WO2007079817A1 - Keratinhaltige stylingmittel - Google Patents

Keratinhaltige stylingmittel Download PDF

Info

Publication number
WO2007079817A1
WO2007079817A1 PCT/EP2006/011175 EP2006011175W WO2007079817A1 WO 2007079817 A1 WO2007079817 A1 WO 2007079817A1 EP 2006011175 W EP2006011175 W EP 2006011175W WO 2007079817 A1 WO2007079817 A1 WO 2007079817A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
keratin
composition according
copolymer
weight
Prior art date
Application number
PCT/EP2006/011175
Other languages
English (en)
French (fr)
Inventor
Thorsten Knappe
Sabine Albrechtsen
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Priority to AU2006334896A priority Critical patent/AU2006334896A1/en
Priority to EP06818722A priority patent/EP1978920A1/de
Publication of WO2007079817A1 publication Critical patent/WO2007079817A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8147Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/8141Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • A61K8/8152Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • A61K8/817Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions or derivatives of such polymers, e.g. vinylimidazol, vinylcaprolactame, allylamines (Polyquaternium 6)
    • A61K8/8182Copolymers of vinyl-pyrrolidones. Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/06Preparations for styling the hair, e.g. by temporary shaping or colouring

Definitions

  • the present invention relates to keratinous agents for the temporary deformation of keratinous fibers, and to the use of high molecular weight keratins in temporary keratinous fiber softening agents for hair styling improvement.
  • all animal hair e.g. Wool, horsehair, angora hair, furs, feathers and products or textiles made from them.
  • the keratinic fibers are human hairs.
  • Corresponding temporary shaping agents usually contain synthetic polymers as the shaping component.
  • Preparations containing a dissolved or dispersed polymer can be applied to the hair by means of propellant gases or by a pumping mechanism.
  • hair gels and hair waxes are generally not applied directly to the hair, but distributed by means of a comb or hands in the hair.
  • the most important property of a composition for the temporary deformation of keratinous fibers is to give the treated fiber as strong a hold as possible in the produced form.
  • the keratin fibers are human hair, it is also known as a strong hairstyle.
  • the hairstyle hold is essentially determined by the type and amount of the film-forming and / or setting polymer used.
  • a polymer must be used be that trains very hard movies.
  • these films are very brittle, so they break easily and peel off the fiber.
  • a correspondingly large amount of film-forming polymer is needed.
  • residues are often visible in the hair. Both effects, ie the flaking off of film flakes that remain in the hair or trickle down on the user's shoulders and clothing, and the visible residue in the hair, are highly undesirable.
  • the object of the present invention was therefore to provide a means for the temporary deformation of keratinic fibers, which is characterized by improved setting performance, while maintaining flexibility, elasticity and plasticity of the polymer film, so that the described negative effects are avoided.
  • a first subject of the present invention is therefore an agent for the temporary deformation of keratinous fibers, contained in a cosmetically acceptable carrier
  • the properties of the mixture usually result from the combination of the polymer properties in the appropriate mixing ratio.
  • the compositions according to the invention are distinguished by the fact that a synergistic increase of the hairstyle hair is achieved by admixing a keratin of high molecular weight to the film-forming and / or setting polymer, wherein flexibility, elasticity and plasticity are almost retained. This allows the formulation of styling products, which have a higher degree of hold with the same amount of used film-forming and / or setting polymer, or achieve a consistent degree of holding with a smaller amount of film-forming and / or setting polymer.
  • EP 0 052 441 B1 discloses the use of keratin Dehvaten in hair rinses.
  • the keratin derivatives are used as conditioning agents because of their nourishing properties.
  • An application in styling agents is not mentioned.
  • compositions according to the invention comprise 0.05 to 5% by weight of at least one keratin with a molecular weight of 40 to 70 kDa, the molecular weight being determined by means of sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
  • Keratin is understood here as structural proteins which form the intermediate filaments in epithelial and epidermis cells, the so-called keratinocytes, as constituents of the cytoskeleton and the resulting horny substances of the skin and skin appendages, especially hair, scales, wool, feathers, nails and Hooves, make out.
  • the keratins can be obtained from natural sources or produced recombinantly.
  • the agent contains at least one keratin having a molecular weight of 40 to 65 kDa, preferably 40 to 60 kDa.
  • the keratins may contain several hundred to a thousand amino acids.
  • the agents contain keratin having 200 to 500 amino acids, preferably 250 to 450 amino acids, more preferably 275 to 400 amino acids.
  • keratins which have a content of L-cysteine of 2 to 6 mol%, preferably 4 to 5 mol%. Particularly preferred are keratins containing 2 to 6 mol% of L-cysteine, 1 to 40 mol% of glycine and 1 to 30% by weight of serine.
  • the agent contains the keratin in an amount of 0.1 to 4 wt .-%, preferably from 0.3 to 3 wt .-%, particularly preferably from 0.5 to 1 wt .-%.
  • the percentages in each case relate to the weight of the entire composition.
  • composition according to the invention furthermore contains 0.1 to 20% by weight, based on the total agent, of at least one film-forming and / or setting polymer.
  • the film-forming and / or setting polymer is preferably contained in the composition in an amount of from 0.5 to 15% by weight, more preferably from 1 to 10% by weight, based on the total agent. Of course, several film-forming and / or setting polymers may be included.
  • film-forming and / or setting polymers may be both permanent and temporary cationic, anionic, nonionic or amphoteric.
  • the present invention also encompasses the recognition that when using at least two film-forming and / or setting polymers, these of course differ May have charges. It may be preferred according to the invention for an ionic film-forming and / or setting polymer to be used together with an amphoteric and / or nonionic film-forming and / or setting polymer. The use of at least two oppositely charged film-forming and / or setting polymers is also preferred. In the latter case, a particular embodiment may in turn additionally contain at least one further amphoteric and / or nonionic film-forming and / or setting polymer.
  • Film-forming polymers are polymers which leave a continuous film on the skin, the hair or the nails when drying.
  • Such film formers can be used in a wide variety of cosmetic products, such as for example face masks, make-up, hair fixatives, hair sprays, hair gels, hair waxes, hair treatments, shampoos or nail varnishes.
  • Particular preference is given to those polymers which have sufficient solubility in alcohol or water / alcohol mixtures in order to be present in completely completely dissolved form in the agent according to the invention.
  • the film-forming polymers may be of synthetic or natural origin.
  • film-forming polymers are understood as meaning polymers which, when used in 0.01 to 20% strength by weight aqueous, alcoholic or aqueous-alcoholic solution, are capable of depositing a transparent polymer film on the hair.
  • the film-forming polymers may be anionic, amphoteric, nonionic, permanent cationic or temporarily cationically charged.
  • Suitable synthetic, film-forming, hair-fixing polymers are homopolymers or copolymers which are composed of at least one of the following monomers: vinylpyrrolidone, vinylcaprolactam, vinyl esters such as vinyl acetate, vinyl alcohol, acrylamide, methacrylamide, alkyl and dialkylacrylamide, alkyl and dialkylmethacrylamide, alkyl acrylate, Alkyl methacrylate, propylene glycol or ethylene glycol, wherein the alkyl groups of these monomers are preferably C 1 - to C 7 alkyl groups, more preferably C 1 - to C 3 alkyl groups.
  • Examples include homopolymers of vinylcaprolactam, vinylpyrrolidone or N-vinylformamide.
  • Suitable synthetic film-forming, hair-fixing polymers are copolymers of vinyl pyrrolidone and vinyl acetate, terpolymers of vinylpyrrolidone, vinyl acetate and vinyl propionate, polyacrylamides, for example, under the trade designations Akypomine ® P 191 by the company CHEM-Y, Emmerich or Sepigel ® 305 by the company Seppic be distributed; Which are marketed under the trade names Elvanol.RTM ® from DuPont or Vinol ® 523/540 by Air Products polyvinyl alcohols as well as polyethylene glycol / polypropylene glycol copolymers, for example, under the trade names Ucon ® Union Carbide sold.
  • Suitable natural film-forming polymers include cellulose derivatives, eg. B. hydroxypropyl cellulose having a molecular weight of 30,000 to 50,000 g / mol, which is sold for example under the trade name Nisso Sl ® from Lehmann & Voss, Hamburg.
  • Firming polymers contribute to the maintenance and / or build-up of the hair volume and hair fullness of the overall hairstyle.
  • These so-called setting polymers are at the same time film-forming polymers and therefore generally typical substances for shaping hair treatment compositions such as hair fixatives, hair foams, hair waxes, hair sprays.
  • the film formation can be quite selective and connect only a few fibers.
  • Substances which further impart hydrophobic properties to the hair are preferred because they reduce the tendency of the hair to absorb moisture, that is, water. As a result, the limp drooping of the strands of hair is reduced, thus ensuring a long-lasting hairstyle structure and preservation.
  • the test method for this is often the so-called curl retention test applied.
  • These polymeric substances can also be successfully incorporated into leave-on and rinse-off hair treatments or shampoos. Since polymers are often multifunctional, that is, show several applications-wise desirable effects, numerous polymers can be found in several groups on the mode of action, as well as in the CTFA Handbook. Because of the importance of polymers in particular, they should therefore be listed explicitly in the form of their INCI names. In this list of polymers preferably to be used according to the invention, it will be obvious, of course, that the above-mentioned film-forming polymers are again used.
  • Examples of common film-forming, setting polymers are Acrylamide / Ammonium Acrylate Copolymer, Acrylamide / DMAPA Acrylates / Methoxy PEG Methacrylate Copolymer, Acrylamidopropyltrimonium Chloride / Acrylamide Copolymer, Acrylamidopropyltrimonium Chloride / Acrylates Copolymer, Acrylates / Acetoacetoxyethyl Methacrylate Copolymer, Acrylates / Acrylamide Copolymer, Acrylates / Ammonium Methacrylate Copolymer, Acrylates / t-Butylacrylamide Copolymer, Acrylates Copolymer, Acrylates / CI-2 Succinates / Hydroxyacrylates Copolymer, Acrylates / Lauryl Acrylates / Stearyl Acrylates / Ethylamine Oxide Methacrylate Copolymer, Acrylates / Octylacrylamide Copolymer
  • a particularly pronounced improvement in hairstyle hold can be achieved when the keratin is used in combination with a film-forming and / or setting polymer which forms brittle, hard polymer films.
  • a film-forming and / or setting polymer which forms brittle, hard polymer films.
  • appropriate film-forming and / or setting polymers are used.
  • the agent according to the invention therefore preferably comprises at least one film-forming and / or setting polymer selected from
  • Vinylpyrrolidone-vinyl acetate copolymers vinylpyrrolidone-vinylcaprolactam-dimethylaminopropylacrylamide copolymers,
  • composition according to the invention particularly preferably contains, as a film-forming and / or setting polymer, an aminomethylpropanol salt of a copolymer of allyl methacrylate with one or more monomers selected from acrylic acid, methacrylic acid, acrylic ester and methacrylate ester.
  • the acrylic esters and methacrylates mentioned are preferably C 1 -C 2 -alkyl acrylates and C 1 -C 4 -alkyl methacrylates, more preferably methyl acrylate, ethyl acrylate, propyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate and mixtures thereof.
  • a preferred vinylpyrrolidone-vinyl acetate copolymer is the PVP / VA copolymer 60-40 W (INCI name: VP / VA copolymer, Aqua, Laurtrimonium Chloride).
  • the vinylpyrrolidone-vinylcaprolactam / dimethylaminopropylacrylamide copolymer used is preferably the copolymer obtainable from ISP under the name Aquaflex SF 40 and having the INCI name VP / vinyl caprolactam / DMAPA acrylates copolymer.
  • a preferred copolymer of the Octylacrylamids with t-butylaminoethyl methacrylate and two or more monomers selected from acrylic acid, methacrylic acid, acrylate and methacrylate esters, is that available from National Starch under the name Amphomer ® copolymer with the INCI name octylacrylamide / acrylates butylaminoethyl methacrylate copolymer.
  • the agent according to the invention also contains at least one protein hydrolyzate and / or one of its derivatives.
  • Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • the term protein hydrolyzates also means total hydrolyzates as well as individual amino acids and their derivatives as well as mixtures of different amino acids.
  • polymers made up of amino acids and amino acid derivatives are understood by the term protein hydrolyzates. The latter include, for example, polyalanine, polyasparagine, polyserine, etc.
  • L-alanyl-L-proline polyglycine, glycyl-L-glutamine or D / L-methionine-S-methylsulfonium chloride.
  • ⁇ -amino acids and their derivatives such as ⁇ -alanine, anthranilic acid or hippuric acid can also be used.
  • the molecular weight of the protein hydrolysates which can be used according to the invention is between 75, the molecular weight for glycine, and 200,000, preferably the molecular weight is 75 to 50,000 and very particularly preferably 75 to 20,000 daltons.
  • protein hydrolysates of both vegetable and animal or marine or synthetic origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Such products are, for example, under the trademarks Dehylan ® (Cognis), Promois® ® (Interorgana) Collapuron ® (Cognis), Nutrilan® ® (Cognis), Gelita-Sol ® (German Gelatinefabriken Stoess & Co), Lexein ® (Inolex) sericin (Pentapharm) and kerasol tm ® (Croda) sold.
  • silk protein hydrolysates By silk one understands the fibers of the cocoon of the mulberry silkworm (Bombyx mori L.).
  • the raw silk fiber consists of a double thread fibroin.
  • sericin holds this double thread together.
  • Silk consists of 70-80% by weight of fibroin, 19-28% by weight of sericin, 0.5-1% by weight of fat and 0.5-1% by weight of dyes and mineral constituents.
  • the essential components of sericin are with about 46 wt.% Hydroxyamino acids.
  • the sericin consists of a group of 5 to 6 proteins.
  • the essential amino acids of sericin are serine (Ser, 37% by weight), aspartate (Asp, 26% by weight), glycine (Gly 1 17% by weight), alanine (Ala), leucine (Leu) and tyrosine (Tyr) ,
  • the water-insoluble fibroin is to be counted among the skieroproteins with langkertiger molecular structure.
  • the main components of the fibroin are glycine (44% by weight), alanine (26% by weight), and tyrosine (13% by weight).
  • Another important structural feature of the fibroin is the hexapeptide sequence Ser-Gly-Ala-Gly-Ala-Gly.
  • sericin and fibroin are known as raw materials for use in cosmetic products each by itself.
  • protein hydrolysates and derivatives based on the respective individual silk proteins are known raw materials in cosmetic products.
  • sericin as such is available from Pentapharm ltd. sold as a commercial product called Sericin Code 303-02.
  • fibroin is offered as a protein hydrolyzate with different molecular weights in the market. These hydrolyzates are sold especially as "silk hydroylates".
  • Silk hydroylates Thus hydrolyzed fibroin having average molecular weights from 350 to 1000, for example, sold under the trade name Promois ® Siik.
  • A1 colloidal fibroin solutions are described as an additive in cosmetic products.
  • an active substance complex consisting of the active ingredient (A1) selected from sericin, sericin hydrolysates and / or derivatives thereof, and mixtures thereof, and an active ingredient (A2) selected from fibroin, and / or Fibroinhydrolysaten and / or derivatives thereof and / or mixtures thereof.
  • the active ingredient complex (A) used according to the invention significantly synergistically improves the above-described essential internal and external structural features and the strength and elasticity of human hair.
  • active ingredients (A1) it is possible to use in the active ingredient complex (A): native sericin, hydrolyzed and / or further derivatized sericin, such as commercial products with the INCI names Sericin, Hydrolyzed Sericin, or Hydrolyzed SiIk, a mixture of the amino acids serine, aspartate and glycine and / or their methyl, propyl, iso-propyl, butyl, iso-butyl esters, their salts such as hydrochlorides, sulfates, acetates, citrates, tartrates, in which mixture the serine and / or its Derivatives to 20 to 60 wt.%, The aspartate and / or its derivatives to 10 - 40 wt.% And the glycine and / or its derivatives to 5 to 30 wt.% Are included, with the proviso that the amounts of these Amino acids and / or their derivatives preferably add up to 100 wt.%,
  • active ingredients (A2) can be used in the active ingredient complex (A): native, converted into a soluble form fibroin, hydrolyzed and / or further derivatized fibroin, particularly partially hydrolyzed fibroin, which contains as its main component the amino acid sequence Ser-Gly-Ala-Gly-Ala Gly, the amino acid sequence Ser-Gly-Ala-Gly-Ala-Gly, a mixture of the amino acids glycine, alanine and tyrosine and / or their methyl, propyl, iso-propyl, butyl, iso-butyl esters, their salts such as hydrochlorides, sulfates, acetates, citrates, tartrates, wherein in this mixture, the glycine and / or its derivatives in amounts of 20- 60 wt.%, The alanine and its derivatives in amounts of 10 - 40 wt%, and the tyrosine and its derivatives are contained in amounts of
  • Particularly good nourishing properties can be achieved if one of the two active ingredient components of the active ingredient complex (A) is used in the native or at most solubilized form. It is also possible to use a mixture of several active substances (A1) and / or (A2).
  • the two active compounds (A1) and (A2) in the ratio of 10:90 to 70:30, in particular 15:85 to 50:50 and very particularly 20:80 to 40:60, based on their respective Contents of active substance in the products of the invention can be used.
  • the derivatives of sericin and fibroin hydrolysates include both anionic and cationized protein hydrolysates.
  • the protein hydrolyzates of sericin and fibroin and the derivatives prepared therefrom can be obtained from the corresponding proteins by chemical, in particular alkaline or acid hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • the hydrolysis of proteins usually results in a protein hydrolyzate having a molecular weight distribution of about 100 daltons up to several thousand daltons. Preference is given to those protein hydrolysates of sericin and fibroin and / or derivatives thereof, whose underlying protein content has a molecular weight of 100 to 25,000 daltons, preferably 250 to 10,000 daltons.
  • cationic protein hydrolysates of sericin and fibroin also mean quaternized amino acids and mixtures thereof.
  • the quaternization of the protein hydrolysates or amino acids is often performed by means of quaternary ammonium salts such as N 1 N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) -ammoniumhalogeniden performed.
  • the cationic protein hydrolysates may also be further derivatized.
  • the cationic protein hydrolysates and derivatives which can be used according to the invention, those mentioned under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, NW, Suite 300, Washington, DC 20036-4702) and commercially available products: Cocodimonium Hydroxypropyl Hydrolyzed Silica, Cocodimonium Hydroxypropyl Silica, Amino Acids, Hydroxyproypltrimonium Hydrolyzed Silica, Lauryldimonium Hydroxypropyl Hydrolyzed Silica, Steardimonium Hydroxypropyl Hydrolyzed Silica, Quaternium 79 Hydrolyzed Silica.
  • anionic protein hydrolysates and derivatives according to the invention those mentioned under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, NW, Suite 300 Potassium cocoyl hydrolyzed silica, sodium lauroyl hydrolyzed silica or sodium stearoyl hydrolyzed silica.
  • the derivatives of sericin and fibroin which can be used according to the invention, mention may be made of the products commercially available under the INCI names: Ethyl Ester of Hydrolyzed SiIk and Hydrolyzed SiIk PG-Propyl Methylsilanediol.
  • Palmitoyl Oligopeptide Palmitoyl Pentapeptide-3, Palmitoyl Pentapeptide-2, Acetyl Hexapeptide-1, Acetyl Hexapeptide-3, Copper Tripeptide-1, Hexapeptide-1 , Hexapeptide-2, MEA-Hydrolyzed SiIk.
  • the effect of the active ingredient complex (A) can be further increased by the addition of fatty substances.
  • Fatty substances are to be understood as meaning fatty acids, fatty alcohols, natural and synthetic waxes, which may be in solid form as well as liquid in aqueous dispersion, and natural and synthetic cosmetic oil components.
  • Protein hydrolysates of vegetable origin eg. As soybean, almond, pea, potato and wheat protein hydrolysates are, for example, under the trademarks Gluadin ® (Cognis), DiaMin ® (Diamalt), Lexein ® (Inolex), Hydrosoy ® (Croda), Hydrolupin ® (Croda) , hydro Sesame ® (Croda), Hydro tritium ® (Croda) and Crotein ® (Croda) available.
  • protein hydrolysates Although the use of the protein hydrolysates is preferred as such, amino acid mixtures otherwise obtained may be used in their place, if appropriate. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their Fatty acid condensation products. Such products are sold for example under the names Lamepon ® (Cognis), Lexein ® (Inolex), Crolastin ® (Croda), Crosilk ® (Croda) or Crotein ® (Croda).
  • the protein hydrolysates are present in the agents according to the invention, for example, in concentrations of from 0.01% by weight to 20% by weight, preferably from 0.05% by weight up to 15% by weight and very particularly preferably in amounts of 0.05% by weight. % up to 5% by weight, in each case based on the total application preparation.
  • the agent according to the invention particularly preferably contains as protein hydrolyzate a Kertain hydrolyzate, a Kertainhydrolysat having a molecular weight of 2 to 6 kDa, preferably from 3 to 4 kDa, determined by size exclusion HPLC, is preferred.
  • the agent preferably contains the Kertainhydrolysat in an amount of 0.01 to 1 wt .-%, particularly preferably from 0.02 to 0.8 wt .-%, each based on the total agent.
  • keratin and keratin hydrolyzate are used together as a mixture. Suitable mixtures are commercially available.
  • the composition of the invention contains the product available from Croda, Keratec IFP, an aqueous mixture derived from sheep wool containing about 5% by weight of keratin and about 1% by weight of keratin hydrolyzate.
  • the agent may further contain at least one care substance.
  • the care substance is preferably at least one silicone oil and / or one silicone gum.
  • Silicone oils or silicone gums which are suitable according to the invention are in particular dialkyl and alkylaryl siloxanes, for example dimethylpolysiloxane and methylphenylpolysiloxane, and also their alkoxylated, quaternized or else anionic derivatives. Preference is given to cyclic and linear polydialkylsiloxanes, their alkoxylated and / or aminated derivatives, dihydroxypoly-dimethylsiloxanes and polyphenylalkylsiloxanes. Silicone oils cause a wide variety of effects. For example, at the same time they influence the dry and wet combability, the grip of dry and wet hair and the shine.
  • silicone oils is understood by the person skilled in the art as meaning several structures of silicon-organic compounds. Initially, these are understood to mean the dimethiconols (S1). These may be both linear and branched as well as cyclic or cyclic and branched. Linear dimethiconols can be represented by the following structural formula (S1-I):
  • Branched dimethiconols can be represented by the structural formula (S1-II):
  • the radicals R 1 and R 2 are each independently hydrogen, a methyl radical, a C 2 to C 30 linear, saturated or unsaturated hydrocarbon radical, a phenyl radical and / or an aryl radical.
  • the groups represented by R 1 and R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, neopentyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, 4-
  • the numbers x, y and z are integers and each independently run from 0 to 50,000.
  • the molecular weights of the dimethiconols are between 1,000 D and 10000000 D.
  • the viscosities are between 100 and 10,000,000 cPs measured at 25 0 C by means of a glass capillary viscometer according to Dow Corning Corporate Test Method CTM 0004 dated 20 July 1970.
  • Preferred viscosities are 1000-5000000 cPs, most preferred viscosities are between 10,000 and 3,000,000 cps. The most preferred range is between 50,000 and 2,000,000 cps.
  • Examples of such products include the following commercial products: Botanisil NU-150M (Botanigenics), Dow Coming 1-1254 Fluid, Dow Corning 2-9023 Fluid, Dow Corning 2-9026 Fluid, Ultrapure Dimethiconol (Ultra Chemical), Unisil SF- R (Universal Preserve), X-21-5619 (Shin-Etsu Chemical Co.), Abil OSW 5 (Degussa Care Specialties), ACC DL-9430 Emulsion (Taylor Chemical Company), AEC Dimethiconol & Sodium Dodecylbenzenesulfonate (A & E Connock (Perfumery & Cosmetics) Ltd.), BC Dimethiconol Emulsion 95 (Basildon Chemical Company, Ltd.), Cosmetic Fluid 1401, Cosmetic Fluid 1403, Cosmetic Fluid 1501, Cosmetic Fluid 1401 DC (all aforementioned Chemsil Silicones, Inc.), Dow Corning 1401 Fluid, Dow Corning 1403 Fluid, Dow Corning 1501 Fluid, Dow Corning 1784 HVF
  • Dimethicones form the second group of silicones which may be present according to the invention. These may be both linear and branched as well as cyclic or cyclic and branched. Linear dimethicones can be represented by the following structural formula (S2-I):
  • Branched dimethicones can be represented by the structural formula (S2 - II):
  • the radicals R 1 and R 2 are each independently hydrogen, a methyl radical, a C 2 to C 30 linear, saturated or unsaturated hydrocarbon radical, a phenyl radical and / or an aryl radical.
  • the groups represented by R 1 and R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, neopentyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals, such as cyclobutyl, cyclopentyl, cyclohexyl and similar; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, 4-
  • the numbers x, y and z are integers and each run independently from 0 to 50,000.
  • the molecular weights of Dimethicone lie between 1,000 D and 10000000 D.
  • the viscosities are between 100 and 10,000,000 cPs measured at 25 0 C by means of a glass capillary viscometer according to Dow Corning Corporate Test Method CTM 0004 dated 20 July 1970.
  • Preferred viscosities are 1000-5000000 cPs, particularly preferred viscosities are between 10,000 and 3,000,000 cps. Most preferably, the viscosity is in the range between 50,000 and 200,000 cps.
  • Dimethicone copolyols (S3) form another group of silicones that are suitable. Dimethicone copolyols can be represented by the following structural formulas:
  • Branched dimethicone copolyols can be represented by the structural formula (S3-III):
  • the radicals R 1 and R 2 are each independently hydrogen, a methyl radical, a C 2 to C 30 linear, saturated or unsaturated hydrocarbon radical, a phenyl radical and / or an aryl radical.
  • the groups represented by R 1 and R 2 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, neopentyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals, such as vinyl, halovinyl, Alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl,
  • PE stands for a polyoxyalkylene radical.
  • Preferred polyoxyalkylene radicals are derived from ethylene oxide, propylene oxide and glycerol.
  • the numbers x, y and z are integers and each run independently from 0 to 50,000.
  • the molecular weights of Dimethicone lie between 1,000 D and 10000000 D.
  • the viscosities are between 100 and 10,000,000 cPs measured at 25 0 C by means of a glass capillary viscometer according to Dow Corning Corporate Test Method CTM 0004 dated 20 July 1970.
  • Preferred viscosities are 1000-5000000 cPs, most preferred viscosities are between 10,000 and 3,000,000 cps. The most preferred range is between 50,000 and 2,000,000 cps.
  • dimethicone copolyols are commercially available and are sold, for example, by Dow Corning under the name Dow Corning® 5330 Fluid.
  • the teaching according to the invention also encompasses the fact that the dimethiconols, dimethicones and / or dimethicone copolymers can already be present as an emulsion.
