WO2007083700A1 - Radio transmission device and radio transmission method - Google Patents

Radio transmission device and radio transmission method Download PDF

Info

Publication number
WO2007083700A1
WO2007083700A1 PCT/JP2007/050691 JP2007050691W WO2007083700A1 WO 2007083700 A1 WO2007083700 A1 WO 2007083700A1 JP 2007050691 W JP2007050691 W JP 2007050691W WO 2007083700 A1 WO2007083700 A1 WO 2007083700A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
contention
scheduled
data
transmission
Prior art date
Application number
PCT/JP2007/050691
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Matsumoto
Daichi Imamura
Sadaki Futagi
Takashi Iwai
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007083700A1 publication Critical patent/WO2007083700A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/02Hybrid access techniques

Definitions

  • the transmission timing is controlled, and the channel and the transmission timing are controlled!
  • the present invention relates to a radio transmission apparatus and a radio transmission method for transmitting time-division multiplexed with a non-existing channel.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • a scheduled 'channel (scheduled channel) that is scheduled between users and a contention' based channel (contenti on that is a channel that is not scheduled between users and transmitted by the user) Based channel) multiplexing methods for radio frames have also been studied.
  • TAC Timing Alignment Control
  • SC Single Carrier-Frequency Domain Equalization
  • CP Cyclic Prefix
  • transmission timing control for each of the scheduled 'channel' and the contention 'based' channel will be described.
  • transmission timing control is usually implemented.
  • transmission timing control may not be performed in the contention 'based' channel.
  • RACH Random Access Channel
  • Non-Patent Document 1 as a multiplexing method for the contention 'basic' channel and the scheduled 'channel, a configuration for time division multiplexing or a configuration using both time division multiplexing and frequency division multiplexing has been proposed.
  • Non-Patent Document 1 NTT DoCoMo, Fujitsu, NEC, SHARP, "Physical Channels and Multiplexing in Evolved UTRA Uplink", Rl— 050850, 3GPP TSG RAN WGl Meeting # 42, London, UK, 29 August-2 September, 2005
  • the signal as shown in Fig. 1 transmitted by the above technique has a problem that both the probability contention 'based channel and the scheduled channel increase due to packet error. . The reason will be described below.
  • An object of the present invention is to provide a communication system in which a contention-based 'channel and a scheduled' channel are time-multiplexed, that is, a channel whose transmission timing is controlled and a channel whose transmission timing is controlled.
  • a contention-based 'channel and a scheduled' channel are time-multiplexed, that is, a channel whose transmission timing is controlled and a channel whose transmission timing is controlled.
  • the transmission timing is controlled and the channel and the transmission timing are controlled.
  • Wireless transmitters that can reduce the effects of inter-channel interference and prevent degradation of reception quality And providing a wireless transmission method.
  • the wireless transmission device includes a contention 'based' channel and a scheduled channel transmitted after the contention-based channel! / Arrangement means for arranging a part of the resource block at the tail part of the channel and a part of the resource block at the head part of the scheduled channel so that all or part of the frequency components do not overlap; And a transmission means for transmitting the contention base channel and the scheduled channel.
  • the transmission timing is controlled. Even if a delay occurs in the channel, the transmission timing is controlled, so that the influence of the inter-channel interference between the channel and the channel whose transmission timing is controlled can be reduced, and the deterioration of the reception quality can be prevented.
  • FIG. 1 A diagram for explaining a problem to be solved by the invention
  • FIG. 3 is a block diagram showing the main configuration of a radio transmission apparatus according to Embodiment 1
  • FIG. 4 is a flowchart showing details of the operation of the mapping unit according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a scheduled channel and contention'-based channel according to Embodiment 1.
  • FIG. 6 is a diagram showing an example of a scheduled channel and contention'-based channel according to Embodiment 1.
  • FIG. 8 is a block diagram showing the main configuration of the radio receiving apparatus according to Embodiment 1
  • FIG. 9 is a flowchart showing details of the operation of the demapping unit according to the first embodiment.
  • FIG. 10 is a block diagram showing the main configuration of a radio transmission apparatus according to Embodiment 2
  • FIG. 11 is a diagram showing an example of a scheduled channel and contention'-based channel according to the second embodiment.
  • FIG. 12 shows an example of a scheduled 'channel and a contention' based 'channel according to the second embodiment.
  • FIG. 13 shows an example of a scheduled 'channel and a contention' based 'channel according to the second embodiment.
  • FIG. 14 is a block diagram showing the main configuration of a radio receiving apparatus according to Embodiment 2
  • FIG. 15 is a block diagram showing the main configuration of a wireless transmission apparatus according to Embodiment 3.
  • FIG. 16 is a flowchart showing details of the operation of the mapping unit according to the third embodiment.
  • FIG. 17 is a diagram showing an example of a scheduled channel and contention'-based channel according to the third embodiment.
  • FIG. 18 is a block diagram showing the main configuration of a radio receiving apparatus according to Embodiment 3.
  • FIG. 19 is a flowchart showing details of the operation of the channel estimation unit according to Embodiment 3.
  • a radio transmission apparatus is installed in a mobile station and performs uplink communication.
  • DFT-S A wireless transmission apparatus having an OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) configuration.
  • OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing
  • Contention-based channel (contention based channel), schedule channel (scheduled channel) are time-division multiplexed, and scheduled channel is continuously assigned to contention 'based' channel.
  • Contention 'based' channel is transmitting RACH and transmission timing is not controlled. Therefore, the reception timing of the base station is shifted backward in time due to the propagation delay.
  • Scheduled 'channel is transmission timing controlled. Therefore, the base station The reception timing is correct.
  • Transmission power control is performed, and the received power is almost equal between packets.
  • data is mapped so that the tail part of the contention “basic” channel and the head part of the scheduled channel overlap on the frequency axis! /.
  • the contention “based” channel is a channel whose transmission timing is not controlled
  • the scheduled channel is a channel whose transmission timing is controlled!
  • FIG. 3 is a block diagram showing the main configuration of radio transmitting apparatus 100 according to the present embodiment.
  • Radio transmitting apparatus 100 includes encoding section 101, modulating section 102, DFT section 103, mapping section 104, IFFT section 105, CP adding section 106, radio section 107, and transmitting antenna 108, and each section includes The following operations are performed.
  • the code unit 101 performs error correction coding processing of transmission data.
  • Modulation section 102 performs modulation processing on the transmission data output from encoding section 101 using a modulation method such as BPSK, QPSK, or 16QAM.
  • the DFT unit 103 performs discrete Fourier transform on the modulated transmission signal output from the modulation unit 102 and converts it into a time waveform force frequency waveform component.
  • Mapping section 104 maps the data converted into frequency components onto the frequency resource of the radio frame. At this time, based on the frame number input separately, the transmission data If the data satisfies the predetermined condition, and if the data satisfies this condition, mapping described later is performed on the data.
  • IFFT section 105 converts the data mapped on the frequency axis into a time waveform by inverse fast Fourier transform processing.
  • CP adding section 106 duplicates the end of the transmission block and adds this to the beginning of the transmission block to add CP to the transmission signal.
  • Radio section 107 performs predetermined radio processing such as DZA conversion and up-conversion on the transmission signal to which CP is added, and transmits the radio signal to the radio reception apparatus via transmission antenna 108.
  • FIG. 4 is a flowchart showing details of the operation of the mapping unit 104.
  • mapping section 104 obtains a frame number (ST1010), and based on this frame number, whether transmission data is data of a channel whose transmission timing is controlled, that is, a scheduled channel It is determined whether or not the data is (ST1020).
  • the mapping section 104 determines that the transmission subframe is in contact with the contention' based 'channel, that is, the subframe is contention'. It is determined whether the subframe is transmitted immediately after the base channel (ST1030).
  • mapping section 104 determines whether or not the data to be processed is data of the first block of the subframe. (ST1040). If it is the first block, data mapping on the frequency axis is performed on the first block so that it does not overlap with the contention “based” channel data (ST1050).
  • data mapping method in which the data of the two channels must overlap on the frequency axis! / Is called “orthogonal mapping”.
  • mapping is performed on the data by a normal method (ST1060).
  • mapping section 104 Whether the subframe to be transmitted touches the scheduled 'channel That is, it is determined whether or not the subframe is a subframe transmitted immediately before the scheduled channel (ST1070).
  • the subframe is a subframe transmitted immediately before the scheduled channel, it is next determined whether or not the data to be processed is the data of the last block of the subframe (ST1080). If it is a tail block, orthogonal mapping is performed on the tail block such that it does not overlap with the scheduled channel data (ST1090).
  • the mapping unit 104 determines whether or not the data to be mapped satisfies a predetermined condition based on the input frame number, and performs orthogonal mapping for the data that satisfies the condition. Normal mapping is performed for other data.
  • FIG. 5 and FIG. 6 are diagrams showing an example of a scheduled channel and a contention-based channel that are finally transmitted from the wireless transmission device 100 as a result of the mapping process. Variations as shown in these figures can be considered for orthogonal mapping.
  • Figure 5 shows an orthogonal mapping method in which frequency allocation is performed so that resource blocks are uniformly distributed in one channel, and the frequency of the resource blocks is in an interpolating relationship when both channels are viewed.
  • distributed orthogonal mapping As shown in the figure, resource blocks in a region that may cause inter-channel interference are arranged in a comb shape. As a result, the frequencies of the resource blocks of both channels do not overlap, so that the occurrence of inter-channel interference can be prevented. Further, by arranging the resource blocks so that the resource blocks are dispersed in one channel, a frequency diversity effect can be obtained, and the structure is strong against frequency selective fading.
  • FIG. 6 shows an orthogonal mapping method in which resource blocks of one channel are collectively arranged so as not to overlap with the resource blocks of the other channel (hereinafter referred to as continuous orthogonal mapping). ).
  • continuous orthogonal mapping For reference, an example of normal mapping is shown in FIG.
  • radio reception apparatus 1 corresponding to radio transmission apparatus 100 described above.
  • FIG. 8 is a block diagram showing the main configuration of radio receiving apparatus 150.
  • Radio section 152 performs predetermined radio processing, such as down-compression and AZD conversion, on the signal received via reception antenna 151.
  • CP deletion section 153 deletes the portion corresponding to CP from the received data.
  • the FFT unit 154 converts the received signal into frequency component data by fast Fourier transform.
  • Channel estimation section 155 estimates the channel variation of the received signal and calculates a channel estimation value. Based on the channel estimation value estimated by channel estimation section 155, FDE section 156 performs equalization processing in the frequency domain on the signal output from FFT section 154.
