WO2007077646A1 - Process for producing composite membrane - Google Patents

Process for producing composite membrane Download PDF

Info

Publication number
WO2007077646A1
WO2007077646A1 PCT/JP2006/316250 JP2006316250W WO2007077646A1 WO 2007077646 A1 WO2007077646 A1 WO 2007077646A1 JP 2006316250 W JP2006316250 W JP 2006316250W WO 2007077646 A1 WO2007077646 A1 WO 2007077646A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
porous support
fine particles
organic polymer
composite membrane
Prior art date
Application number
PCT/JP2006/316250
Other languages
French (fr)
Japanese (ja)
Inventor
Hironobu Shirataki
Zhengbao Wang
Kensuke Aoki
Hiroyoshi Ohya
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Publication of WO2007077646A1 publication Critical patent/WO2007077646A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • B01D61/3621Pervaporation comprising multiple pervaporation steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range

Definitions

  • the present invention relates to a method for producing a composite membrane in which a layer composed of zeolite crystals having a molecular sieving function is formed on a hollow cylindrical porous support, a composite membrane obtained by the production method,
  • the present invention also relates to a material separation method for separating a specific component from a liquid, gas, or a mixture thereof by a per-partition method or a per-permeation method using the composite membrane.
  • the azeotropic distillation method In addition to the need for such a harmful third component, the azeotropic distillation method also has high energy costs. Therefore, in recent years, as an alternative separation method, a pervaporation method or a single paper method is used. A separation method using a myelination has attracted attention, and it is known that a separation membrane using a zeolite membrane is high and exhibits separation performance.
  • the permeation flux Q 2. 15 kgZm 2 h in an aqueous solution at a temperature of 75 ° C and 90% by weight of ethanol.
  • a separation coefficient a of 10,000 or more can be obtained (see Patent Document 1).
  • a film forming method for forming a layer (membrane) composed of zeolite crystals on a porous support a method is used in which a seed crystal of zeolite is applied to a porous support and the crystals are grown by hydrothermal synthesis.
  • Method for example, see Non-Patent Document 1
  • Patent Document 2 a method of growing crystals by direct hydrothermal synthesis
  • Patent Document 3 a gel as a raw material for zeolite is applied on a porous support, and then a film is formed by steam treatment. Examples include the dry gel method (Patent Document 3).
  • the so-called seed crystal method in which a seed crystal is applied to a support and is hydrothermally synthesized, is particularly effective in practical use as a method for forming a film of dense zeolite crystals without defects (Patent Document 1 and Four).
  • Patent Document 1 uses a method of rubbing seeds on a support
  • Patent Document 4 immerses the support in a seed dispersion aqueous solution
  • Patent Document 5 brushes the seed dispersion aqueous solution on the surface of the porous support.
  • Patent Document 6 a method using bentonite as a binder as a method for supporting zeolite fine particles on the surface of a porous support using a binder
  • Patent Document 7 a method using silica sol as a binder is disclosed.
  • bentonite in order for bentonite to function as a binder, it must be fired at 400 ° C or higher and hardened. At such high temperatures, the structure of the zeolite is destroyed and the crystal film is formed. It is not effective as a seed crystal loading method.
  • water glass or silica sol since water glass or silica sol has low coating properties, it is not easy to uniformly and firmly support the zeolite fine particles on the surface of the porous support. Furthermore, since the solvent of bentonite, water glass or silica sol is limited to water or an organic solvent containing a large amount of water, A porous support capable of supporting zeolite fine particles as a binder is limited to a support having a high hydrophilic material force such as alumina.
  • the mechanism of the formation of the zeolite crystal film by the seed crystal is considered that the gap between the seed and the seed is filled with the gel of the synthesis solution used for hydrothermal synthesis, and the seed crystal becomes the nucleus and this gel grows into the crystal film.
  • the binder that fixes the seed crystal becomes an impurity that inhibits the seed from functioning as a nucleus of growth, and has not been used as a method for forming a zeolite crystal film.
  • Patent Document 1 JP-A-7-185275
  • Patent Document 2 JP-A-6-99044
  • Patent Document 3 JP-A-7-89714
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-82008
  • Patent Document 5 JP-A-8-318141
  • Patent Document 6 Japanese Patent Laid-Open No. 60-129119
  • Patent Document 7 JP-A-7-109116
  • Non-patent literature 1 Masakazu Kondo et al., Rubular-type pervaporation module with zeo lite NaA membrane "J. Memb. Sci., 1997, 133, 133
  • Non-Patent Document 2 M. P. Pina et al., "A semi-continuous mthod for the synthesis of NaA zeolite membranes on tubular supports" J. Memb. Sci., 2004, 244, 141
  • Patent Document 3 F.T.de Bruijn et al., "Influence of the support layer on the flux limitation in pervaporation J. Memb. Sci., 2003, 223, 141
  • Non-Patent Document 4 A. Huang et al., "Synthesis and properties of A-type zeolite membran es by secondary growth method with vacuum seeding" J. Memb. Sci., 2004, 245, 41
  • Non-Patent Document 5 M. Pera- Titus et al., "Preparation of zeolite NaA membrane on the in ner side of tubular support by means of a controlled seeding technique" Catalysis To day, 2005, 281, 104
  • Non-Patent Document 6 K. Okamoto et al., "Zeolite NaA membrane: Preparation, Single-Gas Permeation, and Pervaporation and Vapor Permeation of Water / organic Liquid "Ind. Eng. Chem. Res., 2001, 40, 163
  • the present invention relates to a separation membrane having a high separation factor and a high permeation flux, which is made of a zeolite crystal membrane, and in particular, from a azeotropic mixture by a pervaporation method or a perpermeation method. It is an object of the present invention to provide a composite membrane suitable for separating components and a method for producing it in high yield.
  • Another object of the present invention is to provide a method for separating a desired component from a mixed liquid, particularly an azeotropic mixture, using the composite membrane.
  • a zeolite crystal film is formed on a support by a conventional seed crystal method
  • seeds are imparted to the surface of the support by a method such as rubbing or dipping, and then the zeolite crystal film is formed by hydrothermal synthesis.
  • the zeolite crystal film is formed by hydrothermal synthesis.
  • the seed application is uneven, the amount applied is inappropriate, or the seed is detached after the application, defects will occur immediately, resulting in a decrease in separation performance and membrane formation. It is thought that the rate will decrease.
  • the present inventors imparted zeolite fine particles serving as seed crystals to the surface of a hollow cylindrical porous support using an organic polymer as a binder, so that the seed crystals are uniformly and strongly supported. Then, hydrothermal synthesis is performed to produce a zeolite crystal film with high yield and high separation performance in a simple manner without hindering the seed crystal from functioning as a nucleus for crystal growth.
  • the present inventors have found that a composite membrane having the above can be obtained, and have completed the present invention.
  • the present invention is as follows.
  • a porous support having an organic polymer as a binder and provided with zeolite fine particles on the surface is brought into contact with a synthesis solution containing a zeolite raw material and subjected to hydrothermal synthesis to thereby form the porous support.
  • a method for producing a composite film comprising forming a zeolite crystal film on a surface.
  • the porous support is formed by using a dispersion solution in which zeolite fine particles are dispersed in a solution of an organic polymer to form a zeolite on at least one of the inner surface and the outer surface of the porous support.
  • the method according to claim 1, wherein the method is a cylindrical porous support obtained by applying yttrium fine particles.
  • organic polymer is selected from the group consisting of polybutyral, polyvinyl alcohol, polysulfone, polyethersulfone, polyvinylidene fluoride, and polyethylene glycol.
  • porous support also has an inorganic force selected from ceramics and metal forces.
  • porous support comprises an organic polymer.
  • porous support is a hollow fiber obtained by wet spinning, which also has a mixture force of organic polymer and zeolite fine particles.
  • the zeolite crystal film is an A type, an X type, a Y type, a T type, an L type, a ZSM, a sodalite, a mordenite, and a silicalite. 1 method.