  • the corresponding emulsion of dimethiconols, dimethicones and / or dimethicone copolyols can be prepared both after the preparation of the corresponding dimethiconols, dimethicones and / or dimethicone copolyols from these and the conventional methods of emulsification known to the person skilled in the art.
  • both cationic, anionic, nonionic or zwitterionic surfactants and emulsifiers can be used as auxiliaries for the preparation of the corresponding emulsions.
  • the emulsions of dimethiconols, dimethicones and / or dimethicone copolyols can also be prepared directly by an emulsion polymerization process.
  • Such methods are also well known to the person skilled in the art. For example, reference may be made to the Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, pages 204 to 308, John Wiley & Sons, Inc. 1989. This reference is expressly incorporated herein by reference.
  • the droplet size of the emulsified particles is according to the invention 0.01 to 10000 microns, preferably 0.01 to 100 .mu.m, more preferably 0.01 to 20 microns and most preferably 0 , 01 to 10 ⁇ m.
  • the particle size is determined by the method of light scattering. If branched dimethiconols, dimethicones and / or dimethicone copolyols are used, it is to be understood that the branching is greater than a random branching, which occurs randomly due to impurities of the respective monomers.
  • branched dimethiconols, dimethicones and / or dimethicone copolyols are therefore to be understood as meaning that the degree of branching is greater than 0.01%.
  • a degree of branching is greater than 0.1%, and most preferably greater than 0.5%.
  • the degree of branching is determined from the ratio of the unbranched monomers to the branching monomers, that is, the amount of tri- and tetrafunctional siloxanes.
  • both low-branched and highly branched dimethiconols, dimethicones and / or dimethicone copolyols can be very particularly preferred.
  • Suitable silicones are furthermore amino-functional silicones (S4), in particular the silicones which are grouped under the INCI name amodimethicones. These are silicones which have at least one, optionally substituted, amino group.
  • Such silicones may e.g. by the formula (S4-I)
  • R in the above formula is a hydrocarbon or a hydrocarbon group having from 1 to about 6 carbon atoms
  • Q is a polar group of the general formula -R 1 Z wherein R 1 is a divalent linking group attached to hydrogen and Z is an organic, amino-functional radical containing at least one amino-functional group, carbon and hydrogen atoms, carbon, hydrogen and oxygen atoms or carbon, hydrogen and nitrogen atoms;
  • "a” assumes values in the range of about 0 to about 2
  • "b” assumes values in the range of about 1 to about 3
  • "a” + "b” is less than or equal to 3
  • "c” is a number in the range from about 1 to about 3
  • x is a number ranging from 1 to about 2,000, preferably from about 3 to about 50, and most preferably from about 3 to about 25
  • y is a number ranging from about 20 to about 10,000 , preferably from about 125 to about 10,000, and most preferably from about 150 to about 1,000
  • M is a suitable silicone
  • Non-limiting examples of the groups represented by R include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, amyl, isoamyl, hexyl, isohexyl and the like; Alkenyl radicals such as vinyl, halovinyl, alkylvinyl, allyl, haloallyl, alkylallyl; Cycloalkyl radicals such as cyclobutyl, cyclopentyl, cyclohexyl and the like; Phenyl radicals, benzyl radicals, halohydrocarbon radicals such as 3-chloropropyl, 4-bromobutyl, 3,3,3-trifluoropropyl, chlorocyclohexyl, bromophenyl, chlorophenyl and the like, and sulfur-containing radicals such as mercaptoethyl, mercaptopropyl, mercaptohexy
  • R 1 examples include methylene, ethylene, propylene, hexamethylene, decamethylene, -CH 2 CH (CH 3 ) CH 2 -, phenylene, naphthylene, -CH 2 CH 2 SCH 2 CH 2 -, - CH 2 CH 2 OCH 2 - , -OCH 2 CH 2 -, -OCH 2 CH 2 CH 2 -, -CH 2 CH (CH 3 ) C (O) OCH 2 -, - (CH 2 ) 3 C (O) OCH 2 CH 2 -, - C 6 H 4 C 6 H 4 -, -C 6 H 4 CH 2 C 6 H 4 -; and - (CH 2 ) 3 C (O) SCH 2 CH 2 -.
  • Z is an organic, amino-functional radical containing at least one functional amino group.
  • a possible formula for Z is NH (CH 2 ) Z NH 2 , where z is an integer from 1 to 50.
  • Another possible formula for Z is -NH (CH 2 ) Z NH (CH 2 ) zz , in which both z and zz independently of one another represent an integer from 1 to 50, this structure comprising diamino ring structures, such as piperazinyl.
  • Z is particularly preferably a -NHCH 2 CH 2 NH 2 radical.
  • Z is -N (CH 2 ) Z NX 1 X 2 or -NX 1 X 2 , wherein each of X 1 and X 2 is independently selected from hydrogen and a hydrocarbon radical having from 1 to about 6 carbon atoms.
  • Q is a polar, amino-functional radical of the formula - CH 2 CH 2 CH 2 NHCH 2 CH 2 NH 2 .
  • the molar ratio of the R a Q b SiO (4 a a b) / 2 units to the R c Si0 (4-c) / 2 units is in the range of about 1: 2 to 1:65, preferably about From 1: 5 to about 1:65 and more preferably from about 1:15 to about 1: 20.
  • the various variable substituents in the above formula may be used for the various silicone components described in U.S. Pat Silicone blend exist, be different.
  • Preferred amino-functional silicones correspond to the formula (S4 - II)
  • G is -H, a phenyl group, -OH, -O-CH 3 , -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 ,
  • a is a number between O and 3, in particular O;
  • b is a number between 0 and 1, in particular 1,
  • n and n are numbers whose sum (m + n) is between 1 and 2,000, preferably between 50 and 150, where n is preferably from 0 to 1999 and especially from 49 to 149 and m is preferably from 1 to 2000, in particular from 1 to 10,
  • R ' is a monovalent radical selected from o -N (R ") - CH 2 -CH 2 -N (R") 2 o -N (FT) 2 o -N + (FT) 3 A " o -N + H (FT) 2 A- o -N + H 2 (R") A- o -N (R 11 J-CH 2 -CH 2 -N + R 11 H 2 A " , where each R" is identical or different radicals from the group -H, - phenyl, -benzyl, the d. ⁇ - alkyl radicals, preferably -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3, -CH (CHa) 2, -CH 2 CH 2 CH 2 CH 3, -CH 2 CH (CH 3) 2l
  • A- represents an anion, which is preferably selected from chloride, bromide, iodide or methosulfate.
  • Particularly preferred amino-functional silicones correspond to the formula (S4-IM)
  • m and n are numbers whose sum (m + n) is between 1 and 2000, preferably between 50 and 150, where n is preferably values from 0 to 1999 and in particular from 49 to 149 and m preferably values from 1 to 2000, in particular from 1 to 10.
  • silicones are referred to as trimethylsilylamodimethicones according to the INCI declaration.
  • R is -OH, -O-CH 3 or a -CH 3 group and m
  • n1 and n2 are numbers whose sum (m + n1 + n2) is between 1 and 2,000, preferably between 50 and 150, wherein the sum (n1 + n2) preferably assumes values from 0 to 1999 and in particular from 49 to 149 and m preferably values from 1 to 2000, in particular from 1 to 10.
  • silicones are referred to as amodimethicone according to the INCI nomenclature and are for example in the form of an emulsion as a commercial product Dow Corning ® 949 in a mixture with a cationic and a nonionic surfactant available.
  • those amino-functional silicones are used which have an amine number above 0.25 meq / g, preferably above 0.3 meq / g and particularly preferably above 0.4 meq / g.
  • the amine number stands for the milliequivalents of amine per gram of the amino-functional silicone. It can be determined by titration and also expressed in mg KOH / g.
  • Suitable silicones are, for example, oligomeric polydimethylcyclosiloxanes (INCI name: cyclomethicone), in particular the tetrameric and the pentameric compound, which are available as commercial products DC 245 fluid, DC
  • Hexamethyl disiloxane (INCI name: Hexamethyldisiloxane), z. B. that under the
  • esters and partial esters of silicone-glycol copolymers such as those of the
  • Fancorsil ® LIM (INCI name:
  • anionic silicone oils such as the Dow Corning® 1784 product.
  • the agent according to the invention comprises at least two different silicone derivatives, more preferably a combination of a volatile and a nonvolatile silicone.
  • Volatile in the context of the invention are those silicones which have a volatility which is equal to or greater than the volatility of the cyclic, pentameric dimethylsiloxane.
  • Such combinations are also available as commercial products (eg, Dow Corning® 1401, Dow Corning® 1403, and Dow Corning® 1501, each containing mixtures of a cyclomethicone and a dimethiconol).
  • Preferred mixtures of different silicones are, for example, dimethicones and dimethiconols, linear dimethicones and cyclic dimethiconols.
  • a very particularly preferred mixture of silicones consists of at least one cyclic dimethiconol and / or dimethicone, at least one further non-cyclic dimethicone and / or dimethiconol and at least one amino-functional silicone.
  • the mixing ratio is largely variable.
  • all the silicones used for mixing are preferably used in a ratio of 5: 1 to 1: 5 in the case of a binary mixture.
  • a ratio of 3: 1 to 1: 3 is particularly preferred.
  • Very particularly preferred mixtures contain all the silicones contained in the mixture largely in a ratio of about 1: 1, in each case based on the amounts used in wt .-%.
  • the agents preferably contain the silicones in amounts of from 1 to 25% by weight, more preferably from 5 to 20% by weight and especially preferably from 7 to 15% by weight, based on the total agent.
  • the agent according to the invention preferably contains a silicone derivative as a care component
  • the agent contains, instead of or in addition to a silicone component, at least one care substance of another class of compounds.
  • the agent may contain, for example, at least one cationic surfactant.
  • Cationic surfactants of the quaternary ammonium compounds, esterquats and amidoamines type are preferred according to the invention.
  • Preferred quaternary ammonium compounds are ammonium halides, in particular chlorides and bromides, such as alkyltrimethylammonium chlorides, dialkyldimethylammonium chlorides and trialkylmethylammonium chlorides, eg.
  • cetyltrimethylammonium chloride stearyltrimethylammonium chloride, distearyldimethyl ammonium chloride, lauryldimethylammonium chloride, lauryldimethylbenzylammonium chloride and tricetylmethylammonium chloride, as well as the imidazolium compounds known under the INCI names Quaternium-27 and Quaternium-83.
  • the long alkyl chains of the above-mentioned surfactants preferably have 10 to 18 carbon atoms.
  • Esterquats are known substances which contain both at least one ester function and at least one quaternary ammonium group as a structural element.
  • Preferred ester quats are quaternized ester salts of fatty acids with triethanolamine, quaternized ester salts of fatty acids with diethanolalkylamines and quaternized ester salts of fatty acids with 1,2-dihydroxypropyldialkylamines.
  • Such products are marketed under the trade names Stepantex® ®, ® and Dehyquart® Armocare® ®.
  • alkylamidoamines are usually prepared by amidation of natural or synthetic fatty acids and fatty acid cuts with dialkylaminoamines.
  • An inventively particularly suitable compound from this group is that available under the name Tegoamid ® S 18 commercially stearamidopropyl dimethylamine.
  • the cationic surfactants are contained in the compositions according to the invention preferably in amounts of from 0.05 to 10% by weight, based on the total application preparation. Amounts of 0.1 to 5 wt .-% are particularly preferred. Nurturing polymers are also suitable as a care substance.
  • a first group of caring polymers are the cationic polymers.
  • Cationic polymers are to be understood as meaning polymers which have a group in the main and / or side chain which may be “temporary” or “permanent” cationic.
  • “permanently cationic” refers to those polymers which have a cationic group, irrespective of the pH of the agent. These are usually polymers containing a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic groups are quaternary ammonium groups.
  • those polymers in which the quaternary ammonium group is bonded via a C 1-4 hydrocarbon group to a polymer main chain constructed from acrylic acid, methacrylic acid or derivatives thereof have proven to be particularly suitable.
  • R 1 -H or -CH 3
  • R 2 , R 3 and R 4 are independently selected from C M - alkyl, alkenyl or -hydroxyalkyl groups
  • m 1, 2, 3 or 4
  • n a natural number
  • X ' is a physiologically acceptable organic or inorganic anion, as well as copolymers consisting essentially of the monomer units listed in formula (G1-I) and nonionic monomer units, are particularly preferred cationic polymers.
  • those are preferred according to the invention for which at least one of the following conditions applies:
  • R 1 is a methyl group
  • R 2 , R 3 and R 4 are methyl groups
  • m has the value 2.
  • Suitable physiologically acceptable counterions X ' are, for example, halide ions, sulfate ions, phosphate ions, methosulfate ions and organic ions such as lactate, citrate, tartrate and acetate ions. Preference is given to halide ions, in particular chloride.
  • a particularly suitable homopolymer is, if desired, crosslinked, poly (meth acryloyloxyethyltrimethylammoniurnchlorid) with the INCI name Polyquaternium-37.
  • the crosslinking can be carried out with the aid of multiply olefinically unsaturated compounds, for example divinylbenzene, tetraallyloxyethane, methylenebisacrylamide, diallyl ether, Polyallylpolyglycerylether, or allyl ethers of sugars or sugar derivatives such as erythritol, pentaerythritol, arabitol, mannitol, sorbitol, sucrose or glucose done.
  • Methylenebisacrylamide is a preferred crosslinking agent.
  • the homopolymer is preferably used in the form of a non-aqueous polymer dispersion which should not have a polymer content of less than 30% by weight.
  • Such polymer dispersions are available under the names Salcare ® SC 95 (about 50% polymer content, additional components: mineral oil (INCI name: Mineral Oil) and tridecyl-polyoxypropylene-polyoxyethylene-ether (INCI name: PPG-1 trideceth-6) ) and Salcare ® SC 96 (about 50% polymer content, additional components: mixture of diesters of propylene glycol with a mixture of caprylic and capric acid (INCI name: propylene glycol Dicaprylate / Dicaprate) and tridecyl polyoxypropylene-polyoxyethylene-ether (INCI Designation: PPG-1-trideceth-6)) are commercially available.
  • Copolymers with monomer units of the formula (G1-I) as the non-ionic monomer preferably acrylamide, methacrylamide, acrylic acid C 1-4 alkyl ester and methacrylic acid-Ci- 4 -alkyl.
  • the acrylamide is particularly preferred.
  • These copolymers can also be crosslinked, as described above in the case of the homopolymers.
  • a copolymer preferred according to the invention is the crosslinked acrylamide-methacryloyloxyethyltrimethylammonium chloride copolymer.
  • quaternized cellulose derivatives such as are available under the names of Celquat ® and Polymer JR ® commercially.
  • the compounds Celquat ® H 100, Celquat L 200 and Polymer JR ® ® 400 are preferred quaternized cellulose derivatives
  • honey for example the commercial product Honeyquat ® 50, cationic guar derivatives, in particular the products sold under the trade name Cosmedia Guar ® and Jaguar ®,
  • Quaternary group polysiloxanes such as the commercially available Q2-7224 (manufactured by Dow Coming, a stabilized trimethylsilylamodimethicone), Dow Corning® 929 emulsion (containing a hydroxylamino-modified silicone, also referred to as amodimethicones), SM -2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® quat 3270 and 3272 (manufacturer: Th.
  • Q2-7224 manufactured by Dow Coming, a stabilized trimethylsilylamodimethicone
  • Dow Corning® 929 emulsion containing a hydroxylamino-modified silicone, also referred to as amodimethicones
  • SM -2059 manufactured by General Electric
  • SLM-55067 manufactured by Wacker
  • Abil ® quat 3270 and 3272 manufactured by Th.
  • Such compounds are sold under the names Gafquat ® 734 and Gafquat ® 755 commercially,
  • Gaffix ® VC 713 manufactured by ISP:
  • the copolymers of vinylpyrrolidone such as the commercial products Copolymer 845 (ISP manufacturer) are 1 Gafquat ® ASCP 1011, Gafquat ® HS 110, Luviquat ® 8155 and Luviquat ® MS 370 available are.
  • cationic polymers which can be used according to the invention are the so-called "temporary cationic" polymers. These polymers usually contain an amino group which, at certain pH values, is present as quaternary ammonium group and thus cationic.
  • temporary cationic polymers Preferably, for example, are chitosan and its derivatives, such as 101 are freely available commercially, for example under the trade names Hydagen CMF ®, Hydagen HCMF ®, Kytamer ® PC and Chitolam ® NB /.
  • cationic polymers employed are cationic cellulose derivatives and chitosan and its derivatives, in particular the commercial products Polymer ® JR 400, Hydagen ® HCMF and Kytamer ® PC, cationic guar derivatives, cationic honey derivatives, in particular the commercial product Honeyquat ® 50, cationic Alkylpolyglycodside according to DE-PS 44 13 686 and polymers of the type Polyquaternium-37.
  • cationized protein hydrolyzates are to be counted among the cationic polymers, the underlying protein hydrolyzate being derived from the animal, for example from collagen, milk or keratin, from the plant, for example from wheat, maize, rice, potatoes, soya or almonds, from marine life forms, for example fish collagen or algae, or biotechnologically derived protein hydrolysates.
  • the protein hydrolyzates on which the cationic derivatives according to the invention are based can be obtained from the corresponding proteins by chemical, in particular alkaline or acid hydrolysis, by enzymatic hydrolysis and / or a combination of both types of hydrolysis.
  • cationic protein hydrolyzates are to be understood as meaning quaternized amino acids and mixtures thereof.
  • the quaternization of the protein hydrolyzates or amino acids is often carried out using quaternary ammonium salts such as N, N-dimethyl-N- (n-alkyl) -N- (2-hydroxy-3-chloro-n-propyl) ammonium halides.
  • the cationic protein hydrolysates may also be further derivatized.
  • the cationic protein hydrolysates and derivatives according to the invention those mentioned under the INCI names in the "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, NW, Suite 300 Cocodimonium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Hydroxypropyl Arginine Lauryl / Myristyl Ether HCl, Hydroxypropy
  • amphoteric polymers are those polymers which are composed essentially
  • R 4 and R 5 each independently represent an alkyl group having 1 to 4 carbon atoms, Z
  • n is an integer from 2 to 5 and A is the anion of an organic or inorganic acid
  • the agents according to the invention preferably contain the caring, cationic polymers in an amount of 0.01 to 5% by weight, in particular in an amount of 0.1 to 2% by weight, in each case based on the total application preparation.
  • the agent according to the invention may further comprise at least one vitamin, a provitamin, a vitamin precursor and / or one of their derivatives.
  • vitamins, pro-vitamins and vitamin precursors are preferred, which are usually assigned to groups A, B, C, E, F and H.
  • the group of substances called vitamin A includes retinol (vitamin A 1 ) and 3,4-didehydroretinol (vitamin A 2 ).
  • the ß-carotene is the provitamin of retinol.
  • vitamin A component for example, vitamin A acid and its esters, vitamin A aldehyde and vitamin A alcohol and its esters such as the palmitate and the acetate into consideration.
  • the agents contain the vitamin A component preferably in amounts of 0.05-1% by weight, based on the total application preparation.
  • the vitamin B group or the vitamin B complex include u. a.
  • Vitamin B 2 (riboflavin)
  • Vitamin B 3 Under this name, the compounds nicotinic acid and nicotinamide (niacinamide) are often performed. Preferred according to the invention is the nicotinic acid amide, which is preferably contained in the agents according to the invention in amounts of from 0.05 to 1% by weight, based on the total application preparation. Vitamin B 5 (pantothenic acid, panthenol and pantolactone). Panthenol and / or pantolactone are preferably used in the context of this group. Derivatives of panthenol which can be used according to the invention are, in particular, the esters and ethers of panthenol and also cationically derivatized panthenols.
  • panthenol triacetate the panthenol monoethyl ether and its monoacetate and also the cationic panthenol derivatives disclosed in WO 92/13829.
  • the said compounds of the vitamin B 5 type are preferably present in the agents according to the invention in amounts of 0.05-10% by weight, based on the total application preparation. Amounts of 0.1-5 wt .-% are particularly preferred.
  • Vitamin B 6 (pyridoxine and pyridoxamine and pyridoxal).
  • the compounds of the vitamin B 6 type mentioned are preferably contained in the agents according to the invention in amounts of 0.01-5% by weight, based on the total application preparation. Levels of 0.05-1 wt% are particularly preferred.
  • Vitamin C (ascorbic acid). Vitamin C is used in the compositions according to the invention preferably in amounts of 0.1 to 3 wt .-%, based on the total application preparation. Use in the form of palmitic acid ester, glucosides or phosphates may be preferred. The use in combination with tocopherols may also be preferred.
  • Vitamin E tocopherols, especially ⁇ -tocopherol.
  • Tocopherol and its derivatives which include in particular the esters such as acetate, nicotinate, phosphate and succinate, are preferably present in the compositions according to the invention in amounts of 0.05-1% by weight, based on the total application preparation.
  • Vitamin F is usually understood as meaning essential fatty acids, in particular linoleic acid, linolenic acid and arachidonic acid.
  • Vitamin H is the compound (3aS, 4S, 6af?) - 2-oxohexahydrothienol [3,4-d] - imidazole-4-valeric acid, for which, however, the trivial name biotin has become established.
  • Biotin is contained in the agents according to the invention preferably in amounts of 0.0001 to 1, 0 wt .-%, in particular in amounts of 0.001 to 0.01 wt .-%, each based on the total application preparation.
  • the agents according to the invention preferably contain vitamins, provitamins and vitamin precursors from groups A, B, C, E and H.
  • Panthenol, pantolactone, pyridoxine and its derivatives as well as nicotinic acid amide and biotin are particularly preferred.
  • compositions according to the invention may further contain at least one plant extract.
  • extracts are produced by extraction of the whole plant. However, in individual cases it may also be preferred to prepare the extracts exclusively from flowers and / or leaves of the plant.
  • extracts of green tea, almond, aloe vera, coconut, mango, apricot, lime, wheat, kiwi and melon are especially suitable.
  • alcohols and mixtures thereof can be used as extraction agent for the preparation of said plant extracts water.
  • the alcohols are lower alcohols such as ethanol and isopropanol, but especially polyhydric alcohols such as ethylene glycol and propylene glycol, both as sole extractant and in admixture with water, are preferred.
  • Plant extracts based on water / propylene glycol in a ratio of 1:10 to 10: 1 have proven to be particularly suitable.
  • the plant extracts can be used according to the invention both in pure and in diluted form. If they are used in diluted form, they usually contain about 2 to 80 wt .-% of active substance and as a solvent used in their extraction agent or extractant mixture.
  • compositions according to the invention mixtures of several, especially two, different plant extracts.
  • short-chain carboxylic acids may in particular be advantageous.
  • Short-chain carboxylic acids and their derivatives in the context of the invention are understood to mean carboxylic acids which may be saturated or unsaturated and / or straight-chain or branched or cyclic and / or aromatic and / or heterocyclic and have a molecular weight of less than 750.
  • preference may be given to saturated or unsaturated straight-chain or branched carboxylic acids having a chain length of from 1 to 16 C atoms in the chain, very particular preference being given to those having a chain length of from 1 to 12 C atoms in the chain.
  • the short-chain carboxylic acids according to the invention may have one, two, three or more carboxy groups.
  • Preferred within the meaning of the invention are carboxylic acids having a plurality of carboxy groups, in particular di- and tricarboxylic acids.
  • the carboxy groups may be used in whole or in part as esters, acid anhydride, lactone, amide, imidic acid, lactam, lactim, dicarboximide, carbohydrazide, hydrazone, hydroxam, hydroxime, amidine, amidoxime, nitrile, phosphine or Phosphate esters are present.
  • the carboxylic acids which can be used according to the invention may of course be substituted along the carbon chain or the ring skeleton.
  • the substituents of the carboxylic acids which can be used according to the invention include, for example, C 1 -C 8 -alkyl, C 2 -C 8 -alkenyl, aryl, aralkyl and aralkenyl, hydroxymethyl, C 2 -C 8 -hydroxyalkyl-, C 2 -C 8 hydroxyalkenyl, aminomethyl, C 2 -C 8 aminoalkyl, cyano, formyl, oxo, thioxo, hydroxy, mercapto, amino, carboxy or imino groups.
  • Preferred substituents are C 1 -C 8 alkyl, hydroxymethyl, hydroxy, amino and carboxy groups. Particular preference is given to substituents in the ⁇ position.
  • substituents are hydroxy, alkoxy and amino groups, where the amino function may optionally be further substituted by alkyl, aryl, aralkyl and / or alkenyl radicals.
  • preferred carboxylic acid derivatives are the phosphonic and phosphate esters.
  • carboxylic acids which can be used according to the invention include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, glyceric acid, glyoxylic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, propiolic acid, crotonic acid, isocrotonic acid, elaidic acid, maleic acid, fumaric acid, muconic acid, citraconic acid, mesaconic acid, camphoric acid, benzoic acid, o, m, p-phthalic acid, naphthoic acid, Toluoylklare, hydratropic acid, atropic acid, cinnamic acid, isonicotinic acid, nicotinic acid, Bicarbaminklare, 4,4
  • n is a number from 4 to 12 and one of the two groups X and Y is a COOH group and the other is hydrogen or a methyl or Ethyl radical
  • dicarboxylic acids of general formula (NI) which additionally carry 1 to 3 methyl or ethyl substituents on the cyclohexene ring and dicarboxylic acids formed from the dicarboxylic acids according to formula (NI) formally by addition of a molecule of water to the double bond in the cyclohexene ring.
  • Dicarboxylic acids of the formula (N-I) are known in the literature.
  • US-A 3,753,968 discloses a manufacturing process.
  • the dicarboxylic acids of the formula (N-I) can be prepared, for example, by reacting polyunsaturated dicarboxylic acids with unsaturated monocarboxylic acids in the form of a Diels-Alder cyclization.
  • a polyunsaturated fatty acid as the dicarboxylic acid component.
  • Preferred is the linoleic acid obtainable from natural fats and oils.
  • the monocarboxylic acid component in particular, acrylic acid, but also e.g. Methacrylic acid and crotonic acid are preferred.
  • isomer mixtures in which one component is present in excess are formed. These isomer mixtures can be used according to the invention as well as the pure compounds.
  • those dicarboxylic acids which differ from the compounds according to formula (NI) by 1 to 3 methyl or ethyl substituents on the cyclohexyl ring or formally from these compounds by addition of one molecule of water are also usable according to the invention be formed on the double bond of the cyclohexene ring.
  • the dicarboxylic acid (mixture), which is obtained by reacting linoleic acid with acrylic acid, has proved to be particularly effective according to the invention. It is a mixture of 5- and 6-carboxy-4-hexyl-2-cyclohexene-1-octanoic acid.
  • Such compounds are commercially available under the designations Westvaco Diacid 1550 Westvaco Diacid ® ® 1595 (manufacturer: Westvaco).
  • alkali metal salts examples include the alkali metal salts, alkaline earth metal salts, zinc salts and ammonium salts, which in the context of the present application also includes the mono-, di- and trimethyl-, -ethyl- and -hydroxyethyl ammonium salts.
  • neutralized acids can very particularly preferably be used with alkaline-reacting amino acids, such as, for example, arginine, lysine, ornithine and histidine.
  • the carboxylic acid may be preferred for formulation reasons to select the carboxylic acid from the water-soluble representatives, in particular the water-soluble salts. Furthermore, it is inventively preferred to use 2-pyrrolidinone-5-carboxylic acid and derivatives thereof as the carboxylic acid. Particularly preferred are the sodium, potassium, calcium, magnesium or ammonium salts in which the ammonium ion in addition to hydrogen carries one to three C 1 - to C 4 alkyl groups. The sodium salt is most preferred.
