WO2007086171A1 - Optical pickup and information processing device - Google Patents

Optical pickup and information processing device Download PDF

Info

Publication number
WO2007086171A1
WO2007086171A1 PCT/JP2006/321032 JP2006321032W WO2007086171A1 WO 2007086171 A1 WO2007086171 A1 WO 2007086171A1 JP 2006321032 W JP2006321032 W JP 2006321032W WO 2007086171 A1 WO2007086171 A1 WO 2007086171A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
holding body
permanent magnet
transmissive element
optical pickup
Prior art date
Application number
PCT/JP2006/321032
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Kojima
Kanji Wakabayashi
Kouretsu Boku
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007086171A1 publication Critical patent/WO2007086171A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops

Definitions

  • the present invention relates to an optical pickup and an information processing apparatus.
  • a DVD digital versatile disc
  • CD Compact Disc Interactive
  • information recording medium optical disc
  • the DVD In addition to shortening the wavelength of laser light by using a blue laser or the like, in order to further increase the recording density, development of a technique for providing a plurality of recording layers on one optical disk is also progressing. For example, if it becomes possible to obtain an optical disc having two recording layers, the DVD has a recording layer with a recording density of one layer in combination with the above-mentioned shortening of the laser beam wavelength and the use of an objective lens having a large NA. About 10 times.
  • the optical disc apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-195086 discloses an optical pickup provided with a light beam transmission adjusting means (intensity filter) that can be taken in and out substantially perpendicularly to the laser beam path.
  • the intensity filter is inserted into the laser beam path during reproduction, and the intensity filter is moved so as to remove the path force of the emitted light during recording.
  • the quantum noise of the semiconductor laser can be kept low, and high quality reproduction is possible.
  • this optical disk apparatus is provided with an intensity filter that can be taken in and out perpendicularly to the laser beam path, a space for moving the intensity filter is required. As a result, an optical pickup is required. There exists a problem that an apparatus will enlarge.
  • the following optical pickup device provided with an intensity filter that moves on the optical axis by rotation instead of the intensity filter that moves linearly on the optical axis is considered. It is done.
  • the optical pickup will be described below with reference to FIGS. 5 to 7A and 7B.
  • FIG. 5 shows a configuration of a conventional optical pickup device.
  • the GaN-based semiconductor laser light source 30 emitting blue light emits a blue light beam
  • the light beam enters the light beam transmission adjusting means 31.
  • the light beam transmission adjusting means 31 is rotated to a predetermined position according to whether data is read from the optical disk 32, and the position of the intensity filter is adjusted.
  • the light beam that has passed through the light beam transmission adjusting means 31 is reflected by the beam splitter 33, converted into parallel light by the collimating lens 34, reflected by the mirror 35, transmitted through the objective lens 36, and condensed on the optical disk 32.
  • the collected light beam is reflected by the recording layer of the optical disc 32, reaches the beam splitter 33 through the reverse path, passes through the beam splitter 33, passes through the multilens 37, and is a photodiode. Incident on 38.
  • the photodiode 38 is a so-called photodetector, and outputs an electrical signal based on the position and intensity of incident light. Based on the electrical signal, data is reproduced.
  • FIG. 6A is a perspective view when the light beam passes through the optical filter of the light beam transmission adjusting unit 31 and corresponds to the arrangement at the time of data reading.
  • Figure 6B shows that the light beam is a light beam.
  • FIG. 6 is a perspective view when the optical filter of the transmission adjustment means 31 does not pass through, and corresponds to the arrangement at the time of data writing.
  • the light beam transmission adjusting means 31 has a first transmissive element 1 and a second transmissive element.
  • the first transmissive element 2 is coated with an optical filter 2a having a transmittance of 50%, and attenuates the optical power of the transmitted light beam.
  • the first transmission element 1 is not coated with an optical filter, and transmits the light beam 39 while maintaining the optical power of the light beam.
  • the light beam transmission adjusting means 31 includes a support means 40 for supporting the first transmissive element 1 and the second transmissive element 2, and the first transmissive element 1 and the second transmissive element 2 on the rotating shaft 12.
  • Rotation drive means 41 for rotating around is included.
  • the rotation axis 12 is parallel to the first transmission element 1 and the second transmission element 2.
  • the light beam transmission adjusting means 31 performs rotation driving around the rotation axis 12 using the rotation driving means 41, whereby the light beam 39 is transmitted through the first transmission element 1 (FIG. 6B),
  • the key (FIG. 6A) that transmits the second transmissive element 2 can be switched. That is, it is possible to switch whether or not the light beam 39 is transmitted through the optical filter 2a.
  • the light power when the light beam 39 is transmitted through the optical filter 2a is 50% of the light power when it is not transmitted.
  • FIG. 7A shows the state when there is no deviation of the incident angle of the light beam to the second transmissive element 2.
  • the first and second transmissive elements 1 and 2 each have a thickness t.
  • FIG. 7B shows the state of optical axis deviation when there is a deviation of the incident angle of the light beam to the second transmission element 2.
  • the position of the return spot on the photodiode 38 when it is reflected by the optical disk 32 and enters the photodiode 38 is shifted. Even if the optical axis of the first transmissive element 1 is d, the photodiode 38 can be adjusted and assembled according to the position of the return spot at that time. If the optical axis deviation of the second transmissive element 2 is dA, the return spot position on the photodiode 38 is shifted due to the difference in optical axis deviation (dA-d).
  • an object of the present invention is to provide an optical pickup that can improve switching angle accuracy with a simple configuration without requiring strict component accuracy and assembly accuracy.
  • the optical pickup according to claim 1 of the present invention transmits a light source that emits a light beam, a light beam transmission adjusting unit that adjusts a transmission amount of the light beam, and the light beam light beam transmission adjusting unit.
  • the light beam transmission adjusting means includes a first transmission element having a first transmittance and the first transmittance.
  • a second transmissive element having a higher second transmittance, and the first transmissive element and the optical beam driven to rotate about a rotation axis parallel to the second transmissive element are transmitted through the first transmissive element.
  • a rotation drive switching mechanism that switches between one position and a second position that transmits the second transmission element, and the rotation drive switching mechanism is connected to a permanent magnet. It is configured so as to be selectively urged to the switching position between the first position and the second position by the suction force, so that the light beam having the first light power and the light beam having the second light power are selectively output. It is characterized by comprising.
  • the optical pickup according to claim 2 of the present invention is the optical pickup according to claim 1, wherein the rotation drive switching mechanism holds the first transmissive element and the second transmissive element. And a holding body provided with a hole parallel to the second transmissive element, a first permanent magnet for generating an attracting force for maintaining the first position, which is respectively attached to the holding body, and the second position. A second permanent magnet that generates an attractive force for engaging with a holding shaft that is passed through the hole of the holding body, and the holding body is rotatable around the holding shaft in a state where the holding body is rotatable.
  • the first iron core is concentric with the first iron core and gives a repulsive force to the first permanent magnet
  • the second iron core for adsorbing the first coil and the second permanent magnet and the second coil concentric with the second iron core and providing a repulsive force to the second permanent magnet are characterized in that .
  • the optical pickup according to claim 3 of the present invention is the optical pickup according to claim 2, wherein the first transmissive element mounting surface on which the first transmissive elements orthogonal to each other are mounted on the holding body, and the first 2 a second transmissive element mounting surface for mounting the transmissive element, a first reference surface that is in parallel with the first transmissive element mounting surface and abuts the base to hold the first position, and the second transmissive element mounted A second reference surface that is in contact with the base to hold the second position parallel to the surface, and the base includes the first reference surface and the second reference surface of the holder. It is characterized in that a reference plane that abuts is formed.
  • the optical pickup according to claim 4 of the present invention is the optical pickup according to claim 2, wherein the first permanent magnet has a magnetic field direction orthogonal to the first reference plane and the first transmission element.
  • the second permanent magnet is mounted on the holding body so as to be offset from the center, and the second permanent magnet is held so that the magnetization direction is orthogonal to the second reference plane and the central force of the second transmitting element is offset.
  • the first coil is mounted on the base so that the axis is perpendicular to the reference plane and is opposed to the first permanent magnet at the first position, and the second coil is mounted on the base.
  • the shaft is mounted on the base so that an axis is perpendicular to the reference plane and is opposed to the second permanent magnet at the second position.
  • the optical pickup according to claim 5 of the present invention is the optical pickup according to claim 3, wherein the first reference surface and the second reference surface of the holding body each have a plane determined by three small projections.
  • the tip shape of each of the small protrusions is a spherical surface.
  • the optical pickup according to claim 6 of the present invention is characterized in that, in claim 1, the light source is a semiconductor laser that emits light in a wavelength region of green power and ultraviolet light.
  • the optical pickup according to claim 7 of the present invention is characterized in that, in claim 1, the light source is a semiconductor laser that emits light in a blue wavelength region.
  • the information processing device is detected by the optical pickup according to claim 1 and the photodetector further including a photodetector that detects reflected light from the information recording medium. And a signal processing circuit for generating at least one of a reproduction signal and a servo signal based on the reflected light.
  • the information processing apparatus is capable of loading a plurality of types of information recording media having different numbers of recording layers according to claim 8, and loaded information
  • An information processing apparatus that reads and Z or writes data by emitting a light beam having a magnitude of optical power corresponding to the number of recording layers to a recording medium, wherein the number of recording layers is one.
  • the rotational drive switching mechanism switches to the first position to emit a light beam having the first optical power to the recording layer, and the number of recording layers includes a plurality of information.