  • the porous support has a three-layer structure having a layer composed of an organic polymer and zeolite fine particles and further having a zeolite crystal film thereon.
  • a composite membrane obtained by the method according to any one of the above.
  • a material separation method comprising separating at least one component from a gas.
  • the invention's effect According to the method for producing a composite film of the present invention, a zeolite crystal film that is uniform and has very few defects and non-crystalline components can be produced in a high yield.
  • the composite membrane obtained by the method for producing a composite membrane of the present invention has high permeation flux and separation coefficient, and is excellent in adhesion between the zeolite crystal membrane and the porous support. Using such a composite membrane, it is versatile and
  • the composite membrane of the present invention is suitable for selectively separating a desired component by the pervaporation method using an azeotropic mixture force composed of water and an organic compound.
  • the composite membrane obtained by the production method of the present invention uses an organic polymer as a binder, and is provided on at least one of the inner surface and the outer surface of a cylindrical porous support provided with zeolite fine particles on the surface. It has a structure in which a zeolite crystal film is formed. Zeolite crystal film is formed by hydrothermal synthesis by contacting the surface of a porous support with fine particles of zeolite crystal using an organic polymer as a binder in contact with the synthesis solution used as the raw material for the zeolite crystal film. To do.
  • the zeolite fine particles are uniformly and firmly supported on the surface of the porous support using an organic polymer as a binder, not only the formation of a defect-free zeolite crystal film can be easily performed at a high yield, The separation factor and the permeation flux when separation is performed using the obtained zeolite crystal film by the pervaporation method or the pervaporation method are also improved.
  • the size of the zeolite fine particles supported on the surface of the porous support is preferably 0.01 ⁇ m or more and 10 m or less from the viewpoint of uniform dispersibility and adhesive strength on the surface of the porous support. More preferably, it is 0.1 ⁇ m or more and 5 ⁇ m or less.
  • zeolite fine particles A-type, X-type, Y-type, T-type, L-type, ZSMs, sodalites, mordenites, silicalites, etc. can be used, but the zeolite crystal film formed on the surface thereof. Select the same type of zeolite.
  • a zeolite crystal film is formed. It is desirable that zeolite fine particles occupy a surface area of 1% or more of the surface of the porous support before the hydrothermal synthesis. There is no upper limit to the proportion of the area occupied by the zeolite fine particles.
  • the porous support used in the present invention has a hollow cylindrical shape, that is, a hollow fiber shape and a tubular shape, and also includes a lotus root shape and a Hercam shape.
  • the size of the porous support is not particularly limited.
  • the outer diameter is preferably in the range of 0.5 mm to 10 cm
  • the wall thickness is preferably in the range of 0.05 mm to 2 cm. preferable.
  • the porosity of the porous support used in the composite membrane of the present invention is 10% or more from the viewpoint of the permeation flux of the composite membrane. Depending on the material of the porous support, the porosity of the mechanical support is high.
  • the viewpoint power is preferably 99% or less. More preferably, it is 30% or more and 95% or less, and most preferably 40% or more and 90% or less.
  • the pore size of the porous support needs to be large enough to prevent the permeation flux from decreasing because the movement of molecules separated by the pervaporation or the pervaporation is inhibited.
  • the average pore diameter is preferably lOnm or more from the viewpoint of permeation flux and 5 m or less from the viewpoint of the uniformity of the zeolite crystal film. More preferably, it is 50 nm or more and 2 ⁇ m or less.
  • the raw material of the porous support is made of alumina, mullite, silica, zirconia, bentonite, cordierite, silicon nitride, silicon carbide, ceramics such as glass, inorganic materials such as stainless steel and metals such as aluminum, polysulfone, Polyethersulfone, poly (vinylidene fluoride), polyethylene, polypropylene, polyacrylonitrile, polyamide, polyimide, polyester, polycarbonate, polyetherketone, silicone, cellulose and derivatives thereof, and copolymers containing these polymers. A molecule is used.
  • ceramics such as alumina, mullite, bentonite, cordierite, polysulfone, polyethersulfone, polyfluoride Organic polymers such as vinylidene, polyethylene and polyacrylonitrile are preferred.
  • a porous support obtained as a composite of an organic polymer and a ceramic can also be preferably used.
  • the same kind of zeolite that forms the crystalline film A composite porous body obtained by mixing a kind of zeolite fine particles and an organic polymer can also be used as a preferred support.
  • an inorganic material is used as the porous support
  • a wide range of materials can be selected as the organic polymer serving as a binder for supporting the zeolite fine particles on the surface.
  • Typical examples include polyvinyl butyral, polyethylene glycol, polypropylene glycol, polystyrene, polyacrylate, polymethyl methacrylate, polybutyl alcohol, polysulfone, polyethersulfone, polyvinylidene fluoride, polyethylene, Polypropylene, polyamide, polyimide, polyester, polycarbonate, polyetherketone, polybutadiene, polyacrylonitrile, poly (butyl acetate), polyvinyl chloride, cellulose and derivatives thereof, and copolymers containing these polymers can be mentioned.
  • a solution obtained by dissolving the organic polymer in an appropriate solvent and dispersed with zeolite fine particles is applied to the porous support or applied.
  • zeolite fine particles are applied by applying or immersing the porous support in a milky liquid such as latex and applying the zeolite fine particles, it does not matter as long as the polymer acts as a binder. .
  • polyvinyl butyral polyvinyl alcohol, polysulfone, polyether sulfone, polyvinylidene fluoride, and polyethylene glycol are preferable because they are particularly soluble in a common solvent and have good coating properties.
  • the organic polymer used as the binder dissolves any of the above organic polymers, and the solvent dissolves the organic polymer. Any solvent can be selected.
  • the binder when an organic polymer is used as the porous support, selection of the binder and its solvent is important unless latex is used as the binder. That is, it is necessary to select a support, a binder, and a solvent so that the organic polymer solvent that is the binder does not dissolve the organic polymer that is the support. Therefore, in the case where an organic polymer having a high molecular force such as polysulfone, polyethersulfone, polyvinylidene fluoride, polyethylene, or polyacrylonitrile is used as the porous support, the organic polymer that can be used as the binder is Bulbutyral, polybulal alcohol, and polyethylene glycol are preferred.
  • solvents include methanol, ethanol, 2-propanol, 1-butanol, methoxypropanol, ethylene glycol, 1,5-pentanediol, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, and diethylene glycol dimethylol.
  • Ethenole, ethylene glycol dimethyl ether, 2-butoxyethanol, ethylenic glycolenomonoisobutinoleether, ethylene glycolenomonoisopropino ether, and ethylene glycol monohexyl ether are preferably used.
  • a combination of polyvinyl alcohol as the binder organic polymer and water or an alkaline aqueous solution as the solvent thereof can also be used as a combination without dissolving the organic polymer as the support.
  • a dispersion solution in which the zeolite fine particles are dispersed in a solution of the organic polymer and its solvent is prepared, and the porous support is prepared. It is preferable that the quality support is lifted after being crushed and dried.
  • the fine particles of zeolite can be supported on the surface of the support by applying the dispersion directly to the surface of the porous support with a brush or the like and drying.
  • the zeolite fine particles are firmly fixed to the surface of the porous support, so that the seed crystals are supported as compared with the conventional supporting method in which the fine particles are fixed by cohesive force. It is extremely easy to handle the support from the start to the hydrothermal synthesis! That is, when the seeds are supported by cohesive force, the seeds partially peel off when touching the surface or applying an impact before hydrothermal synthesis, and the seeds are separated from the seeds immediately by convection in the synthesis solution. Since the zeolite fine particles may be detached from the support force, the denseness of the crystal film obtained after hydrothermal synthesis tends to decrease.
  • the use of an organic polymer as a binder suppresses the elimination of species before and during hydrothermal synthesis, thus facilitating the formation of a dense crystal film and separation.