  • demapping section 157 determines whether or not the data to be processed is orthogonally mapped by radio transmitting apparatus 100, and the result of this determination Based on the above, orthogonal demapping Z normal demapping is used to divide and frequency-equalized frequency component data is de-mapped according to a predetermined rule on the frequency resource of radio frame. Details will be described later.
  • the IDFT unit 158 converts frequency domain data into time waveform data by inverse discrete Fourier transform.
  • the demodulation unit 159 performs demodulation processing on the time waveform data.
  • Decoding unit 160 performs a decoding process on the demodulated signal to obtain received data.
  • FIG. 9 is a flowchart showing details of the operation of the demapping unit 157. Note that the procedure (ST1020, ST1030, etc.) for determining whether or not the transmission data satisfies the predetermined condition is the same as the procedure shown in FIG. Such explanation is omitted.
  • the demapping unit 157 performs demapping after interpolating the null frequency component from the data after the data is mapped. ST1510), the demapped signal is output to IDFT section 158 at the subsequent stage.
  • the demapping unit 157 performs demapping after thinning out the frequency component after data is mapped from the data (ST1530), and outputs the demapped signal to the subsequent IDFT unit 158. .
  • demapping section 157 performs normal demapping (ST1520
  • the number of data (number of subcarriers) mapped to different frequency components in the contention 'based' channel and the scheduled channel need to be the same in both channels. It may be changed according to the situation. For example, if there is a lot of scheduled 'channel traffic, you can increase the number of frequency components in the scheduled' channel, while decreasing the number of frequency components in the contention 'basic' channel.
  • channel estimation section 155 of radio reception apparatus 150 performs channel estimation based on the received pilot signal before fast Fourier transform is shown as an example, but after fast Fourier transform
  • the frequency component power of the received pilot signal may be configured to perform channel estimation.
  • Embodiment 2 of the present invention when orthogonal mapping is performed on the head portion of the scheduled channel, it is not overlapped on the frequency axis according to the MCS control information of the data. Change the number of frequency components (subcarriers) placed in.
  • FIG. 10 is a block diagram showing the main configuration of radio transmitting apparatus 200 according to the present embodiment.
  • the wireless transmission device 200 has the same basic configuration as the wireless transmission device 100 (see FIG. 3) shown in the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted. Is omitted.
  • mapping section 104a maps the data converted into frequency components onto the frequency resource of the radio frame according to a predetermined rule.
  • the number of frequency components arranged on the frequency axis is changed according to the MCS parameter input separately for the head part of the scheduled channel. More specifically, the number of frequency components is increased for MCS parameters with high error resilience (for example, QPSK), and the number of frequency components is decreased for MCS parameters with low error resilience (for example, 16QAM). .
  • FIGS. 11 to 13 are diagrams showing examples of a scheduled “channel” and a contention “based” channel transmitted from the wireless transmission device 100.
  • the orthogonal mapping according to the present embodiment has variations as shown in these figures, and the optimal orthogonal mapping method is selected according to the MCS parameter.
  • FIG. 11 shows a case where MCS parameters with low error tolerance are applied.
  • the number of subcarriers in the scheduled “channel” is set such that it does not completely overlap with the contention “basic” channel.
  • FIG. 12 shows a case where an MCS parameter with medium error resilience is applied. If this is the case, the number of subcarriers in the scheduled 'channel should be the number of data that slightly overlaps the contention' based 'channel.
  • FIG. 13 shows a case where an MCS parameter with high error tolerance is applied.
  • the number of subcarriers in the scheduled 'channel' should be the number of data that overlaps (or almost completely) the contention 'base' channel.
  • FIG. 14 is a block diagram showing the main configuration of radio receiving apparatus 250 according to the present embodiment, corresponding to radio transmitting apparatus 200 described above. Note that the same components as those of radio receiving apparatus 150 (see FIG. 8) shown in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the difference from the demapping unit 157 according to Embodiment 1 is that it is arranged so that it does not overlap on the frequency axis according to the MCS parameter of the data with respect to the head part of the scheduled channel
  • reception processing is performed according to the number of frequency components.
  • the demapping unit 157a determines the mapping pattern of the frequency component of the MCS parameter force, and if there is no data, performs the demapping after the frequency component is interleaved IV, and the signal after the demapping is performed.
  • the number is output to IDFT unit 158.
  • Other processes are the same as those in the first embodiment.
  • the resource usage efficiency can be changed according to the tolerance of interchannel interference (hardness of error due to the influence of the other channel force), so the transmission efficiency can be maintained while reducing the occurrence of packet errors. it can.
  • pilots are mapped so that the tail portion of the contention 'based' channel and the head portion of the scheduled 'channel do not overlap on the force frequency axis.
  • FIG. 15 is a block diagram showing the main configuration of radio transmitting apparatus 300 according to the present embodiment.
  • the wireless transmission device 300 also has the same basic configuration as the wireless transmission device 100 (see FIG. 3) shown in the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted. Is omitted.
  • mapping section 302 maps the data and pilot, which are output from DFT section 103 and converted into frequency components, onto the frequency resource of the radio frame according to a predetermined rule. However, unlike the mapping unit 104 according to the first embodiment, data is mapped to the tail part of the contention 'based' channel and the head part of the scheduled 'channel so that they do not overlap on the frequency axis. Then map the pilots so that they do not overlap on the frequency axis.
  • FIG. 16 is a flowchart showing details of the operation of the mapping unit 302. Note that the procedure (ST1020, ST1030, etc.) for determining whether or not the transmission data satisfies the predetermined condition is the same as the procedure shown in FIG. The explanation is omitted.
  • mapping section 302 applies to the first transmission block. Then, pilot orthogonal mapping is performed so that it does not overlap with contention 'based' channel data (ST3010).
  • mapping section 302 transmits the transmission block at the end.
  • orthogonal mapping of pilots is performed so as not to overlap with scheduled channel data (ST3030).
  • mapping unit 302 is not a pilot but normal data (data other than the piuit! Mapping of /, meaning) (ST3020).
  • FIG. 17 is a diagram illustrating an example of a scheduled channel and a contention-based channel that are finally transmitted from the wireless transmission device 300 as a result of the mapping process.
  • FIG. 18 is a block diagram showing the main configuration of radio receiving apparatus 350 according to the present embodiment, corresponding to radio transmitting apparatus 300 described above. Note that the same components as those of radio receiving apparatus 150 (see FIG. 8) shown in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • channel estimation section 351 performs transmission. A determination is made as to whether the data satisfies the predetermined condition. Therefore, the channel estimation unit 351 receives the frame number, and first extracts only the pilot signal from the pre-demapped signal output from the FFT unit 154. Channel estimation section 351 performs channel estimation by the method described later using this pilot signal. FDE section 156 performs equalization processing in the frequency domain on the signal output from FFT section 154 based on the channel estimation value calculated by channel estimation section 351.
  • FIG. 19 is a flowchart showing details of the operation of channel estimation section 351. Note that the procedure (ST1020, ST1030, etc.) for determining whether or not the transmission data satisfies the predetermined condition is the same as the procedure shown in FIG. The detailed explanation is omitted.
  • the data to be processed is data that satisfies the conditions of ST1020 to ST1040 (ST1040: YES)
  • this data is overlapped with the contention-based channel data in radio transmitting apparatus 300. Therefore, it can be determined that the pilots are orthogonally mapped.
  • channel estimation section 351 performs channel estimation using the orthogonally mapped pie mouth after the pilot is mapped, the frequency component is set to the interbow IV, and so on (ST3510).
  • the thinned frequency component may be supplemented by subsequent interpolation processing.
  • channel estimation section 351 performs channel estimation after thinning out the frequency components, which should be mapped to the noise (ST3530). Note that the thinned frequency component may be supplemented by subsequent interpolation processing.
  • the channel estimation unit 351 performs channel estimation using the pilot mapped in the normal method. Perform (ST3520).
  • the resources that may overlap in both channels are different. Since the noise is mapped to the frequency component to be transmitted, the data part (meaning the part other than the pilot) is not directly overlapped, and the interference between channels can be mitigated. As a result, the probability of occurrence of a packet error is reduced, and deterioration of reception quality can be prevented.
  • channel estimation section 351 of radio receiving apparatus 350 when channel estimation is performed with a time domain signal before high-speed Fourier transform, frequency components are thinned out and Z is unaware.
  • a configuration in which the same channel estimation process is applied to both signals is also conceivable.
  • the wireless transmission device and the wireless transmission method according to the present invention are not limited to the above embodiments, and can be implemented with various modifications.
  • a radio transmission apparatus can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, and thereby has a similar effect to the above.
  • a base station apparatus, and a mobile communication system can be provided.
  • the contention 'basic' channel and the scheduled channel have been described as examples.
  • the reception timing is not necessarily limited to these channels. It can be applied to channels that shift backwards due to propagation delay and channels whose reception timing is always adjusted by transmission timing control.
  • the power described as resources that interfere with each other is not necessarily limited to this precondition.
  • the present invention can be applied to a tail block of a contention-based channel whose transmission timing is not controlled and a head block of a contention 'basic' channel whose transmission timing is controlled.
  • force using DFT or IFFT as an example is not limited to this.
  • IFFT can be IDFT!
  • the contention 'basic' channel in each of the above embodiments is used for RACH, and the scheduled 'channel is transmitted via the shared' channel.
  • the shared channel is sometimes called PUSCH (Physical Uplink Shared channel).
  • the power described with reference to an example in which the present invention is configured by nodeware can also be realized by software.
  • the wireless transmission method algorithm according to the present invention is described in a programming language, the program is stored in a memory, and is executed by an information processing means, so that functions similar to those of the wireless transmission device according to the present invention are achieved. Can be realized.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all of them.
  • IC integrated circuit
  • system LSI system LSI
  • super LSI super LSI
  • unroller LSI etc.
  • the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. It is also possible to use a field programmable gate array (FPGA) that can be programmed after LSI manufacturing, or a reconfigurable processor that can reconfigure the connection or setting of circuit cells inside the LSI.
  • FPGA field programmable gate array
  • the radio transmission apparatus and radio transmission method according to the present invention can be applied to applications such as a communication terminal apparatus and a base station apparatus in a mobile communication system.