  • the rotation drive switching mechanism switches to the second position to emit a light beam having the second optical power to one of the recording layers.
  • the light beam transmission adjusting means for switching the light power of the light beam by rotationally driving two transmitting elements having different transmittances is arranged between the first position and the second position by the attractive force of a permanent magnet. Since it is configured to be selectively biased to the position switching position, it can improve the switching angle accuracy without requiring strict component accuracy and assembly accuracy with a simple configuration, and also has low power consumption and reliability. High, because of low manufacturing cost, high reliability, optical pickup Can be realized.
  • FIG. 1 is a perspective view of a rotary drive switching mechanism 26 that is a light beam transmission adjusting unit according to the present invention.
  • FIG. 2 is an exploded view of a rotary drive switching mechanism 26 that is a light beam transmission adjusting means according to the present invention.
  • FIG. 3A is a side view showing a first switching position where the light beam is transmitted through the first transmission element 1.
  • FIG. 3B is a second switching position where the light beam is transmitted through the second transmission element 2.
  • FIG. 4 is a diagram for explaining a relative angle error with respect to the light beam at the first and second switching positions.
  • FIG. 5 is a configuration diagram of a conventional optical pickup device.
  • FIG. 6A is a perspective view when the light beam is transmitted through the optical filter of the light beam transmission adjusting unit 31.
  • FIG. 6B is a perspective view when the light beam is not transmitted through the optical filter of the light beam transmission adjusting unit 31.
  • FIG. 7A A diagram showing a state where there is no deviation of the incident angle of the light beam to the second transmission element 2.
  • FIG. 7B Light when there is a deviation of the incident angle of the light beam to the second transmission element 2. Diagram showing shaft misalignment
  • FIG. 1 is a perspective view of a rotation drive switching mechanism 26 which is mounted on an optical pickup according to the present invention and is a light beam transmission adjusting means.
  • FIG. 2 shows an exploded view of the rotary drive switching mechanism 26.
  • FIG. 3A is a side view showing the first switching position where the rotation drive switching mechanism 26 transmits the light beam through the first transmission element 1.
  • FIG. 3B is a side view showing the second switching position where the light beam is transmitted through the second transmissive element 2.
  • the configuration of the rotary drive switching mechanism 26 will be described with reference to FIGS. 1 to 3A and 3B.
  • the rotation drive switching mechanism 26 includes a base 3, first and second coils 4 and 5, first and second iron cores 6 and 7, a holding body 8, and first and second Permanent magnets 9 and 10, first and second transmission elements 1 and 2, and a cover 11 are included.
  • the base 3 supports a coil holding portion 14 for mounting the first and second iron cores 6 and 7 and the first and second coils 4 and 5, and a holding body 8 that is rotationally driven. Holds the shaft 12 (described later) of the cover 11
  • the holding body regulating surface 16 is formed in a direction perpendicular to the axial centers of the first and second coils 4 and 5 and the holding body rotating surface 15. If the material of the base 3 is a structure according to the present invention, a resin material can be used because accuracy and strength are not particularly required.
  • the first coil 4 and the second coil 5 are connected in series, the first iron core 6 is inserted into the first coil 4, and the second iron core 7 is inserted into the second coil 5, respectively.
  • Each core is bonded and fixed to the coil holding portion 14 of the base 3 in a state in which the core is parallel to the optical axis of the light beam.
  • the end surfaces 6A and 7A of the first and second iron cores 6 and 7 whose core length L2 is slightly larger than the coil length L1 are fixed in close contact with the end surface 17 on the holding body regulating surface 16 side. Yes.
  • the holding body 8 is formed with a first surface 18 and a second surface 19 that are orthogonal to each other.
  • the first transmissive element 1 is bonded and fixed to the first surface 18.
  • the second transmissive element 2 is bonded and fixed to the second surface 19.
  • the holding body 8 is formed with six small protrusions 20a, 20b, 20c and 21a, 21b, 21c force ⁇ whose tip is spherical.
  • the three yarns / J, projections 20a, 20b, 20c and 2la, 21b, 21c are formed on a plane 22 and a plane 23 that are substantially orthogonal to each other. As shown in FIGS.
  • the first reference surface 20A formed by the tips of the small protrusions 20a, 20b, and 20c is formed in parallel with the first surface 18.
  • the second reference surface 21A formed by the tips of the small protrusions 21a, 21b, 21c is formed in parallel to the second surface 19.
  • the holder 8 is provided with a first permanent magnet 9 and a second permanent magnet 10 as shown by broken lines in FIGS. 3A and 3B.
  • the first permanent magnet 9 is attached in a direction in which the magnetic field direction is perpendicular to the first reference plane 20A.
  • the second permanent magnet 10 is attached so that the magnetic field direction is orthogonal to the second reference plane 21A.
  • the end surface a of the first permanent magnet 9 is disposed close to the first reference surface 20A.
  • the end surface of the second permanent magnet 10 is disposed close to the second reference surface 21A.
  • the polarities of the first and second permanent magnets 9 and 10 are bonded and fixed so that the end surface a of the first permanent magnet 9 and the end surface b of the second permanent magnet 10 have opposite polarities. Yes. That is, as shown in FIG. 3A, if the end surface a of the first permanent magnet 9 is an N pole, the end surface b of the second permanent magnet 10 is disposed at the S pole. As shown by a broken line in FIG. 2, a hole 24 is formed in the central portion of the holding body 8 in a direction parallel to the first and second surfaces 18 and 19 corresponding to the hole 13. Te!
  • the distance L3 between the center of the hole 24 and the first reference surface 20A and the distance L4 between the first reference surface 21A are equal and the holder of the base 3
  • the distance L5 between the restriction surface 16 and the hole 24 is formed to be equal.
  • the diameter of the hole 24 is set to be about 10% larger than the shaft diameter of the shaft 12 of the cover 11 described later.
  • a resin material can be used as the material of the holding body 8.
  • the cover 11 is formed with a holding shaft 12 which is inserted into the shaft 11a and the hole 24 of the holding body 8 so as to hold the holding body 8 in a rotatable manner.
  • the cover 11 is fixed to the base 3 by fitting into the hole 13 of the base 3 and the tip of the shaft 11 a of the cover 11 is fitted into the hole 25 of the base 3.
  • the base 3 and the cover 11 connected in this manner are configured so that part of the adhesive supplied to the two recesses 3a and 3b of the base 3 is in two places for storing the adhesive formed in the cover 11. It flows into the 1 lb groove and is cured and secured.
  • the holding body 8 is set to have a clearance of about 0.1 mm in the direction of the holding shaft 12, and the holding body 8 has a diameter of the holding shaft 12 as described above.
  • the holding shaft diameter is ⁇ 1. Omm
  • the diameter of the hole 24 of the holding body 8 is ⁇ 1.1 mm.
  • the holding body 8 is rotated in any direction.
  • an attractive force is generated between the first permanent magnet 9 and the first iron core 6, and as a result, the small protrusions 20a, 20b, and 20c become the holding body regulating surface. Rotates until it contacts 16
  • FIG. 3A shows a state in which the small protrusions 20a, 20b, 20c are in contact with the holding body regulating surface 16, that is, a state in which the first transmission element is in a first switching position orthogonal to the light beam.
  • the distance from the holding body regulating surface 16 of the base 3 to the hole 24 and the distance from the first reference surface 20A of the holding body 8 to the hole 24 are set to be equal to each other.
  • the small protrusions 20a, 20b, and 20c that hold the hole 24 and the holding shaft 12 coaxially and do not touch each other are held. It is in contact with the holding body regulating surface 16.
  • the first transmissive element 1 parallel to the first reference surface is parallel to the holding body regulating surface 16.
  • the first coil 4 When in the first switching position in FIG. 3A, the first coil 4 has a pulse that generates a magnetic force in a direction repelling the N pole, which is the polarity of the end surface a of the first permanent magnet 9. Apply current. At this time, the magnetic force generated by this current and the permanent magnet repel, but if the current is set so that the repulsive force exceeds the attractive force between the first permanent magnet 9 and the first iron core 6, a pulse current is applied. As a result, the holding body 8 is given a counterclockwise rotational force and starts rotating. The pulse current application time is set to be short enough until the holding body 8 starts to rotate and until the holding body 8 exceeds the intermediate position between the first switching position and the second switching position.
  • FIG. 3B shows a state in which the second permanent magnet 10 and the second iron core 7 are attracted and the small protrusions 21a, 21b, 21c are in contact with the holding body regulating surface 16, that is, the second transmission element is a light beam.
  • Switching from the second switching position to the first switching position again means that a pulse current having a direction opposite to that of the pulse current that flows when switching from the first switching position to the second switching position is reversed.
  • the second permanent magnet 10a On the end face of the coil 5 on the holding body regulating surface 16 side, a reverse magnetic field is generated, but the second permanent magnet 10a has a polarity opposite to that of the first permanent magnet 9a.
  • a repulsive force is generated between the coil 5 and the second permanent magnet 10, and the holding body rotates.
  • coil outer diameter is ⁇ 2.3mm
  • coil length is 3.2mm
  • coil linear is ⁇ ⁇ . 08mm
  • coil resistance is 7.2 ⁇
  • applied voltage is 5V
  • the pulse current is 700 mA and the application time is about 40 msec. Since the switching operation is completed in such a short application time, the power consumption of the coil is very small, and the coil heat generation is almost V. Therefore, there is no adverse effect on the laser life reduction due to temperature rise. .
  • the power having the first transmittance is obtained by switching the light power of the light beam by switching between the transmissive element coated with the optical filter and the transmissive element coated with no optical filter. 1
  • the transmissive element and the second transmissive element having a second transmittance higher than the first transmittance are obtained by switching the optical power of the light beam by switching two transmissive elements having different light transmittances.
  • the light beam is a semiconductor laser that emits blue light.
  • it may be a semiconductor laser that emits light in the wavelength range from green to ultraviolet!
  • the light beam transmission adjusting means switches the light power of the light beam between reading and writing data.
  • the optical power of the light beam may be switched between the case where the information recording medium has one recording layer and the case where the information recording medium has two recording layers.
  • the light beam transmission adjusting means can improve the switching angle accuracy without requiring strict, component accuracy and assembly accuracy with a simple configuration, and also has low power consumption and high reliability.
  • a low-cost and highly reliable optical pickup, and an information processing apparatus having such an optical pickup can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