  • the amounts used in the products according to the invention are preferably from 0.05 to 10% by weight, based on the total application preparation, particularly preferably from 0.1 to 5% by weight, and particularly preferably from 0.1 to 3% by weight.
  • hydroxycarboxylic acids and here again in particular the dihydroxy, trihydroxy and polyhydroxycarboxylic acids as well as the dihydroxy, trihydroxy and polyhydroxy di-, tri- and polycarboxylic acids. It has been found that, in addition to the hydroxycarboxylic acids, the hydroxycarboxylic acid esters and the mixtures of hydroxycarboxylic acids and their esters as well as polymeric hydroxycarboxylic acids and their esters can be very particularly preferred.
  • Preferred hydroxycarboxylic acid esters are, for example, full esters of glycolic acid, lactic acid, malic acid, tartaric acid or citric acid.
  • hydroxycarboxylic esters are esters of .beta.-hydroxypropionic acid, tartronic acid, D-gluconic acid, sugar acid, mucic acid or glucuronic acid.
  • Suitable alcohol components of these esters are primary, linear or branched aliphatic alcohols having 8-22 C atoms, ie, for example, fatty alcohols or synthetic fatty alcohols.
  • the esters of Ci 2 -Ci 5 fatty alcohols are particularly preferred. Esters of this type are commercially available, eg under the trademark Cosmacol® ® EniChem, Augusta Industriale.
  • Particularly preferred polyhydroxypolycarboxylic acids are polylactic acid and polyuric acid and their esters.
  • Ectoin or ectoine derivatives, allantoin, taurine and / or bisabolol are also suitable as care substances.
  • ectoine and ectoine derivatives means compounds of the formula (IV)
  • R 10 represents a hydrogen atom, a branched or unbranched C 1 -C 4 -alkyl radical or a C 2 -C 4 -hydroxyalkyl radical,
  • R 11 represents a hydrogen atom, a grouping -COOR 14 or a grouping -
  • R 14 may be a hydrogen atom, a C 1 -C 4 -alkyl radical, an amino acid radical, a dipeptide or a tripeptide radical,
  • R 12 and R 13 independently of one another represent a hydrogen atom, a C 1 -C 4 -alkyl radical or a hydroxy group, with the proviso that both radicals may not simultaneously be a hydroxy group, and n is an integer from 1 to 3.
  • Suitable physiologically tolerated salts of the general compounds of the formula (IVa) or (IVb) are, for example, the alkali metal, alkaline earth metal, ammonium, triethylamine or tris (2-hydroxyethyl) amine salts and those which result from the reaction of compounds according to the formula (IVa) or (IVb) with inorganic and organic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, branched or unbranched, substituted or unsubstituted (for example by one or more hydroxy groups) C 1 - C 4 - mono- or dicarboxylic acids, aromatic carboxylic acids and sulfonic acids such as acetic acid, citric acid, benzoic acid, maleic acid, fumaric acid, tartaric acid and p-toluenesulfonic acid.
  • inorganic and organic acids such as hydrochloric acid, phosphoric acid, sulfuric acid, branched or unbranched, substituted or unsubstit
  • physiologically acceptable salts are the Na, K, Mg and Ca and ammonium salts of the compounds of the formula (IVa) or (IVb), and the salts which are obtained by reacting compounds of the formula (IVa ) or (IVb) with hydrochloric acid, acetic acid, citric acid and benzoic acid.
  • Isomeric or stereoisomeric forms of the compounds of the formula (IVa) or (IVb) are understood according to the invention to mean all occurring optical isomers, diastereomers, racemates, zwitterions, cations or mixtures thereof.
  • amino acid the stereoisomeric forms, e.g. D and L forms, the following compounds understood:
  • arginine aspartic acid, glutamine, glutamic acid, ⁇ -alanine, ⁇ -aminobutyrate, N ⁇ -acetyllysine, N ⁇ -acetylornitine, N ⁇ -acetyldiaminobutyrate, N ⁇ -acetyldiaminobutyrate, histidine, isoleucine, leucine, methionine, phenylalanine, serine, Threonine and tyrosine.
  • L-amino acids are preferred.
  • Amino acid residues are derived from the corresponding amino acids. The following amino acid residues are preferred:
  • the short notation of the amino acids was carried out according to the usual notation.
  • the di- or tripeptide radicals are acid amides in their chemical nature and decompose on hydrolysis in 2 or 3 amino acids.
  • the amino acids in the di- or tripeptide moiety are linked together by amide bonds.
  • C 1 -C 4 -alkyl groups in the compounds of the formula (IV) are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and tert-butyl.
  • Preferred alkyl groups are methyl and ethyl, methyl is a particularly preferred alkyl group.
  • Preferred C 2 -C 4 -hydroxyalkyl groups are the groups 2-hydroxyethyl, 3-hydroxypropyl or 4-hydroxybutyl; 2-hydroxyethyl is a particularly preferred hydroxyalkyl group.
  • compositions of the invention contain these care substances preferably in amounts of 0.001 to 2, in particular from 0.01 to 0.5 wt .-%, each based on the total application preparation.
  • Mono- or oligosaccharides can also be used as a care substance in the compositions according to the invention.
  • monosaccharides and oligosaccharides such as, for example, cane sugar, lactose and raffinose
  • monosaccharides such as, for example, cane sugar, lactose and raffinose
  • monosaccharides are preferred according to the invention.
  • monosaccharides those compounds which contain 5 or 6 carbon atoms are preferred.
  • Suitable pentoses and hexoses are, for example, ribose, arabinose, xylose, lyxose, allose, altrose, glucose, mannose, gulose, idose, galactose, talose, fucose and fructose.
  • Arabinose, glucose, galactose and fructose are preferably used carbohydrates; Very particular preference is given to using glucose which is suitable both in the D - (+) or L - (-) configuration or as a racemate.
  • sugars are gluconic acid, glucuronic acid, sugar acid, mannose and mucic acid.
  • Preferred sugar alcohols are sorbitol, mannitol and dulcitol.
  • Preferred glycosides are the methylglucosides. Since the mono- or oligosaccharides used are usually obtained from natural raw materials such as starch, they usually have the configurations corresponding to these raw materials (eg D-glucose, D-fructose and D-galactose).
  • the mono- or oligosaccharides are contained in the hair treatment compositions according to the invention preferably in an amount of 0.1 to 8 wt .-%, particularly preferably 1 to 5 wt .-%, based on the total application preparation.
  • the agent may further contain at least one lipid as a care substance.
  • Lipids suitable according to the invention are phospholipids, for example soya lecithin, egg lecithin and cephalins, and also the substances known under the INCI names linoleic amidopropyl PG-dimonium chlorides phosphates, cocamidopropyl PG-dimonium chlorides phosphates and stearamidopropyl PG-dimonium chlorides phosphates. These are sold, for example, by the company Mona under the trade names Phospholipid EFA® , Phospholipid PTC® and Phospholipid SV® .
  • the agents according to the invention preferably contain the lipids in amounts of from 0.01 to 10% by weight, in particular from 0.1 to 5% by weight, based on the total application preparation.
  • oil bodies are suitable as a care substance.
  • natural and synthetic cosmetic oils include: vegetable oils.
  • vegetable oils examples include sunflower oil, olive oil, soybean oil, rapeseed oil, almond oil, jojoba oil, orange oil, wheat germ oil, peach kernel oil and the liquid portions of coconut oil.
  • triglyceride oils such as the liquid portions of beef tallow as well as synthetic triglyceride oils.
  • Ester oils are to be understood as meaning the esters of C 6 - C 30 fatty acids with C 2 - C 30 fatty alcohols. The monoesters of the fatty acids with alcohols having 2 to 24 carbon atoms are preferred.
  • fatty acid components used in the esters are caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, Palmitic acid, palmitoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linolenic acid, elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures, for example in the pressure splitting of natural fats and oils, in the oxidation of aldehydes from the Roelen's oxo synthesis or the dimerization of unsaturated fatty acids.
  • fatty alcohol components in the ester oils are isopropyl alcohol, caproic alcohol, capryl alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, linolyl alcohol, linolenyl alcohol, elaeostearyl alcohol, arachyl alcohol, Gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from the Roelen oxo synthesis and as a monomer fraction in the dimerization of unsaturated fatty alcohols incurred.
  • isopropyl myristate IPM Rilanit ®
  • isononanoic acid C16-18 alkyl ester Cetiol ® SN
  • 2-ethylhexyl palmitate Cegesoft ® 24
  • stearic acid-2-ethylhexyl ester Cetiol ® 868
  • cetyl oleate glycerol tricaprylate, Kokosfettalkohol- caprate / caprylate (Cetiol ® LC)
  • n-butyl stearate oleyl erucate
  • isopropyl palmitate IPP Rilanit ®
  • oleyl Oleate Cetiol ®
  • hexyl laurate Cetiol ® A
  • di-n-butyl adipate Cetiol ® B
  • myristyl palmitate IPP Rilanit ®
  • Dicarboxylic acid esters such as di-n-butyl adipate, di- (2-ethylhexyl) adipate, di- (2-ethylhexyl) succinate and di-isotridecyl acelate
  • diol esters such as ethylene glycol dioleate, ethylene glycol diisotridecanoate, propylene glycol di (2- ethylhexanoate), propylene glycol diisostearate,
  • Fatty acid partial glycerides which are understood to mean monoglycerides, diglycerides and their technical mixtures. With the use of technical products production reasons may still contain small amounts of triglycerides.
  • the partial glycerides preferably follow the formula (D4-I),
  • R 1 , R 2 and R 3 independently of one another represent hydrogen or a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22, preferably 12 to 18, carbon atoms, with the proviso that at least one of these groups represents a Acyl radical and at least one of these groups is hydrogen.
  • the sum (m + n + q) is 0 or numbers from 1 to 100, preferably 0 or 5 to 25.
  • R 1 is an acyl radical and R 2 and R 3 are hydrogen and the sum (m + n + q) is 0.
  • Typical examples are mono- and / or diglycerides based on caproic, caprylic, 2-ethylhexanoic, capric, lauric, isotridecanoic, myristic, palmitic, palmitic, stearic, isostearic, oleic, elaidic, petroselic, linoleic, linolenic , Elaeostearic acid, arachidic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • oleic acid monoglycerides are used.
  • the amount used of the natural and synthetic cosmetic oil bodies in the compositions according to the invention is usually 0.1 to 30% by weight, based on the total application preparation, preferably 0.1 to 20% by weight, and in particular 0.1 to 15% by weight. %.
  • the agent may further contain an enzyme as a conditioner.
  • enzymes according to the invention are selected from a group which is formed from proteases, lipases, transglutaminase, oxidases and peroxidases.
  • Pearl extracts are also suitable as a conditioner.
  • Pearls of mussels consist essentially of inorganic and organic calcium salts, trace elements and proteins. Pearls can be easily obtained from cultivated mussels. The cultivation of the mussels can be done in fresh water as well as in sea water. This can affect the ingredients of the beads. According to the invention, preference is given to a pearl extract which originates from shells cultivated in marine or salt water. The pearls consist to a large extent of aragonite (calcium carbonate), conchiolin and an albuminoid. The latter components are proteins. Also included in beads are magnesium and sodium salts, inorganic silicon compounds, and phosphates.
  • the beads are pulverized. Thereafter, the pulverized beads are extracted by the usual methods.
  • extraction agent for the preparation of the pearl extracts water, alcohols and mixtures thereof can be used. Underwater are understood to mean both demineralized water and seawater.
  • the alcohols are lower alcohols such as ethanol and isopropanol, but especially polyhydric alcohols such as glycerol, diglycerol, triglycerol, polyglycerol, ethylene glycol, pro- pylene glycol and butylene glycol, both as the sole extractant and in admixture with demineralized water or seawater.
  • Pearl extracts based on water / glycerine mixtures have proven to be particularly suitable.
  • the pearl proteins can be largely in the native state or already partially or largely present as protein hydrolysates. Preference is given to a pearl extract in which conchiolin and albuminoid are already partially hydrolyzed.
  • the essential amino acids of these proteins are glutamic acid, serine, alanine, glycine, aspartic acid and phenylalanine.
  • the pearl extract is additionally enriched with at least one or more of these amino acids.
  • the pearl extract is enriched with glutamic acid, serine and leucine.
  • a preferred extract contains organic and / or inorganic calcium salts as well as magnesium and sodium salts, inorganic silicon compounds and / or phosphates.
  • a most preferred pearl extract contains at least 75%, preferably 85%, more preferably 90% and most preferably 95% of all ingredients of the naturally occurring pearls. Examples of pearl extracts usable according to the invention are the commercial products Pearl Protein Extract BG ® or Crodarom ® Pearl.
  • the above-described pearl extracts are preferably contained in an amount of at least 0.01 to 20% by weight.
  • amounts of the extract of 0.01 to 10 wt.%, Very particularly preferably amounts of 0.01 to 5 wt.% Based on the total two-component agent used.
  • the agent according to the invention is present in a cosmetically acceptable carrier. It is preferably an aqueous, an alcoholic or an aqueous-alcoholic medium with preferably at least 10 percent by weight of water, based on the total preparation.
  • a cosmetically acceptable carrier it is preferably an aqueous, an alcoholic or an aqueous-alcoholic medium with preferably at least 10 percent by weight of water, based on the total preparation.
  • alcohols it is possible in particular to include the lower alcohols having 1 to 4 carbon atoms usually used for cosmetic purposes, such as, for example, ethanol and isopropanol.
  • the preparation can be carried out for example in the form of creams, emulsions, gels or surfactant-containing foaming solutions or other preparations which are suitable for use on the hair.
  • the preparations preferably have a pH of from 2 to 11. Particularly preferred is the pH range between 2 and 8.
  • the information on the pH For the purposes of this document, the value refers to the pH at 25 ° C.,
  • organic solvents or a mixture of solvents with a boiling point below 400 0 C in an amount of 0.1 to 15 weight percent can preferably from 1 to 10 weight percent based on the total preparation be included.
  • Particularly suitable as additional co-solvents are unbranched or branched hydrocarbons such as pentane, hexane, isopentane and cyclic hydrocarbons such as cyclopentane and cyclohexane.
  • particularly preferred water-soluble solvents are glycerol, ethylene glycol and propylene glycol in an amount of up to 30 percent by weight based on the total preparation.
  • UV filters are not subject to any general restrictions with regard to their structure and their physical properties. On the contrary, all UV filters which can be used in the cosmetics sector and whose absorption maximum lies in the UVA (315-400 nm), in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range are suitable. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the UV filters preferred according to the invention can be selected, for example, from substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters, cinnamic acid esters, salicylic acid esters, benzimidazoles and o-aminobenzoic acid esters.
  • UV filters are 4-amino-benzoic acid, N 1 N 1 N-trimethyl-4- (2-oxoborn-3-ylidenemethyl) aniline methyl sulfate, 3,3,5-trimethyl-cyclohexyl salicylate (Homosalate), 2-hydroxy-4-methoxy-benzophenone (benzophenone-3; Uvinul ® M 40, Uvasorb MET ®, ® Neo Heliopan BB, Eusolex ® 4360), 2-phenylbenzimidazole-5-sulfonic acid and potassium, sodium and triethanolamine salts ( Phenylbenzimidazole Sulfonic Acid; Parsol ® HS; Neo Heliopan Hydro ®), 3,3 '- (1, 4-phenylenedimethylene) bis (7,7-dimethyl-2-oxo-bicyclo [2.2.1] hept-1- yl-methane sulfonic acid) and salts thereof, 1- (4-tert-butylphenylphenylphen
  • water-insoluble UV filters are those which dissolve in water at not more than 1% by weight, in particular not more than 0.1% by weight, at 20 ° C. Furthermore, these compounds should be soluble in common cosmetic oil components at room temperature to at least 0.1, in particular at least 1 wt .-%. The use of water-insoluble UV filters may therefore be preferred according to the invention. According to a further embodiment of the invention, preference is given to those UV filters which have a cationic group, in particular a quaternary ammonium group.
  • UV filters have the general structure U - Q.
  • the structural part U stands for a UV-absorbing group.
  • This group can in principle be derived from the known UV filters which can be used in the cosmetics sector, in which a group, generally a hydrogen atom, of the UV filter is replaced by a cationic group Q, in particular having a quaternary amino function ,
  • Compounds from which the structural part U can be derived are, for example, substituted benzophenones, p-aminobenzoic acid esters, diphenylacrylic acid esters,
  • Salicylic acid esters benzimidazoles and o-aminobenzoic acid esters.
  • Structural parts U which are derived from cinnamic acid amide or from N, N-dimethylaminobenzoic acid amide are preferred according to the invention.
  • the structural parts U can in principle be chosen such that the absorption maximum of the UV filters can be in both the UVA (315-400 nm) and in the UVB (280-315 nm) or in the UVC ( ⁇ 280 nm) range. UV filters with an absorption maximum in the UVB range, in particular in the range from about 280 to about 300 nm, are particularly preferred.
  • the structural part U also as a function of structural part Q, is preferably selected so that the molar extinction coefficient of the UV filter at the absorption maximum is above 15,000, in particular above 20,000.
  • the structural part Q preferably contains, as a cationic group, a quaternary ammonium group.
  • This quaternary ammonium group can in principle be connected directly to the structural part U, so that the structural part U represents one of the four substituents of the positively charged nitrogen atom.
  • one of the four substituents on the positively charged nitrogen atom is a group, especially an alkylene group of 2 to 6 carbon atoms, which functions as a compound between the structural portion U and the positively charged nitrogen atom.
  • the group Q has the general structure - (CH 2 ) X -N + R 1 R 2 R 3 X " , in which x is an integer from 1 to 4, R 1 and R 2 independently of one another are C 1 - 4 alkyl groups, R 3 is a C 1-22 -alkyl group or a benzyl group and X 'is a physiologically acceptable anion
  • x preferably represents the number 3
  • R 1 and R 2 each represent a methyl group and R 3 is either a methyl group or a saturated or unsaturated, linear or branched hydrocarbon chain having 8 to 22, in particular 10 to 18, carbon atoms.
  • Physiologically acceptable anions are, for example, inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • inorganic anions such as halides, in particular chloride, bromide and fluoride, sulfate ions and phosphate ions and organic anions such as lactate, citrate, acetate, tartrate, methosulfate and tosylate.
  • UV filters with cationic groups are the commercially available compounds cinnamic acid-trimethylammonium chloride (lncroquat ® UV-283) and dodecyl tosylate (Escalol ® HP 610).
  • the teaching of the invention also includes the use of a combination of several UV filters.
  • the combination of at least one water-insoluble UV filter with at least one UV filter with a cationic group is preferred.
  • the UV filters are usually contained in amounts of 0.01-5 wt .-%, based on the total application preparation. Amounts of 0.1-2.5 wt .-% are preferred.
  • the composition according to the invention also contains one or more substantive dyes. This allows the treated keratin fiber not only to be temporarily patterned when the agent is applied, but also dyed at the same time. This may be particularly desirable if only a temporary dyeing is desired, for example, with eye-catching fashion colors, which can be removed again by simple washing from the keratinic fiber.
  • Direct dyes are usually nitrophenylenediamines, nitroaminophenols, azo dyes, anthraquinones or indophenols.
  • Preferred substantive dyes are those having the international designations or trade names HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, Acid Yellow 1, Acid Yellow 10, Acid Yellow 23, Acid Yellow 36, HC Orange Disperse Orange 3, Acid Orange 7, HC Red 1, HC Red 3, HC Red 10, HC Red 11, HC Red 13, Acid Red 33, Acid Red 52, HC Red BN, Pigment Red 57: 1, HC Blue 2, HC Blue 11, HC Blue 12, Disperse Blue 3, Acid Blue 7, Acid Green 50, HC Violet 1, Disperse Violet 1, Di Violet 4, Acid Violet 43, Disperse Black 9, Acid Black 1, and Acid Black 52 known compounds and 1, 4-diamino-2-nitrobenzene, 2-amino-4-nitrophenol, 1, 4-bis- (ß- hydroxyethyl) - amino-2-nitrobenzene, 3-nitro-4- ( ⁇ -hydroxye
  • aromatic systems substituted with a quaternary nitrogen group such as Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 and Basic Brown 17, as well as
  • Preferred cationic substantive dyes of group (c) are in particular the following compounds:
  • the compounds of the formulas (DZ1), (DZ3) and (DZ5) which are also known by the names Basic Yellow 87, Basic Orange 31 and Basic Red 51, are very particularly preferred cationic substantive dyes of group (c).
  • the cationic direct dyes which are sold under the trademark Arianor ® are, according to the invention also very particularly preferred cationic direct dyes.
  • the agents according to the invention according to this embodiment preferably contain the substantive dyes in an amount of 0.001 to 20 wt .-%, based on the total agent.
  • the agents of the invention may also contain naturally occurring dyes, such as those in henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, bluewood, madder root, Catechu, Sedre and alkano root are included.
  • naturally occurring dyes such as those in henna red, henna neutral, henna black, chamomile flower, sandalwood, black tea, buckthorn bark, sage, bluewood, madder root, Catechu, Sedre and alkano root are included.
  • the substantive dyes each represent uniform compounds. Rather, in the inventive compositions, due to the production process for the individual dyes, in minor amounts, other components may be included, as far as they do not adversely affect the styling result or for other reasons, e.g. toxicological, must be excluded.
  • the agents may furthermore contain all active ingredients, additives and auxiliaries known for such preparations.
  • the agents contain at least one surfactant, wherein in principle both anionic and zwitterionic, ampholytic, nonionic and cationic surfactants are suitable. In many cases, however, it has proved to be advantageous to select the surfactants from anionic, zwitterionic or nonionic surfactants.
  • Thickeners such as agar-agar, guar gum, alginates, xanthan gum, gum arabic, karaya gum, locust bean gum, linseed gums, dextrans, cellulose derivatives, e.g. For example, methylcellulose, hydroxyalkylcellulose and carboxymethylcellulose, starch fractions and derivatives such as amylose, amylopectin and dextrins, clays such. Bentonite or fully synthetic hydrocolloids such as e.g. Polyvinyl alcohol, structurants such as maleic acid and lactic acid, perfume oils, dimethyl isosorbide and cyclodextrins,
  • Solvents and mediators such as ethanol, isopropanol, ethylene glycol, propylene glycol, glycerine and diethylene glycol, quaternized amines such as methyl-1-alkylamidoethyl-2-alkylimidazolinium methosulfate defoamers such as silicones, colorants for dyeing the agent,
  • Antidandruff active ingredients such as Piroctone Olamine, zinc Omadine and Climbazol, substances for adjusting the pH, such as conventional acids, in particular edible acids and bases, cholesterol,
  • Bodying agents such as sugar esters, polyol esters or polyol alkyl ethers, fats and waxes such as spermaceti, beeswax, montan wax and paraffins, fatty acid alkanolamides,
  • Complexing agents such as EDTA, NTA, ⁇ -alaninediacetic acid and phosphonic acids, swelling and penetrating agents such as glycerol, propylene glycol monoethyl ether, carbonates, bicarbonates, guanidines, ureas and primary, secondary and tertiary phosphates, opacifiers such as latex, styrene / PVP and styrene / acrylamide copolymers Pearlescing agents such as ethylene glycol mono- and distearate and PEG-3-distearate, preservatives,
  • Stabilizers for hydrogen peroxide and other oxidants such as propane-butane mixtures, N 2 O, dimethyl ether, CO 2 and air, Antioxidants.
  • a second object of the invention is the use of a keratin with a molecular weight of 40 to 70 kDa, as determined by SDS-PAGE, in a means for temporarily deforming keratinous fibers to improve the resistance to deformation.
  • the hold of the deformation also referred to as hairstyle hold, as well as flexibility, elasticity and plasticity are determined according to the present invention according to the omega-loop method.
  • a dry strand of hair (Euro-natural hair from Kerling, Kle ⁇ esse tight, glued on one side, total length 150 mm, free length 130 mm, width 10 mm, weight 0.9 ⁇ 0.1 g) for 30 seconds to the bottom of the Abklebung immersed in the polymer solution to be examined. Then the excess solution is rubbed between the thumb and forefinger so that 0.5 ⁇ 0.02 g of the solution remain on the hair.
  • the strand of hair saturated with the solution to be tested is wound around a 36 mm Teflon cylinder and the overhanging ends are fixed with a clip.
  • the prepared strands are then dried and conditioned overnight at 25 ° C and 50% relative humidity or at 25 ° C and 75% relative humidity in the climatic chamber.
  • the conditioned tress is carefully removed from the Teflon cylinder.
  • the resulting ⁇ loop an annular structure of the hair stabilized in its shape by the formed polymer film, is clamped in the gripper attached to the load cell and tightly over the bottom plate of a universal tester AMETEK LF Plus from AMETEK Precision Instuments Europe GmbH, product group Lloyd lowered.
  • the entire measurement is carried out in a climate chamber under constant climatic conditions at 25 ° C and 50% relative humidity or at 25 ° C and 75% relative humidity.
  • the measurement starts with the approach of a preload of 0.07 N at a speed of 30 mm min '1 . Then the ⁇ loop is compressed by 8 mm at a speed of 60 mm min '1 , whereby the required force is measured. After the characteristic force F 1 has been recorded at the maximum deformation of 8 mm, the strand is relieved to 60 mm min -1 so that it is 10 mm from the bottom plate lifts off. From here, the next cycle begins by re-starting the pre-load of 0.07 N and then compressing the tress by 8 mm, at the same speeds as described above.
  • the measurement of an ⁇ -loop comprises a total of 10 cycles.
  • This measurement method can be used to determine four characteristic parameters for describing the mechanical properties of film-forming polymers. Hold, flexibility, plasticity and elasticity can be calculated from the measured forces according to the following formulas:
  • the keratin is added to the agent for temporary deformation of keratinic fibers in an amount of 0.05 to 5 wt .-%, more preferably in an amount of 1 to 4 wt .-%, more preferably in an amount of 0.3 to 3 wt .-% and most preferably in an amount of 0.5 to 1 wt .-%, each based on the weight of the total composition.
  • the keratin is preferably used in combination with a keratin hydrolyzate, with the use of keratin and keratin hydrolyzate in a weight ratio of from 10: 1 to 1: 1, preferably from 6: 1 to 4: 1, being particularly preferred. Further particular and preferred embodiments of the use according to the invention correspond to those already described in the description of the agent according to the invention.
  • the styling gel E1 according to the invention and the comparative formulations V1 and V2 were prepared according to the following table.
  • the agents had a pH between 5.5 and 7.0.
  • Keratin and keratin hydrolyzate mixture aqueous solution containing 5% by weight keratin and 1% by weight keratin hydrolyzate INCI name: aqua, keratin, hydrolyzed keratin) (Croda)
  • Acrylic acid homopolymer linked by means of pentaerythritol, sucrose or propylene allyl ether (INCI name: Carbomer) (3V Sigma)
  • Polyethylene glycol derivative of hydrogenated castor oil with an average of 40 moles of ethylene oxide (INCI name: PEG-40 Hydrogenated Castor OiI) (BASF) 2 formulations for styling foams
  • the formulation according to the invention for a styling foam E2 and the comparative formulations V3 and V4 were prepared according to the following table.
  • the agents had a pH between 6.0 and 7.0.
  • the omega-loop method (50% relative humidity, 25 ° C.) determines the hold, flexibility, elasticity and plasticity that can be achieved when applying various polymers to human hair.
  • Three aqueous polymer solutions were investigated:
  • Polymer Solution C Blend of Fixate TM G-100 2 (4.4 wt% polymer content) and Keratec