Abstract

Disclosed are a radio transmission device and a radio transmission method capable of reducing the affect of inter-channel interference and improving reception quality even a delay is caused in a contention based channel in a communication system where the contention based channel is time-multiplexed with a scheduled channel. In the device and the method, a contention based channel and a scheduled channel to be transmitted subsequently after the contention based channel are transmitted while being arranged in such a manner that a sub carrier of an end portion of the content base channel (frequency component) and a sub carrier of a head portion of a scheduled channel are at least not overlapped on the frequency axis.

Description

無線送信装置および無線送信方法  Radio transmission apparatus and radio transmission method
技術分野  Technical field
[0001] 本発明は、送信タイミング制御されて 、るチャネルと送信タイミング制御されて!、な いチャネルとを時分割多重して送信する無線送信装置および無線送信方法に関す る。  [0001] In the present invention, the transmission timing is controlled, and the channel and the transmission timing are controlled! The present invention relates to a radio transmission apparatus and a radio transmission method for transmitting time-division multiplexed with a non-existing channel.
背景技術  Background art
[0002] 現在、 3GPP RAN LTE (Long Term Evolution)では、上り回線の伝送方式として SC— FDMA (Single Carrier-Frequency Division Multiple Access)が検討されてい る。また、 SC— FDMAにおいて、ユーザ間でスケジューリングされるチャネルである スケジュールド 'チャネル(scheduled channel)と、ユーザ間でスケジューリングされず ユーザ主導で送信されるチャネルであるコンテンション'ベースド ·チャネル (contenti on based channel)の無線フレームへの多重方法も検討されている。  [0002] Currently, 3GPP RAN LTE (Long Term Evolution) is studying SC-FDMA (Single Carrier-Frequency Division Multiple Access) as an uplink transmission method. In SC-FDMA, a scheduled 'channel (scheduled channel) that is scheduled between users and a contention' based channel (contenti on that is a channel that is not scheduled between users and transmitted by the user) Based channel) multiplexing methods for radio frames have also been studied.
[0003] また、上り回線にお!、て、ユーザ間の干渉を低減する TAC (Timing Alignment Con trol)と呼ばれる技術がある。この TACとは、移動局が送信したデータを基地局が受 信する場合に、複数の移動局間の受信タイミングが所定の時間範囲内に収まるよう に、各移動局の送信タイミングを調整する送信タイミング制御技術である。特に、 SC — FDE (Single Carrier-Frequency Domain Equalization) 目的とし 7こフロック伝 の 際には、 CP (Cyclic Prefix)を付加して送信するので、各移動局の受信タイミングの 差を CP内に収まるように送信タイミング制御することで、ユーザ間干渉の発生を抑え ることが可能となる。  [0003] In addition, there is a technology called TAC (Timing Alignment Control) that reduces interference between users on the uplink. This TAC is a transmission that adjusts the transmission timing of each mobile station so that the reception timing between multiple mobile stations is within a predetermined time range when the base station receives data transmitted by the mobile station. Timing control technology. In particular, for SC — FDE (Single Carrier-Frequency Domain Equalization) purpose, when transmitting 7 flocks, CP (Cyclic Prefix) is added and transmitted, so the difference in reception timing of each mobile station fits in CP By controlling the transmission timing in this way, it is possible to suppress the occurrence of inter-user interference.
[0004] ここで、スケジュールド 'チャネルおよびコンテンション 'ベースド 'チャネルそれぞれ の送信タイミング制御について説明する。スケジュールド 'チャネルでは、通常、送信 タイミング制御が実施されている。一方、コンテンション 'ベースド 'チャネルでは、送 信タイミング制御が実施されない場合がある。その理由は、移動局の初期接続に用 いられる RACH (Random Access Channel)等を伝送する場合、それまで上り信号を 送信して!/ヽな 、ので送信タイミング制御に必要なフィードバック処理ができな 、から である。すなわち、 RACHは送信タイミング制御が実施されない状況で送信されざる を得ないのである。 [0004] Here, transmission timing control for each of the scheduled 'channel' and the contention 'based' channel will be described. In the scheduled channel, transmission timing control is usually implemented. On the other hand, transmission timing control may not be performed in the contention 'based' channel. The reason for this is that when transmitting RACH (Random Access Channel) used for the initial connection of the mobile station, the upstream signal is transmitted until then, so feedback processing necessary for transmission timing control cannot be performed. From It is. In other words, RACH must be transmitted in a situation where transmission timing control is not implemented.
[0005] 非特許文献 1では、コンテンション 'ベースド 'チャネルとスケジュールド 'チャネルの 多重方法として、時分割多重する構成あるいは時分割多重と周波数分割多重を併 用する構成が提案されて ヽる。  [0005] In Non-Patent Document 1, as a multiplexing method for the contention 'basic' channel and the scheduled 'channel, a configuration for time division multiplexing or a configuration using both time division multiplexing and frequency division multiplexing has been proposed.
非特許文献 1 :NTT DoCoMo, Fujitsu, NEC, SHARP, "Physical Channels and Multip lexing in Evolved UTRA Uplink", Rl— 050850, 3GPP TSG RAN WGl Meeting #42, L ondon, UK, 29 August - 2 September, 2005  Non-Patent Document 1: NTT DoCoMo, Fujitsu, NEC, SHARP, "Physical Channels and Multiplexing in Evolved UTRA Uplink", Rl— 050850, 3GPP TSG RAN WGl Meeting # 42, London, UK, 29 August-2 September, 2005
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、上記技術によって送信される図 1に示すような信号では、パケットエラ 一となる確率力 コンテンション'ベースド ·チャネルおよびスケジュールド ·チャネルの 双方共に増加するという問題がある。以下、その理由を説明する。  [0006] However, the signal as shown in Fig. 1 transmitted by the above technique has a problem that both the probability contention 'based channel and the scheduled channel increase due to packet error. . The reason will be described below.
[0007] 移動局がコンテンション 'ベースド 'チャネルで RACHを送信する場合を考える。上 述した通り、 RACH送信時は送信タイミング制御が実施されていないので、基地局の 受信タイミングには遅延が発生する。この遅延は、基地局と移動局との間の距離に比 例して増加する。従って、遅延によってコンテンション 'ベースド 'チャネルの受信タイ ミングが時間的に後方にずれ込んでしまった分(図 2に示す伝搬遅延)、コンテンショ ン .ベースド .チャネルのサブフレーム後尾部分とスケジュールド .チャネルのサブフレ ーム先頭部分とが重なってしまい(図 2に示す衝突)、チャネル間干渉が発生する。 すなわち、両チャネル間で発生した干渉により、パケットエラーとなる確率が増加し、 受信品質が劣化するのである。  [0007] Consider a case where a mobile station transmits RACH on a contention 'based' channel. As described above, since transmission timing control is not performed during RACH transmission, a delay occurs in the reception timing of the base station. This delay increases in proportion to the distance between the base station and the mobile station. Therefore, the reception timing of the contention 'basic' channel is shifted backward in time due to the delay (propagation delay shown in Fig. 2), and the subframe tail part of the contention based channel and the scheduled channel The top of the subframe overlaps (collision shown in Fig. 2), causing interchannel interference. That is, the interference between both channels increases the probability of a packet error and degrades the reception quality.
[0008] 本発明の目的は、コンテンション.ベースド 'チャネルとスケジュールド 'チャネルとが 時間多重される通信システム、すなわち送信タイミング制御されて ヽな 、チャネルと 送信タイミング制御されて 、るチャネルとが時間多重される通信システムにお 、て、 送信タイミング制御されて 、な 、チャネルの受信タイミングに遅延が発生しても、送信 タイミング制御されて 、な 、チャネルと送信タイミング制御されて 、るチャネルとのチ ャネル間干渉の影響を低減し、受信品質の劣化を防止することができる無線送信装 置および無線送信方法を提供することである。 [0008] An object of the present invention is to provide a communication system in which a contention-based 'channel and a scheduled' channel are time-multiplexed, that is, a channel whose transmission timing is controlled and a channel whose transmission timing is controlled. In a time-multiplexed communication system, even if a transmission timing is controlled and a delay occurs in the reception timing of the channel, the transmission timing is controlled and the channel and the transmission timing are controlled. Wireless transmitters that can reduce the effects of inter-channel interference and prevent degradation of reception quality And providing a wireless transmission method.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の無線送信装置は、コンテンション 'ベースド 'チャネルおよび前記コンテン シヨン ·ベースド ·チャネルに続 、て送信されるスケジュールド ·チャネルにお!/、て、前 記コンテンション 'ベースド 'チャネルの後尾部分のリソースブロックの一部と前記スケ ジュールド 'チャネルの先頭部分のリソースブロックの一部とを、周波数成分の全て又 は一部が重ならな 、ように配置する配置手段と、前記コンテンション'ベースド ·チヤネ ルおよび前記スケジュールド 'チャネルを送信する送信手段と、を具備する構成を採 る。 [0009] The wireless transmission device according to the present invention includes a contention 'based' channel and a scheduled channel transmitted after the contention-based channel! / Arrangement means for arranging a part of the resource block at the tail part of the channel and a part of the resource block at the head part of the scheduled channel so that all or part of the frequency components do not overlap; And a transmission means for transmitting the contention base channel and the scheduled channel.
発明の効果  The invention's effect
[0010] 本発明によれば、送信タイミング制御されて 、な 、チャネルと送信タイミング制御さ れて 、るチャネルとが時間多重される通信システムにお 、て、送信タイミング制御さ れて 、な 、チャネルに遅延が発生しても、送信タイミング制御されて 、な 、チャネル と送信タイミング制御されて ヽるチャネルとのチャネル間干渉の影響を低減し、受信 品質の劣化を防止することができる。  [0010] According to the present invention, in a communication system in which transmission timing is controlled, and the channel and transmission timing are controlled, and the channel is time multiplexed, the transmission timing is controlled. Even if a delay occurs in the channel, the transmission timing is controlled, so that the influence of the inter-channel interference between the channel and the channel whose transmission timing is controlled can be reduced, and the deterioration of the reception quality can be prevented.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]発明が解決しょうとする課題を説明するための図  [0011] [FIG. 1] A diagram for explaining a problem to be solved by the invention
[図 2]コンテンション'ベースド .チャネルとスケジュールド .チャネルのチャネル間干渉 を説明するための図  [Fig.2] Diagram for explaining interchannel interference between contention-based channel and scheduled channel
[図 3]実施の形態 1に係る無線送信装置の主要な構成を示すブロック図  FIG. 3 is a block diagram showing the main configuration of a radio transmission apparatus according to Embodiment 1
[図 4]実施の形態 1に係るマッピング部の動作の詳細について示すフロー図  FIG. 4 is a flowchart showing details of the operation of the mapping unit according to the first embodiment.
[図 5]実施の形態 1に係るスケジュールド ·チャネルおよびコンテンション'ベースド ·チ ャネルの一例を示す図  FIG. 5 is a diagram showing an example of a scheduled channel and contention'-based channel according to Embodiment 1.
[図 6]実施の形態 1に係るスケジュールド ·チャネルおよびコンテンション'ベースド ·チ ャネルの一例を示す図  FIG. 6 is a diagram showing an example of a scheduled channel and contention'-based channel according to Embodiment 1.
[図 7]通常マッピングの場合の例を示す図  [Figure 7] Diagram showing an example of normal mapping
[図 8]実施の形態 1に係る無線受信装置の主要な構成を示すブロック図  FIG. 8 is a block diagram showing the main configuration of the radio receiving apparatus according to Embodiment 1
[図 9]実施の形態 1に係るデマッピング部の動作の詳細を示すフロー図 [図 10]実施の形態 2に係る無線送信装置の主要な構成を示すブロック図 FIG. 9 is a flowchart showing details of the operation of the demapping unit according to the first embodiment. FIG. 10 is a block diagram showing the main configuration of a radio transmission apparatus according to Embodiment 2