Displacement of an optical axis occurring in light beam transmission regulation means for regulating optical power of a light beam is reduced by a simple mechanism. The optical pickup has a holding body for holding a first transmission element and a second transmission element that cross each other perpendicularly and having a permanent magnet fixed to the holding body, and also has a base for holding a rotating shaft and having mounted on it a core and a coil that switch over the holding body between first and second switchover positions or hold the holding body at the switchover positions. At the first switchover position where the light beam passes through the first transmission element, the permanent magnet and the core are attracted and held by each other in an attitude where a small projection of the holding body is in contact with a regulation surface of the base. At the second switchover position where the light beam passes through the second transmission element, the permanent magnet and the core are attracted and held by each other and positioned in an attitude where the small projection of the holder in contact with the regulation surface of the base. The holding body is switched over between the first and second switchover positions by applying a pulse to the coil.

Description

明 細 書  Specification
光ピックアップおよび情報処理装置  Optical pickup and information processing apparatus
技術分野  Technical field
[0001] 本発明は、光ピックアップおよび情報処理装置に関する。  [0001] The present invention relates to an optical pickup and an information processing apparatus.
背景技術  Background art
[0002] DVD(digital versatile disc)は、デジタルデータを CD (Compact Disc Interacti ve)の約 6倍の記録密度で記録することが可能であり、映画や音楽などの大容量のデ ジタルデータを書き込むことができる情報記録媒体 (光ディスク)として知られて 、る。 近年は、記録対象となる情報の情報量が増大しているため、さらに容量の大きい情 報記録媒体が求められている。  [0002] A DVD (digital versatile disc) can record digital data at a recording density about 6 times that of a CD (Compact Disc Interactive), and writes large volumes of digital data such as movies and music. It is known as an information recording medium (optical disc). In recent years, since the amount of information to be recorded has increased, an information recording medium having a larger capacity has been demanded.
[0003] 光ディスクの情報記録媒体の容量を大きくするためには、情報の記録密度を高くす る必要がある。これは一般に、データの書き込み時および読み出し時に光ディスクに 放射されるレーザ光のスポット径を小さくすることによって実現される。そして、光のス ポット径を小さくするためには、レーザ光の波長をより短くし、かつ、対物レンズの開 口数 (NA)を大きくすればよい。さらに、例えば波長 405nmの青色レーザ光と、 NA 0. 85の対物レンズを使用することによって、現在の DVDのさらに 5倍の記録密度で 情報を記録することができる。  [0003] In order to increase the capacity of an information recording medium such as an optical disc, it is necessary to increase the information recording density. This is generally realized by reducing the spot diameter of the laser beam emitted to the optical disc when writing and reading data. In order to reduce the spot diameter of the light, it is only necessary to shorten the wavelength of the laser light and increase the numerical aperture (NA) of the objective lens. Furthermore, for example, by using a blue laser beam having a wavelength of 405 nm and an objective lens having an NA of 0.85, information can be recorded at a recording density five times that of the current DVD.
[0004] 青色レーザ等を用いてレーザ光の短波長化することに加え、さらに記録密度を高め るため、 1枚の光ディスクに複数の記録層を設ける技術の開発も進んでいる。例えば 、 2層の記録層を有する光ディスクを得ることが可能になれば、上述のレーザ光の短 波長化および NAの大きな対物レンズの使用と併せて、記録密度は 1層の記録層を 有する DVDの約 10倍になる。  [0004] In addition to shortening the wavelength of laser light by using a blue laser or the like, in order to further increase the recording density, development of a technique for providing a plurality of recording layers on one optical disk is also progressing. For example, if it becomes possible to obtain an optical disc having two recording layers, the DVD has a recording layer with a recording density of one layer in combination with the above-mentioned shortening of the laser beam wavelength and the use of an objective lens having a large NA. About 10 times.
[0005] し力しながら、青色レーザを光源とする光ディスク装置では、青色レーザにおける再 生用の光パワーのマージンは極めて小さいため、光源の量子ノイズが問題となる。  However, in an optical disc apparatus using a blue laser as a light source, the margin of light power for reproduction in the blue laser is extremely small, so that quantum noise of the light source becomes a problem.
[0006] そこで特開 2000— 195086公報の光ディスク装置では、レーザ光の経路に対して 概ね垂直に出し入れ可能に光ビーム透過調整手段 (強度フィルタ)を設けた光ピック アップが開示されている。 [0007] この光ディスク装置は、再生時には強度フィルタをレーザ光の経路に挿入し、記録 時には強度フィルタを出射光の経路力も外すように移動させる。これにより、例えば半 導体レーザの量子ノイズを低く保つことができ、良質の再生が可能となって 、る。 [0006] In view of this, the optical disc apparatus disclosed in Japanese Patent Application Laid-Open No. 2000-195086 discloses an optical pickup provided with a light beam transmission adjusting means (intensity filter) that can be taken in and out substantially perpendicularly to the laser beam path. In this optical disc apparatus, the intensity filter is inserted into the laser beam path during reproduction, and the intensity filter is moved so as to remove the path force of the emitted light during recording. Thereby, for example, the quantum noise of the semiconductor laser can be kept low, and high quality reproduction is possible.
[0008] しかし、この光ディスク装置はレーザ光の経路に対して垂直かつ直線的に出し入れ 可能に強度フィルタを設けているため、強度フィルタが移動するための空間が必要に なる、その結果、光ピックアップ装置が大型化してしまうという問題がある。  However, since this optical disk apparatus is provided with an intensity filter that can be taken in and out perpendicularly to the laser beam path, a space for moving the intensity filter is required. As a result, an optical pickup is required. There exists a problem that an apparatus will enlarge.
[0009] このような問題を解決するために、光軸上に直線的に移動する強度フィルタに代え て回転によって光軸上に移動する強度フィルタを設けた次のような光ピックアップ装 置が考えられる。以下、図 5から図 7A,図 7Bを参照しながら、この光ピックアップを説 明する。  In order to solve such a problem, the following optical pickup device provided with an intensity filter that moves on the optical axis by rotation instead of the intensity filter that moves linearly on the optical axis is considered. It is done. The optical pickup will be described below with reference to FIGS. 5 to 7A and 7B.
[0010] 図 5は、従来の光ピックアップ装置の構成を示す。 GaN系の青色発光する半導体 レーザ光源 30が青色の光ビームを放射すると、光ビームは光ビーム透過調整手段 3 1に入射する。光ビーム透過調整手段 31は、光ディスク 32からのデータの読み出し 時力 光ディスク 32へのデータの書き込み時かに応じて所定の位置に回動され、強 度フィルタの位置が調整されて 、る。光ビーム透過調整手段 31を透過した光ビーム は、ビームスプリッタ 33で反射され、コリメートレンズ 34で平行光にされ、ミラー 35で 反射され、対物レンズ 36を透過して、光ディスク 32上に集光される。  FIG. 5 shows a configuration of a conventional optical pickup device. When the GaN-based semiconductor laser light source 30 emitting blue light emits a blue light beam, the light beam enters the light beam transmission adjusting means 31. The light beam transmission adjusting means 31 is rotated to a predetermined position according to whether data is read from the optical disk 32, and the position of the intensity filter is adjusted. The light beam that has passed through the light beam transmission adjusting means 31 is reflected by the beam splitter 33, converted into parallel light by the collimating lens 34, reflected by the mirror 35, transmitted through the objective lens 36, and condensed on the optical disk 32. The
[0011] データの読み出し時には、集光された光ビームは光ディスク 32の記録層で反射さ れ、逆の経路でビームスプリッタ 33に至り、ビームスプリッタ 33を透過して、マルチレ ンズ 37を経てフォトダイオード 38に入射する。フォトダイオード 38は、いわゆる光検 出器であり、入射した光の位置および強度に基づいて電気信号を出力する。その電 気信号に基づいて、データが再現される。  At the time of reading data, the collected light beam is reflected by the recording layer of the optical disc 32, reaches the beam splitter 33 through the reverse path, passes through the beam splitter 33, passes through the multilens 37, and is a photodiode. Incident on 38. The photodiode 38 is a so-called photodetector, and outputs an electrical signal based on the position and intensity of incident light. Based on the electrical signal, data is reproduced.
[0012] 一方、データの書き込み時には、集光された光ビームによって情報層上に光スポッ トが形成される。その結果、光スポットが形成された部分の記録層の状態 (例えば結 晶状態)が書き込み対象のデータに応じて変化する。これにより光ディスク 32には、 記録層の状態の変化としてデータが書き込まれる。  On the other hand, when data is written, an optical spot is formed on the information layer by the condensed light beam. As a result, the state of the recording layer where the light spot is formed (for example, the crystalline state) changes according to the data to be written. As a result, data is written on the optical disc 32 as a change in the state of the recording layer.
[0013] 図 6Aは、光ビームが光ビーム透過調整手段 31の光学フィルタを透過するときの斜 視図であり、データ読み出し時の配置に対応する。また図 6Bは、光ビームが光ビー ム透過調整手段 31の光学フィルタを透過しないときの斜視図であり、データ書き込 み時の配置に対応する。光ビーム透過調整手段 31は第 1の透過素子 1と第 2の透過 素子を有している。第 1の透過素子 2には透過率が 50%の光学フィルタ 2aが塗布さ れており、透過する光ビームの光パワーを減衰させる。一方、第 1の透過素子 1には 光学フィルタは塗布されておらず、光ビームの光パワーを概ね維持した状態で光ビ ーム 39を透過させる。また光ビーム透過調整手段 31は、第 1の透過素子 1と第 2の透 過素子 2を支持する支持手段 40と、第 1の透過素子 1と第 2の透過素子 2を回転軸 1 2の回りに回転駆動する回転駆動手段 41を含んで 、る。回転軸 12は第 1の透過素 子 1と第 2の透過素子 2に平行である。光ビーム透過調整手段 31は、回転駆動手段 4 1を利用して回転軸 12の回りの回転駆動を行うことにより、光ビーム 39が第 1の透過 素子 1を透過するカゝ(図 6B)、第 2の透過素子 2を透過するカゝ(図 6A)を切り替えるこ とができる。すなわち、光ビーム 39が光学フィルタ 2aを透過する力、しないかを切り替 えることができる。光ビーム 39が光学フィルタ 2aを透過する場合の光パワーは透過し ない場合の光パワーの 50%となる。 FIG. 6A is a perspective view when the light beam passes through the optical filter of the light beam transmission adjusting unit 31 and corresponds to the arrangement at the time of data reading. Figure 6B shows that the light beam is a light beam. FIG. 6 is a perspective view when the optical filter of the transmission adjustment means 31 does not pass through, and corresponds to the arrangement at the time of data writing. The light beam transmission adjusting means 31 has a first transmissive element 1 and a second transmissive element. The first transmissive element 2 is coated with an optical filter 2a having a transmittance of 50%, and attenuates the optical power of the transmitted light beam. On the other hand, the first transmission element 1 is not coated with an optical filter, and transmits the light beam 39 while maintaining the optical power of the light beam. The light beam transmission adjusting means 31 includes a support means 40 for supporting the first transmissive element 1 and the second transmissive element 2, and the first transmissive element 1 and the second transmissive element 2 on the rotating shaft 12. Rotation drive means 41 for rotating around is included. The rotation axis 12 is parallel to the first transmission element 1 and the second transmission element 2. The light beam transmission adjusting means 31 performs rotation driving around the rotation axis 12 using the rotation driving means 41, whereby the light beam 39 is transmitted through the first transmission element 1 (FIG. 6B), The key (FIG. 6A) that transmits the second transmissive element 2 can be switched. That is, it is possible to switch whether or not the light beam 39 is transmitted through the optical filter 2a. The light power when the light beam 39 is transmitted through the optical filter 2a is 50% of the light power when it is not transmitted.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] しかしながら、光ビーム透過調整手段 31の支持手段 40を回転させて第 1,第 2の透 過素子 1, 2を切り替える構成にすれば、小型化の実現を可能とする一方で、光ビー ム透過調整手段 31の部品精度、組立精度を向上し、搭載時および動作時の角度ず れを小さくしなければならないという他の問題が発生する。  [0014] However, if the support means 40 of the light beam transmission adjusting means 31 is rotated to switch the first and second transmission elements 1 and 2, miniaturization can be realized, while light can be reduced. There is another problem that the component accuracy and assembly accuracy of the beam transmission adjusting means 31 are improved, and the angle deviation during mounting and operation must be reduced.
