WO2007082450A1 - A method for processing the tandem connection monitoring failure dependency of different levels and an equipment thereof - Google Patents

A method for processing the tandem connection monitoring failure dependency of different levels and an equipment thereof Download PDF

Info

Publication number
WO2007082450A1
WO2007082450A1 PCT/CN2006/003433 CN2006003433W WO2007082450A1 WO 2007082450 A1 WO2007082450 A1 WO 2007082450A1 CN 2006003433 W CN2006003433 W CN 2006003433W WO 2007082450 A1 WO2007082450 A1 WO 2007082450A1
Authority
WO
WIPO (PCT)
Prior art keywords
tcm
node
different levels
information
alarm
Prior art date
Application number
PCT/CN2006/003433
Other languages
English (en)
French (fr)
Inventor
Jun Yan
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to ES06828347T priority Critical patent/ES2391473T3/es
Priority to EP06828347A priority patent/EP1981211B1/en
Priority to CN200680012832.9A priority patent/CN101160824A/zh
Publication of WO2007082450A1 publication Critical patent/WO2007082450A1/zh
Priority to US12/178,283 priority patent/US7760620B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • H04L41/5009Determining service level performance parameters or violations of service level contracts, e.g. violations of agreed response time or mean time between failures [MTBF]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/14Monitoring arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0051Network Node Interface, e.g. tandem connections, transit switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0057Operations, administration and maintenance [OAM]
    • H04J2203/006Fault tolerance and recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5032Generating service level reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity

Definitions

  • the invention relates to a method and a device for processing fault correlation of different levels of serial connection.
  • the application is submitted to the Chinese Patent Office on January 23, 2006, and the application number is 200610033333.
  • X the invention name is "different level serial connection monitoring fault related The priority of the Chinese Patent Application, the entire disclosure of which is hereby incorporated by reference.
  • the present invention relates to the field of optical transport network (OTT) technology, and more particularly to a method and apparatus for processing different levels of tandem connection monitoring (TCM) fault correlation.
  • OTT optical transport network
  • TCM tandem connection monitoring
  • optical transport network (0TN) consists of subnets of different operators. Each operator has its own optical fiber and network equipment. The management and maintenance fault location of network equipment in each subnet can be completely responsible for the operator.
  • optical transport networks used to serve subscribers typically involve the interconnection of network devices from multiple different operators. For example, an end-to-end user service may be transmitted over multiple subnets of different operators, so an evaluation mechanism is needed to evaluate the quality of networks of different operators.
  • TCM Tandem connection monitoring
  • a level 6 TCM overhead is defined at the 0TN Data Unit (0DU).
  • Each TCM includes a Trail Trace Identifier (TTI), a Bit Interleaved Parity (BIP8), a Backward defect indicator (BDI), and a backward error indication ( Backward error indicator (BEI), ⁇ Status field (STAT), and backward incoming alignment error (BIAE).
  • TTI Trail Trace Identifier
  • BIP8 Bit Interleaved Parity
  • BDI Backward defect indicator
  • BEI Backward error indication
  • STAT ⁇ Status field
  • BIAE backward incoming alignment error
  • An optical network consists of a number of devices and links connecting devices.
  • the device sends an alarm to the network management unit for the operator to analyze the fault and fault. Make a repair.
  • the alarms contain a large amount of information in the process of passing through the devices in the network and the network management unit. Therefore, an alarm storm may be formed, which seriously consumes communication bandwidth and affects work efficiency. Therefore, it is necessary to perform correlation analysis on the alarm information, suppress some alarms, quickly locate the root cause information of the fault, and better guide the user to troubleshoot.
  • the level 6 TCMs can be assigned to different subnets of different operators.
  • different levels of TCMs can be mutually independent, and the signal quality is used by using independent overheads. Surveillance, reporting the quality of each other independently.
  • it will be displayed in some levels of TCM, and may trigger corresponding alarms of different levels of TCM at the same time.
  • all levels of TCM involved report alarm information to users, which results in users receiving a large amount of alarm information in the event of a network failure, which requires a lot of time to locate the fault interval.
  • the technical solution provided by the embodiments of the present invention can directly provide fault location information to a user, thereby saving time for the user to perform fault location.
  • the embodiment of the invention provides a processing method for monitoring fault correlation of different levels of serial connection, the method comprising:
  • the TCM monitors the overlapping relationship between the coverages and the performance degradation degree of different levels of TCM according to different levels of the occurrence of the alarms, and locates the fault interval;
  • the positioning related information includes at least fault interval information.
  • the embodiment of the invention further provides a processing device for monitoring the fault correlation of different levels of serial connection, the device comprising:
  • TCM information unit for providing monitoring coverage information of different levels of TCM
  • the TCM alarm performance receiving unit is configured to receive the alarm information and the performance information from each TCM. If at least two different levels of TCM alarms occur, the uplink to the fault interval locating unit; the fault interval locating unit is configured to use the TCM information unit. Provided TCM monitoring coverage The relationship between the overlap relationship and the degree of relationship between the TCM performance provided by the TCM alarming and receiving unit is performed to locate the fault interval;
  • the information output unit is configured to output the positioning related information provided by the fault interval locating unit to the user, where the positioning related information includes at least the fault interval of the positioning.
  • the positioning related information includes at least the fault interval of the positioning.
  • FIG. 1 is a schematic diagram of a mesh networking suitable for the present invention to process different levels of TCM alarming methods
  • FIG. 2 is a flow chart of an embodiment of a method for processing different levels of TCM alarms according to the present disclosure
  • FIG. 3 is a schematic flowchart of a method for automatically allocating TCMs according to FIG. 2 according to the present disclosure
  • FIG. 5 is a schematic diagram of a networking diagram for explaining the cause of erroneous alarm suppression in the prior art
  • FIG. 6 is a schematic diagram of the network diagram shown in FIG. Schematic diagram of the functional model of the level of TCM.
  • the embodiment of the present invention provides a method for processing TCM alarms of different levels, which is generally implemented in a network composed of subnets (ie, multiple domains) of multiple operators, as shown in FIG. 1 , which is applicable to the present application.
  • a schematic diagram of a mesh network in the embodiment of the present invention is described by taking a mesh network with six operators as an example. It should be noted that FIG. 1 is only a schematic diagram of an embodiment of the present invention.
  • the network that is applicable to the technical solution of the present invention is not limited thereto. For example, it may also be in the form of a network such as a line type or a ring type.
  • Figure 1 there are a total of 25 nodes (represented by A to Y), which are composed of subnets of six operators (operator 1 to operator 6). There are relationships such as overlap and nested between subnets of different operators, such as the subnet and carrier of carrier 3.
  • the subnet of 1 is a nested relationship, and the subnet of the carrier 5 and the subnet of the operator 6 are in an overlapping relationship. Whether it is a nested relationship or an overlapping relationship, there will be overlaps in coverage between the two, and of course there are non-overlapping parts.
  • the relationship between each operator and the node is as follows:
  • Carrier 5 N0STXY
  • the fiber between each internal node of the operator belongs to the operator.
  • the fiber between the Node B and the C node, the F node and the K node belongs to the operator 1
  • the fiber between the H node and the M node belongs to the operator 2
  • the optical fiber also belongs to the operator 3
  • the optical fiber between the V node and the W node belongs to the node 4
  • the optical fiber between the W point and the X node belongs to the operator 5.
  • Fig. 1 is a different level of processing according to the present invention.
  • Step 210 Set and record subnet composition information and service path information of different operators. For example, in the form of an operator subnet composition table and a service allocation table, the node information included in the operator subnet and the source node, intermediate node, and sink node information involved in different services are recorded. Then proceed to step 220.
  • Carrier Identification Node Identification Sequence Operator 1 ABFG Operator 2 CDEHIJ Operator 3 ABCFGHKLMPQRUVW Operator 4 KLPQUV Operator 5 N0STXY Operator 6 LMNQRSVWX If a service involving the above network, from source node A to sink node Y; its normal path is shown by the thick solid line in Figure 1, its passing nodes and The order is: ABC leg NSXY; and the path after the recovery action occurs is shown by the thick dashed line in Figure 1, and the passing nodes and order are: AFKLGBCDIHMRQVWXY.
  • Step 220 Perform different levels of TCM allocation according to different service paths.
  • the allocation process can be set by the user through the network management system, or can be automatically allocated according to different carrier subnets within the system. The following is an example of automatic allocation in the system based on different carrier subnets for more specific examples.
  • FIG. 3 is a schematic flowchart of an embodiment of the method for automatically performing TCM allocation in the system shown in FIG. 2.
  • the following takes the service 1 (normally) in Table 2 as an example.
  • the specific process is as follows:
  • Step S30 Obtain the subnet composition and service path information of different operators, and know which carrier the fiber between each two nodes belongs to. Thereafter, the process proceeds to step S31.
  • Step S31 Enter an operator's network, and allocate a minimum level of available TCM to the operator, and the local node serves as the source node of the level TCM.
  • the service enters the network of the carrier 1 and the carrier 3 at the node A, and the TCM1 (where TCM1 is the current minimum level available TCM) is applied to the operator 1 .
  • TCM1 where TCM1 is the current minimum level available TCM
  • a node As the source node of TCM1; the allocation TCM2 is applied to the operator 3, and the A node is used as the source node of the TCM2.
  • the process proceeds to step S32.
  • Step S32 Take the next node on the service path.
  • the next node of the A node in Service 1 is the B node.
  • Step S33 Determine whether the node (that is, the next node mentioned in step S32) or the next segment of the optical fiber belongs to another operator for a certain level of TCM. In this example, it is specifically determined whether the next piece of fiber of the node B or the node B belongs to another operator;
  • step S33 If the decision result in the step S33 is NO, the process goes to step S35: the node is designated as the intermediate node of the level TCM. Thereafter, the process proceeds to step S36.
  • step S33 If the decision result in the step S33 is YES, the process goes to a step S34: the node is designated as the sink node of the level TCM. Thereafter, the process proceeds to step S36.
  • the B node is not another operator corresponding to the TCM1 for the operator 1, and the fiber between the BC and the BC belongs to the operator 1, the B node is designated as the intermediate node of the TCM1.
  • Step S36 It is judged whether there are other levels of TCMs that have been allocated for the node.
  • step S36 if there are other levels of TCM, the process goes to step S33; if there is no other level of TCM, the process goes to step S37. Specifically, in this example, since there is a TCM2 assigned to the operator 3 in terms of the B node, the process proceeds to step S33. Since the B node is not another operator corresponding to the TCM2 for the operator 3, the B node is designated as the intermediate node of the TCM2. (The "Yes” and “No" of the two branches in step S36 in Figure 3 are reversed. I have changed it. Please confirm it.)
  • Step S37 Determine whether the node is a sink node of the service. If yes, go to step S38: designate the node as a sink node of each level TCM to which the source node has been allocated but not to allocate the sink node; if not, go to step S31. This cycle, until each operator subnet involved in a certain service path is assigned TCM, and the source node, intermediate node and sink node of each TCM are known.
  • the next node of the B node on the service path is a C node
  • the C node is another carrier corresponding to the TCM1 for the operator 1, so the f steps S33 and S34 designate the C node as the TCM1.
  • Sink node the C node entered a new carrier 2
  • the smallest unused TCM1 that specifies idle is applied to Carrier 2
  • the C node is used as the source node of TCM1.
  • the C node corresponds to the TCM2 for the operator 3, not the other day, one operator, and the designated C node as the intermediate node of the TCM2.
  • the H node corresponds to the TCM1 for the operator 2, it is not another one, and one operator, and the H node acts as an intermediate node of the TCM1 applied to the operator 2.
  • the H node is not another operator corresponding to the TCM2 for the operator 3, and the H node is designated as the intermediate node of the TCM2.
  • the M node is not another operator corresponding to the TCM2 for the operator 3, and the fiber between the MNs belongs to the operator 3, and the M node is designated as the intermediate node of the TCM2 according to steps S33 and S35.
  • the M node belongs to another operator corresponding to the TCM1 for the operator 2, and the M node is designated as the sink node of the TCM1 of the operator 2 according to steps S33 and S34; the M node enters a new operator 6 and specifies the idle.
  • the smallest unused TCM1 is applied to the operation 6, and the M node is used as the source node of the TCM1 applied to the operator 6.
  • the N node is another carrier corresponding to the TCM2 for the operator 3, and the designated node is the sink node of the TCM2; at the same time, the N node enters a new operator 5, and specifies the smallest unused TCM2 that is idle. Applied to operation 5, the N node acts as the source node of TCM2. At the same time, the N node is not another operator corresponding to the TCM1 used by the operator 6, and the N node is designated as the intermediate node of the TCM1.
  • the S node is not another operator corresponding to the TCM1 used by the operator 6, and the S node is designated as the intermediate node of the TCM1.
  • the S node corresponds to the TCM2 for the operator 5, and is not another operator, and the designated node is the intermediate node of the TCM2.
  • the X node is not another carrier corresponding to the TCM1 used by the operator 6, but the fiber between the XY belongs to the operator 5 is another operator, so the designated X node is used as the sink node of the TCM1.
  • the X node is not another operator corresponding to the TCM2 for the operator 5, and the X node is designated as the intermediate node of the TCM2.
  • the Y node is not another operator corresponding to the TCM2 used by the operator 5, and the Y node is designated as the intermediate node of the TCM2.
  • step S38 the Y node needs to be designated as a sink node of the TCM2 to which the sink node has not been allocated, that is, the Y node specified earlier is the intermediate node of the TCM2, where The step is updated to designate the Y node as the sink node of TCM2.
  • different levels of TCM allocation tables of the service 1 shown in Table 3 below are obtained.
  • Table 4 shows the allocation table for different levels of TCM allocation for Service 2.