  • High performance zeolite crystal membranes can be obtained in high yield.
  • an organic solvent can be used as a solvent for the binder.
  • a layer (membrane) made of zeolite crystals is formed on the surface of the porous support.
  • Zeolite crystals form grain boundaries and are packed densely to form a layer (film) on the surface of a hollow cylindrical porous support.
  • hydrophilic zeolites and hydrophobic zeolites can be used as the zeolite.
  • hydrophilic zeolite examples include A type, X type, Y type, T type, and L type
  • examples of the hydrophobic zeolite include ZSMs, sodalites, mordenites, and silicalites.
  • various zeolites in which they are replaced with other metal ions can also be used.
  • the size of the crystals forming the zeolite crystal film is preferably in the range of 0.01 ⁇ m force to 10 ⁇ m in order to prevent both separation performance and permeation flux from deteriorating. Preferably 0.1 ⁇ m force or 5 ⁇ m.
  • the thickness of the zeolite layer is preferably 0.1 ⁇ m or more from the viewpoint of separation performance and 50 ⁇ m or less from the viewpoint of the permeation flux, more preferably 0.5 ⁇ m force or 30 ⁇ m. is there.
  • the zeolite crystal film in the composite film of the present invention is formed by bringing the porous support of the present invention into contact with a synthesis solution containing a zeolite raw material and performing hydrothermal synthesis under appropriate conditions.
  • silica component used as a raw material for zeolite sodium silicate, water glass, colloidal silica, silicon dioxide, alkoxysilane hydrolyzate, and the like can be used.
  • alumina component that is a raw material for zeolite include sodium aluminate, aluminum hydroxide, aluminum nitrate, aluminum salt, boehmite, and the like.
  • sodium hydroxide is used as a raw material of sodium that exhibits alkalinity during hydrothermal synthesis and forms zeolite.
  • calcium hydroxide, calcium hydroxide, calcium carbonate, calcium nitrate, calcium chloride, etc., magnesium oxide, magnesium hydroxide, magnesium oxide, magnesium nitrate, salt ⁇ Barium nitrate, barium chloride, barium hydroxide, etc. are used as barium oxide components such as magnesium.
  • a synthetic support containing the above-mentioned zeolite raw material is placed in a sealable container such as an autoclave, and a porous support provided with zeolite fine particles using an organic polymer as a binder is provided here.
  • the zeolite crystal film is formed on the surface of the porous support by immersing and allowing the synthesis reaction to proceed at an appropriate temperature for an appropriate time.
  • the synthetic solution comes into contact with the inner surface by sealing the openings at both ends of the cylindrical porous support. After so doing, immerse in the synthesis solution.
  • the outer surface is covered with a Teflon (registered trademark) seal or the like to block the contact of the synthetic solution with the outer surface, thereby forming a cylindrical shape.
  • the inside of the porous support is filled with the synthesis solution, and the support is immersed in the synthesis solution and the synthesis reaction is allowed to proceed at an appropriate temperature for an appropriate time, or the temperature inside the porous support is increased.
  • a zeolite crystal film is formed by a method such as circulating a synthetic solution in which the temperature is controlled.
  • a mixed solution force of two or more liquids can be separated by a pervaporation method.
  • the mixed solution a mixed solution of water and an organic material or a mixed solution of two or more organic materials is preferably used.
  • hydrophilic zeolite such as A-type, X-type and T-type is used as the type of zeolite.
  • hydrophobic zeolite such as ZSMs and silicalites is used.
  • the optimum zeolite may be selected depending on the type and purpose.
  • Examples of separating a mixed solution of two or more organic substances include ketones such as acetone and methyl ethyl ketone, halogenated hydrocarbons such as carbon tetrachloride and trichloroethylene, and aromatics such as benzene and cyclohexane. Examples include extracting alcohols from a mixed solution with alcohols such as methanol, ethanol and propanol.
  • the average pore diameter and porosity of the porous support were measured by a mercury intrusion method using a pore sizer 9320 porosimeter (trade name) manufactured by Micromeritics.
  • mercury was injected by using a cell having a cell volume of about 6 cm 3 and a stem volume of 0.4 cm 3 in a pressure range of 0 MPa to 206.8 MPa.
  • the porous support used for the measurement was kept in an oven at 150 ° C. for 4 hours before drying, dried, cooled to room temperature in a desiccator, and then used for the measurement.
  • the amount of sample to be filled in the measurement cell was adjusted so that the total mercury intrusion volume was in the range of 0.1 ml to 0.3 ml, and a sample of 0.1 lg to 0.5 g was used in this measurement.
  • each character represents:
  • the volume of the porous support sample in the measurement cell is the sum of the volume of the sample and mercury in the cell before applying pressure when the sample and mercury are injected into the measurement cell, and the volume difference of the injected mercury.
  • the porosity of the porous support is determined as the ratio of the volume of the porous support sample used for the measurement to the volume corresponding to the total mercury intrusion when mercury is injected to the maximum pressure in the measurement pressure range. It is done.
  • the distribution of organic binder in the composite membrane before and after hydrothermal synthesis was determined by mapping by energy dispersive X-ray spectroscopy (EDS) using EMAX-7000 manufactured by Horiba.
  • EDS energy dispersive X-ray spectroscopy
  • EMAX-7000 manufactured by Horiba.
  • the electron beam acceleration voltage was 15kV
  • the working distance was 12mm
  • the beam current was 0.4nA
  • the mapping was performed by detecting the characteristic X-rays of carbon atoms by irradiating the electron beam.
  • polyethylene glycol 400 manufactured by Wako Pure Chemical Industries, Ltd.
  • A-type zeolite fine particles manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size: 5 ⁇ m were added and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion.
  • porous support an alumina porous support with an outer diameter of 1.6 mm, a film thickness of 0.4 mm, a porosity determined by the mercury intrusion method of 37%, and an average pore diameter of 0 is prepared. did.
  • the alumina porous support was immersed in a 50% aqueous solution of polyethylene glycol # 2000 (manufactured by Kanto Yigaku) for 1 minute and then dried in an oven at 60 ° C. for 2 hours.
  • This alumina porous support was immersed in the above zeolite fine particle dispersion for 10 seconds, dried in an oven at 60 ° C. for 1 minute, and then immersed in water for 3 minutes to solidify polysulfone.
  • the surface of the mullite tube is porous with about 5 m thick polysulfone and zeolite fine particles by scanning electron microscopic observation. A layer was formed. In this way, the zeolite fine particles supported on the support using the organic polymer as a binder did not separate even when impacted on the support and did not separate even when rubbed with a finger.
  • Figure 1 shows the cross-sectional electron microscope (SEM) image of the support carrying the resulting zeolite fine particles and the distribution of silicon and carbon in the cross section observed by energy dispersive X-ray spectroscopy (EDS). .
  • SEM image shows that zeolite fine particles are applied to the surface of the porous support.
  • EDS image shows brightly the part where the silicon (Si) atoms that make up the zeolite fine particles and the carbon (C) atoms that make up the binder are present, and from the image obtained by this EDS method. This indicates that carbon is unevenly distributed around the zeolite fine particles, and the zeolite fine particles are bound to the support surface by the organic polymer.
  • the above porous support having a length of 10 cm was prepared, and a layer made of A-type zeolite crystals was formed on the surface of the porous support by a hydrothermal synthesis method.
  • FIG. 2 shows this SEM image.
  • I is a zeolite crystal layer (film)
  • II is a zeolite particle Z organic polymer binder layer
  • is an alumina porous support layer.
  • Figure 3 shows the cross-sectional SEM image of the dense zeolite film on the obtained support and the carbon distribution in the cross-section observed by the EDS method. From the image obtained by the EDS method, it is shown that carbon (C) is dispersed and present on the surface of the zeolite crystal film and in the porous layer composed of the zeolite fine particles and the organic polymer binder. Note that the binder present on the surface of the zeolite crystal membrane may flow out during the dehydration test by the pervaporation described below, but does not affect the separation performance.