[0015] 図 7A,図 7Bにより具体的に説明する。図 7Aは第 2の透過素子 2への光ビームの 入射角ずれがないときの状態を示す。第 1,第 2の透過素子 1, 2はそれぞれ厚み tを 持っている。一方、図 7Bは第 2の透過素子 2への光ビームの入射角ずれが存在する ときの光軸のずれの状態を示す。  [0015] This will be specifically described with reference to FIGS. 7A and 7B. FIG. 7A shows the state when there is no deviation of the incident angle of the light beam to the second transmissive element 2. The first and second transmissive elements 1 and 2 each have a thickness t. On the other hand, FIG. 7B shows the state of optical axis deviation when there is a deviation of the incident angle of the light beam to the second transmission element 2.
[0016] 図 7Bに示すように、第 2の透過素子 2の面が光軸と垂直でないとき (入射角ずれが 起きたとき)は、第 2の透過素子 1の入射面 2aにおいて光が屈折するため透過素子 2 に対する光ビームの入射時の光軸と出射時の光軸とがずれてしまう。図 7A,図 7Bに よれば光ビームの透過距離は厚み tに等しい。よって光ビームの入射角ずれ hが起き ると、透過距離は厚み tに比例して長くなるため光軸ずれ dが生じる。当然、以上は第[0016] As shown in FIG. 7B, when the surface of the second transmissive element 2 is not perpendicular to the optical axis (when an incident angle shift occurs), the light is refracted at the incident surface 2a of the second transmissive element 1. Therefore, the optical axis when the light beam is incident on the transmission element 2 and the optical axis when it is emitted are shifted. According to Figs. 7A and 7B, the transmission distance of the light beam is equal to the thickness t. Therefore, the incident angle deviation h of the light beam occurs. Then, since the transmission distance becomes longer in proportion to the thickness t, an optical axis shift d occurs. Of course, the above is the first
1の透過素子 1に関しても同様である。 The same applies to one transmission element 1.
[0017] 光軸ずれ dが生じると、光ディスク 32で反射されフォトダイオード 38に入射したとき のフォトダイオード 38上での戻りスポットの位置がずれる。第 1の透過素子 1に光軸ず れ dがあっても、そのときの戻りスポットの位置に合わせてフォトダイオード 38を調整 組み立てすればよいが、第 2の透過素子 2に切り替えたときの第 2の透過素子 2の光 軸ずれが dAとすると光軸ずれの差(dA— d)によってフォトダイオード 38の上の戻り スポット位置がずれる。 When the optical axis deviation d occurs, the position of the return spot on the photodiode 38 when it is reflected by the optical disk 32 and enters the photodiode 38 is shifted. Even if the optical axis of the first transmissive element 1 is d, the photodiode 38 can be adjusted and assembled according to the position of the return spot at that time. If the optical axis deviation of the second transmissive element 2 is dA, the return spot position on the photodiode 38 is shifted due to the difference in optical axis deviation (dA-d).
[0018] したがって、実際により問題となるのは第 1の透過素子 1と第 2の透過素子 2の光軸 ずれの差(dA— d)である。また、厚み tが小さければ光軸ずれ d, dAは小さくなるが 厚み tを小さくするには透過素子の取扱いや組立作業上限界がある。一例として厚み tが 0. 3mmの場合、許容できる光軸ずれの差は第 1の透過素子 1の入射角ずれを h 、第 2の透過素子 2の入射角ずれを hAとすると (hA— h) < 1° であり、信頼性を考慮 すると組立の初期では (hA— h) < 0. 5° の精度が必要となる。この角度精度を実現 するためには、回転駆動手段 41の部品精度や支持手段 40に対する第 1,第 2の透 過素子 1, 2の組立精度に厳しいものが要求され量産性を考慮した安価な装置を提 供することが困難である。  [0018] Therefore, what actually becomes a problem is the difference (dA-d) in the optical axis misalignment between the first transmissive element 1 and the second transmissive element 2. Further, if the thickness t is small, the optical axis deviations d and dA are small. However, there are limitations in handling and assembly work of the transmissive element to reduce the thickness t. As an example, when the thickness t is 0.3 mm, the allowable difference in the optical axis deviation is h (hA—h) where h is the incident angle deviation of the first transmissive element 1 and hA is the incident angle deviation of the second transmissive element 2. ) <1 °, and considering the reliability, an accuracy of (hA—h) <0.5 ° is required at the beginning of assembly. In order to achieve this angular accuracy, it is required that the parts accuracy of the rotary drive means 41 and the assembly accuracy of the first and second transparent elements 1 and 2 with respect to the support means 40 are required, and it is inexpensive considering mass productivity. It is difficult to provide equipment.
[0019] そこで本発明は、簡単な構成で厳しい部品精度、組立精度を必要とせず切り替え 角度精度を向上させることができる光ピックアップを供給することを目的とする。  Accordingly, an object of the present invention is to provide an optical pickup that can improve switching angle accuracy with a simple configuration without requiring strict component accuracy and assembly accuracy.
課題を解決するための手段  Means for solving the problem
[0020] 本発明の請求項 1記載の光ピックアップは、光ビームを発する光源と、前記光ビー ムの透過量を調整する光ビーム透過調整手段と、前記光ビーム光ビーム透過調整 手段を透過した前記光ビームを情報記録媒体に集光する集光手段とを有する光ピッ クアップにおいて、前記光ビーム透過調整手段は、第 1の透過率を有する第 1透過 素子と、前記第 1の透過率よりも高い第 2の透過率を有する第 2透過素子と、前記第 1 透過素子および前記第 2透過素子に平行な回転軸回りに回転駆動する前記光ビー ムが前記第 1透過素子を透過する第 1位置と前記第 2透過素子を透過する第 2位置 とを切り替える回転駆動切替機構とを有し、前記回転駆動切替機構を、永久磁石の 吸着力で第 1位置と前記第 2位置の切り替え位置に選択的に付勢されるよう構成し、 第 1光パワーを有する光ビームと第 2光パワーを有する光ビームを選択的に出力する よう構成したことを特徴とする。 The optical pickup according to claim 1 of the present invention transmits a light source that emits a light beam, a light beam transmission adjusting unit that adjusts a transmission amount of the light beam, and the light beam light beam transmission adjusting unit. In an optical pickup having a light condensing means for condensing the light beam on an information recording medium, the light beam transmission adjusting means includes a first transmission element having a first transmittance and the first transmittance. A second transmissive element having a higher second transmittance, and the first transmissive element and the optical beam driven to rotate about a rotation axis parallel to the second transmissive element are transmitted through the first transmissive element. A rotation drive switching mechanism that switches between one position and a second position that transmits the second transmission element, and the rotation drive switching mechanism is connected to a permanent magnet. It is configured so as to be selectively urged to the switching position between the first position and the second position by the suction force, so that the light beam having the first light power and the light beam having the second light power are selectively output. It is characterized by comprising.
[0021] 本発明の請求項 2記載の光ピックアップは、請求項 1にお 、て、前記回転駆動切替 機構は、前記第 1透過素子および前記第 2透過素子を保持し前記第 1透過素子およ び前記第 2透過素子に平行な孔を設けた保持体と、前記保持体にそれぞれ装着さ れる前記第 1位置を保っための吸着力を発生する第 1永久磁石および前記第 2位置 の保っための吸着力を発生する第 2永久磁石と、前記保持体の前記孔に揷通される 保持軸に係合し、前記保持体が前記保持軸の回りに回転可能な状態で前記軸体の 軸心が前記光ビームの中心線上にあるよう前記保持体を前記第 1位置または第 2位 置に位置規制する基台と、前記基台にそれぞれ装着される前記第 1永久磁石を吸着 するための第 1鉄心と前記第 1鉄心と同心にあって前記第 1永久磁石に反発力を与 える第 1コイルと前記第 2永久磁石を吸着するための第 2鉄心と前記第 2鉄心と同心 にあって前記第 2永久磁石に反発力を与える第 2コイルとで構成したことを特徴とす る。 [0021] The optical pickup according to claim 2 of the present invention is the optical pickup according to claim 1, wherein the rotation drive switching mechanism holds the first transmissive element and the second transmissive element. And a holding body provided with a hole parallel to the second transmissive element, a first permanent magnet for generating an attracting force for maintaining the first position, which is respectively attached to the holding body, and the second position. A second permanent magnet that generates an attractive force for engaging with a holding shaft that is passed through the hole of the holding body, and the holding body is rotatable around the holding shaft in a state where the holding body is rotatable. For adsorbing the base for regulating the position of the holding body at the first position or the second position so that the axis is on the center line of the light beam, and the first permanent magnet respectively mounted on the base The first iron core is concentric with the first iron core and gives a repulsive force to the first permanent magnet The second iron core for adsorbing the first coil and the second permanent magnet and the second coil concentric with the second iron core and providing a repulsive force to the second permanent magnet are characterized in that .
[0022] 本発明の請求項 3記載の光ピックアップは、請求項 2にお 、て、前記保持体には、 互いに直交する前記第 1透過素子を装着する第 1透過素子装着面と、前記第 2透過 素子を装着する第 2透過素子装着面と、前記第 1透過素子装着面と平行で前記第 1 位置を保持するため前記基台と当接する第 1基準面と、前記第 2透過素子装着面と 平行で前記第 2位置を保持するため前記基台と当接する第 2基準面とを形成し、前 記基台には、前記保持体の前記第 1基準面および前記第 2基準面が当接する基準 平面を形成したことを特徴とする。  [0022] The optical pickup according to claim 3 of the present invention is the optical pickup according to claim 2, wherein the first transmissive element mounting surface on which the first transmissive elements orthogonal to each other are mounted on the holding body, and the first 2 a second transmissive element mounting surface for mounting the transmissive element, a first reference surface that is in parallel with the first transmissive element mounting surface and abuts the base to hold the first position, and the second transmissive element mounted A second reference surface that is in contact with the base to hold the second position parallel to the surface, and the base includes the first reference surface and the second reference surface of the holder. It is characterized in that a reference plane that abuts is formed.
[0023] 本発明の請求項 4記載の光ピックアップは、請求項 2にお 、て、前記第 1永久磁石 は、磁ィ匕方向が前記第 1基準面と直交しかつ前記第 1透過素子の中心からオフセット した位置になるよう前記保持体に装着され、前記第 2永久磁石は、磁化方向が前記 第 2基準面と直交しかつ前記第 2透過素子の中心力 オフセットした位置になるよう 前記保持体に装着され、前記第 1コイルは、軸心が前記基準面と直交し前記第 1位 置で前記第 1永久磁石と相対する位置になるよう前記基台に装着され、前記第 2コィ ルは、軸心が前記基準面と直交し前記第 2位置で前記第 2永久磁石と相対する位置 になるよう前記基台に装着されたことを特徴とする。 [0023] The optical pickup according to claim 4 of the present invention is the optical pickup according to claim 2, wherein the first permanent magnet has a magnetic field direction orthogonal to the first reference plane and the first transmission element. The second permanent magnet is mounted on the holding body so as to be offset from the center, and the second permanent magnet is held so that the magnetization direction is orthogonal to the second reference plane and the central force of the second transmitting element is offset. The first coil is mounted on the base so that the axis is perpendicular to the reference plane and is opposed to the first permanent magnet at the first position, and the second coil is mounted on the base. The shaft is mounted on the base so that an axis is perpendicular to the reference plane and is opposed to the second permanent magnet at the second position.