  • the process of automatic allocation is similar to the automatic allocation process in service 1, and will not be described here. It is assumed that the fiber between node F and node K belongs to operator 1; the fiber between node L and node G belongs to operator 6; the fiber between node B and node C belongs to operator 1; node H and node The fiber between the M belongs to the operator 2; the fiber between the node W and the node X belongs to the operator 5.
  • the TCM mode of the source function can be specified as an operation (Operational) mode at the TCM source node, and the TCM mode of the source function and the sink function is designated as transparent for the TCM intermediate node.
  • the node specifies the TCM mode of the sink function as the Moni tor mode.
  • the different levels of TCM involved in the end-to-end service report alarm information and performance information.
  • the network management unit receives and processes these alarms.
  • the fault and performance of the TCM can be obtained by monitoring the BIP8 (Bi t interleaved parity) overhead of the TCM and the optical data unit (ODU data uni t, 0DU) payload;
  • Monitoring (PM) failures and performance can be obtained by monitoring the BIP8 overhead of the PM and the 0DU payload.
  • the network management unit After a plurality of different levels of TCM respectively report some alarms, in this embodiment, the network management unit combines the carrier subnet composition table, the service path table, the TCM allocation table, and the TCM performance of each level and the TCM of each level.
  • the PM fault and performance at the source node are analyzed, the possible fault interval is analyzed (ie, the fault interval is located), and the analysis result (possible fault interval) and the analysis process are reported to the user.
  • the analysis process after reporting the alarm information to the received different levels of TCM will be described below for Tables 3 and 4, respectively.
  • TCM1 applied to Carrier 1 and TCM2 applied to Carrier 3 report BIP8 at the same time Degradation (DEG) alarm.
  • DEG Degradation
  • Table 5 is the analysis conclusion of the TCM1 applied to the operator 1 and the TCM2 applied to the operator 3 at the same time. If the TCM1 applied to the operator 1 reports the BIP8 DEG alarm, the TCM2 applied to the operator 3 also reports the BIP8 DEG alarm. If the degradation of the BIP8 related performance of the TCM1 is different from the BIP8 related performance of the TCM2, then The fault location may be between nodes AB. If the degradation of the BIP8-related performance of the TCM2 is more severe than the degradation of the BIP8-related performance of the TCM1, a fault may occur between the nodes AB and between the nodes.
  • the TCM1 applied to the operator 1 and the TCM2 applied to the operator 3 simultaneously report the analysis conclusion of the police.
  • TCM1 applied to the operator 6 and the TCM2 applied to the operator 5 report the BIP8 DEG alarm at the same time.
  • Table 3 it can be seen that the path of service 1 through the operator 6 and the path of the service 1 through the operator 5 partially overlap at the node NSX, that is, if there is a problem in the node NSX, it will be detected at both TCM1 and TCM2. Go to the relevant alarm.
  • TCM1 can reflect the deterioration of the nodes, and can not reflect the deterioration between nodes XY; TCM2 It can only reflect the deterioration of the node XY, and can not reflect the deterioration of the node. If the PM at the source node N of the TCM2 has a BIP8 DEG alarm, it indicates that the fiber between the nodes is degraded. If the BIP8 performance of the TCM2 is more deteriorated than that of the TCM1, the fiber degradation between the nodes XY can be inferred.
  • the TCM2 applied to the operator 3 and the TCM1 applied to the operator 6 are simultaneously reported 8 DEG alarm.
  • the path of the service 2 through the operator 3 and the path of the service 1 through the operator 6 partially overlap at the node MRQW, that is, if there is a problem in the node MRQVW, it will be detected at both TCM1 and TCM2.
  • Table 7 is the same as the TCM1 applied to the operator 3 and the TCM1 applied to the operator 6 at the same time.
  • TCM3 source node Simultaneous TCM1 source node (Q) BPM8 of the TCM of the PM Possible failure
  • TCM1 BIP8 soil deterioration is more serious.
  • There is ⁇ 8 DEG TCM1 between DEG and HM and WX between QVW and TCM2 operator 4 is similar to M.
  • TCM3 BIP8 QVW DEG has BIP8 DEG TCM2 is similar to TCM1 and QVW is similar to M
  • Deterioration is more serious and there is no ⁇ 8 DEG has BIP8 DEG TCM1 than TCM2 MRQ and X soil ⁇ Deterioration is more serious and there is no Q between QVW 8 DEG BIP8 DEG TCM2 is more serious than TCM1 MRQ and QV deterioration No BIP8 DEG No BIP8 DEG TCM1 is more serious than TCM2 W and QW degradation
  • the essence of the step 230 is to: monitor the overlapping relationship between the coverage areas and the performance degradation degree of different levels of TCM according to the different levels of the alarms, and locate the faults. Interval. It should be noted that the located fault interval is only a possible fault zone, which provides a small search range for the user to subsequently find a specific fault location.
  • Step 240 Report the analysis result and analysis process of the correlation between the alarms of different levels of TCM to the user, so as to help the user to better locate and solve the problem. Preferably, part of the alarm can also be suppressed. Specifically, in this embodiment, the information in Table 5 and Table 8 is reported to the user. In a nutshell, it is to report the relevant information of different levels of TCM (such as alarm and performance information) and corresponding fault interval location information to the user.
  • TCM alarm and performance information
  • the alarm suppression process can be performed when a clear conclusion can be obtained.
  • the alarm suppression between different levels of TCM is performed according to the positioning information of the fault interval and the overlapping relationship between the coverage levels of different levels of TCM.
  • the alarm suppression process needs to follow certain rules: between different levels of TCM (such as TCM1 applied to ABC and TCM2 applied to ABCH) applied in a nested (over ted) or over lapping manner, It is possible to perform alarm suppression. No alarm is generated between different levels of TCM applied in the cascading mode (such as TCM1 applied to ABC and TCM2 applied to NSXY carrier 2 subnet and carrier). Suppression processing. For the same level of TCM used in different sections (such as TCM1 applied to ABC and TCM1 applied to CM), no suppression is performed. According to the business flow, the upstream part of the overlap suppresses the downstream. According to the node situation on the path, there are many suppression nodes with overlapping nodes.
  • the overlapping part of the low-level TCM suppresses the high-level TCM.
  • the alarm of TCM1 can be suppressed by the alarm of TCM1.
  • the correlation analysis of the TCM alarm can be triggered by the user.
  • Alarm suppression can be enabled or disabled by the user, for example, it can be disabled by default.
  • the alarm suppression can be implemented in the network management unit and the optical network device.
  • the present invention also discloses an apparatus for handling different levels of TCM alarms.
  • the device can be implemented on the network management device through software and related hardware. It should be noted that since the method embodiment and the device embodiment are the same inventive concept, there are many identical or corresponding technical features, and the same or corresponding technical features are only briefly described and will not be described again.
  • FIG. 4 is a schematic structural diagram of a preferred embodiment for processing different levels of TCM alarm devices according to the present disclosure.
  • the apparatus of this embodiment specifically includes a TCM information unit 41, a TCM alarm performance receiving unit 42, a fault interval locating unit 43, and an information output unit 44.
  • the internal components of the apparatus will be further described below based on the working principle of the apparatus of this embodiment.
  • the monitoring coverage information of different levels of TCM is provided by the TCM information unit 41.
  • the TCM information unit may include an operator network composition information subunit, a service path information subunit, and a TCM allocation information subunit.
  • the monitoring coverage information of the TCM applied to a certain operator network can be known, and the monitoring coverage information specifically includes the source node, the intermediate node, and the sink node of the TCM (such as Table 3 or Table 4).
  • the TCM alarm performance receiving unit 42 receives the alarm and performance information from each TCM. If at least two different levels of TCM are found to be alarmed, the fault interval locating unit is reported. Further, the fault interval locating unit 43 performs fault section positioning based on the information provided by the TCM information unit 41 and the TCM alarm performance receiving unit 42.
  • the fault interval locating unit 43 monitors the degree of relationship between the overlapping relationship between the coverages and the TCM performance provided by the TCM alarm performance receiving unit according to the different levels of TCMs generated by the TCM information unit 41. Fault interval positioning.
  • the information output unit 44 outputs the positioning related information provided by the fault interval locating unit to the user, where the positioning related information includes at least the fault interval of the positioning, and preferably includes an alarm.
  • Alarm and performance information for different TCMs.
  • the specific content of the foregoing method and device embodiment can be directly inferred. If at least two different levels of TCM are alarmed when the TCM monitoring coverage of different levels is known, the overlap between the coverages is monitored according to different levels of the alarm TCM. Relationship between the relationship and the severity of the alarm TCM performance, the fault interval can be located. Then, different levels of TCM related information of the alarm and corresponding fault interval information (such as Table 5, etc.) are reported to the user. It should be noted that the located fault interval is only a possible fault interval, which is a prerequisite for the user to make further more accurate fault location.
  • the user when there are different levels of TCM alarms, the user can directly know the possible fault interval, thereby providing a better reference range for the user to perform further specific fault location analysis. In other words, the user only needs to perform further analysis in the possible fault interval provided by the system, and it takes less time to find a specific fault location.
  • the user according to the existing methods for processing different levels of TCM alarms, the user needs to analyze the possible fault intervals from various complicated alarm information, and then gradually narrow down the fault range, and finally find the specific fault location. Obviously, this The process takes a lot of time for the user.
  • the embodiment of the present invention can perform the alarm suppression between the TCMs of different levels according to the positioning information of the fault interval and the overlapping relationship between the monitoring levels of the TCMs at different levels, thereby avoiding the formation of a network failure to a certain extent.
  • the danger of an alarm storm In the case of the current level of TCM alarm suppression, there is a case where the application of the TCM is not considered, so there is a case where the error alarm suppression is performed, and an exemplary networking diagram shown in FIG. 5 is used to describe the prior art. There are specific reasons for false alarm suppression.
  • the defect correlation part in the termination sink function of each level indicates the suppression relationship of the alarm
  • the termination part of each level or the follow-up part of the adaptation function indicates the conditions under which the monthly signal failure/path signal failure (SSF/TSF) is generated. There is some suppression relationship between different alarms within the channel monitoring (PM).
  • TCM1 is applied to FGHL and TCM2 is applied to GHL. That is, TCM1 and TCM2 are terminated at the L node. Assume that the MI-TxTI configuration of TCM1 and TCM2 is incorrect, and that the TCM1 function is processed first, and the TCM1 function is processed later.
  • the TIM alarm of the TCM2 is reported at the L node. If the MI_TIMActDi s of the TCM2 termination sink function is configured to be enabled, the TSF is generated to deliver the SSF to the subsequent layer.
  • the sink function of TCM1 receives the CI-SSF and serves as a condition for suppressing the alarm of TCM1. Furthermore, the ⁇ alarm of TCM1 is suppressed by the TIM alarm of TCM2, which is obviously wrong. The following further refines this problem:
  • the source direction of each level of TCM function has its own level of adaptation source function ( ODUkT / ODUk - A - So) and termination source function (0DUkT_TT_So), each level
  • the sink direction of the TCM function has its own level of adaptation sink function (ODUkT/ODUk-A-Sk) and termination sink function (ODUkT-TT-Sk).
  • the post-processing TCM-level sink function does not utilize the TSF/SSF information generated and transmitted by the pre-processed TCM level as a condition for alarm suppression.
  • the TSF/SSF information generated and transmitted in addition to the previously processed TCM level (such as 0TUk_TT_Sk) can be used as a condition for alarm suppression.
  • one level of TCM is terminated at the C node.
  • the J port follows the signal flow direction.
  • the function of TCM2 is executed first, and the function of TCM1 is executed.
  • the function of TCM2 is executed because Some defects of TCM2 generate TSF in TCM2's termination sink function (ODUkT-TT_Sk) or TSF2 adaptation function (ODUkT/ODUk-A_Sk) to generate SSF to follow-up function, TCM1 will receive TSF2 passed SSF. It should be noted that the TCM2 will pass the SSF after the termination function generates the TSF, and may also generate the SSF through the adaptation function itself and pass it down.
  • TCM1 it may be incorrect if TCM1 is passed as an input of the defect correlation function according to the above two cases of TCM2. Or if the function of TCM1 is executed first and the function of TCM2 is executed later, it may also be incorrect if TCM2 inputs the SSF according to TCM1 as the input of the defect correlation function. Can not be generated and passed down by the TCM level of the first processing The SSF information is used as a condition for alarm suppression. According to the scope of each level and the information obtained by non-access monitoring of PM at the source node of each level, the fault analysis of different levels of TCM can be correctly performed.
  • SSF information generated and transmitted by other functions may be used as a condition for alarm suppression, but cannot be processed first.
  • the TCM level generates the SSF information transmitted by the SSF after the TSF or the TCM level adaptation function that is processed by the TCF, and the SSF information generated and transmitted is used as a condition for alarm suppression.