  • FIG. 4 shows a schematic diagram of the separation device using the modules used in this test.
  • a 90% by weight aqueous solution of ethanol is supplied inside module 5 by circulating it at a temperature of 75 ° C., and the inside of the porous support in module 5 is depressurized by vacuum pump 1 to Water in an ethanol aqueous solution was allowed to permeate from the outer surface to the interior of the air.
  • Water separated through the composite membrane passed through vacuum line 2 and was collected in trap 3 cooled by liquid nitrogen. Between the vacuum line 2 and the trap 3, a vacuum gauge 4 is installed. In the figure, trap 6 was installed to trap the vacuum pump force when oil flows backward.
  • the weight of water in the cooling trap 3 was measured, and the permeation flux (Q) was determined by determining the permeation amount per unit area and unit time of the membrane.
  • Q permeation flux
  • the separation factor was determined. Specifically, the weight concentrations of ethanol and water on the supply side are
  • the separation factor (H) is calculated by the following equation (2), assuming that the concentration of ethanol and water on the permeate side in the trap is Y wt% and Y wt%, respectively.
  • the module was disassembled and individual separation experiments were performed on the composite membrane.
  • One of the 20 samples had a force of 000, but the remaining 19 samples all had a separation factor of 10000 or more.
  • the permeation flux of the composite membrane with a separation factor of 10000 or more was 5. Okg / m or more.
  • polyvinyl butyral 300 manufactured by Wako Pure Chemical Industries, average polymerization degree 200-400
  • 0.4 g and methoxypropanol 19.8 g were mixed, and after the binder was completely dissolved, A type zeolite fine particles (Mizusawa A zeolite fine particle dispersion was prepared by adding 0.4 g of Shilton-B, particle size 0.8;
  • zeolite After sealing both ends of an alumina porous support obtained by sintering alumina particles having an outer diameter of 1.2 mm, a film thickness of 0.2 mm, an average pore diameter of 0.25 m, and a porosity of 48%, zeolite It was soaked in the fine particle dispersion for 10 seconds. After pulling up, drying was performed in an air atmosphere at 60 ° C. for 1 hour, whereby zeolite fine particles were supported on the surface of the porous alumina support by a binder. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they did not desorb even when rubbed with a finger.
  • FIG. 5 shows the cross-sectional electron microscope (SEM) image of the support on which the obtained zeolite fine particles are supported, and the carbon distribution in the cross section observed by energy dispersive X-ray spectroscopy (EDS).
  • SEM scanning electron microscope
  • EDS energy dispersive X-ray spectroscopy
  • the porous support was taken out, thoroughly washed with water, and dried at 60 ° C for 3 hours.
  • a crystal film with a thickness of about 5 m was formed on the surface in contact with the synthesis solution, which was analyzed by wide-angle X-ray diffraction. As a result, it was confirmed that a dense film (layer) of A-type zeolite crystals was formed.
  • Figure 6 shows the cross-sectional SEM image of the dense zeolite film on the obtained support and the carbon distribution in the cross-section observed by the EDS method. From the image obtained by the EDS method, carbon is present in a dispersed state on the surface of the dense zeolite membrane, and after hydrothermal synthesis, the organic polymer used as a binder is mainly distributed on the surface of the dense zeolite membrane. Is shown. Note that the binder present on the surface of the zeolite fine membrane may not flow out during the dehydration test by pervaporation described below, but does not affect the separation performance.
  • composite membrane was prepared twenty obtained by, to prepare a module in the same manner as in Example 1, from an aqueous solution of ethanol 90 weight 0/0, the par base Palais Chillon method at a temperature of 75 ° C, water
  • the water permeation flux (Q) was 3.6 kg / m 2 and the separation factor (s) was 14000.
  • the module was disassembled and individual separation experiments were performed on the composite membrane.
  • One of the 20 samples had a force of 000, but the remaining 19 samples all had a separation factor of 10000 or more.
  • the permeation flux of the composite membrane with a separation factor of 10,000 or more was 3.3 kg / m 2 h or more.
  • Example 2 Except for the method of supporting the zeolite fine particles on the porous support used in Example 2, and without adding polyvinylpropylal as a binder to the dispersion, the same method as in Example 2 was used. An A-type zeolite crystal film was formed on the support.
  • Polybur alcohol (Poval RS-117 (trade name) made by Kuraray) as a binder was mixed with 0.4 g and 19.6 g of water, and after the binder was completely dissolved, A-type zeolite fine particles (manufactured by Mizusawa igakusha) A zeolite fine particle dispersion solution was prepared by adding 0.6 g of Silton I B (trade name), particle size 0.8 m) and stirring sufficiently. The porous support used in Example 1 was immersed in water for 10 seconds to impregnate the pores of the support with water, and then placed in an air atmosphere at 60 ° C. for 30 seconds to obtain a surface portion of the support. Only dried.
  • the zeolite was immersed in a zeolite fine particle dispersion for 10 seconds, dried and then dried in an air atmosphere at 60 ° C. for 1 hour, whereby the zeolite fine particles were supported on the surface of the porous support by a binder.
  • the supported zeolite fine particles did not detach even when an impact was applied to the support, and did not detach when rubbed with a finger.
  • Example 2 hydrothermal synthesis was performed in the same manner as in Example 1, and then a module was prepared. Similar to Example 1, a 90% ethanol aqueous solution power pervaporation method was used to perform a separation experiment. As a result, the permeation flux (Q) of water was 4.3 kgZm 2 h, and the separation factor was 130000.
  • the module was disassembled and individual separation experiments were performed on the composite membrane.
  • One of the 20 samples had a force of 000, but the remaining 19 samples all had a separation factor of 10000 or more.
  • the permeation flux of the composite membrane with a separation factor of 10,000 or more was 4.0 kg / m 2 h or more.
  • Example 4 As a binder, 2 g of poly (vinylidene fluoride) (ARKEMAi ⁇ KYNAR—720 (trade name)) and 18 g of dimethylacetamide were mixed and stirred until a uniform transparent polymer solution was obtained. To this polymer solution, 2 g of A-type zeolite fine particles (manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size: 5 m) was added and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion. The porous support used in Example 1 was dipped in this zeolite fine particle dispersion for 10 seconds, and after lifting, dried in an air atmosphere at 60 ° C.
  • poly (vinylidene fluoride) ARKEMAi ⁇ KYNAR—720 (trade name)
  • dimethylacetamide 18 g
  • A-type zeolite fine particles manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size: 5 m
  • Example 2 hydrothermal synthesis was performed in the same manner as in Example 1, and then a module was prepared. Similarly to Example 1, a 90% ethanol aqueous solution force pervaporation method was used to perform a separation experiment. However, the water permeation flux (Q) was 3.7 kgZm, and the separation factor was 1200.000.
  • the module was disassembled and individual separation experiments were performed on the composite membrane.
  • One of the 20 samples had an a force of 3 ⁇ 4000, but the remaining 19 samples all had a separation factor of 10,000 or more.
  • the permeation flux of the composite membrane with a separation factor of 10000 or more was 3.6 kg / m or more.
  • binders 4 g of polyethersulfone (RADEL A-100 from Solvay) and 16 g of dimethylacetamide were mixed and stirred until a uniform transparent polymer solution was obtained.
  • 2 g of A-type zeolite fine particles (manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size: 5 m) were added and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion.
  • the porous support used in Example 1 was dipped in this zeolite fine particle dispersion for 10 seconds, and then pulled up and dried in an air atmosphere at 60 ° C. for 1 hour, so that the surface of the porous support was filled with zeolite. Fine particles were supported. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they did not desorb even when rubbed with a finger.
  • Example 2 hydrothermal synthesis was carried out in the same manner as in Example 1, and then a module was prepared. As in Example 1, a 90% ethanol aqueous solution power pervaporation method was used. In the separation experiment, the permeation flux (Q) of water was 4.3 kgZm 2 h, and the separation factor was 1400.