[0024] 本発明の請求項 5記載の光ピックアップは、請求項 3にお 、て、前記保持体の前記 第 1基準面および前記第 2基準面は、それぞれ 3点の小突起によって平面が決定さ れ、前記小突起のそれぞれの先端形状が球面であることを特徴とする。  The optical pickup according to claim 5 of the present invention is the optical pickup according to claim 3, wherein the first reference surface and the second reference surface of the holding body each have a plane determined by three small projections. In addition, the tip shape of each of the small protrusions is a spherical surface.
[0025] 本発明の請求項 6記載の光ピックアップは、請求項 1にお 、て、前記光源は、緑色 力 紫外線の波長領域において発光する半導体レーザであることを特徴とする。  [0025] The optical pickup according to claim 6 of the present invention is characterized in that, in claim 1, the light source is a semiconductor laser that emits light in a wavelength region of green power and ultraviolet light.
[0026] 本発明の請求項 7記載の光ピックアップは、請求項 1にお 、て、前記光源は、青色 の波長領域において発光する半導体レーザであることを特徴とする。  [0026] The optical pickup according to claim 7 of the present invention is characterized in that, in claim 1, the light source is a semiconductor laser that emits light in a blue wavelength region.
[0027] 本発明の請求項 8記載の情報処理装置は、情報記録媒体からの反射光を検出す る光検出器をさらに有する請求項 1に記載の光ピックアップと、前記光検出器で検出 された前記反射光に基づいて再生信号およびサーボ信号の少なくとも一方を生成す る信号処理回路とを備えたことを特徴とする。  [0027] The information processing device according to claim 8 of the present invention is detected by the optical pickup according to claim 1 and the photodetector further including a photodetector that detects reflected light from the information recording medium. And a signal processing circuit for generating at least one of a reproduction signal and a servo signal based on the reflected light.
[0028] 本発明の請求項 9記載の情報処理装置は、請求項 8にお 、て、記録層の数が異な る複数種類の情報記録媒体を装填することが可能であり、装填された情報記録媒体 に対して前記記録層の数に応じた光パワーの大きさを有する光ビームを放射して、 データを読み出しおよび Zまたは書き込む情報処理装置であって、記録層の数が 1 層の情報記録媒体が装填されたときは、前記回転駆動切替機構によって前記第 1位 置に切り替えて前記記録層に対して前記第 1光パワーを有する光ビームを放射し、 記録層の数が複数の情報記録媒体が装填されたときは、前記回転駆動切替機構に よって前記第 2位置に切り替えて前記記録層の 1つに対して前記第 2光パワーを有 する光ビームを放射することを特徴とする。  [0028] The information processing apparatus according to claim 9 of the present invention is capable of loading a plurality of types of information recording media having different numbers of recording layers according to claim 8, and loaded information An information processing apparatus that reads and Z or writes data by emitting a light beam having a magnitude of optical power corresponding to the number of recording layers to a recording medium, wherein the number of recording layers is one. When a recording medium is loaded, the rotational drive switching mechanism switches to the first position to emit a light beam having the first optical power to the recording layer, and the number of recording layers includes a plurality of information. When a recording medium is loaded, the rotation drive switching mechanism switches to the second position to emit a light beam having the second optical power to one of the recording layers. .
発明の効果  The invention's effect
[0029] 本発明によれば、透過率の異なる 2個の透過素子を回転駆動させて光ビームの光 パワーを切り替える光ビーム透過調整手段を、永久磁石の吸着力で第 1位置と前記 第 2位置の切り替え位置に選択的に付勢されるよう構成したので、簡単な構成で厳し い部品精度、組立精度を必要とせず切り替え角度精度を向上させることができ、かつ 消費電力も小さく信頼性も高 、ため、製造コストの低 、信頼性の高 、光ピックアップ を供給することが実現できる。 [0029] According to the present invention, the light beam transmission adjusting means for switching the light power of the light beam by rotationally driving two transmitting elements having different transmittances is arranged between the first position and the second position by the attractive force of a permanent magnet. Since it is configured to be selectively biased to the position switching position, it can improve the switching angle accuracy without requiring strict component accuracy and assembly accuracy with a simple configuration, and also has low power consumption and reliability. High, because of low manufacturing cost, high reliability, optical pickup Can be realized.
図面の簡単な説明  Brief Description of Drawings
[0030] [図 1]本発明による光ビーム透過調整手段である回転駆動切替機構 26の斜視図 FIG. 1 is a perspective view of a rotary drive switching mechanism 26 that is a light beam transmission adjusting unit according to the present invention.
[図 2]本発明による光ビーム透過調整手段である回転駆動切替機構 26の組立分解 図 FIG. 2 is an exploded view of a rotary drive switching mechanism 26 that is a light beam transmission adjusting means according to the present invention.
[図 3A]光ビームが第 1の透過素子 1を透過している第 1の切替位置を示す側面図 [図 3B]光ビームが第 2の透過素子 2を透過している第 2の切替位置を示す側面図 [図 4]第 1,第 2の切替位置の光ビームに対する相対的な角度誤差を説明する図 [図 5]従来の光ピックアップ装置の構成図  FIG. 3A is a side view showing a first switching position where the light beam is transmitted through the first transmission element 1. FIG. 3B is a second switching position where the light beam is transmitted through the second transmission element 2. FIG. 4 is a diagram for explaining a relative angle error with respect to the light beam at the first and second switching positions. FIG. 5 is a configuration diagram of a conventional optical pickup device.
[図 6A]光ビームが光ビーム透過調整手段 31の光学フィルタを透過するときの斜視図 [図 6B]光ビームが光ビーム透過調整手段 31の光学フィルタを透過しないときの斜視 図  6A is a perspective view when the light beam is transmitted through the optical filter of the light beam transmission adjusting unit 31. FIG. 6B is a perspective view when the light beam is not transmitted through the optical filter of the light beam transmission adjusting unit 31.
[図 7A]第 2の透過素子 2への光ビームの入射角ずれがないときの状態を示す図 [図 7B]第 2の透過素子 2への光ビームの入射角ずれが存在するときの光軸のずれの 状態を示す図  [FIG. 7A] A diagram showing a state where there is no deviation of the incident angle of the light beam to the second transmission element 2. [FIG. 7B] Light when there is a deviation of the incident angle of the light beam to the second transmission element 2. Diagram showing shaft misalignment
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、本発明の実施の形態を図 1〜図 4に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0032] 図 1は本発明による光ピックアップに搭載されて 、る光ビーム透過調整手段である 回転駆動切替機構 26の斜視図を示す。図 2は回転駆動切替機構 26の組立分解図 を示す。図 3Aは回転駆動切替機構 26が光ビームが第 1の透過素子 1を透過してい る第 1の切替位置を示す側面図を示す。図 3Bは光ビームが第 2の透過素子 2を透過 している第 2の切替位置を示す側面図である。この図 1〜図 3A、図 3Bにより回転駆 動切替機構 26の構成を説明する。 FIG. 1 is a perspective view of a rotation drive switching mechanism 26 which is mounted on an optical pickup according to the present invention and is a light beam transmission adjusting means. FIG. 2 shows an exploded view of the rotary drive switching mechanism 26. FIG. 3A is a side view showing the first switching position where the rotation drive switching mechanism 26 transmits the light beam through the first transmission element 1. FIG. 3B is a side view showing the second switching position where the light beam is transmitted through the second transmissive element 2. The configuration of the rotary drive switching mechanism 26 will be described with reference to FIGS. 1 to 3A and 3B.
[0033] 回転駆動切替機構 26は、基台 3と、第 1,第 2のコイル 4, 5と、第 1,第 2の鉄心 6, 7と、保持体 8と、第 1,第 2の永久磁石 9, 10と、第 1,第 2の透過素子 1, 2と、カバー 11とにより構成される。 [0033] The rotation drive switching mechanism 26 includes a base 3, first and second coils 4 and 5, first and second iron cores 6 and 7, a holding body 8, and first and second Permanent magnets 9 and 10, first and second transmission elements 1 and 2, and a cover 11 are included.
[0034] 基台 3は、第 1,第 2の鉄心 6, 7および第 1,第 2のコイル 4, 5を装着するためのコィ ル保持部 14と、回転駆動する保持体 8を支持するカバー 11の後述する軸 12を保持 する穴 13を形成した保持体回動面 15と、コイル保持部 14の保持体回動面 15の側 に形成される保持体規制面 16とにより構成されている。 [0034] The base 3 supports a coil holding portion 14 for mounting the first and second iron cores 6 and 7 and the first and second coils 4 and 5, and a holding body 8 that is rotationally driven. Holds the shaft 12 (described later) of the cover 11 The holding body rotating surface 15 in which the hole 13 to be formed is formed, and the holding body regulating surface 16 formed on the side of the holding body rotating surface 15 of the coil holding portion 14 are configured.
[0035] 保持体規制面 16は、第 1,第 2のコイル 4, 5の軸心および保持体回動面 15とそれ ぞれ直交する方向に形成されている。基台 3の材質は本発明の構成であれば特に 精度、強度を求められないので榭脂材料が使用できる。  The holding body regulating surface 16 is formed in a direction perpendicular to the axial centers of the first and second coils 4 and 5 and the holding body rotating surface 15. If the material of the base 3 is a structure according to the present invention, a resin material can be used because accuracy and strength are not particularly required.
[0036] 第 1のコイル 4と第 2のコイル 5は直列に接続され、第 1の鉄心 6は第 1のコイル 4に、 第 2の鉄心 7は第 2のコイル 5にそれぞれ挿入され、軸心が光ビームの光軸と平行と なる方向の状態で基台 3のコイル保持部 14にそれぞれ接着固定される。またこのとき コイル長 L1よりも鉄心長 L2が僅かに大きぐ第 1,第 2の鉄心 6, 7の端面 6A, 7Aは それぞれ保持体規制面 16側の端面 17に密着する状態で固定されている。  [0036] The first coil 4 and the second coil 5 are connected in series, the first iron core 6 is inserted into the first coil 4, and the second iron core 7 is inserted into the second coil 5, respectively. Each core is bonded and fixed to the coil holding portion 14 of the base 3 in a state in which the core is parallel to the optical axis of the light beam. At this time, the end surfaces 6A and 7A of the first and second iron cores 6 and 7 whose core length L2 is slightly larger than the coil length L1 are fixed in close contact with the end surface 17 on the holding body regulating surface 16 side. Yes.
[0037] 保持体 8には、互いに直交する第 1の面 18と第 2の面 19が形成されている。第 1の 面 18には第 1の透過素子 1が接着固定される。第 2の面 19には第 2の透過素子 2が 接着固定される。保持体 8には、先端が球面形状となっている 6個の小突起 20a, 20 b, 20cと 21a, 21b, 21c力 ^形成されている。この 3個糸且の/ J、突起 20a, 20b, 20cと 2 la, 21b, 21cは互いに略直交する平面 22と平面 23の上に形成されている。図 3A, 図 3Bに示すように、小突起 20a, 20b, 20cの先端が形成する第 1の基準面 20Aは 第 1の面 18と平行に形成されている。小突起 21a, 21b, 21cの先端が形成する第 2 の基準面 21Aは第 2の面 19と平行に形成されている。  The holding body 8 is formed with a first surface 18 and a second surface 19 that are orthogonal to each other. The first transmissive element 1 is bonded and fixed to the first surface 18. The second transmissive element 2 is bonded and fixed to the second surface 19. The holding body 8 is formed with six small protrusions 20a, 20b, 20c and 21a, 21b, 21c force ^ whose tip is spherical. The three yarns / J, projections 20a, 20b, 20c and 2la, 21b, 21c are formed on a plane 22 and a plane 23 that are substantially orthogonal to each other. As shown in FIGS. 3A and 3B, the first reference surface 20A formed by the tips of the small protrusions 20a, 20b, and 20c is formed in parallel with the first surface 18. The second reference surface 21A formed by the tips of the small protrusions 21a, 21b, 21c is formed in parallel to the second surface 19.
[0038] また保持体 8には、図 3A,図 3Bに破線で示すように、第 1の永久磁石 9と第 2の永 久磁石 10が設けられている。第 1の永久磁石 9は磁ィ匕方向が第 1の基準面 20Aに直 交する方向に取り付けられている。第 2の永久磁石 10は磁ィ匕方向が第 2の基準面 21 Aに直交する方向に取り付けられている。第 1の永久磁石 9はその端面 aが、第 1の基 準面 20Aに近接して配設されている。第 2の永久磁石 10はその端面 が、第 2の基 準面 21 Aに近接して配設されて 、る。  The holder 8 is provided with a first permanent magnet 9 and a second permanent magnet 10 as shown by broken lines in FIGS. 3A and 3B. The first permanent magnet 9 is attached in a direction in which the magnetic field direction is perpendicular to the first reference plane 20A. The second permanent magnet 10 is attached so that the magnetic field direction is orthogonal to the second reference plane 21A. The end surface a of the first permanent magnet 9 is disposed close to the first reference surface 20A. The end surface of the second permanent magnet 10 is disposed close to the second reference surface 21A.