Abstract

Mittel zur temporären Verformung keratinischer Fasern, enthaltend in einem kosmetisch akzeptablen Träger 0,05 bis 5 Gew.-% mindestens eines Keratins mit einer Molmasse von 40 bis 70 kDa, und 0,1 bis 20 Gew.-% mindestens eines filmbildenden und/oder festigenden Polymers sowie die Verwendung entsprechender Keratine in Stylingmitteln zur Verbesserung des Frisurenhalts.

Description

"Keratinhaltige Stylingmittel"
Die vorliegende Erfindung betrifft keratinhaltige Mittel zur temporären Verformung keratinischer Fasern, sowie die Verwendung von Keratinen mit hoher Molmasse in Mitteln zur temporären Verformung keratinischer Fasern zur Verbesserung des Frisurenhalts.
Unter keratinhaltigen Fasern werden prinzipiell alle tierischen Haare, z.B. Wolle, Rosshaar, Angorahaar, Pelze, Federn und daraus gefertigte Produkte oder Textilien verstanden. Vorzugsweise handelt es sich bei den keratinischen Fasern jedoch um menschliche Haare.
Eine ansprechend aussehende Frisur wird heute allgemein als unverzichtbarer Teil eines gepflegten Äußeren angesehen. Dabei gelten aufgrund von aktuellen Modeströmungen immer wieder Frisuren als chic, die sich bei vielen Haartypen nur unter Verwendung festigender Wirkstoffe aufbauen bzw. für einen längeren Zeitraum bis hin zu mehreren Tagen aufrechterhalten lassen. Daher spielen Haarbehandlungsmittel, die einer permanenten oder temporären Formgebung der Haare dienen, eine wichtige Rolle. Temporäre Formgebungen, die einen guten Halt ergeben sollen, ohne das gesunde Aussehen der Haare, wie zum Beispiel deren Glanz, zu beeinträchtigen, können beispielsweise durch Haarsprays, Haarwachse, Haargele, Fönwellen etc. erzielt werden.
Entsprechende Mittel zur temporären Formgebung enthalten als formgebende Komponente üblicherweise synthetische Polymere. Zubereitungen, die ein gelöstes oder dispergiertes Polymer enthalten, können mittels Treibgasen oder durch einen Pumpmechanismus auf das Haar aufgebracht werden. Insbesondere Haargele und Haarwachse werden allerdings in der Regel nicht direkt auf das Haar appliziert, sondern mittels eines Kamms oder der Hände im Haar verteilt.
Die wichtigste Eigenschaft eines Mittels zur temporären Verformung keratinischer Fasern, im Folgenden auch Stylingmittel genannt, besteht darin, der behandelten Faser in der erzeugten Form einen möglichst starken Halt zu geben. Handelt es sich bei den keratinischen Fasern um menschliche Haare, spricht man auch von starkem Frisurenhalt. Der Frisurenhalt wird im wesentlichen durch die Art und Menge des eingesetzten filmbildenden und/oder festigenden Polymers bestimmt. Um starken Halt zu erreichen, muss entweder ein Polymer eingesetzt werden, dass sehr harte Filme ausbildet. Diese Filme sind aber gleichzeitig sehr spröde, so dass sie leicht brechen und von der Faser abplatzen. Alternativ wird eine entsprechend große Menge an filmbildendem Polymer benötigt. Beim Einsatz großer Mengen filmbildenden Polymers werden jedoch häufig Rückstände im Haar sichtbar. Beide Effekte, d.h. das Abplatzen von Filmplättchen, die im Haar verbleiben oder auf Schultern und Kleidung des Anwenders herabrieseln, und die sichtbaren Rückstände im Haar, sind in höchstem Grade unerwünscht.
Aufgabe der vorliegenden Erfindung war es daher, ein Mittels zur temporären Verformung keratinischer Fasern zur Verfügung zu stellen, das sich durch verbesserte Festigerleistung auszeichnet, wobei Flexibilität, Elastizität und Plastizität des Polymerfilms erhalten bleiben, so dass die beschriebenen negativen Effekte vermieden werden.
Es wurde nunmehr überraschenderweise gefunden, dass dies durch Zusatz von Keratin hoher Molmasse zu Stylingmitteln, die filmbildende Polymere enthalten, erreicht werden kann.
Ein erster Gegenstand der vorliegenden Erfindung ist daher ein Mittel zur temporären Verformung keratinischer Fasern, enthaltend in einem kosmetisch akzeptablen Träger
a) 0,05 bis 5 Gew.-% mindestens eines Keratins mit einer Molmasse von 40 bis 70 kDa, und b) 0,1 bis 20 Gew.-% mindestens eines filmbildenden und/oder festigenden Polymers.
Bei der Mischung von Polymeren ergeben sich die Eigenschaften der Mischung normalerweise aus der Kombination der Polymereigenschaften im entsprechenden Mischungsverhältnis. Die erfindungsgemäßen Mittel zeichnen sich jedoch dadurch aus, dass durch Zumischen eines Keratins hoher Molmasse zum filmbildenden und/oder festigenden Polymer eine synergistische Erhöhung des Frisurenhaits erzielt wird, wobei Flexibilität, Elastizität und Plastizität nahezu erhalten bleiben. Dies ermöglicht die Formulierung von Stylingprodukten, die bei gleicher Menge an eingesetztem filmbildenden und/oder festigenden Polymer einen höheren Haltegrad aufweisen, oder einen gleichbleibenden Haltegrad mit einer geringeren Menge an filmbildendem und/oder festigendem Polymer erzielen.
Der Einsatz von Keratin-Hydrolysaten in Haarbehandlungsmitteln ist bekannt. So offenbart etwa EP 0 052 441 B1 den Einsatz von Keratin-Dehvaten in Haarspülungen. Dabei werden die Keratin- Derivate aufgrund ihrer pflegenden Eigenschaften als Konditioniermittel eingesetzt. Ein Einsatz in Stylingmitteln ist nicht genannt.
Auch die Verwendung von Keratin als Haar- und Hautkonditioniermittel ist bekannt. Ein positiver Effekt von Keratin in Stylingmitteln auf den Frisurenhalt ist jedoch nicht beschrieben. Die erfindungsgemäßen Mittel enthalten 0,05 bis 5 Gew.-% mindestens eines Keratins mit einer Molmasse von 40 bis 70 kDa, wobei die Molmasse mittels Natriumdodecylsulfat-Polyacrylamid- Gelelektrophorese (SDS-PAGE) bestimmt wird.
Unter Keratin werden dabei Strukturproteine verstanden, die in Epithel- und Epidermis-Zellen, den sogenannten Keratinocyten, als Bestandteile des Cytoskeletts die intermediären Filamente ausbilden und die daraus hervorgehenden Hornsubstanzen der Haut und Hautanhangsgebilde, vor allem Haare, Schuppen, Wolle, Federn, Nägel und Hufe, ausmachen. Die Keratine können aus natürlichen Quellen gewonnen oder rekombinant hergestellt sein.
Vorzugsweise enthält das Mittel mindestens ein Keratin, das eine Molmasse von 40 bis 65 kDa, vorzugsweise von 40 bis 60 kDa aufweist.
In Abhängigkeit der Molmassen der Aminosäuren, aus denen das Keratin aufgebaut ist, können die Keratine einige hundert bis tausend Aminosäuren enthalten. Vorzugsweise enthalten die Mittel Keratin, das 200 bis 500 Aminosäuren, vorzugsweise 250 bis 450 Aminosäuren, besonders bevorzugt 275 bis 400 Aminosäuren aufweist.
Bevorzugt sind Keratine, die einen Anteil an L-Cystein von 2 bis 6 Mol-%, vorzugsweise von 4 bis 5 Mol-% aufweisen. Besonders bevorzugt sind Keratine, die 2 bis 6 Mol-% L-Cystein, 1 bis 40 Mol-% Glycin und 1 bis 30 Gew.-% Serin enthalten.
Bevorzugt enthält das Mittel das Keratin in einer Menge von 0,1 bis 4 Gew.-%, vorzugsweise von 0,3 bis 3 Gew.-%, besonders bevorzugt von 0,5 bis 1 Gew.-%. Die Prozentangaben beziehen sich jeweils auf das Gewicht des gesamten Mittels.
Das erfindungsgemäße Mittel enthält weiterhin 0,1 bis 20 Gew.-%, bezogen auf das gesamte Mittel, mindestens eines filmbildenden und/oder festigenden Polymers.
Das filmbildende und/oder festigende Polymer ist in dem Mittel vorzugsweise in einer Menge von 0,5 bis 15 Gew.-%, besonders bevorzugt von 1 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Selbstverständlich können auch mehrere filmbildende und/oder festigende Polymere enthalten sein.
Dabei können diese filmbildenden und/oder festigenden Polymere sowohl permanent als auch temporär kationisch, anionisch, nichtionisch oder amphoter sein. Weiterhin umfasst die vorliegende Erfindung auch die Erkenntnis, dass bei der Verwendung von mindestens zwei filmbildenden und/oder festigenden Polymeren diese selbstverständlich unterschiedliche Ladungen aufweisen können. Erfindungsgemäß bevorzugt kann es sein, wenn ein ionisches filmbildendes und/oder festigendes Polymer mit einem amphoteren und/oder nichtionischem filmbildenden und/oder festigenden Polymer gemeinsam verwendet wird. Auch die Verwendung mindestens zweier gegensätzlich geladener filmbildender und/oder festigender Polymere ist bevorzugt. In letzterem Falle kann eine besondere Ausführungsform wiederum zusätzlich mindestens ein weiteres amphoteres und/oder nichtionisches filmbildendes und/oder festigendes Polymer enthalten.
Da Polymere häufig multifunktional sind, können deren Funktionen nicht immer klar und eindeutig voneinander abgegrenzt werden. Insbesondere gilt dies für filmbildende und festigende Polymere. Dennoch sollen beispielhaft einige filmbildende Polymere beschrieben werden. Es wird an dieser Stelle jedoch explizit darauf verwiesen, dass im Rahmen der vorliegenden Erfindung sowohl filmbildende als auch festigende Polymere wesentlich sind. Da beide Eigenschaften auch nicht völlig unabhängig voneinander sind, werden unter dem Begriff „festigende Polymere" auch immer „filmbildende Polymere" verstanden und umgekehrt.
Zu den bevorzugten Eigenschaften der filmbildenden Polymeren zählt die Filmbildung. Unter filmbildenden Polymeren sind solche Polymere zu verstehen, welche beim Trocknen einen kontinuierlichen Film auf der Haut, dem Haar oder den Nägeln hinterlassen. Derartige Filmbildner können in den unterschiedlichsten kosmetischen Produkten wie beispielsweise Gesichtsmasken, Make-up, Haarfestigern, Haarsprays, Haargelen, Haarwachsen, Haarkuren, Shampoos oder Nagellacken verwendet werden. Bevorzugt sind insbesondere solche Polymere, die eine ausreichende Löslichkeit in Alkohol oder Wasser/Alkohol-Gemischen besitzen, um in dem erfindungsgemäßen Mittel in vollständig gelöster Form vorzuliegen. Die filmbildenden Polymere können synthetischen oder natürlichen Ursprungs sein.
Unter filmbildenden Polymeren werden weiterhin erfindungsgemäß solche Polymere verstanden, die bei Anwendung in 0,01 bis 20 Gew.-%-iger wässriger, alkoholischer oder wässrigalkoholischer Lösung in der Lage sind, auf dem Haar einen transparenten Polymerfilm abzuscheiden. Die filmbildenden Polymere können dabei sowohl anionisch, amphoter, nicht-ionisch, permanent kationisch oder temporär kationisch geladen sein.
Geeignete synthetische, filmbildende, haarfestigende Polymere sind Homo- oder Copolymere, die aus mindestens einem der folgenden Monomere aufgebaut sind: Vinylpyrrolidon, Vinylcaprolactam, Vinylester wie z.B. Vinylacetat, Vinylalkohol, Acrylamid, Methacrylamid, Alkyl- und Dialkylacrylamid, Alkyl- und Dialkylmethacrylamid, Alkylacrylat, Alkylmethacrylat, Propylenglykol oder Ethylenglykol, wobei die Alkylgruppen dieser Monomere vorzugsweise C1- bis C7-Alkylgruppen, besonders bevorzugt C1- bis C3-Alkylgruppen sind. Beispielhaft seien genannt Homopolymere des Vinylcaprolactams, des Vinylpyrrolidons oder des N-Vinylformamids. Weitere geeignete synthetische filmbildende, haarfestigende Polymere sind z.B. Copolymerisate aus Vinylpyrrolidon und Vinylacetat, Terpolymere aus Vinylpyrrolidon, Vinylacetat und Vinylpropionat, Polyacrylamide, die beispielsweise unter den Handelsbezeichnungen Akypomine® P 191 von der Firma CHEM-Y, Emmerich, oder Sepigel® 305 von der Firma Seppic vertrieben werden; Polyvinylalkohole, die beispielsweise unter den Handelsbezeichnungen Elvanol® von Du Pont oder Vinol® 523/540 von der Firma Air Products vertrieben werden sowie Polyethylenglykol/Polypropylenglykol-Copolymere, die beispielsweise, unter den Handelsbezeichnungen Ucon® der Union Carbide vertrieben werden.
Geeignete natürliche filmbildende Polymere sind z.B. Cellulosederivate, z. B. Hydroxypropyl- cellulose mit einem Molekulargewicht von 30.000 bis 50.000 g/mol, welche beispielsweise unter der Handelsbezeichnung Nisso Sl® von der Firma Lehmann & Voss, Hamburg, vertrieben wird.
Festigende Polymere tragen zum Halt und/oder zum Aufbau des Haarvolumens und der Haarfülle der Gesamtfrisur bei. Diese sogenannten festigenden Polymere sind gleichzeitig auch filmbildende Polymere und daher generell typische Substanzen für formgebende Haarbehandlungsmittel wie Haarfestiger, Haarschäume, Haarwachse, Haarsprays. Die Filmbildung kann dabei durchaus punktuell sein und nur einige Fasern miteinander verbinden.
Substanzen, welche dem Haar weiterhin hydrophobe Eigenschaften verleihen, sind hierbei bevorzugt, weil sie die Tendenz des Haares, Feuchtigkeit, also Wasser, zu absorbieren, verringern. Dadurch wird das schlaffe Herunterhängen der Haarsträhnen vermindert und somit ein langanhaltender Frisurenaufbau und -erhalt gewährleistet. Als Testmethode hierfür wird häufig der sogenannte curl-retention - Test angewendet. Diese polymeren Substanzen können weiterhin erfolgreich in leave-on und rinse-off Haarkuren oder Shampoos eingearbeitet werden. Da Polymere häufig multifunktional sind, das heißt mehrere anwendungstechnisch erwünschte Wirkungen zeigen, finden sich zahlreiche Polymere in mehreren auf die Wirkungsweise eingeteilten Gruppen, so auch im CTFA Handbuch. Wegen der Bedeutung gerade der festigenden Polymere sollen diese daher explizit in Form ihrer INCI - Namen aufgelistet werden. In dieser Liste der erfindungsgemäß bevorzugt zu verwendenden Polymere finden sich somit selbstverständlich gerade auch die genannten filmbildenden Polymere wieder.
Beispiele für gebräuchliche filmbildende, festigende Polymere sind Acrylamide/Ammonium Acrylate Copolymer, Acrylamides/DMAPA Acrylates/Methoxy PEG Methacrylate Copolymer, Acrylamidopropyltrimonium Chloride/Acrylamide Copolymer, Acrylamidopropyltrimonium Chloride/Acrylates Copolymer, Acrylates/Acetoacetoxyethyl Methacrylate Copolymer, Acrylates/Acrylamide Copolymer, Acrylates/Ammonium Methacrylate Copolymer, Acrylates/t- Butylacrylamide Copolymer, Acrylates Copolymer, Acrylates/CI-2 Succinates/Hydroxyacrylates Copolymer, Acrylates/Lauryl Acrylate/Stearyl Acrylate/Ethylamine Oxide Methacrylate Copolymer, Acrylates/Octylacrylamide Copolymer, Acrylates/Octylacrylamide/Diphenyl Amodimethicone Copolymer, Acrylates/Stearyl Acrylate/Ethylamine Oxide Methacrylate Copolymer, Acrylates/VA Copolymer, Acrylates/VP Copolymer, Adipic Acid/Diethylenetriamine Copolymer, Adipic Acid/Dimethylaminohydroxypropyl Diethylenetriamine Copolymer, Adipic Acid/Epoxypropyl Diethylenetriamine Copolymer, Adipic Acid/Isophthalic Acid/Neopentyl Glycol/Trimethylolpropane Copolymer, AIIyI Stearate/VA Copolymer, Aminoethylacrylate Phosphate/Acrylates Copolymer, Aminoethylpropanediol-Acrylates/Acrylamide Copolymer, Aminoethylpropanediol-AMPD- Acrylates/Diacetoneacrylamide Copolymer, Ammonium VA/Acrylates Copolymer, AMPD- Acrylates/Diacetoneacrylamide Copolymer, AMP-Acrylates/Allyl Methacrylate Copolymer, AMP- Acrylates/C1-18 Alkyl Acrylates/C1-8 Alkyl Acrylamide Copolymer, AMP-Acrylates/Diacetone- acrylamide Copolymer, AMP-Acrylates/Dimethylaminoethylmethacrylate Copolymer, Bacillus/Rice Bran Extract/Soybean Extract Ferment Filtrate, Bis-Butyloxyamodimethicone/PEG-60 Copolymer, Butyl Acrylate/Ethylhexyl Methacrylate Copolymer, Butyl Acrylate/Hydroxypropyl Dimethicone Acrylate Copolymer, Butylated PVP, Butyl Ester of Ethylene/MA Copolymer, Butyl Ester of PVM/MA Copolymer, Calcium/Sodium PVM/MA Copolymer, Com Starch/Acrylamide/ Sodium Acrylate Copolymer, Diethylene Glycolamine/Epichlorohydrin/Piperazine Copolymer, Dimethicone Crosspolymer, Diphenyl Amodimethicone, Ethyl Ester of PVM/MA Copolymer, Hydrolyzed Wheat Protein/PVP Crosspolymer, Isobutylene/Ethylmaleimide/ Hydroxyethylmaleimide Copolymer, Isobutylene/MA Copolymer, Isobutylmethacrylate/Bis-Hydroxypropyl Dimethicone Acrylate Copolymer, Isopropyl Ester of PVM/MA Copolymer, Lauryl Acrylate Crosspolymer, Lauryl Methacrylate/Glycol Dimethacrylate Crosspolymer, MEA-Sulfite, Methacrylic Acid/Sodium Acrylamidomethyl Propane Sulfonate Copolymer, Methacryloyl Ethyl Betaine/Acrylates Copolymer, Octylacrylamide/Acrylates/Butylaminoethyl Methacrylate Copolymer, PEG/PPG-25/25 Dimethicone/Acrylates Copolymer, PEG-8/SMDI Copolymer, Polyacrylamide, Polyacrylate-6, Polybeta-Alanine/Glutaric Acid Crosspolymer, Polybutylene Terephthalate, Polyester-1 , Polyethylacrylate, Polyethylene Terephthalate, Polymethacryloyl Ethyl Betaine, Polypentaerythrityl Terephthalate, Polyperfluoroperhydrophenanthrene, Polyquaternium-1, Polyquatemium-2, Polyquaternium-4, Polyquaternium-5, Polyquaternium-6, Polyquaternium-7, Polyquatemium-8, Polyquaternium-9, Polyquaternium-10, Polyquaternium-11 , Polyquaternium-12, Polyquaternium- 13, Polyquaternium-14, Polyquaternium-15, Polyquaternium-16, Polyquaternium-17, Polyquaternium-18, Polyquaternium-19, Polyquaternium-20, Polyquaternium-22, Polyquaternium- 24, Polyquaternium-27, Polyquaternium-28, Polyquaternium-29, Polyquaternium-30, Polyquaternium-31 , Polyquatemium-32, Polyquaternium-33, Polyquaternium-34, Polyquaternium- 35, Polyquaternium-36, Polyquaternium-37, Polyquaternium-39, Polyquaternium-45, Polyquaternium-46, Polyquaternium-47, Polyquaternium-48, Polyquaternium-49, Polyquaternium- 50, Polyquaternium-55, Polyquaternium-56, Polysilicone-9, Polyurethane-1 , Polyurethane-6, Polyurethane-10, Polyvinyl Acetate, Polyvinyl Butyral, Polyvinylcaprolactam, Polyvinylformamide, Polyvinyl Imidazolinium Acetate, Polyvinyl Methyl Ether, Potassium Butyl Ester of PVM/MA Copolymer, Potassium Ethyl Ester of PVM/MA Copolymer, PPG-70 Polyglyceryl-10 Ether, PPG- 12/SMDI Copolymer, PPG-51/SMDI Copolymer, PPG-10 Sorbitol, PVM/MA Copolymer, PVP, PVP/VA/ltaconic Acid Copolymer, PVP/VA/Vinyl Propionate Copolymer, Rhizobian Gum, Rosin Acrylate, Shellac, Sodium Butyl Ester of PVM/MA Copolymer, Sodium Ethyl Ester of PVM/MA Copolymer, Sodium Polyacrylate, Sterculia Urens Gum, Terephthalic Acid/Isophthalic Acid/Sodium Isophthalic Acid Sulfonate/Glycol Copolymer, Trimethylolpropane Triacrylate, Trimethylsiloxysilylcarbamoyl Pullulan, VA/Crotonates Copolymer, VA/Crotonates/Methacryloxy- benzophenone-1 Copolymer, VA/Crotonates/Vinyl Neodecanoate Copolymer, VA/Crotonates/Vinyl Propionate Copolymer, VA/DBM Copolymer, VA/Vinyl Butyl Benzoate/Crotonates Copolymer, Vinylamine/Vinyl Alcohol Copolymer, Vinyl Capro- lactam/VP/Dimethylaminoethyl Methacrylate Copolymer, VP/Acrylates/Lauryl Methacrylate Copolymer, VP/Dimethylaminoethylmethacrylate Copolymer, VP/DMAPA Acrylates Copolymer, VP/Hexadecene Copolymer, VP/VA Copolymer, VP/Vinyl Caprolactam/DMAPA Acrylates Copolymer, Yeast Palmitate.
Eine besonders ausgeprägte Verbesserung des Frisurenhalts lässt sich erzielen, wenn das Keratin in Kombination mit einem filmbildenden und/oder festigenden Polymer eingesetzt wird, das spröde, harte Polymerfilme ausbildet. Vorzugsweise werden daher entsprechende filmbildende und/oder festigende Polymere verwendet.
Vorzugsweise enthält das erfindungsgemäße Mittel daher mindestens ein filmbildendes und/oder festigendes Polymer ausgewählt aus
Aminomethylpropanolsalzen von Copolymeren des Allylmethacrylats mit einem oder mehreren Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester,
Vinylpyrrolidon-Vinylacetat-Copolymeren, Vinylpyrrolidon-Vinylcaprolactam-Dimethylaminopropylacrylamid-Copolymeren,
Copolymeren des Octylacrylamids mit t-Butylaminoethylmethacrylat und zwei oder mehr Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester, und
Copolymeren der C1-2-Alkylsuccinate mit Hydroxyalkylacrylaten und einem oder mehreren Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester.
Entsprechende filmbildende und/oder festigende Polymere sind kommerziell erhältlich. Besonders bevorzugt enthalt das erfindungsgemäße Mittel als filmbildendes und/oder festigendes Polymer ein Aminomethylpropanolsalz eines Copolymers des Allylmethacrylats mit einem oder mehreren Monomeren, ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Meth acry lsa u reester.
Vorzugsweise handelt es sich bei den genannten Acrylsäureestem und Methacrylsäureestern um CrCi2-Alkylacrylate und CrC^-Alkylmethacrylate, besonders bevorzugt um Methylacrylat, Ethylacrylat, Propylacrylat, Methylmethacrylat, Ethylmethacrylat, Propylmethacrylat und deren Mischungen.
Als Aminomethylpropanolsalz von Copolymeren des Allylmethacrylats mit einem oder mehreren Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester, wird vorzugsweise das Copolymer mit der INCI-Bezeichnung AMP- Acrylates/Allyl Methacrylate Copolymer eingesetzt, das von der Firma Noveon unter der Bezeichnung Fixate™ G-100 vertrieben wird. Das erfindungsgemäße Mittel enthält dieses Copolymer ganz besonders bevorzugt.
Ein bevorzugtes Vinylpyrrolidon-Vinylacetat-Copolymer ist das PVP/VA Copolymer 60-40 W (INCI-Bezeichnung: VP/VA Copolymer, Aqua, Laurtrimonium Chloride).
Als Vinylpyrrolidon-Vinylcaprolactam/Dimethylaminopropylacrylamid-Copolymer wird vorzugsweise das von ISP unter der Bezeichnung Aquaflex SF 40 erhältliche Copolymer mit der INCI-Bezeichnung VP/Vinyl Caprolactam/DMAPA Acrylates Copolymer eingesetzt.
Ein bevorzugtes Copolymer des Octylacrylamids mit t-Butylaminoethylmethacrylat und zwei oder mehr Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester, ist das von National Starch unter der Bezeichnung Amphomer® erhältliche Copolymer mit der INCI-Bezeichnung Octylacrylamide/Acrylates Butylaminoethyl Methacrylates Copolymer.
Als Copolymer der C1.2-Alkylsuccinate mit Hydroxyalkylacrylaten und einem oder mehreren Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester, ist das von ISP unter der Bezeichnung Allianz™ LT 120 erhältliche Copolymer mit der INCI-Bezeichnung Acrylates/C1-2 Succinates/Hydroxyacrylates Copolymer bevorzugt.
Als besonders vorteilhaft hat es sich erwiesen, wenn das erfindungsgemäße Mittel weiterhin mindestens ein Proteinhydrolysat und/oder eines seiner Derivate enthält. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Unter dem Begriff Proteinhydrolysate werden erfindungsgemäß auch Totalhydrolysate sowie einzelne Aminosäuren und deren Derivate sowie Gemische aus verschiedenen Aminosäuren verstanden. Weiterhin werden erfindungsgemäß aus Aminosäuren und Aminosäurederivaten aufgebaute Polymere unter dem Begriff Proteinhydrolysate verstanden. Zu letzteren sind beispielsweise Polyalanin, Polyasparagin, Polyserin etc. zu zählen. Weitere Beispiele für erfindungsgemäß einsetzbare Verbindungen sind L-Alanyl-L-prolin, Polyglycin, Glycyl-L-glutamin oder D/L-Methionin-S- Methylsulfoniumchlorid. Selbstverständlich können erfindungsgemäß auch ß-Aminosäuren und deren Derivate wie ß-Alanin, Anthranilsäure oder Hippursäure eingesetzt werden. Das Molgewicht der erfindungsgemäß einsetzbaren Proteinhydrolysate liegt zwischen 75, dem Molgewicht für Glycin, und 200.000, bevorzugt beträgt das Molgewicht 75 bis 50.000 und ganz besonders bevorzugt 75 bis 20.000 Dalton.
Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen oder marinen oder synthetischen Ursprungs eingesetzt werden.
Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milch- eiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Solche Produkte werden beispielsweise unter den Warenzeichen Dehylan® (Cognis), Promois® (Interorgana), Collapuron® (Cognis), Nutrilan® (Cognis), Gelita-Sol® (Deutsche Gelatine Fabriken Stoess & Co), Lexein® (Inolex), Sericin (Pentapharm) und Kerasol® (Croda) vertrieben.
Besonders interessant ist der Einsatz von Seiden-Proteinhydrolysaten. Unter Seide versteht man die Fasern des Kokons des Maulbeer-Seidenspinners (Bombyx mori L.). Die Rohseidenfaser besteht aus einem Doppelfaden Fibroin. Als Kittsubstanz hält Sericin diesen Doppelfaden zusammen. Seide besteht zu 70 - 80 Gew.% aus Fibroin, 19 - 28 Gew.% Sericin, 0,5 - 1 Gew.% aus Fett und 0,5 - 1 Gew.% aus Farbstoffen und mineralischen Bestandteilen.
Die wesentlichen Bestandteile des Sericin sind mit ca. 46 Gew.% Hydroxyaminosäuren. Das Sericin besteht aus einer Gruppe von 5 bis 6 Proteinen. Die wesentlichen Aminosäuren des Sericines sind Serin (Ser, 37 Gew.%), Aspartat (Asp, 26 Gew.%), Glycin (GIy1 17 Gew.%), Alanin (AIa), Leucin (Leu) und Tyrosin (Tyr).
Das wasserunlösliche Fibroin ist zu den Skieroproteinen mit langkertiger Molekülstruktur zu zählen. Die Hauptbestandteile des Fibroin sind Glycin (44 Gew.%), Alanin (26 Gew.%), und Tyrosin (13 Gew.%). Ein weiteres wesentliches Strukturmerkmal des Fibroins ist die Hexapeptidsequenz Ser-Gly-Ala-Gly-Ala-Gly. Technisch ist es auf einfache Art und Weise möglich, die beiden Seidenproteine voneinander zu trennen. So verwundert es nicht, dass sowohl Sericin als auch Fibroin als Rohstoffe zur Verwendung in kosmetischen Produkten jeweils für sich allein bekannt sind. Weiterhin sind Proteinhydrolysate und -derivate auf der Basis der jeweils einzelnen Seidenproteine bekannte Rohstoffe in kosmetischen Mitteln. So wird beispielsweise Sericin als solches seitens der Fa. Pentapharm Ltd. als Handelsprodukt mit der Bezeichnung Sericin Code 303-02 vertrieben. Weitaus häufiger noch wird Fibroin als Proteinhydrolysat mit unterschiedlichen Molekulargewichten im Markt angeboten. Diese Hydrolysate werden insbesondere als "Seidenhydroylsate" vertrieben. So wird beispielsweise unter der Handelsbezeichnung Promois® SiIk hydrolysiertes Fibroin mit mittleren Molekulargewichten zwischen 350 und 1000 vertrieben. Auch in der DE 31 39 438 A1 werden kolloidale Fibroinlösungen als Zusatz in kosmetischen Mitteln beschrieben.
