WO2007077977A1 - Composition and method for predicting the postoperative prognosis or metastatic risk of cancer patient - Google Patents

Composition and method for predicting the postoperative prognosis or metastatic risk of cancer patient Download PDF

Info

Publication number
WO2007077977A1
WO2007077977A1 PCT/JP2006/326410 JP2006326410W WO2007077977A1 WO 2007077977 A1 WO2007077977 A1 WO 2007077977A1 JP 2006326410 W JP2006326410 W JP 2006326410W WO 2007077977 A1 WO2007077977 A1 WO 2007077977A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
group
metastasis
polynucleotide
prognosis
Prior art date
Application number
PCT/JP2006/326410
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Takahashi
Shuta Tomida
Kiyoshi Yanagisawa
Original Assignee
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University filed Critical National University Corporation Nagoya University
Publication of WO2007077977A1 publication Critical patent/WO2007077977A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a composition or method for predicting postoperative prognosis or metastatic potential in cancer patients in vitro.
  • the present invention also provides a method for screening a cancer metastasis inhibitor using cultured cancer cells.
  • Cancer is a multifactorial disease in which genes and environmental factors are complicatedly involved.
  • Various therapies such as chemotherapy, radiation therapy, surgery, and immunotherapy have been implemented, but due to the complexity of cancer onset mechanisms, it is imperative to treat mid-stage and end-stage cancer and to suppress cancer metastasis. However, it cannot be said that sufficient effects have been achieved.
  • cancer diagnosis methods such as cytology, histology, endoscope, image diagnosis, and biochemical diagnosis using cancer markers are used. It is active.
  • cancer metastasis One of the major causes that hinders cancer treatment and recurrence is cancer metastasis. Because of the motility and invasive ability of cancer, cancer spreads remotely from the primary focus to another tissue and grows. The overall picture of this transfer mechanism is largely unknown. As cancers become more malignant, and when cancers are removed, cancers are more likely to metastasize, resulting in recurrence of the cancer, so preventing cancer migration is an early diagnosis and effective treatment method for cancer. Along with development, it has become an important issue in the medical field.
  • a cancer metastasis inhibitor for example, a substance that inhibits signal transduction via the human VEGF receptor F 1 t _ l (Patent Document 1), a peptide having cell adhesion inhibitory activity (Patent Document 2), a function of purine receptor There are known purine compounds (Patent Document 3) and the like.
  • purine compounds Patent Document 3 and the like.
  • studies on genes involved in cancer metastasis suggest that matrix-degrading enzymes, vascular endothelial growth factors and their receptors are involved in metastasis.
  • a cancer metastasis-related gene discovered from a mouse cell line has been reported as a cancer metastasis-related gene (Patent Document 4).
  • RNA suppression techniques include, for example, antisense method, ribozyme, RNA interference (RNA i) and the like (Non-patent Document 1).
  • RNA i is highly specific, so basic research for its medical application is rapidly progressing, and its target is viral disease, cancer, genetic disease, etc.
  • Patent Document 2 is a description of RNA interference technique.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 003- 26 1 46 0
  • Patent Document 2 Japanese Patent Application Laid-Open No. 09-143076
  • Patent Document 3 Japanese Unexamined Patent Publication No. 7-08 2 1 56
  • Patent Document 4 Japanese Table 9 8Z04 543 1
  • Non-Patent Literature 1 Daisuke Seki et al., Experimental Medicine 2 2-14 14 (extra number), 89-98 pages, 2 004, Yodosha (Tokyo, Japan)
  • Non-Patent Literature 2 Experimental Medicine 2 2-4 “RN A i Science”, 2004, Yodosha (Tokyo, Japan) Disclosure of Invention
  • metastasis is not caused by a single gene but by a coordinated interaction of a plurality of gene groups, identifying cancer metastasis-related gene markers, and The relationship between the gene marker and postoperative prognosis or metastatic potential of cancer patients was examined.
  • An object of the present invention is to provide a method and a composition for predicting the postoperative prognosis or metastatic potential of cancer patients in vitro using a cancer metastasis-related gene group as a marker.
  • Another object of the present invention is to provide a method for screening a cancer metastasis inhibitor based on inhibition or suppression of a cancer metastasis-related gene or a transcription product thereof.
  • the present invention has the following characteristics.
  • a method for predicting postoperative prognosis or metastasis potential in cancer patients in vitro the base sequence shown in SEQ ID NOs: 1 to 45 or a mutant sequence thereof in a biological sample derived from the patient
  • At least one expression level or transcription or translation product level of a cancer metastasis-related gene marker containing a marker is measured using a probe corresponding to the marker, so that the prognosis after surgery is better or the possibility of metastasis is increased.
  • To determine the postoperative prognosis or metastatic potential using the relative difference in level between the lower patient group and the patient group with worse postoperative prognosis or higher metastatic potential. Including the above method.
  • the cancer metastasis-related gene marker is composed of the nucleotide sequence shown in SEQ ID NOs: 28 to 45 or a mutant sequence thereof, the patient has a better postoperative prognosis or is less likely to transfer.
  • the method according to (1) above which is identified as a patient.
  • the cancer metastasis-related gene marker comprises the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof, the patient is a patient with a worse prognosis after surgery or a higher possibility of metastasis.
  • a polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 45, a polynucleotide complementary thereto, a variant thereof, and a polynucleotide that hybridizes to them under stringent conditions Or the method according to any one of (1) to (3) above, which is selected from the group consisting of those fragments containing 15 or more consecutive bases.
  • the probe is an antibody against a polypeptide selected from the group consisting of the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1-45 or a polypeptide encoded by a variant thereof, or a fragment thereof, or the The method according to any one of (1) to (3) above, which is a fragment.
  • a polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 4, a complementary polynucleotide, a variant thereof, a polynucleotide that hybridizes under stringent conditions thereto, or 15 or more
  • a composition for predicting postoperative prognosis or metastasis potential in cancer patients in vitro comprising at least one probe selected from the group consisting of those fragments comprising a sequence of nucleotides.
  • Polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 28 to 45, polynucleotide complementary thereto, variant thereof, polynucleotide hybridizing under stringent conditions, or 15 or more
  • Polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 27, polynucleotide complementary thereto, variant thereof, polynucleotide hybridizing under stringent conditions, or 1 5 or more consecutive bases
  • a composition for predicting the postoperative prognosis or metastatic potential of cancer patients in vitro comprising at least one probe selected from:
  • composition for predicting in vitro the postoperative prognosis or metastatic potential of a cancer patient comprising at least one probe selected from the group.
  • markers as indicators, it is possible to predict the postoperative prognosis of cancer patients and the possibility of cancer metastasis, so it is possible to formulate treatment plans for patients, improve treatment outcomes for cancer, and recurrence due to metastatic cancer. It can be expected to be of great use for prevention and prognosis management. Furthermore, in cultured cancer cells, it is possible to screen for a drug that regulates its expression using the above marker as an index, which leads to the development of a drug that suppresses or prevents cancer metastasis. it can.
  • Fig. 1 shows the procedure for establishing the human highly metastatic lung cancer cell line LNM35.
  • FIG. 2 shows a comparison of the motility and invasion ability (A) in cultured cells and the ratio of lymph node metastasis and lung metastasis (B) after mouse transplantation between the LNM3 5 strain and its parent strain.
  • Figure 3 shows the correlation between the expression pattern of 45 metastasis-related genes and the proportion of survivors after surgery when applied to 50 cases of lung cancer data from the Aichi Cancer Center (Nagoya, Japan). Shown to be roughly divided into two groups.
  • Figure 3A shows the results of hierarchical clustering analysis.
  • Figure 3B shows the results of force planmeyer survival analysis (vertical axis: survival rate, horizontal axis: number of months).
  • Figure 4 shows that when applied to Harvard University (USA) 62 cases of lung cancer data (Bhattacharjee A et al., Proc Natl Acad Sci USA 98: 1 3 790-9 5, 200 1) The correlation between the expression pattern of 45 metastasis-related genes and the proportion of survivors after surgery is broadly divided into two groups.
  • Figure 4A shows the results of hierarchical clustering analysis.
  • Figure 4B shows the results of the force plan meyer survival analysis (vertical axis: survival rate, horizontal axis: number of months).
  • Figure 5 is applied to 7 9 cases of breast cancer (van't Veer LJ et al., Nature 4 1 5: 5 30-6, 2002) from the Netherlands National Cancer Institute (Netherlands).
  • Figure 5A shows the results of hierarchical clustering analysis.
  • Fig. 5B shows the results of a force plan myria survival analysis (vertical axis: survival rate, horizontal axis: number of months).
  • Figure 6 shows the recurrence and death predictors independent of stage determined by multivariate analysis with a Co x proportional hazards model for the risk of 5-year survival in lung cancer patients.
  • postoperative prognosis means determining the prognosis of a patient after surgery for cancer, typically by the survival rate at 5 years postoperatively. Prognosis is closely related to cancer metastasis, and ⁇ poor prognosis '' means that the cancer is highly invasive, metastatic, or highly advanced, while ⁇ good prognosis '' means It means such invasiveness, metastasis or low progression.
  • metastasis refers to a series of processes by which cancer cells move from the primary site to distant tissue by their motility and invasive potential, where they proliferate and form neoplasms.
  • Metastasis is a major obstacle to cancer treatment because it causes cancer recurrence. Cancer cells that have infiltrated blood vessels or lymphatic vessels are known to stay in various tissues and cause multiple cancer diseases.
  • any metastasis is targeted as long as the cancer metastasis-related gene marker of the present invention is involved.
  • lymph node metastasis can also be targeted.
  • patient refers to mammals including humans, dogs, and cats, with the preferred mammal being humans.
  • a “biological specimen” refers to a tissue, cell or body fluid taken from a mammal (preferably human), preferably a cancer tissue or cell.
  • a mammal preferably human
  • cancer tissue or cells derived from a group of patients with a better postoperative prognosis or a lower likelihood of metastasis and a worse prognosis after surgery or a higher possibility of metastasis. Any cancer can be used as long as it shows a relative difference in the expression level of the gene gene related to the present invention from those derived from different patient groups.
  • lung cancer breast cancer, colon cancer, prostate cancer, stomach cancer, esophageal cancer, liver cancer, spleen cancer, kidney cancer, uterine / cervical cancer, ovarian cancer, bladder cancer, brain tumor, thyroid gland
  • examples include, but are not limited to, cancer, lymphoma, testicular cancer, osteosarcoma, skin cancer, melanoma, and blood cancer (especially leukemia).
  • cancer metastasis-related gene marker refers to a gene that has a difference in expression level between a high metastatic cancer cell line and a low metastatic cancer cell line. It is a marker that has been released and can be used to determine the postoperative prognosis or metastatic potential of cancer patients as in the method of the present invention.
  • a “variant” is a variant that arises from a biological event such as mutation, polymorphism, alternative splicing, the degeneracy of the genetic code, or a homologue between species. Etc.
  • the mutant includes one or more, preferably one or several, on the sequence of the gene containing the nucleotide sequence represented by SEQ ID NOs: 1 to 45 related to the present invention or the polypeptide encoded by the gene. Mutants having mutations such as substitutions, deletions, additions, insertions, etc., 80% or more, 85% or more, 90% or more, 95% or more, 98% or more identical to the sequence or a partial sequence thereof Mutants consisting of sequences having sex, and the like.
  • “several” usually means an integer of 10 or less. Identity (%) can also be determined using known B LAST and FAS TA programs with or without gaps (SF A ltschul et al., J. Mo 1. B i o. 2 1 5: 403-4 1 0, 1 990). In general, identity (%) can be calculated as a percentage of the number of matched bases over the total number of bases.
  • stringent conditions include, but are not limited to, at least 80%, preferably at least 90%, more preferably at least 95% identity. This means hybridization and washing conditions that allow nucleotide sequences to hybridize to each other. For example, hybridization and washing conditions in microarray analysis are 1M sodium chloride Z0.5%
  • the human cancer metastasis-related gene marker of the present invention was found as follows. Metastatic lung cancer cell line known as NCI — H 4 60 (American Type C 1 ture Collection; US Viryua)) (parent strain) A highly metastatic cancer cell line, LNM35, was isolated by subculture of cells from and by in vivo selection using mice based on metastatic potential (see Figure 1). On the other hand, cancer cells with even lower metastases can be obtained from NC I —H 4 60 cells by limiting dilution or treatment with a demethylating agent.
  • the LNM3 5 strain showed significantly higher levels of motility, invasion ability, lymph node metastasis, and lung metastasis compared to the parent strain or low-metastasis cancer cell line ( (See Figure 2).
  • the cancer metastasis-related marker identified as described above can be a marker not only in lung cancer but also in solid cancer such as sputum cancer.
  • One marker reported so far has been specific to a particular cancer, but it was surprising that the marker of the present invention is a common marker for various cancers.
  • Solid cancers such as head cancer, ovarian cancer, bladder cancer, brain tumor, thyroid cancer, lymphoma, testicular cancer, osteosarcoma, skin cancer, melanoma are included.
  • Further possible cancers include blood cancer (particularly leukemia).
  • the cancer metastasis-related gene marker includes not only the gene comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 45 but also mutant genes thereof.
  • such variants include those produced in vivo as a result of biological events such as mutations, polymorphisms, alternative splicing and the like.
  • the genetic marker is detected at the nucleic acid level or protein level as a transcript or translation product. In the case of a transcript, it is detected as mRNA, cRNA or cDNA.
  • RNA from cells or tissues using extraction methods such as phenolic mouth form Z-soamyl alcohol, guanidinium / cesium chloride, etc., and use oligo d T cell mouth column method to extract poly A (+) RNA or mRNA If necessary, further synthesize cDNA and cRNA from mRNA (for example, F. M. A usubel et al., 'Short Protocolsin Molecular Biology (3rd edition) AC ompendiumof Methods from Curren Protocolsinolecular Biology) , 1 995, John Wiley & Sons, Inc. (USA)).
  • a translation product it is detected as a protein encoded by the gene or a variant thereof or a fragment thereof.
  • the cancer-related gene markers related to the present invention are roughly classified into two groups according to their expression patterns corresponding to the prognosis or metastatic potential of cancer patients after external surgery (see FIGS. 3 to 5). .
  • the cancer metastasis-related gene marker consists of the base sequence shown in SEQ ID NOs: 28 to 45 or a mutant sequence thereof
  • the patient has a better postoperative prognosis or is less likely to metastasize. Identified as a patient.
  • the cancer metastasis-related gene marker consists of the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof
  • the patient Identified as a patient with a worse postoperative prognosis or with a higher likelihood of metastasis.
  • the present invention provides a method for predicting the postoperative prognosis or metastasis potential of cancer patients in vitro, which method comprises the steps of: SEQ ID NO :! Measure the expression level of at least one of the cancer metastasis-related gene markers including the nucleotide sequence shown in -45 or a mutant sequence thereof or the transcription or translation product level thereof using a probe corresponding to the marker, and This includes predicting the prognosis or metastasis after surgery using a significant level difference from a non-cancerous control sample as an index.
  • the probe used in the present invention is not particularly limited as long as it can detect the above marker, but is usually a polynucleotide or an antibody. Therefore, a composition comprising such a polynucleotide or antibody can be used to predict the postoperative prognosis or metastatic potential of cancer patients.
  • the polynucleotide probe according to the present invention includes (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NOs: 1 to 45, (ii) a polynucleotide complementary to the polynucleotide of (i), (Iii) A polynucleotide variant of (i) and (ii), a polynucleotide of (iV) (i) or a polynucleotide of (ii) or a polynucleotide of (iii) hybridized under stringent conditions And (V) at least one, preferably at least 2, more preferably 3-4 selected from the group consisting of a fragment comprising 15 or more contiguous bases of said polynucleotide or variant. Includes 5 probes, for example 4-4 5 or 5-4 5 probes.
  • the cancer metastasis-related gene markers according to the present invention can be divided into the following two groups according to the prognosis status (survival
  • group 1 is a case where the postoperative prognosis of cancer patients is worse, and the markers involved in this group are the gene groups of SEQ ID NOs: 1 to 27, while group 2 is postoperatively of cancer patients The prognosis is better, and the marker involved in this group is the gene group of SEQ ID NOs: 28-45.
  • good prognosis means that cancer is highly invasive, metastatic, or advanced, and the proportion of 5-year survivors of cancer patients determined in this way is about 7 0%
  • poor prognosis means that the cancer is less invasive, metastatic, or less advanced, and the proportion of 5-year survivors of cancer patients is about 50% or less. is there.
  • At least one of the genetic markers belonging to each group preferably at least 2, more preferably 3 to all, for example, 4 to all, 5 to all markers, Inspect with the corresponding probe.
  • Probes for detecting markers belonging to Group 1 include polynucleotides consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 27, complementary polynucleotides, mutants thereof, and stringent genes. Probes selected from the group consisting of polynucleotides that hybridize under conditions, or fragments thereof containing 15 or more contiguous bases are included.
  • a probe for detecting a marker belonging to Group 2 includes a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 28 to 45, a complementary polynucleotide thereto, a variant thereof, and a string thereto. Probes selected from the group consisting of polynucleotides that hybridize under harsh conditions, or fragments thereof containing 15 or more contiguous bases are included.
  • the present invention also includes a composition containing each of the groups related to Group 1 and Group 2.
  • a variant as a probe is one or more, preferably one or several, in the base sequence represented by SEQ ID NOs: 1 to 45, as defined above, such as substitution, deletion, addition, insertion, etc.
  • Mutants having mutations, mutants comprising a sequence having identity of usually 80% or more, 85% or more, preferably 90% or more, more preferably 95% or more, 98% or more, etc. including.
  • a polynucleotide that hybridizes under stringent conditions hybridizes to the polynucleotide or variant of (i) to (iii) above under the hybridization conditions as defined above.
  • the base sequence represented by SEQ ID NOs: 1-45 may have a gene that has been altered by biological events such as sudden mutation, polymorphism, or alternative splicing.
  • the polynucleotide allows detection of the gene.
  • the fragment of the polynucleotide has a size of 15 bases to less than the total number of bases. Fragments can have any number of bases within this range, for example 20 bases or more, 30 bases or more, 50 bases or more, 70 bases or more, 100 bases or more, 150 bases or more, 20 bases or more The number of bases, such as 2500 bases or more.
  • the polynucleotide probe used in the present invention can be synthesized by a conventional chemical DNA synthesis technique or a gene recombination technique.
  • the polynucleotide is a DNA molecule having about 100 bases or less, it can be synthesized using a DNA automatic synthesizer (for example, Applied biosyms, USA) using the phosphoramidite method.
  • a DNA automatic synthesizer for example, Applied biosyms, USA
  • the polynucleotide can be produced by cDNA cloning. Obtain total RNA from the target cancer tissue, obtain poly A (+) RNA by oligo d T cellulose column treatment, and then c DN A live by reverse transcriptase-polymerase chain reaction (RT-PCR) method Create a rally from this library and register it in a data bank such as Gen Bank or ni Gene
  • an antibody may be used as a probe.
  • antibodies include the following.
  • an antibody or a fragment thereof against a polypeptide selected from the group consisting of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1-45 or a polypeptide encoded by a variant thereof, or a fragment thereof,
  • an antibody or fragment thereof against a polypeptide selected from the group consisting of the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOS: 1 to 27 or a polypeptide encoded by a variant thereof, or a fragment thereof;
  • the present invention provides an antibody or fragment thereof described in (i), (ii) and (iii) above, preferably at least one selected from each of (ii) and (iii), preferably Is at least 2, more preferably 3 to all, eg 4
  • the antibodies used in the present invention include polyclonal antibodies, monoclonal antibodies, anti-peptide antibodies and the like.
  • Antibody fragments include F ab, (F ab ′) 2 , F c,
  • F c ', F d, F v, etc. are included. These antibody fragments can be obtained, for example, by limited degradation of the antibody with a protease such as papain or pepsin.
  • Polypeptides or fragments thereof corresponding to each gene are synthesized using protein synthesis or gene recombination techniques, and the resulting polypeptides or fragments thereof are used as antigens for rabbits, mice, rats, horses, horses, etc. Immunize animals such as sheep, goats, and hidges, and produce and purify antibodies against these antigens.
  • a polyclonal antibody immunizes the animal subcutaneously with an antigen of about 10 to 300 g, further boosts about 2 weeks later, collects blood about 3 weeks to 1 month after the first immunization, Ig G component containing the desired polyclonal antibody from serum, ammonium sulfate fractionation, ion exchange It can be made by a method that includes separation using chromatography. In order to increase specificity, the obtained IgG was bound to a column made by binding the target protein to a carrier such as cellulose or agarose, and then eluted with a high salt concentration buffer.
  • a specific polyclonal antibody can be obtained by desalting by a method such as ultrafiltration.
  • Antibody titers can be determined by conventional immunoassays, such as enzyme immunoassays (EIA, ELISA), radioimmunoassays (RIA), fluorescent antibody methods, luminescence immunoassays, etc. It can be measured by a conventional method such as a sandwich method, a latex aggregation method, a latex turbidimetric method, a red blood cell agglutination method, a latex agglutination method, etc.
  • EIA enzyme immunoassays
  • RIA radioimmunoassays
  • fluorescent antibody methods luminescence immunoassays, etc. It can be measured by a conventional method such as a sandwich method, a latex aggregation method, a latex turbidimetric method, a red blood cell agglutination method, a latex agglutination method, etc.
  • a monoclonal antibody can be prepared, for example, by the following general method.
  • the target polypeptide or a fragment thereof is administered subcutaneously to mice or rats (for example, BalbZc mice) in the same manner as polyclonal antibodies, and boosted approximately 1 to 4 times at intervals of 1 to 4 weeks. Do. When the antibody titer reaches its peak, the antigen is injected intravenously or intraperitoneally for final immunization. After 2 to 5 days, antibody-producing cells (eg, spleen cells or lymph node cells) are collected.
  • antibody-producing cells eg, spleen cells or lymph node cells
  • the antibody-producing cells are then fused to a myeloma cell line (preferably a hypoxanthine 'guanine' phosphoribosyl 'transferase (HG PRT) deficient cell line) to produce hybridoma cells and HAT (hypoxanthine, aminopterin). , Chimin) Make a selection.
  • a myeloma cell line preferably a hypoxanthine 'guanine' phosphoribosyl 'transferase (HG PRT) deficient cell line
  • HAT hypoxanthine, aminopterin
  • Chimin make a selection.
  • antibody-producing cells and myeloma cell lines are mixed at a ratio of about 1: 1 to 20: 1 in animal cell culture media such as serum-free DMEM and RPM I-1640 media.
  • a cell fusion promoter such as polyethylene glycol. Confirmation of the target antibody can be performed by the immunoassay described above.
  • Antibody purification can be performed by appropriately combining methods such as ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and gel filtration chromatography.
  • An anti-peptide antibody is an antibody against a linear peptide on the surface of a protein, and can increase immunological specificity.
  • Such peptides are for example K yte—Doolittle et al.
  • the estimated peptide can then be synthesized using a peptide synthesizer.
  • the synthesis of the target polypeptide was carried out by incorporating the c DN clone into the expression vector and transformed or transfected with the vector. It can be obtained from the prokaryotic or eukaryotic host cell by culturing the cell or culture supernatant. Commercially available expression vectors can be used. Host cells include prokaryotic cells such as bacteria (eg, Enterococcus, Bacillus subtilis, Pseudomonas bacteria, etc.), yeast (eg, Saccharomyces, Pichia, etc.), insect cells (eg, S f cells), mammalian cells (eg, CHO).
  • prokaryotic cells such as bacteria (eg, Enterococcus, Bacillus subtilis, Pseudomonas bacteria, etc.), yeast (eg, Saccharomyces, Pichia, etc.), insect cells (eg, S f cells), mammalian cells (eg, CHO).
  • the vector consists of plasmids, cosmids, phages, etc., DNA encoding the target polypeptide, promoter, enhancer if necessary, polyaduration signal, ribosome binding site, replication origin, terminator, selection marker Can be included.
  • a DNA sequence encoding a labeled peptide such as a 6 to 10 residue histidine tag, a FLAG, a GFP polypeptide, etc., can also be included.
  • the gene recombination techniques are described in Sambrook et al. (Above) and Ausbe1 et al. (Above), and the techniques described therein can be used for the present invention.
  • the target polypeptide obtained as described above is gel filtration, ion exchange chromatography, affinity chromatography, hydrophobic chromatography, isoelectric focusing, electrophoresis, ultrafiltration, salting out, It can be purified by appropriately combining dialysis.
  • the composition may be in the form of a kit or a microarray, that is, the probe is included in the form of a kit or a microarray.
  • polynucleotides or antibodies capable of detecting the total number of markers from one or more of each of the two groups of genetic markers (Tables 1 and 2), individually or in combination of two or more It can be packaged in a suitable container.
  • the antibody is a polyclonal antibody, a monoclonal antibody, an anti-peptide antibody or the like produced by the above method, but is not limited thereto.
  • the type of antibody may be any type, class, or subclass, for example, IgG, IgM, IgE, IgD, IgA, IgGl, IgG2, IgG3, Including I g G 4, I g A l, I g A 2 and the like.
  • Antibody fragments include F ab, (F a b ′) 2 , F c, F d, F v and the like.
  • the kit may further contain reagents for performing hybridization, such as a buffer, a reverse transcriptase, and a labeled secondary antibody.
  • reagents for performing hybridization such as a buffer, a reverse transcriptase, and a labeled secondary antibody.
  • the array is a DNA microarray (also known as a DNA chip), a tissue array, or a protein microarray.
  • Each of these microarrays is bound with the above-mentioned polynucleotide as a probe or the above-described antibody or fragment thereof. That is, on the surface of the array, one of the above gene markers or a transcription or translation product can be detected, a polynucleotide that can be hybridized with a gene marker or a variant thereof, or a polynucleotide encoded by these genes. An antibody or fragment thereof that can specifically bind to a peptide or a variant or derivative thereof is bound as a probe.
  • glass or resin polymer
  • polymer polymer
  • poly L-lysine, silane or densified amino groups are introduced on the surface.
  • the polynucleotide or antibody is bound to the substrate by a spot method or an ink jet method.
  • Variants are generally 80% or more, 85% or more, preferably 90% or more at the nucleotide or amino acid level with the complete or partial sequence of the above gene or polypeptide. More preferably, it has 95% or more identity and 98% or more identity.
  • Derivatives of polypeptides include, for example, chemically modified derivatives such as glycosylation, phosphorylation, sulfation, alkylation, and acylation.
  • the method of the present invention is a method for predicting the postoperative prognosis or metastasis potential of a cancer patient after surgery, wherein the base sequence shown in SEQ ID NOs: 1 to 45 in a biological specimen derived from the patient Alternatively, at least one expression level of a cancer metastasis-related gene marker containing the mutant sequence or its transcriptional or translational product level is measured using a probe corresponding to the marker, so that the prognosis after surgery is improved.
  • Postoperative prognosis or metastasis is possible using the relative difference in level between patients with good or lower metastatic potential and those with worse postoperative prognosis or higher metastatic potential. Including determining gender.
  • the expression level is the transcription or translation product level for the expression of the above-mentioned gene in a biological specimen, and a specimen from a patient group with a better postoperative prognosis or a lower possibility of metastasis. It means the difference in the expression of the gene when comparing the expression of the gene with a specimen from a patient group with a later prognosis or a higher possibility of metastasis.
  • the difference in gene expression level can be made by measuring the presence or amount of the gene or its corresponding polypeptide as a marker. Therefore, simply measuring the presence of each marker classified into two groups can predict the postoperative prognosis or metastatic potential of cancer patients in vitro.
  • Biological specimens include cancer tissue or cells that have been removed by surgery, tissue or cells obtained by biopsy, and the like.
  • the above-mentioned polynucleotide hybridized with each marker is used.
  • the number of genes to be detected is 1 or 2 or more per group, preferably 2 or more, more preferably 3 to the total number, for example, 4 to the total number, 5 or more to the total number.
  • the number of genes to be detected The more it is, the better the prediction accuracy.
  • Hybridization should be performed by microarray method, blotting method such as Northern or Southern blot, Northern or Southern hybridization method, insitue hybridization method, quantitative RT_PCR method, etc. Can do.
  • Preferred hybridization methods are microarray, quantitative RT-PCR or blotting. Examples of preferred microarrays are DNA microarrays and protein microarrays.
  • the solid phase includes, for example, glass, polymer, and the like, and a spacer including a reactive group for covalently binding a nucleic acid can be introduced with a crosslinker. Since such chips are commercially available, it is desirable to use them.
  • the solid phase immobilization of the nucleic acid probe is not particularly limited, but a general method, for example, a method of spotting DNA using a high-density dispenser called a spotter or layerer, a droplet is ejected from a nozzle It can be carried out using methods such as an inkjet method.
  • DNA microarrays are prepared by labeling nucleic acids such as DNA or RNA in biological specimens and cDNA and cRNA derived from them with fluorescent substances such as Cy dye (Cr3 or Cy5). Hybridize with the above probe. The fluorescence intensity is read using a laser scanning reader and the data is analyzed by a computer.
  • the nucleic acid probe of the present invention is combined with a radioisotope (for example: ⁇ 2 ⁇ and
  • primers are annealed with cDNA and PCR is performed so that the target gene region can be amplified using cDNA prepared from RNA in biological samples as a template.
  • the detected double-stranded DNA is detected.
  • the ability to pre-label primers with radioisotopes or fluorescent materials, or by electrophoresis of PCR products on agarose gel and staining of double-stranded DNA with ethimubu-mide etc. Can be detected and quantified.
  • PCR conditions include, for example, denaturation: 92-94 ° C. for 30 seconds to 5 minutes; annealing: 50-55 ° C. for 30-60 seconds; extension: 68-72 ° C. It includes 30 to 40 cycles of reaction, with 30 seconds to 10 minutes as one cycle.
  • Reverse transcriptase is a commercially available enzyme such as Super Script® III (Invitrogen, USA) ⁇ AM VR everse ⁇ , ranscriptase, Promega, USA), M-ML V (RN ase H_) (Takara Shuzo) , Kyoto, Japan) can be used.
  • the hybridization may be any of DNA-DNA hybridization, DNA-RNA hybridization, and RNA-RNA hybridization.
  • Hybridization is usually performed under stringent conditions.
  • stringent conditions include, for example, 1 M sodium chloride Z0.5% (WZV) sarkosyl
  • hybridization condition may be, for example, about 45 to 50 at 2 to 6 XSSC followed by 0.2 to 2 at about 50 to 65 ° C.
  • An alternative method for measuring the expression level of the gene is an immunological method.
  • the antibodies produced as described above can be used for the detection of the target polypeptide or fragment thereof in a biological specimen.
  • Polypeptide By creating protein microarrays with many antibodies bound on a microarray substrate, or by spotting many antibodies on a filter such as a PVDF membrane, Polypeptide can be detected or quantified. Or, conventional immunological methods such as enzyme immunoassay (ELISA, EIA), fluorescent antibody method, radioimmunoassay (RIA), luminescence immunoassay, immunoturbidimetric method, latex agglutination, latex ratio A target polypeptide or a fragment thereof in a biological sample can be detected or quantified by a turbidity method, a hemagglutination reaction, a particle agglutination reaction or a Western plot method.
  • a polymer film such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • a plate such as polystyrene, polycarbonate, or polyethylene
  • the antibody may be labeled, or a labeled secondary antibody may be used.
  • Labels include enzymes such as horseradish rust peroxidase and alkaline phosphatase, fluorescent substances such as fluorescein, rhodamine and derivatives thereof, luminescent substances such as luciferase and luminol, 32 P, 1 25 I, 35 Radioactive isotopes such as S are included. Labeling includes, for example, the dartal aldehyde method, the maleimide method, the pyridyl disulfide method, the chloramine T method, and the Bolton Hunter method.
  • the present invention further relates to inhibition or suppression of a cancer metastasis-related gene comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 27 or a transcription product thereof using cultured cancer cells, or the motility of cultured cancer cells and A screening method for a cancer metastasis inhibitor comprising screening a candidate drug for inhibition or suppression of Z or invasive ability is provided.
  • this method comprises preparing cultured cancer cells, culturing the cells in the presence of a candidate drug, and inhibiting or suppressing the expression of the cancer metastasis-related gene or a transcription product thereof, or Screening candidate drugs for inhibition or suppression of motility and / or invasive capacity.
  • the cell line of human cultured cancer cells is not particularly limited by the type of cancer, for example, a known metastatic human cancer cell line, MeWo; Tumor cell line, MDA-MB-435; breast cancer cell line, LNCaP or PC-3; highly metastatic human lung cancer cell line, LNM35; prostate cancer cell line, etc., which can be used in the present invention .
  • the degree of inhibition or suppression of expression of the human cancer metastasis-related gene or its transcription product can be determined by a comparative experiment with a control to which no candidate drug is added.
  • Expression levels were obtained from cancer cell lines by well-known methods (for example, extraction with phenol, blackform Z, soamyl alcohol, guanidinium Z, cesium chloride, etc., ethanol precipitation, oligo d T cellulose column chromatography, etc.).
  • a hybridization method using fluorescent or radiolabeled probes for RNA or mRNA or poly A (+) RNA, or for cDNA synthesized from RNA by the reverse transcriptase — PCR (RT-PCR) method (For example, Northern hybridization, Southern hybridization, DNA microarray, yarn and fabric microarray, etc.).
  • RT-PCR reverse transcriptase — PCR
  • the expression level is measured by measuring the intracellular level of the polypeptide encoded by the human cancer metastasis-related gene by an immunoassay using an antibody against the polypeptide or a fragment thereof, Western high-pridition, etc. Can be determined indirectly.
  • the probe is a nucleotide sequence of SEQ ID NOs: 1-45 or a sequence complementary thereto, or a sequence thereof, for example, about 20 or more, about 30 or more, 50 or more, 70 or more, 100 or less. Above, DNA having a sequence consisting of 1550 or more, 2200 or more, and 2500 or more nucleotides.
  • the probe is preferably a labeled probe bound with a fluorescent or radioactive label.
  • Fluorescent labels include, for example, fluoresamine, P-damine, their derivatives, Cy3, Cy5, etc.
  • Radiolabels include, for example, radioactive phosphorus or iow atoms.
  • An immunoassay is an analysis method that uses an antigen-antibody reaction, and is performed by a method that appropriately combines, for example, an enzyme-linked antibody method (for example, ELISA), a fluorescent antibody method, a solid phase method, a homogeneous method, and a sandwich method. Can do. These methods are well known in the art and their conventional techniques can be used in the present invention.
  • Human culture In cancer cells, the expression of the human cancer metastasis-related gene or the corresponding mRNA is significantly inhibited or suppressed by the presence of the candidate drug compared to the control without the candidate drug.
  • the candidate drug can be identified as a cancer metastasis inhibitor.
  • Candidate drug screening can also be found by examining inhibition or suppression of motility and Z or invasive potential of human cultured cancer cells, preferably metastatic cancer cells.
  • In vitro motility or invasion of cancer cells can be performed using, for example, a transwell chamber culture system.
  • a transwell chamber culture system for example, an insert (made by Becton Dickinson) with a polyethylene terephthalate film having a small pore of 8 microns in diameter is inserted into a 24-well cell culture plate, and serum-free cells inside the insert are inserted.
  • Inoculated with metastatic cancer cell lines in the medium cultured for 24 hours, and then counted by counting the number of cells that have passed through the small pores and moved to the lower membrane (Kozaki K et al., Cancer Research) 6 0: 2 5 3 5-4 0, 2 0 0 0).
  • the invasion assay uses a similar system, but can be measured by covering the top of the membrane with Matrigel before seeding the cells (Kozaki K et al., Cancer Research 60: 2). 5 3 5-4 0, 2 0 0 0).
  • Candidate agents include, but are not limited to, small molecules, peptides, polypeptides, proteins, nucleosides, oligonucleotides, polynucleotides, nucleic acids (DNA or RNA), and the like.
  • the polypeptide or protein as a candidate drug includes, for example, an antibody or a fragment thereof against the polypeptide or protein encoded by the base sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof.
  • the nucleic acid includes a ribozyme capable of cleaving mRNA corresponding to the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof, s iRNA (sma lin terf er RN RN), and the like.
  • the GC content is about 30 to about 70%, preferably about 50%
  • Criteria can be used such that all nucleotides are equal and G is not contiguous
  • the 5 ′ end nucleotide of the antisense strand is A, U, etc.
  • the ribozyme as a candidate drug is RNA having catalytic activity and has an activity of cleaving mRNA corresponding to the target human cancer metastasis-related gene according to the present invention. This cleavage inhibits or suppresses the expression of the gene.
  • the candidate triplet is Ribozymes containing a sequence complementary to the portion of the mRNA sequence to be cleaved can be used for cleaving the target mRNA.
  • Ribozymes include hammerhead type ribozymes.
  • Hammer one heads type Ribozaimu includes areas nucleotide sequence, which may only form a cavity for capturing a stable Mg 2 + ions when RN A to sensor-site bound constituting the sensor portion Nukure And a nucleotide sequence comprising a region that is complementary to the sequence surrounding the cleavage site of the target RNA.
  • a low-metastasis strain (N 15) was obtained from the parent strain N C I — H 4 60 cells by the limiting dilution method. Furthermore, by treating L NM 3 5 with a demethylating agent (5 —aza—2 '—deoxycytidine) (1 // 1 ⁇ for 2 4 hours) in the same culture medium as above, low Transfer strains (L 2 D 2 and L 2 D 3 A) could be obtained.
  • a demethylating agent (5 —aza—2 '—deoxycytidine) (1 // 1 ⁇ for 2 4 hours
  • the motility assay is a transwelch filter with a filter of 8 m. Using a bar, the number of cells migrated to the back of the filter after counting for 24 hours was counted.
  • the invasion ability is measured using a transwell chamber in which the gel is coated on a filter with 8 ⁇ m micropores and counts the number of cells that have migrated to the back of the filter after 24 hours of incubation. I went by the procedure.
  • Lymph node and lung metastases were determined by weight and number of masses, respectively.
  • the LNM3 5 strain showed the highest levels of both motility and invasion, and also showed high levels of lymph node and lung metastasis. I confirmed that there was.
  • the parent strains showed very low motility, invasive ability, lymph node metastasis, and lung metastasis, confirming that they were low metastasis cancer cell lines.
  • RNA was caged, and an oligo-d T primer and Super Scriptl I reverse transcriptase were used to produce 100 ⁇ Ci of [ 33 P] d CT. Reverse transcription in the presence of P, and c DN A microa'ray (Gen F i 1 ter Human M icroarrays manufactured by Invitrogen)
  • LNM3 5 and N 15 are each 2 times, and in the total 4 times of expression profiles, spots whose expression level (scanned spot value) is 0.1 or less are excluded from analysis due to detection limit. did.
  • the expression profiles of LNM35 and N15 were compared, and spots with an expression difference of 2 SD (twice the standard deviation) or more were extracted.
  • the expression level of the two expression profiles of LNM35 was both higher than 1.0 in the spot whose expression was enhanced by LNM35.
  • the spot whose expression was enhanced by N 15 when searching for spots that met the condition that the expression values of the two expression profiles of N 15 were both greater than 1.0, 45 Spots corresponding to these genes were extracted.
  • the expression value was determined from the average of the two times.
  • the dots shown in red or green in the figure indicate the expression status of each gene in individual cases.
  • the red color indicates that the gene expression is relatively high compared to other cases, and the green color indicates that the gene expression is relatively low.
  • the dendrograms in the figure show similarity. If the degree of similarity is high, the branches indicating the connection of the dendrogram are short, and if the degree of similarity is low, the branch indicating the connection of the dendrograms is long.
  • the cases with the highest similarity are linked in order, and are finally compiled into a single tree diagram.
  • Fig. 5A shows the results of a cluster analysis using data from 79 breast cancer patients acquired at the National Cancer Institute.
  • a clustering analysis of 79 breast cancer specimens revealed that they were classified into two large groups: left and right.
  • One group on the left is the power of many highly expressed genes (red dots)
  • the prognosis of the group in which the expression of the gene group whose expression is enhanced in LNM 35 is relatively high (Fata 1 group) is poor, and the expression of the gene group in which the expression is suppressed in LNM35 is relatively
  • the prognosis of the high group (Fa V orab 1 e group) was good, and it could be confirmed using data from human breast cancer cases obtained at the National Cancer Institute of the Netherlands.
  • the signal noise function (signal — to-noisemetrics, Liolub et al., Science, Vol. 28 6, pp 5 3 1 to 5 3 7, 1 9 99) Using.
  • the cancer case group is defined as c 1 ass 1 for cancer with good postoperative prognosis and c 1 ass 2 for cancer with poor postoperative prognosis
  • the weight S which is the signal-noise statistic is given by Is calculated.
  • ci ass i represents the average value of all expression intensity data of c 1 ass 1
  • ch ss 2 represents the average value of all expression intensity data of c 1 ass 2
  • classl represents c 1
  • the standard deviation of all expression intensity data of ass 1 is shown
  • class 2 shows the standard deviation of all expression intensity data of class 2 .
  • a weighted vote for gene x is calculated using the following W eighted-Voting formula.
  • V X S (G x -b J
  • V x is a weighted vote for gene x
  • S is a weight calculated by the above equation
  • G x is the expression intensity (or expression level) of gene X
  • b x is
  • genes (Gene) A, B, C (and above) Measure the expression intensity (or expression level) of genes (G ene) X, ⁇ , ⁇ (genes characterized by poor postoperative prognosis) The average value () and standard deviation ( ⁇ ) of the expression intensity of each gene of the five samples of the group are calculated, and the weight (S) and the center (b x ) are calculated from the above formula.
  • sample A and sample B to be typed For sample A and sample B to be typed, measure the expression intensity (or expression level) of each gene, calculate the weight (S), G x — b x from the above equation, and obtain each V x. Find the sum of V x of 6 genes.
  • the present invention can predict the possibility of cancer metastasis and prognosis in cancer patients, and thus can greatly contribute to cancer treatment planning and prognosis management. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A method of predicting in vitro the postoperative prognosis or metastatic risk of a cancer patient which comprises measuring the expression level of at least one cancer metastasis-related gene marker in a biological sample originating in the patient or the transcription or translation product level thereof by using a probe corresponding to the marker, and then determining the postoperative prognosis or metastatic risk with the use of a difference in the relative level as discussed above between one group of patients showing a better postoperative prognosis or a lower metastatic risk and another group of patients showing a worse postoperative prognosis or a higher metastatic risk as an indication; and a composition for predicting the postoperative prognosis or metastatic risk which contains the probe as described above.