Description

一种不同级别串接连接监视故障相关性的处理方法和装置 本申请要求于 2006 年 1 月 23 日提交中国专利局、 申请号为 200610033333. X、 发明名称为 "不同级别串接连接监视故障相关性的处理 方法" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及光传送网 (Optical transport network, 0TN)技术领域, 更具体地说, 涉及一种不同級別串接连接监视 ( Tandem connection monitoring, TCM)故障相关性的处理方法和装置。
背景技术
光传送网 (0TN)由不同的运营商的子网组成。 各运营商均拥有自己所 铺设的光纤及网络设备, 对各子网内的网络设备的管理维护故障定位可由 运营商自己完全负责。 但用于为用户服务的光传送网通常会涉及到将多个 不同的运营商的网络设备的互联。 例如, 一条端到端的用户业务, 可能会 经过多个不同的运营商的子网传送, 故需要一种评价机制来评价不同运营 商的网络的质量状况。
现在采用串接连接监视 ( Tandem connection monitoring, TCM) 的方 法来评价不同运营商的网络质量。 利用 TCM可实现对子网的监视, 以评价 不同的运营商的网絡质量, 从而用于对端到端业务在传送的一部分路径上 的质量情况进行监视。
在 0TN的数据单元层(Optical data unit, 0DU)定义了 6级 TCM开 销。 每个 TCM包括路径踪迹标识符(Trail Trace Identifier, TTI )、 比 特间插奇偶校 -检 ( Bit Interleaved Parity, BIP8 )、 后向缺陷指示 ( Backward, defect indicator, BDI )、 后向误码指示 ( Backward error indicator, BEI )、 ^夫态 i或( Status field, STAT )及后向进入定位错误 ( Backward incoming alignment error, BIAE )等内容。 可实现诸如 , 连 续性( continuity )监视、连接性( connectivity )监视及信号质量( signal quality)监视等。
光网络由许多设备及连接设备的链路組成, 当设备或链路发生故障时 设备会发出告警上报到网络管理单元, 以便操作人员分析故障, 并对故障 进行修复。 告警在通过网络中的各设备以及向网络管理单元传递的过程中 包含大量信息, 因此可能会形成告警风暴, 严重消耗通信带宽, 影响工作 效率。 因此需要对告警信息进行相关性分析, 抑制一些告警, 迅速定位引 发故障的根源信息, 更好的指导用户排除故障。
当用户建立了端到端业务, 可以把 6级 TCM分别分配到不同运营商的 不同子网, 一般来说, 不同级别的 TCM之间可以互不影响, 通过使用各自 独立的开销来进行信号质量的监视, 相互独立的报告各自的质量情况。 但 因为网絡出现了某个 (或某些)故障, 才会在某些级别的 TCM中表现出来, 可能会同时触发不同级别的 TCM的相应的告警。 进而, 涉及到的各级 TCM 都会向用户上报告警信息, 由此导致用户会在网络故障时收到大量告警信 息, 从而使其需要花费大量时间才能定位故障区间。
发明内容
本发明的目的在于提供一种处理不同级别 TCM告警的方法和装置, 通 过本发明实施例提供的技术方案, 能够直接向用户提供故障定位信息, 从 而节省了用户进行故障定位的时间。
本发明实施例提供了一种不同级別串接连接监视故障相关性的处理方 法, 所述方法包括:
获知不同级别串接连接监视 TCM的监视覆盖范围;
出现至少两个不同级别的 TCM告警, 则根据所述出现告警的不同级别 TCM监视覆盖范围之间的重叠关系和不同级别 TCM的性能劣化程度, 定位 故障区间;
向用户输出上述定位相关信息, 所述定位相关信息至少包括故障区间 信息。
本发明实施例还提供了一种不同級别串接连接监视故障相关性的处理 装置, 所述装置包括:
TCM信息单元, 用以提供不同級別 TCM的监视覆盖范围信息;
TCM告警性能接收单元, 用于接收来自各 TCM的告警信息及性能信息, 如果出现至少两个不同级别的 TCM告警, 则上艮至故障区间定位单元; 故障区间定位单元, 用以根据 TCM信息单元提供的 TCM监视覆盖范围 之间的重叠关系、 以及 TCM告警性 ^接收单元提供的 TCM性能之间的程度 关系, 进行故障区间定位;
信息输出单元, 用以将故障区间定位单元提供的定位相关信息输出给 用户, 所述定位相关信息至少包括定位的故障区间。 通过以上技术方案可 以看出, 本发明实施例中, 通过获知不同级别 TCM的监视覆盖范围, 进而 当出现至少两个不同级别 TCM告警时, 根据出现告警的不同级别 TCM监视 覆盖范围之间的重叠关系和不同级别 TCM的性能劣化程度,定位故障区间; 最后能向用户输出前述故障区间的定位信息。 由此可见, 在出现多个不同 級别 TCM同时告警时, 采用本发明实施例的技术方案, 用户可以直接获得 故障区间的定位信息, 从而为其节约了大量时间。
附图说明
图 1是适用于本发明处理不同级别 TCM告警方法的一种网状式组网示 意图;
图 2是本发明公开的一种处理不同级别 TCM告警方法实施例的流程图; 图 3是本发明公开的一种图 2所述自动分配 TCM的流程示意图; 图 4是本发明公开的一种处理不同级别 TCM告警的装置实施例结构图; 图 5是说明现有技术存在错误告警抑制原因的一种组网示意图; 图 6是图 1所示的组网示意图中 C节点同时终结了 2个级别的 TCM的 功能模型示意图。
具体实施方式
本发明实施例提供了一种对不同级别 TCM告警的处理方法, 一般会在 由多个运营商的子网 (即多个域) 所组成的网絡中实现, 请参阅图 1 , 其 为适用本发明实施例的一种网状式组网示意图, 该图中以具有六个运营商 的网状式(Mesh )组网为例进行说明。 但是需要注意, 图 1仅是本发明的 一个实施例组网示意图, 适用于本发明技术方案的网络不限于此, 例如, 其还可以是诸如线型、 环型等组网形式。
在图 1中, 共有 25个节点 (用 A至 Y表示), 由 6个运营商 (运营商 1 至运营商 6 ) 的子网共同组成。 不同运营商的子网之间存在有诸如重叠 ( overlapping )及嵌套 ( nes ted )等关系, 例如运营商 3的子网和运营商 1的子网属于嵌套关系, 运营商 5的子网和运营商 6的子网属于重叠关系。 无论是嵌套关系还是重叠关系, 两者在覆盖范围上都会存在重叠部分, 当 然还存在非重叠部分。 其中, 各运营商与节点的关系如下:
运营商 1: ABFG
运营商 2: CDEHI J
运营商 3: ABCFGHKLMPQRUVW
运营商 4: KLPQUV
运营商 5 : N0STXY
运营商 6: LMNQRSVWX
其中, 每一个运营商内部节点之间的光纤属于该运营商。 另外, 为叙 述方便,假设 B节点与 C节点、 F节点与 K节点之间的光纤还属于运营商 1 , H节点与 M节点之间的光纤还属于运营商 2 , M节点与 N节点之间的光纤还 属于运营商 3 , V节点与 W节点之间的光纤还属于节点 4 , 节 W点与 X节点 之间的光纤还属于运营商 5。
在参看图 1的基础上, 请一并结合图 2 , 图 1为本发明处理不同级别
TCM告警方法的实施例流程图。
步驟 210: 设置并记录不同运营商的子网组成信息以及业务路径信息。 例如, 以运营商子网组成表和业务分配表的形式, 来记录运营商子网所包 括的节点信息, 及不同业务所涉及的源节点、 中间节点、 宿节点信息。 此 后执行步骤 220。
以图 1为例, 设置一个运营商子网组成表来记录每个运营商与节点的 关系, 如下表 1所示。
运营商子网组成表
运营商标识 节点标识序列 运营商 1 ABFG 运营商 2 CDEHIJ 运营商 3 ABCFGHKLMPQRUVW 运营商 4 KLPQUV 运营商 5 N0STXY 运营商 6 LMNQRSVWX 假如一个涉及上述网络的业务, 其从源节点 A至宿节点 Y; 其正常的 路径如图 1中的粗实线所示, 其经过的节点及顺序为: ABC腿 NSXY; 而在恢 复动作发生后的路径如图 1 中的粗虛线所示, 其经过的节点及顺序为: AFKLGBCDIHMRQVWXY.
同样, 设置一个业务路径表来记录每一种业务的相关信息, 如下表 2 所示。
表 2 业务路径表
Figure imgf000007_0001
步骤 220: , 根据不同的业务路径进行不同级别的 TCM分配。 该分配过 程可由用户通过网管自行设置, 也可由系统内部根据不同运营商子网情况 自动进行分配。 下面仅以系统内部根据不同运营商子网情况自动进行分配 为例 , 进行更具体的示例性说明。
具体请结合参看图 3所示, 其为图 2所述系统自动进行 TCM分配方法 的实施例流程图示意图。 下面以表 2 中的业务 1 (正常情况下)为例进行 说明, 具体过程如下:
步驟 S30: 获得不同运营商的子网组成情况及业务路径情况信息, 了 解每两个节点之间的光纤属于哪个运营商。 此后转入步驟 S31。
步驟 S31: 进入一个运营商的网络, 并分配最小级别的可用的 TCM应 用于该运营商, 本节点作为该级别 TCM的源节点。 基于表 2所示内容, 从 业务源节点 A开始, 本业务在 A节点进入运营商 1和运营商 3的网絡, 分 配 TCM1 ( ^设 TCM1为当前最小级别可用的 TCM )应用于运营商 1 , A节点 作为 TCM1的源节点; 分配 TCM2应用于运营商 3, A节点作为 TCM2的源节 点。 此后转至步骤 S32。
步驟 S32: 取业务路径上的下一个节点。 在本例中, 根据表 2可知业 务 1中 A节点的下一个节点为 B节点。
步驟 S33: 判断对于某级别的 TCM, 本节点(即步驟 S32中所提到的下 一节点)或本节点下一段光纤是否属于另一个运营商。 在本例中, 具体是 判断节点 B或节点 B下一段光纤是否属于另一个运营商;
如果步骤 S33的判断结果为否, 则转至步厥 S35: 指定本节点为该级 别 TCM的中间节点。 此后转到步骤 S36。
如果步骤 S33的判断结果为是, 则转至步骤 S34: 指定本节点为该级 别 TCM的宿节点。 此后转到步骤 S36。
由于在本例中, B节点对应用于运营商 1的 TCM1来说不是另外一个运 营商, 并且^ _定 BC之间的光纤属于运营商 1 , 则指定 B节点作为 TCM1的 中间节点。
步骤 S36: 判断对于该节点是否还有已经分配的其它级别的 TCM。
在步骤 S36中, 如果还有其它级別的 TCM, 则转入步骤 S33; 如果没有 其它级别的 TCM, 则转入步骤 S37。 具体到本例中, 因为就 B节点而言还有 分配给运营商 3的 TCM2 , 因此转入步骤 S 33。 由于 B节点对应用于运营商 3的 TCM2来说不是另外一个运营商, 因此指定 B节点作为 TCM2的中间节 点。 (图 3中步骤 S36的两个出分支的 "是" 和 "否" 写反了, 我已经改过 来, 请您确认一下。 )