Die positiven Eigenschaften der Seidenproteinderivate aus Sericin und Fibroin sind jeweils für sich genommen in der Literatur bekannt. So beschreibt die Verkaufsbroschüre der Fa. Pentapharm die kosmetischen Effekte des Sericines auf der Haut als reizlindernd, hydratisierend und filmbildend. Die Wirkung eines Fibroinderivates wird beispielsweise in der DE 31 39 438 A1 als pflegend und avivierend für das Haar beschrieben. Gemäß DE 102 40 757 A1 lässt sich bei einer gleichzeitigen Verwendung von Sericin und Fibroin bzw. deren Derivaten und/oder Hydrolysaten darüber hinaus eine synergistische Steigerung der positiven Wirkungen der Seidenproteine und deren Derivate erzielen.
Bevorzugt wird daher im erfindungsgemäßen Mittel als Seiden-Proteinhydrolysat ein Wirkstoffkomplex (A) bestehend aus dem Wirkstoff (A1) ausgewählt aus Sericin, Sericinhydrolysaten und/oder deren Derivaten, sowie Mischungen hieraus, und einem Wirkstoff (A2) ausgewählt aus Fibroin, und/oder Fibroinhydrolysaten und/oder deren Derivaten und/oder Mischungen hieraus eingesetzt.
Der erfindungsgemäß verwendete Wirkstoffkomplex (A) verbessert signifikant in synergistischer Weise die zuvor dargestellten wesentlichen inneren und äußeren Strukturmerkmale und die Festigkeit sowie die Elastizität von menschlichen Haaren.
Als Wirkstoffe (A1) können im Wirkstoffkomplex (A) verwendet werden: natives Sericin, hydrolysiertes und/oder weiter derivatisiertes Sericin, wie beispielsweise Handelsprodukte mit den INCI - Bezeichnungen Sericin, Hydrolyzed Sericin, oder Hydrolyzed SiIk, eine Mischung aus den Aminosäuren Serin, Aspartat und Glycin und/oder deren Methyl-, Propyl-, iso-Propyl-, Butyl-, iso-Butylestern, deren Salze wie beispielsweise Hydrochloride, Sulfate, Acetate, Citrate, Tartrate , wobei in dieser Mischung das Serin und/oder dessen Derivate zu 20 bis 60 Gew.%, das Aspartat und/oder dessen Derivate zu 10 - 40 Gew.% und das Glycin und/oder dessen Derivate zu 5 bis 30 Gew.% enthalten sind, mit der Maßgabe, dass sich die Mengen dieser Aminosäuren und/oder deren Derivate vorzugsweise zu 100 Gew.% erganzen, sowie deren Mischungen.
Als Wirkstoffe (A2) können im Wirkstoffkomplex (A) verwendet werden: natives, in eine lösliche Form überführtes Fibroin, hydrolysiertes und/oder weiter derivatisiertes Fibroin, besonders teilhydrolisiertes Fibroin, welches als Hauptbestandteil die Aminosäuresequenz Ser-Gly-Ala-Gly-Ala-Gly enthält, die Aminosäuresequenz Ser-Gly-Ala-Gly-Ala-Gly, eine Mischung der Aminosäuren Glycin, Alanin und Tyrosin und/oder deren Methyl-, Propyl-, iso-Propyl-, Butyl-, iso-Butylestern, deren Salze wie beispielsweise Hydrochloride, Sulfate, Acetate, Citrate, Tartrate , wobei in dieser Mischung das Glycin und/oder dessen Derivate in Mengen von 20 - 60 Gew.%, das Alanin und dessen Derivate in Mengen von 10 - 40 Gew,% und das Tyrosin und dessen Derivate in Mengen von 0 bis 25 Gew.% enthalten sind, mit der Maßgabe, dass sich die Mengen dieser Aminosäuren und/oder deren Derivate vorzugsweise zu 100 Gew.% ergänzen, sowie deren Mischungen.
Besonders gute pflegende Eigenschaften können erzielt werden, wenn eine der beiden Wirkstoffkomponenten des Wirkstoffkomplexes (A) in der nativen oder allenfalls löslich gemachten Form verwendet wird. Es ist auch möglich, eine Mischung aus mehreren Wirkstoffen (A1) und/oder (A2) einzusetzen.
Es kann bevorzugt sein, dass die beiden Wirkstoffe (A1) und (A2) im Verhältnis von 10:90 bis 70:30, insbesondere 15:85 bis 50:50 und ganz besonders 20:80 bis 40:60, bezogen auf deren jeweilige Gehalte an aktiver Wirksubstanz in den erfindungsgemäßen Produkten eingesetzt werden.
Die Derivate der Hydrolysate von Sericin und Fibroin umfassen sowohl anionische als auch kationisierte Proteinhydrolysate. Die Proteinhydrolysate von Sericin und Fibroin sowie die daraus hergestellten Derivate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche Proteinhydrolysate von Sericin und Fibroin und/oder deren Derivate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 10000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten von Sericin und Fibroin auch quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quartärer Ammoniumsalze wie beispielsweise N1N- Dimethyl-N-(n-Alkyl)-N-(2-hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt.
Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäß einsetzbaren kationischen Proteinhydrolysate und - derivate seien die unter den INCI - Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed SiIk, Cocodimonium Hydroxypropyl SiIk Amino Acids, Hydroxyproypltrimonium Hydrolyzed SiIk, Lauryldimonium Hydroxypropyl Hydrolyzed SiIk, Steardimonium Hydroxypropyl Hydrolyzed SiIk, Quaternium-79 Hydrolyzed SiIk. Als typische Beispiele für die erfindungsgemäßen anionischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Potassium Cocoyl Hydrolyzed SiIk, Sodium Lauroyl Hydrolyzed SiIk oder Sodium Stearoyl Hydrolyzed SiIk. Letztlich seien noch als typische Beispiele für die erfindungsgemäß einsetzbaren Derivate aus Sericin und Fibroin die unter den INCI - Bezeichnungen im Handel erhältlichen Produkte genannt: Ethyl Ester of Hydrolyzed SiIk und Hydrolyzed SiIk PG-Propyl Methylsilanediol. Weiterhin erfindungsgemäß verwendbar, wenngleich nicht unbedingt bevorzugt sind die im Handel erhältlichen Produkte mit den INCI - Bezeichnungen Palmitoyl Oligopeptide, Palmitoyl Pentapeptide-3, Palmitoyl Pentapeptide-2, Acetyl Hexapeptide-1, Acetyl Hexapeptide-3, Copper Tripeptide-1 , Hexapeptide- 1, Hexapeptide-2, MEA-Hydrolyzed SiIk.
Die Wirkung des Wirkstoffkomplexes (A) kann durch die Zugabe von Fettstoffen weiter gesteigert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wässriger Dispersion vorliegen können, und natürliche und synthetische kosmetische ölkomponenten zu verstehen.
Proteinhydrolysate pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate, sind beispielsweise unter den Warenzeichen Gluadin® (Cognis), DiaMin® (Diamalt), Lexein® (Inolex), Hydrosoy® (Croda), Hydrolupin® (Croda), Hydrosesame® (Croda), Hydrotritium® (Croda) und Crotein® (Croda) erhältlich.
Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte. Solche Produkte werden beispielsweise unter den Bezeichnungen Lamepon® (Cognis), Lexein® (Inolex), Crolastin® (Croda), Crosilk® (Croda) oder Crotein® (Croda) vertrieben.
Selbstverständlich umfasst die erfindungsgemäße Lehre alle isomeren Formen, wie eis - trans - Isomere, Diastereomere und chirale Isomere.
Erfindungsgemäß ist es auch möglich, eine Mischung aus mehreren Proteinhydrolysaten einzusetzen.
Die Proteinhydrolysate sind in den erfindungsgemäßen Mitteln beispielsweise in Konzentrationen von 0,01 Gew.% bis zu 20 Gew.%, vorzugsweise von 0,05 Gew.% bis zu 15 Gew.% und ganz besonders bevorzugt in Mengen von 0,05 Gew.% bis zu 5 Gew.%, jeweils bezogen auf die gesamte Anwendungszubereitung enthalten.
Besonders bevorzugt enthält das erfindungsgemäße Mittel als Proteinhydrolysat ein Kertain- hydrolysat, wobei ein Kertainhydrolysat mit einer Molmasse von 2 bis 6 kDa, vorzugsweise von 3 bis 4 kDa, bestimmt mittels Size Exclusion HPLC, bevorzugt ist.
Das Mittel enthält das Kertainhydrolysat vorzugsweise in einer Menge von 0,01 bis 1 Gew.-%, besonders bevorzugt von 0,02 bis 0,8 Gew.-%, jeweils bezogen auf das gesamte Mittel.
In einer ganz besonders bevorzugten Ausführungsform werden Keratin und Keratinhydrolysat gemeinsam als Gemisch eingesetzt. Geeignete Gemische sind kommerziell erhältlich. Vorzugsweise enthält das erfindungsgemäße Mittel das von Croda erhältliche Produkt Keratec IFP, eine aus Schafswolle gewonnene wässrige Mischung, enthaltend etwa 5 Gew.-% Keratin und etwa 1 Gew.-% Keratinhydrolysat.
Das Mittel kann weiterhin mindestens einen Pflegestoff enthalten.
Vorzugsweise handelt es sich bei dem Pflegestoff um mindestens ein Silikonöl und/oder ein Silikongum.
Erfindungsgemäß geeignete Silikonöle oder Silikongums sind insbesondere Dialkyl- und Alkylarylsiloxane, wie beispielsweise Dimethylpolysiloxan und Methylphenylpolysiloxan, sowie deren alkoxylierte, quaternierte oder auch anionische Derivate. Bevorzugt sind cyclische und lineare Polydialkylsiloxane, deren alkoxylierte und/oder aminierte Derivate, Dihydroxypoly- dimethylsiloxane und Polyphenylalkylsiloxane. Silikonöle bewirken die unterschiedlichsten Effekte. So beeinflussen sie beispielsweise gleichzeitig die Trocken- und Nasskämmbarkeiten, den Griff des trockenen und nassen Haares sowie den Glanz. Unter dem Begriff Silikonöle versteht der Fachmann mehrere Strukturen Silicium-organischer Verbindungen. Zunächst werden hierunter die Dimethiconole (S1 ) verstanden. Diese können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethiconole können durch die folgende Strukturformel (S1 - I) dargestellt werden:
(HOSiR1 2) - O - (SiR2 2 - O - )x - (Si R1 2OH) (S1 - I)
Verzweigte Dimethiconole können durch die Strukturformel (S1 - II) dargestellt werden:
R2 I
(HOSiR1 2) - O - (SiR2Z - O - )χ - Si - O - (SiR2 2 - O - )y - (SiOHR1 2)
I O - (SiR22 - O - )z - (SiOHR1 Z)
Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder einen Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, AIIyI, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4- Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, insbesondere bevorzugt ist R1 und R2 Methyl. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von O bis 50.000. Die Molgewichte der Dimethiconole liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25 0C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, ganz besonders bevorzugte Viskositäten liegen zwischen 10000 und 3000000 cPs. Der bevorzugteste Bereich liegt zwischen 50000 und 2000000 cPs.
Als Beispiele für derartige Produkte werden die folgenden Handelsprodukte genannt: Botanisil NU-150M (Botanigenics), Dow Corning 1-1254 Fluid, Dow Corning 2-9023 Fluid, Dow Corning 2- 9026 Fluid, Ultrapure Dimethiconol (Ultra Chemical), Unisil SF-R (Universal Preserve), X-21 -5619 (Shin-Etsu Chemical Co.), Abil OSW 5 (Degussa Care Specialties), ACC DL-9430 Emulsion (Taylor Chemical Company), AEC Dimethiconol & Sodium Dodecylbenzenesulfonate (A & E Connock (Perfumery & Cosmetics) Ltd.), B C Dimethiconol Emulsion 95 (Basildon Chemical Company, Ltd.), Cosmetic Fluid 1401 , Cosmetic Fluid 1403, Cosmetic Fluid 1501 , Cosmetic Fluid 1401 DC (alle zuvor genannten Chemsil Silicones, Inc.), Dow Corning 1401 Fluid, Dow Corning 1403 Fluid, Dow Corning 1501 Fluid, Dow Corning 1784 HVF Emulsion, Dow Corning 9546 Silicone Elastomer Blend (alle zuvor genannten Dow Corning Corporation), Dub Gel Sl 1400 (Stearinerie Dubois FiIs), HVM 4852 Emulsion (Crompton Corporation), Jeesilc 6056 (Jeen International Corporation), Lubrasil, Lubrasil DS (beide Guardian Laboratories), Nonychosine E1 Nonychosine V (beide Exsymol), SanSurf Petrolatum-25, Satin Finish (beide Collaborative Laboratories, Inc.), Silatex-D30 (Cosmetic Ingredient Resources), Silsoft 148, Silsoft E-50, Silsoft E-623 (alle zuvor genannten Crompton Corporation), SM555, SM2725, SM2765, SM2785 (alle zuvor genannten GE Silicones), Taylor T-SiI CD-1 , Taylor TME-4050E (alle Taylor Chemical Company), TH V 148 (Crompton Corporation), Tixogel CYD-1429 (Sud-Chemie Performance Additives), Wacker-Belsil CM 1000, Wacker-Belsil CM 3092, Wacker-Belsil CM 5040, Wacker- Belsil DM 3096, Wacker-Belsil DM 3112 VP, Wacker-Belsil DM 8005 VP, Wacker-Belsil DM 60081 VP (alle zuvor genannten Wacker-Chemie GmbH).
Dimethicone (S2) bilden die zweite Gruppe der Silikone, welche erfindungsgemäß enthalten sein können. Diese können sowohl linear als auch verzweigt als auch cyclisch oder cyclisch und verzweigt sein. Lineare Dimethicone können durch die folgende Strukturformel (S2 - I) dargestellt werden:
(SiR1 3) - O - (SiR1 R2- O - )x - (SiR1 3) (S2 - I)
Verzweigte Dimethicone können durch die Strukturformel (S2 - II) dargestellt werden:
R2
I (SiR1 3) - O - (Si R1R2- O - )x - Si - O - (Si R1R2- O - )y - (SiR1 3)
I O - (Si R1R2- O - )z- (SiR1 3)
Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder einen Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, AIIyI, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4- Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthalt, und besonders bevorzugt ist R1 und R2 Methyl. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25 0C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, besonders bevorzugte Viskositäten liegen zwischen 10000 und 3000000 cPs. Ganz besonders bevorzugt liegt die Viskosität im Bereich zwischen 50000 und 2000000 cPs.
Dimethiconcopolyole (S3) bilden eine weitere Gruppe von Silikonen, die geeignet sind. Dimethiconcopolyole können durch die folgenden Strukturformeln dargestellt werden:
(SiR1 3) - O - (SiR2 Z - O - )χ - (SiR2PE - O - )y - (SiR1 3) (S3 - I),
PE - (SiR1 2) - O - (SiR2 2 - O - )x -(SiR1 2) - PE (S3 - II)
Verzweigte Dimethiconcopolyole können durch die Strukturformel (S3 - III) dargestellt werden:
R2
I PE - (SiR1 2) - O - (SiR2 2 - O - )x - Si - O - (SiR2 2 - O - )y- (SiR1 2) - PE (S3 - III)
I
O - (SiR2Z - O - )z- (SiR1 2) - PE
oder durch die Strukturformel (S3 - IV):
R2
I (SiR1 3) - O - (SiR2 Z - O - )χ - Si - O - (SiR2 PE - O - )y - (SiR1 3) (S3-IV)
I O - (SiR2 2 - O - )z - (SiR1 3)
Die Reste R1 und R2 stehen unabhängig voneinander jeweils für Wasserstoff, einen Methylrest, einen C2 bis C30 linearen, gesättigten oder ungesättigten Kohlenwasserstoffrest, einen Phenylrest und/oder einen Arylrest. Nicht einschränkende Beispiele der durch R1 und R2 repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Pentyl, Isopentyl, Neopentyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, AIIyI, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4- Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R1 und R2 ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthalt, insbesondere bevorzugt ist R1 und R2 Methyl. PE steht für einen Polyoxyalkylenrest. Bevorzugte Polyoxyalkylenreste leiten sich ab von Ethylenoxid, Propylenoxid und Glycerin. Die Zahlen x, y und z sind ganze Zahlen und laufen jeweils unabhängig voneinander von 0 bis 50.000. Die Molgewichte der Dimethicone liegen zwischen 1000 D und 10000000 D. Die Viskositäten liegen zwischen 100 und 10000000 cPs gemessen bei 25 0C mit Hilfe eines Glaskapillarviskosimeters nach der Dow Corning Corporate Testmethode CTM 0004 vom 20. Juli 1970. Bevorzugte Viskositäten liegen zwischen 1000 und 5000000 cPs, ganz besonders bevorzugte Viskositäten liegen zwischen 10000 und 3000000 cPs. Der bevorzugteste Bereich liegt zwischen 50000 und 2000000 cPs.
Entsprechende Dimethiconcopolyole sind kommerziell erhältlich und werden beispielsweise von der Firma Dow Corning unter der Bezeichnung Dow Corning ® 5330 Fluid vertrieben.
Selbstverständlich umfasst die erfindungsgemäße Lehre auch, dass die Dimethiconole, Dimethicone und/oder Dimethiconcopolymere bereits als Emulsion vorliegen können. Dabei kann die entsprechende Emulsion der Dimethiconole, Dimethicone und/oder Dimethiconcopolyole sowohl nach der Herstellung der entsprechenden Dimethiconole, Dimethicone und/oder Dimethiconcopolyole aus diesen und den dem Fachmann bekannten üblichen Verfahren zur Emulgierung hergestellt werden. Hierzu können als Hilfsmittel zur Herstellung der entsprechenden Emulsionen sowohl kationische, anionische, nichtionische oder zwitterionische Tenside und Emulgatoren als Hilfsstoffe verwendet werden. Selbstverständlich können die Emulsionen der Dimethiconole, Dimethicone und/oder Dimethiconcopolyole auch direkt durch ein Emulsionspolymerisationsverfahren hergestellt werden. Auch derartige Verfahren sind dem Fachmann wohl bekannt. Hierzu sei beispielsweise verwiesen auf die „Encyclopedia of Polymer Science and Engineering, Volume 15, Second Edition, Seiten 204 bis 308, John Wiley & Sons, Inc. 1989. Auf dieses Standardwerk wird ausdrücklich Bezug genommen.
Wenn die Dimethiconole, Dimethicone und/oder Dimethiconcopolyole als Emulsion verwendet werden, dann beträgt die Tröpfchengröße der emulgierten Teilchen erfindungsgemäß 0,01 bis 10000 μm, bevorzugt 0,01 bis 100 μm, besonders bevorzugt 0,01 bis 20 μm und ganz besonders bevorzugt 0,01 bis 10 μm. Die Teilchengröße wird dabei nach der Methode der Lichtstreuung bestimmt. Werden verzweigte Dimethiconole, Dimethicone und/oder Dimethiconcopolyole verwendet, so ist darunter zu verstehen, dass die Verzweigung größer ist, als eine zufällige Verzweigung, welche durch Verunreinigungen der jeweiligen Monomere zufällig entsteht. Im Sinne der vorliegenden Erfindung ist daher unter verzweigten Dimethiconolen, Dimethiconen und/oder Dimethiconcopolyolen zu verstehen, dass der Verzweigungsgrad größer als 0,01 % ist. Bevorzugt ist ein Verzweigungsgrad größer als 0,1 % und ganz besonders bevorzugt von größer als 0,5 %. Der Grad der Verzweigung wird dabei aus dem Verhältnis der unverzweigten Monomeren zu den verzweigenden Monomeren, das heißt der Menge an tri- und tetrafunktionalen Siloxanen, bestimmt. Erfindungsgemäß können sowohl niedrigverzweigte als auch hochverzweigte Dimethiconole, Dimethicone und/oder Dimethiconcopolyole ganz besonders bevorzugt sein.
Geeignete Silikone sind weiterhin aminofunktionelle Silikone (S4), insbesondere die Silikone, die unter der INCI-Bezeichnung Amodimethicone zusammengefasst sind. Darunter sind Silikone zu verstehen, welche mindestens eine, gegebenenfalls substituierte, Aminogruppe aufweisen.
Solche Silikone können z.B. durch die Formel (S4 - I)
M(RaQbSiO(4-a-b)/2))x(RcSiO(4-c)/2))yM (S4 - I)
beschrieben werden, wobei in der obigen Formel R ein Kohlenwasserstoff oder ein Kohlenwasserstoffrest mit 1 bis etwa 6 Kohlenstoffatomen ist, Q ein polarer Rest der allgemeinen Formel -R1Z ist, worin R1 eine zweiwertige, verbindende Gruppe ist, die an Wasserstoff und den Rest Z gebunden ist, zusammengesetzt aus Kohlenstoff- und Wasserstoffatomen, Kohlenstoff-, Wasserstoff- und Sauerstoffatomen oder Kohlenstoff-, Wasserstoff- und Stickstoffatomen, und Z ein organischer, aminofunktioneller Rest ist, der mindestens eine aminofunktionelle Gruppe enthält; "a" Werte im Bereich von etwa 0 bis etwa 2 annimmt, "b" Werte im Bereich von etwa 1 bis etwa 3 annimmt, "a" + "b" kleiner als oder gleich 3 ist, und "c" eine Zahl im Bereich von etwa 1 bis etwa 3 ist, und x eine Zahl im Bereich von 1 bis etwa 2.000, vorzugsweise von etwa 3 bis etwa 50 und am bevorzugtesten von etwa 3 bis etwa 25 ist, und y eine Zahl im Bereich von etwa 20 bis etwa 10.000, vorzugsweise von etwa 125 bis etwa 10.000 und am bevorzugtesten von etwa 150 bis etwa 1.000 ist, und M eine geeignete Silikon-Endgruppe ist, wie sie im Stand der Technik bekannt ist, vorzugsweise Trimethylsiloxy. Nicht einschränkende Beispiele der durch R repräsentierten Reste schließen Alkylreste, wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, Amyl, Isoamyl, Hexyl, Isohexyl und ähnliche; Alkenylreste, wie Vinyl, Halogenvinyl, Alkylvinyl, AIIyI, Halogenallyl, Alkylallyl; Cycloalkylreste, wie Cyclobutyl, Cyclopentyl, Cyclohexyl und ähnliche; Phenylreste, Benzylreste, Halogenkohlenwasserstoffreste, wie 3-Chlorpropyl, 4- Brombutyl, 3,3,3-Trifluorpropyl, Chlorcyclohexyl, Bromphenyl, Chlorphenyl und ähnliche sowie schwefelhaltige Reste, wie Mercaptoethyl, Mercaptopropyl, Mercaptohexyl, Mercaptophenyl und ähnliche ein; vorzugsweise ist R ein Alkylrest, der 1 bis etwa 6 Kohlenstoffatomen enthält, und am bevorzugtesten ist R Methyl. Beispiele von R1 schließen Methylen, Ethylen, Propylen, Hexamethylen, Decamethylen, -CH2CH(CH3)CH2-, Phenylen, Naphthylen, -CH2CH2SCH2CH 2-, - CH2CH2OCH2-, -OCH2CH2-, -OCH2CH2CH2-, -CH2CH(CH3)C(O)OCH2-, -(CH2)3C(O)OCH2CH2-, - C6H 4C6H4-, -C6H4CH2C6H4-; und -(CH2)3C(O)SCH2CH2- ein.
Z ist ein organischer, aminofunktioneller Rest, enthaltend mindestens eine funktionelle Aminogruppe. Eine mögliche Formel für Z ist NH(CH2 )ZNH2, worin z für eine ganze Zahl von 1 bis 50 steht. Eine andere mögliche Formel für Z ist -NH(CH2)ZNH(CH 2)zz, worin sowohl z als auch zz unabhängig voneinander für eine ganze Zahl von 1 bis 50 stehen, wobei diese Struktur Diamino- Ringstrukturen umfasst, wie Piperazinyl. Z ist insbesondere bevorzugt ein -NHCH2CH 2NH2-Rest. Eine andere mögliche Formel für Z ist - N(CH2)ZNX1X2 oder -NX1X2, worin X1 und X2 jeweils unabhängig voneinander ausgewählt ist aus Wasserstoff und einem Kohlenwasserstoffrest mit 1 bis etwa 6 Kohlenstoffatomen.
Ganz besonders bevorzugt steht Q für einen polaren, aminofunktionellen Rest der Formel - CH2CH2CH2NHCH2CH2NH 2.
Das molare Verhältnis der RaQb SiO(4.a.b)/2-Einheiten zu den RcSi0 (4-c)/2-Einheiten liegt im Bereich von etwa 1 : 2 bis 1 : 65, vorzugsweise von etwa 1 : 5 bis etwa 1 : 65 und besonders bevorzugt von etwa 1 : 15 bis etwa 1 : 20. Werden ein oder mehrere Silikone der obigen Formel eingesetzt, dann können die verschiedenen variablen Substituenten in der obigen Formel bei den verschiedenen Silikonkomponenten, die in der Silikonmischung vorhanden sind, verschieden sein.
Bevorzugte aminofunktionelle Silikone entsprechen der Formel (S4 - II)
R aG3-3-Si(OSiG 2)n-(OSiG bR'2. ,,WO-SiG3-3-R',, (S4 - II),
worin bedeutet:
- G ist -H, eine Phenylgruppe, -OH, -0-CH3, -CH3, -CH2CH3, -CH2CH2CH3,
-CH(CHs)2, -CH2CH2CH2CH3, -CH2CH(CH3)2, -CH(CH3)CH2CH3, -C(CH3J3 ;
- a steht für eine Zahl zwischen O und 3, insbesondere O;
- b steht für eine Zahl zwischen O und 1 , insbesondere 1 ,
- m und n sind Zahlen, deren Summe (m + n) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei n vorzugsweise Werte von O bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt,
- R' ist ein monovalenter Rest ausgewählt aus o -N(R")-CH2-CH 2- N(R")2 o -N(FT)2 o -N+(FT)3A " o -N+H(FT)2 A- o -N+H2(R")A- o -N(R11J-CH2-CH2-N+R11H2A" , wobei jedes R" für gleiche oder verschiedene Reste aus der Gruppe -H, - Phenyl, -Benzyl, der d.^-Alkylreste, vorzugsweise -CH3, -CH2CH3, -CH2CH2CH3, -CH(CHa)2, -CH2CH2CH2CH3, -CH2CH(CH3)2l
-CH(CH3)CH2CH3, -C(CH3)3, steht und A- ein Anion repräsentiert, welches vorzugsweise ausgewählt ist aus Chlorid, Bromid, lodid oder Methosulfat.
Besonders bevorzugte aminofunktionelle Silikone entsprechen der Formel (S4 - IM)
(CH3)3Si-[O-Si(CH3)2]n[OSi(CH3)]m-OSi(CH3)3 (S4 - III),
I CH2CH(CH3)CH2NH(CH2)2NH2
worin m und n Zahlen sind, deren Summe (m + n) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei n vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
Diese Silikone werden nach der INCI-Deklaration als Trimethylsilylamodimethicone bezeichnet.
Besonders bevorzugt sind weiterhin aminofunktionelle Silikone der Formel (S4 - IV)
R-[Si(CH3)2-O]n1[Si(R)-O]m-[Si(CH3)2]n2-R (S4 - IV)1
I (CH2)3NH(CH2)2NH2
worin R für -OH, -0-CH3 oder eine -CH3-Gruppe steht und m, n1 und n2 Zahlen sind, deren Summe (m + n1 + n2) zwischen 1 und 2000, vorzugsweise zwischen 50 und 150 beträgt, wobei die Summe (n1 + n2) vorzugsweise Werte von 0 bis 1999 und insbesondere von 49 bis 149 und m vorzugsweise Werte von 1 bis 2000, insbesondere von 1 bis 10 annimmt.
Diese Silikone werden nach der INCI-Deklaration als Amodimethicone bezeichnet und sind beispielsweise in Form einer Emulsion als Handelsprodukt Dow Corning® 949 im Gemisch mit einem kationischen und eine nichtionischen Tensid erhältlich.
Vorzugsweise werden solche aminofunktionellen Silikone eingesetzt, die eine Aminzahl oberhalb von 0,25 meq/g, vorzugsweise oberhalb von 0,3 meq/g und insbesondere bevorzugt oberhalb von 0,4 meq/g aufweisen. Die Aminzahl steht dabei für die Milli-Äquivalente Amin pro Gramm des aminofunktionellen Silikons. Sie kann durch Titration ermittelt und auch in der Einheit mg KOH/g angegeben werden.
Weitere geeignete Silikone sind beispielsweise oligomere Polydimethylcyclosiloxane (INCI-Bezeichnung: Cyclomethicone), insbesondere die tetramere und die pentamere Verbindung, die als Handelsprodukte DC 245 Fluid, DC
344 bzw. DC 345 von Dow Corning vertrieben werden,
Hexamethyl-Disiloxan (INCI-Bezeichnung: Hexamethyldisiloxane), z. B. das unter der
Bezeichnung Abil® K 520 vertriebenen Produkt,
Polyphenylmethylsiloxane (INCI-Bezeichnung: Phenyl Trimethicone), z. B. das
Handelsprodukt DC 556 Cosmetic Grade Fluid von Dow Corning,
Ester sowie Partialester der Silikon-Glykol-Copolymere, wie sie beispielsweise von der
Firma Fanning unter der Handelsbezeichnung Fancorsil® LIM (INCI-Bezeichnung:
Dimethicone Copolyol Meadowfoamate) vertrieben werden, anionische Silikonöle, wie beispielsweise das Produkt Dow Corning®1784.
Gemäß einer bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel mindestens zwei unterschiedliche Silikonderivate, insbesondere bevorzugt eine Kombination aus einem flüchtigen und einem nichtflüchtigen Silikon. Flüchtig im Sinne der Erfindung sind solche Silikone, die eine Flüchtigkeit aufweisen, die gleich oder größer als die Flüchtigkeit des cyclischen, pentameren Dimethylsiloxans ist. Solche Kombinationen sind auch als Handelsprodukte (z. B. Dow Corning®1401 , Dow Corning®1403 und Dow Corning®1501 , jeweils Mischungen aus einem Cyclomethicone und einem Dimethiconol) erhältlich.
Bevorzugte Mischungen verschiedener Silikone sind beispielsweise Dimethicone und Dimethiconole, lineare Dimethicone und cylische Dimethiconole. Eine ganz besonders bevorzugte Mischung von Silikonen besteht aus mindestens einem cyclischen Dimethiconol und/oder Dimethicon, mindestens einem weiteren nicht cylischen Dimethicon und/oder Dimethiconol sowie mindestens einem aminofunktionellen Silikon.