Description

癌患者の術後の予後又は転移可能性を予測するための組成物及び方法  Composition and method for predicting postoperative prognosis or metastatic potential of cancer patients
技術分野 Technical field
本発明は、 癌患者の術後の予後又は転移可能性をインビトロで予測するための 組成物又は方法に関する。  The present invention relates to a composition or method for predicting postoperative prognosis or metastatic potential in cancer patients in vitro.
本発明はまた、 培養癌細胞を用いて癌転移抑制剤をスクリーニングするための 明  The present invention also provides a method for screening a cancer metastasis inhibitor using cultured cancer cells.
方法に関する。 書 Regarding the method. book
背景技術 Background art
癌は、 遺伝子と環境因子が複雑に絡んだ多因子疾患である。 化学療法、 放射線 療法、 外科療法、 免疫療法などの種々の治療法が実施されているが、 癌の発症メ 力二ズムの複雑さゆえに、 中期及び末期癌の治療や癌転移の抑制については必ず しも十分な効果が達成されているとはいえない。  Cancer is a multifactorial disease in which genes and environmental factors are complicatedly involved. Various therapies such as chemotherapy, radiation therapy, surgery, and immunotherapy have been implemented, but due to the complexity of cancer onset mechanisms, it is imperative to treat mid-stage and end-stage cancer and to suppress cancer metastasis. However, it cannot be said that sufficient effects have been achieved.
一方、 癌の早期発見と早期治療によって多くの癌患者が.完治又は延命している ことも事実である。 癌の診断には、 例えば細胞診、 組織診、 内視鏡、 画像診断、 癌マーカーによる生化学的診断などの方法が採用されており、 特に早期癌の検出 のために多方面からの研究が活発に行われている。  On the other hand, it is also true that many cancer patients are cured or prolong their lives by early detection and treatment of cancer. For cancer diagnosis, methods such as cytology, histology, endoscope, image diagnosis, and biochemical diagnosis using cancer markers are used. It is active.
癌の治療や再発を妨げる大きな原因の 1つが、 癌の転移である。 癌の運動能と 浸潤能のために癌は原発巣から別の組織に遠隔転移し増殖する。 この転移メ力二 ズムの全体像は、 ほとんど解明されていない。 癌が悪性化す.るにつれて、 また癌 の摘出に際して、 癌は転移し易くなり、 その結果癌の再発が起こるため、 癌の転 移を防ぐことが、 癌の早期診断法や有効な治療法の開発とともに、 医療現場で重 要な課題となっている。  One of the major causes that hinders cancer treatment and recurrence is cancer metastasis. Because of the motility and invasive ability of cancer, cancer spreads remotely from the primary focus to another tissue and grows. The overall picture of this transfer mechanism is largely unknown. As cancers become more malignant, and when cancers are removed, cancers are more likely to metastasize, resulting in recurrence of the cancer, so preventing cancer migration is an early diagnosis and effective treatment method for cancer. Along with development, it has become an important issue in the medical field.
現在、 いくつかの癌転移関連遺伝子が報告されているが、 そのほとんどはディ ファ レンシャル ·ディスプレー法によって発見されている。 この方法は ¾現パタ ーンの差異に基づいて目的遺伝子を検出するものであるが、 この方法によって見 出された遺伝子の多くは、多くの組織や細胞中で共通して一定量発現する遺伝子、 いわゆるハウスキーピング遺伝子である。 本質的に癌転移に関わる遺伝子を特定 することができるならば、 癌転移を抑制する薬剤の開発に繋がることが期待され る。 Currently, several cancer metastasis-related genes have been reported, most of which have been discovered by the differential display method. This method is to detect the target gene based on the difference in the present pattern. Many of the genes found by this method are genes that are expressed in a certain amount in common in many tissues and cells. , This is a so-called housekeeping gene. If genes that are essentially involved in cancer metastasis can be identified, it is expected to lead to the development of drugs that suppress cancer metastasis.
癌転移抑制剤として、 例えばヒ ト VEGF受容体 F 1 t _ lを介する情報伝達 を阻害する物質(特許文献 1 )、細胞接着阻害活性を有するぺプチド(特許文献 2)、 プリンレセプタ一作働機能を有するプリン系化合物 (特許文献 3) などが知られ ている。 また、 癌の転移に関わる遺伝子の研究から、 マ ト リ ックス分解酵素や血 管内皮増殖因子とその受容体などが転移に関わることが示唆されている。 例えば 癌転移関連遺伝子として、 マウス細胞株から発見された癌転移関連遺伝子が報告 されている (特許文献 4)。  As a cancer metastasis inhibitor, for example, a substance that inhibits signal transduction via the human VEGF receptor F 1 t _ l (Patent Document 1), a peptide having cell adhesion inhibitory activity (Patent Document 2), a function of purine receptor There are known purine compounds (Patent Document 3) and the like. In addition, studies on genes involved in cancer metastasis suggest that matrix-degrading enzymes, vascular endothelial growth factors and their receptors are involved in metastasis. For example, a cancer metastasis-related gene discovered from a mouse cell line has been reported as a cancer metastasis-related gene (Patent Document 4).
近年、 mRNAを標的とした遺伝子抑制技術の癌治療への応用が試みられよう としている。 そのような遺伝子抑制技術には、 例えばアンチセンス法、 リボザィ ム、 RNA干渉 (RNA i ) などが含まれる (非特許文献 1)。 特に、 RNA iは 特異性が高いため、 その医療への応用のための基礎研究が急速に進行しており、 その標的としてウィルス性疾患、 癌、 遺伝性疾患などに注目が集まっている (非 特許文献 2)。  In recent years, application of gene suppression technology targeting mRNA to cancer treatment is being attempted. Such gene suppression techniques include, for example, antisense method, ribozyme, RNA interference (RNA i) and the like (Non-patent Document 1). In particular, RNA i is highly specific, so basic research for its medical application is rapidly progressing, and its target is viral disease, cancer, genetic disease, etc. Patent Document 2).
特許文献 1 日本特開 2 003— 26 1 46 0  Patent Document 1 Japanese Patent Laid-Open No. 2 003- 26 1 46 0
特許文献 2 日本特開平 09— 1 430 76号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 09-143076
特許文献 3 日本特開平 7— 08 2 1 56号公報  Patent Document 3 Japanese Unexamined Patent Publication No. 7-08 2 1 56
特許文献 4 日本再表 9 8Z04 543 1  Patent Document 4 Japanese Table 9 8Z04 543 1
非特許文献 1 関大輔ら, 実験医学 2 2卷 1 4号 (増刊), 89〜9 8頁, 2 004年, 羊土社 (東京、 日本)  Non-Patent Literature 1 Daisuke Seki et al., Experimental Medicine 2 2-14 14 (extra number), 89-98 pages, 2 004, Yodosha (Tokyo, Japan)
非特許文献 2 実験医学 2 2卷 4号 「RN A iのサイエンス」, 2004年, 羊土社 (東京、 日本) 発明の開示  Non-Patent Literature 2 Experimental Medicine 2 2-4 “RN A i Science”, 2004, Yodosha (Tokyo, Japan) Disclosure of Invention
これまでに、 ある特定の遺伝子又はポリべプチドが癌の転移に関連している可 能性が提案されてきたが、 実験室レベルでは転移に関連していても他の系では転 移との関連が確認できなかった、 或いは阻害剤を開発して臨床応用しても十分な 効果が得られなかった、 という多くの事象が存在した。 So far, it has been suggested that certain genes or polypeptides may be associated with cancer metastasis, but at the laboratory level they are associated with metastasis, but other systems may The association could not be confirmed, or it was sufficient to develop an inhibitor and apply it clinically There were many events that were not effective.
このような状況において、 本発明者らは、 転移が単一遺伝子によって起こるも のではなく、 複数の遺伝子群の協調的な相互作用によって起きることに着目 し、 癌転移関連遺伝子マーカーの同定、 並びに該遺伝子マーカーと癌患者の術後の予 後又は転移可能性との関係について検討した。  In such a situation, the present inventors have focused on the fact that metastasis is not caused by a single gene but by a coordinated interaction of a plurality of gene groups, identifying cancer metastasis-related gene markers, and The relationship between the gene marker and postoperative prognosis or metastatic potential of cancer patients was examined.
本発明の目的は、 癌転移関連遺伝子群をマーカ一として癌患者の術後の予後又 は転移可能性をインビトロで予測する方法及び組成物を提供することである。 本発明の別の目的は、 癌転移関連遺伝子又はその転写産物の阻害或いは抑制に 基づいて、 癌転移抑制剤をスクリ一二ングする方法を提供することである。 本発明者らが開発した高転移性ヒ ト肺癌細胞株とその低転移性親株との間で、 網羅的遺伝子発現解析を行い、 転移性獲得に関わると考えられる両者の問で発現 差を示す遺伝子群を同定し、 さらに、 ヒ ト癌患者において転移 ·再発に関わる可 能性を、 複数の癌腫について異なるマイクロアレイプラッ トフオームを用いて採 取された網羅的遺伝子発現データを用いて検討した。 その結果、 複数の癌腫にお いて、 同定した遺伝子群の発現プロファイルによって癌患者群が 2群間に大別さ れ、 かつ、 その 2群問に外科手術後の生存期間 (又は、 予後) に有意な差異の存 在を示すことが判明した。  An object of the present invention is to provide a method and a composition for predicting the postoperative prognosis or metastatic potential of cancer patients in vitro using a cancer metastasis-related gene group as a marker. Another object of the present invention is to provide a method for screening a cancer metastasis inhibitor based on inhibition or suppression of a cancer metastasis-related gene or a transcription product thereof. Comprehensive gene expression analysis was performed between the highly metastatic human lung cancer cell line developed by the present inventors and its low metastatic parent strain, and the difference in expression was shown in both questions that are considered to be related to the acquisition of metastasis. We identified genes and examined the possibility of metastasis and recurrence in human cancer patients using comprehensive gene expression data collected using different microarray platforms for multiple carcinomas. As a result, in multiple carcinomas, the cancer patient group is roughly divided into two groups according to the expression profile of the identified gene group, and the survival period (or prognosis) after surgery is divided into the two groups. It was found that there was a significant difference.
発明の概要 Summary of the Invention
本発明は、 要約すると、 次のような特徴を有する。  In summary, the present invention has the following characteristics.
( 1 ) 癌患者の術後の予後又は転移可能性をインビトロで予測する方法であつ て、 該患者由来の生物学的検体中の、 配列番号 1〜4 5に示される塩基配列又は その変異配列を含む癌転移関連遺伝子マ一カーの少なく とも 1つの発現レベル又 はその転写若しくは翻訳産物レベルを、 該マーカーに対応するプローブを用いて 測定し、 術後の予後がより良い又は転移可能性がより低い患者群と術後の予後が より悪い又は転移可能性がより高い患者群との間の相対的な該レベルの差を指標 にして、 術後の予後又は転移可能性を判定することを含む、 上記方法。  (1) A method for predicting postoperative prognosis or metastasis potential in cancer patients in vitro, the base sequence shown in SEQ ID NOs: 1 to 45 or a mutant sequence thereof in a biological sample derived from the patient At least one expression level or transcription or translation product level of a cancer metastasis-related gene marker containing a marker is measured using a probe corresponding to the marker, so that the prognosis after surgery is better or the possibility of metastasis is increased. To determine the postoperative prognosis or metastatic potential using the relative difference in level between the lower patient group and the patient group with worse postoperative prognosis or higher metastatic potential. Including the above method.
( 2 ) 前記癌転移関連遺伝子マーカーが、 配列番号 2 8〜4 5に示される塩基 配列又はその変異配列からなるとき、 前記患者は、 術後の予後がより良い又は転 移可能性がより低い患者として識別される、 上記 (1 ) に記載の方法。 (3) 前記癌転移関連遺伝子マーカーが、 配列番号 1〜 2 7に示される塩基配 列又はその変異配列からなるとき、 前記患者は、 術後の予後がより悪い又は転移 可能性がより高い患者として識別される、 上記 ( 1) に記載の方法。 (2) When the cancer metastasis-related gene marker is composed of the nucleotide sequence shown in SEQ ID NOs: 28 to 45 or a mutant sequence thereof, the patient has a better postoperative prognosis or is less likely to transfer. The method according to (1) above, which is identified as a patient. (3) When the cancer metastasis-related gene marker comprises the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof, the patient is a patient with a worse prognosis after surgery or a higher possibility of metastasis. The method described in (1) above, identified as
(4) 前記プローブが、 配列番号 1〜4 5に示される塩基配列からなるポリヌ クレオチド、 それに相補的なポリヌクレオチド、 それらの変異体、 それらにス ト リンジェン卜な条件下でハイブリダイズするポリヌクレオチド、 或いは 1 5以上 の連続した塩基を含むそれらの断片からなる群から選択される、上記( 1 )〜( 3) のいずれかに記載の方法。  (4) A polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 45, a polynucleotide complementary thereto, a variant thereof, and a polynucleotide that hybridizes to them under stringent conditions Or the method according to any one of (1) to (3) above, which is selected from the group consisting of those fragments containing 15 or more consecutive bases.
(5) 前記プローブが、 配列番号 1〜45に示される塩基配列からなるポリヌ クレオチド又はその変異体によってコードされるポリべプチドからなる群から選 択されるポリぺプチド又はその断片に対する抗体又はその断片である、上記(1 ) 〜 (3) のいずれかに記載の方法。  (5) The probe is an antibody against a polypeptide selected from the group consisting of the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1-45 or a polypeptide encoded by a variant thereof, or a fragment thereof, or the The method according to any one of (1) to (3) above, which is a fragment.
(6) 前記抗体が、 ポリクローナル抗体、 モノクローナル抗体又はペプチド抗 体である、 上記 (5) に記載の方法。  (6) The method according to (5) above, wherein the antibody is a polyclonal antibody, a monoclonal antibody, or a peptide antibody.
(7) 前記癌が固形癌である、 上記 (1 ) 〜 (6) のいずれかに記載の方法。 (7) The method according to any one of (1) to (6), wherein the cancer is a solid cancer.
(8) 前記固形癌が肺癌又は乳癌である、 上記 (7) に記載の方法。 (8) The method according to (7) above, wherein the solid cancer is lung cancer or breast cancer.
(9) 配列番号 1〜4 5に示される塩基配列からなるポリヌク レオチド、 それ に相補的なポリヌク レオチド、 それらの変異体、 それらにストリンジェントな条 件下でハイブリダィズするポリヌク レオチド、 或いは 1 5以上の連続した塩基を 含むそれらの断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をィンビトロで予測するための組成物。  (9) A polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 4, a complementary polynucleotide, a variant thereof, a polynucleotide that hybridizes under stringent conditions thereto, or 15 or more A composition for predicting postoperative prognosis or metastasis potential in cancer patients in vitro, comprising at least one probe selected from the group consisting of those fragments comprising a sequence of nucleotides.
(1 0) 配列番号 28〜45に示される塩基配列からなるポリヌク レオチド、 それに相補的なポリヌクレオチド、 それらの変異体、 それらにス ト リンジェント な条件下でハイブリダィズするポリヌクレオチド、 或いは 1 5以上の連続した塩 基を含むそれらの断片からなる群から選択される少なく とも 1つのプローブを含 む、 癌患者の術後の予後又は転移可能性をインビトロで予測するための組成物。  (10) Polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 28 to 45, polynucleotide complementary thereto, variant thereof, polynucleotide hybridizing under stringent conditions, or 15 or more A composition for predicting in vitro the postoperative prognosis or metastasis potential of cancer patients, comprising at least one probe selected from the group consisting of those fragments comprising a continuous base of.
( 1 1) 配列番号 1〜2 7に示される塩基配列からなるポリヌク レオチド、 そ れに相補的なポリヌクレオチド、 それらの変異体、 それらにス トリンジェン卜な 条件下でハイブリダィズするポリヌクレオチド、 或いは 1 5以上の連続した塩基 を含むそれらの断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をィンビト口で予測するための組成物。 (1 1) Polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 27, polynucleotide complementary thereto, variant thereof, polynucleotide hybridizing under stringent conditions, or 1 5 or more consecutive bases A composition for predicting postoperative prognosis or metastatic potential of cancer patients after surgery, comprising at least one probe selected from the group consisting of those fragments.
(1 2) 配列番号 1〜45に示される塩基配列からなるポリヌクレオチド又は その変異体によってコードされるポリぺプチドからなる群から選択されるポリべ プチド又はその断片に対する抗体又はその断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビトロで 予測するための組成物。  (1 2) A group consisting of an antibody or a fragment thereof against a polypeptide selected from the group consisting of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1-45 or a polypeptide encoded by a variant thereof, or a fragment thereof. A composition for predicting in vitro the postoperative prognosis or metastasis potential of cancer patients, comprising at least one probe selected from:
(1 3) 配列番号 28〜45に示される塩基配列からなるポリヌクレオチド又 はその変異体によってコードされるポリべプチドからなる群から選択されるポリ ペプチド又はその断片に対する抗体又はその断片からなる群から選択される少な く とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビト口 で予測するための組成物。  (1 3) A group consisting of an antibody or a fragment thereof against a polypeptide selected from the group consisting of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 28 to 45 or a polypeptide encoded by a variant thereof, or a fragment thereof. A composition for predicting the postoperative prognosis or metastatic potential of cancer patients in vitro, comprising at least one probe selected from:
(1 4) 配列番号 1〜2 7に示される塩基配列からなるポリヌクレオチド又は その変異体によってコードされるポリべプチドからなる群から選択されるポリべ プチド又はその断片に対する抗体又はその断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビトロで 予測するための組成物。  (14) consisting of an antibody or a fragment thereof against a polypeptide selected from the group consisting of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a polypeptide encoded by a variant thereof, or a fragment thereof A composition for predicting in vitro the postoperative prognosis or metastatic potential of a cancer patient, comprising at least one probe selected from the group.
(1 5) 前記プローブがキッ 卜の形態で含まれる、 上記 (9) 〜 (1 4) のい ずれかに記載の組成物。  (15) The composition according to any one of (9) to (14), wherein the probe is included in the form of a kite.
(1 6) 前記プローブがマイクロアレイの形態で含まれる、 上記 (9) 〜 (1 1 ) のいずれかに記載の組成物。  (16) The composition according to any one of the above (9) to (11), wherein the probe is included in the form of a microarray.
(1 7) 培養癌細胞を用いて、 配列番号 1〜2 7のいずれかの塩基配列を含む 癌転移関連遺伝子又はその転写産物の阻害又は抑制について、 並びに Z或いはヒ ト培養癌細胞の運動能及び 又は浸潤能の阻害又は抑制について、 候補薬剤をス クリーユングすることを含む、 癌転移抑制剤のスクリーユング方法。  (1 7) Inhibition or suppression of cancer metastasis-related genes or transcripts thereof containing any of the nucleotide sequences of SEQ ID NOS: 1 to 27 using cultured cancer cells, and the motility of Z or human cultured cancer cells And / or a screening method for a cancer metastasis inhibitor, comprising screening a candidate drug for inhibition or suppression of invasive ability.
(1 8) 培養癌細胞を準備し、 該細胞を候補薬剤の存在下で培養し、 前記癌転 移関連遺伝子又はその転写産物の発現の阻害又は抑制について、 並びに Z或いは 培養癌細胞の運動能及び Z又は浸潤能の阻害又は抑制について、 候補薬剤をスク リーユングすることを含む、 上記 (1 7) に記載の方法。 本発明者らは、 今回、 同定された 4 5種類の癌転移関連遺伝子マーカ一が、 複 数の癌腫において癌患者の術後の予後又は転移可能性を判定しうる上で非常に有 用であることを見出した。 これらのマーカ一を指標とすることによって、 癌患者 の術後予後及び癌転移の可能性を予測することができるため、 患者に対する治療 計画の策定、 癌に対する治療成績の向上、 並びに転移癌による再発の防止と予後 の管理のために大いに役立つことが期待できる。 さらにまた、 培養癌細胞におい て、 上記マーカ一を指標として、 その発現を調節する薬剤をスクリーニングする ことも可能になり、 これによつて、 癌転移を抑制又は防止する薬剤の開発に導く ことができる。 (18) Preparing cultured cancer cells, culturing the cells in the presence of a candidate drug, and inhibiting or suppressing the expression of the cancer transfer-related gene or its transcription product, and the motility of Z or cultured cancer cells And the method of (17) above, comprising screening a candidate drug for inhibition or suppression of Z or invasive ability. The present inventors have found that 45 types of cancer metastasis-related gene markers identified this time are very useful in determining the postoperative prognosis or metastasis potential of cancer patients in multiple carcinomas. I found out. By using these markers as indicators, it is possible to predict the postoperative prognosis of cancer patients and the possibility of cancer metastasis, so it is possible to formulate treatment plans for patients, improve treatment outcomes for cancer, and recurrence due to metastatic cancer. It can be expected to be of great use for prevention and prognosis management. Furthermore, in cultured cancer cells, it is possible to screen for a drug that regulates its expression using the above marker as an index, which leads to the development of a drug that suppresses or prevents cancer metastasis. it can.
本明細書は本願の優先権の基礎である日本国特許出願 2005-379867号の明細書 および または図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2005-379867, which is the basis of the priority of the present application. Brief Description of Drawings
図 1は、 ヒ ト高転移肺癌細胞株 L NM 3 5の樹立手順を示す。  Fig. 1 shows the procedure for establishing the human highly metastatic lung cancer cell line LNM35.
図 2は、 LNM3 5株とその親株との間の、培養細胞での運動能及び浸潤能(A)、 並びに、 マウス移植後のリンパ節転移及び肺転移の割合 (B) の比較を示す。 図 3は、 愛知がんセンター (名古屋、 日本) の肺癌 50症例データに適用した とき、 肺癌患者が、 45個の転移関連遺伝子の発現パターンと術後の生存者の割 合との相関関係から、 2つのグループに大別されることを示す。 図 3 Aは階層的 クラスタリング解析の結果を示す。 図 3 Bは力プランマイヤー生存率解析の結果 を示す (縦軸: 生存率、 横軸 : 月数)。  FIG. 2 shows a comparison of the motility and invasion ability (A) in cultured cells and the ratio of lymph node metastasis and lung metastasis (B) after mouse transplantation between the LNM3 5 strain and its parent strain. Figure 3 shows the correlation between the expression pattern of 45 metastasis-related genes and the proportion of survivors after surgery when applied to 50 cases of lung cancer data from the Aichi Cancer Center (Nagoya, Japan). Shown to be roughly divided into two groups. Figure 3A shows the results of hierarchical clustering analysis. Figure 3B shows the results of force planmeyer survival analysis (vertical axis: survival rate, horizontal axis: number of months).
図 4は、 ハーバード大学 (米国) の肺癌 62症例データ (B h a t t a c h a r j e e Aら, P r o c N a t l A c a d S c i USA 98 : 1 3 790 - 9 5, 200 1 ) に適用したとき、 肺癌患者が、 45個の転移関連遺伝 子の発現パターンと術後の生存者の割合との相関関係について、 2つのグループ に大別されることを示す。 図 4 Aは階層的クラスタリング解析の結果を示す。 図 4 Bは力プランマイヤ一生存率解析の結果を示す (縦軸: 生存率、 横軸 : 月数)。 図 5は、 オランダ国立癌研究所 (オランダ) の乳癌 7 9症例データ (v a n' t V e e r L J ら, N a t u r e 4 1 5 : 5 30— 6, 2002) に適用し たとき、 乳癌患者が、 4 5個の転移関連遺伝子の発現パターンと術後の生存者の 割合との相関関係について、 2つのグループに大別されることを示す。 図 5 Aは 階層的クラスタリング解析の結果を示す。 図 5 Bは力プランマイヤ一生存率解析 の結果を示す (縦軸:生存率、 横軸:月数)。 Figure 4 shows that when applied to Harvard University (USA) 62 cases of lung cancer data (Bhattacharjee A et al., Proc Natl Acad Sci USA 98: 1 3 790-9 5, 200 1) The correlation between the expression pattern of 45 metastasis-related genes and the proportion of survivors after surgery is broadly divided into two groups. Figure 4A shows the results of hierarchical clustering analysis. Figure 4B shows the results of the force plan meyer survival analysis (vertical axis: survival rate, horizontal axis: number of months). Figure 5 is applied to 7 9 cases of breast cancer (van't Veer LJ et al., Nature 4 1 5: 5 30-6, 2002) from the Netherlands National Cancer Institute (Netherlands). We show that breast cancer patients are roughly divided into two groups regarding the correlation between the expression pattern of 45 metastasis-related genes and the proportion of survivors after surgery. Figure 5A shows the results of hierarchical clustering analysis. Fig. 5B shows the results of a force plan myria survival analysis (vertical axis: survival rate, horizontal axis: number of months).
図 6は、 肺癌患者における術後 5年生存の危険率に関する C o X比例ハザード モデルによる多変量解析により決定された病期と独立した再発 ·死亡の予測因子 を示す。 発明を実施するための最良の形態  Figure 6 shows the recurrence and death predictors independent of stage determined by multivariate analysis with a Co x proportional hazards model for the risk of 5-year survival in lung cancer patients. BEST MODE FOR CARRYING OUT THE INVENTION
定義 Definition
本明細書中で使用する用語は、 以下の意味を含む。  The terms used in this specification have the following meanings.
本明細書で使用する 「術後予後」 は、 癌の手術後の患者の予後を、 代表的には 術後 5年時点での生存率で判定することを意味する。 予後は、 癌の転移と深く関 係しており、 「予後が悪い」 とは、 癌の浸潤性、 転移性又は進行度が高いことを意 味し、 一方、 「予後が良い」 とは、 そのような浸潤性、 転移性又は進行度が低いこ とを意味する。  As used herein, “postoperative prognosis” means determining the prognosis of a patient after surgery for cancer, typically by the survival rate at 5 years postoperatively. Prognosis is closely related to cancer metastasis, and `` poor prognosis '' means that the cancer is highly invasive, metastatic, or highly advanced, while `` good prognosis '' means It means such invasiveness, metastasis or low progression.