步骤 S37:判断本节点是否为业务的宿节点。如果是,则转入步驟 S 38: 指定该节点为已经分配源节点而未分配宿节点的各个级别 TCM的宿节点; 如果否, 则转至步骤 S31。 如此循环, 直至某一项业务路径中所涉及的每 个运营商子网都分配有 TCM, 并获知每个 TCM的源节点、 中间节点和宿节 点。
具体到本例中, 业务路径上 B节点的下一个节点是 C节点 , 而 C节点 对应用于运营商 1的 TCM1来说是另外一个运营商, 因此 f步骤 S33和 S34指定 C节点作为 TCM1的宿节点。 此外, C节点进入了一个新的运营商 2 , 指定空闲的最小的没有使用的 TCM1应用于运营商 2 , C节点作为 TCM1 的源节点。同时 C节点对应用于运营商 3的 TCM2来说不是另夕 I、一个运营商, 指定 C节点作为 TCM2的中间节点。
同理, H节点对应用于运营商 2的 TCM1来说不是另夕 I、一个运营商, 则 H节点作为应用于运营商 2的 TCM1的中间节点。 同时 H节点对应用于运营 商 3的 TCM2来说不是另外一个运营商,指定 H节点作为 TCM2的中间节点。
同理, M节点对应用于运营商 3的 TCM2来说不是另外一个运营商并且 丽之间的光纤也是属于运营商 3,根据步驟 S33和 S35指定 M节点作为 TCM2 的中间节点。同时 M节点对应用于运营商 2的 TCM1来说属于另外一个运营 商, 则根据步骤 S33和 S34指定 M节点作为运营商 2的 TCM1的宿节点; M 节点进入一个新的运营商 6 , 指定空闲的最小的没有使用的 TCM1应用于运 营 6 , M节点作为应用于运营商 6的 TCM1的源节点。
同理, N节点对应用于运营商 3的 TCM2来说是另外一个运营商, 指定 节点作为 TCM2的宿节点; 同时 N节点进入了一个新的运营商 5 , 指定空 闲的最小的没有使用的 TCM2应用于运营 5 , N节点作为 TCM2的源节点。 同 时 N节点对应用于运营商 6的 TCM1来说不是另外一个运营商,指定 N节点 作为 TCM1的中间节点。
同理, S节点对应用于运营商 6的 TCM1来说不是另外一个运营商, 指 定 S节点作为 TCM1的中间节点。 同时 S节点对应用于运营商 5的 TCM2来 说不是另外一个运营商, 指定 S节点作为 TCM2的中间节点。
同理, X节点对应用于运营商 6的 TCM1来说不是另外一个运营商, 但 XY之间的光纤属于运营商 5是另一个运营商, 所以指定 X节点作为 TCM1 的宿节点。同时 X节点对应用于运营商 5的 TCM2来说不是另外一个运营商, 指定 X节点作为 TCM2的中间节点。
同理, Y节点对应用于运营商 5的 TCM2来说不是另外一个运营商, 指 定 Y节点作为 TCM2的中间节点。
在步骤 S37判断发现 Y节点是本业务的宿节点, 则在步骤 S38中需要 指定 Y节点为还没有分配宿节点的 TCM2的宿节点,即将前面所指定的 Y节 点为 TCM2的中间节点,在此步骤中更新为将 Y节点指定为 TCM2的宿节点。 根据上述的自动分配过程,得到如下表 3所示的业务 1的不同级别 TCM 分配表。
表 3 业务 1的不同级别 TCM分配表
Figure imgf000010_0001
前文对于表 2中业务 1 (正常情况下的路径) 的 TCM分配过程予以了 详细描述。 下面以表 2中业务 2为例, 再次进行说明。
对于表 2中业务 2 (在使用保护倒换后或恢复后的路径), 同样可以由 用户网管设置 , 或由系统根据不同运营商子网情况自动进行分配不同级别 的 TCM, 一般可由系统在恢复动作执行后自动分配。 表 4示出了对业务 2 进行不同级别 TCM分配的分配表。 其自动分配的过程与业务 1中的自动分 配过程类似, 在此不再赘述。 假定其中, 节点 F与节点 K之间的光纤属于 运营商 1 ; 节点 L与节点 G之间的光纤属于运营商 6; 节点 B与节点 C之间 的光纤属于运营商 1 ; 节点 H与的节点 M之间的光纤属于运营商 2; 节点 W 与节点 X之间的光纤属于运营商 5。
表 4 业务 2的不同级别 TCM分配表
TCM级别 源节点 中间节点 宿节点 运营商标识
TCM1 A F Κ 运营商 1
TCM2 A FKLGB C 运营商 3
TCM1 K L 运营商 4 TCM1 L G 运营商 6
TCM1 G B C 运营商 1
TCM1 C DIH M 运营商 2
TCM2 H MRQV W 运营商 3
TCM1 M RQVW X 运营商 6
TCM3 Q V w 运营商 4
TCM1 X Y :运营商 5
对于某级别的 TCM的应用, 可在 TCM源节点把源功能的 TCM模式指定 为操作 ( Operat ional )模式, 对于 TCM中间节点把源功能和宿功能的 TCM 模式指定为透明 (Transparent ), 对于宿节点把宿功能的 TCM模式指定为 监视 ( Moni tor )模式。
回到图 2所示的步骤 230: 当网絡中的某些节点间出现故障 (如劣化 等) 时, 该端到端业务所涉及的不同级别 TCM会报告告警信息以及性能信 息。 网络管理单元会接收并处理这些告警信息。 其中, 对于 TCM的故障及 性能可以通过监视 TCM的 BIP8 ( Bi t interleaved pari ty, 比特间插奇偶 性)开销及光数据单元(Opt ical data uni t , 0DU )净荷得到; 下述涉及 的通道监控 ( PM )故障及性能可以通过监视 PM的 BIP8开销及 0DU净荷得 到。 当有多个不同级別 TCM分别报告了一些告警后, 就本实施例而言, 网 络管理单元会结合运营商子网组成表、 业务路径表、 TCM分配表及各个级 别 TCM性能及各个级别 TCM源节点处 PM故障和性能情况进行分析,分析出 可能的故障区间(即进行故障区间定位), 然后把分析结果(可能的故障区 间 )及分析过程报告给用户。 下面将分别针对表 3和表 4, 来说明对接收 到的不同级别 TCM报告告警信息后的分析过程。
对于表 3, 在业务使用正常路径的情况下:
假如应用于运营商 1的 TCM1与应用于运营商 3的 TCM2同时报 BIP8劣 化(Degradat ion, DEG )告警。 此时通过查表 3可知, TCM1的应用范围完 全在 TCM2的范围之内, 即应用于运营商 1的 TCM1监视覆盖范围和应用于 运营商 3的 TCM2监视覆盖范围之间具有重叠部分,重叠部分具体为整个运 营商 1的 TCM1监视覆盖范围。 因此, 假如在 TCM1的范围内出现问题, 一 定会同时在 TCM1和 TCM2检测到相关告警,所以应用于运营商 1的 TCM1的 相关告警与应用于运营商 3的 TCM2的相关告警相关。 当然, 也有可能实际 是因为多处光纤劣化 (如节点 AB间和节点 C丽间)才导致 TCM1和 TCM2同 时报告警的, 此时需要借助于对 BIP8相关的性能进行分析。 经过节点 ABC 间劣化及节点 C腿间劣化上报的 TCM2的 BIP8的误码情况可能比经过节点 AB间劣化上报的 TCM1的 BIP8的误码更加严重。
请参阅表 5所示, 其为应用于运营商 1的 TCM1与应用于运营商 3的 TCM2同时报告警的分析结论。 如果应用于运营商 1的 TCM1报告 BIP8 DEG 告警同时, 应用于运营商 3的 TCM2也报告 BIP8 DEG告警, 如果 TCM1的 BIP8相关性能表示的劣化情况与 TCM2的 BIP8相关性能的情况相差很小, 则故障位置可能在节点 AB之间。如果 TCM2的 BIP8相关性能表示的劣化情 况比 TCM1的 BIP8相关性能表示的劣化更加严重,则可能在节点 AB间及节 点 BC丽间都有故障发生。
应用于运营商 1的 TCM1的与应用于运营商 3的 TCM2同时报告 警的分析结论
Figure imgf000012_0001
假如应用于运营商 6的 TCM1与应用于运营商 5的 TCM2同时报 BIP8 DEG 告警。 此时通过查表 3可知, 业务 1经过运营商 6的路径与业务 1经过运 营商 5的路径在节点 NSX部分重叠, 就是说, 假如在节点 NSX部分出现问 题, 一定会同时在 TCM1和 TCM2检测到相关告警。 当然, 也有可能实际是 因为多处光纤劣化(如节点丽间和节点 XY间)才导致 TCM1和 TCM2同时 报告警的, 此时 TCM1能够体现出节点丽间的劣化情况, 不能够体现出节 点 XY间的劣化情况; TCM2只能体现出节点 XY间的劣化情况, 不能够体现 出节点丽间的劣化情况。 假如在 TCM2的源节点 N处的 PM有 BIP8 DEG告 警, 则说明可能节点匪之间光纤劣化, 如果 TCM2的 BIP8性能比 TCM1的 更加劣化, 则可推论出节点 XY之间光纤劣化。 同时节点 NSX之间也有可能 劣化。 假如在 TCM2的源节点 N处的 PM无 BIP8 DEG告警, 则说明节点丽 间无劣化, 此时如果 TCM2比 TCM1劣化更加严重, 则可能故障区间在节点 NSX间及节点 XY间。 否则, 可能故障区间在节点 NSX间。 请参阅表 6 , 其 为应用于运营商 6的 TCM1与应用于运营商 5的 TCM2同时报告警分析结论。 表 6
Figure imgf000013_0001
对于表 4 , 在业务使用保护倒换或恢复后的路径的情况下:
如应用于运营商 3的 TCM2的与应用于运营商 6的 TCM1同时报 ΒΙΡ8 DEG告警。 此时通过查表 4可知, 业务 2经过运营商 3的路径与业务 1经 过运营商 6的路径在节点 MRQW部分重叠, 就是说, 假如在节点 MRQVW部 分出现问题, 一定会同时在 TCM1和 TCM2检测到相关告警, 请参阅表 7 , 其为应用于运营商 3的 TCM2的与应用于运营商 6的 TCM1同时 #_告警分析 结论。
表 7
Figure imgf000014_0001
^^如应用于运营商 3的 TCM2与应用于运营商 6的 TCM1与应用于运营 商 4的 TCM3同时报 BIP8 DEG。 此时通过查表 4可知, 业务 2经过运营商 3 的路径与业务 2经过运营商 6的路径与业务 2经过运营商 4的路径在节点 QVW部分重叠,就是说,假如在节点 QVW部分出现问题,一定会同时在 TCM2 和 TCM1和 TCM3检测到相关告警,所以应用于运营商 3的 TCM2的告警与应 用于运营商 6的 TCM1的告警与应用于运营商 4的 TCM3的告警相关。当然, 也有可能同时在其他地方也存在多处光纤劣化才导致 TCM2和 TCM1和 TCM3 同时 4艮告警的,此时需要借助于对 BIP8相关的性能及 TCM1和 TCM3入口处 的 PM的 BIP8故障和 BIP8性能进行分析。 请参阅表 8 , 其为应用于运营商 3的 TCM2与应用于运营商 6的 TCM1与应用于运营商 4的 TCM3同时 4艮告警 分析结论。
表 8
TCM3源节点 同时出现的 TCM1源节点 ( Q ) 处 PM的 TCM的 BIP8性 可能的故障
TCM告警 ( M )处 PM BIP8性能告 fib 区间