  • the module was disassembled and individual separation experiments were conducted on the composite membrane. As a result, all 20 ⁇ s had separation factors of 10000 or more, and all permeation fluxes were 4.0 kgZm 2 h or more.
  • zeolite fine particles As a binder, 4 g of polyethylene glycol (Type 2000P manufactured by Clariant) and 17 g of water were mixed and stirred until a uniform transparent polymer solution was obtained. To this polymer solution was added 2 g of type A zeolite fine particles (manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size 5 m) and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion. The porous support used in Example 1 was dipped in this zeolite fine particle dispersion for 10 seconds, and after being pulled up and dried in an air atmosphere at 60 ° C. for 1 hour, the surface of the porous support was coated with a binder. Thus, zeolite fine particles were supported. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they were not detached even when rubbed with a finger.
  • Example 2 hydrothermal synthesis was performed in the same manner as in Example 1, and then a module was prepared. Similarly to Example 1, a 90% ethanol aqueous solution force pervaporation method was used to perform a separation experiment. However, the permeation flux (Q) of water was 3.6 kgZm and the separation factor was 1100.
  • the module was disassembled and a separation experiment was performed individually on the composite membrane. As a result, 2 of 20 ⁇ forces were 3,000, but the remaining 18 all had a separation factor of 10000 or more. In addition, the permeation flux of the composite membrane with a separation factor of 10,000 or more was 3.5 kg / m 2 h or more.
  • Example 2 An organic hollow fiber (PVDF—TP manufactured by Asahi Kasei Chemicals, outer diameter 2 mm, film thickness 0.3 mm, average pore diameter 0.45 m) made of polyvinylidene fluoride as a porous support was used in Example 2. Zeolite microparticles as seeds were supported using the same dispersion liquid. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they were not detached even when rubbed with a finger.
  • Figure 7 shows an SEM image of an organic hollow fiber carrying zeolite fine particles. Figure 7 shows that the zeolite fine particles are uniformly applied to the surface of the porous support.
  • the porous support carrying the zeolite fine particles was hydrothermally synthesized under the same conditions as in Example 1 to form an A-type zeolite crystal membrane.
  • the obtained composite membrane was brought into contact with a 90% by weight ethanol aqueous solution maintained at 75 ° C, and the inside of the hollow fiber was depressurized, and a separation experiment was conducted by the pervaporation method.
  • Water permeation flux (Q) was 4.2 kg / m 2 h and the separation factor ( ⁇ ) was 10,000.
  • the module was disassembled and the composite membrane was individually separated. As a result, 3 out of 20 at forces S3000 force and the force that was in the range of 5000 The remaining 17 were all separated by 10000 or more. there were.
  • the permeation flux of the composite membrane with a separation factor of 10,000 or more was 4. Okg / m or more.
  • Polysulfone (Aldrich, Mn 22000) 20g, A-type zeolite fine particles (Suilton-B (trade name), particle size 0.8 ⁇ m) 65g, and dimethylacetamide 250g This was wet-spun using a double annular nozzle with an inner diameter of 0.5 mm and an outer diameter of 1.5 mm. At this time, water was used as the core solution and the gelling bath solution, and spinning was performed at a core solution flow rate of 5 mlZ, a stock solution flow rate of 20 mlZ, a gelling bath temperature of 10 ° C, and a winding speed of 17 mZ.
  • a hollow fiber having an outer diameter of 1.8 mm and an inner diameter of 1. Omm was obtained and used as a porous support.
  • the average pore diameter of this porous support determined by mercury porosimetry was 0.4 / ⁇ ⁇ , and the porosity was 47%.
  • This porous support is loaded with zeolite fine particles as seeds using the same dispersion as used in Example 2, and hydrothermal synthesis is performed under the same conditions as in Example 1 to form a cage zeolite crystal film.
  • O The obtained composite membrane was brought into contact with a 90% by weight aqueous ethanol solution maintained at 75 ° C, and the inner side of the hollow fiber was depressurized to conduct a separation experiment by the pervaporation method.
  • the flux (Q) was 4.5 kgZm 2 h, and the separation factor was 10,000.
  • the permeation flux and separation factor by the vapor permeation method were determined from the weight of water in the cooling trap 3 and the ethanol concentration in the trapped water.
  • the permeation flux (Q) was 16.2 kgZm 2 h, and the separation factor was 16000.
  • FIG. 9 shows that when water glass is used as the binder, almost no zeolite fine particles are supported on the surface of the organic hollow fiber.
  • This porous support was subjected to hydrothermal synthesis under the same conditions as in Example 1, and then subjected to a separation experiment by the pervaporation method. As a result, the separation performance was completely different with no difference in the composition of the feed liquid and the permeate. It ’s nasty.
  • the module was disassembled and separate experiments were conducted on the composite membranes. As a result, clear leakage was observed in all of the 20 membranes, and there was a single product that showed separation performance.
  • zeolite fine particle dispersion After mixing 0 g and 10.0 g of water and completely dissolving the binder, add 0.5 g of A-type zeolite fine particles (Shilton I (Mizusawa Igaku Co., Ltd., trade name), particle size 0.8 m)) By stirring the mixture, a zeolite fine particle dispersion was prepared.
  • A-type zeolite fine particles Shilton I (Mizusawa Igaku Co., Ltd., trade name), particle size 0.8 m
  • the zeolite fine particles adhering to the surface by water flow after washing are washed and washed, and then dried in a 60 ° C air atmosphere for 1 hour to support the zeolite fine particles with the water glass binder. Processed.
  • This porous support was subjected to hydrothermal synthesis under the same conditions as in Example 1 and then subjected to a separation experiment by the single-partition method.
  • the water permeation flux (Q) was 1.9 kg.
  • the module was disassembled and the separation experiment was performed individually on the composite membrane.
  • the separation factor for 6 was 100 forces and 2000, and the separation factor was over 10,000. Only the remaining eight were shown. This indicates that more than half of the 20 composite films obtained by hydrothermal synthesis contain defects in the zeolite crystal film. Further, all the permeation fluxes of the composite membrane having a separation factor of 10,000 or more were 2.0 kgZm 2 h or less.
  • the composite membrane of the present invention can be suitably used as a separation membrane for extracting only a specific component of liquid, gas, or a mixture force thereof.
  • the composite membrane of the present invention can be used in a system such as ethanol and water that could not be separated by a conventional distillation method.
  • FIG. 1 SEM and EDS images of a cross section in which a seed crystal is supported on the surface of an inorganic porous support by an organic binder.
  • FIG.2 Hydrothermal synthesis after seed crystal is supported on the surface of inorganic porous support by organic binder A SEM image of the zeolite crystal film and the cross section of the support obtained by.
  • FIG. 3 SEM and EDS images of zeolite crystal film and support cross section obtained by hydrothermal synthesis after supporting seed crystal on the surface of inorganic porous support with organic binder.
  • FIG. 4 A schematic diagram of a separation apparatus using a module using the composite membrane of the present invention.
  • FIG. 6 SEM and EDS images of zeolite crystal film and cross section of support obtained by hydrothermal synthesis after seed crystal is supported on the surface of inorganic porous support by organic binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

A process for producing a composite membrane, comprising bringing a porous support provided on its surface with zeolite microparticles with the use of an organic polymer as a binder into contact with a synthetic solution containing a raw material of zeolite and carrying out a hydrothermal synthesis to thereby form a zeolite crystal membrane on the surface of the porous support.