本明細書で使用する 「転移 (m e t a s t a s i s:)」 は、 癌細胞が、 その運動 能と浸潤能によって、 原発巣から遠隔部位の組織に移動し、 そこで増殖し新生物 を形成する一連の過程をいう。 転移は、 癌の再発を引き起すため、 癌治療の大き な障害となっている。 血管又はリンパ管内に浸潤した癌細胞は、 種々の組織に居 留して多発的に癌疾患を起こすことも知られている。 本発明では、 本発明の癌転 移関連遺伝子マーカ一が関わる限りいずれの転移も対象となるが、 例えばリンパ 節転移も対象としうる。  As used herein, “metastasis” refers to a series of processes by which cancer cells move from the primary site to distant tissue by their motility and invasive potential, where they proliferate and form neoplasms. Say. Metastasis is a major obstacle to cancer treatment because it causes cancer recurrence. Cancer cells that have infiltrated blood vessels or lymphatic vessels are known to stay in various tissues and cause multiple cancer diseases. In the present invention, any metastasis is targeted as long as the cancer metastasis-related gene marker of the present invention is involved. For example, lymph node metastasis can also be targeted.
本明細書で使用する 「患者」 は、 ヒ ト、 ィヌ、 ネコを含む哺乳動物を指し、 好 ましい哺乳動物はヒ トである。  As used herein, “patient” refers to mammals including humans, dogs, and cats, with the preferred mammal being humans.
本明細書で使用する 「生物学的検体」 は、 哺乳動物 (好ましくはヒ ト) から採 取された組織、 細胞又は体液を指し、 好ましくは癌の組織又は細胞である。 本発 明においては、 癌組織又は細胞において、 術後の予後がより良い又は転移可能性 がより低い患者群由来のものと、 術後の予後がより悪い又は転移可能性がより高 い患者群由来のものとの間で、 本発明に関わる遺伝子マ一力一の発現レベルに相 対的な差異が認められる癌であればいずれの癌も対象となり うる。 癌には、 例え ば、 肺癌、 乳癌、 大腸癌、 前立腺癌、 胃癌、 食道癌、 肝臓癌、, 脬臓癌、 腎臓癌、 子宮体部 ·頸部癌、 卵巣癌、 膀胱癌、 脳腫瘍、 甲状腺癌、 リンパ腫、 精巣癌、 骨 肉腫、 皮膚癌、 黒色腫、 血液癌 (特に白血病) などが含まれるが、 これらに限定 されない。 As used herein, a “biological specimen” refers to a tissue, cell or body fluid taken from a mammal (preferably human), preferably a cancer tissue or cell. In the present invention, cancer tissue or cells derived from a group of patients with a better postoperative prognosis or a lower likelihood of metastasis and a worse prognosis after surgery or a higher possibility of metastasis. Any cancer can be used as long as it shows a relative difference in the expression level of the gene gene related to the present invention from those derived from different patient groups. For example, lung cancer, breast cancer, colon cancer, prostate cancer, stomach cancer, esophageal cancer, liver cancer, spleen cancer, kidney cancer, uterine / cervical cancer, ovarian cancer, bladder cancer, brain tumor, thyroid gland Examples include, but are not limited to, cancer, lymphoma, testicular cancer, osteosarcoma, skin cancer, melanoma, and blood cancer (especially leukemia).
本明細書で使用する 「癌転移関連遺伝子マーカー」 は、 高転移性癌細胞株と低 転移性癌細胞株との間で、 発現レベルに差異のある遺伝子を同定することによつ て今回見出されたマーカーであり、 本発明方法におけるような癌患者の術後予後 又は転移可能性の判定等に使用することがきる。  As used herein, the “cancer metastasis-related gene marker” refers to a gene that has a difference in expression level between a high metastatic cancer cell line and a low metastatic cancer cell line. It is a marker that has been released and can be used to determine the postoperative prognosis or metastatic potential of cancer patients as in the method of the present invention.
本明細書で使用する 「変異体」 は、 例えば突然変異、 多型性、 選択的スプライ シングなどの生物学的事象、 遺伝暗号の縮重などに起因して生じる変異体、 生物 種間のホモログなどを包含する。 変異体には、 本発明に関わる配列番号 1〜45 によって示される塩基配列を含む遺伝子、 或いは該遺伝子によってコ一ドされる ポリべプチド、の配列上に 1若しくは複数、好ましくは 1若しくは数個、の置換、 欠失、 付加、 挿入などの変異を有する変異体、 該配列又はその部分配列と 8 0% 以上、 8 5%以上、 90%以上、 9 5%以上、 9 8 %以上の同一性を有する配列 からなる変異体、 などが含まれる。 ここで、 「数個」 とは、 通常、 1 0個以下の整 数を意味する。 また、 同一性 (%) は、 ギャップを導入した又はギャップを導入 しない、 公知の B LAS Tや FAS T Aプラグラムを用いて決定することができ る (S. F. A l t s c h u l ら, J . M o 1. B i o. 2 1 5 : 403 - 4 1 0, 1 990)。 一般に、 全塩基数に対する一致した塩基数の百分率 として同一性 (%) を算出できる。  As used herein, a “variant” is a variant that arises from a biological event such as mutation, polymorphism, alternative splicing, the degeneracy of the genetic code, or a homologue between species. Etc. The mutant includes one or more, preferably one or several, on the sequence of the gene containing the nucleotide sequence represented by SEQ ID NOs: 1 to 45 related to the present invention or the polypeptide encoded by the gene. Mutants having mutations such as substitutions, deletions, additions, insertions, etc., 80% or more, 85% or more, 90% or more, 95% or more, 98% or more identical to the sequence or a partial sequence thereof Mutants consisting of sequences having sex, and the like. Here, “several” usually means an integer of 10 or less. Identity (%) can also be determined using known B LAST and FAS TA programs with or without gaps (SF A ltschul et al., J. Mo 1. B i o. 2 1 5: 403-4 1 0, 1 990). In general, identity (%) can be calculated as a percentage of the number of matched bases over the total number of bases.
本明細書で使用する 「ストリンジェン卜な条件」 は、 以下のものに限定されな いが、 少なく とも 8 0 %、 好ましくは少なく とも 90 %、 より好ましくは少なく とも 9 5 %の同一性を有するヌクレオチド配列が互いにハイブリダイズするよう なハイプリダイゼ一ション及び洗浄条件を意味し、 例えばマイクロアレイ解析に おけるハイブリダィゼーシヨン及び洗浄条件は、 1M塩化ナトリ ウム Z0. 5 % As used herein, “stringent conditions” include, but are not limited to, at least 80%, preferably at least 90%, more preferably at least 95% identity. This means hybridization and washing conditions that allow nucleotide sequences to hybridize to each other. For example, hybridization and washing conditions in microarray analysis are 1M sodium chloride Z0.5%
(W/V) サルコシル Z 30 %ホルムアミ ド中、 60°C、 1 7時間のハイブリダ ィゼーシヨン、 その後、 6 X S S C/0. 0 0 5% (WZV) トライ トン X— 1 02溶液中、 室温、 10分間で一回、 さらに、 0. 1 X S S CZ0. 005% (W /V) トライ トン X— 1 0 2溶液中で 0〜4°Cに保ちながら 5分間で一回の洗浄 の条件である。 ここで、 1 X S S Cは 1 5 O mM塩化ナトリ ウムと 1 5 mMクェ ン酸ナトリ ウム水溶液 (p H 7. 2) である。 ハイブリダィゼーシヨンについて は、 F . M. A u s b e l ら, S h o r t P r o t o c o l s i n M o 1 e c u 1 a r B i o 1 o g y ( 3 feu A C o m p e n d i u m o f M e t h o d s f r o m C u r r e n t P r o t o c o l s ' i n Mo 1 e c u 1 a r B i o l o g y , 1 9 9 5年, J o h n W i l e y & S o n s , I n c . (米国) に記載されている。 (W / V) Sarcosyl Z Hybridizer in 30% formamide at 60 ° C for 17 hours And then 6 XSSC / 0.0 0 5% (WZV) Triton X—1 02 solution, once at room temperature for 10 minutes, and 0.1 XSS CZ0. 005% (W / V) Triton X—This is a condition of washing once in 5 minutes while keeping at 0 to 4 ° C in the solution. Here, 1 XSSC is 15 O mM sodium chloride and 15 mM sodium citrate aqueous solution (pH 7.2). For hybridization, see F. M. A usbel et al., Short Protocolsin M o 1 ecu 1 ar B io 1 ogy , 1 995, John Wiley & Sons, Inc. (USA).
詳細な説明 Detailed description
以下において、 本発明をさらに詳細に説明する。  In the following, the present invention will be described in more detail.
1. 癌転移関連遺伝子マ一力一  1. Cancer metastasis-related genes
本発明のヒ ト癌転移関連遺伝子マーカーは、 次のようにして見出された。 公知の転移性肺癌細胞株 N C I — H 4 6 0 (Am e r i c a n T y p e C u 1 t u r e C o l l e c t i o n ;米国ヴァージユア)) (親株) をマウスに 皮下移植して肺転移を起こさせたのち、 肺転移巣からの細胞の継代培養と、 転移 能に基づくマウスを用いたインビボ選択とによって、 高転移癌細胞株 L N M 3 5 を単離した (図 1参照)。 一方、 NC I —H 4 6 0細胞から限界希釈法又は脱メチ ル化剤での処理などによって、 さらに低転移性の癌細胞株を得ることができる。 LNM3 5株は、 培養細胞又はマウス移植試験において、 運動能、 浸潤能、 リン パ節転移及び肺転移のレ、ずれにおいても、 親株又は低転移癌細胞株と比べて非常 に高値を示した (図 2参照)。  The human cancer metastasis-related gene marker of the present invention was found as follows. Metastatic lung cancer cell line known as NCI — H 4 60 (American Type C 1 ture Collection; US Viryua)) (parent strain) A highly metastatic cancer cell line, LNM35, was isolated by subculture of cells from and by in vivo selection using mice based on metastatic potential (see Figure 1). On the other hand, cancer cells with even lower metastases can be obtained from NC I —H 4 60 cells by limiting dilution or treatment with a demethylating agent. In the cultured cell or mouse transplantation test, the LNM3 5 strain showed significantly higher levels of motility, invasion ability, lymph node metastasis, and lung metastasis compared to the parent strain or low-metastasis cancer cell line ( (See Figure 2).
高転移癌細胞株 L N M 3 5と、 親株又は低転移癌細胞株との間で、 ジーンフィ ノレタ一マイクロア レづ 、 g e n e l i l t e r m i c r o a r r a y ; R e s e a r c h G e n e t i c s社) による遺伝子発現差を調べることによつ て、 配列番号 1〜4 5の塩基配列を含むヒ ト癌転移関連遺伝子を見出した。 デ一 タバンク検索の結果、 これらの遺伝子は、 表 1に示すように、 U n i G e n e又 は G e n B a n k (NC B I , 米国) に登録されているが、 癌転移との関連性に ついては知られていない。 表 1及び表 2はそれぞれ、 高転移性の L NM 3 5株で 発現が高い遺伝子マ一カー及び発現が低い遺伝子マ一カーの配列番号、 G e n B a n k ¾| ¾"¾" (A c c e s s i o n n u m b e rノ、 U n. i G e n e I D、 遺伝子名 (G e n e . s ym b o l , G e n e n a m e ) を不す。 By examining the difference in gene expression between the high-metastasis cancer cell line LNM 35 and the parent or low-metastasis cancer cell line by the genefin microarray (Research Genetics) A human cancer metastasis-related gene comprising the nucleotide sequences of SEQ ID NOs: 1 to 45 was found. As a result of data bank search, these genes are registered in Uni Gene or Gen Bank (NC BI, USA) as shown in Table 1, but they are related to cancer metastasis. It is not known about it. Tables 1 and 2 show the sequence numbers of gene markers with high and low expression in the highly metastatic LNM35 strain, Gen B ank ¾ | ¾ "¾" (A ccessionnumber No, U n. I Gene ID and gene name (G ene. S ym bol, Gene name).
表 1 table 1
GenBank Accession number UniGene ID Gene symbol GenBank Accession number UniGene ID Gene symbol
1 亂 005787 Hs.478481 ALG3 AsparagineHinked glycosylation 3 homolog  1 0057 005787 Hs.478481 ALG3 AsparagineHinked glycosylation 3 homolog
2 — 006825 Hs.74368 CKAP4 Cytoskeleton-associated protein 4  2 — 006825 Hs.74368 CKAP4 Cytoskeleton-associated protein 4
3 AK_055043 Hs.193235 CPLX2 Complexin 2  3 AK_055043 Hs.193235 CPLX2 Complexin 2
4 NM— 00151 1 Hs.789 CXCL1 Chemokine (C-X-C motif) ligand 1  4 NM— 00151 1 Hs.789 CXCL1 Chemokine (C-X-C motif) ligand 1
5 NM一 001 344 Hs.82890 DAD1 Defender against ceJI death 1  5 NMichi 001 344 Hs.82890 DAD1 Defender against ceJI death 1
6 NM— 1 39072 Hs.234074 DNER Delta - notch— like EGF repeat-containing transmembrane  6 NM— 1 39072 Hs.234074 DNER Delta-notch— like EGF repeat-containing transmembrane
7 NM— 001398 Hs.196176 ECH 1 Enoyl Coenzyme A hydratase 1 , peroxisomal  7 NM— 001398 Hs.196176 ECH 1 Enoyl Coenzyme A hydratase 1, peroxisomal
8 NM— 002070 Hs.77269 GNAI2 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 8 NM— 002070 Hs.77269 GNAI2 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide
9 NM— 000516 Hs.125898 GNAS GNAS complex locus 9 NM— 000516 Hs.125898 GNAS GNAS complex locus
10 NM一 207312 Hs.503749 H2-Aし PHA Alpha - tubulin isotype H2-alpha  10 NM 1 207312 Hs. 503749 H2-A and PHA Alpha-tubulin isotype H2-alpha
1 1 NM一 194247 Hs.516539 HNRPA3 Heterogeneous nuclear ribonucleoprotein A3  1 1 NM I 194247 Hs.516539 HNRPA3 Heterogeneous nuclear ribonucleoprotein A3
12 N _007040 Hs.1 55218 HNRPUL1 Heterogeneous nuclear ribonucleoprotein U— like 1  12 N _007040 Hs.1 55218 HNRPUL1 Heterogeneous nuclear ribonucleoprotein U— like 1
13 NM— 007355 Hs.509736 HSPCB Heat shock 90kDa protein 1 , beta  13 NM— 007355 Hs.509736 HSPCB Heat shock 90kDa protein 1, beta
14 NM— 003897 Hs.76095 ER3 Immediate early response 3  14 NM— 003897 Hs.76095 ER3 Immediate early response 3
15 N .006838 Hs.444986 METAP2 Methionyl aminopeptidase 2  15 N .006838 Hs.444986 METAP2 Methionyl aminopeptidase 2
16 NM— 020191 Hs.555965 MRPS22 Mitochondrial ribosomal protein S22  16 NM— 020191 Hs.555965 MRPS22 Mitochondrial ribosomal protein S22
1 7 NM— 002808 Hs.518464 PSMD2 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 2  1 7 NM— 002808 Hs.518464 PSMD2 Proteasome (prosome, macropain) 26S subunit, non-ATPase, 2
18 AF— 095289 Hs.521097 PTTG3 Pituitary tumo ransf ormi ng 3  18 AF— 095289 Hs.521097 PTTG3 Pituitary tumo ransf ormi ng 3
19 N J 94298 Hs.499709 SLC 16A9 Solute carrier family 16 (monocarboxylic acid transporters), member 9  19 N J 94298 Hs. 499709 SLC 16A9 Solute carrier family 16 (monocarboxylic acid transporters), member 9
20 NM— 003220 Hs.51 9880 TFAP2A Transcription factor AP~2 alpha (activating enhancer Dinding protein 2 alpha) 20 NM— 003220 Hs.51 9880 TFAP2A Transcription factor AP ~ 2 alpha (activating enhancer Dinding protein 2 alpha)
21 N _021 109 Hs.522584 TMSB4X Thymosin, beta 4, XHinked 21 N _021 109 Hs.522584 TMSB4X Thymosin, beta 4, XHinked
22 NM— 006000 Hs.75318 TUBA1 Tubulin, alpha 1 (testis specific)  22 NM— 006000 Hs.75318 TUBA1 Tubulin, alpha 1 (testis specific)
23 刚— 006001 Hs.349695 TUBA2 Tubulin, alpha 2  23 刚 — 006001 Hs.349695 TUBA2 Tubulin, alpha 2
24 NMJ 78014 Hs.533059 TUBB Tubulin, beta polypeptide  24 NMJ 78014 Hs.533059 TUBB Tubulin, beta polypeptide
25 NM— 003334 Hs.533273 UBE1 Ubiquitin— activating enzyme El  25 NM— 003334 Hs.533273 UBE1 Ubiquitin— activating enzyme El
26 AA一 448396 Hs.509585 - Transcribed locus, strongly similar to NP_002148.1 chaperonin 10  26 AA 448396 Hs.509585-Transcribed locus, strongly similar to NP_002148.1 chaperonin 10
27 AA— 668189 Hs.560965 ― Transcribed locus, strongly similar to XP— 4161 57.1 PREDICTED: similar to snRNP-f 27 AA— 668189 Hs. 560965 ― Transcribed locus, strongly similar to XP— 4161 57.1 PREDICTED: similar to snRNP-f
表 2Table 2
) 03Ν LS 92u9iH9εfl!l£!Js9.da UJelueuu ν cl TぶI寸UBS ssg ) 03LS LS 92u9iH9εfl! L £! Js9.da UJelueuu ν cl T I size UBS ssg
Figure imgf000014_0001
Figure imgf000014_0001
υェつ Ί」¾βι。Jd υ エ つ Ί 」¾βι. Jd
I C988 S  I C988 S
さ寸 §§svo〖Iの S<  SAME §§svo 〖I S <
()ι MΙΦ一l¾ υνφBどβΜ91 osoe3 l3ul - - NΗllSN 0ε525s5.—  () ι MΙΦ 一 l¾ υνφB ど βΜ91 osoe3 l3ul--NΗllSN 0ε525s5.-
ぶ <2_wri«  <2_wri «
一 llns s900i 0890958lさ uo iu一 uos sx。 OAJBn, One llns s900i 0890958l uo iu one uos sx. OAJBn,
Elοοd 09 ε5さε ε 9 Elοοd 09 ε5 ε ε 9
avM ISOSN 66SZ.6寸H wS,—
Figure imgf000014_0002
avM ISOSN 66SZ.6 inch H wS, —
Figure imgf000014_0002
Figure imgf000014_0003
ο οο σ ο ^— csi c ^r io to r^ oo oi — M C ^- IO
Figure imgf000014_0003
ο οο σ ο ^ — csi c ^ r io to r ^ oo oi — MC ^-IO
Z CM i C C C C C C 寸 オ ^ * ォ  Z CM i C C C C C C
上記のように同定された癌転移関連マーカーは、 肺癌だけでなく、 轧癌などの 固形癌においてもマーカーとなり うる。 これまで報告されたマーカ一は特定の癌 に特異的であつたが、 本発明のマーカーは種々の癌に共通のマーカーである点で 驚くべきことであった。 このために、 本発明方法の対象となる患者の癌には、 例えば、 肺癌、 乳癌、 大 腸癌、 前立腺癌、 胃癌、 食道癌、 肝臓癌、 膝臓癌、 腎臓癌、 子宮体部 ·頸部癌、 卵巣癌、 膀胱癌、 脳腫瘍、 甲状腺癌、 リンパ腫、 精巣癌、 骨肉腫、 皮膚癌、 黒色 腫などの固形癌が含まれる。 さらに可能な癌として、 血液癌 (特に白血病) など も挙げられる。 The cancer metastasis-related marker identified as described above can be a marker not only in lung cancer but also in solid cancer such as sputum cancer. One marker reported so far has been specific to a particular cancer, but it was surprising that the marker of the present invention is a common marker for various cancers. For this reason, for example, lung cancer, breast cancer, large intestine cancer, prostate cancer, stomach cancer, esophageal cancer, liver cancer, knee cancer, kidney cancer, uterine body / neck Solid cancers such as head cancer, ovarian cancer, bladder cancer, brain tumor, thyroid cancer, lymphoma, testicular cancer, osteosarcoma, skin cancer, melanoma are included. Further possible cancers include blood cancer (particularly leukemia).
本発明において、 癌転移関連遺伝子マ一カーには、 配列番号 1〜4 5に示され る塩基配列を含む遺伝子だけでなく、 その変異体遺伝子も含まれる。 通常、 その ような変異体は、 生体内で例えば突然変異、 多型性、 選択的スプライシングなど の生物学的事象の結果とし生じた変異体を含む。実際には、該遺伝子マーカーは、 転写産物又は翻訳産物として核酸レベル又はタンパク質レベルで検出される。 転写産物の場合、 それは mRNA、 c RNA又は c DN Aとして検出される。 細胞又は組織からフエノールノク口口ホルム Zィソァミルアルコール、 グァニジ ゥム /塩化セシウムなどを用いる抽出法で全 RN Aを抽出し、 オリゴ d Tセル口 ースカラム法によってポリ A ( + ) RNA又は mRN Aを調製し、 必要により、 さらに mRNAから c DNA、 c R N Aを合成する(例えば F . M. A u s u b e l ら,' s h o r t P r o t o c o l s i n Mo l e c u l a r B i o l o g y (3版) A C o m p e n d i u m o f Me t h o d s f r o m C u r r e n P r o t o c o l s i n o l e c u l a r B i o l o g y, 1 9 9 5年, J o h n W i l e y & S o n s , I n c . (米国) 参照)。  In the present invention, the cancer metastasis-related gene marker includes not only the gene comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 45 but also mutant genes thereof. Usually, such variants include those produced in vivo as a result of biological events such as mutations, polymorphisms, alternative splicing and the like. In practice, the genetic marker is detected at the nucleic acid level or protein level as a transcript or translation product. In the case of a transcript, it is detected as mRNA, cRNA or cDNA. Extract total RNA from cells or tissues using extraction methods such as phenolic mouth form Z-soamyl alcohol, guanidinium / cesium chloride, etc., and use oligo d T cell mouth column method to extract poly A (+) RNA or mRNA If necessary, further synthesize cDNA and cRNA from mRNA (for example, F. M. A usubel et al., 'Short Protocolsin Molecular Biology (3rd edition) AC ompendiumof Methods from Curren Protocolsinolecular Biology) , 1 995, John Wiley & Sons, Inc. (USA)).
翻訳産物の場合、 それは上記遺伝子又はその変異体によってコードされるタン パク質又はその断片として検出される。  In the case of a translation product, it is detected as a protein encoded by the gene or a variant thereof or a fragment thereof.
本発明に関わる上記癌関連遺伝子マーカーは、 その発現パターンによって、 外 科手術後の癌患者の予後又は転移可能性の程度に対応して 2群に大別される (図 3〜図 5参照)。  The cancer-related gene markers related to the present invention are roughly classified into two groups according to their expression patterns corresponding to the prognosis or metastatic potential of cancer patients after external surgery (see FIGS. 3 to 5). .
具体的には、 癌転移関連遺伝子マーカーが、 配列番号 2 8〜4 5に示される塩 基配列又はその変異配列からなるとき、 患者は、 術後の予後がより良い又は転移 可能性がより低い患者として識別される。 一方、 癌転移関連遺伝子マ一カーが、 配列番号 1〜 2 7に示される塩基配列又はその変異配列からなるとき、 患者は、 術後の予後がより悪い又は転移可能性がより高い患者として識別される。 Specifically, when the cancer metastasis-related gene marker consists of the base sequence shown in SEQ ID NOs: 28 to 45 or a mutant sequence thereof, the patient has a better postoperative prognosis or is less likely to metastasize. Identified as a patient. On the other hand, when the cancer metastasis-related gene marker consists of the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof, the patient Identified as a patient with a worse postoperative prognosis or with a higher likelihood of metastasis.
2 . 予後又は転移可能性を予測するための組成物 2. Composition for predicting prognosis or metastatic potential
本発明は、 上記のとおり、 癌患者の術後の予後又は転移可能性をインビトロで 予測する方法を提供し、 この方法は、 該患者由来の生物学的検体中の、 配列番号 :!〜 4 5に示される塩基配列又はその変異配列を含む癌転移関連遺伝子マーカー の少なく とも 1つの発現レベル又はその転写若しくは翻訳産物レベルを、 該マー カーに対応するプローブを用いて測定し、 正常又は非癌の対照検体に対する有意 なレベル差を指標にして、 術後の予後又は転移可能性を予測することを含む。 本発明で使用されるプローブは、 上記マーカ一を検出可能なものであれば特に 制限されないが、' 通常は、 ポリヌクレオチ ド又は抗体である。 したがって、 この ようなポリヌクレオチド又は抗体を含む組成物は、 癌患者の術後の予後又は転移 可能性を予測するために使用されうる。  As described above, the present invention provides a method for predicting the postoperative prognosis or metastasis potential of cancer patients in vitro, which method comprises the steps of: SEQ ID NO :! Measure the expression level of at least one of the cancer metastasis-related gene markers including the nucleotide sequence shown in -45 or a mutant sequence thereof or the transcription or translation product level thereof using a probe corresponding to the marker, and This includes predicting the prognosis or metastasis after surgery using a significant level difference from a non-cancerous control sample as an index. The probe used in the present invention is not particularly limited as long as it can detect the above marker, but is usually a polynucleotide or an antibody. Therefore, a composition comprising such a polynucleotide or antibody can be used to predict the postoperative prognosis or metastatic potential of cancer patients.
2 - 1 ポリヌクレオチドプロ一ブ 2-1 Polynucleotide probe
具体的には、 本発明に関わるポリヌク レオチドプローブは、 ( i ) 配列番号 1〜 4 5に示される塩基配列からなるポリヌク レオチド、 ( i i ) ( i ) のポリヌク レ ォチドに相補的なポリヌクレオチド、 ( i i i ) ( i ) 及び ( i i ) のポリヌク レ ォチドの変異体、 ( i V ) ( i ) 又は ( i i ) のポリヌク レオチド或いは ( i i i ) の変異体にストリンジヱントな条件下でハイプリダイズするポリヌクレオチド、 並びに (V ) 前記ポリヌク レオチ ド又は変異体の 1 5以上の連続した塩基を含む 断片からなる群から選択される少なく とも 1個、 好ましくは少なく とも 2個、 さ らに好ましくは 3〜 4 5個、 例えば 4〜 4 5個、 5〜 4 5個のプロ一ブを含む。 本発明に関わる癌転移関連遺伝子マーカーは、 癌患者の予後の状態 (生存者の 割合) に応じて、 次のように 2つの群に分けることができる。  Specifically, the polynucleotide probe according to the present invention includes (i) a polynucleotide having the nucleotide sequence shown in SEQ ID NOs: 1 to 45, (ii) a polynucleotide complementary to the polynucleotide of (i), (Iii) A polynucleotide variant of (i) and (ii), a polynucleotide of (iV) (i) or a polynucleotide of (ii) or a polynucleotide of (iii) hybridized under stringent conditions And (V) at least one, preferably at least 2, more preferably 3-4 selected from the group consisting of a fragment comprising 15 or more contiguous bases of said polynucleotide or variant. Includes 5 probes, for example 4-4 5 or 5-4 5 probes. The cancer metastasis-related gene markers according to the present invention can be divided into the following two groups according to the prognosis status (survival rate) of cancer patients.
すなわち、 グループ 1は、 癌患者の術後予後がより悪い場合であり、 この群に 関与するマーカーは、配列番号 1〜 2 7の遺伝子群であり、一方、 グループ 2は、 癌患者の術後予後がより良い場合であり、 この群に関与するマーカ一は、 配列番 号 2 8〜4 5の遺伝子群である。  That is, group 1 is a case where the postoperative prognosis of cancer patients is worse, and the markers involved in this group are the gene groups of SEQ ID NOs: 1 to 27, while group 2 is postoperatively of cancer patients The prognosis is better, and the marker involved in this group is the gene group of SEQ ID NOs: 28-45.
本明細書中で使用する 「予後が良い」 とは、 癌の浸潤性、 転移性又は進行度が 高いことを意味し、 このように判定される癌患者の 5年生存者の割合は約 7 0 % 以上であるのに対して、 「予後が悪い」 とは、 癌の浸潤性、 転移性又は進行度が低 いことを意味し、 癌患者の 5年生存者の割合は約 5 0 %以下である。 As used herein, “good prognosis” means that cancer is highly invasive, metastatic, or advanced, and the proportion of 5-year survivors of cancer patients determined in this way is about 7 0% On the other hand, “poor prognosis” means that the cancer is less invasive, metastatic, or less advanced, and the proportion of 5-year survivors of cancer patients is about 50% or less. is there.
本発明においては、 それぞれの群に属する遺伝子マーカーのうち少なく とも 1 個、 好ましくは少なぐとも 2個、 さらに好ましくは 3個〜全部、 例えば 4個〜全 部、 5個〜全部のマーカーについて、 対応するプローブを用いて検査する。  In the present invention, at least one of the genetic markers belonging to each group, preferably at least 2, more preferably 3 to all, for example, 4 to all, 5 to all markers, Inspect with the corresponding probe.
グループ 1に属するマーカ一を検查するためのプローブには、 配列番号 1〜 2 7に示される塩基配列からなるポリヌクレオチド、 それに相補的なポリヌクレオ チド、 それらの変異体、 それらにス トリンジェン卜な条件下でハイブリダィズす るポリヌク レオチド、 或いは 1 5以上の連続した塩基を含むそれらの断片からな る群から選択されるプローブが含まれる。  Probes for detecting markers belonging to Group 1 include polynucleotides consisting of the nucleotide sequences shown in SEQ ID NOs: 1 to 27, complementary polynucleotides, mutants thereof, and stringent genes. Probes selected from the group consisting of polynucleotides that hybridize under conditions, or fragments thereof containing 15 or more contiguous bases are included.