[図 11]実施の形態 2に係るスケジュールド ·チャネルおよびコンテンション'ベースド · チャネルの一例を示す図  FIG. 11 is a diagram showing an example of a scheduled channel and contention'-based channel according to the second embodiment.
[図 12]実施の形態 2に係るスケジュールド 'チャネルおよびコンテンション 'ベースド' チャネルの一例を示す図  FIG. 12 shows an example of a scheduled 'channel and a contention' based 'channel according to the second embodiment.
[図 13]実施の形態 2に係るスケジュールド 'チャネルおよびコンテンション 'ベースド' チャネルの一例を示す図  FIG. 13 shows an example of a scheduled 'channel and a contention' based 'channel according to the second embodiment.
[図 14]実施の形態 2に係る無線受信装置の主要な構成を示すブロック図  FIG. 14 is a block diagram showing the main configuration of a radio receiving apparatus according to Embodiment 2
[図 15]実施の形態 3に係る無線送信装置の主要な構成を示すブロック図  FIG. 15 is a block diagram showing the main configuration of a wireless transmission apparatus according to Embodiment 3
[図 16]実施の形態 3に係るマッピング部の動作の詳細を示すフロー図  FIG. 16 is a flowchart showing details of the operation of the mapping unit according to the third embodiment.
[図 17]実施の形態 3に係るスケジュールド ·チャネルおよびコンテンション'ベースド · チャネルの一例を示す図  FIG. 17 is a diagram showing an example of a scheduled channel and contention'-based channel according to the third embodiment.
[図 18]実施の形態 3に係る無線受信装置の主要な構成を示すブロック図  FIG. 18 is a block diagram showing the main configuration of a radio receiving apparatus according to Embodiment 3
[図 19]実施の形態 3に係るチャネル推定部の動作の詳細について示すフロー図 発明を実施するための最良の形態  FIG. 19 is a flowchart showing details of the operation of the channel estimation unit according to Embodiment 3. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお 、ここでは、以下の事項を前提条件とする場合を例にとって説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, a case where the following matters are preconditions will be described as an example.
(1)本発明に係る無線送信装置が移動局に搭載され、上り回線の通信を行ってい る。  (1) A radio transmission apparatus according to the present invention is installed in a mobile station and performs uplink communication.
(2) DFT—S— OFDM (Discrete Fourier Transform- spread- Orthogonal Frequenc y Division Multiplexing)構成による無線送信装置を示す。  (2) DFT-S—A wireless transmission apparatus having an OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing) configuration.
(3)コンテンション ·ベースド'チヤネノレ (contention based channel)、スケジユーノレド' チャネル(scheduled channel)は時分割多重されており、コンテンション 'ベースド'チ ャネルに連続してスケジュールド ·チャネルが割り当てられて 、る。  (3) Contention-based channel (contention based channel), schedule channel (scheduled channel) are time-division multiplexed, and scheduled channel is continuously assigned to contention 'based' channel. The
(4)コンテンション 'ベースド 'チャネルは RACHを伝送しており、送信タイミング制 御されていない。よって、基地局の受信タイミングは伝搬遅延により時間的に後方に ずれる。  (4) Contention 'based' channel is transmitting RACH and transmission timing is not controlled. Therefore, the reception timing of the base station is shifted backward in time due to the propagation delay.
(5)スケジュールド 'チャネルは、送信タイミング制御されている。よって、基地局の 受信タイミングは合って 、る。 (5) Scheduled 'channel is transmission timing controlled. Therefore, the base station The reception timing is correct.
(6)コンテンション'ベースド ·チャネルとスケジュールド ·チャネルとは、それぞれ異 なる移動局から送信される。  (6) Contention'-based channel and scheduled channel are transmitted from different mobile stations.
(7)送信パヮコントロールがされており、受信電力はパケット間でほぼ等しい。  (7) Transmission power control is performed, and the received power is almost equal between packets.
(8)受信装置側で FDE (Frequency Domain Equalization)を適用することを目的とし て、 CPを付カ卩してブロック単位で送信するブロック伝送を適用して 、る。  (8) For the purpose of applying FDE (Frequency Domain Equalization) on the receiving device side, block transmission that transmits CP in block units with CP is applied.
(9)コンテンション 'ベースド 'チャネルはユーザ間の衝突を前提としたチャネルなの で、もともと誤り耐性の強 、MCSパラメータが適用されて 、る。  (9) Since the contention 'based' channel is premised on collision between users, the MCS parameter is originally applied with strong error resilience.
[0013] (実施の形態 1)  [0013] (Embodiment 1)
本発明の実施の形態 1では、コンテンション 'ベースド 'チャネルの後尾部分と、スケ ジュールド ·チャネルの先頭部分とが周波数軸上で重ならな!/、ようにデータをマツピン グする。ここで、コンテンション 'ベースド 'チャネルとは、送信タイミング制御されてい な 、チャネルであり、スケジュールド ·チャネルとは送信タイミング制御されて!、るチヤ ネルである。これにより、コンテンション 'ベースド 'チャネルが遅延したとしても、スケジ ユールド'チャネルと直接的にリソースが重ならないので、干渉を緩和することが可能 となり、パケットエラーの発生を低減することができる。  In the first embodiment of the present invention, data is mapped so that the tail part of the contention “basic” channel and the head part of the scheduled channel overlap on the frequency axis! /. Here, the contention “based” channel is a channel whose transmission timing is not controlled, and the scheduled channel is a channel whose transmission timing is controlled! As a result, even if the contention “based” channel is delayed, the resource does not directly overlap with the “scheduled” channel, so that interference can be mitigated and packet errors can be reduced.
[0014] 図 3は、本実施の形態に係る無線送信装置 100の主要な構成を示すブロック図で ある。  FIG. 3 is a block diagram showing the main configuration of radio transmitting apparatus 100 according to the present embodiment.
[0015] 無線送信装置 100は、符号化部 101、変調部 102、 DFT部 103、マッピング部 10 4、 IFFT部 105、 CP付加部 106、無線部 107、および送信アンテナ 108を備え、各 部は以下の動作を行う。  [0015] Radio transmitting apparatus 100 includes encoding section 101, modulating section 102, DFT section 103, mapping section 104, IFFT section 105, CP adding section 106, radio section 107, and transmitting antenna 108, and each section includes The following operations are performed.
[0016] 符号ィ匕部 101は、送信データの誤り訂正符号化処理を行う。変調部 102は、符号 化部 101から出力される送信データに対し、 BPSK、 QPSK、 16QAM等の変調方 式によって変調処理を行う。 DFT部 103は、変調部 102から出力される変調後の送 信信号に対し離散フーリエ変換を施し、時間波形力 周波数波形の成分に変換する  [0016] The code unit 101 performs error correction coding processing of transmission data. Modulation section 102 performs modulation processing on the transmission data output from encoding section 101 using a modulation method such as BPSK, QPSK, or 16QAM. The DFT unit 103 performs discrete Fourier transform on the modulated transmission signal output from the modulation unit 102 and converts it into a time waveform force frequency waveform component.
[0017] マッピング部 104は、周波数成分に変換されたデータを無線フレームの周波数リソ ース上へマッピングする。この際、別途入力されるフレーム番号に基づき、送信デー タが所定の条件を満たすデータに該当するか否かを判断し、この条件を満たすデー タである場合、当該データに対し後述のマッピングを行う。 [0017] Mapping section 104 maps the data converted into frequency components onto the frequency resource of the radio frame. At this time, based on the frame number input separately, the transmission data If the data satisfies the predetermined condition, and if the data satisfies this condition, mapping described later is performed on the data.
[0018] IFFT部 105は、周波数軸上にマッピングされたデータを逆高速フーリエ変換処理 により時間波形に変換する。 CP付加部 106は、送信ブロックの末尾を複製し、これを 送信ブロックの先頭に付加することにより送信信号に CPを付加する。無線部 107は、 CPが付加された送信信号に対し、 DZA変換、アップコンバート等の所定の無線処 理を施し、送信アンテナ 108を介して無線受信装置に向けて送信する。  [0018] IFFT section 105 converts the data mapped on the frequency axis into a time waveform by inverse fast Fourier transform processing. CP adding section 106 duplicates the end of the transmission block and adds this to the beginning of the transmission block to add CP to the transmission signal. Radio section 107 performs predetermined radio processing such as DZA conversion and up-conversion on the transmission signal to which CP is added, and transmits the radio signal to the radio reception apparatus via transmission antenna 108.
[0019] 図 4は、上記マッピング部 104の動作の詳細について示すフロー図である。  FIG. 4 is a flowchart showing details of the operation of the mapping unit 104.
[0020] まず、マッピング部 104は、フレーム番号を取得し(ST1010)、このフレーム番号に 基づ 、て、送信データが送信タイミング制御されて ヽるチャネルのデータであるか、 すなわちスケジュールド 'チャネルのデータであるか否かを判断する(ST1020)。  First, mapping section 104 obtains a frame number (ST1010), and based on this frame number, whether transmission data is data of a channel whose transmission timing is controlled, that is, a scheduled channel It is determined whether or not the data is (ST1020).
[0021] ST1020においてスケジュールド 'チャネルのデータであると判断された場合、マツ ビング部 104は、送信するサブフレームがコンテンション 'ベースド 'チャネルに接す る力、すなわち当該サブフレームがコンテンション 'ベースド 'チャネルの直後に送信 されるサブフレームか否かを判断する(ST1030)。  [0021] When it is determined in ST1020 that the data is scheduled 'channel data, the mapping section 104 determines that the transmission subframe is in contact with the contention' based 'channel, that is, the subframe is contention'. It is determined whether the subframe is transmitted immediately after the base channel (ST1030).
[0022] 当該サブフレームがコンテンション'ベースド ·チャネルの直後に送信されるサブフ レームである場合、マッピング部 104は、処理対象のデータがサブフレームの先頭ブ ロックのデータであるか否かを判断する(ST1040)。そして、先頭ブロックであった場 合、当該先頭のブロックに対し、コンテンション 'ベースド 'チャネルのデータと重なり 合わないような周波数軸上でのデータマッピングを行う(ST1050)。以下、このような 、 2つのチャネルのデータが周波数軸上で重ならな!/、ようなデータマッピング方法を 特に「直交マッピング」と呼ぶ。  [0022] When the subframe is a subframe transmitted immediately after the contention'-based channel, mapping section 104 determines whether or not the data to be processed is data of the first block of the subframe. (ST1040). If it is the first block, data mapping on the frequency axis is performed on the first block so that it does not overlap with the contention “based” channel data (ST1050). Hereinafter, such a data mapping method in which the data of the two channels must overlap on the frequency axis! / Is called “orthogonal mapping”.
[0023] なお、送信データが、コンテンション 'ベースド 'チャネルと接しない場合(ST1030 :  [0023] Note that the transmission data does not contact the contention 'based' channel (ST1030:
NO)、先頭ブロックでない場合(ST1040 :NO)は、当該データに対し、通常の方法 によるマッピングを行う(ST1060)。  If it is not the first block (ST1040: NO), mapping is performed on the data by a normal method (ST1060).
[0024] 一方、 ST1020にお!/、て送信データが送信タイミング制御されて!、な 、チャネルの データ、すなわちコンテンション 'ベースド 'チャネルのデータであると判断された場合 、マッピング部 104は、送信するサブフレームがスケジュールド 'チャネルに接するか 、すなわち当該サブフレームがスケジュールド 'チャネルの直前に送信されるサブフ レームか否かを判断する(ST1070)。 [0024] On the other hand, if it is determined in ST1020 that the transmission data is transmission timing controlled !, and that it is determined that the data is channel data, that is, contention 'based' channel data, mapping section 104 Whether the subframe to be transmitted touches the scheduled 'channel That is, it is determined whether or not the subframe is a subframe transmitted immediately before the scheduled channel (ST1070).
[0025] 当該サブフレームがスケジュールド 'チャネルの直前に送信されるサブフレームで ある場合、次に、処理対象のデータがサブフレームの後尾ブロックのデータであるか 否かを判断する(ST1080)。そして、後尾ブロックであった場合、この後尾ブロックに 対し、スケジュールド ·チャネルのデータと重なり合わな!/、ような直交マッピングを行う (ST1090)。 [0025] If the subframe is a subframe transmitted immediately before the scheduled channel, it is next determined whether or not the data to be processed is the data of the last block of the subframe (ST1080). If it is a tail block, orthogonal mapping is performed on the tail block such that it does not overlap with the scheduled channel data (ST1090).