Description

明 細 書  Specification
複合膜の製造方法  Method for producing composite membrane
技術分野  Technical field
[0001] 本発明は、分子ふるい機能を有するゼォライトの結晶からなる層が、中空円筒状の 多孔質支持体上に形成された複合膜の製造方法、該製造方法によって得られた複 合膜、及び該複合膜を用いて液体、気体、又はそれらの混合物から特定の成分をパ 一べ一パレーシヨン法又はべ一パーパ一ミエーシヨン法により分離する物質分離方 法に関する。  [0001] The present invention relates to a method for producing a composite membrane in which a layer composed of zeolite crystals having a molecular sieving function is formed on a hollow cylindrical porous support, a composite membrane obtained by the production method, The present invention also relates to a material separation method for separating a specific component from a liquid, gas, or a mixture thereof by a per-partition method or a per-permeation method using the composite membrane.
背景技術  Background art
[0002] 水及び有機物が均一に混合した溶液から、水又は有機物を選択的に分離する方 法としては、蒸留による方法が広く使われている。エタノール、イソプロパノール、ブタ ノール等は、水との混合により、一定濃度以上では共沸状態となるために、通常の蒸 留法で分離することができず、ベンゼンのような有害なェントレーナーを使用した共 沸蒸留法を用いる必要がある。  [0002] As a method for selectively separating water or organic substances from a solution in which water and organic substances are uniformly mixed, a distillation method is widely used. Ethanol, isopropanol, butanol, etc. become azeotropic at a certain concentration or higher by mixing with water, so they cannot be separated by the usual distillation method, and harmful entrainers such as benzene are not used. It is necessary to use the azeotropic distillation method used.
[0003] 共沸蒸留法は、このように有害な第 3成分が必要となることに加えて、エネルギーコ ストも高くなるため、近年これに代わる分離方法としてパーベーパレーシヨン又はべ一 パーパ一ミエーシヨンによる分離方法が注目されており、ゼォライト膜を用いた分離 膜が高 、分離性能を示すことが知られて 、る。  [0003] In addition to the need for such a harmful third component, the azeotropic distillation method also has high energy costs. Therefore, in recent years, as an alternative separation method, a pervaporation method or a single paper method is used. A separation method using a myelination has attracted attention, and it is known that a separation membrane using a zeolite membrane is high and exhibits separation performance.
特に、多孔質支持体上に形成した親水性の A型ゼオライトの膜を用いたパーベー パレーシヨンによる脱水では、温度 75°C、エタノール 90重量%の水溶液において、 透過流束 Q = 2. 15kgZm2h、分離係数 aが 10000以上という、極めて高い分離性 能が得られて ヽる (特許文献 1参照)。 In particular, in the case of dehydration by pervaporation using a hydrophilic A-type zeolite membrane formed on a porous support, the permeation flux Q = 2. 15 kgZm 2 h in an aqueous solution at a temperature of 75 ° C and 90% by weight of ethanol. Thus, an extremely high separation performance with a separation coefficient a of 10,000 or more can be obtained (see Patent Document 1).
[0004] 多孔質支持体上にゼォライト結晶からなる層 (膜)を形成する製膜方法としては、多 孔質支持体にゼォライトの種結晶を付与して力 水熱合成により結晶を成長させる方 法 (例えば、非特許文献 1参照)、直接水熱合成によって結晶を成長させる方法 (特許 文献 2)、ゼォライトの原料となるゲルを多孔質支持体上に塗布した後、スチーム処理 によって製膜するドライゲル法 (特許文献 3)、等が挙げられる。これらの製膜法の中で も種結晶を支持体に付与して力 水熱合成する、いわゆる種結晶法は欠陥のない緻 密なゼオライト結晶による膜を製膜する方法として、実用上特に有効である (特許文 献 1及び 4)。 [0004] As a film forming method for forming a layer (membrane) composed of zeolite crystals on a porous support, a method is used in which a seed crystal of zeolite is applied to a porous support and the crystals are grown by hydrothermal synthesis. Method (for example, see Non-Patent Document 1), a method of growing crystals by direct hydrothermal synthesis (Patent Document 2), a gel as a raw material for zeolite is applied on a porous support, and then a film is formed by steam treatment. Examples include the dry gel method (Patent Document 3). Among these film forming methods The so-called seed crystal method, in which a seed crystal is applied to a support and is hydrothermally synthesized, is particularly effective in practical use as a method for forming a film of dense zeolite crystals without defects (Patent Document 1 and Four).
[0005] し力しながら、種結晶法においては、種となる結晶を支持体上に均一に適切な量で 付与することが重要な要素となり、種結晶の支持体表面での分散状態が不均一であ ると欠陥のないゼォライト結晶膜が得られず、高い分離性能が得られない。このため 、同様の種結晶を用いた方法で製膜した A型ゼオライトであっても、特許文献 1の脱 水性能を再現しない報告が多くなされている (例えば、非特許文献 2— 4参照)。  [0005] However, in the seed crystal method, it is an important factor that the seed crystal is uniformly applied in an appropriate amount on the support, and the seed crystal is not dispersed on the support surface. If it is uniform, a defect-free zeolite crystal film cannot be obtained, and high separation performance cannot be obtained. For this reason, there are many reports that do not reproduce the dewatering performance of Patent Document 1 even with A-type zeolite formed by a method using a similar seed crystal (for example, see Non-Patent Documents 2-4). .
[0006] また工業的に実用化されている種結晶による製膜法であっても、種結晶の支持体 表面への付与状態を制御することは容易ではな 、。例えば特許文献 1では支持体に 種を擦り付ける方法を用いることにより、特許文献 4では支持体を種分散水溶液に浸 漬することにより、特許文献 5では種分散水溶液を多孔質支持体表面に刷毛塗りす ることにより、それぞれ種結晶を付与させている。しかしながらこれらの方法を用いて も、種の支持体への付与状態の制御は完全ではなぐ更に種結晶はファンデルヮー ルスカやゼータ電位のような凝集力によって支持体表面に固定されているため(非 特許文献 5)、振動や接触による部分的な脱離を完全に抑制することは困難である。 このため、水熱合成によって得られた膜に欠陥が存在したり、また種結晶の量が過剰 な部分には非結晶成分が混在し分離機能が十分に発現されないなど、不良品の発 生を十分に抑えることは極めて難し 、。  [0006] Even in the case of a film formation method using a seed crystal that has been put to practical use in industry, it is not easy to control the state of application of the seed crystal to the surface of the support. For example, Patent Document 1 uses a method of rubbing seeds on a support, Patent Document 4 immerses the support in a seed dispersion aqueous solution, and Patent Document 5 brushes the seed dispersion aqueous solution on the surface of the porous support. By so doing, seed crystals are given to each. However, even if these methods are used, the control of the state of application of the seed to the support is not complete, and the seed crystal is fixed to the support surface by a cohesive force such as van der Waalska or zeta potential (Non Patents). Reference 5), it is difficult to completely suppress partial detachment due to vibration and contact. For this reason, defects such as the presence of defects in the membrane obtained by hydrothermal synthesis and the insufficient separation of the separation function due to the presence of non-crystalline components in the portion where the amount of seed crystals is excessive are caused. It is extremely difficult to keep it down enough.
[0007] 種結晶を支持体表面に固定するために、結合剤を用いてゼォライト微粒子を多孔 質支持体表面に担持させる方法として、ベントナイトを結合剤として用いる方法 (特許 文献 6)、及び水ガラス又はシリカゾルを結合剤として用いる方法が開示されている( 特許文献 7)。し力しながら、ベントナイトを結合剤として機能させるためには、 400°C 以上で焼成して硬化させる必要があり、そのような高温ではゼオライトの構造が破壊 されるため結晶膜を形成するための種結晶の担持法としては有効ではな 、。また、 水ガラス又はシリカゾルは塗膜性が低 ヽため、ゼォライト微粒子を多孔質支持体表 面に均一かつ強固に担持することは容易ではない。更に、ベントナイト、水ガラス又 はシリカゾルの溶媒は水又は多量の水を含む有機溶媒に限定されるため、これらを 結合剤としてゼォライト微粒子を担持できる多孔質支持体は、アルミナのような親水 性の高い材料力 なる支持体に限定される。 [0007] In order to fix the seed crystal on the surface of the support, a method using bentonite as a binder as a method for supporting zeolite fine particles on the surface of a porous support using a binder (Patent Document 6), and water glass Alternatively, a method using silica sol as a binder is disclosed (Patent Document 7). However, in order for bentonite to function as a binder, it must be fired at 400 ° C or higher and hardened. At such high temperatures, the structure of the zeolite is destroyed and the crystal film is formed. It is not effective as a seed crystal loading method. In addition, since water glass or silica sol has low coating properties, it is not easy to uniformly and firmly support the zeolite fine particles on the surface of the porous support. Furthermore, since the solvent of bentonite, water glass or silica sol is limited to water or an organic solvent containing a large amount of water, A porous support capable of supporting zeolite fine particles as a binder is limited to a support having a high hydrophilic material force such as alumina.