一方、 グループ 2に属するマーカーを検查するためのプローブには、 配列番号 2 8〜4 5に示される塩基配列からなるポリヌクレオチド、 それに相補的なポリ ヌクレオチド、 それらの変異体、 それらにス トリンジェントな条件下でハイプリ ダイズするポリヌク レオチド、 或いは 1 5以上の連続した塩基を含むそれらの断 片からなる群から選択されるプローブが含まれる。  On the other hand, a probe for detecting a marker belonging to Group 2 includes a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 28 to 45, a complementary polynucleotide thereto, a variant thereof, and a string thereto. Probes selected from the group consisting of polynucleotides that hybridize under harsh conditions, or fragments thereof containing 15 or more contiguous bases are included.
このように、 本発明には、 これらのグループ 1及びグループ 2に関わる各プロ 一ブ群を含む組成物も包含される。  Thus, the present invention also includes a composition containing each of the groups related to Group 1 and Group 2.
本発明において、 プローブとしての変異体は、 上記定義のとおり、 配列番号 1 〜4 5によって示される塩基配列に 1若しくは複数、好ましくは 1若しくは数個、 の置換、欠失、付加、挿入などの変異を有する変異体、該配列と通常 8 0 %以上、 8 5 %以上、 好ましくは 9 0 %以上、 さらに好ましくは 9 5 %以上、 9 8 %以上 の同一性を有する配列からなる変異体などを含む。  In the present invention, a variant as a probe is one or more, preferably one or several, in the base sequence represented by SEQ ID NOs: 1 to 45, as defined above, such as substitution, deletion, addition, insertion, etc. Mutants having mutations, mutants comprising a sequence having identity of usually 80% or more, 85% or more, preferably 90% or more, more preferably 95% or more, 98% or more, etc. including.
さらに、 本発明において、 ス トリンジェントな条件下でハイブリダィズするポ リヌクレオチドは、上記定義のようなハイプリダイゼーション条件下で、上記( i ) から ( i i i ) のポリヌク レオチド又は変異体にハイブリダィズすることが可能 なものであれば、 特に制限されないものとする。 患者の個体によっては、 突然変 異、 多型性、 選択的スプライシングなどの生物学的事象により配列番号 1〜4 5 によって示される塩基配列が変化した遺伝子をもつこともありえるために、 その ようなポリヌクレオチドは、 該遺伝子の検出を可能にする。 さらにまた、 本発明において、 ポリヌク レオチドの断片は、 1 5塩基数〜全塩 基数未満のサイズを有する。 断片は、 この範囲の任意の塩基数、 例えば 2 0塩基 以上、 3 0塩基以上、 5 0塩基以上、 7 0塩基以上、 1 0 0塩基以上、 1 5 0塩 基以上、 2 0 0塩基以上、 2 5 0塩基以上などの塩基数である。 Furthermore, in the present invention, a polynucleotide that hybridizes under stringent conditions hybridizes to the polynucleotide or variant of (i) to (iii) above under the hybridization conditions as defined above. If it is possible, there will be no particular limitation. Depending on the individual of the patient, the base sequence represented by SEQ ID NOs: 1-45 may have a gene that has been altered by biological events such as sudden mutation, polymorphism, or alternative splicing. The polynucleotide allows detection of the gene. Furthermore, in the present invention, the fragment of the polynucleotide has a size of 15 bases to less than the total number of bases. Fragments can have any number of bases within this range, for example 20 bases or more, 30 bases or more, 50 bases or more, 70 bases or more, 100 bases or more, 150 bases or more, 20 bases or more The number of bases, such as 2500 bases or more.
本発明で使用されるポリヌクレオチドプローブは、 慣用の化学的 DN A合成技 術や遺伝子組換え技術によって合成されうる。  The polynucleotide probe used in the present invention can be synthesized by a conventional chemical DNA synthesis technique or a gene recombination technique.
ポリヌクレオチドが約 1 0 0塩基以下の DN A分子であれば、 ホスホアミダイ ト法を利用する DN A自動合成装置 (例えば A p p l i e d B i o s y s t e m s、 米国) を用いて合成することができる。  If the polynucleotide is a DNA molecule having about 100 bases or less, it can be synthesized using a DNA automatic synthesizer (for example, Applied biosyms, USA) using the phosphoramidite method.
或いは、 上記ポリヌク レオチドは、 c DN Aクローニングによって作製するこ とができる。 対象の癌組織から全 RN Aを取得し、 オリゴ d Tセルロースカラム 処理によってポリ A ( + ) R NAを得たのち、 逆転写酵素—ポリメラーゼ連鎖反 応 (R T— P C R) 法によって c DN Aライブラリーを作製し、 このライブラリ 一から、 G e n B a n kや n i G e n eなどのデータバンクに登録された配列 Alternatively, the polynucleotide can be produced by cDNA cloning. Obtain total RNA from the target cancer tissue, obtain poly A (+) RNA by oligo d T cellulose column treatment, and then c DN A live by reverse transcriptase-polymerase chain reaction (RT-PCR) method Create a rally from this library and register it in a data bank such as Gen Bank or ni Gene
(表 1及び表 2) に基づいて予め作製したプローブ ( 1 5以上、 好ましくは 3 0 以上、 より好ましくは、 5 0〜 1 0 0又はそれ以上の塩基.長) とのハイブリダィ ゼ一ションにより c DNAク口一ンを得ることができる。 取得したクローンは、 例えば市販されるような発現べクタ一に組み込んだのち大腸菌、 枯草菌などの適 当な宿主細胞に導入し、 宿主細胞を増殖することによって、 或いはデータバンク に登録された配列に基づいて予め作製したプライマ一 (通常 1 5〜 3 0塩基、 好 ましくは 1 7〜2 5塩基長) を使用し、 かつ前記 c DN Aクローンを铸型とする ポリメラーゼ連鎖反応 (P C R) によって、 増幅することができる。 c DNAク ローニング及び P C R法の具体的手順や試薬等については、市販のキッ ト、装置、 試薬を使用することができるし、 また、 例えば S a m b r o o k J ら, MoBy hybridization with a probe (15 or more, preferably 30 or more, more preferably 50 to 100 or more bases. Length) prepared in advance based on (Table 1 and Table 2) c You can get a DNA clue. The obtained clone is incorporated into an expression vector that is commercially available, and then introduced into an appropriate host cell such as Escherichia coli or Bacillus subtilis, and the host cell is propagated, or the sequence registered in the data bank. Polymerase chain reaction (PCR) using a primer prepared in advance based on the above (usually 15 to 30 bases, preferably 17 to 25 bases in length) and the cDNA clone as a saddle type Can be amplified. c For specific procedures and reagents for DNA cloning and PCR methods, commercially available kits, equipment, and reagents can be used. For example, Sambrook J et al., Mo.
1 e c u 1 a r C l o n i n g A L a b o r a t o r y Ma n u a l ,1 e c u 1 a r C l o n i n g A L a b o r a t o r y Ma n u a l,
1 9 8 9年, C o l d S p r i n g H a r b o r L a b o r a t o r y1 9 8 9 years, C o l d S p r i n g H a r b o r L a b o r a t o r y
P r e s s (米国) ; F. M. A u s b e l ら, S h o r t P r o t o c oP r e s s (USA); F. M. A u s b e l et al., S h o r t P r o t o c o
I s i n Mo l e c u l a r B i o l o g y ( 3 .) A C o m p e n d i u m o f Me t h o d s f r o m C u r r e n t P r o o c o I s i n Mo l e c u l a r B i o l o g y , 1 9 9 5年, J o h n W i l e y & S o n s , I n c . (米国) などに教示されている。 I sin Mo lecular B iology (3.) AC ompendiumof Me thodsfrom C urrent P rooco I sin Molecular Biology, 1 995, John Wiley & Sons, Inc. (USA).
2. 2 抗体プローブ 2.2 Antibody probe
本発明においては、 抗体をプローブとして用いてもよい。 抗体としては、 次の ものが挙げられる。  In the present invention, an antibody may be used as a probe. Examples of antibodies include the following.
( i ) 配列番号 1〜4 5に示される塩基配列からなるポリヌクレオチド又はそ の変異体によってコードされるポリべプチドからなる群から選択されるポリぺプ チド又はその断片に対する抗体又はその断片、  (i) an antibody or a fragment thereof against a polypeptide selected from the group consisting of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1-45 or a polypeptide encoded by a variant thereof, or a fragment thereof,
( i i ) 配列番号 1〜 2 7に示される塩基配列からなるポリヌク レオチド又は その変異体によってコードされるポリぺプチドからなる群から選択されるポリべ プチド又はその断片に対する抗体又はその断片、 並びに、  (ii) an antibody or fragment thereof against a polypeptide selected from the group consisting of the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOS: 1 to 27 or a polypeptide encoded by a variant thereof, or a fragment thereof; and
( i i i ) 配列番号 2 8〜4 5に示される塩基配列からなるポリヌク レオチド 又はその変異体によってコ一ドされるポリべプチドからなる群から選択されるポ リぺプチド又はその断片に対する抗体又はその断片。  (iii) an antibody against a polypeptide selected from the group consisting of the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 28 to 45, or a polypeptide encoded by a variant thereof, or a fragment thereof, or the like fragment.
したがって、 本発明は、 上記の ( i )、 ( i i ) 及び ( i i i ) に記載の抗体又 はその断片、 好ましくは ( i i ) 及び ( i i i ) の各々から選択される少なく と も 1個、 好ましくは少なく とも 2個、 さらに好ましくは 3個〜全部、 例えば 4個 Therefore, the present invention provides an antibody or fragment thereof described in (i), (ii) and (iii) above, preferably at least one selected from each of (ii) and (iii), preferably Is at least 2, more preferably 3 to all, eg 4
〜全部、 5個〜全部の抗体又はその断片、 を含む組成物も包含する。 To all, 5 to all antibodies or fragments thereof.
本発明で使用される抗体は、 ポリクローナル抗体、 モノクローナル抗体、 抗ぺ プチド抗体などを含む。 また、 抗体の断片には、 F a b、 (F a b ' ) 2、 F c、The antibodies used in the present invention include polyclonal antibodies, monoclonal antibodies, anti-peptide antibodies and the like. Antibody fragments include F ab, (F ab ′) 2 , F c,
F c '、 F d、 F vなどが含まれる。 これらの抗体断片は、 例えばパパイン、 ぺプ シンなどのプロテアーゼによる抗体の限定分解によって得ることができる。 F c ', F d, F v, etc. are included. These antibody fragments can be obtained, for example, by limited degradation of the antibody with a protease such as papain or pepsin.
各遺伝子に対応するポリべプチド又はその断片を、 タンパク質合成又は遺伝子 組換え技術を用いて合成し、 その結果得られたポリペプチド又はその断片を抗原 としてゥサギ、 マウス、 ラッ ト、 ゥマ、 ゥシ、 ャギ、 ヒッジなどの動物を免疫し、 それらの抗原に対する抗体を産生し、 精製する。  Polypeptides or fragments thereof corresponding to each gene are synthesized using protein synthesis or gene recombination techniques, and the resulting polypeptides or fragments thereof are used as antigens for rabbits, mice, rats, horses, horses, etc. Immunize animals such as sheep, goats, and hidges, and produce and purify antibodies against these antigens.
ポリク口一ナル抗体は、 前記動物を 1 0〜 3 0 0 g程度の抗原で皮下に免疫 し、さらに約 2週間後に追加免疫し、初回免疫から約 3週間〜 1力月後に採血し、 抗血清から目的のポリクロ一ナル抗体を含む I g G成分を硫安分画、 イオン交換 クロマトグラフィーを使用して分離することを含む方法によって作製することが できる。 特異性を高めるために、 得られた I g Gを、 目的タンパク質をセルロー ス又はァガロースなどの担体に結合して作製されたカラムに結合させたのち、 高 塩濃度のバッファーで溶出し、 透析や限外ろ過などの方法で脱塩して、 特異的ポ リクローナル抗体を得ることができる。 抗体価は、 通常の免疫測定法、 例えば酵 素免疫測定法 (E I A、 E L I S A)、放射性免疫測定法 (R I A)、蛍光抗体法、 発光免疫測定法など、比濁又は凝集法、例えば免疫比濁法、ラテツクス凝集反応、 ラテックス比濁法、 赤血球凝集反応、 ラテックス凝集法など、 その他、 サンドィ ッチ法などの慣用のアツセィ法によって測定することができる。 A polyclonal antibody immunizes the animal subcutaneously with an antigen of about 10 to 300 g, further boosts about 2 weeks later, collects blood about 3 weeks to 1 month after the first immunization, Ig G component containing the desired polyclonal antibody from serum, ammonium sulfate fractionation, ion exchange It can be made by a method that includes separation using chromatography. In order to increase specificity, the obtained IgG was bound to a column made by binding the target protein to a carrier such as cellulose or agarose, and then eluted with a high salt concentration buffer. A specific polyclonal antibody can be obtained by desalting by a method such as ultrafiltration. Antibody titers can be determined by conventional immunoassays, such as enzyme immunoassays (EIA, ELISA), radioimmunoassays (RIA), fluorescent antibody methods, luminescence immunoassays, etc. It can be measured by a conventional method such as a sandwich method, a latex aggregation method, a latex turbidimetric method, a red blood cell agglutination method, a latex agglutination method, etc.
モノクロ ナル抗体は、 例えば以下の一般的方法によって作製することができ る。  A monoclonal antibody can be prepared, for example, by the following general method.
標的ポリぺプチド又はその断片を、 ポリクロ一ナル抗体の作製と同様にマウス 又はラッ ト (例えば B a l bZcマウス) の皮下に投与し、 1〜4週間間隔で、 約 2〜4回追加免疫を行う。 抗体価が頭打ちになったとき、 抗原を静脈内または 腹腔内に注射し、 最終免疫とする。 2〜5日後、 抗体産生細胞 (例えば脾臓細胞 又はリンパ節細胞) を採取する。 次いで、 抗体産生細胞を骨髄腫細胞株 (好まし くはヒポキサンチン ' グァニン ' ホスホリボシル ' トランスフェラーゼ (HG P RT) 欠損細胞株) に融合させてハイブリ ドーマ細胞を生成し、 HAT (ヒポキ サンチン、 アミノプテリ ン、 チミン) 選択を行う。 細胞融合は、 血清を含まない DMEM、 R PM I - 1 640培地などの動物細胞培養用培地中で、 抗体産生細 胞と骨髄腫細胞株とを約 1 : 1〜 20 : 1の割合で混合し、 ポリエチレングリコ ールなどの細胞融合促進剤の存在下で実施する。 目的の抗体かどうかの確認は、 上記の免疫測定法によって行うことができる。 さらに、 ハイプリ ドーマの増殖の ために、マウスの腹腔内にハイブリ ドーマを約 1 , 000万個投与し、ハイブリ ド —マを増殖させたのち、 1〜2週間後に腹水を採取する。 抗体の精製は、 硫安分 画、 イオン交換クロマトグラフィー、 ァフィ二ティクロマ トグラフィー、 ゲルろ 過クロマトグラフィ一などの方法を適宜組み合わせて行うことができる。  The target polypeptide or a fragment thereof is administered subcutaneously to mice or rats (for example, BalbZc mice) in the same manner as polyclonal antibodies, and boosted approximately 1 to 4 times at intervals of 1 to 4 weeks. Do. When the antibody titer reaches its peak, the antigen is injected intravenously or intraperitoneally for final immunization. After 2 to 5 days, antibody-producing cells (eg, spleen cells or lymph node cells) are collected. The antibody-producing cells are then fused to a myeloma cell line (preferably a hypoxanthine 'guanine' phosphoribosyl 'transferase (HG PRT) deficient cell line) to produce hybridoma cells and HAT (hypoxanthine, aminopterin). , Chimin) Make a selection. For cell fusion, antibody-producing cells and myeloma cell lines are mixed at a ratio of about 1: 1 to 20: 1 in animal cell culture media such as serum-free DMEM and RPM I-1640 media. In the presence of a cell fusion promoter such as polyethylene glycol. Confirmation of the target antibody can be performed by the immunoassay described above. Furthermore, in order to grow hyperidomas, about 10 million hybridomas are administered into the abdominal cavity of mice, and after the hybridomas are grown, ascites is collected 1 to 2 weeks later. Antibody purification can be performed by appropriately combining methods such as ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, and gel filtration chromatography.
抗ぺプチド抗体は、 タンパク質の表面上のリニア一なぺプチドに対する抗体で あり、 免疫学的特異性を高めることができる。 そのようなペプチドは、 例えば K y t e— D o o l i t t l e らの親水性一疎水性領域の推定法、 Em i n i らに よるタンパク質分子上の特定ぺプチド部位の表面に位置する確率、 ポリべプチド 鎖の折れ曲がり程度、 例えば C h o u— F a s m a nらなどのひへリ ックス、 β シート、 ターンを表示するタンパク質の二次構造予測、 等を単独で又は組み合わ せて使用して推定しうる。 次いで、 推定されたペプチドは、 ペプチド合成機を用 いて合成することができる。 An anti-peptide antibody is an antibody against a linear peptide on the surface of a protein, and can increase immunological specificity. Such peptides are for example K yte—Doolittle et al. Estimates of hydrophilic / hydrophobic regions, Em ini et al., probability of being located on the surface of a specific peptide site on a protein molecule, degree of bending of a polypeptide chain, eg C hou—Fasman It can be estimated by using a helix such as et al., Β sheet, secondary structure prediction of protein indicating turn, etc. alone or in combination. The estimated peptide can then be synthesized using a peptide synthesizer.
ここで、 標的ポリペプチド (上記表 1及び表 2に示される遺伝子によってコ一 ドされる) の合成は、 c DN Αクローンを発現ベクターに組み込み、 該ベクタ一 によって形質転換又はトランスフエクションされた原核又は真核宿主細胞を培養 することによって該細胞又は培養上清から得ることができる。 発現ベクターは巿 販のものを使用することができる。 宿主細胞は、 細菌などの原核細胞 (例えば大 腸菌、 枯草菌、 シュウドモナス属細菌など)、 酵母 (例えばサッカロマイセス属、 ピチア属など)、 昆虫細胞 (例えば S f 細胞)、 哺乳動物細胞 (例えば CHO、 C O S、 BHK、 HEK 29 3など) などを含む。 また、 べクターは、 プラスミ ド、 コスミ ド、 ファージなどからなり、 標的ポリペプチドをコードする DNA、 プロ モーター、 必要ならェンハンサー、 ポリアデュル化シグナル、 リボソーム結合部 位、 複製開始点、 ターミネータ一、 選択マ一力一などを含むことができる。 ポリ ペプチドの精製を容易にするために、 標識ペプチド、 例えば 6〜1 0残基のヒス チジンタグ、 F LAG、 GF Pポリペプチドなどをコードする DNA配列を含有 させることもできる。遺伝子組換え技術については、 S a m b r o o kら(上記)、 Au s b e 1 ら (上記) に記載されており、 それらに記載の技術を本発明のため に使用することができる。  Here, the synthesis of the target polypeptide (coded by the genes shown in Table 1 and Table 2 above) was carried out by incorporating the c DN clone into the expression vector and transformed or transfected with the vector. It can be obtained from the prokaryotic or eukaryotic host cell by culturing the cell or culture supernatant. Commercially available expression vectors can be used. Host cells include prokaryotic cells such as bacteria (eg, Enterococcus, Bacillus subtilis, Pseudomonas bacteria, etc.), yeast (eg, Saccharomyces, Pichia, etc.), insect cells (eg, S f cells), mammalian cells (eg, CHO). , COS, BHK, HEK 29 3 etc.). The vector consists of plasmids, cosmids, phages, etc., DNA encoding the target polypeptide, promoter, enhancer if necessary, polyaduration signal, ribosome binding site, replication origin, terminator, selection marker Can be included. In order to facilitate the purification of the polypeptide, a DNA sequence encoding a labeled peptide, such as a 6 to 10 residue histidine tag, a FLAG, a GFP polypeptide, etc., can also be included. The gene recombination techniques are described in Sambrook et al. (Above) and Ausbe1 et al. (Above), and the techniques described therein can be used for the present invention.
上記のようにして得られた標的ポリペプチドは、 ゲルろ過、 イオン交換クロマ 卜グラフィ一、 ァフィ二ティクロマ トグラフィー、 疎水性クロマトグラフィー、 等電点電気泳動、 電気泳動、 限外ろ過、 塩析、 透析などを適宜組み合わせて精製 することができる。  The target polypeptide obtained as described above is gel filtration, ion exchange chromatography, affinity chromatography, hydrophobic chromatography, isoelectric focusing, electrophoresis, ultrafiltration, salting out, It can be purified by appropriately combining dialysis.
標的ポリぺプチド又はその断片の配列は、 上記表 1及び表 2に記載される G e n B a n k又は U n i G e n e登録番号に基づいて N C B I H ome P a g e にアクセスすることによって入手可能である。 本発明の実施形態により、 前記組成物は、 キッ ト又はマイクロアレイの形態で あってもよく、 すなわち、 前記プローブは、 キッ ト又はマイクロアレイの形態で 含まれる。 The sequence of the target polypeptide or a fragment thereof can be obtained by accessing the NCBI Home page based on the Gen Bank or Uni Gene registration numbers listed in Tables 1 and 2 above. According to an embodiment of the present invention, the composition may be in the form of a kit or a microarray, that is, the probe is included in the form of a kit or a microarray.
キッ トの場合、 2つのグループの各遺伝子マーカー (表 1及び表 2) の 1又は 2以上から全数のマーカ一を検出することが可能なポリヌクレオチド又は抗体を、 個別に又は 2以上を組み合わせて適当な容器に包装することができる。  In the case of kits, polynucleotides or antibodies capable of detecting the total number of markers from one or more of each of the two groups of genetic markers (Tables 1 and 2), individually or in combination of two or more It can be packaged in a suitable container.
抗体は、 上記の方法で作製されるようなポリクローナル抗体、 モノクローナル 抗体、 抗ペプチド抗体などであるが、 それらに限定されないものとする。 抗体の 種類は、 いずれのタイプ、 クラス、 サブクラスでもよく、 例えば I g G、 I gM、 I g E、 I g D、 I g A、 I g G l、 I g G 2、 I g G 3、 I g G 4、 I g A l、 I g A 2などを含む。 また、 抗体の断片は、 F a b、 (F a b') 2、 F c、 F d、 F vなどを含む。 The antibody is a polyclonal antibody, a monoclonal antibody, an anti-peptide antibody or the like produced by the above method, but is not limited thereto. The type of antibody may be any type, class, or subclass, for example, IgG, IgM, IgE, IgD, IgA, IgGl, IgG2, IgG3, Including I g G 4, I g A l, I g A 2 and the like. Antibody fragments include F ab, (F a b ′) 2 , F c, F d, F v and the like.
キッ トにはさらに、 ハイブリダィゼ一シヨンを行うための試薬類、 例えばバッ ファー、 逆転写酵素、 標識二次抗体などを含有させてもよい。  The kit may further contain reagents for performing hybridization, such as a buffer, a reverse transcriptase, and a labeled secondary antibody.
マイクロアレイの場合、 アレイは、 DNAマイクロアレイ (DNAチップとも レヽう)、 組織ァレイ又はタンパク質マイクロアレイである。  In the case of a microarray, the array is a DNA microarray (also known as a DNA chip), a tissue array, or a protein microarray.
これらのマイクロアレイにはそれぞれ、 プローブとしての上記のポリヌクレオ チド或いは上記の抗体又はその断片が結合される。 すなわち、 アレイの表面に、 上記遺伝子マーカ一又は転写若しくは翻訳産物を検出することができる、 遺伝子 マーカー又はその変異体とハイプリダイズすることが可能なポリヌクレオチド、 或いはそれらの遺伝子によってコードされるポリべプチド、 又はその変異体若し くは誘導体と特異的に結合反応することができる抗体又はその断片が、 プローブ として結合される。  Each of these microarrays is bound with the above-mentioned polynucleotide as a probe or the above-described antibody or fragment thereof. That is, on the surface of the array, one of the above gene markers or a transcription or translation product can be detected, a polynucleotide that can be hybridized with a gene marker or a variant thereof, or a polynucleotide encoded by these genes. An antibody or fragment thereof that can specifically bind to a peptide or a variant or derivative thereof is bound as a probe.
アレイの基板としては、 ガラス又は樹脂 (ポリマー) が通常使用され、 その表 面に例えばポリ L—リジン、 シラン又は高密度化ァミノ基が導入される。 また、 基板上へのポリヌクレオチド又は抗体の結合は、 スポッ ト法又はインクジエツ ト 法によって行われる。  As the substrate of the array, glass or resin (polymer) is usually used and, for example, poly L-lysine, silane or densified amino groups are introduced on the surface. Further, the polynucleotide or antibody is bound to the substrate by a spot method or an ink jet method.
変異体は、 上記遺伝子又はポリぺプチドの完全又は部分配列と、 ヌクレオチド 又はアミノ酸レベルで通常 80%以上、 8 5%以上、 好ましくは 90%以上、 さ らに好ましくは 9 5 %以上、 9 8 %以上の同一性を有するものである。 Variants are generally 80% or more, 85% or more, preferably 90% or more at the nucleotide or amino acid level with the complete or partial sequence of the above gene or polypeptide. More preferably, it has 95% or more identity and 98% or more identity.
ポリペプチドの誘導体は、 例えば、 グリコシル化、 リン酸化、 硫酸化、 アルキ ル化、 ァシル化などの化学修飾誘導体を含む。  Derivatives of polypeptides include, for example, chemically modified derivatives such as glycosylation, phosphorylation, sulfation, alkylation, and acylation.
3 . 予後又は転移可能性を予測する方法 3. How to predict prognosis or metastatic potential
本発明の方法は、 癌患者の術後の予後又は転移可能性をインビトロで予測する 方法であって、 該患者由来の生物学的検体中の、 配列番号 1〜4 5に示される塩 基配列又はその変異配列を含む癌転移関連遺伝子マ一カーの少なく とも 1つの発 現レベル又はその転写若しくは翻訳産物レベルを、 該マーカーに対応するプロ一 ブを用いて測定し、 術後の予後がより良い又は転移可能性がより低い患者群と術 後の予後がより悪い又は転移可能性がより高い患者群との間の相対的な該レベル の差を指標にして、 術後の予後又は転移可能性を判定することを含む。  The method of the present invention is a method for predicting the postoperative prognosis or metastasis potential of a cancer patient after surgery, wherein the base sequence shown in SEQ ID NOs: 1 to 45 in a biological specimen derived from the patient Alternatively, at least one expression level of a cancer metastasis-related gene marker containing the mutant sequence or its transcriptional or translational product level is measured using a probe corresponding to the marker, so that the prognosis after surgery is improved. Postoperative prognosis or metastasis is possible using the relative difference in level between patients with good or lower metastatic potential and those with worse postoperative prognosis or higher metastatic potential. Including determining gender.
ここで、 発現レベルは、 生物学的検体中の上記遺伝子の発現について、 転写又 は翻訳産物レベルで、 術後の予後がより良い又は転移可能性がより低い患者群か らの検体と、 術後の予後がより悪い又は転移可能性がより高い患者群からの検体 との間で該遺伝子の発現を比較したときの該遺伝子の発現の差異を意味する。 発現レベルの差を示す上記遺伝子を同定することによって、 癌患者の術後の予 後又は転移可能性をインビトロで予測することができる。  Here, the expression level is the transcription or translation product level for the expression of the above-mentioned gene in a biological specimen, and a specimen from a patient group with a better postoperative prognosis or a lower possibility of metastasis. It means the difference in the expression of the gene when comparing the expression of the gene with a specimen from a patient group with a later prognosis or a higher possibility of metastasis. By identifying the above genes that show differences in expression levels, the postoperative prognosis or metastatic potential of cancer patients can be predicted in vitro.
本発明によれば、 遺伝子の発現レベルの差は、 マ一カーとしての該遺伝子又は それに対応するポリべプチドの存在又は量を測定することによって行うことがで きる。 したがって、 単に 2つの群に分類される各マ一カーの存在を測定するだけ で、 癌患者の術後の予後又は転移可能性をインビトロで予測することができる。 生物学的検体は、癌患者の組織又細胞を含み、手術によって切除された癌組織、 生検によって得られた組織又は細胞などである。  According to the present invention, the difference in gene expression level can be made by measuring the presence or amount of the gene or its corresponding polypeptide as a marker. Therefore, simply measuring the presence of each marker classified into two groups can predict the postoperative prognosis or metastatic potential of cancer patients in vitro. Biological specimens include cancer tissue or cells that have been removed by surgery, tissue or cells obtained by biopsy, and the like.