[0026] なお、送信データが、スケジュールド 'チャネルと接しない場合(ST1070 : NO)、後 尾ブロックでない場合(ST1080 :NO)は、当該データに対し、通常のマッピングを行 う(ST1060)。  [0026] If the transmission data is not in contact with the scheduled channel (ST1070: NO) or not the last block (ST1080: NO), normal mapping is performed on the data (ST1060).
[0027] このように、マッピング部 104は、入力されるフレーム番号に基づき、マッピング対象 のデータが所定の条件を満たすものであるか否力判断し、条件を満たすデータに対 しては直交マッピングを行 、、それ以外のデータに対しては通常のマッピングを行う。  In this way, the mapping unit 104 determines whether or not the data to be mapped satisfies a predetermined condition based on the input frame number, and performs orthogonal mapping for the data that satisfies the condition. Normal mapping is performed for other data.
[0028] 図 5および図 6は、上記マッピング処理の結果、最終的に無線送信装置 100から送 信されるスケジュールド ·チャネルおよびコンテンション ·ベースド ·チャネルの一例を 示す図である。直交マッピングには、これらの図に示すようなバリエーションが考えら れる。  FIG. 5 and FIG. 6 are diagrams showing an example of a scheduled channel and a contention-based channel that are finally transmitted from the wireless transmission device 100 as a result of the mapping process. Variations as shown in these figures can be considered for orthogonal mapping.
[0029] 図 5は、一方のチャネルにおいてはリソースブロックが万遍なく分散するような周波 数配置を行い、両チャネルを見ると互いにリソースブロックの周波数が補間関係にあ るような直交マッピング法である(以下、分散型の直交マッピングと呼ぶ)。図示されて いるように、チャネル間干渉を起こす可能性のある領域のリソースブロックは、櫛の歯 状に配置される。これにより、両チャネルのリソースブロックの周波数が重ならないた め、チャネル間干渉の発生を防止することができる。また、一方のチャネルにおいてリ ソースブロックが分散するように配置を採ることにより、周波数ダイバーシチ効果も得 られ、周波数選択性フェージングに強 、構成となって 、る。  [0029] Figure 5 shows an orthogonal mapping method in which frequency allocation is performed so that resource blocks are uniformly distributed in one channel, and the frequency of the resource blocks is in an interpolating relationship when both channels are viewed. (Hereinafter referred to as distributed orthogonal mapping). As shown in the figure, resource blocks in a region that may cause inter-channel interference are arranged in a comb shape. As a result, the frequencies of the resource blocks of both channels do not overlap, so that the occurrence of inter-channel interference can be prevented. Further, by arranging the resource blocks so that the resource blocks are dispersed in one channel, a frequency diversity effect can be obtained, and the structure is strong against frequency selective fading.
[0030] 図 6は、一方のチャネルのリソースブロックをまとめて配置させ、かつ、他方のチヤネ ルのリソースブロックと重ならないように配置する直交マッピング法である(以下、連続 型の直交マッピングと呼ぶ)。 [0031] なお、参考までに、通常マッピングの場合の例を図 7に示す。 [0030] FIG. 6 shows an orthogonal mapping method in which resource blocks of one channel are collectively arranged so as not to overlap with the resource blocks of the other channel (hereinafter referred to as continuous orthogonal mapping). ). [0031] For reference, an example of normal mapping is shown in FIG.
[0032] 次いで、上記無線送信装置 100に対応する、本実施の形態に係る無線受信装置 1 Next, radio reception apparatus 1 according to the present embodiment corresponding to radio transmission apparatus 100 described above.
50について説明する。図 8は、無線受信装置 150の主要な構成を示すブロック図で ある。 50 will be described. FIG. 8 is a block diagram showing the main configuration of radio receiving apparatus 150.
[0033] 無線部 152は、受信アンテナ 151を介して受信された信号に対し、ダウンコンパ一 ト、 AZD変換等の所定の無線処理を施す。 CP削除部 153は、受信データから CP に該当する部分を削除する。 FFT部 154は、受信信号を高速フーリエ変換により周 波数成分データに変換する。チャネル推定部 155は、受信信号の伝搬路変動を推 定し、チャネル推定値を算出する。 FDE部 156は、チャネル推定部 155で推定され たチャネル推定値に基づいて、 FFT部 154から出力される信号に対し周波数領域に おける等化処理を行う。  [0033] Radio section 152 performs predetermined radio processing, such as down-compression and AZD conversion, on the signal received via reception antenna 151. CP deletion section 153 deletes the portion corresponding to CP from the received data. The FFT unit 154 converts the received signal into frequency component data by fast Fourier transform. Channel estimation section 155 estimates the channel variation of the received signal and calculates a channel estimation value. Based on the channel estimation value estimated by channel estimation section 155, FDE section 156 performs equalization processing in the frequency domain on the signal output from FFT section 154.
[0034] デマッピング部 157は、入力されるフレーム番号に基づいて、処理対象のデータが 無線送信装置 100にお 、て直交マッピングされたものであるカゝ否かを判断し、この判 断結果に基づ 、て直交デマッピング Z通常デマッピングを使 、分け、周波数等化さ れた周波数成分データを無線フレームの周波数リソース上力 所定の規則に従って デマッピングする。詳細については後述する。  [0034] Based on the input frame number, demapping section 157 determines whether or not the data to be processed is orthogonally mapped by radio transmitting apparatus 100, and the result of this determination Based on the above, orthogonal demapping Z normal demapping is used to divide and frequency-equalized frequency component data is de-mapped according to a predetermined rule on the frequency resource of radio frame. Details will be described later.
[0035] IDFT部 158は、周波数領域のデータを逆離散フーリエ変換により時間波形のデ ータに変換する。復調部 159は、時間波形のデータに対し復調処理を行う。復号ィ匕 部 160は、復調後の信号に対し復号化処理を行い、受信データを得る。  The IDFT unit 158 converts frequency domain data into time waveform data by inverse discrete Fourier transform. The demodulation unit 159 performs demodulation processing on the time waveform data. Decoding unit 160 performs a decoding process on the demodulated signal to obtain received data.
[0036] 図 9は、上記デマッピング部 157の動作の詳細を示すフロー図である。なお、送信 データが所定の条件を満たすものであるカゝ否かを判断する手順 (ST1020、 ST103 0等)については、図 4に示した手順と同一であるため、同一符号を付して詳細な説 明は省略する。  FIG. 9 is a flowchart showing details of the operation of the demapping unit 157. Note that the procedure (ST1020, ST1030, etc.) for determining whether or not the transmission data satisfies the predetermined condition is the same as the procedure shown in FIG. Such explanation is omitted.
[0037] 処理対象のデータが ST1020〜ST1040の条件を満たすデータであると判断され た場合(ST1040 :YES)、このデータは、無線送信装置 100において、コンテンショ ン ·ベースド ·チャネルのデータと重なり合わな 、ような直交マッピングが施されて 、る と判断することができる。かかる場合、デマッピング部 157は、当該データから、デー タがマッピングされて ヽな 、ヌルの周波数成分を間弓 I Vヽた後にデマッピングを行 ヽ( ST1510)、デマッピング後の信号を後段の IDFT部 158へ出力する。 [0037] If it is determined that the data to be processed is data that satisfies the conditions of ST1020 to ST1040 (ST1040: YES), this data is overlapped with the contention-based channel data in radio transmitting apparatus 100. It can be determined that such orthogonal mapping is applied. In such a case, the demapping unit 157 performs demapping after interpolating the null frequency component from the data after the data is mapped. ST1510), the demapped signal is output to IDFT section 158 at the subsequent stage.
[0038] 一方、 ST1020においてコンテンション 'ベースド 'チャネルのデータであると判断さ れ、かつ、当該データが ST1070、 ST1080の条件を満たす場合(ST1080 :YES) 、当該データは、スケジュールド 'チャネルのデータと重なり合わないような直交マツピ ングが施されていると判断することができる。従って、デマッピング部 157は、当該デ ータから、データがマッピングされて ヽな 、周波数成分を間引いた後にデマッピング を行い(ST1530)、デマッピング後の信号を後段の IDFT部 158へ出力する。 [0038] On the other hand, when it is determined in ST1020 that the contention is “based” channel data and the data satisfies the conditions of ST1070 and ST1080 (ST1080: YES), the data is stored in the scheduled “channel”. It can be determined that orthogonal mapping that does not overlap with the data is applied. Accordingly, the demapping unit 157 performs demapping after thinning out the frequency component after data is mapped from the data (ST1530), and outputs the demapped signal to the subsequent IDFT unit 158. .
[0039] なお、処理対象のデータ力 ^ST1030、 ST1040、 ST1070、 ST1080の!ヽずれの 条件も満たさない場合、デマッピング部 157は、通常のデマッピングを行う(ST1520[0039] Note that, if the data power to be processed ^ ST1030, ST1040, ST1070, ST1080 does not satisfy the condition of deviation, demapping section 157 performs normal demapping (ST1520
) o ) o
[0040] 以上説明したように、本実施の形態によれば、コンテンション 'ベースド 'チャネルが 遅延したとしても、両チャネルにおいて重なるリソースに対しては、それぞれ異なる周 波数成分にマッピングされているので、直接的に重なり合うことがなくなり、チャネル 間干渉の影響を低減することができる。よって、パケットエラーの発生確率が低減し、 受信品質を向上させることができる。  [0040] As described above, according to the present embodiment, even if the contention 'based' channel is delayed, resources overlapping in both channels are mapped to different frequency components. Therefore, there is no direct overlap, and the influence of inter-channel interference can be reduced. Therefore, the probability of occurrence of packet errors is reduced, and reception quality can be improved.
[0041] なお、本実施の形態において、コンテンション 'ベースド 'チャネルおよびスケジユー ルド ·チャネルにおいて、それぞれ異なる周波数成分にマッピングされるデータの数( サブキャリア数)は、両チャネルで同数である必要はなぐ状況に応じて変更してもよ い。例えば、スケジュールド 'チャネルのトラヒックが多い場合は、スケジュールド 'チヤ ネルの周波数成分の数を増加させ、一方、コンテンション 'ベースド 'チャネルの周波 数成分の数を減少させても良 、。  [0041] In the present embodiment, the number of data (number of subcarriers) mapped to different frequency components in the contention 'based' channel and the scheduled channel need to be the same in both channels. It may be changed according to the situation. For example, if there is a lot of scheduled 'channel traffic, you can increase the number of frequency components in the scheduled' channel, while decreasing the number of frequency components in the contention 'basic' channel.
[0042] また、本実施の形態では、無線受信装置 150のチャネル推定部 155が、高速フー リエ変換前の受信パイロット信号カゝらチャネル推定を行う構成を例にとって示したが、 高速フーリエ変換後の受信パイロット信号の周波数成分力もチャネル推定を行うよう な構成としても良い。  Further, in the present embodiment, the configuration in which channel estimation section 155 of radio reception apparatus 150 performs channel estimation based on the received pilot signal before fast Fourier transform is shown as an example, but after fast Fourier transform The frequency component power of the received pilot signal may be configured to perform channel estimation.
[0043] (実施の形態 2) [Embodiment 2]
本発明の実施の形態 2では、スケジュールド ·チャネルの先頭部分に対し直交マツ ビングを行う際に、データの MCS制御情報に応じて、周波数軸上で重ならないよう に配置する周波数成分 (サブキャリア)の数を変更する。 In Embodiment 2 of the present invention, when orthogonal mapping is performed on the head portion of the scheduled channel, it is not overlapped on the frequency axis according to the MCS control information of the data. Change the number of frequency components (subcarriers) placed in.
[0044] 図 10は、本実施の形態に係る無線送信装置 200の主要な構成を示すブロック図で ある。この無線送信装置 200は、実施の形態 1に示した無線送信装置 100 (図 3参照 )と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その 説明を省略する。  FIG. 10 is a block diagram showing the main configuration of radio transmitting apparatus 200 according to the present embodiment. The wireless transmission device 200 has the same basic configuration as the wireless transmission device 100 (see FIG. 3) shown in the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted. Is omitted.