Werden unterschiedliche Silikone als Mischung verwendet, so ist das Mischungsverhältnis weitgehend variabel. Bevorzugt werden jedoch alle zur Mischung verwendeten Silikone in einem Verhältnis von 5 : 1 bis 1 : 5 im Falle einer binären Mischung eingesetzt. Ein Verhältnis von 3 : 1 bis 1 : 3 ist besonders bevorzugt. Ganz besonders bevorzugte Mischungen enthalten alle in der Mischung enthaltenen Silikone weitestgehend in einem Verhältnis von etwa 1 : 1 , jeweils bezogen auf die eingesetzten Mengen in Gew.-%. Die Mittel enthalten die Silikone bevorzugt in Mengen von 1 - 25 Gew.-%, besonders bevorzugt von 5 - 20 Gew.-% und insbesondere bevorzugt von 7 - 15 Gew.-%, bezogen auf das gesamte Mittel.
Obwohl das erfindungsgemäße Mittel als Pflegekomponente vorzugsweise ein Silikonderivat enthalt, ist es auch möglich, dass das Mittel statt oder neben einer Silikonkomponente mindestens einen Pflegestoff einer anderen Verbindungsklasse enthalt.
Als Pflegestoff einer anderen Verbindungsklasse kann das Mittel beispielsweise mindestens ein kationisches Tensid enthalten.
Erfindungsgemäß bevorzugt sind kationische Tenside vom Typ der quartären Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quartäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bromide, wie Alkyltrimethyl- ammoniumchloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distearyldimethyl- ammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlorid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quaternium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.
Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Esterfunktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement enthalten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Triethanolamin, quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quaternierten Estersalzen von Fettsauren mit 1 ,2-Dihydroxypropyldialkylaminen. Solche Produkte werden beispielsweise unter den Warenzeichen Stepantex®, Dehyquart® und Armocare® vertrieben. Die Produkte Armocare® VGH-70, ein N,N-Bis(2-Palmitoyloxyethyl)dimethylammoniumchlorid, sowie Dehyquart® F-75, Dehyquart® C-4046, Dehyquart® L80 und Dehyquart® AU-35 sind Beispiele für solche Esterquats.
Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthetischer Fettsauren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfindungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid® S 18 im Handel erhältliche Stearamidopropyl-dimethylamin dar.
Die kationischen Tenside sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf die gesamte Anwendungszubereitung, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt. Als Pflegestoff eignen sich ebenfalls pflegende Polymere.
Eine erste Gruppe der pflegenden Polymere sind die kationischen Polymere. Unter kationischen Polymeren sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" kationisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.
Homopolymere der allgemeinen Formel (G1-I), R1
I -[CH2-C-Jn X" (G1-I)
I CO-O-(CH2)m-N+R2R3R4
in der R1= -H oder -CH3 ist, R2, R3 und R4 unabhängig voneinander ausgewählt sind aus CM- Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1 , 2, 3 oder 4, n eine natürliche Zahl und X' ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (G1-I) aufgeführten Monomereinheiten sowie nicht- ionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt: R1 steht für eine Methylgruppe R2, R3 und R4 stehen für Methylgruppen m hat den Wert 2.
Als physiologisch verträgliche Gegenionen X' kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.
Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(meth- acryloyloxyethyltrimethylammoniurnchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylenbisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethern von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.
Das Homopolymer wird bevorzugt in Form einer nichtwässrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymerdispersionen sind unter den Bezeichnungen Salcare® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral OiI) und Tridecyl-polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestern des Propylenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl- polyoxypropylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.
Copolymere mit Monomereinheiten gemäß Formel (G1-I) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C1-4-alkylester und Methacrylsäure-Ci-4-alkylester. Unter diesen nichtionogenen Monomeren ist das Acrylamid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopolymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copolymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare® SC 92 erhältlich.
Weitere bevorzugte kationische Polymere sind beispielsweise quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate,
- kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686,
- kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat® 50, kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertriebenen Produkte,
Polysiloxane mit quartären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Coming; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silikon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt), diquaternäre Polydimethylsiloxane, Quaternium-80), polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid- Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,
Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoalkylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon- Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich,
- Vinylpyrrolidon-Vinylimidazoliummethochlorid-Copolymere, wie sie unter den Bezeichnungen Luviquat® FC 370, FC 550, FC 905 und HM 552 angeboten werden, quaternierter Polyvinylalkohol, sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.
Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeichnungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft® LM 200), bekannten Polymere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix® VC 713 (Hersteller: ISP)1 Gafquat®ASCP 1011, Gafquat®HS 110, Luviquat®8155 und Luviquat® MS 370 erhältlich sind.
Weitere erfindungsgemäß einsetzbare kationische Polymere sind die sogenannten "temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen® CMF, Hydagen® HCMF, Kytamer® PC und Chitolam® NB/101 im Handel frei verfügbar sind.
Erfindungsgemäß bevorzugt eingesetzte kationische Polymere sind kationische Cellulose- Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer®JR 400, Hydagen® HCMF und Kytamer® PC, kationische Guar-Derivate, kationische Honig-Derivate, insbesondere das Handelsprodukt Honeyquat® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686 und Polymere vom Typ Polyquaternium-37.
Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder eine Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quaternierte Aminosäuren und deren Gemische zu verstehen. Die Quaternisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quartären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N-(2- hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein, Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quaternium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.
Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.
Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus
(a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (II), R1-CH=CR2-CO-Z-(CnH2n)-N<+)R3R4R5 Ao (II) in der R1 und R2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R3,
R4 und R5 jeweils unabhängig voneinander für eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, Z
(-) eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A das Anion einer organischen oder anorganischen Säure ist, und
(b) monomeren Carbonsäuren der allgemeinen Formel (III), R6-CH=CR7-COOH (III) in denen R6 und R7 unabhängig voneinander für Wasserstoff oder eine Methylgruppe stehen.
Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsgemäß eingesetzt werden. Bezüglich der Einzelheiten der Herstellung dieser Polymerisate wird ausdrücklich auf den Inhalt der deutschen Offenlegungsschrift 39 29 973 Bezug genommen. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R3, R4 und R5 Methylgruppen sind, Z eine NH-Gruppe und A( > ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamidopropyltrimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.
Die erfindungsgemäßen Mittel enthalten die pflegenden, kationischen Polymere in bevorzugter Weise in einer Menge von 0,01 bis 5 Gew.-%, insbesondere in einer Menge von 0,1 bis 2 Gew.- %, jeweils bezogen auf die gesamte Anwendungszubereitung.
Als Pflegestoff kann das erfindungsgemäße Mittel weiterhin mindestens ein Vitamin, ein Provitamin, eine Vitaminvorstufe und/oder eines derer Derivate enthalten.
Dabei sind erfindungsgemäß solche Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt, die üblicherweise den Gruppen A, B, C, E, F und H zugeordnet werden. Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A1) sowie das 3,4-Didehydroretinol (Vitamin A2). Das ß-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die Mittel enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.- %, bezogen auf die gesamte Anwendungszubereitung.
Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.
- Vitamin B1 (Thiamin)
- Vitamin B2 (Riboflavin)
Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf die gesamte Anwendungszubereitung, enthalten ist. Vitamin B5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B5-Typs sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 - 10 Gew.-%, bezogen auf die gesamte Anwendungszubereitung, enthalten. Mengen von 0,1 - 5 Gew.-% sind besonders bevorzugt.
Vitamin B6 (Pyridoxin sowie Pyridoxamin und Pyridoxal). Die genannten Verbindungen des Vitamin B6-Typs sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,01 - 5 Gew.-%, bezogen auf die gesamte Anwendungszubereitung, enthalten. Mengen von 0,05 - 1 Gew.-% sind besonders bevorzugt.
Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf die gesamte Anwendungszubereitung eingesetzt. Die Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.
Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Anwendungszubereitung, enthalten. Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.
Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6af?)-2-Oxohexahydrothienol[3,4-d]- imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,0001 bis 1 ,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.-%, jeweils bezogen auf die gesamte Anwendungszubereitung enthalten.
Bevorzugt enthalten die erfindungsgemäßen Mittel Vitamine, Provitamine und Vitaminvorstufen aus den Gruppen A, B, C, E und H.
Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.
Ganz besonders bevorzugt wird als Pflegestoff D-Panthenol, gegebenenfalls in Kombination mit mindestens einem der oben genannten Silikonderivate eingesetzt.
Als Pflegestoff können die erfindungsgemäßen Mittel weiterhin mindestens einen Pflanzenextrakt enthalten.
Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.
Hinsichtlich der erfindungsgemäß bevorzugten Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.
Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennnessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Lindenblüten, Mandel, Aloe Vera, Fichtennadel, Rosskastanie, Sandelholz, Wacholder, Kokosnuss, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt. Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennnessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuss, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meristem, Ginseng und Ingwerwurzel.
Ganz besonders geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuss, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.
Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Propylenglykol im Verhältnis 1 :10 bis 10:1 haben sich als besonders geeignet erwiesen.
Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 - 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Gewinnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.
Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.
Als Pflegestoff eignen sich weiterhin eine Reihe von Carbonsäuren.
Vorteilhaft im Sinne der Erfindung können insbesondere kurzkettige Carbonsäuren sein. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz besonders bevorzugt sind solche mit einer Kettenlänge von 1 bis zu 12 C - Atomen in der Kette.
Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Amidoxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäß einsetzbaren Carbonsäuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäß einsetzbaren Carbonsäuren sind beispielsweise zu zählen C1-C8-AIkVl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl- ,C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8-Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind C1-C8- Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in α- Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Aminogruppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbonsäurederivate die Phosphon- und Phosphatester.
Als Beispiele für erfindungsgemäß einsetzbare Carbonsäuren seien genannt Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalin- säure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Crotonsäure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p-Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4'- Dicyano-6,6'-binicotinsäure, 8-Carbamoyloctansäure, 1 ,2,4-Pentantricarbonsäure, 2- Pyrrolcarbonsäure, 1 ,2,4,6,7-Napthalinpentaessigsäure, Malonaldehydsäure, 4-Hydroxy- phthalamidsäure, 1-Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Formel (N-I),
Figure imgf000032_0001
(N-I)
in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH- Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (N-I) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.
Dicarbonsäuren der Formel (N-I) sind in der Literatur bekannt. So ist beispielweise US-A 3,753,968 ein Herstellungsverfahren zu entnehmen.
Die Dicarbonsäuren der Formel (N-I) können beispielsweise durch Umsetzung von mehrfach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder- Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z.B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuss vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.
Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N-I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbindung des Cyclohexenrings gebildet werden.
Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäure(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-1-octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diaeid® 1550 und Westvaco Diaeid® 1595 (Hersteller: Westvaco) erhältlich.
Neben den zuvor beispielhaft aufgeführten kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl- Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Ornithin und Histidin, neutralisierte Säuren eingesetzt werden. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen. Weiterhin ist es erfindungsgemäß bevorzugt 2-Pyrrolidinon-5-carbonsäure und deren Derivate als Carbonsäure einzusetzen. Besonders bevorzugt sind die Natrium-, Kalium-, Calcium-, Magnesium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C1- bis C4-Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Produkten betragen vorzugsweise 0,05 bis 10 Gew.%, bezogen auf die gesamte Anwendungszubereitung, besonders bevorzugt 0,1 bis 5 Gew.%, und insbesondere bevorzugt 0,1 bis 3 Gew.%.
Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren einzusetzen. Hierbei hat sich gezeigt, dass neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der ß- Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von Ci2-Ci5-Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.
Als Pflegestoff eignen sich weiterhin Ectoin oder Ectoinderivate, Allantoin, Taurin und/oder Bisabolol.
Erfindungsgemäß werden unter dem Begriff "Ectoin und Ectoinderivate" Verbindungen der Formel (IV)
Figure imgf000034_0001
und/oder deren physiologisch verträglichen Salzes und/oder einer isomeren oder stereoisomeren
Form verstanden, wobei
R10 steht für ein Wasserstoffatom, einen verzweigten oder unverzweigten C1 - C4-Alkylrest oder einen C2 - C4-Hydroxyalkylrest,
R11 steht für ein Wasserstoffatom, eine Gruppierung -COOR14 oder eine Gruppierung -
CO(NH)R14, wobei R14 für ein Wasserstoffatom, einen C1 - C4-Alkylrest, einen Aminosäurerest, einen Dipeptid- oder einen Tripeptidrest stehen kann,
R12 und R13 stehen unabhängig voneinander für ein Wasserstoffatom, einen C1 - C4-Alkylrest oder eine Hydroxygruppe mit der Maßgabe, dass nicht beide Reste gleichzeitig für eine Hydroxygruppe stehen dürfen, und n steht für eine ganze Zahl von 1 bis 3.
Geeignete physiologisch verträgliche Salze der allgemeinen Verbindungen gemäß der Formel (IVa) oder (IVb) sind beispielsweise die Alkali-, Erdalkali-, Ammonium-, Triethylamin- oder Tris-(2- hydroxyethyl)aminsalze sowie solche, die sich aus der Umsetzung von Verbindungen gemäß der Formel (IVa) oder (IVb) mit anorganischen und organischen Säuren wie Salzsäure, Phosphorsäure, Schwefelsäure, verzweigten oder unverzweigten, substituierten oder unsubstituierten (beispielsweise durch eine oder mehrere Hydroxygruppen) C1 - C4- Mono- oder Dicarbonsäuren, aromatische Carbonsäuren und Sulfonsäuren wie Essigsäure, Citronensäure, Benzoesäure, Maleinsäure, Fumarsäure, Weinsäure und p-Toluolsulfonsäure ergeben. Beispiele für besonders bevorzugte physiologisch verträgliche Salze sind die Na-, K-, Mg- und Ca- und Ammoniumsalze der Verbindungen gemäß der Formel (IVa) oder (IVb), sowie die Salze, die sich durch Umsetzung von Verbindungen gemäß der Formel (IVa) oder (IVb) mit Salzsäure, Essigsäure, Citronensäure und Benzoesäure ergeben.
Unter isomeren oder stereoisomeren Formen der Verbindungen gemäß Formel (IVa) oder (IVb) werden erfindungsgemäß alle auftretenden optischen Isomere, Diastereomere, Racemate, Zwitterionen, Kationen oder Gemische davon verstanden.
Unter dem Begriff Aminosäure werden die stereoisomeren Formen, z.B. D- und L-Formen, folgender Verbindungen verstanden:
Asparagin, Arginin, Asparaginsäure, Glutamin, Glutaminsäure, ß-Alanin, γ-Aminobutyrat, Nε- Acetyllysin, Nδ-Acetylornitin, Nγ-Acetyldiaminobutyrat, Nα-Acetyldiaminobutyrat, Histidin, Isoleucin, Leucin, Methionin, Phenylalanin, Serin, Threonin und Tyrosin.
L-Aminosäuren sind bevorzugt. Aminosäurereste leiten sich von den entsprechenden Aminosäuren ab. Die folgenden Aminosäurereste sind bevorzugt:
GIy, AIa, Ser, Thr, VaI, ß-Ala, γ-Aminobutyrat, Asp, GIu, Asn, AIn, Ne-Acetyllysin, Nδ-Acetylornithin, Nγ-Acetyldiaminobutyrat, Nα-Acetyldiaminobutyrat. Die Kurzschreibweise der Aminosäuren erfolgte nach der allgemein üblichen Schreibweise. Die Di- oder Tripeptidreste sind in ihrer chemischen Natur nach Säureamide und zerfallen bei der Hydrolyse in 2 oder 3 Aminosäuren. Die Aminosäuren in dem Di- oder Tripeptidrest sind durch Amidbindungen miteinander verbunden.
Bezüglich der Herstellung der Di- und Tripeptidreste wird ausdrücklich auf die EP 0 671 161 A1 der Firma Marbert verwiesen. Auch Beispiele für Di- und Tripeptidreste sind der Offenbarung der EP 0 671 161 A1 zu entnehmen.
Beispiele für C1 - C4-Alkylgruppen in den Verbindungen der Formel (IV) sind Methyl, Ethyl, n- Propyl, Isopropyl, n-Butyl, Isobutyl und tert.-Butyl. Bevorzugte Alkylgruppen sind Methyl und Ethyl, Methyl ist eine besonders bevorzugte Alkylgruppe. Bevorzugte C2 - C4-Hydroxyalkylgruppen sind die Gruppen 2-Hydroxyethyl, 3-Hydroxypropyl oder 4-Hydroxybutyl; 2-Hydroxyethyl ist eine besonders bevorzugte Hydroxyalkylgruppe.
Die erfindungsgemäßen Mittel enthalten diese Pflegestoffe bevorzugt in Mengen von 0,001 bis 2, insbesondere von 0,01 bis 0,5 Gew.-%, jeweils bezogen auf die gesamte Anwendungszubereitung.
Auch Mono- bzw. Oligosaccharide können als Pflegestoff in den erfindungsgemäßen Mitteln eingesetzt werden.
Es können sowohl Monosaccharide als auch Oligosaccharide, wie beispielweise Rohrzucker, Milchzucker und Raffinose, eingesetzt werden. Die Verwendung von Monosacchariden ist erfindungsgemäß bevorzugt. Unter den Monosacchariden sind wiederum solche Verbindungen bevorzugt, die 5 oder 6 Kohlenstoffatome enthalten.
Geeignete Pentosen und Hexosen sind beispielsweise Ribose, Arabinose, Xylose, Lyxose, Allose, Altrose, Glucose, Mannose, Gulose, Idose, Galactose, Talose, Fucose und Fructose. Arabinose, Glucose, Galactose und Fructose sind bevorzugt eingesetzte Kohlenhydrate; Ganz besonders bevorzugt eingesetzt wird Glucose, die sowohl in der D-(+)- oder L-(-)- Konfiguration oder als Racemat geeignet ist.
Weiterhin können auch Derivate dieser Pentosen und Hexosen, wie die entsprechenden On- und Uronsäuren (Zuckersäuren), Zuckeralkohole und Glykoside, erfindungsgemäß eingesetzt werden. Bevorzugte Zuckersäuren sind die Gluconsäure, die Glucuronsäure, die Zuckersäure, die Mannozuckersäure und die Schleimsäure. Bevorzugte Zuckeralkohole sind Sorbit, Mannit und Dulcit. Bevorzugte Glykoside sind die Methylglucoside. Da die eingesetzten Mono- bzw. Oligosaccharide üblicherweise aus natürlichen Rohstoffen wie Stärke gewonnen werden, weisen sie in der Regel die diesen Rohstoffen entsprechenden Konfigurationen auf (z.B. D-Glucose, D-Fructose und D-Galactose).
Die Mono- bzw. Oligosaccharide sind in den erfindungsgemäßen Haarbehandlungsmitteln bevorzugt in einer Menge von 0,1 bis 8 Gew.-%, insbesondere bevorzugt 1 bis 5 Gew.-%, bezogen auf die gesamte Anwendungszubereitung, enthalten.
Das Mittel kann weiterhin mindestens ein Lipid als Pflegestoff enthalten.
Erfindungsgemäß geeignete Lipide sind Phospholipide, beispielsweise Sojalecithin, Ei-Lecithin und Kephaline sowie die unter den INCI-Bezeichnungen Linoleamidopropyl PG-Dimonium Chloride Phosphate, Cocamidopropyl PG-Dimonium Chloride Phosphate und Stearamidopropyl PG-Dimonium Chloride Phosphate bekannten Substanzen. Diese werden beispielsweise von der Firma Mona unter den Handelsbezeichnungen Phospholipid EFA®, Phospholipid PTC® sowie Phospholipid SV® vertrieben.
Die erfindungsgemäßen Mittel enthalten die Lipide bevorzugt in Mengen von 0,01 - 10 Gew.-%, insbesondere 0,1 - 5 Gew.-%, bezogen auf die gesamte Anwendungszubereitung.
Weiterhin sind als Pflegestoff ölkörper geeignet.
Zu den natürlichen und synthetischen kosmetischen ölkörpern sind beispielsweise zu zählen: pflanzliche öle. Beispiele für solche öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle. flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n-alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C-Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n-undecylether, Di-n- dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl-n-undecylether, n-Undecyl- n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert-butylether, Di-iso-pentylether, Di-3- ethyldecylether, tert.-Butyl-n-octylether, iso-Pentyl-n-octylether und 2-Methyl-pentyl-n- octylether. Die als Handelsprodukte erhältlichen Verbindungen 1 ,3-Di-(2-ethyl-hexyl)- cyclohexan (Cetiol® S) und Di-n-octylether (Cetiol®OE) können bevorzugt sein. Esteröle. Unter Esterölen sind zu verstehen die Ester von C6 - C30 - Fettsäuren mit C2 - C30 - Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C- Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind Capronsäure, Capryl- säure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, My- ristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit® IPM), lsononansäure-C16-18-alkylester (Cetiol® SN), 2-Ethylhexylpalmitat (Cegesoft® 24), Stearinsäure-2-ethylhexylester (Cetiol® 868), Cetyloleat, Glycerintricaprylat, Kokosfettalkohol- caprinat/-caprylat (Cetiol® LC), n-Butylstearat, Oleylerucat (Cetiol® J 600), Isopropylpalmitat (Rilanit® IPP), Oleyl Oleate (Cetiol®), Laurinsäurehexylester (Cetiol® A), Di-n-butyladipat (Cetiol® B), Myristylmyristat (Cetiol® MM), Cetearyl Isononanoate (Cetiol® SN), ölsäuredecylester (Cetiol® V).
Dicarbonsäureester wie Di-n-butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)-succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di- isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol-di-isostearat,
Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykoldicaprylat, symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalkoholen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol® CC),
Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,
Fettsäurepartialglyceride, worunter Monoglyceride, Diglyceride und deren technische Gemische zu verstehen sind. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D4-I),
CH2O(CH2CH2O)mR1 CHO(CH2CH2O)nR2 (D4-I)
CH2O(CH2CH2O)qR3 in der R1, R2 und R3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, dass mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m+n+q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R1 für einen Acylrest und R2 und R3 für Wasserstoff und die Summe (m+n+q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden ölsäuremonoglyceride eingesetzt.
Die Einsatzmenge der natürlichen und synthetischen kosmetischen ölkörper in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,1 - 30 Gew.%, bezogen auf die gesamte Anwendungszubereitung, bevorzugt 0,1 - 20 Gew.-%, und insbesondere 0,1 - 15 Gew.-%.
Das Mittel kann überdies ein Enzym als Pflegestoff enthalten. Erfindungsgemäß besonders bevorzugte Enzyme sind ausgewählt aus einer Gruppe, die gebildet wird aus Proteasen, Lipasen, Transglutaminase, Oxidasen und Peroxidasen.