以下に、 これらの 2つの異なる方法について具体的に説明する。  In the following, these two different methods will be described in detail.
3 . 1 ポリヌクレオチドによる方法 3.1 Methods using polynucleotides
本発明に関わる 4 5個の遺伝子マーカ一を検出するために、 それらの各マーカ 一とハイブリダィズする上記ポリヌクレオチドを使用する。 検出すべき遺伝子の 数は、 グループ毎に 1又は 2以上であり、 好ましくは 2以上、 より好ましくは 3 から全数、 例えば 4から全数、 5以上から全数である。 検出すべき遺伝子の数が 多いほど、 予測の確度が向上する。 In order to detect 45 gene markers related to the present invention, the above-mentioned polynucleotide hybridized with each marker is used. The number of genes to be detected is 1 or 2 or more per group, preferably 2 or more, more preferably 3 to the total number, for example, 4 to the total number, 5 or more to the total number. The number of genes to be detected The more it is, the better the prediction accuracy.
ハイブリダィゼーシヨ ンは、 マイクロアレイ法、 ブロッ ト法、 例えばノーザン もしくはサザンブロッ ト、 ノーザンもしくはサザンハイプリダイゼーション法、 i n s i t u eハイブリダィゼーシヨ ン法、 定量 R T _ P C R法などの方法で 実施することができる。好ましいハイブリダイゼ一ション法は、マイクロアレイ、 定量 RT— PCR又はブロッ ト法である。また、好ましいマイクロアレイの例は、 DNAマイクロアレイ及びタンパク質マイクロア レイである。  Hybridization should be performed by microarray method, blotting method such as Northern or Southern blot, Northern or Southern hybridization method, insitue hybridization method, quantitative RT_PCR method, etc. Can do. Preferred hybridization methods are microarray, quantitative RT-PCR or blotting. Examples of preferred microarrays are DNA microarrays and protein microarrays.
DNAマイクロアレイ法では、 上記の 2つのグループの各遺伝子群( 1〜全数) とハイブリダイズする核酸プローブを基板に結合した DNAマイクロアレイを作 製し使用する。 '  In the DNA microarray method, a DNA microarray in which nucleic acid probes that hybridize with each of the above two groups of gene groups (1 to all) are bound to a substrate is used. '
DN Aマイクロアレイは、 核酸プローブを固相化できるものであればいずれの 種類の基板も使用できる。 固相には、 例えばガラス、 ポリマーなどが含まれ、 さ らに核酸を共有結合するための反応性基を含むスぺーサーゃクロスリンカーを導 入することができる。 このようなチップは市販されているため、 それらを使用す ることが望ましレ、。  Any type of substrate can be used for the DNA microarray as long as it can immobilize nucleic acid probes. The solid phase includes, for example, glass, polymer, and the like, and a spacer including a reactive group for covalently binding a nucleic acid can be introduced with a crosslinker. Since such chips are commercially available, it is desirable to use them.
核酸プローブの固相化は、 特に制限はないが、 一般的な方法、 例えばスポッタ 一又はァレイヤ一と呼ばれる高密度分注機を用いて DN Aをスポッ トする方法、 ノズルから液滴を噴射するインクジェッ ト方式などの方法を用いて実施すること ができる。  The solid phase immobilization of the nucleic acid probe is not particularly limited, but a general method, for example, a method of spotting DNA using a high-density dispenser called a spotter or layerer, a droplet is ejected from a nozzle It can be carried out using methods such as an inkjet method.
生物学的検体中の DN A又は R N A、 それから誘導された c DN A、 c RNA などの核酸を、 C y染料(C r 3又は C y 5)などの蛍光物質で標識した核酸を、 DNAマイクロアレイ上のプローブとハイブリダイズさせる。 レーザースキャン による読み取り装置を用いて蛍光強度を読み取り、 コンピュータでデータを解析 する。  DNA microarrays are prepared by labeling nucleic acids such as DNA or RNA in biological specimens and cDNA and cRNA derived from them with fluorescent substances such as Cy dye (Cr3 or Cy5). Hybridize with the above probe. The fluorescence intensity is read using a laser scanning reader and the data is analyzed by a computer.
プロ ッ ト法では、 本発明の核酸プローブを放射性同位元素 (例えば、 :ί 2 Ρ及びIn the plot method, the nucleic acid probe of the present invention is combined with a radioisotope (for example: ί 2 Ρ and
35 S) や蛍光物質 (ローダミン誘導体、 C y染料など) などで標識したのち、 ナ ィロンなどのポリマーメンブレンに転写した生物学的試料中の DN A又は RNA、 それから誘導された c DNA、 c RN Aなどの核酸との間でハイブリダイゼ一シ ヨンを行う。 シグナルを、 放射線検出器又は蛍光検出器を用いて検出し、 その強 度を測定する。 35 S) and fluorescent substances (rhodamine derivatives, Cy dyes, etc.) and then labeled with DNA or RNA in biological samples transferred to polymer membranes such as nylon, cDNA derived therefrom, c RN Hybridize with nucleic acids such as A. The signal is detected using a radiation detector or a fluorescence detector and Measure the degree.
定量 R T— P C R法では、 生物学的検体中の R N Aから作製した c D NAを踌 型として標的の各遺伝子の領域が増幅できるように、 プライマーを c D NAとァ ニーリングさせ P C Rを行い、 得られた二本鎖 D N Aを検出する。 プライマーを 予め放射性同位元素や蛍光物質で標識しておく力、、 或いは、 P C R産物をァガロ ースゲルで電気泳動し、 ェチジゥムブ口マイ ドなどで二本鎖 D NAを染色するな どの方法で、 標的遺伝子を検出、 定量することができる。  In the quantitative RT-PCR method, primers are annealed with cDNA and PCR is performed so that the target gene region can be amplified using cDNA prepared from RNA in biological samples as a template. The detected double-stranded DNA is detected. The ability to pre-label primers with radioisotopes or fluorescent materials, or by electrophoresis of PCR products on agarose gel and staining of double-stranded DNA with ethimubu-mide etc. Can be detected and quantified.
P C R条件は、 例えば変性: 9 2〜 9 4°Cで 3 0秒〜 5分; アニーリ ング : 5 0〜 5 5 °Cで 3 0〜 6 0秒;伸長 : 6 8〜 7 2°Cで 3 0秒〜 1 0分を 1サイクル として 3 0〜 4 0サイクルの反応を含む。 逆転写酵素は、 市販の酵素、 例えば S u p e r S c r i p t (登録商標) I I I ( I n v i t r o g e n、 米国)ゝ AM V R e v e r s e 丄, r a n s c r i p t a s e 、P r o m e g a、 米国)、 M-ML V (R N a s e H_) (宝酒造、 京都、 日本) などを使用することができ る。  PCR conditions include, for example, denaturation: 92-94 ° C. for 30 seconds to 5 minutes; annealing: 50-55 ° C. for 30-60 seconds; extension: 68-72 ° C. It includes 30 to 40 cycles of reaction, with 30 seconds to 10 minutes as one cycle. Reverse transcriptase is a commercially available enzyme such as Super Script® III (Invitrogen, USA) ゝ AM VR everse 丄, ranscriptase, Promega, USA), M-ML V (RN ase H_) (Takara Shuzo) , Kyoto, Japan) can be used.
本発明において、 ハイブリダィゼーシヨ ンは、 DNA— DNAハイブリダィゼ —シヨン、 DN A— RN Aハイブリダィゼ一シヨ ン、 R NA— R NAハイブリダ ィゼーショ ンのいずれでもよレ、。  In the present invention, the hybridization may be any of DNA-DNA hybridization, DNA-RNA hybridization, and RNA-RNA hybridization.
ハイブリダィゼーシヨ ンは、 通常、 ス ト リ ンジェン 卜な条件下で行われる。 こ のような条件は、 例えば、 1 M塩化ナトリ ウム Z0. 5 % (WZV) サルコシル Hybridization is usually performed under stringent conditions. Such conditions include, for example, 1 M sodium chloride Z0.5% (WZV) sarkosyl
Z30 %ホルムアミ ド中、 6 0°C、 1 7時間のハイブリダィゼ一シヨ ン、その後、Hybridization in Z30% formamide, 60 ° C, 17 hours, then
6 X S S C/ 0. 0 0 5 % (W/V) トライ トン X— 1 0 2溶液中、 室温、 1 0 分間で一回、 さらに、 0. 1 X S S CZ 0. 0 0 5 % (W/V) トライ トン X—6 XSSC / 0. 0 0 5% (W / V) Triton X— 1 0 2 solution, once at room temperature for 10 minutes, and 0.1 XSS CZ 0. 0 0 5% (W / V ) Triton X—
1 0 2溶液中で 0〜 4°Cに保ちながら 5分間で一回の洗浄を含む。 或いは、 別の ハイブリダイゼーション条件は、 例えば、 約 4 5〜 5 0でで 2〜 6 X S S C中で のハイブリダイゼーシヨンと、 それに続く、 約 5 0〜 6 5°Cでの 0. 2〜 2 X SContains one wash for 5 minutes while keeping at 0-4 ° C in 10 2 solution. Alternatively, another hybridization condition may be, for example, about 45 to 50 at 2 to 6 XSSC followed by 0.2 to 2 at about 50 to 65 ° C. XS
S C/ 0. 1〜: 1 % S D Sによる洗浄;或レヽは、 6 0〜 6 5 °Cで 6 X S S C、 D e n h a r d t溶液、 0. 2 % S D S中でのハイブリダィゼーシヨ ンののち、 6S C / 0. 1 to: Wash with 1% S D S; or 6 min. After hybridization in 6 X S S C, Den har d t solution, 0.2% S D S at 60 to 65 ° C.
0〜 6 5 での0. 2 X S S C、 0. 1 % S D Sによる洗浄を含む。 ハイブリダ ィゼ一シヨンの条件及び方法については、 例えば、 A u s u b e l ら, C u r e n t P r o t o c o l s i n M o l e c u l a r B i o l o g y , 1 9 8 9, J o h n W i l e y a n d S o n s , 米国) を参照することが できる。 Includes washing with 0.2 XSSC, 0.1% SDS from 0 to 65. For conditions and methods of hybridization, see, for example, A usubel et al., Cur. ent Protocolsin Molecular Biology, 1 9 8 9, John Wiley and Sons, USA).
3. 2 抗体による方法  3.2 Antibody method
上記遺伝子の発現レベルの代替的測定法は、 免疫学的方法である。  An alternative method for measuring the expression level of the gene is an immunological method.
上記のように作製された抗体を、 生物学的検体中の標的ポリぺプチド又はその 断片の検出のために使用することができる。  The antibodies produced as described above can be used for the detection of the target polypeptide or fragment thereof in a biological specimen.
多数の抗体をマイクロアレイ基板上に結合したタンパク質マイクロアレイを作 製することによって、 或いは、 多数の抗体を P VD F膜などのフィルター上にド ッ ト状にスポッ 卜することによって、 一度に多数の標的ポリべプチドを検出又は 定量することが可能になる。 或いは、 慣用の免疫学的測定法、 例えば酵素免疫測 定法 (E L I S A、 E I A)、 蛍光抗体法、 放射性免疫測定法 (R I A)、 発光免 疫測定法、 免疫比濁法、 ラテックス凝集反応、 ラテックス比濁法、 赤血球凝集反 応、 粒子凝集反応またはウェスタンプロッ ト法などによって、 生物学的試料中の 標的ポリぺプチド又はその断片を検出又は定量することができる。  By creating protein microarrays with many antibodies bound on a microarray substrate, or by spotting many antibodies on a filter such as a PVDF membrane, Polypeptide can be detected or quantified. Or, conventional immunological methods such as enzyme immunoassay (ELISA, EIA), fluorescent antibody method, radioimmunoassay (RIA), luminescence immunoassay, immunoturbidimetric method, latex agglutination, latex ratio A target polypeptide or a fragment thereof in a biological sample can be detected or quantified by a turbidity method, a hemagglutination reaction, a particle agglutination reaction or a Western plot method.
固相上で反応を行うときには、 固相担体として、 ポリスチレン、 ポリカーボネ — ト、 ポリエチレンなどのポリマ一の膜 (フィルター)、 プレート、 チューブ、 ス トリ ップなど、 ラテックス、 磁性体などの粒子、 などが含まれる。 固相化は、 物 理的に或いは化学的に行うことができる。 化学的結合のためには、 例えばマレイ ル化試薬、 臭化シアンなどの試薬で固相を処理し、 タンパク質のアミノ基などと 反応する官能基を固相に導入することができる。  When performing the reaction on a solid phase, as a solid phase carrier, a polymer film (filter) such as polystyrene, polycarbonate, or polyethylene, a plate, a tube, a strip, a particle such as a latex, a magnetic material, etc. Is included. The solid phase can be physically or chemically performed. For chemical coupling, the solid phase can be treated with a reagent such as maleating reagent or cyanogen bromide, and functional groups that react with amino groups of proteins can be introduced into the solid phase.
標的の検出のために、 抗体を標識してもよいし、 或いは標識二次抗体を使用し てもよい。 標識としては、 西洋ヮサビペルォキシダーゼ、 アルカリホスファタ一 ゼなどの酵素、 フルォレセイン、 ローダミン、 それらの誘導体などの蛍光物質、 ルシフェラーゼ系、 ルミノール系などの発光物質、 32 P、 1 25 I、 35 Sなどの放 射性同位元素などが含まれる。 標識化は、 例えばダルタルアルデヒ ド法、 マレイ ミ ド法、 ピリジルジスルフィ ド法、 クロラミン T法、 ボルトンハンター法などを 含む。 For detection of the target, the antibody may be labeled, or a labeled secondary antibody may be used. Labels include enzymes such as horseradish rust peroxidase and alkaline phosphatase, fluorescent substances such as fluorescein, rhodamine and derivatives thereof, luminescent substances such as luciferase and luminol, 32 P, 1 25 I, 35 Radioactive isotopes such as S are included. Labeling includes, for example, the dartal aldehyde method, the maleimide method, the pyridyl disulfide method, the chloramine T method, and the Bolton Hunter method.
4. 癌転移抑制剤のスク リーニング 本発明はさらに、 培養癌細胞を用いて、 配列番号 1〜 2 7のいずれかの塩基配 列を含む癌転移関連遺伝子又はその転写産物の阻害又は抑制について、 或いは培 養癌細胞の運動能及び Z又は浸潤能の阻害又は抑制について、, 候補薬剤をスクリ 一二ングすることを含む、 癌転移抑制剤のスクリーニング方法を提供する。 4. Screening for cancer metastasis inhibitors The present invention further relates to inhibition or suppression of a cancer metastasis-related gene comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 27 or a transcription product thereof using cultured cancer cells, or the motility of cultured cancer cells and A screening method for a cancer metastasis inhibitor comprising screening a candidate drug for inhibition or suppression of Z or invasive ability is provided.
具体的には、 この方法は、 培養癌細胞を準備し、 該細胞を候補薬剤の存在下で 培養し、前記癌転移関連遺伝子又はその転写産物の発現の阻害又は抑制について、 或いは培養癌細胞の運動能及び 又は浸潤能の阻害又は抑制について、 候補薬剤 をスク リーニングすることを含む。  Specifically, this method comprises preparing cultured cancer cells, culturing the cells in the presence of a candidate drug, and inhibiting or suppressing the expression of the cancer metastasis-related gene or a transcription product thereof, or Screening candidate drugs for inhibition or suppression of motility and / or invasive capacity.
ヒ ト培養癌細胞、 好ましくはヒ ト培養転移性癌細胞、 の細胞株は、 癌の種類に よって特に制限されないものとし、 例えば公知の転移性ヒ ト癌細胞株である、 M eWo ;悪性黒色腫細胞株、 MDA— MB— 43 5 ;乳癌細胞株、 LNC a P又 は PC— 3 ;高転移性ヒ ト肺癌細胞株、 LNM3 5 ;前立腺癌細胞株などが含ま れ、 本発明において使用できる。  The cell line of human cultured cancer cells, preferably human cultured metastatic cancer cells, is not particularly limited by the type of cancer, for example, a known metastatic human cancer cell line, MeWo; Tumor cell line, MDA-MB-435; breast cancer cell line, LNCaP or PC-3; highly metastatic human lung cancer cell line, LNM35; prostate cancer cell line, etc., which can be used in the present invention .
本発明において、 前記ヒ ト癌転移関連遺伝子又はその転写産物の発現の阻害又 は抑制の程度は、 候補薬剤を添加しない対照との比較実験によって判定できる。 発現レベルは、 癌細胞株から周知の方法 (例えばフエノール クロ口ホルム Zィ ソアミルアルコール、 グァニジゥム Z塩化セシウムなどを用いる抽出及びエタノ ール沈殿、 オリゴ d Tセルロースカラムクロマトグラフィーなど) で得た全 RN A又は mRNA又はポリ A ( + ) RNAについて、或いは逆転写酵素— P CR (R T- P C R) 法によって RNAから合成された c DNAについて、 蛍光又は放射 性標識したプローブを用いるハイプリダイゼ一ション法 (例えばノーザンハイブ リダィゼーシヨン、 サザンハイブリダィゼ一シヨン、 DNAマイクロアレイ、 糸且 織マイクロアレイなど)によって決定することができる。或いは、発現レベルは、 上記ヒ ト癌転移関連遺伝子によってコードされるポリぺプチドの細胞内レベルを、 該ポリべプチドに対する抗体又はその断片を用いる免疫測定法、 ウェスタンハイ プリダイゼ一ションなどによって測定することによって間接的に決定することが できる。  In the present invention, the degree of inhibition or suppression of expression of the human cancer metastasis-related gene or its transcription product can be determined by a comparative experiment with a control to which no candidate drug is added. Expression levels were obtained from cancer cell lines by well-known methods (for example, extraction with phenol, blackform Z, soamyl alcohol, guanidinium Z, cesium chloride, etc., ethanol precipitation, oligo d T cellulose column chromatography, etc.). A hybridization method using fluorescent or radiolabeled probes for RNA or mRNA or poly A (+) RNA, or for cDNA synthesized from RNA by the reverse transcriptase — PCR (RT-PCR) method (For example, Northern hybridization, Southern hybridization, DNA microarray, yarn and fabric microarray, etc.). Alternatively, the expression level is measured by measuring the intracellular level of the polypeptide encoded by the human cancer metastasis-related gene by an immunoassay using an antibody against the polypeptide or a fragment thereof, Western high-pridition, etc. Can be determined indirectly.
前記プローブは、 配列番号 1〜45の塩基配列又はそれと相補的な配列、 或い はその連続する例えば約 20以上、 約 30以上、 50以上、 70以上、 1 00以 上、 1 5 0以上、 2 0 0以上、 2 5 0以上のヌク レオチドからなる配列、 を有す る DNAである。 プローブは、 蛍光又は放射性標識を結合した標識プローブとす るのが好ましい。 蛍光性標識には、 例えばフルォレサミン、 P—ダミン、 それら の誘導体、 C y 3、 C y 5などが含まれる、 放射性標識には、 例えば放射性リン 又はィォゥ原子が含まれる。 The probe is a nucleotide sequence of SEQ ID NOs: 1-45 or a sequence complementary thereto, or a sequence thereof, for example, about 20 or more, about 30 or more, 50 or more, 70 or more, 100 or less. Above, DNA having a sequence consisting of 1550 or more, 2200 or more, and 2500 or more nucleotides. The probe is preferably a labeled probe bound with a fluorescent or radioactive label. Fluorescent labels include, for example, fluoresamine, P-damine, their derivatives, Cy3, Cy5, etc. Radiolabels include, for example, radioactive phosphorus or iow atoms.
免疫測定法は、 抗原一抗体反応を利用する分析法であり、 例えば酵素結合抗体 法 (例えば E L I S A)、 蛍光抗体法、 固相法、 均一法、 サンドイッチ法などを適 宜組み合わせた方法によって行うことができる。 これらの方法は、 当業界で周知 であり、 その慣用技術を本発明で使用できる。  An immunoassay is an analysis method that uses an antigen-antibody reaction, and is performed by a method that appropriately combines, for example, an enzyme-linked antibody method (for example, ELISA), a fluorescent antibody method, a solid phase method, a homogeneous method, and a sandwich method. Can do. These methods are well known in the art and their conventional techniques can be used in the present invention.
ヒ ト培養 (転移性) 癌細胞において、 前記ヒ ト癌転移関連遺伝子又は対応する mRNAの発現が、 候補薬剤の存在によって、 候補薬剤無添加の対照と比べて、 有意に阻害又は抑制される場合、 該候補薬剤は癌転移抑制剤として同定しうる。 候補薬剤のスクリーニングはまた、ヒ ト培養癌細胞、好ましくは転移性癌細胞、 の運動能及び Z又は浸潤能の阻害又は抑制を調べることによっても見出すことが できる。  Human culture (metastatic) In cancer cells, the expression of the human cancer metastasis-related gene or the corresponding mRNA is significantly inhibited or suppressed by the presence of the candidate drug compared to the control without the candidate drug. The candidate drug can be identified as a cancer metastasis inhibitor. Candidate drug screening can also be found by examining inhibition or suppression of motility and Z or invasive potential of human cultured cancer cells, preferably metastatic cancer cells.
癌細胞のインビトロにおける運動能アツセィあるいは浸潤能アツセィは、 例え ばトランスウエルチヤンバー培養システムを用いて行うことができる。 運動能ァ ッセィにおいては、 例えば 2 4ゥエル細胞培養プレートに径 8 ミクロンの小孔を 有するテレフタル酸ポリエチレン膜を有するインサ一ト (べク トンディキンソン 社製) を挿入し、 インサート内部の無血清細胞培地に転移性癌細胞株を接種し、 2 4時間培養した後、 小孔を通過し膜下層に移動した細胞数をカウン卜すること によって うことができる (K o z a k i Kら, C a n c e r R e s e a r c h 6 0 : 2 5 3 5 - 4 0 , 2 0 0 0)。 浸潤能ァッセィでは、 同様のシステ ムを使用するが、 細胞を接種する以前に膜上部をマトリゲルによって覆っておく ことにより、 計測することができる (K o z a k i Kら, C a n c e r R e s e a r c h 6 0 : 2 5 3 5 - 4 0 , 2 0 0 0)。  In vitro motility or invasion of cancer cells can be performed using, for example, a transwell chamber culture system. In the motility assay, for example, an insert (made by Becton Dickinson) with a polyethylene terephthalate film having a small pore of 8 microns in diameter is inserted into a 24-well cell culture plate, and serum-free cells inside the insert are inserted. Inoculated with metastatic cancer cell lines in the medium, cultured for 24 hours, and then counted by counting the number of cells that have passed through the small pores and moved to the lower membrane (Kozaki K et al., Cancer Research) 6 0: 2 5 3 5-4 0, 2 0 0 0). The invasion assay uses a similar system, but can be measured by covering the top of the membrane with Matrigel before seeding the cells (Kozaki K et al., Cancer Research 60: 2). 5 3 5-4 0, 2 0 0 0).
上記のアツセィにおいて、 無血清細胞培地に候補薬剤を添加しておくことによ り、 転移性癌細胞の運動能及び Z又は浸潤能を阻害又は抑制する候補物質が、 癌 転移抑制剤として同定しうる。 候補薬剤は、 小分子、 ペプチド、 ポリペプチド、 タンパク質、 ヌクレオシド、 オリゴヌクレオチド、 ポリヌク レオチド、 核酸 (DNA又はRNA) などを含む が、 これらに限定されなレ、。 In the above assembly, by adding a candidate drug to the serum-free cell medium, a candidate substance that inhibits or suppresses the motility and Z or invasive ability of metastatic cancer cells is identified as a cancer metastasis inhibitor. sell. Candidate agents include, but are not limited to, small molecules, peptides, polypeptides, proteins, nucleosides, oligonucleotides, polynucleotides, nucleic acids (DNA or RNA), and the like.
候補薬剤としてのポリペプチド又はタンパク質には、 例えば配列番号 1〜2 7 に示される塩基配列又はその変異配列によってコードされるポリペプチド又はタ ンパク質に対する抗体又はその断片が含まれる。 また、 核酸には、 配列番号 1〜 2 7に示される塩基配列又はその変異配列に対応する mRNAを切断することが 可能なリボザィム、 s i RNA ( s ma l l i n t e r f e r i n g R N A) などが含まれる。  The polypeptide or protein as a candidate drug includes, for example, an antibody or a fragment thereof against the polypeptide or protein encoded by the base sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof. In addition, the nucleic acid includes a ribozyme capable of cleaving mRNA corresponding to the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof, s iRNA (sma lin terf er RN RN), and the like.
s i RNAの配列を選択するために、 例えば標的 mRNAの標的サイ トの選択 のための公知の知識、 例えば、 ( a ) G C含量が約 30〜約 70 %、 好ましくは約 50%である、 (b) すべてのヌクレオチドが均等であり、 また Gが連続していな い、 (c) アンチセンス鎖の 5 '末端のヌクレオチドが A、 Uである、 などの基準 を使用することができる (D. M. Dy k x h o o r nら, N a t u r e R e v . M o 1. C e l l B i o l . (2003), 7 7 : 7 1 74 - 7 1 8 1 ; A. Kh v o r o v a ら, C e l l (2003), 1 1 5 : 2 09— 2 1 6)。  In order to select the sequence of the siRNA, for example, known knowledge for the selection of the target site of the target mRNA, eg (a) the GC content is about 30 to about 70%, preferably about 50%, ( b) Criteria can be used such that all nucleotides are equal and G is not contiguous, (c) the 5 ′ end nucleotide of the antisense strand is A, U, etc. (DM Dy Kxhoorn et al., Nature R ev. Mo 1. C ell Biol. (2003), 7 7: 7 1 74-7 1 8 1; A. Kh vorova et al., C ell (2003), 1 1 5: 2 09— 2 1 6).
また、 候補薬剤としてのリボザィムは、 触媒活性をもつ RNAであり、 本発明 に関わる標的ヒ ト癌転移関連遺伝子に対応する mRNAを切断する活性を有して いる。 この切断によって該遺伝子の発現が阻害又は抑制される。 リボザィムの切 断可能な標的配列は、 一般には NUX (N = A, G, C, U ; X = A, C, U)、 例えば GUC ト リプレツ トを含む配列であることが知られている。 本発明におけ る標的ヒ 卜癌転移関連遺伝子の配列番号 1〜2 7の塩基配列によってコードされ る対応の m R N A配列には、 上記の候補トリプレッ トが存在しているため、 候補 トリプレツ トを含む切断すべき mRNA配列部分に相補的な配列を含むリボザィ ムは、 標的 mRNAの切断のために使用することができる。 このようなリボザィ ムには、 ハンマ一ヘッ ド型リボザィムが含まれる。 ハンマ一ヘッ ド型リボザィム は、 センサー部位を構成するヌク レオチド配列、 センサ一部位に RN Aが結合し たときのみ安定に Mg 2 +イオンを捕捉する空洞を形成しうる領域を含むヌクレ ォチド配列、 及び標的 R N Aの切断部位周辺の配列に相補的である領域を含むヌ クレオチド配列を含むことができる。 Further, the ribozyme as a candidate drug is RNA having catalytic activity and has an activity of cleaving mRNA corresponding to the target human cancer metastasis-related gene according to the present invention. This cleavage inhibits or suppresses the expression of the gene. Ribozyme-cleavable target sequences are generally known to be sequences containing NUX (N = A, G, C, U; X = A, C, U), for example, GUC triplets. Since the above-mentioned candidate triplet exists in the corresponding mRNA sequence encoded by the nucleotide sequence of SEQ ID NOs: 1 to 27 of the target tumor metastasis-related gene in the present invention, the candidate triplet is Ribozymes containing a sequence complementary to the portion of the mRNA sequence to be cleaved can be used for cleaving the target mRNA. Such ribozymes include hammerhead type ribozymes. Hammer one heads type Ribozaimu includes areas nucleotide sequence, which may only form a cavity for capturing a stable Mg 2 + ions when RN A to sensor-site bound constituting the sensor portion Nukure And a nucleotide sequence comprising a region that is complementary to the sequence surrounding the cleavage site of the target RNA.
本発明を以下の実施例によってさらに具体的に説明するが、, 本発明の範囲はそ れらの実施例によって制限されないものとする。 実施例  The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited by these examples. Example
実施例 1 Example 1
(高転移ヒ ト肺癌細胞株 (L NM 3 5 ) の樹立)  (Establishment of highly metastatic human lung cancer cell line (L NM 3 5))
N C I - H 4 6 0細胞 (Am e r i c a n T y p e C u l t u r e C o N C I-H 4 60 cells (Am e r i c a n T y p e C u l t u r e C o
1 l e c t i o nから入手) (親株) 1 X 1 0 7細胞 Z 0 0 μ 1 ( R P M I 1(Obtained from 1 lection) (parent strain) 1 X 1 0 7 cells Z 0 0 μ 1 (RPMI 1