また、種結晶によりゼォライト結晶膜が生成するメカニズムは、種と種の隙間に水熱 合成に用いる合成液のゲルが充填され、種結晶が核となってこのゲルが結晶膜に成 長すると考えられている(非特許文献 6)。従って、種結晶を固定する結合剤は種が 成長の核として機能することを阻害する不純物となり、ゼォライト結晶膜を形成する方 法としては使われることはなカゝつた。  In addition, the mechanism of the formation of the zeolite crystal film by the seed crystal is considered that the gap between the seed and the seed is filled with the gel of the synthesis solution used for hydrothermal synthesis, and the seed crystal becomes the nucleus and this gel grows into the crystal film. (Non-patent document 6). Therefore, the binder that fixes the seed crystal becomes an impurity that inhibits the seed from functioning as a nucleus of growth, and has not been used as a method for forming a zeolite crystal film.
このように、支持体表面に欠陥や非結晶成分の混在がなぐ均一に製膜されたゼォ ライト結晶膜を、高 、収率で得ることはこれまで容易ではな力つた。  As described above, it has been difficult to obtain a high-yield zeolite crystal film uniformly formed without defects and non-crystalline components on the surface of the support.
特許文献 1 :特開平 7— 185275号公報 Patent Document 1: JP-A-7-185275
特許文献 2:特開平 6— 99044号公報 Patent Document 2: JP-A-6-99044
特許文献 3 :特開平 7— 89714号公報 Patent Document 3: JP-A-7-89714
特許文献 4:特開 2004— 82008号公報 Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-82008
特許文献 5:特開平 8— 318141号公報 Patent Document 5: JP-A-8-318141
特許文献 6:特開昭 60 - 129119号公報 Patent Document 6: Japanese Patent Laid-Open No. 60-129119
特許文献 7:特開平 7— 109116号公報 Patent Document 7: JP-A-7-109116
非特干文献 1 : Masakazu Kondo et al., rubular- type pervaporation module with zeo lite NaA membrane" J. Memb. Sci., 1997, 133, 133 Non-patent literature 1: Masakazu Kondo et al., Rubular-type pervaporation module with zeo lite NaA membrane "J. Memb. Sci., 1997, 133, 133
非特許文献 2 : M. P. Pina et al., "A semi-continuous mthod for the synthesis of NaA zeolite membranes on tubular supports" J. Memb. Sci., 2004, 244, 141 Non-Patent Document 2: M. P. Pina et al., "A semi-continuous mthod for the synthesis of NaA zeolite membranes on tubular supports" J. Memb. Sci., 2004, 244, 141
特許文献 3 : F.T. de Bruijn et al., "Influence of the support layer on the flux limita tion in pervaporation J. Memb. Sci., 2003, 223, 141  Patent Document 3: F.T.de Bruijn et al., "Influence of the support layer on the flux limitation in pervaporation J. Memb. Sci., 2003, 223, 141
非特許文献 4 : A. Huang et al., "Synthesis and properties of A- type zeolite membran es by secondary growth method with vacuum seeding" J. Memb. Sci., 2004, 245, 41 非特許文献 5 : M. Pera- Titus et al., "Preparation of zeolite NaA membrane on the in ner side of tubular support by means of a controlled seeding technique"Catalysis To day, 2005, 281, 104 Non-Patent Document 4: A. Huang et al., "Synthesis and properties of A-type zeolite membran es by secondary growth method with vacuum seeding" J. Memb. Sci., 2004, 245, 41 Non-Patent Document 5: M. Pera- Titus et al., "Preparation of zeolite NaA membrane on the in ner side of tubular support by means of a controlled seeding technique" Catalysis To day, 2005, 281, 104
非特許文献 6 : K. Okamoto et al., "Zeolite NaA membrane: Preparation, Single-Gas Permeation, and Pervaporation and Vapor Permeation of Water/ organic Liquid" Ind. Eng. Chem. Res., 2001, 40, 163 Non-Patent Document 6: K. Okamoto et al., "Zeolite NaA membrane: Preparation, Single-Gas Permeation, and Pervaporation and Vapor Permeation of Water / organic Liquid "Ind. Eng. Chem. Res., 2001, 40, 163
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、ゼォライト結晶膜からなる、高分離係数及び高透過流束を有する分離 膜、特に、パーベーパレーシヨン法又はべ一パーパ一ミエーシヨン法により、共沸混 合物から所望の成分を分離するのに好適な複合膜及びそれを高収率で製造する方 法を提供することを目的とする。 [0009] The present invention relates to a separation membrane having a high separation factor and a high permeation flux, which is made of a zeolite crystal membrane, and in particular, from a azeotropic mixture by a pervaporation method or a perpermeation method. It is an object of the present invention to provide a composite membrane suitable for separating components and a method for producing it in high yield.
また、本発明は、この複合膜を用いて混合液体、特に、共沸混合物から所望の成 分を分離する方法を提供することを目的とする。  Another object of the present invention is to provide a method for separating a desired component from a mixed liquid, particularly an azeotropic mixture, using the composite membrane.
課題を解決するための手段  Means for solving the problem
[0010] 従来の種結晶法により支持体上にゼォライト結晶膜を形成する場合、擦りつけ又は 浸漬などの方法により、支持体表面に種を付与し、その後に水熱合成によりゼォライ ト結晶膜を製膜する。この際、種の付与が不均一であったり、付与量が不適切であつ たり、また付与後の種の脱離などがあると欠陥が生じやすぐこの結果、分離性能の 低下や製膜収率の低下が生じると考えられる。 [0010] When a zeolite crystal film is formed on a support by a conventional seed crystal method, seeds are imparted to the surface of the support by a method such as rubbing or dipping, and then the zeolite crystal film is formed by hydrothermal synthesis. Form a film. At this time, if the seed application is uneven, the amount applied is inappropriate, or the seed is detached after the application, defects will occur immediately, resulting in a decrease in separation performance and membrane formation. It is thought that the rate will decrease.
これに対し、本発明者らは、有機高分子を結合剤として中空円筒状の多孔質支持 体表面に種結晶となるゼォライト微粒子を付与することにより、種結晶が均一かつ強 固に支持体表面に固定され、その後、水熱合成を施すことにより、種結晶が結晶成 長の核として機能することを阻害することなぐ極めて高い収率で、しかも簡便に、分 離性能の高いゼォライト結晶膜を有する複合膜が得られることを見出し、本発明を完 成させるに至った。  On the other hand, the present inventors imparted zeolite fine particles serving as seed crystals to the surface of a hollow cylindrical porous support using an organic polymer as a binder, so that the seed crystals are uniformly and strongly supported. Then, hydrothermal synthesis is performed to produce a zeolite crystal film with high yield and high separation performance in a simple manner without hindering the seed crystal from functioning as a nucleus for crystal growth. The present inventors have found that a composite membrane having the above can be obtained, and have completed the present invention.
すなわち、本発明は以下のとおりである。  That is, the present invention is as follows.