[0039] さらに、第 1,第 2の永久磁石 9, 10の極性が、第 1の永久磁石 9の端面 aと第 2の永 久磁石 10の端面 bが逆極性となるよう接着固定されている。つまり、図 3Aに示すよう に、仮に第 1の永久磁石 9の端面 aを N極とすると、第 2の永久磁石 10の端面 bは S極 に配置される。 [0040] 図 2に破線で示すように、保持体 8の中央部には、第 1,第 2の面 18, 19とに平行と なる方向に孔 24が前記穴 13に対応して形成されて!、る。 [0039] Furthermore, the polarities of the first and second permanent magnets 9 and 10 are bonded and fixed so that the end surface a of the first permanent magnet 9 and the end surface b of the second permanent magnet 10 have opposite polarities. Yes. That is, as shown in FIG. 3A, if the end surface a of the first permanent magnet 9 is an N pole, the end surface b of the second permanent magnet 10 is disposed at the S pole. As shown by a broken line in FIG. 2, a hole 24 is formed in the central portion of the holding body 8 in a direction parallel to the first and second surfaces 18 and 19 corresponding to the hole 13. Te!
[0041] 図 3A,図 3Bに示すように、孔 24のセンターから第 1の基準面 20Aとの距離 L3と第 1の基準面 21Aとの距離 L4は等しぐかつ基台 3の保持体規制面 16と孔 24との距 離 L5とも等しくなるよう形成されて 、る。  [0041] As shown in FIGS. 3A and 3B, the distance L3 between the center of the hole 24 and the first reference surface 20A and the distance L4 between the first reference surface 21A are equal and the holder of the base 3 The distance L5 between the restriction surface 16 and the hole 24 is formed to be equal.
[0042] また、孔 24の直径は、後述するカバー 11の軸 12の軸径より 10%程度大きく設定さ れて 、る。保持体 8の材質としては榭脂材料を使用することができる。  [0042] The diameter of the hole 24 is set to be about 10% larger than the shaft diameter of the shaft 12 of the cover 11 described later. As the material of the holding body 8, a resin material can be used.
[0043] カバー 11には、軸 11aと保持体 8の孔 24に挿入されて保持体 8を回動自在に保持 するための保持軸 12が形成されており、保持軸 12の先端部 12aは基台 3の穴 13に 嵌合し、カバー 11の軸 11aの先端は基台 3の穴 25に嵌合して、カバー 11が基台 3に 固定されている。このように連結された基台 3とカバー 11は、基台 3の 2個所の凹部 3 a, 3bに供給した接着剤の一部が、カバー 11に形成された接着剤溜まり用の 2個所 の溝 1 lbに流れ出して硬化して接着固定されて 、る。  [0043] The cover 11 is formed with a holding shaft 12 which is inserted into the shaft 11a and the hole 24 of the holding body 8 so as to hold the holding body 8 in a rotatable manner. The cover 11 is fixed to the base 3 by fitting into the hole 13 of the base 3 and the tip of the shaft 11 a of the cover 11 is fitted into the hole 25 of the base 3. The base 3 and the cover 11 connected in this manner are configured so that part of the adhesive supplied to the two recesses 3a and 3b of the base 3 is in two places for storing the adhesive formed in the cover 11. It flows into the 1 lb groove and is cured and secured.
[0044] 組み立てられた状態で保持体 8は、保持軸 12の方向に 0. 1mm程度のすきまを持 つよう設定され、また保持体 8は前述の通り保持軸 12の直径は保持体 8の孔 24の直 径に比べ 10%程度小さく形成されている、一例として保持軸径が φ 1. Ommであれ ば保持体 8の孔 24の直径は φ 1. 1mmである。このようなガタの大きい係合状態に 設定することにより保持体 8が軸 12の回りを回動するとき、ほとんど摺動抵抗を受ける ことなくスムーズに回動できる。カバー材質も同様に高精度、強度を求められないの で榭脂材料とすることができる。  [0044] In the assembled state, the holding body 8 is set to have a clearance of about 0.1 mm in the direction of the holding shaft 12, and the holding body 8 has a diameter of the holding shaft 12 as described above. For example, if the holding shaft diameter is φ 1. Omm, the diameter of the hole 24 of the holding body 8 is φ 1.1 mm. By setting the engagement state to such a large backlash, when the holding body 8 rotates about the shaft 12, the holding body 8 can rotate smoothly with almost no sliding resistance. Similarly, since the cover material is not required to have high accuracy and strength, it can be made a resin material.
[0045] 組み立てられた状態で保持体 8を 、ずれかの方向に回転させる。例えば、時計方 向に保持体 8を回転させると、第 1の永久磁石 9と第 1の鉄心 6との間に吸引力が生じ 、この結果、小突起 20a, 20b, 20cが保持体規制面 16に当接するまで回転する。  In the assembled state, the holding body 8 is rotated in any direction. For example, when the holding body 8 is rotated in the clockwise direction, an attractive force is generated between the first permanent magnet 9 and the first iron core 6, and as a result, the small protrusions 20a, 20b, and 20c become the holding body regulating surface. Rotates until it contacts 16
[0046] 図 3Aは小突起 20a, 20b, 20cが保持体規制面 16に当接した状態、すなわち第 1 の透過素子が光ビームと直交する第 1の切替位置にある状態を示す。前述の通り基 台 3の保持体規制面 16から孔 24までの距離と保持体 8の第 1の基準面 20Aと孔 24 までの距離とは等しく設定してあるため、この第 1の切替位置の状態では孔 24と保持 軸 12とは同軸にあって互いに接することはなぐ小突起 20a, 20b, 20cはすべて保 持体規制面 16と当接している。 FIG. 3A shows a state in which the small protrusions 20a, 20b, 20c are in contact with the holding body regulating surface 16, that is, a state in which the first transmission element is in a first switching position orthogonal to the light beam. As described above, the distance from the holding body regulating surface 16 of the base 3 to the hole 24 and the distance from the first reference surface 20A of the holding body 8 to the hole 24 are set to be equal to each other. In this state, the small protrusions 20a, 20b, and 20c that hold the hole 24 and the holding shaft 12 coaxially and do not touch each other are held. It is in contact with the holding body regulating surface 16.
[0047] したがって、第 1の基準面と保持体規制面 16は同一平面であるから第 1の基準面と 平行である第 1の透過素子 1は保持体規制面 16と平行になる。 Accordingly, since the first reference surface and the holding body regulating surface 16 are the same plane, the first transmissive element 1 parallel to the first reference surface is parallel to the holding body regulating surface 16.
[0048] 次に、第 1の切替位置力 第 2の切替位置に回転させるメカニズムについて説明す る。 [0048] Next, a mechanism for rotating the first switching position force to the second switching position will be described.
[0049] 図 3Aの第 1の切替位置にあるとき、第 1のコイル 4には、第 1の永久磁石 9の端面 a の極性である N極と反発する方向に磁力を発生させるようなパルス電流を流す。この とき、この電流により生ずる磁力と永久磁石とが反発するが、この反発力が第 1の永 久磁石 9と第 1の鉄心 6との吸引力を上回るよう電流を設定すると、パルス電流を印加 した結果、保持体 8は反時計方向の回転力を与えられ回動を始める。パルス電流印 加時間は保持体 8が回動を始めるには十分にかつ保持体 8が第 1の切替位置と第 2 の切替位置との中間位置を超えるまでよりは短く設定する。  [0049] When in the first switching position in FIG. 3A, the first coil 4 has a pulse that generates a magnetic force in a direction repelling the N pole, which is the polarity of the end surface a of the first permanent magnet 9. Apply current. At this time, the magnetic force generated by this current and the permanent magnet repel, but if the current is set so that the repulsive force exceeds the attractive force between the first permanent magnet 9 and the first iron core 6, a pulse current is applied. As a result, the holding body 8 is given a counterclockwise rotational force and starts rotating. The pulse current application time is set to be short enough until the holding body 8 starts to rotate and until the holding body 8 exceeds the intermediate position between the first switching position and the second switching position.
[0050] その結果、保持体が第 1の切替位置と第 2の切替位置との中間を超えると今度は第 2の永久磁石 10と第 2の鉄心 7との吸引力が強くなり保持体 8の惰性による回転とあ いまって小突起 21a, 21b, 21cが保持体規制面 16に当接する位置まで保持体 8は 回転を続ける。  [0050] As a result, when the holding body exceeds the middle between the first switching position and the second switching position, the attractive force between the second permanent magnet 10 and the second iron core 7 is increased, and the holding body 8 is increased. The holding body 8 continues to rotate until the position where the small protrusions 21a, 21b, 21c come into contact with the holding body regulating surface 16 together with the rotation due to the inertia.
[0051] 図 3Bは第 2の永久磁石 10と第 2の鉄心 7が吸着し小突起 21a, 21b, 21cが保持 体規制面 16に当接している状態、つまり第 2の透過素子が光ビームと直交する第 2 の切替位置を示す。  FIG. 3B shows a state in which the second permanent magnet 10 and the second iron core 7 are attracted and the small protrusions 21a, 21b, 21c are in contact with the holding body regulating surface 16, that is, the second transmission element is a light beam. The second switching position orthogonal to
[0052] この状態では前述の図 3Aで示す第 1の切替位置とまったく同様に第 2の基準面 21 Aが保持体規制面 16と同一平面にあるから第 2の透過素子 2は保持体規制面 16と 平行となる。  In this state, since the second reference surface 21 A is in the same plane as the holding body regulating surface 16 in exactly the same way as the first switching position shown in FIG. Parallel to plane 16.
[0053] 第 2の切替位置から再び第 1の切替位置への切替は、第 1の切替位置から第 2の切 替位置に切り替えるときに流したパルス電流と方向だけが逆のパルス電流を第 2のコ ィル 5に印加する。保持体規制面 16側のコイル 5の端面には先ほどと逆の磁界が発 生するが第 2の永久磁石 10aは第 1の永久磁石 9aと逆の極性が配置されているため 前述の動作と同様にコイル 5と第 2の永久磁石 10との間に反発力が生じ保持体が回 動する。このコイルへの印加電圧とパルス電流の印加時間は一例としてコイル内径( =鉄心径)が φ ΐ. 3mm,コイル外径が φ 2. 3mm、コイル長が 3. 2mm、コイル線形 が φ θ. 08mmの場合、コイル抵抗は 7. 2 Ωであり印加電圧が 5Vでパルス電流が 7 00mAで印加時間は 40msec程度である。このように短い印加時間で切替動作が完 了するためコイルの消費電力が非常に小さぐ切替の際のコイルの発熱もほとんどな V、ため、温度上昇によるレーザ寿命の低下への悪影響がな 、。 [0053] Switching from the second switching position to the first switching position again means that a pulse current having a direction opposite to that of the pulse current that flows when switching from the first switching position to the second switching position is reversed. Apply to coil 5 of 2. On the end face of the coil 5 on the holding body regulating surface 16 side, a reverse magnetic field is generated, but the second permanent magnet 10a has a polarity opposite to that of the first permanent magnet 9a. Similarly, a repulsive force is generated between the coil 5 and the second permanent magnet 10, and the holding body rotates. As an example, the voltage applied to the coil and the pulse current application time are as follows: = Iron core diameter) is φ 3. 3mm, coil outer diameter is φ 2.3mm, coil length is 3.2mm, coil linear is φ θ. 08mm, coil resistance is 7.2Ω and applied voltage is 5V The pulse current is 700 mA and the application time is about 40 msec. Since the switching operation is completed in such a short application time, the power consumption of the coil is very small, and the coil heat generation is almost V. Therefore, there is no adverse effect on the laser life reduction due to temperature rise. .
[0054] 次に、第 1の切替位置の第 1の透過素子 1の光ビームに対する角度と、第 2の切替 位置の第 2の透過素子 2の光ビームに対する角度の相対的な角度誤差について考 察する。 Next, the relative angle error between the angle of the first transmission element 1 at the first switching position with respect to the light beam and the angle with respect to the light beam of the second transmission element 2 at the second switching position will be considered. Sympathize.
[0055] 小突起 20a, 20b, 20cにより形成される第 1の仮想平面と第 1の透過素子を貼り付 ける第 1の面との部品精度による図 4に示した角度誤差 δ 1と、同様に小突起 21a, 2 lb, 21cにより形成される第 2の基準面と第 2の透過素子を貼り付ける第 2の面との部 品精度による角度誤差 δ 2と、保持体規制面 16の平面度誤差による角度誤差 δ 3の 以上の 3つの角度誤差 δ 1, δ 2, δ 3を合計したもの力 第 1の透過素子 1と第 2の 透過素子 2との切り替え相対角度誤差となるが、し力しながらこれらの誤差はいずれ も部品精度により決定されるものであり榭脂成型部品であればその金型精度を追い 込み修正することによりトータルで角度誤差を ±0. 2° 程度に抑えることが十分可能 である。  [0055] Similar to the angle error δ1 shown in FIG. 4 due to the component accuracy between the first virtual plane formed by the small protrusions 20a, 20b, and 20c and the first surface to which the first transmission element is attached. Angle error δ 2 due to component accuracy between the second reference surface formed by the small protrusions 21a, 2 lb, 21c and the second surface to which the second transmissive element is attached, and the plane of the holding body regulating surface 16 Angle error due to degree error The total of the above three angle errors δ1, δ2, and δ3 is the force of switching relative angle error between the first transmissive element 1 and the second transmissive element 2, However, all of these errors are determined by the part accuracy. In the case of a resin molded part, the angle error is reduced to about ± 0.2 ° in total by adjusting the mold precision. It is possible enough.