6 4 0細胞培地) を、 S C I Dマウス (静岡実験動物研究所 (静岡、 日本) より 購入) に皮下移植した。 移植して 4 5日後に、 癌細胞の肺転移を確認し、 さらに 肺転移巣からの癌細胞を別のマウスの皮下に移植し、 肺転移巣からの癌細胞を、 培養培地 ( 1 0 %ゥシ血清添加 R PM I 1 6 4 0 ) 中で初代培養を行った。 こ の細胞を、 別のマウスの皮下に移植し、 同様に、 肺転移巣からの癌細胞を培養し た。 さらに、 2度の i n v i v o s e l e c t i o n後の細胞をマウスの皮 下に移植し、 腋窩リンパ節からの癌細胞を培養培地 ( 1 0 %ゥシ血清添加 R PM6 40 cell medium) was subcutaneously transplanted into SCI D mice (purchased from Shizuoka Experimental Animal Research Institute (Shizuoka, Japan)). 45 days after transplantation, the lung metastasis of cancer cells was confirmed, and cancer cells from lung metastases were transplanted subcutaneously in another mouse, and the cancer cells from lung metastases were cultured in culture medium (10% Primary culture was carried out in RPM I 16 40) with urine serum. The cells were transplanted subcutaneously into another mouse, and similarly, cancer cells from lung metastases were cultured. In addition, the cells after 2 times i n v i v o s e l c t i o n were transplanted under the skin of mice, and cancer cells from axillary lymph nodes were cultured in culture medium (R PM with 10% sushi serum)
I 1 6 4 0 ) 中で初代培養を行った。 引き続いて 9 6ゥヱルプレートを用いた 限界希釈法により、 クローニングを行い、 高転移株の N C I — H 4 6 0 _ L NMI 16 40)). Subsequently, cloning was performed by limiting dilution using a 96-well plate, and N C I — H 4 6 0 _ L NM
3 5を得た (図 1)。 3 5 was obtained (Fig. 1).
これとは別に、 親株である N C I — H 4 6 0細胞から限界希釈法により低転移 株 (N 1 5 ) を得ることができた。 さらまた、 L NM 3 5株を、 上記と同じ培養 培地中、 脱メチル化剤 (5 —ァザ— 2 ' —デォキシシチジン) ( 1 // 1^で2 4時間) で処理することにより、 低転移株 (L 2 D 2及び L 2 D 3 A) を得ることができ た。  Separately, a low-metastasis strain (N 15) was obtained from the parent strain N C I — H 4 60 cells by the limiting dilution method. Furthermore, by treating L NM 3 5 with a demethylating agent (5 —aza—2 '—deoxycytidine) (1 // 1 ^ for 2 4 hours) in the same culture medium as above, low Transfer strains (L 2 D 2 and L 2 D 3 A) could be obtained.
上記の手順で得た L NM 3 5株及び親株について、 細胞の運動能アツセィ及び 浸潤能アツセィによる転移能、 並びにマウスへの皮下移植による腋窩のリンパ節 及び肺への転移能の強さを調べた。  For the LNM35 and parent strains obtained by the above procedure, examine the motility of cells and metastasis by invasion, and the strength of metastasis to axillary lymph nodes and lungs by subcutaneous transplantation into mice. It was.
運動能ァッセィは、 8 mの微小孔をもつフィルタ一のトランスウエルチヤン バーを用いて、 2 4時間の培養後に、 フィルター裏側へ移動した細胞数をカウン 卜する手順で行った。 The motility assay is a transwelch filter with a filter of 8 m. Using a bar, the number of cells migrated to the back of the filter after counting for 24 hours was counted.
浸潤能アツセィは、 8 μ mの微小孔をもつフィルターにマ卜リゲルをコ一トし たトランスウエルチヤンバーを用いて、 2 4時間の培養後に、 フィルタ一裏側へ 移動した細胞数をカウントする手順で行った。  The invasion ability is measured using a transwell chamber in which the gel is coated on a filter with 8 μm micropores and counts the number of cells that have migrated to the back of the filter after 24 hours of incubation. I went by the procedure.
リンパ節及び肺への転移はそれぞれ、 重量及び腫瘤の数によって判定した。 その結果、 図 2に示すように、 LNM3 5株は、 運動能、 浸潤能がともに最も 高値を示し、 またリンパ節及び肺への転移も高値を示したことから、 高転移癌細 胞株であることを確認した。 一方、親株はいずれも、非常に低い運動能、浸潤能、 リンパ節転移、肺転移を示したことから、低転移癌細胞株であることを確認した。 実施例 2  Lymph node and lung metastases were determined by weight and number of masses, respectively. As a result, as shown in Fig. 2, the LNM3 5 strain showed the highest levels of both motility and invasion, and also showed high levels of lymph node and lung metastasis. I confirmed that there was. On the other hand, the parent strains showed very low motility, invasive ability, lymph node metastasis, and lung metastasis, confirming that they were low metastasis cancer cell lines. Example 2
(新規の癌転移関連遺伝子の検出) (Detection of novel cancer metastasis-related genes)
e n e F i 1 t e r H u m a n M i c r o a r r a y s R e l e a s e I と R e l e a s e I I (登録商標) マイクロアレイ ( I n v i t r o g e n社製) を用いて、 高転移性株 LNM3 5株と親株 N 1 5株との間で遺伝子発 現差を示す特定の遺伝子の検出について検討した。  ene F i 1 ter Human Microarrays Release I and Release II (registered trademark) microarray (manufactured by Invitrogen) can be used to generate genes between highly metastatic LNM3 5 and parent N 15 The detection of specific genes showing current differences was examined.
具体的に、 このマイクロアレイでは、 5 gの全 R N Aを铸型とし、 オリ ゴ- d Tプライマーと S u p e r S c r i p t l I逆転写酵素を用いて、 1 0 0 μ C iの [33 P] d CT P存在下で逆転写し、 I n v i t r o g e n社製の c DN Aマ イクロア'レイ (G e n e F i 1 t e r H u m a n M i c r o a r r a y sSpecifically, in this microarray, 5 g of total RNA was caged, and an oligo-d T primer and Super Scriptl I reverse transcriptase were used to produce 100 μCi of [ 33 P] d CT. Reverse transcription in the presence of P, and c DN A microa'ray (Gen F i 1 ter Human M icroarrays manufactured by Invitrogen)
R e l e a s e I と R e l e a s e I I )とハイブリダイズさせた。 2 M u r e a , 0. 1 % S D S , 5 0 mMリン酸ナトリ ウムバッファ一 (p H 7.R e lea ase I and R ele ase I I) were hybridized. 2 M u r e a, 0.1% S D S, 50 mM sodium phosphate buffer (pH 7.
0), 1 5 0 mM N a C 1 , 1 mM Mg C l 2と 0. 2%A l k P h o s0), 1 50 mM NaC 1, 1 mM MgCl 2 and 0.2% Alk Phos
D 1 R E C T R 1 b l o c k i n g r e a g e n t (Am e r s h a m B i o s c i e n c e社製) による洗浄を行った後、 マイクロアレイをィメージン グプレート (富士写真フィルム社製、 東京、 日本) と 2時間接触させ、 BA S 5After washing with D 1 RECT R 1 blockingreagent (Amersham Biosciences), the microarray was brought into contact with the imaging plate (Fuji Photo Film, Tokyo, Japan) for 2 hours.
000 R '' (富士写真フィルム社製、 東京、 日本) を用いてイメージングプレート をスキャンする事で、 8 , 6 4 4個の遺伝子に相当する全 1 ]., 1. 6 8スポッ ト の発現プロファイルを 2回取得した。 (バイオインフォマティ クス解析) By scanning the imaging plate using 000 R '' (Fuji Photo Film Co., Ltd., Tokyo, Japan), expression of all 8, 6 4 and 4 genes corresponding to 1]., 1. 6 8 spots The profile was acquired twice. (Bioinformatics analysis)
LNM3 5と N 1 5それぞれ 2回、 計 4回の発現プロファイルに於いて、 発現 量 (スキャンしたスポッ トの値) が 0. 1以下のスポッ トについては、 検出限界 のため、 解析対象から除外した。  LNM3 5 and N 15 are each 2 times, and in the total 4 times of expression profiles, spots whose expression level (scanned spot value) is 0.1 or less are excluded from analysis due to detection limit. did.
非線形補正手法である 1 o w e s s手法を用いて、 4回の発現プロファイルを n o r m a l i z e した後、 L NM 3 5と N 1 5のそれぞれについて、 平均値を 求めた。  Using the 1 o w e s s method, which is a non-linear correction method, four expression profiles were subjected to no r m a l i z e, and then the average value was determined for each of L NM 3 5 and N 1 5.
LNM3 5と N 1 5の発現プロファイルを比較し、 2 S D (標準偏差の 2倍) 以上発現差があるスポッ トを抽出した。  The expression profiles of LNM35 and N15 were compared, and spots with an expression difference of 2 SD (twice the standard deviation) or more were extracted.
さらに、 抽出しだスポッ トを対象に、 L NM 3 5で発現が亢進しているスポッ トでは、 L NM 3 5の 2回の発現プロファイルの発現値が共に 1. 0より大きレ、、 また N 1 5で発現が亢進しているスポッ トでは、 N 1 5の 2回の発現プロフアイ ルの発現値が共に 1. 0より大きい、 という条件に合致するスポッ トを検索した ところ、 4 5個の遺伝子に相当するスポッ 卜が抽出された。  Furthermore, in the spot that was extracted, the expression level of the two expression profiles of LNM35 was both higher than 1.0 in the spot whose expression was enhanced by LNM35. In the spot whose expression was enhanced by N 15, when searching for spots that met the condition that the expression values of the two expression profiles of N 15 were both greater than 1.0, 45 Spots corresponding to these genes were extracted.
実施例 3 Example 3
(患者症例)  (Patient case)
5 0の肺癌患者症例を、 愛知県がんセンターの胸部外科 (名古屋、 日本) で治 癒的切除術を行い成功した患者のファイルから得た。 すべての腫瘍標本を OCT 化合物に包埋し、 正規の検討部門からの必要な承認と患者からのインフォ一ムド コンセントの書面を得たあとで一 8 0°Cに保存した。  50 patients with lung cancer were obtained from a file of patients who had successfully undergone curative resection at Thoracic Surgery (Nagoya, Japan) at Aichi Cancer Center. All tumor specimens were embedded in OCT compounds and stored at 180 ° C after obtaining the required approval from the formal review department and written consent from the patient.
(発現プロファイルの取得)  (Acquisition of expression profile)
腫瘍標本の凍結組織から、 約 Ί μ m厚に約 5 0切片を削りだした。 1 0切片毎 にギムザ染色し、 病理医の指導のもと、 腫瘍組織が大半を占める領域から RN e a s yキッ ト (Q i a g e n社、 米国) を用いて全 RN Aを抽出した。 オリゴ- d Tプライマーと S u p e r S c r i p t I I逆転写酵素を用いて、 1 0 0 μ C i の [33 P] d C T P存在下で約 5 μ gの全 RN Aを逆転写した。 I n v i t r o g e n社製の c DN Aマイクロアレイ ( G e n e F i 1 t e r H u m a n M i c r o a r r a y s R e l e a s e I と R e l e a s e I I ) とノヽイブ' リダイズさせた後、 マイクロアレイをイメージングプレ一ト (富士フィルム社製) と 2時間接触させ、 BA S 5 000 (富士フィルム社製) を用いてイメージング プレートをスキャンすることで、 8, 644個の遺伝子に相当する全 1 1, 1 6 8スポッ トの発現プロファイルを 2回取得した。 About 50 sections were cut from the frozen tissue of the tumor specimen to a thickness of about Ί μm. Every 10 sections were stained with Giemsa, and under the guidance of a pathologist, total RNA was extracted from an area where the majority of the tumor tissue was located using an RN easy kit (Qiagen, USA). Approximately 5 μg of total RNA was reverse transcribed in the presence of 100 μCi of [ 33 P] d CTP using oligo-dT primer and Superscript II reverse transcriptase. Invitrogen's c DN A microarray (Gene F i 1 ter Human Microarrays Release I and Release II) was re-noised and the microarray was then imaged (Fuji Film) For 2 hours, and scanning the imaging plate with BA S 5 000 (Fuji Film), 2 expression profiles of all 1, 1, 16 spots corresponding to 8,644 genes were obtained. Acquired times.
(バイオインフォマティ クス解析)  (Bioinformatics analysis)
r a n k- i n v a r i a n t手法をもちいて取得した発現プロファイルを補 正した後、 2回の平均値から発現値を求めた。  After correcting the expression profile obtained using the r a n k- i n v a r i ant method, the expression value was determined from the average of the two times.
(45個の転移関連遺伝子の発現パターンと再発 .死亡の関係)  (Relationship between expression pattern of 45 metastasis-related genes and recurrence and death)
LNM3 5と N 1 5の比較から抽出した 45遺伝子の類似性をもとに、 愛知県 がんセンタ一 (名古屋、 日本) で肺癌の手術を受けた 50症例の肺癌患者のデー タをクラスタ一解析した (図 3A)。  Based on the similarity of 45 genes extracted from the comparison of LNM3 5 and N 15, data on 50 lung cancer patients who underwent lung cancer surgery at Aichi Cancer Center (Nagoya, Japan) was clustered. Analyzed (Figure 3A).
図中に赤色もしくは緑色で示されたドッ トは、 個々の症例における各遺伝子の 発現状態を示している。 赤色はその遺伝子の発現が他の症例と比較して相対的に 高いことを示しており、 緑色はその遺伝子の発現が相対的に低いことを示してい る。 また、 図中の樹形図は類似性を示しており、 類似度が高ければ樹形図の結び つきを示す枝は短く、 類似度が低ければ樹形図の結びつきを示す枝は長くなる。 類似度が高い症例から順に結び付け、 最終的には 1つの樹形図としてまとめられ ている。  The dots shown in red or green in the figure indicate the expression status of each gene in individual cases. The red color indicates that the gene expression is relatively high compared to other cases, and the green color indicates that the gene expression is relatively low. The dendrograms in the figure show similarity. If the degree of similarity is high, the branches indicating the connection of the dendrogram are short, and if the degree of similarity is low, the branch indicating the connection of the dendrograms is long. The cases with the highest similarity are linked in order, and are finally compiled into a single tree diagram.
50症例の肺癌検体について、 クラスタ リング解析を行ったところ、 左右 2つ の大群に分類された。左側の一群は発現が高い(赤いドッ 卜の)遺伝子の多く 、 Clustering analysis was performed on 50 lung cancer specimens, and they were classified into two large groups. The group on the left is a lot of genes with high expression (red dot ド)
L NM 35で発現が亢進している遺伝子であった。 一方、 右側の一群では、 発現 が高い遺伝子の多く力 L NM3 5で発現が抑制されている遺伝子であった。 こ こで、 左側の一群を F a t a 1群、 右側の一群を F a v o r a b 1 e群として、 この 2群の予後について力プランマイヤー生存率解析を行ったところ、 有意差を もって (P = 0. 02 34) 予後の差が検出された (図 3 B)。 この結果、 LNMIt was a gene whose expression was enhanced by LNM35. On the other hand, in the group on the right side, many genes with high expression were genes whose expression was suppressed by the strength LNM35. Here, force group Meyer survival analysis of the prognosis of these two groups with the left group as Fata 1 group and the right group as F avorab 1 e group showed a significant difference (P = 0. 02 34) A prognostic difference was detected (Fig. 3 B). As a result, LNM
3 5で発現が亢進している遺伝子群の発現が相対的に高い群 (F a t a 1群) の 予後は悪く、 LNM35で発現が抑制されている遺伝子群の発現が相対的に高い 群 (F a v o r a b l e群) の予後は良い、 ということがヒ ト肺癌症例のデータ を用いて、 確認することができた。 35 The group of genes whose expression is enhanced in 5 has a relatively high expression (Fata 1 group) has a poor prognosis, and the group of genes whose expression is suppressed by LNM35 has a relatively high expression (F The prognosis of the avorable group was good, using data from human lung cancer cases.
H a r V a r d大で取得された 6 2症例の肺癌患者のデータを用いて、 クラス ター解析した結果を図 4 Aに示した。 Using data from two lung cancer patients obtained at Harvard University, class The results of the data analysis are shown in FIG. 4A.
他施設で得られたデータを解析し、 図 3と同様の結果が得られるか検討した。 H a r V a r d大のデータは我々のデータ取得手法とは異なる為、 45個の遺伝 子中、 38個の遺伝子に関する発現情報のみ得る事が出来た。 この 38個の遺伝 子の発現情報を用いて、 図 3と同様の解析を行った。  We analyzed the data obtained at other facilities and examined whether the same results as in Fig. 3 could be obtained. Since the data of Har V Ar d is different from our data acquisition method, we could obtain only expression information for 38 genes out of 45 genes. Using the expression information of these 38 genes, the same analysis as in Fig. 3 was performed.
6 2症例の肺癌検体について、 クラスタリング解析を行った所、 左右 2つの大 群に分類された。 右側の一群は発現が高い (赤いドッ トの) 遺伝子の多く力 L NM3 5で発現が亢進している遺伝子であった。 一方、 左側の一群では、 発現が 高い遺伝子の多く力 L NM 35で発現が抑制されている遺伝子であった。 ここ で、 右側の一群を! ^ a t a 1群、 左側の一群を F a v o r a b 1 e群として、 こ の 2群の予後について力プランマイヤ一生存率解析を行ったところ、 有意差をも つて (P = 0. 038 5) 予後の差が検出された (図 4 B)。 この結果、 LNM3 5で発現が亢進している遺伝子群の発現が相対的に高い群 (F a t a 1群) の予 後は悪く、 LNM3 5で発現が抑制されている遺伝子群の発現が相対的に高い群 6 Two lung cancer specimens were classified into two groups, left and right, after clustering analysis. One group on the right side was a gene with high expression (red dot). On the other hand, in the group on the left, many genes with high expression were genes whose expression was suppressed by LNM35. Here, the right group! ^ Ata 1 group, the left group is the F avorab 1 e group, and a force plan-meier 1 survival analysis was performed for the prognosis of these 2 groups. With a significant difference (P = 0. 038 5) A difference was detected (Figure 4B). As a result, the prognosis of the gene group whose expression is relatively high in LNM3 5 (Fata 1 group) is poor, and the expression of the gene group whose expression is suppressed in LNM3 5 is relative. High group
(F a v o r a b l e群) の予後は良い、 とレヽうことがハーバ一ド大学 (米国) で取得されたヒ ト肺癌症例のデータを用いても、 確認することができた。 The fact that the prognosis of the group (F a vor a b ele) was good was confirmed even using the data of human lung cancer cases obtained at Harvard University (USA).
オランダ国立癌研究所で取得された 79症例の乳癌患者のデータを用いて、 ク ラスター解析した結果を図 5 Aに示した。  Fig. 5A shows the results of a cluster analysis using data from 79 breast cancer patients acquired at the National Cancer Institute.
他施設で得られたデータを解析し、 肺癌以外の固形癌で、 図 3と同様の結果が 得られるか検討した。 オランダ国立癌研究所 (オランダ) のデータは、 本 ¾明者 らのデータ取得手法とは異なる為、 4 5個の遺伝子中、 3 7個の遺伝子に関する 発現情報のみ得ることが出来た。 この 3 7個の遺伝子の発現情報を用いて、 図 3 と同様の解析を行った。  We analyzed the data obtained at other institutions and examined whether the same results as in Fig. 3 could be obtained for solid cancers other than lung cancer. The data from the National Cancer Institute of the Netherlands (Netherlands) differed from the data acquisition method of the present authors, so only expression information on 37 genes out of 45 genes could be obtained. Using the expression information of these 37 genes, the same analysis as in Fig. 3 was performed.
79症例の乳癌検体について、 クラスタ リ ング解析を行ったところ、 左右 2つ の大群に分類された。左側の一群は発現が高い(赤いドッ トの)遺伝子の多く力 A clustering analysis of 79 breast cancer specimens revealed that they were classified into two large groups: left and right. One group on the left is the power of many highly expressed genes (red dots)
L NM 3 5で発現が亢進している遺伝子であった。 一方、 右側の一群では、 発現 が高い遺伝子の多く力 LNM3 5で発現が抑制されている遺伝子であった。 こ こで、 左側の一群を F a t a 1群、 右側の一群を F a v o r a b l e群として、 この 2群の予後について力プランマイヤ一生存率解析を行ったところ、 有意差を もって (P = 0. 0032) 予後の差が検出された (図 5 B)。 この結果、 LNM 3 5で発現が亢進している遺伝子群の発現が相対的に高い群 (F a t a 1群) の 予後は悪く、 LNM35で発現が抑制されている遺伝子群の発現が相対的に高い 群 (F a V o r a b 1 e群) の予後は良い、 ということがオランダ国立癌研究所 で取得されたヒ ト乳癌症例のデータを用いても、 確認することができた。 It was a gene whose expression was enhanced by LNM35. On the other hand, in the group on the right, many genes with high expression were genes whose expression was suppressed by LNM35. Here, a force planner-one survival analysis was performed on the prognosis of these two groups, with the left group as the Fata 1 group and the right group as the F avorable group. Thus (P = 0. 0032) a prognostic difference was detected (Fig. 5B). As a result, the prognosis of the group in which the expression of the gene group whose expression is enhanced in LNM 35 is relatively high (Fata 1 group) is poor, and the expression of the gene group in which the expression is suppressed in LNM35 is relatively The prognosis of the high group (Fa V orab 1 e group) was good, and it could be confirmed using data from human breast cancer cases obtained at the National Cancer Institute of the Netherlands.
(C o X比例ハザードモデルによる多変量解析)  (Multivariate analysis using C o X proportional hazards model)
LNM3 5と N 1 5の比較から抽出した 45遺伝子による予後指標の検討を行 つた (図 6)。  A prognostic index based on 45 genes extracted from the comparison of LNM35 and N15 was examined (Fig. 6).
45遺伝子による術後予後の指標が、 術後の予後因子として有効であるかどう かについて、 COXの比例ハザードモデルによる、年齢(63歳以上 / 63歳未満)、 性別 (男性/女性)、 喫煙歴 (喫煙歴なし/あり)、 組織型 (扁平上皮癌/非扁平上皮 癌)、 病期(P STAGE), 転移シグネチヤ一 (F a v o r a b 1 e/F a t a 1 ) の 6つの項目を用いた多変量解析により検討を行った。 その結果、 病期と 4 5遺 伝子による転移シグネチャーの 2項 Θのみが、 術後予後因子として有効であると いうことが統計学的有意差をもって示された (病期 : P = 0.0 1 4, 45遺伝子 による転移シグネチャー : P = 0. 039 )。 なお、 図中、 9 5 % C Iは 9 5 %信頼 区間、 P値は危険率をそれぞれ示す。  Whether the 45 gene postoperative prognostic index is effective as a postoperative prognostic factor, according to the proportional hazard model of COX, age (63 years old / under 63 years old), sex (male / female), smoking History (no smoking history / Yes), histological type (squamous / non-squamous carcinoma), stage (P STAGE), metastatic signature (F avorab 1 e / F ata 1) Examination was performed by variable analysis. As a result, it was shown with statistically significant difference that only the term Θ of the metastasis signature by stage and 45 gene is effective as a postoperative prognostic factor (stage: P = 0.0 1 4, 45 gene transfer signature: P = 0.003). In the figure, 9 5% CI indicates the 95% confidence interval, and P value indicates the risk factor.
(術後予後が良い又は悪レ、癌の識別例)  (Example of identifying cancer with good or bad prognosis after surgery)
術後予後が良い又は悪い癌を分類するために、 シグナル ノイズ関数 (s i g n a l — t o— n o i s e m e t r i c s、 Li o l u b ら、 s c i e n c e , V o l . 28 6, p p 5 3 1 t o 5 3 7 , 1 9 99) を用いた。 癌症例群を、 術後予後が良い癌の場合 c 1 a s s 1、 術後予後が悪い癌の場合 c 1 a s s 2と それぞれ規定した場合、 シグナル—ノィズ統計値である重み Sは次式によつて計 算される。  To classify cancers with good or bad postoperative prognosis, the signal noise function (signal — to-noisemetrics, Liolub et al., Science, Vol. 28 6, pp 5 3 1 to 5 3 7, 1 9 99) Using. When the cancer case group is defined as c 1 ass 1 for cancer with good postoperative prognosis and c 1 ass 2 for cancer with poor postoperative prognosis, the weight S which is the signal-noise statistic is given by Is calculated.
S = 〃 c l a S S】— C | a S S 2 σ Γ Ι α 5 51 + σ ε ΐ 3 5 5 2) S = 〃 cla SS 】 — C | a SS 2 σ Γ Ι α 5 5 1 + σ ε ΐ 3 5 5 2 )
ここで、 各遺伝子について、 c i a s s iは c 1 a s s 1の全発現強度データの 平均値を示し、 c h s s 2は c 1 a s s 2の全発現強度データの平均値を示し、 び c l a s s lは c 1 a s s 1の全発現強度データの標準偏差を示し、 c l a s s 2は c l a s s 2の全発現強度データの標準偏差を示す。 次に、 遺伝子 xに関する重み付き投票を、 下記の W e i g h t e d - V o t i n g の計算式を用いて計算する。 Here, for each gene, ci ass i represents the average value of all expression intensity data of c 1 ass 1, ch ss 2 represents the average value of all expression intensity data of c 1 ass 2, and classl represents c 1 The standard deviation of all expression intensity data of ass 1 is shown, and class 2 shows the standard deviation of all expression intensity data of class 2 . Next, a weighted vote for gene x is calculated using the following W eighted-Voting formula.
VX = S (Gx- b J V X = S (G x -b J
ここで、 Vxは、 遺伝子 xに関する重み付き投票を示し、 Sは上記式によって 算出される重みを示し、 Gxは、 遺伝子 Xの発現強度 (又は発現レベル) を示し、 b xは、 Where V x is a weighted vote for gene x, S is a weight calculated by the above equation, G x is the expression intensity (or expression level) of gene X, and b x is
b x= 1 + μ 2) / 2 b x = 1 + μ 2) / 2
(ここで、 μ 1及び μ 2は、 それぞれ c 1 a s s 1.、 c l a s s 2の各平均値の 平均を示す。) によって示され、 2つの群の中心 (すなわち、 重心) を示す。 重心からのずれに応じて重みを加算していく手法により、 各群の Vxの総和が 0より大きいとき、 癌は c l a s s 1に分類され、 Vxの総和が 0より小さいと き、 癌は c l a s s 2に分類される、 とすることができる。 (Where μ 1 and μ 2 are the averages of the mean values of c 1 ass 1. and class 2, respectively), indicating the center of two groups (ie, the center of gravity). When the sum of V x in each group is greater than 0 by the method of adding weights according to the deviation from the center of gravity, cancer is classified as class 1, and when the sum of V x is less than 0, cancer is classified as It can be classified as class 2.
例えば、 c 1 a s s 1に属する s a m p l e i , 2 , 3 , 4及び 5と、 c 1 a s s 2に属する s a m p l e 6, 7, 8 , 9及び 1 0について、 遺伝子 (G e n e ) A, B, C (以上、 術後予後が良いと特徴付けられる遺伝子)、 遺伝子 (G e n e ) X, Υ, Ζ (以上、 術後予後が悪いと特徴付けられる遺伝子) の発現強度 (又は発現レベル) を測定し、 各群の 5つのサンプルの各遺伝子の発現強度の平 均値 ( ) と標準偏差 (σ) を算出し、 さらに、 上記の式から、 重み (S) と重 心 (b x) を計算する。 For example, for samples i, 2, 3, 4 and 5 belonging to c 1 ass 1 and samples 6, 7, 8, 9 and 10 belonging to c 1 ass 2, genes (Gene) A, B, C (and above) , Measure the expression intensity (or expression level) of genes (G ene) X, Υ, Ζ (genes characterized by poor postoperative prognosis) The average value () and standard deviation (σ) of the expression intensity of each gene of the five samples of the group are calculated, and the weight (S) and the center (b x ) are calculated from the above formula.
型分類すべき s a m p l e Aと s a m p l e Bについて、 各遺伝子の発現強 度 (又は発現レベル) を測定し、 上記式から重み (S)、 Gx— b xを計算して各 Vxを求め、 さらに 6つの遺伝子の Vxの総和を求める。 For sample A and sample B to be typed, measure the expression intensity (or expression level) of each gene, calculate the weight (S), G x — b x from the above equation, and obtain each V x. Find the sum of V x of 6 genes.
その結果、 s a m p I e Aは、 Vxの総和が 0より大きいため、 c l a s s i と識別される。 また、 s a m p l e Bは、 V xの総和が 0より小さいため、 c l a s s 2と^別される。 産業上の利用可能性 As a result, samp I e A is identified as classi because the sum of V x is greater than 0. Sample B is separated from class 2 because the sum of V x is less than 0. Industrial applicability
本発明により、 癌患者における癌転移の可能性と予後の予測ができるため、 癌 の治療計画と予後の管理に多大な貢献をもたらすことができる。 本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 The present invention can predict the possibility of cancer metastasis and prognosis in cancer patients, and thus can greatly contribute to cancer treatment planning and prognosis management. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims

請求の範囲 The scope of the claims
1 . 癌患者の術後の予後又は転移可能性をインビト口で予測する方法であつ て、 該患者由来の生物学的検体中の、 配列番号 1 〜 4 5に示される塩基配列又は その変異配列を含む癌転移関連遺伝子マ一カーの少なく とも 1つの発現レベル又 はその転写若しくは翻訳産物レベルを、 該マーカーに対応するプローブを用いて 測定し、 術後の予後がより良い又は転移可能性がより低い患者群と術後の予後が より悪い又は転移可能性がより高い患者群との間の相対的な該レベルの差を指標 にして、 術後の予後又は転移可能性を判定することを含む、 上記方法。 1. A method for predicting the prognosis or metastatic potential of cancer patients after surgery in vitro, wherein the nucleotide sequence shown in SEQ ID NOs: 1 to 45 or a mutant sequence thereof in a biological sample derived from the patient At least one expression level or transcription or translation product level of a cancer metastasis-related gene marker containing a marker is measured using a probe corresponding to the marker, so that the prognosis after surgery is better or the possibility of metastasis is increased. To determine the postoperative prognosis or metastatic potential using the relative difference in level between the lower patient group and the patient group with worse postoperative prognosis or higher metastatic potential. Including the above method.
2 . 前記癌転移関連遺伝子マーカーが、 配列番号 2 8 〜 4 5に示される塩基 配列又はその変異配列からなるとき、 前記患者は、 術後の予後がより良い又は転 移可能性がより低い患者として識別される、 請求項 1に記載の方法。  2. When the cancer metastasis-related gene marker is composed of the nucleotide sequence shown in SEQ ID NOs: 28 to 45 or a mutant sequence thereof, the patient is a patient with a better prognosis after surgery or a lower possibility of transfer. The method of claim 1, identified as:
3 . 前記癌転移関連遺伝子マーカ一が、 配列番号 1 〜 2 7に示される塩基配 列又はその変異配列からなるとき、 前記患者は、 術後の予後がより悪い又は転移 可能性がより高い患者として識別される、 請求項 1に記載の方法。  3. When the cancer metastasis-related gene marker consists of the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a mutant sequence thereof, the patient has a worse prognosis after surgery or a higher possibility of metastasis. The method of claim 1, identified as:
4 . 前記プローブが、 配列番号 1 〜 4 5に示される塩基配列からなるポリヌ クレオチド、 それに相補的なポリヌク レオチド、 それらの変異体、 それらにス ト リンジヱントな条件下でハイブリダィズするポリヌクレオチド、 或いは 1 5以上 の連続した塩基を含むそれらの断片からなる群から選択される、 請求項 1 〜 3の いずれか 1項に記載の方法。  4. A polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 45, a complementary polynucleotide thereto, a variant thereof, a polynucleotide that hybridizes under stringent conditions thereto, or 1 The method according to any one of claims 1 to 3, wherein the method is selected from the group consisting of those fragments comprising 5 or more consecutive bases.
5 . 前記プローブが、 配列番号 1 〜 4 5に示される塩基配列からなるポリヌ クレオチド又はその変異体によってコードされるポリぺプチドからなる群から選 択されるポリペプチド又はその断片に対する抗体又はその断片である、 請求項 1 〜 3のいずれか 1項に記載の方法。  5. An antibody or fragment thereof against the polypeptide selected from the group consisting of the polypeptide consisting of the nucleotide sequence shown in SEQ ID NOS: 1 to 45 or a polypeptide encoded by a variant thereof, or a fragment thereof. The method according to any one of claims 1 to 3, wherein
6 . 前記抗体が、 ポリクローナル抗体、 モノクローナル抗体又は抗ペプチド 抗体である、 請求項 5に記載の方法。  6. The method according to claim 5, wherein the antibody is a polyclonal antibody, a monoclonal antibody or an anti-peptide antibody.
7 . 前記癌が固形癌である、 請求項 1 〜 6のいずれか 1項に記載の方法。 7. The method according to any one of claims 1 to 6, wherein the cancer is a solid cancer.
8 . 前記固形癌が肺癌又は乳癌である、 請求項 7に記載の方法。 8. The method according to claim 7, wherein the solid cancer is lung cancer or breast cancer.
9 . 配列番号 1 〜 4 5に示される塩基配列からなるポリヌク レオチ ド、 それ に相補的なポリヌク レオチド、 それらの変異体、 それらにス トリンジェントな条 件下でハイブリダィズするポリヌクレオチド、 或いは 1 5以上の連続した塩基を 含むそれらの断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビトロで予測するための組成物。 9. A polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 45, Or at least one selected from the group consisting of a variant thereof, a variant thereof, a polynucleotide that hybridizes under stringent conditions thereto, or a fragment thereof comprising 15 or more consecutive bases. A composition for predicting postoperative prognosis or metastatic potential of cancer patients in vitro, comprising two probes.
1 0 . 配列番号 2 8 〜 4 5に示される塩基配列からなるポリヌクレオチド、 それに相補的なポリヌク レオチド、 それらの変異体、 それらにス ト リ ンジェン ト な条件下でハイブリダィズするポリヌクレオチド、 或いは 1 5以上の連続した塩 基を含むそれらの断片からなる群から選択される少なく とも 1つのプローブを含 む、 癌患者の術後の予後又は転移可能性をインビトロで予測するための組成物。  1 0. A polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 28 to 45, a complementary polynucleotide, a variant thereof, a polynucleotide that hybridizes under stringent conditions, or 1 A composition for predicting in vitro postoperative prognosis or metastatic potential of a cancer patient, comprising at least one probe selected from the group consisting of those fragments containing 5 or more consecutive bases.
1 1 . 配列番号 1 〜 2 7に示される塩基配列からなるポリヌク レオチド、 そ れに相補的なポリヌクレオチド、 それらの変異体、 それらにス トリンジェントな 条件下でハイブリダィズするポリヌク レオチド、 或いは 1 5以上の連続した塩基 を含むそれらの断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビトロで予測するための組成物。  1 1. A polynucleotide comprising the nucleotide sequence shown in SEQ ID NOs: 1 to 27, a polynucleotide complementary thereto, a variant thereof, a polynucleotide that hybridizes under stringent conditions thereto, or 15 A composition for predicting postoperative prognosis or metastasis potential in cancer patients in vitro, comprising at least one probe selected from the group consisting of the above-mentioned consecutive base-containing fragments.
1 2 . 配列番号 1 〜 4 5に示される塩基配列からなるポリヌクレオチド又は その変異体によってコードされるポリペプチドからなる群から選択されるポリぺ プチド又はその断片に対する抗体又はその断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビトロで 予測するための組成物。  1 2. From a group consisting of an antibody against a polypeptide selected from the group consisting of a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1 to 45 or a polypeptide encoded by a variant thereof, or a fragment thereof, or a fragment thereof A composition for predicting the postoperative prognosis or metastatic potential of cancer patients in vitro, comprising at least one selected probe.
1 3 . 配列番号 2 8 〜 4 5に示される塩基配列からなるポリヌク レオチ ド又 はその変異体によってコードされるポリペプチドからなる群から選択されるポリ ペプチド又はその断片に対する抗体又はその断片からなる群から選択される少な く とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビト口 で予測するための組成物。  1 3. An antibody or fragment thereof against a polypeptide selected from the group consisting of a polypeptide consisting of the nucleotide sequence shown in SEQ ID NOs: 28 to 45 or a polypeptide encoded by a variant thereof, or a fragment thereof A composition for predicting the postoperative prognosis or metastatic potential of cancer patients in vitro, comprising at least one probe selected from the group.
1 4 . 配列番号 1 〜 2 7に示される塩基配列からなるポリヌクレオチド又は その変異体によってコードされるポリべプチドからなる群から選択されるポリぺ プチド又はその断片に対する抗体又はその断片からなる群から選択される少なく とも 1つのプローブを含む、 癌患者の術後の予後又は転移可能性をインビトロで 予測するための組成物。 14. A group consisting of an antibody or a fragment thereof against a polypeptide selected from the group consisting of the polynucleotide consisting of the nucleotide sequence shown in SEQ ID NOs: 1 to 27 or a polypeptide encoded by a variant thereof, or a fragment thereof. A composition for predicting in vitro the postoperative prognosis or metastasis potential of cancer patients, comprising at least one probe selected from:
1 5 . 前記プローブがキッ トの形態で含まれる、 請求項 9〜 1 4のいずれか 1項に記載の組成物。 15. The composition according to any one of claims 9 to 14, wherein the probe is included in the form of a kit.
1 6 . 前記プローブがマイクロアレイの形態で含まれる、 請求項 9〜 1 1の いずれか 1項に記載の^ a成物。  16. The composition according to any one of claims 9 to 11, wherein the probe is included in the form of a microarray.
1 7 . 培養癌細胞を用いて、 配列番号 1〜2 7のいずれかの塩基配列を含む 癌転移関連遺伝子又はその転写産物の阻害又は抑制について、 並びに Z或いは培 養癌細胞の運動能及び Z又は浸潤能の阻害又は抑制について、 候補薬剤をスクリ 一二ングすることを含む、 癌転移抑制剤のスク リーニング方法。  1 7. Inhibition or suppression of a cancer metastasis-related gene comprising any one of the nucleotide sequences of SEQ ID NOS: 1 to 27 or its transcription product using cultured cancer cells, and the motility and Z of cultured cancer cells and Z Alternatively, a screening method for a cancer metastasis inhibitor comprising screening a candidate drug for inhibition or suppression of invasive ability.
1 8 . 培養癌細胞を準備し、 該細胞を候補薬剤の存在下で培養し、 前記癌転 移関連遺伝子又はその転写産物の発現の阻害又は抑制について、 並びに Z或いは 培養癌細胞の運動能及び Z又は浸潤能の阻害又は抑制について、 候補薬剤をスク リーニングすることを含む、 請求項 1 7に記載の方法。  1 8. Prepare cultured cancer cells, culture the cells in the presence of a candidate drug, inhibit or suppress the expression of the cancer transfer-related gene or its transcription product, and the motility of Z or cultured cancer cells and The method according to claim 17, comprising screening a candidate drug for inhibition or suppression of Z or invasive ability.
PCT/JP2006/326410 2005-12-28 2006-12-28 Composition and method for predicting the postoperative prognosis or metastatic risk of cancer patient WO2007077977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005379867A JP5760247B2 (en) 2005-12-28 2005-12-28 Composition and method for predicting postoperative prognosis or metastatic potential of cancer patients
JP2005-379867 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077977A1 true WO2007077977A1 (en) 2007-07-12