[0045] 具体的には、マッピング部 104aは、周波数成分に変換されたデータを無線フレー ムの周波数リソース上へ所定の規則に従ってマッピングする。この際、スケジュールド •チャネルの先頭部分に対して、別途入力される MCSパラメータに応じて周波数軸 上に配置する周波数成分の数を変更する。より詳細には、誤り耐性が高い MCSパラ メータ (例えば QPSK)の場合は、周波数成分の数を増加させ、誤り耐性が低い MC Sパラメータ (例えば 16QAM)の場合は、周波数成分の数を減少させる。  [0045] Specifically, mapping section 104a maps the data converted into frequency components onto the frequency resource of the radio frame according to a predetermined rule. At this time, the number of frequency components arranged on the frequency axis is changed according to the MCS parameter input separately for the head part of the scheduled channel. More specifically, the number of frequency components is increased for MCS parameters with high error resilience (for example, QPSK), and the number of frequency components is decreased for MCS parameters with low error resilience (for example, 16QAM). .
[0046] 図 11〜13は、無線送信装置 100から送信されるスケジュールド 'チャネルおよびコ ンテンション 'ベースド 'チャネルの例を示す図である。本実施の形態に係る直交マツ ビングには、これらの図に示すようなバリエーションが存在し、 MCSパラメータに応じ て最適な直交マッピング法が選択される。  FIGS. 11 to 13 are diagrams showing examples of a scheduled “channel” and a contention “based” channel transmitted from the wireless transmission device 100. The orthogonal mapping according to the present embodiment has variations as shown in these figures, and the optimal orthogonal mapping method is selected according to the MCS parameter.
[0047] 図 11は、誤り耐性の低い MCSパラメータが適用されている場合である。かかる場 合、スケジュールド 'チャネルのサブキャリア数は、コンテンション 'ベースド 'チャネル と完全に重なり合わないような値が採用される。  FIG. 11 shows a case where MCS parameters with low error tolerance are applied. In such a case, the number of subcarriers in the scheduled “channel” is set such that it does not completely overlap with the contention “basic” channel.
[0048] 図 12は、誤り耐性が中程度の MCSパラメータが適用されている場合である。力か る場合、スケジュールド 'チャネルのサブキャリア数として、コンテンション 'ベースド' チャネルと少し重なるようなデータ数を採用する。  FIG. 12 shows a case where an MCS parameter with medium error resilience is applied. If this is the case, the number of subcarriers in the scheduled 'channel should be the number of data that slightly overlaps the contention' based 'channel.
[0049] 図 13は、誤り耐性が高い MCSパラメータが適用されている場合である。かかる場 合、スケジュールド 'チャネルのサブキャリア数として、コンテンション 'ベースド 'チヤネ ルと完全 (または、ほぼ完全に)に重なるようなデータ数を採用する。  FIG. 13 shows a case where an MCS parameter with high error tolerance is applied. In such cases, the number of subcarriers in the scheduled 'channel' should be the number of data that overlaps (or almost completely) the contention 'base' channel.
[0050] すなわち、 QPSK等の誤りにくい MCSパラメータの場合は、コンテンション 'ベース ド 'チャネルと衝突しても、復調することができる可能性が高いため、周波数軸上にマ ッビングする数を多くする。一方、 16QAM等の誤りやすい MCSパラメータの場合は 、コンテンション 'ベースド 'チャネルと衝突すると、復調できなくなる可能性が高くなる ため、周波数軸上にマッピングする数を少なくし、両チャネルが完全に重ならないよう にマッピングを行う。 [0050] In other words, in the case of MCS parameters that are less error-prone, such as QPSK, there is a high possibility that they can be demodulated even if they collide with a contention 'based' channel, so the number of mappings on the frequency axis is large. To do. On the other hand, in the case of MCS parameters that are prone to error such as 16QAM, there is a high possibility that demodulation will not be possible if they collide with a contention 'based' channel. Therefore, the number of mapping on the frequency axis is reduced, and mapping is performed so that both channels do not overlap completely.
[0051] 図 14は、上記無線送信装置 200に対応する、本実施の形態に係る無線受信装置 250の主要な構成を示すブロック図である。なお、実施の形態 1に示した無線受信装 置 150 (図 8参照)と同様の構成要素には同一の符号を付し、その説明を省略する。  FIG. 14 is a block diagram showing the main configuration of radio receiving apparatus 250 according to the present embodiment, corresponding to radio transmitting apparatus 200 described above. Note that the same components as those of radio receiving apparatus 150 (see FIG. 8) shown in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
[0052] 実施の形態 1に係るデマッピング部 157との差異は、スケジュールド 'チャネルの先 頭部分に対し、データの MCSパラメータに応じて周波数軸上で重ならな 、ように配 置された周波数成分の数に応じた受信処理を行う点にある。具体的には、デマツピン グ部 157aは、 MCSパラメータ力も周波数成分のマッピングパターンを判断し、デー タが存在しな 、周波数成分を間弓 I Vヽた後にデマッピングを行 、、デマッピング後の信 号を IDFT部 158へ出力する。それ以外の処理は、実施の形態 1と同様である。  [0052] The difference from the demapping unit 157 according to Embodiment 1 is that it is arranged so that it does not overlap on the frequency axis according to the MCS parameter of the data with respect to the head part of the scheduled channel The point is that reception processing is performed according to the number of frequency components. Specifically, the demapping unit 157a determines the mapping pattern of the frequency component of the MCS parameter force, and if there is no data, performs the demapping after the frequency component is interleaved IV, and the signal after the demapping is performed. The number is output to IDFT unit 158. Other processes are the same as those in the first embodiment.
[0053] このように、本実施の形態によれば、スケジュールド 'チャネルの先頭部分に対し直 交マッピングを行う際に、 MCS情報に応じて周波数成分 (サブキャリア)の数を変更 する。よって、チャネル間干渉の耐性 (他方のチャネル力 受ける影響に対する誤り にくさ)に応じてリソースの使用効率を変更することができるので、パケットエラーの発 生を低減しつつ伝送効率も維持することができる。  [0053] Thus, according to the present embodiment, when orthogonal mapping is performed on the head portion of a scheduled channel, the number of frequency components (subcarriers) is changed according to MCS information. Therefore, the resource usage efficiency can be changed according to the tolerance of interchannel interference (hardness of error due to the influence of the other channel force), so the transmission efficiency can be maintained while reducing the occurrence of packet errors. it can.
[0054] なお、本実施の形態では、 MCSパラメータの誤り耐性を判断する際に、強 Z中 Z 弱の 3段階で判断する場合を例にとって説明したが、これに限定されない。  In the present embodiment, the case where the error tolerance of the MCS parameter is determined in three stages of strong Z, weak Z, and so on has been described as an example, but the present invention is not limited to this.
[0055] (実施の形態 3)  [Embodiment 3]
本発明の実施の形態 3では、コンテンション 'ベースド 'チャネルの後尾部分と、スケ ジュールド 'チャネルの先頭部分と力 周波数軸上で重ならないようにパイロットをマ ッビングする。  In the third embodiment of the present invention, pilots are mapped so that the tail portion of the contention 'based' channel and the head portion of the scheduled 'channel do not overlap on the force frequency axis.
[0056] 図 15は、本実施の形態に係る無線送信装置 300の主要な構成を示すブロック図で ある。この無線送信装置 300も、実施の形態 1に示した無線送信装置 100 (図 3参照 )と同様の基本的構成を有しており、同一の構成要素には同一の符号を付し、その 説明を省略する。  FIG. 15 is a block diagram showing the main configuration of radio transmitting apparatus 300 according to the present embodiment. The wireless transmission device 300 also has the same basic configuration as the wireless transmission device 100 (see FIG. 3) shown in the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted. Is omitted.
[0057] DFT部 301は、入力されるパイロットに対し、離散フーリエ変換を施し、マッピング 部 302へ出力する。 [0058] マッピング部 302は、 DFT部 103から出力される、周波数成分に変換されたデータ およびパイロットを、無線フレームの周波数リソース上へ所定の規則に従ってマツピン グする。しかし、実施の形態 1に係るマッピング部 104と異なり、コンテンション 'ベース ド 'チャネルの後尾部分と、スケジュールド 'チャネルの先頭部分に対して、データを 周波数軸上で重ならないようにマッピングするのではなぐパイロットを周波数軸上で 重ならな 、ようにマッピングする。 [0057] DFT section 301 performs discrete Fourier transform on the input pilot and outputs the result to mapping section 302. [0058] Mapping section 302 maps the data and pilot, which are output from DFT section 103 and converted into frequency components, onto the frequency resource of the radio frame according to a predetermined rule. However, unlike the mapping unit 104 according to the first embodiment, data is mapped to the tail part of the contention 'based' channel and the head part of the scheduled 'channel so that they do not overlap on the frequency axis. Then map the pilots so that they do not overlap on the frequency axis.
[0059] 図 16は、マッピング部 302の動作の詳細を示すフロー図である。なお、送信データ が所定の条件を満たすものであるカゝ否かを判断する手順 (ST1020、 ST1030等)に ついては、図 4に示した手順と同一であるため、同一符号を付して詳細な説明は省 略する。  FIG. 16 is a flowchart showing details of the operation of the mapping unit 302. Note that the procedure (ST1020, ST1030, etc.) for determining whether or not the transmission data satisfies the predetermined condition is the same as the procedure shown in FIG. The explanation is omitted.
[0060] 処理対象のデータが ST1020においてスケジュールド 'チャネルのデータであると 判断され、かつ、 ST1030および ST1040の条件を満たす場合(ST1040 :YES)、 マッピング部 302は、先頭の送信ブロックに対して、コンテンション 'ベースド 'チヤネ ルのデータと重なり合わな 、ようにパイロットの直交マッピングを行う(ST3010)。  [0060] When it is determined that the data to be processed is scheduled 'channel data in ST1020 and the conditions of ST1030 and ST1040 are satisfied (ST1040: YES), mapping section 302 applies to the first transmission block. Then, pilot orthogonal mapping is performed so that it does not overlap with contention 'based' channel data (ST3010).
[0061] 一方、 ST1020においてコンテンション 'ベースド 'チャネルのデータであると判断さ れ、かつ、当該データが ST1070、 ST1080の条件を満たす場合(ST1080 :YES) 、マッピング部 302は、後尾の送信ブロックに対して、スケジュールド 'チャネルのデ ータと重なり合わな 、ようにパイロットの直交マッピングを行う(ST3030)。  [0061] On the other hand, when it is determined in ST1020 that the data is contention 'basic' channel data and the data satisfies the conditions of ST1070 and ST1080 (ST1080: YES), mapping section 302 transmits the transmission block at the end. On the other hand, orthogonal mapping of pilots is performed so as not to overlap with scheduled channel data (ST3030).
[0062] なお、処理対象のデータ力 ^ST1030、 ST1040、 ST1070、 ST1080の!ヽずれの 条件も満たさない場合、マッピング部 302は、パイロットではなく通常のデータ (パイ口 ット以外のデータと!/、う意味)のマッピングを行う(ST3020)。  [0062] Note that if the data power of the processing target ^ ST1030, ST1040, ST1070, ST1080 is not satisfied, the mapping unit 302 is not a pilot but normal data (data other than the piuit! Mapping of /, meaning) (ST3020).
[0063] 図 17は、上記マッピング処理の結果、最終的に無線送信装置 300から送信される スケジュールド ·チャネルおよびコンテンシヨン'ベースド ·チャネルの一例を示す図で ある。  FIG. 17 is a diagram illustrating an example of a scheduled channel and a contention-based channel that are finally transmitted from the wireless transmission device 300 as a result of the mapping process.
[0064] 図 18は、上記無線送信装置 300に対応する、本実施の形態に係る無線受信装置 350の主要な構成を示すブロック図である。なお、実施の形態 1に示した無線受信装 置 150 (図 8参照)と同様の構成要素には同一の符号を付し、その説明を省略する。  FIG. 18 is a block diagram showing the main configuration of radio receiving apparatus 350 according to the present embodiment, corresponding to radio transmitting apparatus 300 described above. Note that the same components as those of radio receiving apparatus 150 (see FIG. 8) shown in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
[0065] 実施の形態 1、 2と異なり、本実施の形態では、チャネル推定部 351において、送信 データが所定の条件を満たすものである力否かの判断が行われる。そのため、チヤ ネル推定部 351には、フレーム番号が入力され、まず、 FFT部 154から出力されるデ マッピング前の信号から、パイロット信号のみを抽出する。チャネル推定部 351は、こ のパイロット信号を用いて後述の方法によるチャネル推定を行う。 FDE部 156は、チ ャネル推定部 351で算出されたチャネル推定値を基に、 FFT部 154から出力される 信号に対し周波数領域における等化処理を行う。 Unlike Embodiments 1 and 2, in this embodiment, channel estimation section 351 performs transmission. A determination is made as to whether the data satisfies the predetermined condition. Therefore, the channel estimation unit 351 receives the frame number, and first extracts only the pilot signal from the pre-demapped signal output from the FFT unit 154. Channel estimation section 351 performs channel estimation by the method described later using this pilot signal. FDE section 156 performs equalization processing in the frequency domain on the signal output from FFT section 154 based on the channel estimation value calculated by channel estimation section 351.