运营商 3 的 丽 间及 MRQ 有 BIP8 DEG TCM1 比 TCM2 TCM2 BIP8 比 M处更严重 间及 W 间及 劣化更严重
DEG及 QVW间 运营商 6 的 有 BIP8 DEG TCM2 比 TCM1 謹 间及 MRQ 比 M处更严重
TCM1 BIP8 土 劣化更严重 间及 QVW间 DEG及 HM间及 WX间 有 ΒΙΡ8 DEG TCM1 比 TCM2 运营商 4 的 与 M处类似 及
劣化更严重
TCM3 BIP8 QVW间 DEG 有 BIP8 DEG TCM2 比 TCM1 丽 间及 QVW 与 M处类似
劣化更严重 间 无 ΒΙΡ8 DEG 有 BIP8 DEG TCM1 比 TCM2 MRQ 间及 X 土 土 ϋ 劣化更严重 间及 QVW间 无 ΒΙΡ8 DEG 有 BIP8 DEG TCM2 比 TCM1 MRQ间及 QV 劣化更严重 间 无 BIP8 DEG 无 BIP8 DEG TCM1 比 TCM2 W 间及 QW 劣化更严重 间
TCM1 与 TCM2
无 ΒΙΡ8 DEG 无 BIP8 DEG
与 TCM3 劣化 QVW间 类似 通过表 5至表 8所述的内容可以推知, 步驟 230的实质在于: 根据告 警的不同级别 TCM监视覆盖范围之间的重叠关系和不同级别 TCM的性能劣 化程度, 定位故障区间。 需要说明, 定位出的故障区间只是可能的故障区 间,该故障区间是为用户后续查找具体故障位置提供一个较小的搜索范围。
下面继续回到图 2。
步骤 240:将不同级别 TCM的告警之间的相关性的分析结果及分析过程 报告给用户, 以帮助用户进行更好的准确定位并解决问题。 优选的, 还可 以抑制部分告警。 具体到本实施例中, 就是将表 5、 表 8 中的信息报告给 用户。 概括而言, 就是将同时发生告警的不同級别 TCM的相关信息(如告 警和性能信息) 以及对应的故障区间定位信息报告给用户。
例如, 可以根据该分析结果, 在能够得到明确结论的情况下进行告警 抑制的处理。 具体而言, 才艮据故障区间的定位信息以及不同级别 TCM监视 覆盖范围之间的重叠关系, 进行不同级别 TCM之间的告警抑制。
所述告警抑制处理需要遵循一定的规则: 对于嵌套(nes ted )或重叠 ( over lapping )方式应用的不同级别的 TCM (如应用于 ABC的 TCM1和应用 于 ABCH匪的 TCM2)之间, 是有可能可以进行告警抑制的处理的, 对于层叠 ( cascading )方式应用的不同级别的 TCM (如应用于 ABC的 TCM1和应用 于 NSXY运营商 2子网和运营商的 TCM2 )之间, 不进行告警抑制的处理。 对于同级别 TCM在不同区段使用的(如应用于 ABC的 TCM1和应用于 CM的 TCM1) , 不进行抑制。 才艮据业务流向, 重叠部分上游抑制下游。 根据路径上 节点情况, 重叠部分节点少的抑制节点多的。
根据不同级别 TCM的分配情况, 重叠部分低级别 TCM抑制高级别 TCM。 例如, 在上述表 5中, 如果可确定故障区间为 ABC间, 则可用 TCM1的 告警抑制 TCM2的告警。 其中, TCM告警的相关性分析可由用户触发。 告警 抑制可以由用户使能或禁止, 例如, 可默认为禁止。 该告警抑制可在网络 管理单元及光网络设备中实现。
基于与上述处理不同级别 TCM告警方法的同一构思, 本发明还公开了 一种处理不同級别 TCM告警的装置。 该装置可以通过软件以及相关硬件在 网管设备上予以实现。 需要说明, 由于方法实施例和装置实施例属于同一 发明构思, 因此有很多相同或相应的技术特征, 对于这些相同或相应的技 术特征, 只简而言之, 不再赘述。
请参阅图 4 , 其为本发明公开的一种处理不同级别 TCM告警装置的优 选实施例结构示意图。 本实施例装置具体包括 TCM信息单元 41、 TCM告警 性能接收单元 42、 故障区间定位单元 43以及信息输出单元 44。 下面根据 该实施例装置的工作原理, 进一步介绍其内部各组成部分。
由 TCM信息单元 41提供不同级别 TCM的监视覆盖范围信息。具体而言, TCM信息单元可以包括运营商网络组成信息子单元、 业务路径信息子单元 以及 TCM分配信息子单元。 根据这三个信息子单元, 就可以获知应用于某 一运营商网络的 TCM的监视覆盖范围信息, 所述监视覆盖范围信息具体包 括该 TCM的源节点、 中间节点以及宿节点 (如表 3或表 4所示内容)。
通过 TCM告警性能接收单元 42接收来自各 TCM的告警及性能信息,如 果发现至少两个不同级别的 TCM都告警, 则上报故障区间定位单元。 进而, 由故障区间定位单元 43根据 TCM信息单元 41和 TCM告警性能接收单元 42 提供的信息, 进行故障区间定位。
具体而言, 故障区间定位单元 43根据 TCM信息单元 41所提供的发生 告警的不同级别 TCM监视覆盖范围之间的重叠关系、 以及 TCM告警性能接 收单元所提供的 TCM性能之间的程度关系, 进行故障区间定位。
在故障区间定位单元 43完成故障区间定位后, 通过信息输出单元 44 将故障区间定位单元提供的定位相关信息输出给用户, 所述定位相关信息 至少包括定位的故障区间, 优选的, 还包括发生告警的不同 TCM的告警及 性能信息。 通过前述方法和装置实施例的具体内容可以直接推知 , 在获知不同级 别 TCM监视覆盖范围情况下, 如果至少两个不同级别的 TCM都告警, 则根 据告警的不同级别 TCM监视覆盖范围之间的重叠关系和告警 TCM性能之间 的劣化程度关系, 能够定位出故障区间。 然后, 将告警的不同级别 TCM相 关信息以及对应的故障区间信息 (如表 5等)报告给用户。 需要说明, 定 位出的故障区间只是可能的故障区间, 其是用户做进一步的更准确故障定 位的前提。
由于采用本发明实施例的技术方案, 在有不同级别 TCM告警时, 用户 可以直接获知可能的故障区间, 从而为用户做进一步的具体故障位置分析 提供了一个较好的参考范围。 换而言之, 用户只需要在系统提供的可能的 故障区间中再做进一步的分析, 花费较少时间就可找到具体的故障位置。 反之, 根据现有处理不同级别 TCM告警的方法中, 用户需要自己从各种纷 繁复杂的告警信息中分析出可能的故障区间,然后再一步步缩小故障范围, 最终找到具体故障位置, 显而易见, 这个过程花费了用户非常多的时间。
进一步,本发明实施例可以根据故障区间的定位信息以及不同级别 TCM 监视覆盖范围之间的重叠关系,进行正确的不同级别 TCM之间的告警抑制, 因此在一定程度上避免了网絡发生故障时形成告警风暴的危险。 而现有不 同级别 TCM告警抑制时, 由于没有考虑各个级别 TCM的应用的区间情况, 所以存在进行错误告警抑制的情况, 下面结合图 5所示的一个示例性组网 示意图, 说明现有技术中存在错误告警抑制的具体原因。
在 0TN的设备功能特性的建议 G. 798中在各个层次的终结宿功能中的 缺陷关联(defect correlat ion )部分说明有告警的抑制关系, 在各个层 次的终结或适配功能的后续行动部分 ( consequent act ions )说明有月艮务 信号失效 /路径信号失效(SSF/TSF ) 的产生条件。 在通道监控 ( PM ) 内部 不同告警之间有某些抑制关系。
在 TCM的终结宿功能 ( 0DUkT_TT-Sk )处,把 CI -SSF作为输入, 并作为 缺陷关联功能的一个条件, 同时, 对于宿功能模式为操作模式的情况下, 会产生 TSF并向后续层次传递 SSF, 这样的结果就是多个级别的 TCM之间 通过 SSF信息的传递互相影响的缺陷关联功能。 如图 5所示, TCM1应用于 FGHL, TCM2应用于 GHL。 就是说, 在 L节点 终结 TCM1和 TCM2。假设 TCM1和 TCM2的 MI— TxTI配置错误,并且假设 TCM2 功能处理在前, TCM1功能处理在后。 于是, 就会在 L节点报告 TCM2的 TIM 告警, 假如 TCM2终结宿功能处的 MI_TIMActDi s配置为使能, 则产生 TSF 向后续层次传递 SSF。 TCM1的宿功能处会接收到 CI— SSF, 并作为抑制 TCM1 的告警的条件。 进而, TCM1的 ΊΊΜ告警被 TCM2的 TIM告警所抑制, 显然 是错误的。 下面进一步细化这个问题:
对于一个节点同时终结多个级别的 TCM的情况 , 每个级别的 TCM功能 的源方向有各自级别的适配源功能 ( ODUkT/ODUk— A— So ) 和终结源功能 (0DUkT_TT_So) , 每个级别的 TCM功能的宿方向有各自级别的适配宿功能 ( ODUkT/ODUk-A—Sk )和终结宿功能(ODUkT—TT— Sk) , 按照信号流向, 依次 进行多个级别 TCM功能的处理, 对于后处理的 TCM级别的宿功能, 不利用 先处理的 TCM级别产生并传递下来的 TSF/SSF信息作为告警抑制的条件。 可以利用除了先处理的 TCM级别之外其他功能(如 0TUk_TT_Sk, )产生并 传递下来的 TSF/SSF信息作为告警抑制的条件。
例如, 对于图 1所示的组网示意图中, 按照表 4的分配结果, 在 C节 点同时终结了 1个級别的 TCM。
TCM2 A FKLGB C 运营商 3
TCM1 G B C 运营商 1
则 C节点的功能模型如图 6所示, J口按照信号流向, TCM2的功能先 执行, TCM1的功能后执行, 按照目前建议 G. 798中的说明, 则 TCM2的功 能执行的时候,会因为 TCM2的某些缺陷在 TCM2的终结宿功能 (ODUkT-TT_Sk) 产生 TSF或者在 TCM2的适配功能(ODUkT/ODUk— A_Sk )产生 SSF向后续功 能传递, TCM1会接收到 TCM2传递下来的 SSF。 需要说明, TCM2在终结功 能产生 TSF后会传递下来 SSF, 也可能通过适配功能本身产生 SSF并传递 下来。 如果 TCM1根据 TCM2上述两种情况下传递下来的 SSF作为缺陷关联 功能的输入可能是不正确的。 或者假如 TCM1 的功能先执行, TCM2 的功能 后执行, 如果 TCM2根据 TCM1传递下来的 SSF作为缺陷关联功能的输入同 样可能是不正确的。 不能筒单的利用先处理的 TCM级别产生并传递下来的 SSF信息作为告警抑制的条件。 要根据各个级别的作用范围及各个级别源 节点处对 PM进行非接入监视得到的信息综合进行分析才能够正确进行不 同级别 TCM的故障分析。 在进行不同级别 TCM功能的告警抑制时, 可以利 用除了先处理的 TCM级别之外其他功能(如 OTUk— TT-Sk )产生并传递下来 的 SSF信息作为告警抑制的条件, 但是, 不能利用先处理的 TCM级别产生 TSF后传递下来的 SSF或所述先处理的 TCM级别适配功能产生并传递下来 的 SSF信息作为告警抑制的条件。
由此可见, 由于在本发明实施例中进行不同级别 TCM告警抑制时, 考 虑了不同级别 TCM应用的监视范围, 而不是筒单的利用不同节点间不同层 次间传递的 SSF/TSF信息进行告警抑制, 所以不会出现上述告警抑制错误 的情况。

Claims

权 利 要 求
1. 一种不同级别串接连接监视故障相关性的处理方法,其特征在于, 所述方法包括:
获知不同级别串接连接监视 TCM的监视覆盖范围;
出现至少两个不同级别的 TCM告警, 则根据所述出现告警的不同级别
TCM监视覆盖范围之间的重叠关系和不同级别 TCM的性能劣化程度, 定位 故障区间;
向用户输出上述定位相关信息, 所述定位相关信息至少包括故障区间 信息。
2. 根据权利要求 1所述的方法; 其特征在于, 所述方法还包括: 根据不同級别 TCM监视覆盖范围之间的重叠关系, 进行不同级别 TCM 之间的告警抑制。
3. 根据权利要求 1所述的方法, 其特征在于, 所述进行不同级别 TCM 告警抑制过程中, 对于一个节点同时终结多个级别的 TCM的情况, 后处理 的 TCM级别的宿功能,不利用先处理的 TCM级别产生 TSF后传递下来的 SSF 或适配功能产生并传递下来的 SSF信息作为告警抑制的条件。
4. 根据权利要求 1所述的方法, 其特征在于, 所述获知不同级别 TCM 监视覆盖范围的具体过程包括:
获知各域组网信息以及业务的路径信息;
结合上述信息进行 TCM分配, 得到不同级别 TCM的监视覆盖范围。
5. 根据权利要求 4所述的方法, 其特征在于, 所述 TCM分配由用户进 行分配。
6. 根据权利要求 4所述的方法, 其特征在于, 所述 TCM分配由系统内 部才艮据各域情况进行自动分配。
7.根据权利要求 6所述的方法, 其特征在于, 所述自动分配的具体过 程包括以下步骤:
( bl )进入一个运营商的网络, 则分配最小级别的可用的串接连接监 视应用于该运营商, 并且本节点作为该级别串接连接监视的源节点;
( b2 )取该业务路径上的下一个节点; ( b3 )判断对于某级别的串接连接监视, 步骤(b2 ) 中该节点或该节 点下一段光纤是否属于另一个运营商;
( b4 )如果该节点或该节点下一段光纤属于同一个运营商, 则指定该 节点为该级别串接连接监视的中间节点, 并转到步骤( b6 )。
( b5 )如果该节点或该节点下一段光纤属于另一个运营商, 则指定该 节点为该级别串接连接监视的宿节点;
( b6 )判断对于该节点是否还有已经分配的其他级别串接连接监视, 如果还有已经分配的其他級别的串接连接监视, 则转到步驟( b3 );
( b7 )如果没有已经分配的其他级别的串接连接监视, 则判断该节点 是否为业务的宿节点; 如果该节点不是宿节点, 则转至步骤(bl );
( b8 )如果该节点是宿节点, 则指定该节点为已经分配源节点而未分 配宿节点的各个级别串接连接监视的宿节点。
8. 根据权利要求 1至 7中任意一项所述的方法, 其特征在于, 所述输 出的定位相关信息还包括不同级别 TCM的告警及性能信息。
9. 根据权利要求 1至 7 中任意一项所述的方法, 其特征在于, 所述
TCM监视覆盖范围具体包括该 TCM的源节点、 中间节点以及宿节点。
10. 根据权利要求 1至 7中任意一项所述的方法, 其特征在于, 进行 故障区间定位的依据还包括各 TCM监视覆盖范围中源节点处的性能告警信
11. 根据权利要求 1至 7中任意一项所述的方法, 其特征在于, 所述 不同级别 TCM具体为应用于不同域的不同级别 TCM。
12. 一种不同级别串接连接监视故障相关性的处理装置,其特征在于, 所述装置包括:
TCM信息单元, 用以提供不同级别 TCM的监视覆盖范围信息;
TCM告警性能接收单元, 用于接收来自各 TCM的告警信息及性能信息, 如果出现至少两个不同级别的 TCM告警, 则上报至故障区间定位单元; 故障区间定位单元, 用以根据 TCM信息单元提供的 TCM监视覆盖范围 之间的重叠关系、 以及 TCM告警性能接收单元提供的 TCM性能之间的程度 关系, 进行故障区间定位;
信息输出单元, 用以将故障区间定位单元提供的定位相关信息输出给 用户, 所述定位相关信息至少包括定位的故障区间。
13. 如权利要求 12所述的装置, 其特征在于, 所述装置还包括: 告警抑制单元, 用以根据定位的故障区间以及不同级别 TCM监视覆盖 范围之间的重叠关系, 进行不同级别 TCM之间的告警抑制。
14. 根据权利要求 12所述的装置, 其特征在于, 所述定位相关信息还 包括出现告警的不同级别 TCM的告警及性能信息。
15. 根据权利要求 12至 14中任意一项所述的方法, 其特征在于, 所 述 TCM告警性能接收单元向故障区间定位单元提供的定位依据还包括 TCM 监视覆盖范围中源节点处的性能告警信息。
PCT/CN2006/003433 2006-01-23 2006-12-15 A method for processing the tandem connection monitoring failure dependency of different levels and an equipment thereof WO2007082450A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES06828347T ES2391473T3 (es) 2006-01-23 2006-12-15 Un método para procesar una dependencia de fallo de vigilancia de conexión en tándem de diferentes niveles y su equipo asociado
EP06828347A EP1981211B1 (en) 2006-01-23 2006-12-15 A method for processing the tandem connection monitoring failure dependency of different levels and an equipment thereof
CN200680012832.9A CN101160824A (zh) 2006-01-23 2006-12-15 一种不同级别串接连接监视故障相关性的处理方法和装置
US12/178,283 US7760620B2 (en) 2006-01-23 2008-07-23 Method and apparatus for processing fault dependency of different levels of tandem connection monitoring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610033333.XA CN101009518B (zh) 2006-01-23 2006-01-23 不同级别串接连接监视故障相关性的处理方法
CN200610033333.X 2006-01-23

Publications (1)

Publication Number Publication Date
WO2007082450A1 true WO2007082450A1 (en) 2007-07-26

Family

ID=38287250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003433 WO2007082450A1 (en) 2006-01-23 2006-12-15 A method for processing the tandem connection monitoring failure dependency of different levels and an equipment thereof

Country Status (5)

Country Link
US (1) US7760620B2 (zh)
EP (1) EP1981211B1 (zh)
CN (2) CN101009518B (zh)
ES (1) ES2391473T3 (zh)
WO (1) WO2007082450A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306673A1 (en) * 2008-07-10 2011-04-06 ZTE Corporation Method and system for realizing automatic configuration of the node working mode
CN103152212A (zh) * 2013-03-29 2013-06-12 华为技术有限公司 一种告警相关性分析方法、装置及网络管理系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136700B (zh) * 2006-09-01 2011-11-02 华为技术有限公司 一种进行串接连接监视分配配置的方法
CN101599868B (zh) * 2008-06-02 2011-12-28 华为技术有限公司 Tcm路径搜索、创建方法及路径搜索、创建管理系统
CN102064881B (zh) * 2009-11-13 2014-11-05 中兴通讯股份有限公司 一种串联连接监视级别处理方法及装置
EP2337268B1 (en) * 2009-12-18 2012-12-05 Alcatel Lucent Method of localizing a failure occurring along a transmission path
US8417111B2 (en) * 2010-10-28 2013-04-09 Ciena Corporation Optical network in-band control plane signaling, virtualized channels, and tandem connection monitoring systems and methods
CN102487334B (zh) * 2010-12-06 2014-12-10 中国移动通信集团上海有限公司 关联告警信息的确定方法及装置
CN102546205B (zh) * 2010-12-20 2014-12-10 中国移动通信集团公司 一种故障关系生成及故障确定方法及装置
PL2656550T3 (pl) * 2010-12-21 2016-09-30 Węzeł sieci prowadzący wiele sesji nadzoru łączności do licznych interfejsów routera
CN102497289B (zh) * 2011-12-27 2014-08-06 四川欧亚锦业信息技术有限公司 一种自适应多协议告警处理的方法及系统
US9479248B2 (en) 2012-12-17 2016-10-25 Ciena Corporation Fault localization using tandem connection monitors in optical transport network
EP2806582B1 (en) * 2013-01-25 2017-03-15 Huawei Technologies Co., Ltd. Alarm inhibition method and optical network device
ES2678196T3 (es) * 2013-12-30 2018-08-09 Huawei Technologies Co., Ltd. Método de reencaminamiento y red óptica conmutada automáticamente
CN103957116B (zh) * 2014-03-31 2017-12-01 昆明理工大学 一种云故障数据的决策方法及系统
CN104038371B (zh) * 2014-05-22 2018-05-01 国家电网公司 一种电力通信传输网自适应性能采集方法
CN106533739B (zh) * 2016-10-20 2020-01-17 许继集团有限公司 一种过程层网口故障定位方法和装置
CN115102883A (zh) * 2022-07-05 2022-09-23 北京智讯天成技术有限公司 通讯设备误码分析方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044995A2 (en) * 2001-11-16 2003-05-30 Nortel Networks Ltd. Tandem connection monitoring parallel processing
US20040184489A1 (en) * 2003-03-18 2004-09-23 Patrice Brissette Tandem connection monitoring implementing sink functionality on egress without an egress pointer processor
US6938187B2 (en) * 2001-12-19 2005-08-30 Nortel Networks Limited Tandem connection monitoring

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60033670T2 (de) * 2000-12-04 2007-11-08 Lucent Technologies Inc. Leistungsüberwachung in einem Nachrichtenübertragungsnetzwerk
US7106968B2 (en) * 2001-07-06 2006-09-12 Optix Networks Inc. Combined SONET/SDH and OTN architecture
US7447239B2 (en) * 2002-09-19 2008-11-04 Nortel Networks Limited Transmission path monitoring
WO2004027580A2 (en) * 2002-09-20 2004-04-01 Nortel Networks Limited System and method for managing an optical networking service
CN100450008C (zh) 2002-10-22 2009-01-07 华为技术有限公司 通信网络告警的处理方法和相关性分析管理器
EP1422968B1 (en) * 2002-11-19 2010-01-13 Alcatel Lucent Failure localization in a transmission network
ATE387045T1 (de) * 2003-07-18 2008-03-15 Alcatel Lucent Wiederherstellung eines netzwerkes
US7032032B2 (en) * 2003-07-29 2006-04-18 Cisco Technology, Inc. Method and apparatus for providing tandem connection, performance monitoring, and protection architectures over ethernet protocols
EP1523117B1 (en) * 2003-10-09 2007-07-11 Alcatel Lucent Method and frame for "in band" path failure detection and localization within an SDH/SONET network domain
US20050086555A1 (en) * 2003-10-20 2005-04-21 David Langridge Optical communications network
US7221870B2 (en) * 2003-10-21 2007-05-22 Futurewei Technologies, Inc. Ring map discovery and validation method and system for optical network applications
CN100401661C (zh) * 2004-03-03 2008-07-09 华为技术有限公司 通信网络光纤故障监测和定位系统及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044995A2 (en) * 2001-11-16 2003-05-30 Nortel Networks Ltd. Tandem connection monitoring parallel processing
US6938187B2 (en) * 2001-12-19 2005-08-30 Nortel Networks Limited Tandem connection monitoring
US20040184489A1 (en) * 2003-03-18 2004-09-23 Patrice Brissette Tandem connection monitoring implementing sink functionality on egress without an egress pointer processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1981211A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306673A1 (en) * 2008-07-10 2011-04-06 ZTE Corporation Method and system for realizing automatic configuration of the node working mode
EP2306673A4 (en) * 2008-07-10 2011-09-07 Zte Corp METHOD AND SYSTEM FOR AUTOMATIC CONFIGURATION OF A NODE WORKING MODE
CN103152212A (zh) * 2013-03-29 2013-06-12 华为技术有限公司 一种告警相关性分析方法、装置及网络管理系统
CN103152212B (zh) * 2013-03-29 2015-10-21 华为技术有限公司 一种告警相关性分析方法、装置及网络管理系统

Also Published As

Publication number Publication date
CN101009518B (zh) 2011-11-16
US7760620B2 (en) 2010-07-20
CN101160824A (zh) 2008-04-09
EP1981211A4 (en) 2009-09-02
ES2391473T3 (es) 2012-11-27
EP1981211B1 (en) 2012-08-15
EP1981211A1 (en) 2008-10-15
US20080279548A1 (en) 2008-11-13
CN101009518A (zh) 2007-08-01

Similar Documents

Publication Publication Date Title
WO2007082450A1 (en) A method for processing the tandem connection monitoring failure dependency of different levels and an equipment thereof
US7027388B2 (en) 1+1 Mesh protection
US6359857B1 (en) Protection switching trigger generation
US5778184A (en) System method and computer program product for processing faults in a hierarchial network
CA2558786C (en) Line-level path protection in the optical layer
US8014300B2 (en) Resource state monitoring method, device and communication network
Sprecher et al. MPLS transport profile (MPLS-TP) survivability framework
US5704036A (en) System and method for reported trouble isolation
US20070223368A1 (en) Failure recovery method and node, and network
JP2006115496A (ja) ネットワーク監視方法及びネットワーク要素
US5784359A (en) System and method for unreported trouble isolation
US8169917B2 (en) Tandem connection monitoring method in MPLS network
WO2008031356A1 (en) A method for realizing the subnetwork connection protection with sub-layer monitoring of k rank optical channel data unit and an apparatus thereof
US20040076114A1 (en) Method and apparatus for shared protection in an optical transport network ring based on the ODU management
US9203719B2 (en) Communicating alarms between devices of a network
CN107431655B (zh) 分段保护中的故障传播的方法和设备
US6337846B1 (en) Quantification of the quality of spare links in a telecommunications network
US20110090798A1 (en) System and method for providing troubleshooting in a network environment
EP2063569A1 (en) Method and system for protection reverse policy
US8966052B2 (en) Error detection and reporting
CN113285871B (zh) 链路保护方法、sdn控制器和通信网络系统
Toy Self-managed networks with fault management hierarchy
US7602701B1 (en) WideBand cross-connect system and protection method utilizing SONET add/drop multiplexers
Sprecher et al. RFC 6372: MPLS Transport Profile (MPLS-TP) Survivability Framework
Yun et al. Technique analysis of t-mpls oam and mpls-tp oam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680012832.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006828347

Country of ref document: EP