[0056] この実施の形態では、光学フィルタが塗布された透過素子と光学フィルタが塗布さ れていない透過素子とを切り替えることで光ビームの光パワーを切り替えた力 第 1の 透過率を有する第 1透過素子と、前記第 1の透過率よりも高い第 2の透過率を有する 第 2透過素子とは、光透過率の異なる 2個の透過素子を切り替えることで光ビームの 光パワーを切り替えてもよ ヽ。  [0056] In this embodiment, the power having the first transmittance is obtained by switching the light power of the light beam by switching between the transmissive element coated with the optical filter and the transmissive element coated with no optical filter. 1 The transmissive element and the second transmissive element having a second transmittance higher than the first transmittance are obtained by switching the optical power of the light beam by switching two transmissive elements having different light transmittances. Moyo!
[0057] この実施の形態では、光ビームは青色発光する半導体レーザであるとした。しかし 、緑色から紫外線の波長領域にお!、て発光する半導体レーザであってもよ 、。  In this embodiment, the light beam is a semiconductor laser that emits blue light. However, it may be a semiconductor laser that emits light in the wavelength range from green to ultraviolet!
[0058] 本実施形態では光ビーム透過調整手段はデータの読み出し時と書き込み時とで光 ビームの光パワーを切り替えた。しかし、情報記録媒体が 1層の記録層を有する場合 と 2層の記録層を有する場合とで光ビームの光パワーを切り替えてもよい。  In this embodiment, the light beam transmission adjusting means switches the light power of the light beam between reading and writing data. However, the optical power of the light beam may be switched between the case where the information recording medium has one recording layer and the case where the information recording medium has two recording layers.
産業上の利用可能性 本発明によれば、簡単な構成で厳 、部品精度、組立精度を必要とせず光ビーム 透過調整手段が切り替え角度精度を向上させることができ、かつ消費電力も小さく信 頼性も高いため、製造コストの低い信頼性の高い光ピックアップ、およびそのような光 ピックアップを有する情報処理装置を得ることができる。 Industrial applicability According to the present invention, the light beam transmission adjusting means can improve the switching angle accuracy without requiring strict, component accuracy and assembly accuracy with a simple configuration, and also has low power consumption and high reliability. A low-cost and highly reliable optical pickup, and an information processing apparatus having such an optical pickup can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 光ビームを発する光源と、前記光ビームの透過量を調整する光ビーム透過調整手 段と、前記光ビーム光ビーム透過調整手段を透過した前記光ビームを情報記録媒体 に集光する集光手段とを有する光ピックアップにおいて、  [1] A light source that emits a light beam, a light beam transmission adjustment unit that adjusts a transmission amount of the light beam, and a light source that collects the light beam transmitted through the light beam light beam transmission adjustment unit on an information recording medium. In an optical pickup having an optical means,
前記光ビーム透過調整手段は、  The light beam transmission adjusting means includes:
第 1の透過率を有する第 1透過素子と、  A first transmissive element having a first transmittance;
前記第 1の透過率よりも高い第 2の透過率を有する第 2透過素子と、  A second transmissive element having a second transmittance higher than the first transmittance;
前記第 1透過素子および前記第 2透過素子に平行な回転軸回りに回転駆動する前 記光ビームが前記第 1透過素子を透過する第 1位置と前記第 2透過素子を透過する 第 2位置とを切り替える回転駆動切替機構と  A first position where the light beam is rotated about a rotation axis parallel to the first transmission element and the second transmission element; a second position where the light beam is transmitted through the first transmission element; and a second position where the light beam is transmitted through the second transmission element. Rotation drive switching mechanism to switch between
を有し、  Have
前記回転駆動切替機構を、永久磁石の吸着力で第 1位置と前記第 2位置の切り替 え位置に選択的に付勢されるよう構成し、第 1光パワーを有する光ビームと第 2光パ ヮーを有する光ビームを選択的に出力するよう構成した  The rotational drive switching mechanism is configured to be selectively urged to the switching position between the first position and the second position by the attractive force of a permanent magnet, and the light beam having the first optical power and the second optical path are configured. Configured to selectively output a light beam with ヮ
光ピックアップ。  Optical pickup.
[2] 前記回転駆動切替機構は、 [2] The rotation drive switching mechanism is
前記第 1透過素子および前記第 2透過素子を保持し前記第 1透過素子および前記 第 2透過素子に平行な孔を設けた保持体と、  A holding body for holding the first transmissive element and the second transmissive element and having a hole parallel to the first transmissive element and the second transmissive element;
前記保持体にそれぞれ装着される前記第 1位置を保っための吸着力を発生する第 1永久磁石および前記第 2位置の保っための吸着力を発生する第 2永久磁石と、 前記保持体の前記孔に揷通される保持軸に係合し、前記保持体が前記保持軸の 回りに回転可能な状態で前記軸体の軸心が前記光ビームの中心線上にあるよう前 記保持体を前記第 1位置または第 2位置に位置規制する基台と、  A first permanent magnet for generating an attracting force for maintaining the first position and a second permanent magnet for generating an attracting force for maintaining the second position, which are respectively attached to the holding body; The holding body is engaged with a holding shaft passed through a hole, and the holding body is placed on the center line of the light beam in a state where the holding body is rotatable around the holding shaft. A base that regulates the position to the first position or the second position;
前記基台にそれぞれ装着される前記第 1永久磁石を吸着するための第 1鉄心と前 記第 1鉄心と同心にあって前記第 1永久磁石に反発力を与える第 1コイルと前記第 2 永久磁石を吸着するための第 2鉄心と前記第 2鉄心と同心にあって前記第 2永久磁 石に反発力を与える第 2コイルと  A first iron core for adsorbing the first permanent magnet mounted on the base, and a first coil that is concentric with the first iron core and applies a repulsive force to the first permanent magnet, and the second permanent magnet. A second iron core for adsorbing a magnet, and a second coil concentric with the second iron core and imparting a repulsive force to the second permanent magnet;
で構成した請求項 1記載の光ピックアップ。 The optical pickup according to claim 1, comprising:
[3] 前記保持体には、 [3] In the holding body,
互いに直交する前記第 1透過素子を装着する第 1透過素子装着面と、 前記第 2透過素子を装着する第 2透過素子装着面と、  A first transmissive element mounting surface for mounting the first transmissive element orthogonal to each other; a second transmissive element mounting surface for mounting the second transmissive element;
前記第 1透過素子装着面と平行で前記第 1位置を保持するため前記基台と当接す る第 1基準面と、  A first reference surface that is in contact with the base to hold the first position parallel to the first transmissive element mounting surface;
前記第 2透過素子装着面と平行で前記第 2位置を保持するため前記基台と当接す る第 2基準面と  A second reference surface that is in contact with the base to hold the second position parallel to the second transmissive element mounting surface;
を形成し、前記基台には、  Formed on the base,
前記保持体の前記第 1基準面および前記第 2基準面が当接する基準平面を形成 した  A reference plane on which the first reference surface and the second reference surface of the holding body contact each other is formed.
請求項 2記載の光ピックアップ。  The optical pickup according to claim 2.
[4] 前記第 1永久磁石は、磁化方向が前記第 1基準面と直交しかつ前記第 1透過素子 の中心力 オフセットした位置になるよう前記保持体に装着され、 [4] The first permanent magnet is attached to the holding body so that the magnetization direction is perpendicular to the first reference plane and the center force of the first transmission element is offset.
前記第 2永久磁石は、磁化方向が前記第 2基準面と直交しかつ前記第 2透過素子 の中心力 オフセットした位置になるよう前記保持体に装着され、  The second permanent magnet is attached to the holding body so that the magnetization direction is perpendicular to the second reference plane and is offset from the central force of the second transmission element,
前記第 1コイルは、軸心が前記基準面と直交し前記第 1位置で前記第 1永久磁石と 相対する位置になるよう前記基台に装着され、  The first coil is mounted on the base so that an axis is perpendicular to the reference plane and is opposed to the first permanent magnet at the first position;
前記第 2コイルは、軸心が前記基準面と直交し前記第 2位置で前記第 2永久磁石と 相対する位置になるよう前記基台に装着された  The second coil is mounted on the base so that an axis is perpendicular to the reference plane and is opposed to the second permanent magnet at the second position.
請求項 2記載の光ピックアップ。  The optical pickup according to claim 2.
[5] 前記保持体の前記第 1基準面および前記第 2基準面は、それぞれ 3点の小突起に よって平面が決定され、前記小突起のそれぞれの先端形状が球面であることを特徴 とする [5] The flat surfaces of the first reference surface and the second reference surface of the holding body are respectively determined by three small protrusions, and the tip shape of each of the small protrusions is a spherical surface.
請求項 3記載の光ピックアップ。  The optical pickup according to claim 3.
[6] 前記光源は、緑色力 紫外線の波長領域において発光する半導体レーザである 請求項 1に記載の光ピックアップ。 6. The optical pickup according to claim 1, wherein the light source is a semiconductor laser that emits light in a wavelength region of green power and ultraviolet light.
[7] 前記光源は、青色の波長領域において発光する半導体レーザである [7] The light source is a semiconductor laser that emits light in a blue wavelength region.
請求項 1に記載の光ピックアップ。 The optical pickup according to claim 1.
[8] 情報記録媒体からの反射光を検出する光検出器をさらに有する請求項 1に記載の 光ピックアップと、 [8] The optical pickup according to [1], further comprising a photodetector for detecting reflected light from the information recording medium;
前記光検出器で検出された前記反射光に基づいて再生信号およびサーボ信号の 少なくとも一方を生成する信号処理回路とを  A signal processing circuit that generates at least one of a reproduction signal and a servo signal based on the reflected light detected by the photodetector.
備えた情報処理装置。  Information processing apparatus provided.
[9] 記録層の数が異なる複数種類の情報記録媒体を装填することが可能であり、装填 された情報記録媒体に対して前記記録層の数に応じた光パワーの大きさを有する光 ビームを放射して、データを読み出しおよび Zまたは書き込む情報処理装置であつ て、  [9] A plurality of types of information recording media having different numbers of recording layers can be loaded, and a light beam having a magnitude of optical power corresponding to the number of the recording layers with respect to the loaded information recording medium Is an information processing device that reads and Z or writes data.
記録層の数が 1層の情報記録媒体が装填されたときは、前記回転駆動切替機構に よって前記第 1位置に切り替えて前記記録層に対して前記第 1光パワーを有する光 ビームを放射し、記録層の数が複数の情報記録媒体が装填されたときは、前記回転 駆動切替機構によって前記第 2位置に切り替えて前記記録層の 1つに対して前記第 2光パワーを有する光ビームを放射する  When an information recording medium having one recording layer is loaded, the rotational drive switching mechanism switches to the first position to emit a light beam having the first optical power to the recording layer. When an information recording medium having a plurality of recording layers is loaded, the rotation drive switching mechanism switches to the second position and the light beam having the second optical power is applied to one of the recording layers. Radiate
請求項 8に記載の情報処理装置。  The information processing apparatus according to claim 8.
PCT/JP2006/321032 2006-01-27 2006-10-23 Optical pickup and information processing device WO2007086171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-018306 2006-01-27
JP2006018306A JP2007200462A (en) 2006-01-27 2006-01-27 Optical pickup and information-processing device