[0066] 図 19は、上記チャネル推定部 351の動作の詳細について示すフロー図である。な お、送信データが所定の条件を満たすものであるカゝ否かを判断する手順 (ST1020 、 ST1030等)については、図 4に示した手順と同一であるため、同一符号を付して 詳細な説明は省略する。  FIG. 19 is a flowchart showing details of the operation of channel estimation section 351. Note that the procedure (ST1020, ST1030, etc.) for determining whether or not the transmission data satisfies the predetermined condition is the same as the procedure shown in FIG. The detailed explanation is omitted.
[0067] 処理対象のデータが ST1020〜ST1040の条件を満たすデータであると判断され た場合(ST1040 :YES)、このデータは、無線送信装置 300において、コンテンショ ン ·ベースド.チャネルのデータと重なり合わないようにパイロットが直交マッピングさ れていると判断することができる。かかる場合、チャネル推定部 351は、パイロットがマ ッビングされて 、な 、周波数成分を間弓 I V、た後に、当該直交マッピングされたパイ口 ットを用いてチャネル推定を行う(ST3510)。なお、間引いた周波数成分をその後の 補間処理で補っても良い。  [0067] If it is determined that the data to be processed is data that satisfies the conditions of ST1020 to ST1040 (ST1040: YES), this data is overlapped with the contention-based channel data in radio transmitting apparatus 300. Therefore, it can be determined that the pilots are orthogonally mapped. In such a case, channel estimation section 351 performs channel estimation using the orthogonally mapped pie mouth after the pilot is mapped, the frequency component is set to the interbow IV, and so on (ST3510). The thinned frequency component may be supplemented by subsequent interpolation processing.
[0068] 一方、 ST1020においてコンテンション 'ベースド 'チャネルのデータであると判断さ れ、かつ、当該データが ST1070、 ST1080の条件を満たす場合(ST1080 :YES) 、当該データは、スケジュールド 'チャネルのデータと重なり合わないようにパイロット が直交マッピングされていると判断することができる。従って、チャネル推定部 351は 、ノ ィロットがマッピングされて ヽな 、周波数成分を間引いた後にチャネル推定を行 う(ST3530)。なお、間引いた周波数成分をその後の補間処理で補っても良い。  [0068] On the other hand, if it is determined in ST1020 that the data is contention 'basic' channel data and the data satisfies the conditions of ST1070 and ST1080 (ST1080: YES), the data is stored in the scheduled 'channel. It can be determined that the pilots are orthogonally mapped so that they do not overlap with the data. Therefore, channel estimation section 351 performs channel estimation after thinning out the frequency components, which should be mapped to the noise (ST3530). Note that the thinned frequency component may be supplemented by subsequent interpolation processing.
[0069] なお、処理対象のデータ力 ^ST1030、 ST1040、 ST1070、 ST1080の!ヽずれの 条件も満たさない場合、チャネル推定部 351は、通常の方法でマッピングされたパイ ロットを用いてチャネル推定を行う(ST3520)。  [0069] If the data power of the processing target ^ ST1030, ST1040, ST1070, ST1080 is not satisfied, the channel estimation unit 351 performs channel estimation using the pilot mapped in the normal method. Perform (ST3520).
[0070] このように、本実施の形態によれば、コンテンション 'ベースド 'チャネルが遅延した としても、両チャネルにおいて重なる可能性のあるリソースにおいては、それぞれ異な る周波数成分にノ ィロットがマッピングされているので、データ部(パイロット以外の部 分という意味)が直接的に重なり合うことがなくなり、チャネル間干渉を緩和することが できる。よって、パケットエラーの発生確率が低減し、受信品質の劣化を防止すること ができる。 [0070] Thus, according to the present embodiment, even if the contention 'based' channel is delayed, the resources that may overlap in both channels are different. Since the noise is mapped to the frequency component to be transmitted, the data part (meaning the part other than the pilot) is not directly overlapped, and the interference between channels can be mitigated. As a result, the probability of occurrence of a packet error is reduced, and deterioration of reception quality can be prevented.
[0071] なお、本実施の形態において、パイロットに対して必ずしも DFT処理を行う必要は なぐ予め周波数領域の送信パターンをメモリ等に保存してぉ 、ても良 、。  [0071] In the present embodiment, it is not always necessary to perform DFT processing on the pilot, and it is also possible to store the transmission pattern in the frequency domain in a memory or the like in advance.
[0072] また、本実施の形態に係る無線受信装置 350のチャネル推定部 351において、高 速フーリエ変換前の時間領域信号でチャネル推定を実施する場合は、周波数成分 の間引きあり Zなしを意識せずに、双方の信号に対し同一のチャネル推定処理を施 す構成も考えられる。  [0072] Further, in channel estimation section 351 of radio receiving apparatus 350 according to the present embodiment, when channel estimation is performed with a time domain signal before high-speed Fourier transform, frequency components are thinned out and Z is unaware. In addition, a configuration in which the same channel estimation process is applied to both signals is also conceivable.
[0073] 以上、本発明の各実施の形態について説明した。 [0073] The embodiments of the present invention have been described above.
[0074] 本発明に係る無線送信装置および無線送信方法は、上記各実施の形態に限定さ れず、種々変更して実施することが可能である。  [0074] The wireless transmission device and the wireless transmission method according to the present invention are not limited to the above embodiments, and can be implemented with various modifications.
[0075] 本発明に係る無線送信装置は、移動体通信システムにおける通信端末装置およ び基地局装置に搭載することが可能であり、これにより上記と同様の作用効果を有す る通信端末装置、基地局装置、および移動体通信システムを提供することができる。  [0075] A radio transmission apparatus according to the present invention can be mounted on a communication terminal apparatus and a base station apparatus in a mobile communication system, and thereby has a similar effect to the above. , A base station apparatus, and a mobile communication system can be provided.
[0076] なお、上記各実施の形態では、コンテンション 'ベースド 'チャネルとスケジュールド •チャネルとを例にとつて説明を行つたが、必ずしもこれらのチャネルに限定されるも のではなぐ受信タイミングが伝搬遅延により時間的に後方にずれ込むチャネルと送 信タイミング制御により受信タイミングが常に調整されているチャネルとに適用するこ とが可能である。  In each of the above-described embodiments, the contention 'basic' channel and the scheduled channel have been described as examples. However, the reception timing is not necessarily limited to these channels. It can be applied to channels that shift backwards due to propagation delay and channels whose reception timing is always adjusted by transmission timing control.
[0077] また、ここでは、コンテンション 'ベースド 'チャネルの後尾ブロックとスケジュールド' チャネルの先頭ブロックとを例にとって、互いに干渉し合うリソースと説明した力 必ず しもこの前提条件に限定されない。例えば、送信タイミング制御されていないコンテン シヨン ·ベースド ·チャネルの後尾ブロックと、送信タイミング制御されて 、るコンテンシ ヨン'ベースド 'チャネルの先頭ブロックとに対しても本発明を適用することが可能であ る。  [0077] Also, here, taking the contention 'based' channel tail block and the scheduled block's head block as an example, the power described as resources that interfere with each other is not necessarily limited to this precondition. For example, the present invention can be applied to a tail block of a contention-based channel whose transmission timing is not controlled and a head block of a contention 'basic' channel whose transmission timing is controlled. The
[0078] また、ここでは、 DFT、 IFFTを用いる場合を例にとった力 これに限定されず、例え ば IFFTは IDFTでも良!ヽ。 [0078] Further, here, force using DFT or IFFT as an example is not limited to this. IFFT can be IDFT!
[0079] また、ここでは、 DFT—s— OFDM構成を例にとって説明した力 これに限定され ず、分散型の周波数配置の場合、 IFDMA (Interleaved Frequency Division Multiple[0079] In addition, here, the force described with the DFT-s-OFDM configuration as an example is not limited to this, and in the case of a distributed frequency arrangement, IFDMA (Interleaved Frequency Division Multiplex)
Access)を使用する構成でもよ 、。 In a configuration that uses (Access).
[0080] また、上記各実施の形態では、フレーム番号と各チャネルとが一意的に割り当てら れていることを前提として、チャネルを区別する判断であったり、両チャネルが接する か否かの判断を、この予め決められているフレームフォーマットに基づいて判断する 場合を例にとって説明したが、これらの情報が基地局力 指示されるような構成として も良い。 [0080] Also, in each of the above embodiments, on the assumption that the frame number and each channel are uniquely assigned, it is determined whether to distinguish between channels, or whether both channels are in contact with each other. However, a configuration may be adopted in which such information is instructed by the base station power.
[0081] また、上記各実施の形態におけるコンテンション 'ベースド 'チャネルは RACHに用 いられ、スケジュールド 'チャネルはシェアード 'チャネルを介して伝送される。なお、 シェアード 'チャネルは PUSCH (Physical Uplink Shared channel)と呼ばれる場合が ある。  In addition, the contention 'basic' channel in each of the above embodiments is used for RACH, and the scheduled 'channel is transmitted via the shared' channel. The shared channel is sometimes called PUSCH (Physical Uplink Shared channel).
[0082] また、ここでは、本発明をノヽードウエアで構成する場合を例にとって説明した力 本 発明をソフトウェアで実現することも可能である。例えば、本発明に係る無線送信方 法のアルゴリズムをプログラミング言語によって記述し、このプログラムをメモリに記憶 しておいて情報処理手段によって実行させることにより、本発明に係る無線送信装置 と同様の機能を実現することができる。  [0082] Here, the power described with reference to an example in which the present invention is configured by nodeware can also be realized by software. For example, the wireless transmission method algorithm according to the present invention is described in a programming language, the program is stored in a memory, and is executed by an information processing means, so that functions similar to those of the wireless transmission device according to the present invention are achieved. Can be realized.
[0083] また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路 である LSIとして実現される。これらは個別に 1チップ化されても良いし、一部または 全てを含むように 1チップィ匕されても良い。  Further, each functional block used in the description of each of the above embodiments is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include some or all of them.
[0084] また、ここでは LSIとした力 集積度の違いによって、 IC、システム LSI、スーパー L SI、ウノレ卜ラ LSI等と呼称されることちある。  [0084] Further, here, it may be called IC, system LSI, super LSI, unroller LSI, etc., depending on the difference in power integration as LSI.
[0085] また、集積回路化の手法は LSIに限るものではなぐ専用回路または汎用プロセッ サで実現しても良い。 LSI製造後に、プログラム化することが可能な FPGA (Field Pro grammable Gate Array)や、 LSI内部の回路セルの接続もしくは設定を再構成可能な リコンフィギユラブル ·プロセッサを利用しても良 、。  Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. It is also possible to use a field programmable gate array (FPGA) that can be programmed after LSI manufacturing, or a reconfigurable processor that can reconfigure the connection or setting of circuit cells inside the LSI.
[0086] さらに、半導体技術の進歩または派生する別技術により、 LSIに置き換わる集積回 路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積ィ匕を行って も良い。バイオ技術の適応等が可能性としてあり得る。 [0086] Furthermore, integrated circuits that replace LSIs due to advances in semiconductor technology or other derived technologies. If road technology appears, of course, it is also possible to perform functional block integration using that technology. There is a possibility of adaptation of biotechnology.
[0087] 2006年 1月 19日出願の特願 2006— 010624の日本出願に含まれる明細書、図 面および要約書の開示内容は、すべて本願に援用される。 [0087] The disclosure of the specification, drawings, and abstract contained in the Japanese Patent Application No. 2006-010624 filed on Jan. 19, 2006 is incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0088] 本発明に係る無線送信装置および無線送信方法は、移動体通信システムにおけ る通信端末装置、基地局装置等の用途に適用することができる。 [0088] The radio transmission apparatus and radio transmission method according to the present invention can be applied to applications such as a communication terminal apparatus and a base station apparatus in a mobile communication system.