Family

ID=38228316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326410 WO2007077977A1 (en) 2005-12-28 2006-12-28 Composition and method for predicting the postoperative prognosis or metastatic risk of cancer patient

Country Status (2)

Country Link
JP (1) JP5760247B2 (en)
WO (1) WO2007077977A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422785B2 (en) * 2008-09-12 2014-02-19 国立大学法人名古屋大学 Methods and biomarkers for blood detection of multiple carcinomas using mass spectrometry
WO2021227950A1 (en) * 2020-05-09 2021-11-18 广州燃石医学检验所有限公司 Cancer prognostic method
JPWO2022071242A1 (en) * 2020-09-30 2022-04-07

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037996A2 (en) * 2002-10-24 2004-05-06 Duke University Evaluation of breast cancer states and outcomes using gene expression profiles
US20050095607A1 (en) * 2003-03-07 2005-05-05 Arcturus Bioscience, Inc. University Of Louisville Breast cancer signatures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316701A1 (en) * 2003-04-09 2004-11-04 Hinzmann, Bernd, Dr. New nucleic acid, and derived proteins, useful for diagnosis of bronchial cancer and in screening for therapeutic and diagnostic agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004037996A2 (en) * 2002-10-24 2004-05-06 Duke University Evaluation of breast cancer states and outcomes using gene expression profiles
US20050095607A1 (en) * 2003-03-07 2005-05-05 Arcturus Bioscience, Inc. University Of Louisville Breast cancer signatures

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ACHIWA H. ET AL.: "Prognostic significance of elevated cyclooxygenase 2 expression in primary resected lung adenocarcinomas", CLIN. CANCER RES., vol. 5, 1999, pages 1001 - 1005, XP003015325 *
BUHLER H. AND SCHALLER G.: "Transfection of keratin 18 gene in human breast cancer cells causes induction of adhesion proteins and dramatic regression of malignancy in vitro and in vivo", MOL. CANCER RES., vol. 3, no. 7, July 2005 (2005-07-01), pages 365 - 371, XP003015336 *
DENKERT C. ET AL.: "Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma", CANCER, vol. 97, no. 12, 2003, pages 2978 - 2987, XP003015326 *
FREY U.H. ET AL.: "GNAS1 T393C polymorphisms and survival in patients with sporadic colorectal cancer", CLIN. CANCER RES., vol. 11, no. 14, July 2005 (2005-07-01), pages 5071 - 5077, XP003015333 *
FREY U.H. ET AL.: "The T393C polymorphism of the GalphaS gene (GNAS1) is a novel prognostic marker in bladder cancer", CANCER EPIDEMIOL. BIOMARKERS PREV., vol. 14, April 2005 (2005-04-01), pages 871 - 877, XP003015332 *
KOSHIKAWA K. ET AL.: "Significant up-regulation of a novel gene, CLCP1, in a highly metastatic lung cancer subline as well as in lung cancers in vivo", ONCOGENE, vol. 21, 2002, pages 2822 - 2828, XP003015334 *
KOZAKI K. ET AL.: "Establishment and characterization of a human lung cancer cell line NCI-H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation", CANCER RES., vol. 69, 2000, pages 2535 - 2540, XP003015335 *
KOZAKI K. ET AL.: "Multi-faceted analyses of a highly metastatic human lung cancer cell line NCI-H460-LNM35 suggest mimicry of inflammatory cells in metastasis", ONCOGENE, vol. 20, 2001, pages 4228 - 4234, XP003015323 *
SCHALLER G. ET AL.: "Elevated Keratin 18 protein expression indicates a favorable prognosis in patients with breast cancer", CLIN. CANCER RES., vol. 2, 1996, pages 1879 - 1885, XP003015331 *
SULZER M.A. ET AL.: "Reduced E-cadherin expression is associated with increased lymph node metastasis and unfavorable prognosis in non-small cell lung cancer", AM. J. RESPIR. CRIT. CARE MED., vol. 157, 1998, pages 1319 - 1323, XP003015329 *
TAKAHASHI T. ET AL.: "Increased expression of COX-2 in the development of human lung cancer", J. ENVIRON. PATHOL. TOXICOL. ONCOL., vol. 21, 2002, pages 177 - 181, XP003015324 *
TAKAHASHI T.: "Hito Haigan no Hassho. Shinten Katei no Tamenteki Bunshi Byotai Kaiseki", HEISEI 15 NENDO GAN KENKYU NI KAKAWARU TOKUTEI RYOIKI KENKYU KENKYU HOKOKU SHUROKU, 2004, pages 199 - 202, XP003015328 *
YANAGISAWA K. ET AL.: "Gene and protein expression profiling in highly metastatic human lung cancer cell line, LNM35", ANNUAL MEETING OF THE JAPAN CANCER ASSOCIATION KIJI, 2004, pages 452, XP003015327 *
YOSHIDA R. ET AL.: "The loss of E-cadherin, alpha- and beta-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer", INT J. ONCOL., vol. 18, 2001, pages 513 - 520, XP003015330 *

Also Published As

Publication number Publication date
JP5760247B2 (en) 2015-08-05
JP2007175023A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
JP5109131B2 (en) Method for diagnosing bladder cancer
JP6196338B2 (en) Identification of tumor-associated antigens for diagnosis and treatment
US20220251662A1 (en) Metastasis specific splice variants of mena and uses thereof in diagnosis, prognosis and treatment of tumors
US20100190656A1 (en) Breast Cancer Specific Markers and Methods of Use
KR101828290B1 (en) Markers for endometrial cancer
CA2762082C (en) Markers for detection of gastric cancer
BRPI0707642A2 (en) Urine Gene Expression Rates for Cancer Detection
US11022612B2 (en) BARD1 isoforms in lung and colorectal cancer and use thereof
KR20210052709A (en) CXCL13 marker predictive of responsiveness to immunotherapy in a patient with lung cancer and use thereof
US20110236314A1 (en) Method of detection and diagnosis of oral and nasopharyngeal cancers
WO2007077977A1 (en) Composition and method for predicting the postoperative prognosis or metastatic risk of cancer patient
US20110151469A1 (en) Interferon epsilon (ifne1) as a marker for targeted cancer therapy
JP2021503289A (en) New CIP2A variant and its use
WO2007034603A1 (en) Marker gene for malignant brain tumor and use thereof
US20140295416A1 (en) Novel Method of Cancer Diagnosis and Prognosis and Prediction of Response to Therapy
KR102055350B1 (en) Biomarker for Diagnosis of Anticancer drug Resistance of Colon Cancer and Uses thereof
KR102025005B1 (en) Biomarker for early diagnosis of hepatocellular carcinoma in precancerous lesion and use thereof
KR101683961B1 (en) Recurrence Marker for Diagnosis of Bladder Cancer
US20040138161A1 (en) Methods of modulating proliferative conditions
KR102084658B1 (en) Metastasis-specific markers for diagnosing prognosis and determining treatment strategies of patient of clear cell renal cell carcinoma
JP2009505631A (en) Cancer-related gene RASEGEF1A
KR101808658B1 (en) Diagnostic Kit for Cancer and Pharmaceutical Composition for Prevention and Treatment of Cancer
JP2010500004A (en) Prostate cancer-related gene STYK1
KR20190090513A (en) TCIRG1 biomarker for diagnosing recurrent and prognosis of liver cancer and use thereof
JP2007089547A (en) Brain tumor marker for predicting prognosis of brain tumor patient and use of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843779

Country of ref document: EP

Kind code of ref document: A1