supply semiconductor device
CN102332835A (en) Discharge circuit of power supply circuit and active control circuit of discharge circuit
JP5636386B2 (en) Switching power supply device and control circuit thereof
WO2014064884A1 (en) Power conversion device
US20180019684A1 (en) Power converter
EP2608381A2 (en) AC-DC converter
US20230231497A1 (en) Power Supply and Method of Supplying Power To Load
US10069438B2 (en) Power converter with capacitor voltage balancing
JP3870916B2 (en) Sawtooth generator
WO2015072009A1 (en) Bidirectional converter
TWI547083B (en) Control circuit of power converter and related method
JP6834366B2 (en) Power supply
JP5535290B2 (en) Bidirectional converter
WO2007086286A1 (en) Power supply device
JP5593104B2 (en) Ripple converter
AU2004310594B2 (en) Electric power converter apparatus
JP2011120466A (en) Power regeneration device
JP4797389B2 (en) Rectifier circuit
JPH11318082A (en) Higher harmonics suppressed switching power source
CN105515383A (en) Switching controlling circuit, converter, and switching controlling method
RU2689304C2 (en) Buffering capacitor for rectifier with diode bridge with controlled discharge current

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706892

Country of ref document: EP

Kind code of ref document: A1