Publications (1)

Publication Number Publication Date
WO2007086171A1 true WO2007086171A1 (en) 2007-08-02

Family

ID=38308980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321032 WO2007086171A1 (en) 2006-01-27 2006-10-23 Optical pickup and information processing device

Country Status (3)

Country Link
JP (1) JP2007200462A (en)
TW (1) TW200739565A (en)
WO (1) WO2007086171A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645605B2 (en) * 2007-03-02 2011-03-09 パナソニック株式会社 Optical pickup

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278741A (en) * 1986-08-26 1987-04-11 Matsushita Electric Ind Co Ltd Optical recording and reproducing device
JPH06290485A (en) * 1993-03-31 1994-10-18 Mitsubishi Electric Corp Light beam converging device and driving method for optical recording medium applying the device
JPH10233030A (en) * 1997-02-20 1998-09-02 Sony Corp Device and method for manufacturing optical master disk
JP2000195086A (en) * 1998-12-24 2000-07-14 Sony Corp Optical pick-up device and optical disk device
JP2003257072A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Optical disk drive
JP2005174455A (en) * 2003-12-11 2005-06-30 Matsushita Electric Ind Co Ltd Information recording and reproducing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278741A (en) * 1986-08-26 1987-04-11 Matsushita Electric Ind Co Ltd Optical recording and reproducing device
JPH06290485A (en) * 1993-03-31 1994-10-18 Mitsubishi Electric Corp Light beam converging device and driving method for optical recording medium applying the device
JPH10233030A (en) * 1997-02-20 1998-09-02 Sony Corp Device and method for manufacturing optical master disk
JP2000195086A (en) * 1998-12-24 2000-07-14 Sony Corp Optical pick-up device and optical disk device
JP2003257072A (en) * 2002-03-06 2003-09-12 Matsushita Electric Ind Co Ltd Optical disk drive
JP2005174455A (en) * 2003-12-11 2005-06-30 Matsushita Electric Ind Co Ltd Information recording and reproducing device

Also Published As

Publication number Publication date
TW200739565A (en) 2007-10-16
JP2007200462A (en) 2007-08-09

Similar Documents

Publication Publication Date Title
US20080112279A1 (en) Lens drive apparatus
JP3831294B2 (en) Optical head device and optical disk device
JP2003115127A (en) Optical pickup device
US8154980B2 (en) Object lens driving apparatus and manufacturing method thereof
WO2005045814A1 (en) Deformable mirror, optical head and optical recording/reproducing device
JP3495123B2 (en) Optical head device
JP4980359B2 (en) Optical disc recording / reproducing apparatus and optical head
WO2007086171A1 (en) Optical pickup and information processing device
JP2000322751A (en) Optical pickup device
JP2004110971A (en) Objective lens drive device, optical pickup device, and optical disk device
JP2009104740A (en) Optical pickup
JP4645605B2 (en) Optical pickup
JP4096746B2 (en) Focus and tracking control method for optical pickup device
US7697398B2 (en) Optical pickup device having an electromechanical conversion element for recording and/ or reproducing information
JP4768013B2 (en) Optical means driving device
JP2005251245A (en) Objective lens driving apparatus, and optical pickup apparatus using the same
JP2008243251A (en) Optical head and optical disk device
JP4302581B2 (en) Optical head
JP2006107615A (en) Optical head
US8254220B2 (en) Objective lens actuator
JP2007328861A (en) Light volume correction device, optical pick up and information recording/reproducing apparatus
JPH09120561A (en) Object lens driving device
JP2000298855A (en) Optical head
JP2008226301A (en) Objective lens and optical pickup device
JP2007213694A (en) Optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822052

Country of ref document: EP

Kind code of ref document: A1