Auch Perlenextrakte sind als Pflegestoff geeignet.
Perlen von Muscheln bestehen im wesentlichen aus anorganischen und organischen Calcium- salzen, Spurenelementen und Proteinen. Perlen lassen sich auf einfache Weise aus kultivierten Muscheln gewinnen. Die Kultivierung der Muscheln kann sowohl in Süßwasser als auch in Meereswasser erfolgen. Dies kann sich auf die Inhaltsstoffe der Perlen auswirken. Erfindungsgemäß bevorzugt ist ein Perlenextrakt, welcher von in Meeres- bzw. Salzwasser kultivierten Muscheln stammt. Die Perlen bestehen zu einem großen Teil aus Aragonit (Calciumcarbonat), Conchiolin und einem Albuminoid. Letztere Bestandteile sind Proteine. Weiterhin sind in Perlen noch Magnesium- und Natriumsalze, anorganische Siliciumverbindungen sowie Phosphate enthalten.
Zur Herstellung des Perlenextraktes werden die Perlen pulverisiert. Danach werden die pulverisierten Perlen mit den üblichen Methoden extrahiert. Als Extraktionsmittel zur Herstellung der Perlenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter Wasser sind dabei sowohl demineralisiertes Wasser, als auch Meereswasser zu verstehen. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Glycerin, Diglycerin, Triglycerin, Polyglycerin, Ethylenglykol, Pro- pylenglykol und Butylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit demineralisiertem Wasser oder Meereswasser, bevorzugt. Perlenextrakte auf Basis von Wasser/Glyceringemischen haben sich als besonders geeignet erwiesen. Je nach Extraktionsbedingungen können die Perlenproteine (Conchiloin und Albuminoid) weitestgehend in nativem Zustand oder bereits teilweise oder weitestgehend als Proteinhydrolysate vorliegen. Bevorzugt ist ein Perlenextrakt, in welchem Conchiolin und Albuminoid bereits teilweise hydrolysiert vorliegen. Die wesentlichen Aminosäuren dieser Proteine sind Glutaminsäure, Serin, Alanin, Glycin, Asparaginsäure und Phenylalanin. In einer weiteren besonders bevorzugten Ausgestaltung kann es vorteilhaft sein, wenn der Perlenextrakt zusätzlich mit mindestens einer oder mehreren dieser Aminosäuren angereichert wird. In der bevorzugtesten Ausführungsform ist der Perlenextrakt angereichert mit Glutaminsäure, Serin und Leucin. Weiterhin findet sich je nach Extraktionsbedingungen, insbesondere in Abhängigkeit von der Wahl des Extraktionsmittels ein mehr oder weniger großer Anteil an Mineralien und Spurenelementen im Extrakt wieder. Ein bevorzugter Extrakt enthält organische und/oder anorganische Calciumsalze sowie Magnesium- und Natriumsalze, anorganische Siliciumverbindungen und/oder Phosphate. Ein ganz besonders bevorzugter Perlenextrakt enthält mindestens 75 %, bevorzugt 85 %, besonders bevorzugt 90 % und ganz besonders bevorzugt 95 % aller Inhaltsstoffe der natürlich vorkommenden Perlen. Beispiele für erfindungsgemäß einsetzbare Perlenextrakte sind die Handelsprodukte Pearl Protein Extract BG® oder Crodarom® Pearl.
Die zuvor beschriebenen Perlenextrakte sind vorzugsweise in einer Menge von mindestens 0,01 bis zu 20 Gew.% enthalten. Bevorzugt werden Mengen des Extraktes von 0,01 bis zu 10 Gew.%, ganz besonders bevorzugt Mengen von 0,01 bis 5 Gew.% bezogen auf das gesamte Zweikomponentenmittel verwendet.
Obwohl jeder der genannten Pflegestoffe für sich alleine bereits ein zufriedenstellenden Resultat ergibt, sind im Rahmen der vorliegenden Erfindung auch alle Ausführungsformen umfasst, in denen das Mittel mehrere Pflegestoffe auch aus verschiedenen Gruppen enthält.
Das erfindungsgemäße Mittel liegt in einem kosmetisch akzeptablen Träger vor. Dabei handelt es sich bevorzugt um ein wässriges, ein alkoholisches oder ein wässrigalkoholisches Medium mit vorzugsweise mindestens 10 Gewichtsprozent Wasser bezogen auf die gesamte Zubereitung. Als Alkohole können insbesondere die für kosmetische Zwecke üblicherweise verwendeten niederen Alkohole mit 1 bis 4 Kohlenstoffatomen wie zum Beispiel Ethanol und Isopropanol enthalten sein. Die Konfektionierung kann beispielsweise in Form von Cremes, Emulsionen, Gelen oder auch tensidhaltigen schäumenden Lösungen oder andere Zubereitungen erfolgen, die für die Anwendung auf dem Haar geeignet sind. Die Zubereitungen weisen bevorzugt einen pH-Wert von 2 bis 11 auf. Besonders bevorzugt ist der pH-Bereich zwischen 2 und 8. Die Angaben zum pH- Wert beziehen sich dabei im Sinne dieser Schrift auf den pH-Wert bei 250C sofern nichts anderes vermerkt ist.
Als zusätzliche Co-Solventien können organische Lösungsmittel oder ein Gemisch aus Lösungsmitteln mit einem Siedepunkt unter 4000C in einer Menge von 0,1 bis 15 Gewichtsprozent bevorzugt von 1 bis 10 Gewichtsprozent bezogen auf die gesamte Zubereitung enthalten sein. Besonders geeignet als zusatzliche Co-Solventien sind unverzweigte oder verzweigte Kohlenwasserstoffe wie Pentan, Hexan, Isopentan und cyclische Kohlenwasserstoffe wie Cyclopentan und Cyclohexan. Weitere, besonders bevorzugte wasserlösliche Lösungsmittel sind Glycerin, Ethylenglykol und Propylenglykol in einer Menge bis 30 Gewichtsprozent bezogen auf die gesamte Zubereitung.
Durch Zugabe eines UV-Filters können sowohl die Mittel selbst, als auch die behandelten Fasern vor schädlichen Einflüssen von UV-Strahlung geschützt werden. Vorzugsweise wird daher dem Mittel mindestens ein UV-Filter zugegeben. Die geeigneten UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA(315-400 nm)-, im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Die erfindungsgemäß bevorzugten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestern, Diphenylacrylsäureestern, Zimtsäureestern, Salicylsäureestem, Benzimidazolen und o-Aminobenzoesäureestern.
Beispiele für erfindungsgemäß verwendbare UV-Filter sind 4-Amino-benzoesäure, N1N1N- Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexylsalicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul®M 40, Uvasorb®MET, Neo Heliopan®BB, Eusolex®4360), 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol®HS; Neo Heliopan®Hydro), 3,3'-(1 ,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1- yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1 ,3- dion (Butyl methoxydibenzoylmethane; Parsol®1789, Eusolex®9020), α-(2-Oxoborn-3-yliden)- toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul®P 25), 4-Dimethylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb®DMO, Escalol®507, Eusolex®6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol®587, Neo Heliopan®OS, Uvinul®O18), 4-Methoxyzimtsäure-isopentylester (Isoamyl p- Methoxycinnamate; Neo Heliopan®E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol®MCX, Escalol®557, Neo Heliopan®AV), 2-Hydroxy-4-methoxy- benzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul®MS 40; Uvasorb®S 5), 3-(4'-Methylbenzyliden)-D,L-Campher (4-Methylbenzylidene camphor; Parsol®5000, Eusolex®6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4-lsopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1 '-oxi)-1 ,3,5-triazin, 3-lmidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamids, 2,4-Dihy- droxybenzophenon (Benzophenone-1 ; Uvasorb®20 H, Uvinul®400), 1 ,T-Diphenylacrylonitrilsäure- 2-ethylhexyl-ester (Octocrylene; Eusolex®OCR, Neo Heliopan®Type 303, Uvinul®N 539 SG), o- Aminobenzoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan®MA), 2,2',4,4'-Tetrahy- droxybenzophenon (Benzophenone-2; Uvinul®D-50), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natriumsulfonat und 2-Cyano- 3,3-diphenylacrylsäure-2'-ethylhexylester. Bevorzugt sind 4-Amino-benzoesäure, N1N1N- Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexylsalicylat, 2- Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5-sulfonsaure und deren Kalium-, Natrium- und Triethanolaminsalze, 3,3'-(1 ,4-Phenylendimethylen)-bis(7,7-dimethyl-2-oxo-bicyclo- [2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-me- thoxyphenyl)-propan-1 ,3-dion, α-(2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethylhexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2- ethylhexyl-ester, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'- Methylbenzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-lsopropylbenzylsalicylat, 2,4,6-Tri- anilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1 ,3,5-triazin, 3-lmidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxoborn-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimidazol-5- sulfonsSure und deren Kalium-, Natrium- und Triethanolaminsalze, 1-(4-tert.-Butylphenyl)-3-(4- methoxyphenyl)-propan-1 ,3-dion, 4-Methoxyzimtsäure-2-ethylhexyl-ester und 3-(4'- Methylbenzyliden)-D,L-Campher.
Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20 000, liegt.
Weiterhin wurde gefunden, dass bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wirkung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20 0C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtemperatur zu mindestens 0,1 , insbesondere zu mindestens 1 Gew.-% löslich sein. Die Verwendung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein. Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.
Diese UV-Filter weisen die allgemeine Struktur U - Q auf.
Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben genannten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoffatom, des UV-Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Aminofunktion, ersetzt wird.
Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise substituierte Benzophenone, p-Aminobenzoesäureester, Diphenylacrylsäureester,
- Zimtsäureester,
- Salicylsäureester, Benzimidazole und o-Aminobenzoesäureester.
Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylaminobenzoesäureamid ableiten, sind erfindungsgemäß bevorzugt.
Die Strukturteile U können prinzipiell so gewählt werden, dass das Absorptionsmaximum der UV- Filter sowohl im UVA(315-400 nm)-, als auch im UVB(280-315nm)- oder im UVC(<280 nm)- Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.
Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, dass der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20 000, liegt.
Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammoniumgruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so dass der Strukturteil U einen der vier Substituenten des positiv geladenen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substituenten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2 bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoffatom fungiert. Vorteilhafterweise hat die Gruppe Q die allgemeine Struktur -(CH2)X-N+R1R2R3 X", in der x steht für eine ganze Zahl von 1 bis 4, R1 und R2 unabhängig voneinander stehen für Ci-4-Alkylgruppen, R3 steht für eine C1-22-Alkylgruppe oder eine Benzylgruppe und X' für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevorzugt für die Zahl 3, R1 und R2 jeweils für eine Methylgruppe und R3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlenwasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.
Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halogenide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.
Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhältlichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (lncroquat®UV-283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol® HP 610).
Selbstverständlich umfasst die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtern. Im Rahmen dieser Ausführungsform ist die Kombination mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV-Filter mit einer kationischen Gruppe bevorzugt.
Die UV-Filter sind üblicherweise in Mengen von 0,01-5 Gew.-%, bezogen auf die gesamte Anwendungszubereitung, enthalten. Mengen von 0,1-2,5 Gew.-% sind bevorzugt.
In einer besonderen Ausführungsform enthält das erfindungsgemäße Mittel weiterhin einen oder mehrere direktziehende Farbstoffe. Dies ermöglicht, dass bei Anwendung des Mittels die behandelte keratinische Faser nicht nur temporär strukturiert, sondern zugleich auch gefärbt wird. Das kann insbesondere dann wünschenswert sein, wenn nur eine temporäre Färbung beispielsweise mit auffälligen Modefarben gewünscht wird, die sich durch einfaches Waschen wieder aus der keratinischen Faser entfernen lässt.
Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Bevorzugte direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, Acid Yellow 1 , Acid Yellow 10, Acid Yellow 23, Acid Yellow 36, HC Orange 1 , Disperse Orange 3, Acid Orange 7, HC Red 1 , HC Red 3, HC Red 10, HC Red 11, HC Red 13, Acid Red 33, Acid Red 52, HC Red BN, Pigment Red 57:1 , HC Blue 2, HC Blue 11 , HC Blue 12, Disperse Blue 3, Acid Blue 7, Acid Green 50, HC Violet 1 , Disperse Violet 1 , Di- sperse Violet 4, Acid Violet 43, Disperse Black 9, Acid Black 1 , und Acid Black 52 bekannten Verbindungen sowie 1 ,4-Diamino-2-nitrobenzol, 2-Amino-4-nitrophenol, 1 ,4-Bis-(ß-hydroxyethyl)- amino-2-nitrobenzol, 3-Nitro-4-(ß-hydroxyethyl)-aminophenol, 2-(2'-Hydroxyethyl)amino-4,6- dinitrophenol, 1-(2'-Hydroxyethyl)amino-4-methyl-2-nitrobenzol, 1-Amino-4-(2'-hydroxyethyl)- amino-5-chlor-2-nitrobenzol, 4-Amino-3-nitrophenol, 1-(2'-Ureidoethyl)amino-4-nitrobenzol, 4- Amino-2-nitrodiphenylamin-2'-carbonsaure, 6-Nitro-1 ,2,3,4-tetrahydrochinoxalin, 2-Hydroxy-1 ,4- naphthochinon, Pikraminsäure und deren Salze, 2-Amino-6-chloro-4-nitrophenol, 4-Ethylamino-3- nitrobenzoesäure und 2-Chloro-6-ethylamino-1-hydroxy-4-nitrobenzol.
Bevorzugt werden kationische direktziehenden Farbstoffe eingesetzt. Besonders bevorzugt sind dabei
(a) kationische Triphenylmethanfarbstoffe, wie beispielsweise Basic Blue 7, Basic Blue 26, Basic Violet 2 und Basic Violet 14,
(b) aromatischen Systeme, die mit einer quaternären Stickstoffgruppe substituiert sind, wie beispielsweise Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 und Basic Brown 17, sowie
(c) direktziehende Farbstoffe, die einen Heterocyclus enthalten, der mindestens ein quaternäres Stickstoffatom aufweist, wie sie beispielsweise in der EP-A2-998 908, auf die an dieser Stelle explizit Bezug genommen wird, in den Ansprüchen 6 bis 11 genannt werden.
Bevorzugte kationische direktziehende Farbstoffe der Gruppe (c) sind insbesondere die folgenden Verbindungen:
Figure imgf000045_0001
CH3SO4 "
Figure imgf000045_0002
er
Figure imgf000046_0001
Figure imgf000046_0002
Figure imgf000046_0003
Figure imgf000046_0004
Figure imgf000047_0001
Die Verbindungen der Formeln (DZ1), (DZ3) und (DZ5), die auch unter den Bezeichnungen Basic Yellow 87, Basic Orange 31 und Basic Red 51 bekannt sind, sind ganz besonders bevorzugte kationische direktziehende Farbstoffe der Gruppe (c).
Die kationischen direktziehenden Farbstoffe, die unter dem Warenzeichen Arianor® vertrieben werden, sind erfindungsgemäß ebenfalls ganz besonders bevorzugte kationische direktziehende Farbstoffe.
Die erfindungsgemäßen Mittel gemäß dieser Ausführungsform enthalten die direktziehenden Farbstoffe bevorzugt in einer Menge von 0,001 bis 20 Gew.-%, bezogen auf das gesamte Mittel.
Weiterhin können die erfindungsgemäßen Mittel auch in der Natur vorkommende Farbstoffe enthalten, wie sie beispielsweise in Henna rot, Henna neutral, Henna schwarz, Kamillenblüte, Sandelholz, schwarzem Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten sind.
Es ist nicht erforderlich, dass die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfindungsgemäßen Mitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Stylingergebnis nachteilig beeinflussen oder aus anderen Gründen, z.B. toxikologischen, ausgeschlossen werden müssen.
Bezüglich der in den erfindungsgemäßen Produkten einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Care, Kapitel 7 (Seiten 248-250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264-267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe "Dermatology" (Hrg.: Ch., Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das "Europäische Inventar der Kosmetik- Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemittel e.V., Mannheim, Bezug genommen.
Die Mittel können neben den genannten Komponenten weiterhin alle für solche Zubereitungen bekannten Wirk-, Zusatz- und Hilfsstoffe enthalten.
In vielen Fällen enthalten die Mittel mindestens ein Tensid, wobei prinzipiell sowohl anionische als auch zwitterionische, ampholytische, nichtionische und kationische Tenside geeignet sind. In vielen Fällen hat es sich aber als vorteilhaft erwiesen, die Tenside aus anionischen, zwitterionischen oder nichtionischen Tensiden auszuwählen.
Weitere Wirk-, Hilfs- und Zusatzstoffe, sind beispielsweise
Verdickungsmittel wie Agar-Agar, Guar-Gum, Alginate, Xanthan-Gum, Gummi arabicum, Karaya-Gummi, Johannisbrotkernmehl, Leinsamengummen, Dextrane, Cellulose-Derivate, z. B. Methylcellulose, Hydroxyalkylcellulose und Carboxymethylcellulose, Stärke-Fraktionen und Derivate wie Amylose, Amylopektin und Dextrine, Tone wie z. B. Bentonit oder vollsynthetische Hydrokolloide wie z.B. Polyvinylalkohol, Strukturanten wie Maleinsäure und Milchsäure, Parfümöle, Dimethylisosorbid und Cyclodextrine,
Lösungsmittel und -vermittler wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol, Glyce- rin und Diethylenglykol, quaternierte Amine wie Methyl-1-alkylamidoethyl-2-alkylimidazolinium-methosulfat Entschäumer wie Silikone, Farbstoffe zum Anfärben des Mittels,
Antischuppenwirkstoffe wie Piroctone Olamine, Zink Omadine und Climbazol, Substanzen zur Einstellung des pH-Wertes, wie beispielsweise übliche Säuren, insbesondere Genußsäuren und Basen, Cholesterin,
Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether, Fette und Wachse wie Walrat, Bienenwachs, Montanwachs und Paraffine, Fettsäurealkanolamide,
Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren, Quell- und Penetrationsstoffe wie Glycerin, Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate, Trübungsmittel wie Latex, Styrol/PVP- und Styrol/Acrylamid-Copolymere Perlglanzmittel wie Ethylenglykolmono- und -distearat sowie PEG-3-distearat, Konservierungsmittel,
Stabilisierungsmittel für Wasserstoffperoxid und andere Oxidationsmittel, Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft, Antioxidantien.
Bezüglich weiterer fakultativer Komponenten sowie die eingesetzten Mengen dieser Komponenten wird ausdrücklich auf die dem Fachmann bekannten einschlägigen Handbücher, z. B. Kh. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen.
Ein zweiter Gegenstand der Erfindung ist die Verwendung eines Keratins mit einer Molmasse von 40 bis 70 kDa, bestimmt mittels SDS-PAGE, in einem Mittel zur temporären Verformung keratinischer Fasern zur Verbesserung des Halts der Verformung.
Der Halt der Verformung, auch als Frisurenhalt bezeichnet, sowie Flexibilität, Elastizität und Plastizität werden dabei im Sinne der vorliegenden Erfindung nach der Omega-Loop Methode bestimmt.
Dazu wird eine trockene Haarsträhne (Euro-Naturhaar der Firma Kerling, Klebetresse dicht, einseitig geklebt, Gesamtlänge 150 mm, freie Länge 130 mm, Breite 10 mm, Gewicht 0,9 ± 0,1 g) für 30 Sekunden bis zum unteren Rand der Abklebung in die zu untersuchende Polymerlösung getaucht. Anschließend wird die überschüssige Lösung zwischen Daumen und Zeigefinger abgestrichen, so dass 0,5 ± 0,02 g der Lösung auf dem Haar verbleiben. Die mit der zu untersuchenden Lösung gesättigte Haarsträhne wird um einen Teflon-Zylinder mit einem Durchmesser von 36 mm gewickelt und die überstehenden Enden werden mit einem Clip fixiert. Die präparierten Strähnen werden anschließend über Nacht bei 25°C und 50% relativer Luftfeuchte oder bei 25°C und 75% relativer Luftfeuchte im Klimaschrank getrocknet und konditioniert.
Die konditionierte Strähne wird vorsichtig von dem Teflon-Zylinder entfernt. Der entstandene Ω- Loop, eine ringförmige Struktur des in seiner Form durch den ausgebildeten Polymerfilm stabilisierten Haars, wird in den an der Messdose befestigten Greifer eingespannt und bis dicht über die Bodenplatte eines Universalprüfgeräts AMETEK LF Plus der Firma AMETEK Precision Instuments Europe GmbH, Produktgruppe Lloyd abgesenkt. Die gesamte Messung erfolgt im Klimaschrank unter konstanten klimatischen Bedingungen bei 25°C und 50% relativer Luftfeuchte oder bei 25°C und 75% relativer Luftfeuchte.
Um standardisierte Ausgangsbedingungen zu schaffen, startet die Messung mit dem Anfahren einer Vorlast von 0,07 N mit einer Geschwindigkeit von 30 mm min'1. Anschließend wird der Ω- Loop mit einer Geschwindigkeit von 60 mm min'1 um 8 mm gestaucht, wobei die dazu nötige Kraft gemessen wird. Nachdem die charakteristische Kraft F1 bei der maximalen Deformation von 8 mm aufgezeichnet wurde, wird die Strähne mit 60 mm min"1 soweit entlastet, dass sie 10 mm von der Bodenplatte abhebt. Von hier aus beginnt der nächste Zyklus, indem erneut die Vorlast von 0,07 N angefahren und die Strähne anschließend um 8 mm gestaucht wird, hierbei gelten die gleichen Geschwindigkeiten wie oben beschrieben. Die Messung eines Ω-Loops umfasst insgesamt 10 Zyklen.
Mit dieser Messmethode lassen sich vier charakteristische Parameter zur Beschreibung der mechanischen Eigenschaften von filmbildenden Polymeren bestimmen. Halt, Flexibilität, Plastizität und Elastizität lassen sich nach folgenden Formeln aus den gemessenen Kräften berechnen:
Halt = F1
(F1 entspricht der Maximalkraft der Messung)
f Flexibilität = — —
(gibt das Verhältnis der Maximalkräfte des zehnten zum ersten Zyklus an)
Plastizität = 2 ' Hχ H]0
H1
(mit H1 = Q mm und H10 = 9 mm + dauerhafte plastische Verformung der Strähne)
F^(2mm)- Fι0(l,5mm)
Elastizität = o,5 _ E10
F^ (2mm)- Fι (\,5mm) Ex
(zur Berechnung der Elastizität werden aus dem ersten und zehnten Zyklus jeweils die Kräfte zur Verformung um 1 ,5 mm und 2 mm erfasst und miteinander ins Verhältnis gesetzt)
Vorzugsweise wird das Keratin dem Mittel zur temporären Verformung keratinischer Fasern in einer Menge von 0,05 bis 5 Gew.-% zugegeben, besonders bevorzugt in einer Menge von 1 bis 4 Gew.-%, weiter bevorzugt in einer Menge von 0,3 bis 3 Gew.-% und ganz besonders bevorzugt in einer Menge von 0,5 bis 1 Gew.-%, jeweils bezogen auf das Gewicht des gesamten Mittels.
Das Keratin wird vorzugsweise in Kombination mit einem Keratinhydrolysat eingesetzt, wobei die Verwendung von Keratin und Keratinhydrolysat in einem Gewichtsverhältnis von 10:1 bis 1 :1 , vorzugsweise von 6:1 bis 4:1, besonders bevorzugt ist. Weitere besondere und bevorzugte Ausgestaltungen der erfindungsgemäßen Verwendung entsprechen dem bereits bei der Beschreibung des erfindungsgemäßen Mittels Ausgeführten.
Die nachfolgenden Beispiele sollen den Gegenstand der vorliegenden Erfindung erläutern ohne ihn in irgendeiner Weise zu beschränken.
Beispiele
Es wurden die folgenden Rezepturen hergestellt. Die Mengenangaben verstehen sich - soweit nichts anderes vermerkt ist - in Gewichtsprozent.
1 Gelförmige Stylingmittel
Es wurden das erfindungsgemäße Stylinggel E1 , sowie die Vergleichsrezepturen V1 und V2 gemäß folgender Tabelle hergestellt. Die Mittel wiesen einen pH-Wert zwischen 5,5 und 7,0 auf.
Figure imgf000052_0001
Mischung aus Keratin und Keratinhydrolysat (wässrige Lösung mit 5 Gew.-% Keratin und 1 Gew.-% Keratinhydrolysat; INCI-Bezeichnung: Aqua, Keratin, Hydrolyzed Keratin) (Croda)
Aminomethylpropanolsalz eines Copolymers des Allylmethacrylats mit einem oder mehreren Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester (wässrige Lösung mit einem Polymergehalt von 25-28 Gew.-%; INCI- Bezeichnung: Aqua, AMP-Acrylates/Allyl Methacrylate Copolymer) (Noveon)
2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure
Acrylsäure-Homopolymer verknüpft mittels Pentaerythrit-, Saccharose- oder Propylenallylether (INCI-Bezeichnung: Carbomer) (3V Sigma)
1 ,3-Dihydroxymethyl-5,5-dimethylhydantoin (ca. 54-56 Gew.-% Aktivsubstanz in Wasser; INCI-Bezeichnung: DMDM Hydantoin) (Jan Dekker)
Polyethylenglykol-Derivat des hydrierten Rizinusöls mit durchschnittlich 40 Mol Ethylenoxid (INCI-Bezeichnung: PEG-40 Hydrogenated Castor OiI) (BASF) 2 Rezepturen für Stylingschäume
Es wurden die erfindungsgemäße Rezeptur für einen Stylingschaum E2, sowie die Vergleichsrezepturen V3 und V4 gemäß folgender Tabelle hergestellt. Die Mittel wiesen einen pH-Wert zwischen 6,0 und 7,0 auf.
Figure imgf000053_0001
Polyethylenglykolmonolaurylether, Dodecanol mit ca. 4 Moläquivalent Ethylenoxid (INCI- Bezeichnung: Laureth-4) (Uniquema)
3 Wirknachweis
Mit der Omega-Loop Methode (50 % relative Luftfeuchtigkeit, 250C) wurde der Halt, die Flexibilität, die Elastizität und die Plastizität bestimmt, die sich beim Aufbringen verschiedener Poymere auf menschliches Haar erzielen lassen. Untersucht wurden drei wässrige Polymer- Lösungen:
Polymerlösung A: .TM
FixateIM G-100 2, 5 Gew.-% Polymergehalt Polymerlösung B: Keratec IFP 1, 0,6 Gew.-% Aktivgehalt (0,5 Gew.-% Keratin; 0,1 Gew.-%
Keratinhydrolysat)
Polymerlösung C: Mischung aus Fixate™ G-100 2 (4,4 Gew.-% Polymergehalt) und Keratec
IFP 1 (0,6 Gew.-% Aktivgehalt)
Die erhaltenen Ergebnisse, die theoretisch erwarteten Werte für Polymerlösung C und die Abweichung von Erwartungswert und Istwert sind in folgender Tabelle wiedergegeben:
Figure imgf000054_0001
Ein Vergleich der für Polymerlösung C rechnerisch ermittelten theoretischen Werte mit den erhaltenen Messergebnissen zeigt deutlich, dass der Zusatz von Keratec IFP zu einer synergistischen Erhöhung des Halts führt, wobei keine negativen Auswirkungen auf Flexibilität, Elastizität und Plastizität auftreten.