Claims

請求の範囲 The scope of the claims
[1] コンテンション ·ベースド'チヤネノレ (contention based channel)および前記コンテン シヨン ·ベースド ·チャネルに続 、て送信されるスケジュールド ·チャネル (scheduled ch annel)において、前記コンテンション 'ベースド 'チャネルの後尾部分のリソースブロッ クの一部と前記スケジュールド 'チャネルの先頭部分のリソースブロックの一部とを、 周波数成分の全て又は一部が重ならな 、ように配置する配置手段と、  [1] In the contention based channel and the scheduled channel that is transmitted following the contention based channel, the tail part of the contention 'based' channel Arrangement means for arranging a part of the resource block and a part of the resource block at the beginning of the scheduled channel so that all or part of the frequency components do not overlap,
前記コンテンション'ベースド ·チャネルおよび前記スケジュールド ·チャネルを送信 する送信手段と、  Transmitting means for transmitting the contention'-based channel and the scheduled channel;
を具備する無線送信装置。  A wireless transmission device comprising:
[2] 前記配置手段は、 [2] The arrangement means includes:
前記コンテンション 'ベースド 'チャネルの後尾部分のリソースブロックを分散させて 配置し、  Distribute and arrange resource blocks in the tail part of the contention 'based' channel,
前記スケジュールド 'チャネルの先頭部分のリソースブロックも分散させて配置する 請求項 1記載の無線送信装置。  2. The radio transmission apparatus according to claim 1, wherein resource blocks at the beginning of the scheduled channel are also distributed.
[3] 前記配置手段は、 [3] The arrangement means includes:
前記コンテンション 'ベースド 'チャネルの後尾部分のリソースブロックを連続させて 配置し、  The resource blocks in the tail part of the contention 'based' channel are arranged in succession,
前記スケジュールド 'チャネルの先頭部分のリソースブロックも連続させて配置する 請求項 1記載の無線送信装置。  2. The radio transmission apparatus according to claim 1, wherein resource blocks at a head portion of the scheduled channel are also arranged continuously.
[4] 前記スケジュールド ·チャネルのデータ部分の MCSパラメータに応じて、前記スケ ジュールド ·チャネルの先頭部分のサブキャリア数を制御する制御手段、 [4] Control means for controlling the number of subcarriers in the head portion of the scheduled channel according to the MCS parameter of the data portion of the scheduled channel,
をさらに具備する請求項 1記載の無線送信装置。  The wireless transmission device according to claim 1, further comprising:
[5] 前記配置手段は、 [5] The arrangement means includes:
前記コンテンション'ベースド ·チャネルの後尾部分および前記スケジュールド ·チヤ ネルの先頭部分にパイロットを配置する、  Placing pilots at the tail of the contention base channel and at the beginning of the scheduled channel;
請求項 1記載の無線送信装置。 The wireless transmission device according to claim 1.
[6] 請求項 1記載の無線送信装置を具備する通信端末装置。 6. A communication terminal device comprising the wireless transmission device according to claim 1.
[7] 請求項 1記載の無線送信装置を具備する基地局装置。 7. A base station device comprising the wireless transmission device according to claim 1.
[8] コンテンション'ベースド ·チヤネノレおよび前記コンテンション ·ベースド ·チヤネノレに 続 、て送信されるスケジュールド ·チャネルにお 、て、前記コンテンション ·ベースド · チャネルの後尾部分のリソースブロックの一部と前記スケジュールド ·チャネルの先頭 部分のリソースブロックの一部とを、周波数成分の全て又は一部が重ならな 、ように 配置するステップと、  [8] Contention'-based channel and the scheduled channel transmitted following the contention-based channel and a part of the resource block at the tail of the contention-based channel Arranging a part of the resource block of the head part of the scheduled channel so that all or part of the frequency components do not overlap;
前記コンテンション'ベースド ·チャネルおよび前記スケジュールド ·チャネルを送信 するステップと、  Transmitting the contention'-based channel and the scheduled channel;
を具備する無線送信方法。  A wireless transmission method comprising:
PCT/JP2007/050691 2006-01-19 2007-01-18 Radio transmission device and radio transmission method WO2007083700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-010624 2006-01-19
JP2006010624 2006-01-19

Publications (1)

Publication Number Publication Date
WO2007083700A1 true WO2007083700A1 (en) 2007-07-26

Family

ID=38287652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050691 WO2007083700A1 (en) 2006-01-19 2007-01-18 Radio transmission device and radio transmission method

Country Status (1)

Country Link
WO (1) WO2007083700A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530571A (en) * 2010-04-16 2013-07-25 クゥアルコム・インコーポレイテッド In wireless networks, reducing the impact of timing offsets on downlink signals by puncturing resource elements on physical downlink channels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002101A1 (en) * 2003-06-19 2005-01-06 Sony Corporation Radio communication system performing multi-carrier transmission, reception device, reception method, transmission device, transmission method, delay time calculation device, and delay time calculation method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005002101A1 (en) * 2003-06-19 2005-01-06 Sony Corporation Radio communication system performing multi-carrier transmission, reception device, reception method, transmission device, transmission method, delay time calculation device, and delay time calculation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Physical Channels and Multiplexing in Evolved UTRA Uplink", 3GPP TSG RAN WG1 #42 ON LTE, vol. R1-050580, 2 September 2005 (2005-09-02), pages 1 - 14, XP003012530 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530571A (en) * 2010-04-16 2013-07-25 クゥアルコム・インコーポレイテッド In wireless networks, reducing the impact of timing offsets on downlink signals by puncturing resource elements on physical downlink channels
US9295014B2 (en) 2010-04-16 2016-03-22 Qualcomm Incorporated Diminishing the impact of timing delay in downlink signals

Similar Documents

Publication Publication Date Title
CN110089083B (en) System and method for peak-to-average power ratio suppression for discrete fourier transform-spread-orthogonal frequency division multiplexing
CN107925969B (en) Method and apparatus for controlling uplink transmission power in wireless communication system
WO2018027540A1 (en) Terminal and communication method
US8649333B2 (en) Radio communication system, radio transmission apparatus, and resource allocation method
EP3591884B1 (en) System and method for determining a pilot signal
WO2017101821A1 (en) Data symbol transmission method and wireless network device
WO2019024711A1 (en) Method for transmitting demodulation reference signal, network device, and computer readable storage medium
CN108632193B (en) Resource indication method, network equipment and terminal equipment
JP7227952B2 (en) Mobile station, transmission method and integrated circuit
WO2007088854A1 (en) Radio communication system, radio transmission device, and rach transmission method
JP2020502871A (en) Method and apparatus for transmitting uplink signal
WO2020051774A1 (en) Communication method, terminal device, and network device
JP2009246587A (en) Communication device for receiving ofdm signal, ofdm radio communication system and ofdm receiving method
KR100758766B1 (en) Method for controlling wireless resource assignment to improve diversity profit
US9155096B2 (en) Communication apparatus and communication method
US10374688B2 (en) Wireless communication system and wireless communication method
CN104685818A (en) Component carrier (de)activation in communication systems using carrier aggregation
WO2007083700A1 (en) Radio transmission device and radio transmission method
CN111698769A (en) Data sending method, device and system
US8305973B2 (en) Mobile communication system, base station device, mobile station device, and mobile communication method
KR102363181B1 (en) Digital signal processing device of base station and method for processing data thereof
KR101909609B1 (en) Apparatus and method for burst allocation in ofdm/ofdma system
US20100272028A1 (en) Wireless transmitter and wireless transmitting method
KR101989005B1 (en) Apparatus and method for saving power consumption in broadband wireless communication system
US20180375708A1 (en) Mapping bits in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP