WO2007080929A1 - Polyoxalate urethane - Google Patents

Polyoxalate urethane Download PDF

Info

Publication number
WO2007080929A1
WO2007080929A1 PCT/JP2007/050259 JP2007050259W WO2007080929A1 WO 2007080929 A1 WO2007080929 A1 WO 2007080929A1 JP 2007050259 W JP2007050259 W JP 2007050259W WO 2007080929 A1 WO2007080929 A1 WO 2007080929A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyoxalate
urethane
formula
reaction
Prior art date
Application number
PCT/JP2007/050259
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Okushita
Kouichiro Kurachi
Fumio Adachi
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2007553932A priority Critical patent/JP5380841B2/en
Publication of WO2007080929A1 publication Critical patent/WO2007080929A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2230/00Compositions for preparing biodegradable polymers

Definitions

  • the present invention relates to a novel polyoxalate urethane, and more particularly to a polyoxalate urethane excellent in hydrolysis characteristics and biodegradation characteristics.
  • Patent Document 1 proposes polyoxalate urethane as a polyester urethane having excellent biodegradability.
  • this product has excellent biodegradability, but has a room for improvement in terms of durability (hydrolysis resistance) due to its high hydrolysis rate.
  • This document describes that various known additives and other polymers can be blended with polyoxalate urethane, but no method capable of solving such a problem has been described.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-335837
  • the present invention solves the problems of known polyoxalate urethanes and provides a polyoxalate urethane that is excellent in durability (hydrolysis resistance) and biodegradability. Let it be an issue.
  • the present invention relates to the following items.
  • a component is a polyoxalate diol represented by the formula (1), B component strength S, polyester diol represented by the formula (2), polyalkylene ether represented by the formula (3) Diol is at least one of polyhydroxycarboxylic acid diols represented by formula (4), and D component 2.
  • R 1 represents a divalent aliphatic hydrocarbon group having 3 to 12 carbon atoms which may contain a branched structure or an alicyclic structure, and n is a positive integer representing the degree of polymerization.
  • R 2 and R 3 represent a divalent aliphatic hydrocarbon group having 2 carbon atoms which may contain a branched structure or an alicyclic structure, and m is a positive integer representing the degree of polymerization.
  • R 4 and R 5 represent a divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms, which may include a branched structure, and k is a positive integer representing the degree of polymerization.
  • R 7 represents a divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms which may contain a branched structure, and j is a positive integer representing the degree of polymerization.
  • Oxalate urethane can be provided.
  • the polyoxalate urethane of the present invention can be widely used as an excellent biodegradable material such as a molded product, a film, and a sheet, and is very useful.
  • the polyoxalate polyol of component A is a compound having a structure obtained by subjecting an oxalate source and a polyol to a polycondensation reaction.
  • the oxalate source include oxalic acid diester and oxalic acid. When oxalic acid diester is used, it becomes a polycondensation reaction accompanied by an ester exchange reaction.
  • oxalic acid diesters are preferred, for example, dialkyl oxalate such as dimethyl oxalate, decyl oxalate, dipropyl oxalate, dibutyl oxalate, and oxalic acid diaryl such as diphenyl oxalate alone. Or it can be used in plural. Of these, dimethyl oxalate is the most preferred.
  • the polyol is preferably an aliphatic polyol such as an aliphatic diol, an aliphatic triol, or an aliphatic tetraol.
  • R 1 is a divalent aliphatic hydrocarbon group having 3 to 12 carbon atoms, It may include a branched structure or an alicyclic structure without being limited to a linear structure. Also, it may have a ray substituent that does not participate in the polycondensation reaction or the polyurethane-forming reaction described later.
  • Examples of the aliphatic diol include 1,3_propanediol, 1,4_butanediol, 1,5_pentanediol, 1,6-hexanediol, and 1,7_heptanediol. Nore, 1,8_octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11_undecanediol, 1,12-dodecanediol, etc.
  • the polycondensation reaction can be performed by a known method with an excess of polyol such that the terminal is a hydroxyl group.
  • the reaction temperature and pressure are not particularly limited as long as the target product can be obtained, but the reaction temperature is 120 ° C to 350 ° C, and the reaction pressure is 1 mmHg (133 Pa) to 760 mmHg (l. 01 X 10 5 Pa) or less.
  • the reaction temperature is 120 ° C to 350 ° C
  • the reaction pressure is 1 mmHg (133 Pa) to 760 mmHg (l. 01 X 10 5 Pa) or less.
  • inert gas nitrogen, helium, Argon, etc.
  • a known catalyst that can be reacted under a flow or the temperature or pressure can be varied.
  • a transesterification catalyst is preferred.
  • tetraalkoxytitanium tetra- n -butoxytitanium, etc.
  • the amount and timing of addition of the catalyst are not particularly limited as long as the conditions can promote the reaction.
  • n is the degree of polymerization of the polyoxalate diol (repeating structural unit "- I ⁇ OCOCOO ⁇ represents a repetition number) of the number average molecular weight in association et.
  • R 1 is also a type such safely be contained two or more les.
  • the number average molecular weight of Poriokisa rate polyol A range of 500 to 5000, particularly 1000 to 3000 is preferable.
  • Component B comprises at least one of polyester polyol, polyalkylene ether polyol, and polyhydroxycarboxylic acid polyol.
  • the polyester polyol is a compound having a structure obtained by subjecting a dicarboxylic acid source and a polyol to a polycondensation reaction.
  • a dicarboxylic acid source an aliphatic dicarboxylic acid represented by the formula (6) is preferred.
  • R 3 has 2 carbon atoms which may contain a branched structure or an alicyclic structure.
  • To: 12 is a divalent aliphatic hydrocarbon group which may have a substituent which does not participate in the polycondensation reaction or the polyurethane-forming reaction described below.
  • the diester of aliphatic dicarboxylic acid can also be mentioned preferably.
  • aliphatic dicarboxylic acid examples include succinic acid, gnoretaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid.
  • aliphatic polyols such as aliphatic diols, aliphatic triols, and aliphatic tetraols are preferable.
  • the aliphatic diol represented by the formula (7) is more preferable.
  • R 2 includes a branched structure or an alicyclic structure.
  • divalent aliphatic hydrocarbon groups which may have a substituent that does not participate in the polycondensation reaction or the polyurethane-forming reaction described later.
  • Examples of the aliphatic diol include ethylene glycol and the same aliphatic diol represented by the formula (5).
  • the polycondensation reaction can be performed by a known method with an excess of polyol such that the terminal is a hydroxyl group.
  • the aliphatic dicarboxylic acid and the aliphatic diol are necessary.
  • the former is 1 mol or more, and the latter is 1.01 mol or more, more preferably 1.05 mol or more and 2 mol or less, further 1.2 mol or less.
  • Dehydration polycondensation reaction may be performed. At this time, the reaction temperature, reaction pressure, various methods for promoting the reaction, and the like are the same as in the case of obtaining the polyoxalate polyol.
  • m is the degree of polymerization of the polyester diol (structural unit “—R 2 ⁇ C ⁇ R 3 C ⁇ 0— ”), and is related to the number average molecular weight.
  • R 2 and R 3 may be one type or two or more types.
  • the number average molecular weight of polyester polyol is preferably in the range of 500 to 5000, particularly 1000 to 3000.
  • polyalkylene ether polyol is a compound having a structure obtained by subjecting an ether source and polyol to a polymerization reaction.
  • an alkylene oxide represented by the formula (8) is preferred.
  • R 4 is a divalent aliphatic having 2 to 6 carbon atoms which may contain a branched structure. It may be a hydrocarbon group and may have a substituent that does not participate in the polymerization reaction or the later-described polyurethane-forming reaction.
  • the alkylene oxide include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3 butylene oxide, 1,3 butylene oxide, tetrahydrofuran, and 3-methyltetrahydrofuran.
  • the polyol is preferably an aliphatic polyol such as an aliphatic diol, an aliphatic triol, or an aliphatic tetraol.
  • the aliphatic diol represented by formula (9) is more preferred.
  • R 5 is a divalent aliphatic carbon atom having 2 to 6 carbon atoms which may contain a branched structure. It may be a hydrogen group and may have a substituent that does not participate in the polymerization reaction or the polyurethane-forming reaction described later.
  • Examples of the aliphatic diol include ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4 butanediol.
  • the polymerization reaction can be carried out by a known method.
  • the alkylene oxide and the aliphatic diol are subjected to a ring-opening addition polymerization reaction.
  • This reaction can be carried out under ordinary conditions, and can be carried out in one step or in multiple steps at normal pressure or under pressure in the presence of no catalyst or catalyst (alkali catalyst, amine catalyst, acidic catalyst, etc.).
  • k is the degree of polymerization of the polyalkylene ether diol. represents - (structural unit "R 4 0-" repetition number of), it is associated with a number average molecular weight.
  • R 4 and R 5 may be one type or two or more types.
  • the number average molecular weight of the polyalkylene ether polyol is preferably in the range of 500 to 5000, particularly 1000 to 300,000.
  • the polyhydroxycarboxylic acid polyol is a compound having a structure obtained by subjecting a hydroxycarboxylic acid source and polyol to a polymerization reaction.
  • an aliphatic cyclic ester represented by the formula (10) is preferred as the hydroxycanolenic acid source.
  • R 6 has 2 to 6 carbon atoms which may contain a branched structure. It is a divalent aliphatic hydrocarbon group, and may have a substituent that does not participate in the polymerization reaction or the polyurethane-forming reaction described later.
  • Examples of the aliphatic cyclic ester include L-lactide, D-lactide, D, L-lactide, ⁇ -propiolatathone, ⁇ -butyrolatathone, ⁇ -valerolatatone, and ⁇ -force prolatathone.
  • the polyol is preferably an aliphatic polyol such as an aliphatic diol, an aliphatic triol, or an aliphatic tetraol.
  • R 7 is a divalent aliphatic carbonization having 2 to 6 carbon atoms which may contain a branched structure. It may be a hydrogen group and may have a substituent that does not participate in the polymerization reaction or the polyurethane-forming reaction described below.
  • Examples of the aliphatic diol include the same aliphatic diols represented by the formula (9).
  • a trivalent or higher polyol such as aliphatic triol or aliphatic tetraol
  • a branched structure is introduced into the molecule. You may use it independently suitably.
  • the polymerization reaction can be carried out by a known method.
  • the aliphatic cyclic ester may be subjected to a ring-opening polymerization reaction using the aliphatic diol as an initiator.
  • This reaction can be carried out under normal conditions, and can be carried out at normal pressure or reduced pressure in the presence of a catalyst such as a compound of a metal such as antimony, titanium, zinc, germanium, iron, tin or the like.
  • polyhydroxycarboxylic acid diol represented by the above formula (4) is preferred.
  • j is a polyhydroxycarboxylic acid diol. Is the degree of polymerization (repeated number of structural units “one R 6 COO—”) and is related to the number average molecular weight.
  • R 6 and R 7 may be one type or two or more types.
  • the number average molecular weight of the polyhydroxycarboxylic acid polyol is preferably in the range of 500 to 5,000, particularly in the range of 1,000 to 3,000.
  • component C chain extender examples include low molecular weight compounds having at least two hydrogen atoms that react with an isocyanate group.
  • Such compounds include polyols and polyamines such as ethylene glycol, 1,2_propylene glycol, 1,3_butanediol, 1,4_butanediol, 1,5_pentanediol, 1 , 6_Hexanediol, 1,8_octanediol, 1,9 nonanediol, 1,10 decanediol, 1,12-dodecanediol, neopentyl glycol, 3_methyl_1,5-pentanediol, 3, 3_Carbon which may contain a branched structure or alicyclic structure such as dimethylolheptane, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-dihydroxyethy
  • polyamines ethylenediamine, 1,2 propylenediamine, 1,6hexamethylenediamine, isophoronediamine, bis (4 aminocyclohexyl) methane, piperazine and the like are branched. Structure or cycloaliphatic structure, aliphatic diamines having 2 to 12 carbon atoms, m (or p) xylylenediamine, 4,4'-methylenebis (o chloroaniline) Preferred examples thereof include aromatic diamines having 6 to 18 carbon atoms such as.
  • chain extenders aliphatic amino alcohols (2 ethanolamine, N-methyljetanolamine, etc.), aromatic amino alcohols (N phenyldipropanolamine, etc.), hydroxyalkylsulfamides (hydroxyethylsulfamide). Amide, hydroxyethylaminoethylsulfamide, etc.), urea, water and the like can also be mentioned as chain extenders. These chain extenders can be used alone or in combination.
  • Examples of the D component polyisocyanate compound include various aliphatic or aromatic polyisocyanates.
  • the aliphatic polyisocyanate contains an oxygen atom whose polyvalent aliphatic hydrocarbon group is not limited to one having a straight chain structure but may contain a branched structure or an alicyclic structure. It may be a thing.
  • the aromatic polyisocyanate is not particularly limited as long as it contains a polyvalent aromatic hydrocarbon group in the molecule.
  • diisocyanate compounds are preferred, and examples thereof include aliphatic and aromatic diisocyanates. D component polyisocyanate used alone or in combination it can.
  • aliphatic diisocyanate for example, 1, 3 trimethylene diisocyanate, 1, 4
  • aromatic diisocyanate examples include p-phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalenediisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 3,3'-methyleneditolylene 4,4'-diisocyanate, tolylene sulfonate trimethylolpropane adduct, triphenylmethane Triisocyanate, 4,4'-Diphenyl ether diisocyanate, Tetrachlorodiphenyl diisocyanate, 3, 3'-Dichloro-4,4, -Diphenylmethane diisocyanate, Triisocyanate
  • diisocyanates 4,4′-diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferred.
  • the polyoxalate urethane of the present invention comprises at least one of polyoxalate polyol (component A), polyester polyol, polyalkylene ether polyol, polyhydroxycarboxylic acid polyol (component B), chain extender (component C),
  • the polyisocyanate compound (component D) is reacted (polyurethane reaction), and the number average molecular weight is preferably in the range of 10,000 to 200,000.
  • the sum of the A component and the B component and the ratio of the C component and the D component “(A + B): C: D” is 1: 0.5: 1.5 to 1: 1: 6: 7, preferably in the range.
  • D component so that it will be set to :: 1: 1.2, Furthermore, it is 1: 0.9.95-: 1: 1.05.
  • the ratio “A: B” of the A component and the B component may be in the range of 5:95 to 95: 5, further 10:90 to 70:30, particularly 20:80 to 50:50 on a weight basis. I like it.
  • the A component and the B component may have different aliphatic hydrocarbon groups or different number average molecular weights.
  • the polyurethane reaction can be carried out in the absence of a solvent, and can also be carried out in the presence of a solvent inert to the isocyanate group.
  • a reaction in the absence of a solvent a mixture of component A and component B and component C are mixed, and then component D is mixed with this to react all at once, or a mixture of component A and component B
  • the C component is mixed and reacted with this, or the mixture of the A component and the B component is mixed with the C component, and this is part of the D component.
  • a polyurethane reaction can be carried out by further mixing and reacting the remaining D component.
  • the reaction temperature in the absence of a solvent is preferably 80 to 180 ° C.
  • the mixture of the component A and the component B is dissolved in the solvent and the component C is further mixed, and then the component D is mixed with the mixture to react all at once.
  • a mixture of component A and component B is dissolved in a solvent, and component D is mixed and reacted to obtain a prepolymer having an isocyanate group, and then mixed with component C and reacted.
  • the polyurethane reaction can be carried out.
  • the reaction temperature in the presence of a solvent is preferably 20 to 100 ° C.
  • Typical examples of the solvent include methyl ethyl ketone, ethyl acetate, toluene, dioxane, dimethylformamide, dimethyl sulfoxide, dimethylacetamide, and chloroform.
  • a known amine-based or tin-based catalyst may be used to promote the reaction.
  • the polyoxalate urethane of the present invention has a high molecular weight or a reticulated structure by further reacting with a compound having at least two hydrogen atoms that react with an isocyanate group or a compound having at least two isocyanate groups. can do.
  • urethane bond A crosslinked structure can also be introduced by reacting with a compound having z or urea bond or a compound having at least three hydrogen atoms that react with isocyanate groups.
  • the polyoxalate urethane of the present invention can also be made into a polyoxalate urethane composition by blending with other polyurethanes.
  • the other polyurethane may be a known thermoplastic polyurethane.
  • thermoplastic polyurethanes such as adipate, ratatone, and ether are preferably used.
  • the ratio of the polyoxalate urethane of the present invention to the other polyurethane is such that the former: the latter (weight ratio) is 5: 95-95: 5, further 10:90 to 90:10, especially 20:80. It is preferably in the range of ⁇ 80: 20.
  • the polyoxalate urethane and other polyurethanes of the present invention can be used alone or in combination.
  • the polyoxalate urethane obtained from the A component, the C component, and the D component can be blended with other polyuretans to obtain a similar composition.
  • the most common method of blending is a known continuous kneader (single screw extruder, twin screw extruder, twin screw rotor kneader, etc.) or a notch type kneader (open roll, kneader, And a kneading method and kneading conditions are not particularly limited.
  • a solution blending method using a solvent is also acceptable.
  • the polyoxalate urethane and the composition thereof according to the present invention may be blended with various known additives and other polymers singly or in a range that does not impair the effects of the present invention.
  • Additives that can be added include crystal nucleating agents, pigments, dyes, heat-resistant agents, anti-coloring agents, antioxidants, weathering agents, lubricants, antistatic agents, stabilizers, and fillers (talc, clay, zeolite, zonotlite.
  • Examples of other compoundable polymers include natural or synthetic polymer materials, such as polystrength prolatatone, polylactic acid, polydaricholic acid, polysuccinic acid ester, poly (3-hydroxybutanoic acid). , (3-hydroxybutanoic acid / 4-hydroxybutanoic acid) copolymer , Plastic materials such as polybulol alcohol, polyethylene, polyacetic acid butyl, polychlorinated butyl, polystyrene, polyglutamic acid ester, cellulose acetate, alginic acid, chitosan, starch, natural rubber, polyester rubber, polyamide rubber, styrene-butadiene-styrene Examples include rubbers or elastomers such as block copolymers (SBS) and hydrogenated SBS.
  • SBS block copolymers
  • the polyoxalate urethane and the composition thereof according to the present invention are applied with a known melt processing method (injection molding, extrusion molding, press molding, hollow molding, thermoforming, etc.) to form a film, a sheet, It can be formed into molded products such as fibers, non-woven fabrics, containers, various agricultural / industrial materials or components.
  • injection moldings are used for sealing materials, gears, connectors, sports shoes, marine sports equipment, watch bands, casters, rollers, heel tops for women's shoes, precision polishing pads, wet filters, sponge rolls, etc. Is mentioned.
  • Extruded products can be used for various hoses, tubes, Envelope belts, air mats, tarpaulins (for field sheets, leisure bags, civil engineering sheets, machine covers, etc.), cable covers, various ropes, etc. .
  • the physical properties of the polyoxalate diol were measured by the methods 1 and 2 below, and the physical properties of the polyoxalate urethane and the polyoxalate urethane composition were measured by the methods 3 to 7 below.
  • S is the integral value of the proton of methylene adjacent to the terminal hydroxyl group
  • M is the polyoxalene
  • M is the raw material of polyoxalate diol
  • the measurement was performed in the atmosphere under the condition of a temperature increase rate of 10 ° CZ.
  • Viscosity (Pa 'sec): Measured using an E-type viscometer (manufactured by Tokyo Keiki).
  • Tensile properties Tensile elasticity measured at 23 ° C and 50% RH using a tensile tester (Tensilon UCT-5T; manufactured by Orientec) according to JIS—K7311 The rate, tensile strength, and elongation at break were determined.
  • Biodegradation characteristics Specimens (lcm XI cm) composted (Hochicon CJA) ground to 5 mesh or less; placed in 30 ° C), taken out every week and weighed The residual rate was measured.
  • DMO dimethyl oxalate
  • HDL 1, 6-hexanedi-nore
  • TBT tetra-n-butoxytitanium
  • a glass reactor with an internal volume of 3 L equipped with a stirrer, thermometer and distillation column (with a fractionation tube, reflux head, and condenser at the top of the column) was added DM 1116 g (9.45 monolayer), HDL159 5 g (13. 50 mol), and TBTO. 081 g (weight basis for the total amount of DM ⁇ and HDL)
  • the reaction was carried out at 170 ° C under normal pressure for 3 hours and further at 170 ° C under 30 OmmHg for 1 hour while distilling methanol.
  • the temperature was raised to 180 ° C and reduced to lOOmmHg for 4 hours, and the temperature was raised to 200 ° C and reduced to lmmHg (133Pa) for 2.5 hours.
  • the reaction was carried out in the same manner as in Example 1 except that the reaction was terminated when the viscosity (50 ° C) reached 11.3 Pa'sec after changing to 80 g (0.02 43 mol). After that, about 200 xm as in Example 1.
  • the film was obtained to evaluate the physical properties of polyoxalate urethane. The results are shown in Tables 1 and 2.
  • Feeding amount is 5 ⁇ (0.0024 monole), PEAD feeding amount is 45g (0.220 monole), MDI usage is 12.2g (0.0486 monole) (changed, PDA usage is 1.81g (0.0244mol)
  • the reaction was carried out in the same manner as in Example 1 except that the reaction was terminated when the viscosity (50 ° C) reached 12.4 Pa'sec, and after the reaction, about 200 An xm film was obtained to evaluate the physical properties of polyoxalate urethane, and the results are shown in Tables 1 and 2.
  • PHMOD— 1 feed amount is changed to 25 g (0.0120 monole)
  • Example 2 The reaction was conducted in the same manner as in Example 1 except that the temperature was changed to 44 g (0.0121 mol). After completion of the reaction, a film having a thickness of about 200 ⁇ m was obtained in the same manner as in Example 1, and the physical properties of polyoxalate urethane were evaluated. The results are shown in Tables 1 and 2.
  • PHMOD— 1 feed amount is changed to 5 g (0.0024 monole)
  • Example 2 After completion of the reaction, a film of about 200 ⁇ m was obtained in the same manner as in Example 1 except that the polyoxalate urethane concentration was adjusted to 25% by weight, and the physical properties of the polyoxalate urethane were evaluated. The results are shown in Tables 1 and 2.
  • Example 2 A reactor similar to Example 1 was charged with 40 g (0.019 1 mol) of polyoxalate diol (PHMOD-1), stirred and mixed at 100 ° C for 1 hour in a nitrogen atmosphere, and then MDI (manufactured by Nippon Polyuretan). 9. 58 g (0.0383 mol) was added and reacted at the same temperature for 2 hours. Thereafter, the reaction solution was allowed to cool to room temperature and completely dissolved in 109 g of dimethylformamide (DMF). Next, this solution was cooled to 3 ° C, PDA (dissolved in 10 g of DMF) 1 ⁇ 42 g (0.0191 mol) was added, and the mixture was allowed to react for 5 minutes with vigorous stirring.
  • PDA dissolved in 10 g of DMF
  • PC D Polycube ⁇ -lactone diol
  • a 5 L glass reactor equipped with a stirrer, thermometer and cooling tube was charged with 500 g (0.255 mol) of polyoxalate diol (PHMOD-2) obtained in Reference Example 2 in a nitrogen atmosphere, and 90 ° under a nitrogen atmosphere.
  • PMOD-2 polyoxalate diol
  • 359.3 g (l.436 monole) of MDI manufactured by Nippon Polyurethane was added and reacted at the same temperature for 3 hours.
  • BDL107.5 g (l.193 monole) was added and reacted for 1 minute with vigorous stirring.
  • the reaction solution was immediately poured into a stainless steel vat (with a Teflon (registered trademark) release film), 90 under vacuum. Cured with C for 2 hours.
  • the obtained polyoxalate urethane block was crushed, and 12.5 g of the crushed product and 37.5 g of adipate-based thermoplastic polyurethane (Pandettas T-1195; manufactured by Dainippon Ink and Chemicals, Inc.) Next, the mixture was melt kneaded at 210 ° C. for 5 minutes using a batch Brabender type twin-screw kneader (rotation speed: 60 rotations Z minutes). The resulting polyoxalate urethane composition was melt-molded using a compression molding machine manufactured by Shinfuji Metal Industry Co., Ltd. to obtain a film of about 100 zm at 210 ° C under 4.9 MPa to evaluate the physical properties of the polyoxalate urethane composition. did.
  • T was -33 ° C
  • tensile modulus was 55.2 MPa
  • tensile strength was 31.9 MPa
  • rupture g
  • the growth is 300. /. Met.
  • the hydrolysis resistance (breaking elongation retention) is 101. /. (1 week), 105% (2 weeks), 40% (3 weeks), and biodegradation characteristics (weight survival rate) are 99.0% (1 week), 97.3% (2 weeks), 92. 8% (3 weeks) and 93.5% (4 weeks).
  • thermoplastic polyurethane was replaced with an ether-based thermoplastic polyurethane (Pandex T-8190; manufactured by Dainippon Ink & Chemicals, Inc.). evaluated. As a result, T is -48 ° C, g
  • the tensile modulus was 40.0 MPa, the tensile strength was 21 OMPa, and the elongation at break was 350%.
  • the hydrolysis resistance (breaking elongation retention) is 101% (1 week), 105% (2 weeks), 38% (3 weeks), and the biodegradation characteristics (residual weight) are 98. They were 9% (1 week), 97.1% (2 weeks), 92.6% (3 weeks), and 93.3% (4 weeks).
  • Oxalate urethane can be provided.
  • the polyoxalate urethane and the polyoxalate urethane composition of the present invention can be widely used as excellent biodegradable materials such as molded articles, films and sheets, and are very useful.

Abstract

Disclosed is a polyoxalate urethane having excellent durability (hydrolysis resistance) and biodegradability, which is obtained by reacting a polyoxalate polyol (component A), at least one of polyester polyols, polyalkylene ether polyols and polyhydroxycarboxylate polyols (component B), a chain extender (component C) and a polyisocyanate compound (component D).

Description

明 細 書  Specification
ポリオキサレートウレタン  Polyoxalate urethane
技術分野  Technical field
[0001] 本発明は、新規なポリオキサレートウレタン、詳しくは、加水分解特性及び生分解特 性に優れるポリオキサレートウレタンに関する。  [0001] The present invention relates to a novel polyoxalate urethane, and more particularly to a polyoxalate urethane excellent in hydrolysis characteristics and biodegradation characteristics.
背景技術  Background art
[0002] 生分解特性に優れたポリエステルウレタンとして、特許文献 1にポリオキサレートウレ タンが提案されている。しかし、このものは、生分解特性は優れているものの、加水分 解速度が速く耐久性 (耐加水分解性)の点で改良の余地が残されていた。なお、この 文献には、ポリオキサレートウレタンに公知の各種添加剤や他の重合体を配合できる ことが記載されているが、このような問題を解決できる方法は何ら記載されていなかつ た。  [0002] Patent Document 1 proposes polyoxalate urethane as a polyester urethane having excellent biodegradability. However, this product has excellent biodegradability, but has a room for improvement in terms of durability (hydrolysis resistance) due to its high hydrolysis rate. This document describes that various known additives and other polymers can be blended with polyoxalate urethane, but no method capable of solving such a problem has been described.
特許文献 1 :特開 2003— 335837号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-335837
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明は、公知のポリオキサレートウレタンが抱える問題を解決して、耐久性 (耐加 水分解性)に優れると共に生分解特性にも優れているポリオキサレートウレタンを提 供することを課題とする。 [0003] The present invention solves the problems of known polyoxalate urethanes and provides a polyoxalate urethane that is excellent in durability (hydrolysis resistance) and biodegradability. Let it be an issue.
課題を解決するための手段  Means for solving the problem
[0004] 本発明は以下の事項に関する。 [0004] The present invention relates to the following items.
[0005] 1. ポリオキサレートポリオール (A成分)、ポリエステルポリオール、ポリアルキレン エーテルポリオール、ポリヒドロキシカルボン酸ポリオールの少なくとも一つ(B成分)、 鎖延長剤(C成分)、及び、ポリイソシァネート化合物(D成分)を反応させて得られる ポリ才キサレートウレタン。  [0005] 1. At least one of polyoxalate polyol (component A), polyester polyol, polyalkylene ether polyol, polyhydroxycarboxylic acid polyol (component B), chain extender (component C), and polyisocyanate Polyxylated urethane obtained by reacting a compound (component D).
[0006] 2. A成分が式(1)で表されるポリオキサレートジオールであり、 B成分力 S、式(2) で表されるポリエステルジオール、式(3)で表されるポリアルキレンエーテルジオール 、式(4)で表されるポリヒドロキシカルボン酸ジオールの少なくとも一つであり、 D成分 がジイソシァネートイ匕合物である、上記 1記載のポリオキサレートウレタン。 [0006] 2. A component is a polyoxalate diol represented by the formula (1), B component strength S, polyester diol represented by the formula (2), polyalkylene ether represented by the formula (3) Diol is at least one of polyhydroxycarboxylic acid diols represented by formula (4), and D component 2. The polyoxalate urethane according to 1 above, wherein is a diisocyanate compound.
[0007] [化 1] [0007] [Chemical 1]
H〇十 R1〇C〇COO- R1OH
Figure imgf000003_0001
H_〇 ten R 1 〇_C_〇_COO- R 1 OH
Figure imgf000003_0001
n  n
(式中、 R1は分岐構造又は脂環式構造を含んでいてもよい炭素数 3〜: 12の二価の 脂肪族炭化水素基を表し、 nは重合度を表す正の整数である。 ) (In the formula, R 1 represents a divalent aliphatic hydrocarbon group having 3 to 12 carbon atoms which may contain a branched structure or an alicyclic structure, and n is a positive integer representing the degree of polymerization. )
[0008] [化 2]
Figure imgf000003_0002
[0008] [Chemical 2]
Figure imgf000003_0002
(式中、 R2及び R3は分岐構造又は脂環式構造を含んでいてもよい炭素数 2 二価の脂肪族炭化水素基を表し、 mは重合度を表す正の整数である。 ) (Wherein R 2 and R 3 represent a divalent aliphatic hydrocarbon group having 2 carbon atoms which may contain a branched structure or an alicyclic structure, and m is a positive integer representing the degree of polymerization.)
[0009] [化 3]
Figure imgf000003_0003
[0009] [Chemical 3]
Figure imgf000003_0003
(式中、 R4及び R5は、分岐構造を含んでいてもよい、炭素数 2〜6の二価の脂肪族炭 化水素基を表し、 kは重合度を表す正の整数である。 ) (In the formula, R 4 and R 5 represent a divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms, which may include a branched structure, and k is a positive integer representing the degree of polymerization. )
[0010] [化 4]  [0010] [Chemical 4]
HO-hR6COO 〇H
Figure imgf000003_0004
HO-hR 6 COO 〇H
Figure imgf000003_0004
J  J
(式中、 及び R7は分岐構造を含んでいてもよい炭素数 2〜6の二価の脂肪族炭化 水素基を表し、 jは重合度を表す正の整数である。 ) (In the formula, R 7 represents a divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms which may contain a branched structure, and j is a positive integer representing the degree of polymerization.)
3. A成分及び B成分の合計と C成分と D成分の比「(A + B): C:D」がモル基準で 1:0.5:1.5〜: 1:6: 7である、上記 1又は 2記載のポリオキサレートウレタン。  3. The above 1 or the ratio of the sum of the A component and the B component and the ratio of the C component and the D component “(A + B): C: D” is 1: 0.5: 1.5 to 1: 6: 7 on a molar basis 2. Polyoxalate urethane according to 2.
[0011] 4. 八成分と8成分の比「八:8」が重量基準で5:95〜95:5でぁる、上記 3記載の ポリ才キサレートウレタン。 [0012] 5. A成分及び B成分の数平均分子量がそれぞれ 500〜5000の範囲である、上 記 1又は 2記載のポリオキサレートウレタン。 [0011] 4. The polyxylated urethane as described in 3 above, wherein the ratio of the eight components to the eight components “8: 8” is 5:95 to 95: 5 on a weight basis. [0012] 5. The polyoxalate urethane according to 1 or 2 above, wherein the number average molecular weight of each of the component A and the component B is in the range of 500 to 5,000.
発明の効果  The invention's effect
[0013] 本発明により、耐久性 (耐加水分解性)に優れると共に生分解特性にも優れ、更に 力学的性質及び熱的性質も一般的な熱可塑性ポリウレタンとして使用するに充分な 性質を有するポリオキサレートウレタンを提供することができる。このため、本発明の ポリオキサレートウレタンは、成形品、フィルム、シートなど、優れた生分解性材料とし て広範に利用することができ、非常に有用である。  [0013] According to the present invention, a polyester having excellent durability (hydrolysis resistance), excellent biodegradability, and sufficient mechanical and thermal properties to be used as a general thermoplastic polyurethane. Oxalate urethane can be provided. For this reason, the polyoxalate urethane of the present invention can be widely used as an excellent biodegradable material such as a molded product, a film, and a sheet, and is very useful.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 〔A成分〕 [0014] [Component A]
A成分のポリオキサレートポリオールは、ォキサレート源とポリオールを重縮合反応 に付して得られる構造を有する化合物である。このォキサレート源としては、シユウ酸 ジエステル、シユウ酸等が挙げられる。シユウ酸ジエステルが使用されるときは、エス テル交換反応を伴う重縮合反応となる。ォキサレート源としては、シユウ酸ジエステル が好ましぐ例えば、シユウ酸ジメチル、シユウ酸ジェチル、シユウ酸ジプロピル、シュ ゥ酸ジブチル等のシユウ酸ジアルキルや、シユウ酸ジフエ二ル等のシユウ酸ジァリー ルが単独又は複数で使用できる。この中ではシユウ酸ジメチルが最も好ましレ、。  The polyoxalate polyol of component A is a compound having a structure obtained by subjecting an oxalate source and a polyol to a polycondensation reaction. Examples of the oxalate source include oxalic acid diester and oxalic acid. When oxalic acid diester is used, it becomes a polycondensation reaction accompanied by an ester exchange reaction. As the oxalate source, oxalic acid diesters are preferred, for example, dialkyl oxalate such as dimethyl oxalate, decyl oxalate, dipropyl oxalate, dibutyl oxalate, and oxalic acid diaryl such as diphenyl oxalate alone. Or it can be used in plural. Of these, dimethyl oxalate is the most preferred.
[0015] また、ポリオールとしては、脂肪族ジオール、脂肪族トリオール、脂肪族テトラオ一 ル等の脂肪族ポリオールが好ましく挙げられる。この中では、式(5)で表される脂肪 族ジオールが更に好ましぐ式(5)中、 R1は、炭素数が 3〜: 12である二価の脂肪族 炭化水素基であり、直鎖構造のものに限らず、分岐構造又は脂環式構造を含んでい るものであってもよい。また、前記重縮合反応や後述のポリウレタン化反応に関与し なレヽ置換基を有してレヽてもよレヽ。 [0015] The polyol is preferably an aliphatic polyol such as an aliphatic diol, an aliphatic triol, or an aliphatic tetraol. Among these, in the formula (5) in which the aliphatic diol represented by the formula (5) is more preferable, R 1 is a divalent aliphatic hydrocarbon group having 3 to 12 carbon atoms, It may include a branched structure or an alicyclic structure without being limited to a linear structure. Also, it may have a ray substituent that does not participate in the polycondensation reaction or the polyurethane-forming reaction described later.
[0016] [化 5コ  [0016] [Chemical 5
H O - 1 - 0 H (5) HO - 1 - 0 H (5 )
[0017] 前記脂肪族ジオールとしては、例えば、 1, 3 _プロパンジオール、 1, 4_ブタンジ オール、 1, 5 _ペンタンジオール、 1 , 6—へキサンジオール、 1, 7 _ヘプタンジォー ノレ、 1, 8_オクタンジオール、 1 , 9—ノナンジオール、 1, 10—デカンジオール、 1 , 1 1 _ゥンデカンジオール、 1 , 12—ドデカンジオール等の直鎖構造のもの、ネオペン チルダリコール、 2, 4—ジェチル— 1, 5_ペンタンジオール、 3_メチル—1 , 5—ぺ ンタンジオール、 2_ェチル _ 2_ブチル _ 1 , 3 _プロパンジオール、 2, 2, 4_トリ メチル _ 1, 3 _プロパンジオール、 2, 2_ジェチルー 1 , 3 _プロパンジオール、 2- ェチル _ 1, 3—へキサンジール等の分岐構造を含むもの、 trans— 1 , 4—シクロへ キサンジメタノール、 cis _ l, 4—シクロへキサンジメタノール等の脂環式構造を含む ものなどが挙げられる。 Examples of the aliphatic diol include 1,3_propanediol, 1,4_butanediol, 1,5_pentanediol, 1,6-hexanediol, and 1,7_heptanediol. Nore, 1,8_octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11_undecanediol, 1,12-dodecanediol, etc. , 2, 4-Dethyl-1,5_pentanediol, 3_Methyl-1,5, -pentanediol, 2_Ethyl _ 2_Butyl _ 1,3 _Propanediol, 2, 2, 4_Trimethyl _ 1, 3_propanediol, 2, 2_jetyl-1,3_propanediol, those containing a branched structure such as 2-ethyl_1,3-hexanediol, trans-1,4-cyclohexanedimethanol, cis _ l, 4-cyclohexanedimethanol and other alicyclic structures.
[0018] また、ポリオールとして、脂肪族トリオールおよび脂肪族テトラオール等の 3価以上 のポリオールを使用すると、分子内に分岐構造が導入されるので、使用する場合は、 得られる物性等を考慮して、ジオールと共に適宜併用することが好ましい。  [0018] When a trivalent or higher polyol such as aliphatic triol or aliphatic tetraol is used as the polyol, a branched structure is introduced into the molecule. Therefore, when used, the obtained physical properties are taken into consideration. Thus, it is preferable to use it together with a diol.
[0019] 前記重縮合反応は、末端が水酸基となるようにポリオールを過剰にして公知の方法 により行なうことができる。その際、反応温度及び圧力は目的物が得られる条件であ れば特に制限されないが、反応温度は 120°C以上で 350°C以下、反応圧力は lmm Hg (133Pa)以上で 760mmHg (l . 01 X 105Pa)以下であることが好ましい。反応 促進のため、反応で生成するアルコール等は反応系外に抜き出すことが好ましぐそ のためには、反応器に蒸留塔を設けることが好ましぐ更に不活性ガス(窒素、へリウ ム、アルゴン等)流通下で反応させてもよぐ温度や圧力を変動させてもよぐ公知の 触媒を添加することもできる。触媒としては、エステル交換触媒が好ましぐ例えば、 チタン、亜鉛、ゲルマニウム、鉄、スズ等の金属の化合物が挙げられる力 中でもテト ラアルコキシチタン (テトラ一 n—ブトキシチタン等)が好ましい。触媒の添加量及び添 加時期は、反応を促進できる条件であれば特に制限されない。 [0019] The polycondensation reaction can be performed by a known method with an excess of polyol such that the terminal is a hydroxyl group. At that time, the reaction temperature and pressure are not particularly limited as long as the target product can be obtained, but the reaction temperature is 120 ° C to 350 ° C, and the reaction pressure is 1 mmHg (133 Pa) to 760 mmHg (l. 01 X 10 5 Pa) or less. In order to accelerate the reaction, it is preferable to extract the alcohol etc. produced in the reaction out of the reaction system. To this end, it is preferable to provide a distillation column in the reactor. Further, inert gas (nitrogen, helium, Argon, etc.) It is also possible to add a known catalyst that can be reacted under a flow or the temperature or pressure can be varied. As the catalyst, a transesterification catalyst is preferred. For example, tetraalkoxytitanium (tetra- n -butoxytitanium, etc.) is preferred among the powers including compounds of metals such as titanium, zinc, germanium, iron, and tin. The amount and timing of addition of the catalyst are not particularly limited as long as the conditions can promote the reaction.
[0020] A成分のポリオキサレートポリオールの中では、前記式(1)で表されるポリオキサレ ートジオールが好ましぐ式(1)中、 nはポリオキサレートジオールの重合度(繰り返し 構造単位「- I^OCOCOO ^の繰り返し個数)を表し、数平均分子量に関連付けら れる。 R1は一種であっても二種以上含まれていても差し支えなレ、。なお、ポリオキサ レートポリオールの数平均分子量は 500〜5000、特に 1000〜3000の範囲である ことが好ましい。 [0021] 〔B成分〕 [0020] Among the polyoxalate polyols of component A, in the formula (1) in which the polyoxalate diol represented by the formula (1) is preferred, n is the degree of polymerization of the polyoxalate diol (repeating structural unit "- I ^ OCOCOO ^ represents a repetition number) of the number average molecular weight in association et. R 1 is also a type such safely be contained two or more les. the number average molecular weight of Poriokisa rate polyol A range of 500 to 5000, particularly 1000 to 3000 is preferable. [0021] [Component B]
B成分は、ポリエステルポリオール、ポリアルキレンエーテルポリオール、およびポリ ヒドロキシカルボン酸ポリオールの少なくとも一つ力 成る。  Component B comprises at least one of polyester polyol, polyalkylene ether polyol, and polyhydroxycarboxylic acid polyol.
[0022] このうち、ポリエステルポリオールは、ジカルボン酸源とポリオールを重縮合反応に 付して得られる構造を有する化合物である。このジカルボン酸源としては、式 (6)で 表される脂肪族ジカルボン酸が好ましぐ式 (6)中、 R3は、分岐構造或いは脂環式構 造を含んでいてもよい炭素数 2〜: 12の二価の脂肪族炭化水素基であり、上記重縮 合反応や後述のポリウレタン化反応に関与しない置換基を有していてもよい。また、 脂肪族ジカルボン酸のジエステルも好ましく挙げることができる。脂肪族ジカルボン酸 としては、例えば、コハク酸、グノレタル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼラ イン酸、セバシン酸、ゥンデカン二酸、ドデカン二酸等が挙げられる。 Of these, the polyester polyol is a compound having a structure obtained by subjecting a dicarboxylic acid source and a polyol to a polycondensation reaction. As the dicarboxylic acid source, an aliphatic dicarboxylic acid represented by the formula (6) is preferred. In the formula (6), R 3 has 2 carbon atoms which may contain a branched structure or an alicyclic structure. To: 12 is a divalent aliphatic hydrocarbon group which may have a substituent which does not participate in the polycondensation reaction or the polyurethane-forming reaction described below. Moreover, the diester of aliphatic dicarboxylic acid can also be mentioned preferably. Examples of the aliphatic dicarboxylic acid include succinic acid, gnoretaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid.
[0023] [化 6]  [0023] [Chemical 6]
H O O C— R 3 - C O O H (6) HOOC— R 3 -COOH (6)
[0024] また、ポリオールとしては、脂肪族ジオール、脂肪族トリオール、脂肪族テトラオ一 ル等の脂肪族ポリオールが好ましく挙げられる。この中では、式(7)で表される脂肪 族ジオールが更に好ましぐ式(7)中、 R2は、分岐構造或いは脂環式構造を含んで レ、てもよレ、炭素数 2〜 12の二価の脂肪族炭化水素基であり、前記重縮合反応や後 述のポリウレタン化反応に関与しない置換基を有していてもよい。この脂肪族ジォー ルとしては、エチレングリコールの他、式(5)で表される脂肪族ジオールと同様のもの が挙げられる。 [0024] As the polyol, aliphatic polyols such as aliphatic diols, aliphatic triols, and aliphatic tetraols are preferable. Among them, in the formula (7), the aliphatic diol represented by the formula (7) is more preferable. In the formula (7), R 2 includes a branched structure or an alicyclic structure. To 12 divalent aliphatic hydrocarbon groups, which may have a substituent that does not participate in the polycondensation reaction or the polyurethane-forming reaction described later. Examples of the aliphatic diol include ethylene glycol and the same aliphatic diol represented by the formula (5).
[0025] [化 7]  [0025] [Chemical 7]
H 0 - R 2 - 0 H (7) H 0 - R 2 - 0 H (7)
[0026] また、ポリオールとして、脂肪族トリオールおよび脂肪族テトラオール等の 3価以上 のポリオールを使用すると、分子内に分岐構造が導入されるので、使用する場合は、 得られる物性等を考慮して、ジオールと共に適宜併用することが好ましい。 [0026] In addition, when a trivalent or higher polyol such as aliphatic triol or aliphatic tetraol is used as the polyol, a branched structure is introduced into the molecule. Thus, it is preferable to use it together with the diol as appropriate.
[0027] 前記重縮合反応は、末端が水酸基となるようにポリオールを過剰にして公知の方法 により行なうことができ、例えば、前記脂肪族ジカルボン酸と脂肪族ジオールを、必要 に応じて二種以上を使用し、前者 1モルに対して、後者が 1. 01モル以上、更には 1 . 05モル以上でかつ 2モル以下、更には 1. 2モル以下の仕込みモル比で脱水重縮 合反応させればよい。このとき、反応温度、反応圧力、反応促進のための各種方法 などは、前記のポリオキサレートポリオールを得る場合と同様である。 [0027] The polycondensation reaction can be performed by a known method with an excess of polyol such that the terminal is a hydroxyl group. For example, the aliphatic dicarboxylic acid and the aliphatic diol are necessary. Depending on the conditions, two or more types are used, and the former is 1 mol or more, and the latter is 1.01 mol or more, more preferably 1.05 mol or more and 2 mol or less, further 1.2 mol or less. Dehydration polycondensation reaction may be performed. At this time, the reaction temperature, reaction pressure, various methods for promoting the reaction, and the like are the same as in the case of obtaining the polyoxalate polyol.
[0028] B成分のポリエステルポリオールの中では、前記式(2)で表されるポリエステルジォ ールが好ましぐ式(2)中、 mはポリエステルジオールの重合度(構造単位「― R2〇C 〇R3C〇0—」の繰り返し個数)を表し、数平均分子量に関連付けられる。 R2及び R3 は一種であっても二種以上含まれていても差し支えない。なお、ポリエステルポリオ 一ノレの数平均分子量は 500〜5000、特に 1000〜3000の範囲であること力 S好まし い。 [0028] Among the polyester polyols of component B, in the formula (2) in which the polyester diol represented by the formula (2) is preferred, m is the degree of polymerization of the polyester diol (structural unit “—R 2 〇C 〇R 3 C〇0— ”), and is related to the number average molecular weight. R 2 and R 3 may be one type or two or more types. The number average molecular weight of polyester polyol is preferably in the range of 500 to 5000, particularly 1000 to 3000.
[0029] B成分のうち、ポリアルキレンエーテルポリオールは、エーテル源とポリオールを重 合反応に付して得られる構造を有する化合物である。このエーテル源としては、式(8 )で表されるアルキレンオキサイドが好ましぐ式 (8)中、 R4は、分岐構造を含んでい てもよい炭素数 2〜6の二価の脂肪族炭化水素基であり、上記重合反応や後述のポ リウレタン化反応に関与しない置換基を有していてもよい。アルキレンオキサイドとし ては、例えば、エチレンオキサイド、プロピレンオキサイド、 1, 2—ブチレンオキサイド 、 2, 3 ブチレンオキサイド、 1, 3 ブチレンオキサイド、テトラヒドロフラン、 3—メチ ルテトラヒドロフラン等が挙げられる。 [0029] Among the B components, polyalkylene ether polyol is a compound having a structure obtained by subjecting an ether source and polyol to a polymerization reaction. As the ether source, an alkylene oxide represented by the formula (8) is preferred. In the formula (8), R 4 is a divalent aliphatic having 2 to 6 carbon atoms which may contain a branched structure. It may be a hydrocarbon group and may have a substituent that does not participate in the polymerization reaction or the later-described polyurethane-forming reaction. Examples of the alkylene oxide include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3 butylene oxide, 1,3 butylene oxide, tetrahydrofuran, and 3-methyltetrahydrofuran.
[0030] [化 8]  [0030] [Chemical 8]
Figure imgf000007_0001
Figure imgf000007_0001
[0031] また、ポリオールとしては、脂肪族ジオール、脂肪族トリオール、脂肪族テトラオ一 ル等の脂肪族ポリオールが好ましく挙げられる。この中では、式(9)で表される脂肪 族ジオールが更に好ましぐ式(9)中、 R5は、分岐構造を含んでいてもよい炭素数 2 〜6の二価の脂肪族炭化水素基であり、前記重合反応や後述のポリウレタン化反応 に関与しない置換基を有していてもよい。この脂肪族ジオールとしては、例えば、ェ チレングリコール、プロピレングリコール、 1, 3—プロパンジオール、 1, 4 ブタンジ オール、 1, 5 _ペンタンジオール、 1 , 6—へキサンジオール、 1, 3—ブチレングリコ ール、ネオペンチルグリコール、 3 _メチル _ 1, 5 _ペンタンジオール等が挙げられ る。 [0031] The polyol is preferably an aliphatic polyol such as an aliphatic diol, an aliphatic triol, or an aliphatic tetraol. Among these, in formula (9), the aliphatic diol represented by formula (9) is more preferred. In formula (9), R 5 is a divalent aliphatic carbon atom having 2 to 6 carbon atoms which may contain a branched structure. It may be a hydrogen group and may have a substituent that does not participate in the polymerization reaction or the polyurethane-forming reaction described later. Examples of the aliphatic diol include ethylene glycol, propylene glycol, 1,3-propanediol, and 1,4 butanediol. All, 1,5_pentanediol, 1,6-hexanediol, 1,3-butylene glycol, neopentyl glycol, 3_methyl_1,5_pentanediol, and the like.
[0032] [化 9]  [0032] [Chemical 9]
H O - R 5 - 0 H (9) HO - R 5 - 0 H ( 9)
[0033] また、ポリオールとして、脂肪族トリオールおよび脂肪族テトラオール等の 3価以上 のポリオールを使用すると、分子内に分岐構造が導入されるので、得られる物性等を 考慮して、ジオールと共にまたは単独で適宜使用してもよい。 [0033] When a trivalent or higher polyol such as aliphatic triol or aliphatic tetraol is used as the polyol, a branched structure is introduced into the molecule. You may use it independently suitably.
[0034] 前記重合反応は公知の方法により行なうことができ、例えば、前記アルキレンォキ サイドと前記脂肪族ジオールを開環付加重合反応させればょレ、。この反応は通常の 条件で行なうことができ、無触媒又は触媒 (アルカリ触媒、アミン系触媒、酸性触媒等 )存在下に常圧又は加圧下に 1段階又は多段階で行なうことができる。  [0034] The polymerization reaction can be carried out by a known method. For example, the alkylene oxide and the aliphatic diol are subjected to a ring-opening addition polymerization reaction. This reaction can be carried out under ordinary conditions, and can be carried out in one step or in multiple steps at normal pressure or under pressure in the presence of no catalyst or catalyst (alkali catalyst, amine catalyst, acidic catalyst, etc.).
[0035] B成分のポリアルキレンエーテルポリオールの中では、前記式(3)で表されるポリア ルキレンエーテルジオールが好ましぐ式(3)中、 kはポリアルキレンエーテルジォー ルの重合度(構造単位「- R40-」の繰り返し個数)を表し、数平均分子量に関連付 けられる。 R4及び R5は一種であっても二種以上含まれていても差し支えなレ、。なお、 ポリアルキレンエーテルポリオールの数平均分子量は 500〜5000、特に 1000〜30 00の範囲であることが好ましレ、。 [0035] Among the polyalkylene ether polyols of component B, in the formula (3) in which the polyalkylene ether diol represented by the formula (3) is preferred, k is the degree of polymerization of the polyalkylene ether diol. represents - (structural unit "R 4 0-" repetition number of), it is associated with a number average molecular weight. R 4 and R 5 may be one type or two or more types. The number average molecular weight of the polyalkylene ether polyol is preferably in the range of 500 to 5000, particularly 1000 to 300,000.
[0036] B成分のうち、ポリヒドロキシカルボン酸ポリオールは、ヒドロキシカルボン酸源とポリ オールを重合反応に付して得られる構造を有する化合物である。このヒドロキシカノレ ボン酸源としては、式(10)で表される脂肪族環状エステルが好ましぐ式(10)中、 R 6は、分岐構造を含んでいてもよい炭素数 2〜6の二価の脂肪族炭化水素基であり、 上記重合反応や後述のポリウレタン化反応に関与しない置換基を有していてもよい。 脂肪族環状エステルとしては、例えば、 Lーラクチド、 D ラクチド、 D,L ラクチド、 β プロピオラタトン、 γ ブチロラタトン、 δ バレロラタトン、 ε—力プロラタトン等が 挙げられる。  [0036] Among the B components, the polyhydroxycarboxylic acid polyol is a compound having a structure obtained by subjecting a hydroxycarboxylic acid source and polyol to a polymerization reaction. In the formula (10), an aliphatic cyclic ester represented by the formula (10) is preferred as the hydroxycanolenic acid source. In the formula (10), R 6 has 2 to 6 carbon atoms which may contain a branched structure. It is a divalent aliphatic hydrocarbon group, and may have a substituent that does not participate in the polymerization reaction or the polyurethane-forming reaction described later. Examples of the aliphatic cyclic ester include L-lactide, D-lactide, D, L-lactide, β-propiolatathone, γ-butyrolatathone, δ-valerolatatone, and ε-force prolatathone.
[0037] [化 10] [0037] [Chemical 10]
Figure imgf000009_0001
Figure imgf000009_0001
[0038] また、ポリオールとしては、脂肪族ジオール、脂肪族トリオール、脂肪族テトラオ一 ル等の脂肪族ポリオールが好ましく挙げられる。この中では、式(11)で表される脂肪 族ジオールが更に好ましぐ式(11)中、 R7は、分岐構造を含んでいてもよい炭素数 2〜6の二価の脂肪族炭化水素基であり、前記重合反応や後述のポリウレタン化反 応に関与しない置換基を有していてもよい。この脂肪族ジオールとしては、式(9)で 表される脂肪族ジオールと同様のものが挙げられる。 [0038] The polyol is preferably an aliphatic polyol such as an aliphatic diol, an aliphatic triol, or an aliphatic tetraol. In this, in the formula (11) in which the aliphatic diol represented by the formula (11) is more preferable, R 7 is a divalent aliphatic carbonization having 2 to 6 carbon atoms which may contain a branched structure. It may be a hydrogen group and may have a substituent that does not participate in the polymerization reaction or the polyurethane-forming reaction described below. Examples of the aliphatic diol include the same aliphatic diols represented by the formula (9).
[0039] [化 11]  [0039] [Chemical 11]
H 0 - R 7 - 0 H ( 1 1 ) H 0 - R 7 - 0 H (1 1)
[0040] また、ポリオールとして、脂肪族トリオールおよび脂肪族テトラオール等の 3価以上 のポリオールを使用すると、分子内に分岐構造が導入されるので、得られる物性等を 考慮して、ジオールと共にまたは単独で適宜使用してもよい。 [0040] When a trivalent or higher polyol such as aliphatic triol or aliphatic tetraol is used as the polyol, a branched structure is introduced into the molecule. You may use it independently suitably.
[0041] 前記重合反応は公知の方法により行なうことができ、例えば、前記脂肪族ジオール を開始剤として前記脂肪族環状エステルを開環重合反応させればよい。この反応は 通常の条件で行なうことができ、アンチモン、チタン、亜鉛、ゲルマニウム、鉄、スズ等 の金属の化合物等の触媒存在下に常圧又は減圧下で行なうことができる。  [0041] The polymerization reaction can be carried out by a known method. For example, the aliphatic cyclic ester may be subjected to a ring-opening polymerization reaction using the aliphatic diol as an initiator. This reaction can be carried out under normal conditions, and can be carried out at normal pressure or reduced pressure in the presence of a catalyst such as a compound of a metal such as antimony, titanium, zinc, germanium, iron, tin or the like.
[0042] B成分のポリヒドロキシカルボン酸ポリオールの中では、前記式(4)で表されるポリヒ ドロキシカルボン酸ジオールが好ましぐ式(4)中、 jはポリヒドロキシカルボン酸ジォ ールの重合度(構造単位「一 R6COO—」の繰り返し個数)を表し、数平均分子量に 関連付けられる。 R6及び R7は一種であっても二種以上含まれていても差し支えない 。なお、ポリヒドロキシカルボン酸ポリオールの数平均分子量は 500〜5000、特に 10 00〜3000の範囲であることが好ましい。 [0042] Among the polyhydroxycarboxylic acid polyols of component B, polyhydroxycarboxylic acid diol represented by the above formula (4) is preferred. In formula (4), j is a polyhydroxycarboxylic acid diol. Is the degree of polymerization (repeated number of structural units “one R 6 COO—”) and is related to the number average molecular weight. R 6 and R 7 may be one type or two or more types. The number average molecular weight of the polyhydroxycarboxylic acid polyol is preferably in the range of 500 to 5,000, particularly in the range of 1,000 to 3,000.
[0043] 〔C成分〕 C成分の鎖延長剤としては、イソシァネート基と反応する水素原子を少なくとも 2個 有する低分子化合物が挙げられる。このような化合物にはポリオールやポリアミンが あり、ポリオールとしては、例えば、エチレングリコール、 1, 2_プロピレングリコール、 1, 3 _ブタンジオール、 1, 4 _ブタンジオール、 1 , 5 _ペンタンジオール、 1 , 6 _へ キサンジオール、 1 , 8 _オクタンジオール、 1, 9 ノナンジオール、 1, 10 デカン ジオール、 1 , 12—ドデカンジオール、ネオペンチルグリコール、 3 _メチル_ 1, 5- ペンタンジオール、 3, 3 _ジメチロールヘプタン、 1 , 4—シクロへキサンジオール、 1 , 4ーシクロへキサンジメタノール、 1, 4ージヒドロキシェチルシクロへキサン等の分岐 構造又は脂環式構造を含んでいてもよい炭素数 2〜: 12の脂肪族ジオールが好ましく 挙げられる。 [0043] [Component C] Examples of the component C chain extender include low molecular weight compounds having at least two hydrogen atoms that react with an isocyanate group. Such compounds include polyols and polyamines such as ethylene glycol, 1,2_propylene glycol, 1,3_butanediol, 1,4_butanediol, 1,5_pentanediol, 1 , 6_Hexanediol, 1,8_octanediol, 1,9 nonanediol, 1,10 decanediol, 1,12-dodecanediol, neopentyl glycol, 3_methyl_1,5-pentanediol, 3, 3_Carbon which may contain a branched structure or alicyclic structure such as dimethylolheptane, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-dihydroxyethylcyclohexane An aliphatic diol having a number of 2 to 12 is preferred.
[0044] また、ポリアミンとしては、エチレンジァミン、 1 , 2 プロピレンジァミン、 1 , 6 へキ サメチレンジァミン、イソホロンジァミン、ビス(4 アミノシクロへキシル)メタン、ピペラ ジン等の分岐構造又は脂環式構造を含んでレ、てもよレ、炭素数 2〜 12の脂肪族ジァ ミンや、 m (又は p )キシリレンジァミン、 4, 4'ーメチレンビス(o クロロア二リン) 等の炭素数 6〜: 18の芳香族ジァミンが好ましく挙げられる。  [0044] As polyamines, ethylenediamine, 1,2 propylenediamine, 1,6hexamethylenediamine, isophoronediamine, bis (4 aminocyclohexyl) methane, piperazine and the like are branched. Structure or cycloaliphatic structure, aliphatic diamines having 2 to 12 carbon atoms, m (or p) xylylenediamine, 4,4'-methylenebis (o chloroaniline) Preferred examples thereof include aromatic diamines having 6 to 18 carbon atoms such as.
[0045] 更に、脂肪族ァミノアルコール(2 エタノールァミン、 N—メチルジェタノールァミン 等)、芳香族ァミノアルコール(N フエニルジプロパノールァミン等)、ヒドロキシアル キルスルフアミド(ヒドロキシェチルスルフアミド、ヒドロキシェチルアミノエチルスルファ ミド等)、尿素、水なども鎖延長剤として挙げられる。これら鎖延長剤は単独でも複数 でも使用できる。  [0045] Furthermore, aliphatic amino alcohols (2 ethanolamine, N-methyljetanolamine, etc.), aromatic amino alcohols (N phenyldipropanolamine, etc.), hydroxyalkylsulfamides (hydroxyethylsulfamide). Amide, hydroxyethylaminoethylsulfamide, etc.), urea, water and the like can also be mentioned as chain extenders. These chain extenders can be used alone or in combination.
[0046] 〔D成分〕 [0046] [Component D]
D成分のポリイソシァネートイ匕合物としては、脂肪族又は芳香族の各種ポリイソシァ ネートが挙げられる。脂肪族ポリイソシァネートは、その多価の脂肪族炭化水素基が 、直鎖構造のものに限らず、分岐構造又は脂環式構造を含んでいるものでもよぐ酸 素原子を含んでいるものでもよい。また、芳香族ポリイソシァネートは、多価の芳香族 炭化水素基を分子中に含むものであれば、特に制限されない。ポリイソシァネートイ匕 合物の中では、ジイソシァネートィヒ合物が好まし 例えば、脂肪族又は芳香族の各 種ジイソシァネートが挙げられる。 D成分のポリイソシァネートは単独又は複数で使用 できる。 Examples of the D component polyisocyanate compound include various aliphatic or aromatic polyisocyanates. The aliphatic polyisocyanate contains an oxygen atom whose polyvalent aliphatic hydrocarbon group is not limited to one having a straight chain structure but may contain a branched structure or an alicyclic structure. It may be a thing. The aromatic polyisocyanate is not particularly limited as long as it contains a polyvalent aromatic hydrocarbon group in the molecule. Of the polyisocyanate compounds, diisocyanate compounds are preferred, and examples thereof include aliphatic and aromatic diisocyanates. D component polyisocyanate used alone or in combination it can.
[0047] 脂肪族ジイソシァネートとしては、例えば、 1 , 3 トリメチレンジイソシァネート、 1 , 4  [0047] As the aliphatic diisocyanate, for example, 1, 3 trimethylene diisocyanate, 1, 4
—テトラメチレンジイソシァネート、 1 , 6—へキサメチレンジイソシァネート、 1, 9 ノ ナメチレンジイソシァネート、 1, 10—デカメチレンジイソシァネート、 1, 12—ドデカメ チレンジイソシァネート、リジンジイソシァネート、へキサメチレンジイソシァネート一ビ ウレット体、 2, 2, 4_トリメチノレへキサメチレンジイソシァ才ヽート、 2, 4, 4_トリメチノレ へキサメチレンジイソシァネート、イソホロンジイソシァネート、 1 , 4—シクロへキサン ジイソシァネート、 4, 4'ージシクロへキシルメタンジイソシァネート、水添化キシリレン ジイソシァネート、 2, 2'—ジェチルエーテルジイソシァネートなどが挙げられる。  —Tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9 nonamethylene diisocyanate, 1,10-decamethylene diisocyanate, 1,12-dodecamethylene diisocyanate Lysine diisocyanate, hexamethylene diisocyanate monobiuret, 2, 2, 4_trimethinorehexamethylene diisocyanate, 2, 4, 4_trimethinore hexamethylene diisocyanate , Isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, 2,2'-jetyl ether diisocyanate, etc. Can be mentioned.
[0048] 芳香族ジイソシァネートとしては、例えば、 p フエ二レンジイソシァネート、トリレン ジイソシァネート、キシリレンジイソシァネート、 4, 4'ージフエニルジイソシァネート、 1 , 5—ナフタレンジイソシァネート、 4, 4'ージフエニルメタンジイソシァネート(MDI)、 3, 3 '—メチレンジトリレン 4, 4'ージイソシァネート、トリレンジソシァネートトリメチロ ールプロパンァダクト、トリフエニルメタントリイソシァネート、 4, 4'ージフエニルエーテ ルジイソシァネート、テトラクロ口フエ二レンジイソシァネート、 3, 3 '—ジクロロー 4, 4, —ジフエニルメタンジイソシァネート、トリイソシァネートフエ二ルチオホスフェート等が 挙げられる。  [0048] Examples of the aromatic diisocyanate include p-phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalenediisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), 3,3'-methyleneditolylene 4,4'-diisocyanate, tolylene sulfonate trimethylolpropane adduct, triphenylmethane Triisocyanate, 4,4'-Diphenyl ether diisocyanate, Tetrachlorodiphenyl diisocyanate, 3, 3'-Dichloro-4,4, -Diphenylmethane diisocyanate, Triisocyanate Examples include phenylthiophosphate.
[0049] これらジイソシァネートの中では、 4, 4'—ジフエニルメタンジイソシァネート、 1 , 6— へキサメチレンジイソシァネート、イソホロンジイソシァネートが特に好ましレ、。  Among these diisocyanates, 4,4′-diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferred.
[0050] 〔ポリオキサレートウレタン〕  [0050] [Polyoxalate urethane]
本発明のポリオキサレートウレタンは、ポリオキサレートポリオール (A成分)、ポリエ ステルポリオール、ポリアルキレンエーテルポリオール、ポリヒドロキシカルボン酸ポリ オールの少なくとも一つ(B成分)、鎖延長剤(C成分)、及び、ポリイソシァネートイ匕合 物 (D成分)を反応 (ポリウレタン化反応)させて得られ、その数平均分子量は好ましく は 10000〜200000の範囲である。  The polyoxalate urethane of the present invention comprises at least one of polyoxalate polyol (component A), polyester polyol, polyalkylene ether polyol, polyhydroxycarboxylic acid polyol (component B), chain extender (component C), The polyisocyanate compound (component D) is reacted (polyurethane reaction), and the number average molecular weight is preferably in the range of 10,000 to 200,000.
[0051] ここで、 A成分及び B成分の合計と C成分と D成分の比「(A + B): C: D」はモル基 準で 1 : 0. 5 : 1. 5〜: 1 : 6 : 7の範囲であることが好ましレ、。但し、 A成分及び B成分の 混合物と C成分に含まれる活性水素の合計量:イソシァネート基力 当量比で 1 : 0. 8 〜: 1 : 1. 2、更には 1 : 0. 95〜: 1 : 1. 05になるように D成分を使用することが好ましい 。また、 A成分と B成分の比「A: B」は重量基準で 5 : 95〜95 : 5、更には 10 : 90〜70 : 30、特に 20 : 80〜50: 50の範囲であることが好ましレ、。なお、 A成分及び B成分で は、その脂肪族炭化水素基が異なっていてもよ 数平均分子量が異なっていてもよ レ、。 [0051] Here, the sum of the A component and the B component and the ratio of the C component and the D component “(A + B): C: D” is 1: 0.5: 1.5 to 1: 1: 6: 7, preferably in the range. However, the total amount of active hydrogen contained in the mixture of component A and component B and component C: isocyanate ratio 1: 0.8 It is preferable to use D component so that it will be set to :: 1: 1.2, Furthermore, it is 1: 0.9.95-: 1: 1.05. In addition, the ratio “A: B” of the A component and the B component may be in the range of 5:95 to 95: 5, further 10:90 to 70:30, particularly 20:80 to 50:50 on a weight basis. I like it. In addition, the A component and the B component may have different aliphatic hydrocarbon groups or different number average molecular weights.
[0052] ポリウレタン化反応は無溶剤下で行なうことができ、また、イソシァネート基に対して 不活性な溶剤の存在下でも行なうことができる。無溶剤下の反応の場合、 A成分及 び B成分の混合物と C成分を混合し、これに D成分を混合して全量を一度に反応さ せるか、或いは、 A成分及び B成分の混合物と D成分を反応させてイソシァネート基 を有するプレボリマーを得た後、これに C成分を混合 ·反応させる力、或いは、 A成分 及び B成分の混合物と C成分を混合し、これに D成分の一部を混合'反応させて水酸 基を有するプレボリマーを得た後、更に残余の D成分を混合 '反応させることにより、 ポリウレタン化反応を行なうことができる。無溶剤下の場合の反応温度は 80〜: 180°C であることが好ましい。  [0052] The polyurethane reaction can be carried out in the absence of a solvent, and can also be carried out in the presence of a solvent inert to the isocyanate group. In the case of a reaction in the absence of a solvent, a mixture of component A and component B and component C are mixed, and then component D is mixed with this to react all at once, or a mixture of component A and component B After reacting the D component to obtain a prepolymer having an isocyanate group, the C component is mixed and reacted with this, or the mixture of the A component and the B component is mixed with the C component, and this is part of the D component. After obtaining a prepolymer having a hydroxyl group by mixing and reacting, a polyurethane reaction can be carried out by further mixing and reacting the remaining D component. The reaction temperature in the absence of a solvent is preferably 80 to 180 ° C.
[0053] 溶剤存在下の反応の場合、 A成分及び B成分の混合物を溶剤に溶解し、更に C成 分を混合した後、これに D成分を混合して全量を一度に反応させるか、或いは、 A成 分及び B成分の混合物を溶剤に溶解し、これに D成分を混合 ·反応させてイソシァネ 一ト基を有するプレボリマーを得た後、これに C成分を混合'反応させるか、或いは、 A成分及び B成分の混合物を溶剤に溶解し、これに C成分と D成分の一部を混合- 反応させて水酸基を有するプレボリマーを得た後、更に残余の D成分を混合 ·反応さ せることにより、ポリウレタン化反応を行なうことができる。溶剤存在下の場合の反応 温度は 20〜: 100°Cであることが好ましレ、。溶剤としては、メチルェチルケトン、酢酸ェ チル、トルエン、ジォキサン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルァ セトアミド、クロ口ホルムなどが代表的なものである。なお、ポリウレタンィ匕反応では、反 応促進のために公知のアミン系又はスズ系の触媒を使用してもよい。  [0053] In the case of the reaction in the presence of a solvent, the mixture of the component A and the component B is dissolved in the solvent and the component C is further mixed, and then the component D is mixed with the mixture to react all at once. A mixture of component A and component B is dissolved in a solvent, and component D is mixed and reacted to obtain a prepolymer having an isocyanate group, and then mixed with component C and reacted. Dissolve the mixture of component A and component B in a solvent, mix and react a part of component C and component D to obtain a prepolymer having a hydroxyl group, and then mix and react the remaining component D. Thus, the polyurethane reaction can be carried out. The reaction temperature in the presence of a solvent is preferably 20 to 100 ° C. Typical examples of the solvent include methyl ethyl ketone, ethyl acetate, toluene, dioxane, dimethylformamide, dimethyl sulfoxide, dimethylacetamide, and chloroform. In the polyurethane reaction, a known amine-based or tin-based catalyst may be used to promote the reaction.
[0054] 本発明のポリオキサレートウレタンは、イソシァネート基と反応する水素原子を少な くとも 2個有する化合物或いはイソシァネート基を少なくとも 2個有する化合物と更に 反応させることにより、高分子量ィ匕又は網状化することができる。また、ウレタン結合 及び z又はウレァ結合を有する化合物或いはイソシァネート基と反応する水素原子 を少なくとも 3個有する化合物と反応させることにより、架橋構造を導入することもでき る。 [0054] The polyoxalate urethane of the present invention has a high molecular weight or a reticulated structure by further reacting with a compound having at least two hydrogen atoms that react with an isocyanate group or a compound having at least two isocyanate groups. can do. Also urethane bond A crosslinked structure can also be introduced by reacting with a compound having z or urea bond or a compound having at least three hydrogen atoms that react with isocyanate groups.
[0055] また、本発明のポリオキサレートウレタンは、他のポリウレタンとブレンドすることによ りポリオキサレートウレタン組成物とすることもできる。他のポリウレタンは公知の熱可 塑性ポリウレタンであればよぐ例えば、アジペート系、ラタトン系及びエーテル系など の熱可塑性ポリウレタンが好適に使用される。この組成物において、本発明のポリオ キサレートウレタンと他のポリウレタンの割合は、前者:後者(重量比)が 5: 95-95: 5 、更には10 : 90〜90 : 10、特に 20 : 80〜80: 20の範囲であることが好ましい。本発 明のポリオキサレートウレタン及び他のポリウレタンは単独でも複数でも使用できる。 なお、 A成分、 C成分、 D成分から得られるポリオキサレートウレタンも他のポリウレタ ンとブレンドすることにより同様の組成物とすることができる。  [0055] The polyoxalate urethane of the present invention can also be made into a polyoxalate urethane composition by blending with other polyurethanes. The other polyurethane may be a known thermoplastic polyurethane. For example, thermoplastic polyurethanes such as adipate, ratatone, and ether are preferably used. In this composition, the ratio of the polyoxalate urethane of the present invention to the other polyurethane is such that the former: the latter (weight ratio) is 5: 95-95: 5, further 10:90 to 90:10, especially 20:80. It is preferably in the range of ˜80: 20. The polyoxalate urethane and other polyurethanes of the present invention can be used alone or in combination. The polyoxalate urethane obtained from the A component, the C component, and the D component can be blended with other polyuretans to obtain a similar composition.
[0056] 前記ブレンドの最も一般的な方法は、公知の連続式混練装置(一軸押出機、二軸 押出機、二軸ローター混練機等)や、ノくツチ式混練装置 (オープンロール、ニーダー 、バンバリ一ミキサー等)を使用して溶融混練する方法であり、混練方法や混練条件 について特に制限はない。また、溶剤を用いて溶液ブレンドする方法でも差し支えな い。  [0056] The most common method of blending is a known continuous kneader (single screw extruder, twin screw extruder, twin screw rotor kneader, etc.) or a notch type kneader (open roll, kneader, And a kneading method and kneading conditions are not particularly limited. A solution blending method using a solvent is also acceptable.
[0057] 本発明のポリオキサレートウレタン及びその組成物には、本発明の効果を損なわな い範囲で公知の各種添加剤や他の重合体を単独又は複数で配合しても差し支えな レ、。配合可能な添加剤としては、結晶核剤、顔料、染料、耐熱剤、着色防止剤、酸化 防止剤、耐候剤、滑剤、帯電防止剤、安定剤、充填剤 (タルク、クレイ、ゼォライト、ゾ ノトライト、炭酸カルシウム、カーボンブラック、シリカ粉末、アルミナ粉末、酸化チタン 粉末、樹脂型マイクロバルーン、無機型マイクロバルーン等)、強化材 (ガラス繊維、 炭素繊維、シリカ繊維等)、難燃剤、可塑剤、防水剤(ワックス、シリコンオイル、高級 アルコール、ラノリン等)などが挙げられる。  [0057] The polyoxalate urethane and the composition thereof according to the present invention may be blended with various known additives and other polymers singly or in a range that does not impair the effects of the present invention. . Additives that can be added include crystal nucleating agents, pigments, dyes, heat-resistant agents, anti-coloring agents, antioxidants, weathering agents, lubricants, antistatic agents, stabilizers, and fillers (talc, clay, zeolite, zonotlite. , Calcium carbonate, carbon black, silica powder, alumina powder, titanium oxide powder, resin-type microballoon, inorganic-type microballoon, etc.), reinforcing materials (glass fiber, carbon fiber, silica fiber, etc.), flame retardant, plasticizer, waterproofing Agents (wax, silicone oil, higher alcohol, lanolin, etc.).
[0058] 他の配合可能な重合体としては、天然又は合成の高分子材料を挙げることができ、 例えば、ポリ力プロラタトン、ポリ乳酸、ポリダリコール酸、ポリコハク酸エステル、ポリ( 3—ヒドロキシブタン酸)、(3—ヒドロキシブタン酸 /4ーヒドロキシブタン酸)コポリマー 、ポリビュルアルコール、ポリエチレン、ポリ酢酸ビュル、ポリ塩化ビュル、ポリスチレン 、ポリグルタミン酸エステル、酢酸セルロース、アルギン酸、キトサン、澱粉などのプラ スチック材料や、天然ゴム、ポリエステルゴム、ポリアミドゴム、スチレン一ブタジエン一 スチレンブロック共重合体(SBS)、水添 SBSなどのゴム又はエラストマ一が挙げられ る。 [0058] Examples of other compoundable polymers include natural or synthetic polymer materials, such as polystrength prolatatone, polylactic acid, polydaricholic acid, polysuccinic acid ester, poly (3-hydroxybutanoic acid). , (3-hydroxybutanoic acid / 4-hydroxybutanoic acid) copolymer , Plastic materials such as polybulol alcohol, polyethylene, polyacetic acid butyl, polychlorinated butyl, polystyrene, polyglutamic acid ester, cellulose acetate, alginic acid, chitosan, starch, natural rubber, polyester rubber, polyamide rubber, styrene-butadiene-styrene Examples include rubbers or elastomers such as block copolymers (SBS) and hydrogenated SBS.
[0059] また、本発明のポリオキサレートウレタン及びその組成物は、公知の溶融加工法( 射出成形、押出成形、プレス成形、中空成形、熱成形等)を適用して、フィルム、シー ト、繊維、不織布、容器、各種農 ·産業資材又は部材などの成形物にすることができ る。このうち、射出成形物の用途としては、シール材、ギア、コネクター、スポーツシュ ーズ、マリンスポーツ用品、時計バンド、キャスター、ローラー、婦人靴のヒールトップ 、精密研磨パッド、湿式フィルタ、スポンジロールなどが挙げられる。また、押出成形 物の用途としては、各種ホース、チューブ、ェンベアベルト、エアーマット、ターポリン (野積シート用、レジャーバック用、土木シート用、機械カバー用など)、ケーブル被 覆、各種ロープなどが挙げられる。  [0059] In addition, the polyoxalate urethane and the composition thereof according to the present invention are applied with a known melt processing method (injection molding, extrusion molding, press molding, hollow molding, thermoforming, etc.) to form a film, a sheet, It can be formed into molded products such as fibers, non-woven fabrics, containers, various agricultural / industrial materials or components. Of these, injection moldings are used for sealing materials, gears, connectors, sports shoes, marine sports equipment, watch bands, casters, rollers, heel tops for women's shoes, precision polishing pads, wet filters, sponge rolls, etc. Is mentioned. Extruded products can be used for various hoses, tubes, Envelope belts, air mats, tarpaulins (for field sheets, leisure bags, civil engineering sheets, machine covers, etc.), cable covers, various ropes, etc. .
実施例  Example
[0060] 次に、実施例及び比較例を挙げて本発明を具体的に説明する。なお、ポリオキサ レートジオールの物性は下記 1〜2の方法により、ポリオキサレートウレタン及びポリオ キサレートウレタン組成物の物性は下記 3〜7の方法によりそれぞれ測定した。  Next, the present invention will be specifically described with reference to examples and comparative examples. The physical properties of the polyoxalate diol were measured by the methods 1 and 2 below, and the physical properties of the polyoxalate urethane and the polyoxalate urethane composition were measured by the methods 3 to 7 below.
[0061] 1.数平均分子量 (M ) ^H— NMR測定を以下の条件で行なって下記計算式によ り算出した。式中、 S はォキサレート結合に隣接するメチレンのプロトンの積分  [0061] 1. Number average molecular weight (M) ^ H—NMR measurement was carried out under the following conditions, and was calculated by the following formula. Where S is the integral of the methylene proton adjacent to the oxalate bond
OCOCOO  OCOCOO
値、 S は末端水酸基に隣接するメチレンのプロトンの積分値、 M はポリオキサレ Value, S is the integral value of the proton of methylene adjacent to the terminal hydroxyl group, M is the polyoxalene
OH unit ートジオール中の繰り返し構造単位の分子量、 M はポリオキサレートジオール原料 OH unit Molecular weight of repeating structural unit in the diol, M is the raw material of polyoxalate diol
diol  diol
の脂肪族ジオールの分子量を表す。  Represents the molecular weight of the aliphatic diol.
[0062] ·使用機種:日本電子 MJNM— EX400WB [0062] · Model used: JEOL MJNM—EX400WB
'溶媒: CDC1  'Solvent: CDC1
3  Three
•積算回数 : 32回  • Integration count: 32 times
'試料濃度: 5重量%  'Sample concentration: 5% by weight
'計算式: M = S /S X M +M  'Calculation formula: M = S / S X M + M
n OCOCOO OH unit diol [0063] 2.融点 (T ):示差走査熱量計 (DSC— 50 ;島津製作所製)を用いて、窒素ガス雰 m n OCOCOO OH unit diol [0063] 2. Melting point (T): Nitrogen gas atmosphere using a differential scanning calorimeter (DSC-50; manufactured by Shimadzu Corporation)
囲気中、昇温速度 10°CZ分の条件で測定した。  The measurement was performed in the atmosphere under the condition of a temperature increase rate of 10 ° CZ.
[0064] 3.ガラス転移温度 (T ):融点と同様に測定した。 [0064] 3. Glass transition temperature (T): Measured in the same manner as the melting point.
g  g
[0065] 4.粘度 (Pa' sec): E型粘度計 (東京計器製)を用いて測定した。  [0065] 4. Viscosity (Pa 'sec): Measured using an E-type viscometer (manufactured by Tokyo Keiki).
[0066] 5.引張特性: JIS— K7311に従レ、、引張試験機(テンシロン UCT—5T;オリエンテ ック製)を用いて、 23°C及び 50%RHの条件で測定して、引張弾性率、引張強度、 破断伸びを求めた。  [0066] 5. Tensile properties: Tensile elasticity measured at 23 ° C and 50% RH using a tensile tester (Tensilon UCT-5T; manufactured by Orientec) according to JIS—K7311 The rate, tensile strength, and elongation at break were determined.
[0067] 6.耐加水分解特性: JIS2号引張試験片を 23°Cの純水中に浸潰した後、引張特性 を前記のように測定して破断伸びの保持率から評価した。  [0067] 6. Hydrolysis resistance: JIS No. 2 tensile test specimens were immersed in pure water at 23 ° C, and then the tensile characteristics were measured as described above and evaluated from the retention of elongation at break.
[0068] 7.生分解特性:試験片(lcm X I cm)を堆肥 (ホーチコン CJA製)を 5メッシュ以下 に粉砕したもの; 30°C)中に坦設し、 1週間ごとに取出してその重量残存率を測定し た。 [0068] 7. Biodegradation characteristics: Specimens (lcm XI cm) composted (Hochicon CJA) ground to 5 mesh or less; placed in 30 ° C), taken out every week and weighed The residual rate was measured.
[0069] 〔参考例 1〕 <ポリオキサレートジオールの製造 >  [0069] [Reference Example 1] <Production of polyoxalate diol>
攪拌機、温度計及び蒸留塔 (分留管、還流ヘッド、コンデンサーを塔頂部に備える )を装着した内容積 1L (リットル)のガラス製反応器に、シユウ酸ジメチル (DMO) 372 . 0g (3. 15モノレ)、 1 , 6—へキサンジ才ーノレ(HDL) 531. 8g (4. 508モノレ)、及び テトラ— n—ブトキシチタン (TBT) O. 027g (DMO及び HDLの合計量に対して重量 基準で 30ppm)を仕込み、メタノールを留出させながら、常圧下 160°Cで 3時間、更 に 300mmHg (4 X 104Pa)下 170°Cで 1時間反応させた。次いで、 180°Cに昇温す ると共に lOOmmfig d . 33 X 104Pa)に減圧して 5B寺間、更に 5mnLHg (666Pa)で 2時間反応させた。最後に、反応物に TBTと等モル量のリン酸ジブチルをカ卩え、常圧 下 95°Cで 3時間攪拌して触媒を失活させた。得られたポリオキサレートジオール (PH MOD— 1 ;ポリへキサメチレンォキサレートジオール)は、 M力 2089、Τ 力 72°Cで Into a 1 L (liter) glass reactor equipped with a stirrer, thermometer, and distillation column (with a fractionation tube, reflux head, and condenser at the top of the column), dimethyl oxalate (DMO) 372.0 g (3. 15 monole), 1, 6-hexanedi-nore (HDL) 531.8 g (4.508 monole), and tetra-n-butoxytitanium (TBT) O. 027 g (weight based on total amount of DMO and HDL) 30 ppm), and methanol was distilled off, and the reaction was carried out at 160 ° C for 3 hours under atmospheric pressure and further for 1 hour at 170 ° C under 300 mmHg (4 X 10 4 Pa). Then, 180 ° C to NoboriAtsushisu Rutotomoni lOOmmfig d. 33 X 10 4 Pa ) vacuum to between 5B temple was reacted for 2 hours further at 5mnLHg (666Pa). Finally, TBT and an equimolar amount of dibutyl phosphate were added to the reaction product and stirred at 95 ° C for 3 hours under normal pressure to deactivate the catalyst. The resulting polyoxalate diol (PH MOD-1; polyhexamethyleneoxalate diol) has an M force of 2089 and a repulsive force of 72 ° C.
n m  n m
あった。  there were.
[0070] 〔参考例 2〕 <ポリオキサレートジオールの製造 >  [Reference Example 2] <Production of polyoxalate diol>
攪拌機、温度計及び蒸留塔 (分留管、還流ヘッド、コンデンサーを塔頂部に備える )を装着した内容積 3Lのガラス製反応器に、 DM〇1116g (9. 45モノレ)、 HDL159 5g (13. 50モル)、及び TBTO. 081g (DM〇及び HDLの合計量に対して重量基準 で 30ppm)を仕込み、メタノールを留出させながら、常圧下 170°Cで 3時間、更に 30 OmmHg下 170°Cで 1時間反応させた。次いで、 180°Cに昇温すると共に lOOmmH gに減圧して 4時間、 200°Cに昇温すると共に lmmHg (133Pa)に減圧して 2. 5時 間反応させた。最後に、反応物に TBTと等モル量のリン酸ジブチルをカ卩え、常圧下 1 20°Cで 2時間攪拌して触媒を失活させた。得られたポリオキサレートジオール (PHM 〇D_ 2 ;ポリへキサメチレンォキサレートジオール)は、 M力 1963、Τ 力 72°Cであ A glass reactor with an internal volume of 3 L equipped with a stirrer, thermometer and distillation column (with a fractionation tube, reflux head, and condenser at the top of the column) was added DM 1116 g (9.45 monolayer), HDL159 5 g (13. 50 mol), and TBTO. 081 g (weight basis for the total amount of DM〇 and HDL) The reaction was carried out at 170 ° C under normal pressure for 3 hours and further at 170 ° C under 30 OmmHg for 1 hour while distilling methanol. Next, the temperature was raised to 180 ° C and reduced to lOOmmHg for 4 hours, and the temperature was raised to 200 ° C and reduced to lmmHg (133Pa) for 2.5 hours. Finally, TBT and an equimolar amount of dibutyl phosphate were added to the reaction product, and the catalyst was deactivated by stirring at 120 ° C for 2 hours under normal pressure. The resulting polyoxalate diol (PHM ○ D_ 2; polyhexamethylene oxalate diol) has an M force of 1963 and a repulsion force of 72 ° C.
n m  n m
つた。  I got it.
[0071] 〔実施例 1〕  [Example 1]
攪拌機、温度計及び冷却管を装着した内容積 1Lのガラス製反応器に、参考例 1で 得られたポリオキサレートジオール(PHMOD— 1) 25g (0. 0120モル)とポリエチレ ンアジペートジオール(PEAD ;日本ポリウレタン製ニッポラン 4040 ; M = 2047、 T  Into a 1 L glass reactor equipped with a stirrer, thermometer and condenser, 25 g (0.0120 mol) of polyoxalate diol (PHMOD-1) obtained in Reference Example 1 and polyethylene adipate diol (PEAD) ; Nippon polyurethane made of Japanese polyurethane 4040; M = 2047, T
n m n m
=46°C) 25g (0. 0122モル)を仕込み、窒素雰囲気下 100°Cで 1時間攪拌混合した 後、 4, 4ージフエニルメタンジイソシァネート(MDI ;日本ポリウレタン製) 12. lg (0. 0484モル)をカ卩えて同温度で 2時間反応させた。その後、反応液を室温まで放冷し てジメチルホルムアミド(DMF) 139gに完全に解させた。次いで、この溶液を 3°Cに 冷却し、 1, 2—プロピレンジァミン(PDA; DMF10gに溶解させたもの) 1. 79g (0. 0 241モル)をカ卩えて激しく攪拌しながら 5分間反応させ、続いて 50°Cまで昇温して少 しずつ MDIを加えながら反応させ、粘度(50°C)が 11. 6Pa' secになった時点で反 応を終了させた。 = 46 ° C) 25 g (0.0122 mol) was charged and mixed with stirring at 100 ° C for 1 hour in a nitrogen atmosphere. Then, 4,4-diphenylmethane diisocyanate (MDI; made by Nippon Polyurethane) 12. lg (0.0484 mol) was added and reacted at the same temperature for 2 hours. Thereafter, the reaction solution was allowed to cool to room temperature and completely dissolved in 139 g of dimethylformamide (DMF). The solution was then cooled to 3 ° C and 1,2-propylenediamine (PDA; dissolved in 10 g DMF) 1. 79 g (0.0 241 mol) was added and stirred vigorously for 5 min. The reaction was continued, and the temperature was raised to 50 ° C and the reaction was carried out while adding MDI little by little. The reaction was terminated when the viscosity (50 ° C) reached 11.6 Pa'sec.
[0072] 反応終了後、反応液に DMFを加えてポリオキサレートウレタン濃度を 31重量%に 調整し、得られた溶液を離型性のあるガラス板にキャストして、 70°Cで 1時間、次いで 120°Cで 2時間乾燥して約 200 μ mのフィルムを得た。このフィルムを用いてポリオキ サレートウレタンの物性を評価した結果を表 1及び 2に示す。  [0072] After completion of the reaction, DMF was added to the reaction solution to adjust the polyoxalate urethane concentration to 31% by weight, and the resulting solution was cast on a releasable glass plate at 70 ° C for 1 hour. Then, it was dried at 120 ° C. for 2 hours to obtain a film of about 200 μm. Tables 1 and 2 show the results of evaluating the physical properties of polyoxalate urethane using this film.
[0073] 〔実施例 2〕  [Example 2]
PHMOD— 1仕込み量を 15g (0. 0072モノレ)、 PEAD仕込み量を 35g (0. 0171 モノレ)、 MDI使用量を 12. 2g (0. 0486モノレ)(こ変免、 PDA使用量を 1. 80g (0. 02 43モル)に変え、粘度(50°C)が 11. 3Pa' secになった時点で反応を終了させた以 外は、実施例 1と同様に反応を行なった。反応終了後、実施例 1と同様に約 200 x m のフィルムを得てポリオキサレートウレタンの物性を評価した。その結果を表 1及び 2 に示す。 PHMOD— 1 charge 15g (0.0072 monole), PEAD charge 35g (0.0171 monole), MDI usage 12.2g (0.0486 monole) (this change, PDA usage 1. The reaction was carried out in the same manner as in Example 1 except that the reaction was terminated when the viscosity (50 ° C) reached 11.3 Pa'sec after changing to 80 g (0.02 43 mol). After that, about 200 xm as in Example 1. The film was obtained to evaluate the physical properties of polyoxalate urethane. The results are shown in Tables 1 and 2.
[0074] 〔実施例 3〕[Example 3]
^11^〇0_1仕込み量を5§(0.0024モノレ)、 PEAD仕込み量を 45g(0.220モ ノレ)、 MDI使用量を 12.2g(0.0486モノレ)(こ変え、 PDA使用量を 1.81g(0.0244 モル)に変え、粘度(50°C)が 12.4Pa'secになった時点で反応を終了させた以外は 、実施例 1と同様に反応を行なった。反応終了後、実施例 1と同様に約 200 xmのフ イルムを得てポリオキサレートウレタンの物性を評価した。その結果を表 1及び 2に示 す。  ^ 11 ^ 〇0_1 Feeding amount is 5§ (0.0024 monole), PEAD feeding amount is 45g (0.220 monole), MDI usage is 12.2g (0.0486 monole) (changed, PDA usage is 1.81g (0.0244mol) The reaction was carried out in the same manner as in Example 1 except that the reaction was terminated when the viscosity (50 ° C) reached 12.4 Pa'sec, and after the reaction, about 200 An xm film was obtained to evaluate the physical properties of polyoxalate urethane, and the results are shown in Tables 1 and 2.
[0075] 〔実施例 4〕  [Example 4]
PHMOD— 1仕込み量を 25g(0.0120モノレ)に変え、 PEADをポリへキサメチレン セバケートジオール(PHSD;宇部興産製エタナコール 3020; M =3643  PHMOD— 1 feed amount is changed to 25 g (0.0120 monole), PEAD is polyhexamethylene sebacate diol (PHSD; Ube Industries Etanacol 3020; M = 3643
n 、 T =65  n, T = 65
m  m
°C)44g(0.0121モル)に変えた以外は、実施例 1と同様に反応を行なった。反応終 了後、実施例 1と同様に約 200 μ mのフィルムを得てポリオキサレートウレタンの物性 を評価した。その結果を表 1及び 2に示す。  The reaction was conducted in the same manner as in Example 1 except that the temperature was changed to 44 g (0.0121 mol). After completion of the reaction, a film having a thickness of about 200 μm was obtained in the same manner as in Example 1, and the physical properties of polyoxalate urethane were evaluated. The results are shown in Tables 1 and 2.
[0076] 〔実施例 5〕 [Example 5]
PHMOD— 1仕込み量を 5g(0.0024モノレ)に変え、 PEADをポリテトラメチレンェ 一テルグリコール(PTMG;保土谷化学製 PTG2000SN;M =1993  PHMOD— 1 feed amount is changed to 5 g (0.0024 monole), PEAD is polytetramethylene monoterglycol (PTMG; Hodogaya Chemical PTG2000SN; M = 1993
n 、 T =34°C)  n, T = 34 ° C)
m  m
45g(0.0226モノレ) ίこ変免、 MDI使用量を 12.5g(0.050モノレ)(こ変免た以外 ¾;、 実施例 1と同様に反応させて、反応液を DMF140gに完全に溶解させた。次いで、 P DA使用量を 1.85g(0.0250モノレ)に変え、米占度(50°C)力 26.8Pa'secになった 時点で反応を終了させた以外は、実施例 1と同様に反応を行なった。反応終了後、 ポリオキサレートウレタン濃度を 30重量%に調整した以外は、実施例 1と同様に約 20 0 μ mのフィルムを得てポリオキサレートウレタンの物性を評価した。その結果を表 1 及び 2に示す。  45 g (0.0226 monole) ί This change was made and the amount of MDI used was 12.5 g (0.050 monole) (other than this change ¾; the reaction was carried out in the same manner as in Example 1 to completely dissolve the reaction solution in 140 g of DMF. Next, the reaction was completed in the same manner as in Example 1 except that the amount of PDA used was changed to 1.85 g (0.0250 mono) and the reaction was terminated when the rice occupancy (50 ° C) force reached 26.8 Pa'sec. After completion of the reaction, except that the polyoxalate urethane concentration was adjusted to 30% by weight, a film of about 200 μm was obtained in the same manner as in Example 1 to evaluate the physical properties of the polyoxalate urethane. Are shown in Tables 1 and 2.
[0077] 〔実施例 6〕 [Example 6]
実施例 1と同様の反応器に、ポリオキサレートジオール(PHM〇D_l)6g(0.002 9モル)、ポリ力プロラタトンジオール(PCLD;東亜合成製プラクセル 220; M =19 86、 T = 54°C) 54g (0. 0272モノレ)、 1 , 4_ブタンジ才ーノレ(BDL) 2. 73g (0. 03 m In the same reactor as in Example 1, 6 g (0.002 9 mol) of polyoxalate diol (PHM 0 D_l), poly-force prolatatone diol (PCLD; Plaxel 220 manufactured by Toa Gosei); M = 19 86, T = 54 ° C) 54g (0.0272 monole), 1, 4_butangi-nore (BDL) 2. 73g (0.03 m
0モル)、 DMF170gを仕込み、窒素雰囲気下 100°Cで 1時間攪拌混合した後、へキ サメチレンジイソシァネート(HDI ;日本ポリウレタン製) 10. 6g (0. 063モノレ)とジラウ リン酸ジブチルスズ 0. 025gをカ卩えて激しく攪拌しながら反応させた。更に少しずつ HDIを加えながら反応させ、粘度(50°C)が 47. 2Pa' secになった時点で反応を終 了させた。反応終了後、ポリオキサレートウレタン濃度を 25重量%に調整した以外は 、実施例 1と同様に約 200 μ mのフィルムを得てポリオキサレートウレタンの物性を評 価した。その結果を表 1及び 2に示す。  0 mol) and 170 g of DMF, and after stirring and mixing at 100 ° C for 1 hour under a nitrogen atmosphere, hexamethylene diisocyanate (HDI; made by Nippon Polyurethane) 10.6 g (0.063 monore) and dilauric acid Dibutyltin (0.025 g) was added and reacted with vigorous stirring. The reaction was continued while adding HDI little by little, and the reaction was terminated when the viscosity (50 ° C) reached 47.2 Pa'sec. After completion of the reaction, a film of about 200 μm was obtained in the same manner as in Example 1 except that the polyoxalate urethane concentration was adjusted to 25% by weight, and the physical properties of the polyoxalate urethane were evaluated. The results are shown in Tables 1 and 2.
[0078] 〔比較例 1〕  [Comparative Example 1]
実施例 1と同様の反応器にポリオキサレートジオール(PHMOD— l) 40g (0. 019 1モル)を仕込み、窒素雰囲気下 100°Cで 1時間攪拌混合した後、 MDI (日本ポリウ レタン製) 9. 58g (0. 0383モル)を加えて同温度で 2時間反応させた。その後、反応 液を室温まで放冷してジメチルホルムアミド(DMF) 109gに完全に解させた。次いで 、この溶液を 3°Cに冷却し、 PDA(DMF10gに溶解させたもの) 1 · 42g (0. 0191モ ル)を加えて激しく攪拌しながら 5分間反応させ、続いて 60°Cまで昇温して少しずつ MDIを加えながら反応させ、粘度(40°C)が 69. 8Pa' secになった時点で反応を終 了させた。反応終了後、ポリオキサレートウレタン濃度を 30. 3重量%に調整した以 外は、実施例 1と同様に約 200 μ mのフィルムを得てポリオキサレートウレタンの物性 を評価した。その結果を表 1及び 2に示す。  A reactor similar to Example 1 was charged with 40 g (0.019 1 mol) of polyoxalate diol (PHMOD-1), stirred and mixed at 100 ° C for 1 hour in a nitrogen atmosphere, and then MDI (manufactured by Nippon Polyuretan). 9. 58 g (0.0383 mol) was added and reacted at the same temperature for 2 hours. Thereafter, the reaction solution was allowed to cool to room temperature and completely dissolved in 109 g of dimethylformamide (DMF). Next, this solution was cooled to 3 ° C, PDA (dissolved in 10 g of DMF) 1 · 42 g (0.0191 mol) was added, and the mixture was allowed to react for 5 minutes with vigorous stirring. The reaction was carried out while adding MDI little by little, and the reaction was terminated when the viscosity (40 ° C) reached 69.8 Pa 'sec. After the reaction was completed, a film of about 200 μm was obtained in the same manner as in Example 1 except that the polyoxalate urethane concentration was adjusted to 30.3 wt%, and the physical properties of the polyoxalate urethane were evaluated. The results are shown in Tables 1 and 2.
[0079] [表 1] [0079] [Table 1]
T2 引 ¾弾性率 引 ¾強度 破断伸び T2 Pull ¾ Elastic modulus Pull ¾ Strength Breaking elongation
Α成分 * B成分 *  Α component * B component *
CO (MPa) (MPa) (%) 実施 Ml PHMOD-1 (0.01 20〉 PEAD (0.0122) -39 5.61 6.4 845 実施例 2 PHMOD-1 〈ひ 0072〉 PEAD (0.01 71 ) -39 3.81 39.5 670 実施例 3 PH OD-1 〈0.0024〉 PEA0 (0.0220) -41 4.76 51 .3 724 実 ί¾Μ4 PH OD-1 (0.01 20) PHSD (0.01 21 ) -58 4.50 49.0 600 実施例 5 PHM0D-1 (0.0024) PTMG (0.0226) -81 5.1 6 40.7 825 実施例 6 PHMOD-1 (0.0029) FOLD (0.0027) -64 8.90 51.8 830 比校例 1 PH OD-1 (0.01 91 ) ― -29 2.20 32.7 460 CO (MPa) (MPa) (%) Implementation Ml PHMOD-1 (0.01 20) PEAD (0.0122) -39 5.61 6.4 845 Example 2 PHMOD-1 <H 0072> PEAD (0.01 71) -39 3.81 39.5 670 Example 3 PH OD-1 <0.0024> PEA0 (0.0220) -41 4.76 5 .3 724 Actually 4 PH OD-1 (0.01 20) PHSD (0.01 21) -58 4.50 49.0 600 Example 5 PHM0D-1 (0.0024) PTMG ( 0.0226) -81 5.1 6 40.7 825 Example 6 PHMOD-1 (0.0029) FOLD (0.0027) -64 8.90 51.8 830 Comparative example 1 PH OD-1 (0.01 91) ― -29 2.20 32.7 460
*括?!内の数値は仕込みモル数を表し、各成分の *ieは次の通りである。 * Summary ?! The number in the figure represents the number of moles charged. * Ie of each component is as follows.
PH OD-1 : ポリへキサメチレンォキサレートジオール  PH OD-1: Polyhexamethyleneoxalate diol
PEAD: ポリエチレンアジ'ペートジオール  PEAD: Polyethylene Adi'Patediol
PHSD: ポリへキサメチレンセバケ""トジオール  PHSD: Polyhexamethylene Sebake "" Todiol
PT G: ポリデトラメチレンエーテルグリコール  PT G: Polyderamethylene ether glycol
PCし D: ポリカブ αラクトンジオール  PC D: Polycube α-lactone diol
[0080] [表 2][0080] [Table 2]
Figure imgf000019_0001
Figure imgf000019_0001
[0081] 〔参考例 3〕  [0081] [Reference Example 3]
攪拌機、温度計及び冷却管を装着した内容積 5Lのガラス製反応器に参考例 2で 得られたポリオキサレートジオール(PHMOD— 2) 500g (0. 255モル)を仕込み、 窒素雰囲気下 90°Cで溶融させた後、 MDI (日本ポリウレタン製) 359. 3g (l . 436モ ノレ)を加えて同温度で 3時間反応させた。次いで、 BDL107. 5g (l . 193モノレ)をカロ えて激しく攪拌しながら 1分間反応させ、その反応液を直ちにステンレスバット(テフ口 ン (登録商標)製離型フィルムを敷いたもの)に流し込み、そのまま真空下 90。Cで 2時 間キュアさせた。  A 5 L glass reactor equipped with a stirrer, thermometer and cooling tube was charged with 500 g (0.255 mol) of polyoxalate diol (PHMOD-2) obtained in Reference Example 2 in a nitrogen atmosphere, and 90 ° under a nitrogen atmosphere. After melting with C, 359.3 g (l.436 monole) of MDI (manufactured by Nippon Polyurethane) was added and reacted at the same temperature for 3 hours. Next, BDL107.5 g (l.193 monole) was added and reacted for 1 minute with vigorous stirring. The reaction solution was immediately poured into a stainless steel vat (with a Teflon (registered trademark) release film), 90 under vacuum. Cured with C for 2 hours.
[0082] 得られたポリオキサレートウレタン塊状物を破砕し、破砕物 12. 5gとアジペート系熱 可塑性ポリウレタン (パンデッタス T— 1195;大日本インキ化学工業製) 37. 5gをドラ ィブレンドし、次いでバッチ式のブラベンダータイプ二軸混練機により 210°Cで 5分間 溶融混練した(回転数: 60回転 Z分)。得られたポリオキサレートウレタン組成物を神 藤金属工業製圧縮成形機により溶融成形し、 4. 9MPa下 210°Cで約 100 z mのフィ ルムを得てポリオキサレートウレタン組成物の物性を評価した。 [0082] The obtained polyoxalate urethane block was crushed, and 12.5 g of the crushed product and 37.5 g of adipate-based thermoplastic polyurethane (Pandettas T-1195; manufactured by Dainippon Ink and Chemicals, Inc.) Next, the mixture was melt kneaded at 210 ° C. for 5 minutes using a batch Brabender type twin-screw kneader (rotation speed: 60 rotations Z minutes). The resulting polyoxalate urethane composition was melt-molded using a compression molding machine manufactured by Shinfuji Metal Industry Co., Ltd. to obtain a film of about 100 zm at 210 ° C under 4.9 MPa to evaluate the physical properties of the polyoxalate urethane composition. did.
[0083] その結果、 Tがー 33°C、引張弾性率が 55. 2MPa、引張強度が 31. 9MPa、破断 g [0083] As a result, T was -33 ° C, tensile modulus was 55.2 MPa, tensile strength was 31.9 MPa, rupture g
伸びが 300。/。であった。また、耐加水分解特性 (破断伸び保持率)は、 101。/。(1週) 、 105% (2週)、 40% (3週)であり、生分解特性(重量残存率)は、 99. 0% (1週)、 9 7. 3% (2週)、 92. 8% (3週)、 93· 5% (4週)であった。  The growth is 300. /. Met. The hydrolysis resistance (breaking elongation retention) is 101. /. (1 week), 105% (2 weeks), 40% (3 weeks), and biodegradation characteristics (weight survival rate) are 99.0% (1 week), 97.3% (2 weeks), 92. 8% (3 weeks) and 93.5% (4 weeks).
[0084] 〔参考例 4〕 [0084] [Reference Example 4]
アジペート系熱可塑性ポリウレタンをエーテル系熱可塑性ポリウレタン(パンデック ス T— 8190 ;大日本インキ化学工業製)に代えた以外は、参考例 3と同様にフィルム を得てポリオキサレートウレタン組成物の物性を評価した。その結果、 Tがー 48°C、 g  A film was obtained in the same manner as in Reference Example 3 except that the adipate-based thermoplastic polyurethane was replaced with an ether-based thermoplastic polyurethane (Pandex T-8190; manufactured by Dainippon Ink & Chemicals, Inc.). evaluated. As a result, T is -48 ° C, g
引張弾性率が 40. 0MPa、引張強度が 21. OMPa、破断伸びが 350%であった。ま た、耐加水分解特性 (破断伸び保持率)は、 101% (1週)、 105% (2週)、 38% (3週 )であり、生分解特性 (重量残存率)は、 98. 9% (1週)、 97. 1 % (2週)、 92· 6% (3 週)、 93. 3% (4週)であった。  The tensile modulus was 40.0 MPa, the tensile strength was 21 OMPa, and the elongation at break was 350%. The hydrolysis resistance (breaking elongation retention) is 101% (1 week), 105% (2 weeks), 38% (3 weeks), and the biodegradation characteristics (residual weight) are 98. They were 9% (1 week), 97.1% (2 weeks), 92.6% (3 weeks), and 93.3% (4 weeks).
産業上の利用可能性  Industrial applicability
[0085] 本発明により、耐久性(耐加水分解性)に優れると共に生分解特性にも優れ、更に 力学的性質及び熱的性質も一般的な熱可塑性ポリウレタンとして使用するに充分な 性質を有するポリオキサレートウレタンを提供することができる。このため、本発明の ポリオキサレートウレタン及びポリオキサレートウレタン組成物は、成形品、フィルム、 シートなど、優れた生分解性材料として広範に利用することができ、非常に有用であ る。 [0085] According to the present invention, a polyester having excellent durability (hydrolysis resistance) and excellent biodegradability, as well as mechanical properties and thermal properties sufficient for use as a general thermoplastic polyurethane. Oxalate urethane can be provided. For this reason, the polyoxalate urethane and the polyoxalate urethane composition of the present invention can be widely used as excellent biodegradable materials such as molded articles, films and sheets, and are very useful.

Claims

請求の範囲 [1] ポリオキサレートポリオール (A成分)、ポリエステルポリオール、ポリアルキレンエー テルポリオール、ポリヒドロキシカルボン酸ポリオールの少なくとも一つ(B成分)、鎖延 長剤(C成分)、及び、ポリイソシァネートイ匕合物(D成分)を反応させて得られるポリオ キサレートウレタン。 [2] A成分が式(1)で表されるポリオキサレートジオールであり、 B成分が、式(2)で表さ れるポリエステルジオール、式(3)で表されるポリアルキレンエーテルジオール、式(4 )で表されるポリヒドロキシカルボン酸ジオールの少なくとも一つであり、 D成分がジィ ソシァネー H匕合物である、請求項 1記載のポリオキサレートウレタン。 Claims [1] Polyoxalate polyol (component A), polyester polyol, polyalkylene ether polyol, at least one of polyhydroxycarboxylic acid polyol (component B), chain extender (component C), and poly Polyoxalate urethane obtained by reacting isocyanate compound (component D). [2] The A component is a polyoxalate diol represented by the formula (1), the B component is a polyester diol represented by the formula (2), a polyalkylene ether diol represented by the formula (3), a formula 2. The polyoxalate urethane according to claim 1, wherein the polyoxalate urethane is at least one of the polyhydroxycarboxylic acid diols represented by (4), and the D component is a disocene H compound.
[化 1]  [Chemical 1]
H〇+R1OCOCOO- R1OH
Figure imgf000021_0001
H〇 + R 1 OCOCOO- R 1 OH
Figure imgf000021_0001
n  n
(式中、 R1は分岐構造又は脂環式構造を含んでいてもよい炭素数 3〜: 12の二価の 脂肪族炭化水素基を表し、 nは重合度を表す正の整数である。 ) (In the formula, R 1 represents a divalent aliphatic hydrocarbon group having 3 to 12 carbon atoms which may contain a branched structure or an alicyclic structure, and n is a positive integer representing the degree of polymerization. )
[化 2]
Figure imgf000021_0002
[Chemical 2]
Figure imgf000021_0002
(式中、 R2及び R3は分岐構造又は脂環式構造を含んでいてもよい炭素数 2 (In the formula, R 2 and R 3 each have 2 carbon atoms which may contain a branched structure or an alicyclic structure.
二価の脂肪族炭化水素基を表し、 mは重合度を表す正の整数である。 )  It represents a divalent aliphatic hydrocarbon group, and m is a positive integer representing the degree of polymerization. )
[化 3]
Figure imgf000021_0003
[Chemical 3]
Figure imgf000021_0003
(式中、 R4及び R5は、分岐構造を含んでいてもよい、炭素数 2〜6の二価の脂肪族炭 化水素基を表し、 kは重合度を表す正の整数である。 ) (In the formula, R 4 and R 5 represent a divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms, which may include a branched structure, and k is a positive integer representing the degree of polymerization. )
[化 4]
Figure imgf000022_0001
[Chemical 4]
Figure imgf000022_0001
(式中、 R6及び R7は分岐構造を含んでいてもよい炭素数 2〜6の二価の脂肪族炭化 水素基を表し、 jは重合度を表す正の整数である。 ) (Wherein R 6 and R 7 represent a divalent aliphatic hydrocarbon group having 2 to 6 carbon atoms which may contain a branched structure, and j is a positive integer representing the degree of polymerization.)
[3] A成分及び B成分の合計と C成分と D成分の比「(A+B): C:D」がモル基準で 1:0[3] The sum of the A and B components and the ratio of the C and D components “(A + B): C: D” is 1: 0 on a molar basis.
.5:1.5〜: 1:6: 7である、請求項 1又は 2記載のポリオキサレートウレタン。 The polyoxalate urethane according to claim 1 or 2, wherein .5: 1.5 to 1: 6: 7.
[4] A成分と B成分の比「A:B」が重量基準で 5:95〜95:5である、請求項 3記載のポリ 才キサレートウレタン。 4. The polyxalate urethane according to claim 3, wherein the ratio “A: B” of the A component to the B component is 5:95 to 95: 5 on a weight basis.
[5] A成分及び B成分の数平均分子量がそれぞれ 500〜5000の範囲である、請求項 [5] The number average molecular weight of each of component A and component B is in the range of 500 to 5,000.
1又は 2記載のポリオキサレートウレタン。 The polyoxalate urethane according to 1 or 2.
PCT/JP2007/050259 2006-01-12 2007-01-11 Polyoxalate urethane WO2007080929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007553932A JP5380841B2 (en) 2006-01-12 2007-01-11 Polyoxalate urethane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006004713 2006-01-12
JP2006-004713 2006-01-12

Publications (1)

Publication Number Publication Date
WO2007080929A1 true WO2007080929A1 (en) 2007-07-19

Family

ID=38256334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050259 WO2007080929A1 (en) 2006-01-12 2007-01-11 Polyoxalate urethane

Country Status (3)

Country Link
JP (1) JP5380841B2 (en)
TW (1) TW200738768A (en)
WO (1) WO2007080929A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203404A (en) * 2008-02-29 2009-09-10 National Institute Of Advanced Industrial & Technology Biodegradable material rich in flexibility, and method for producing the same
US20140058011A1 (en) * 2008-02-13 2014-02-27 Jotun A/S Antifouling composition
JP2015204353A (en) * 2014-04-14 2015-11-16 株式会社オートネットワーク技術研究所 reactor and cast resin
JP2019034385A (en) * 2017-08-18 2019-03-07 富士紡ホールディングス株式会社 Polishing pad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145283A (en) * 1992-11-09 1994-05-24 Unitika Ltd Biodegradable polymer
JPH06157703A (en) * 1992-11-17 1994-06-07 Nippon Kayaku Co Ltd Thermoplastic aliphatic polyester and its modified material
WO2003064497A1 (en) * 2002-01-30 2003-08-07 Kyowa Hakko Chemical Co., Ltd. Polyester
JP2003335837A (en) * 2002-05-22 2003-11-28 Ube Ind Ltd Polyester urethane
JP2003335838A (en) * 2002-05-22 2003-11-28 Ube Ind Ltd Polyester carbonate urethane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10063497A1 (en) * 2000-12-20 2002-07-04 Bayer Ag Polyurethane elastomers with improved hydrolysis stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145283A (en) * 1992-11-09 1994-05-24 Unitika Ltd Biodegradable polymer
JPH06157703A (en) * 1992-11-17 1994-06-07 Nippon Kayaku Co Ltd Thermoplastic aliphatic polyester and its modified material
WO2003064497A1 (en) * 2002-01-30 2003-08-07 Kyowa Hakko Chemical Co., Ltd. Polyester
JP2003335837A (en) * 2002-05-22 2003-11-28 Ube Ind Ltd Polyester urethane
JP2003335838A (en) * 2002-05-22 2003-11-28 Ube Ind Ltd Polyester carbonate urethane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140058011A1 (en) * 2008-02-13 2014-02-27 Jotun A/S Antifouling composition
US9546283B2 (en) * 2008-02-13 2017-01-17 Jotun A/S Antifouling composition
JP2009203404A (en) * 2008-02-29 2009-09-10 National Institute Of Advanced Industrial & Technology Biodegradable material rich in flexibility, and method for producing the same
JP2015204353A (en) * 2014-04-14 2015-11-16 株式会社オートネットワーク技術研究所 reactor and cast resin
JP2019034385A (en) * 2017-08-18 2019-03-07 富士紡ホールディングス株式会社 Polishing pad

Also Published As

Publication number Publication date
JPWO2007080929A1 (en) 2009-06-11
JP5380841B2 (en) 2014-01-08
TW200738768A (en) 2007-10-16

Similar Documents

Publication Publication Date Title
CN104837885B (en) The manufacture of New Thermoplastic Elastic Urethane body based on polyether carbonate polyol and purposes
TWI276643B (en) A process for the preparation of soft, low-shrinkage, thermoplastic polyurethane elastomers which can be easily released from the mold
US20060293487A1 (en) Polyurethanes, polyurethaneureas and polyureas and use thereof
CA2168938C (en) A thermoplastic polyurethane resin
EP1141064B1 (en) A process for preparing a thermoplastic polyurethane composition and the composition so prepared
US20100087593A1 (en) Resin composition comprising thermoplastic polyurethane, and hot melt adhesive
US20060047083A1 (en) Triblock copolymers and their production methods
US20100113734A1 (en) Process for producing polylactide-urethane copolymers
WO2005116102A1 (en) Polyurethane elastomer and method for producing same
US20050288476A1 (en) Thermoplastic copolymers through stoichiometric reactions between diisocyanates and oligomeric diols and diamines
US10435501B2 (en) Thermoplastic polyurethanes, production and use thereof
JP2002293872A (en) Aliphatic thermoplastic polyurethane and usage thereof
EP2066719A1 (en) Polylactide-urethane copolymers
US20220282022A1 (en) Method for producing thermoplastically processable polyurethane polymers
KR100347502B1 (en) Cycloaliphatic Thermoplastic Polyurethane Elastomer
WO2007080929A1 (en) Polyoxalate urethane
US6022939A (en) Thermoplastic polyurethanes with improved melt flow
JP5263471B2 (en) Biodegradable elastomer and method for producing the same
JP4045857B2 (en) Polyester carbonate urethane
AU653485B2 (en) Elastomers based on 4,4-diisocyanato dicyclohexylmethane enriched in the trans, trans isomer which contain essentially no chain extenders
JPS6366218A (en) Production of thermoplastic polyurethane
US20220025097A1 (en) Continuous production of a ppg-based tpu
JP2011213866A (en) Chain extender, method for producing the same, and thermoplastic polyurethane resin
JP4962085B2 (en) Polyoxalate polyol and polyoxalate urethane derived therefrom
JP2003335837A (en) Polyester urethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007553932

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706606

Country of ref document: EP

Kind code of ref document: A1