Claims

Patentansprüche
1. Mittel zur temporären Verformung keratinischer Fasern, enthaltend in einem kosmetisch akzeptablen Träger a) 0,05 bis 5 Gew.-% mindestens eines Keratins mit einer Molmasse von 40 bis 70 kDa, und b) 0,1 bis 20 Gew.-% mindestens eines filmbildenden und/oder festigenden Polymers.
2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, dass das Keratin eine Molmasse von 40 bis 65 kDa, vorzugsweise von 40 bis 60 kDa aufweist.
3. Mittel nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das Keratin 200 bis 500 Aminosäuren, vorzugsweise 250 bis 450 Aminosäuren aufweist.
4. Mittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Keratin einen Anteil an L-Cystein von 2 bis 6 Mol-%, vorzugsweise von 4 bis 5 Mol-% aufweist.
5. Mittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es das Keratin in einer Menge von 0,1 bis 4 Gew.-%, vorzugsweise von 0,3 bis 3 Gew.-%, besonders bevorzugt von 0,5 bis 1 Gew.-%, enthält.
6. Mittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass es das filmbildende und/oder festigende Polymer in einer Menge von 0,5 bis 15 Gew.-%, vorzugsweise von 1 ,0 bis 10 Gew.-% enthält.
7. Mittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das filmbildende und/oder festigende Polymer ausgewählt ist aus
Aminomethylpropanolsalzen von Copolymeren des Allylmethacrylats mit einem oder mehreren Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester,
Vinylpyrrolidon-Vinylacetat-Copolymeren, Vinylpyrrolidon-Vinylcaprolactam-Dimethylaminopropylacrylamid-Copolymeren,
Copolymeren des Octylacrylamids mit t-Butylaminoethylmethacrylat und zwei oder mehr Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester, und
Copolymeren der C^-Alkylsuccinate mit Hydroxyalkylacrylaten und einem oder mehreren Monomeren ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester.
8. Mittel nach Anspruch 7, dadurch gekennzeichnet, dass es sich bei dem filmbildenden und/oder festigenden Polymer um ein Aminomethylpropanolsalz eines Copolymers des Allylmethacrylats mit einem oder mehreren Monomeren, ausgewählt aus Acrylsäure, Methacrylsäure, Acrylsäureester und Methacrylsäureester, handelt.
9. Mittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es weiterhin mindestens ein Proteinhydrolysat enthält.
10. Mittel nach Anspruch 9, dadurch gekennzeichnet, dass es sich bei dem Proteinhydrolysat um ein Kertainhydrolysat handelt.
11. Mittel nach Anspruch 10, dadurch gekennzeichnet, dass das Kertainhydrolysat eine Molmasse von 2 bis 6 kDa, vorzugsweise von 3 bis 4 kDa, aufweist.
12. Mittel nach einem der Ansprüche 10 bis 11 , dadurch gekennzeichnet, dass das Kertainhydrolysat in einer Menge von 0,01 bis 1 Gew.-%, vorzugsweise von 0,02 bis 0,8 Gew.-% vorliegt.
13. Mittel nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass es weiterhin mindestens ein Silikonöl und/oder ein Silikongum enthält.
14. Mittel nach Anspruch 13, dadurch gekennzeichnet, dass das Silikonöl und/oder Silikongum ausgewählt ist aus der Gruppe, umfassend cyclische und lineare Polydialkylsiloxane, deren alkoxylierte und/oder aminierte Derivate, Dihydroxypolydimethylsiloxane und Polyphenylalkylsiloxane.
15. Verwendung eines Keratins mit einer Molmasse von 40 bis 70 kDa in einem Mittel zur temporären Verformung keratinischer Fasern zur Verbesserung des Halts der Verformung.
16. Verwendung nach Anspruch 15, dadurch gekennzeichnet, dass das Keratin dem Mittel zur temporären Verformung keratinischer Fasern in einer Menge von 0,05 bis 5 Gew.-% zugegeben wird.
17. Verwendung nach einem der Ansprüche 15 bis 16, dadurch gekennzeichnet, dass das Keratin in Kombination mit einem Keratinhydrolysat eingesetzt wird.
18. Verwendung nach Anspruch 17, dadurch gekennzeichnet, dass Keratin und Keratinhydrolysat in einem Gewichtsverhältnis von 10:1 bis 1:1, vorzugsweise von 6:1 bis 4:1 , eingesetzt werden.
PCT/EP2006/011175 2005-12-21 2006-11-22 Keratinhaltige stylingmittel WO2007079817A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2006334896A AU2006334896A1 (en) 2005-12-21 2006-11-22 Keratin-containing styling compositions
EP06818722A EP1978920A1 (de) 2005-12-21 2006-11-22 Keratinhaltige stylingmittel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510061729 DE102005061729A1 (de) 2005-12-21 2005-12-21 Keratinhaltige Stylingmittel
DE102005061729.8 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007079817A1 true WO2007079817A1 (de) 2007-07-19

Family

ID=37686089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/011175 WO2007079817A1 (de) 2005-12-21 2006-11-22 Keratinhaltige stylingmittel

Country Status (5)

Country Link
EP (1) EP1978920A1 (de)
AU (1) AU2006334896A1 (de)
DE (1) DE102005061729A1 (de)
RU (1) RU2008129358A (de)
WO (1) WO2007079817A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE577229C (de) * 1930-08-17 1933-05-26 Brian Moir Wilson Sims Praeparat zur Herstellung von Haarwellen und Locken
WO2004047774A1 (en) * 2002-11-28 2004-06-10 Keratec Limited Personal care formulations containing keratin
US20050129650A1 (en) * 2003-11-18 2005-06-16 Laurence Marie Cosmetic composition comprising gellan gum or a derivative thereof, a fixing polymer, a monovalent salt and an alcohol, process of using the same
EP1598046A1 (de) * 2004-05-17 2005-11-23 National Starch and Chemical Investment Holding Corporation Haarfestigender Film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE577229C (de) * 1930-08-17 1933-05-26 Brian Moir Wilson Sims Praeparat zur Herstellung von Haarwellen und Locken
WO2004047774A1 (en) * 2002-11-28 2004-06-10 Keratec Limited Personal care formulations containing keratin
US20050129650A1 (en) * 2003-11-18 2005-06-16 Laurence Marie Cosmetic composition comprising gellan gum or a derivative thereof, a fixing polymer, a monovalent salt and an alcohol, process of using the same
EP1598046A1 (de) * 2004-05-17 2005-11-23 National Starch and Chemical Investment Holding Corporation Haarfestigender Film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KERATEC: "Hair Care Formulary", INTERNET CITATION, 2004, XP002360230, Retrieved from the Internet <URL:http://www.keratec.co.nz/keratec/haircareformulary> [retrieved on 20051219] *
KERATEC: "Keratec IFP Anti-ageing & Conditioning Active for Hair", INTERNET CITATION, April 2004 (2004-04-01), XP002360228, Retrieved from the Internet <URL:http://www.keratec.co.nz/content/library/DC137_Keratec_IFP_Croda_Arr04.p> [retrieved on 20051219] *

Also Published As

Publication number Publication date
RU2008129358A (ru) 2010-01-27
DE102005061729A1 (de) 2007-06-28
EP1978920A1 (de) 2008-10-15
AU2006334896A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
EP2059228B1 (de) Kosmetisches mittel
EP2054020B1 (de) Kosmetisches mittel enthaltend purin und/oder ein purinderivat und taurin
EP2211832A2 (de) Haarbehandlungsmittel, insbesondere stylingmittel, enthaltend zwei copolymere
DE102008038105A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles, kationisches Polymer und mindestens ein spezielles amphiphiles, anionisches Polymer
EP2054023B1 (de) Stylingmittel mit hohem haltegrad
EP2054025A2 (de) Stylingmittel für keratinische fasern
EP2200575A1 (de) Kosmetisches mittel enthaltend purin und/oder ein purinderivat und wasserstoffperoxid
EP2054022B1 (de) Stylingmittel mit hohem haltegrad
DE102008038107A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein zusätzliches filmbildendes und/oder festigendes Polymer ausgewählt aus Chitosan und dessen Derivaten
WO2008037543A1 (de) Stylingmittel mit hohem haltegrad
DE102008038110A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein spezielles, zusätzliches filmbildendes nichtionisches und/oder festigendes nichtionisches Polymer
DE102008030660A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens eine spezielle Cellulose und mindestens ein zusätzliches filmbildendes und/oder festigendes Polymer
DE102008038106A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein spezielles, zusätzliches filmbildendes anionisches und/oder festigendes anionisches Polymer
EP2173318B1 (de) Verwendung von stylingmitteln auf basis wässriger silicondispersionen zur remodellierbaren verformung keratinischer fasern
DE102008038112A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles, kationisches Polymer und mindestens ein Polyol
DE102008030661A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens eine spezielle Betainverbindung und mindestens ein filmbildendes und/oder festigendes Polymer
WO2007038997A1 (de) Zweikomponentenprodukt zur behandlung keratinischer fasern
WO2008068067A2 (de) Stylingmittel für keratinische fasern
EP1978920A1 (de) Keratinhaltige stylingmittel
DE102008059480A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer, mindestens ein davon verschiedenes kationisches Stylingpolymer und mindestens ein filmbildendes nichtionisches und/oder festigendes nichtionisches Polymer
WO2009071416A2 (de) Stylingmittel
EP2148650A2 (de) Pheromonhaltige kosmetische mittel
DE102008059479A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens zwei weitere zusätzliche filmbildende kationische und/oder festigende kationische Polymere
DE102008038109A1 (de) Mittel für keratinhaltige Fasern, enthaltend mindestens ein spezielles amphiphiles kationisches Polymer und mindestens ein weiteres zusätzliches filmbildendes kationisches und/oder festigendes Polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006818722

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006334896

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008129358

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2006334896

Country of ref document: AU

Date of ref document: 20061122

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006334896

Country of ref document: AU