[0011] (1)有機高分子を結合剤として表面にゼォライト微粒子を付与した多孔質支持体を、 ゼォライトの原料を含む合成液に接触させ、水熱合成を施すことにより該多孔質支持 体の表面にゼォライト結晶膜を形成することを含む複合膜の製造方法。 [0011] (1) A porous support having an organic polymer as a binder and provided with zeolite fine particles on the surface is brought into contact with a synthesis solution containing a zeolite raw material and subjected to hydrothermal synthesis to thereby form the porous support. A method for producing a composite film, comprising forming a zeolite crystal film on a surface.
(2)前記多孔質支持体は、ゼォライト微粒子を有機高分子の溶液に分散させた分散 溶液を用いて、多孔質支持体の内表面又は外表面の少なくとも一方の表面にゼオラ イト微粒子を付与して得られる円筒状の多孔質支持体である、請求項 1記載の方法。(2) The porous support is formed by using a dispersion solution in which zeolite fine particles are dispersed in a solution of an organic polymer to form a zeolite on at least one of the inner surface and the outer surface of the porous support. 2. The method according to claim 1, wherein the method is a cylindrical porous support obtained by applying yttrium fine particles.
(3)前記有機高分子が、ポリビュルブチラール、ポリビニルアルコール、ポリスルホン 、ポリエーテルスルホン、ポリフッ化ビ-リデン、及びポリエチレングリコールからなる 群力 選ばれる、請求項 1記載の方法。 (3) The method according to claim 1, wherein the organic polymer is selected from the group consisting of polybutyral, polyvinyl alcohol, polysulfone, polyethersulfone, polyvinylidene fluoride, and polyethylene glycol.
(4)前記多孔質支持体がセラミックス又は金属力 選ばれる無機物力もなる、請求項 1記載の方法。  (4) The method according to claim 1, wherein the porous support also has an inorganic force selected from ceramics and metal forces.
(5)前記多孔質支持体が有機高分子からなる、請求項 1記載の方法。  (5) The method according to claim 1, wherein the porous support comprises an organic polymer.
(6)前記多孔質支持体が、有機高分子とゼォライト微粒子の混合物力もなる、湿式 紡糸によって得られる中空糸である、請求項 1記載の方法。  (6) The method according to claim 1, wherein the porous support is a hollow fiber obtained by wet spinning, which also has a mixture force of organic polymer and zeolite fine particles.
(7)前記ゼォライト結晶膜が、 A型、 X型、 Y型、 T型、 L型、 ZSM類、ソーダライト類、 モルデナイト類及びシリカライト類力 なる群力 選ばれた一種力 なる、請求項 1記 載の方法。  (7) The zeolite crystal film is an A type, an X type, a Y type, a T type, an L type, a ZSM, a sodalite, a mordenite, and a silicalite. 1 method.
(8)請求項 1〜7のいずれか一項に記載の製造方法によって得られた複合膜。  (8) A composite membrane obtained by the production method according to any one of claims 1 to 7.
(9)前記多孔質支持体上に、有機高分子とゼォライト微粒子力 なる層を有し、さら にその上にゼォライト結晶膜を有する 3層構造であることを特徴とする、請求項 1〜7 のいずれか一項に記載の方法によって得られた複合膜。  (9) The porous support has a three-layer structure having a layer composed of an organic polymer and zeolite fine particles and further having a zeolite crystal film thereon. A composite membrane obtained by the method according to any one of the above.
(10)前記ゼォライト結晶膜が親水性ゼォライトからなる、請求項 8又は 9記載の複合 膜。  (10) The composite film according to claim 8 or 9, wherein the zeolite crystal film is made of hydrophilic zeolite.
(11)前記ゼォライト結晶膜が疎水性ゼォライトからなる、請求項 8又は 9記載の複合 膜。  (11) The composite film according to claim 8 or 9, wherein the zeolite crystal film is made of hydrophobic zeolite.
( 12)請求項 7〜 10の 、ずれか一項に記載の複合膜を用 、て、パーベーパレーショ ン法又はべ一パーパ一ミエーシヨン法によって、 2種以上の成分からなる混合溶液又 は混合気体から少なくとも 1種の成分を分離することを含む物質分離方法。  (12) Using the composite membrane according to any one of claims 7 to 10, a mixed solution or a mixture comprising two or more components by a pervaporation method or a single permeation method. A material separation method comprising separating at least one component from a gas.
(13)水と有機物からなる混合溶液から少なくとも 1種の成分を分離する、請求項 12 記載の方法。  (13) The method according to claim 12, wherein at least one component is separated from the mixed solution composed of water and organic matter.
(14) 2種以上の有機物力もなる混合溶液力 少なくとも 1種の成分を分離する、請求 項 12記載の方法。  (14) The method according to claim 12, wherein at least one component is separated by a mixed solution force having two or more kinds of organic substances.
発明の効果 [0012] 本発明の複合膜の製造方法によると、均一で欠陥や非結晶成分が極めて少ない ゼォライト結晶膜を高収率で製造することができる。また、本発明の複合膜の製造方 法によって得られた複合膜は、透過流束、分離係数が高い上に、ゼォライト結晶膜と 多孔質支持体との密着性にも優れる。このような複合膜を用いると、多分野で、かつThe invention's effect [0012] According to the method for producing a composite film of the present invention, a zeolite crystal film that is uniform and has very few defects and non-crystalline components can be produced in a high yield. In addition, the composite membrane obtained by the method for producing a composite membrane of the present invention has high permeation flux and separation coefficient, and is excellent in adhesion between the zeolite crystal membrane and the porous support. Using such a composite membrane, it is versatile and
、広範囲の用途において、分離係数及び透過流束が高ぐコンパクトで処理能力が 高い分離用モジュールの作製が可能となる。その結果、蒸留法に代わる、反応プロ セス等力 得られる混合物の経済的な分離が可能である。 In a wide range of applications, it is possible to produce a separation module with a high separation factor and permeation flux and a high throughput. As a result, it is possible to economically separate the resulting mixture as an alternative to the distillation method.
特に、本発明の複合膜は、水と有機化合物とからなる共沸混合物力もパーベーパ レーシヨン法によって選択的に所望の成分を分離するのに好適である。  In particular, the composite membrane of the present invention is suitable for selectively separating a desired component by the pervaporation method using an azeotropic mixture force composed of water and an organic compound.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下に本発明を詳細に説明する。 [0013] The present invention is described in detail below.
本発明の製造方法によって得られる複合膜は、有機高分子を結合剤として用いて 、表面にゼォライト微粒子を付与した円筒状の多孔質支持体の、内表面又は外表面 の少なくとも一方の表面に、ゼォライトの結晶膜が形成された構造を有している。 ゼォライト結晶膜は、多孔質支持体表面に有機高分子を結合剤としてゼォライト結 晶の微粒子を付与したものを、ゼォライト結晶膜の原料となる合成液に接触させ、水 熱合成を施すことにより形成する。ゼォライト微粒子が有機高分子を結合剤として多 孔質支持体表面に均一かつ強固に担持されていることにより、欠陥のないゼォライト 結晶膜の形成が容易かつ高 、収率で行われるのみならず、得られたゼォライト結晶 膜を用いてパーベーパレーシヨン法又はべ一パーパ一ミエーシヨン法による分離を 行った際の分離係数及び透過流束も向上する。  The composite membrane obtained by the production method of the present invention uses an organic polymer as a binder, and is provided on at least one of the inner surface and the outer surface of a cylindrical porous support provided with zeolite fine particles on the surface. It has a structure in which a zeolite crystal film is formed. Zeolite crystal film is formed by hydrothermal synthesis by contacting the surface of a porous support with fine particles of zeolite crystal using an organic polymer as a binder in contact with the synthesis solution used as the raw material for the zeolite crystal film. To do. Since the zeolite fine particles are uniformly and firmly supported on the surface of the porous support using an organic polymer as a binder, not only the formation of a defect-free zeolite crystal film can be easily performed at a high yield, The separation factor and the permeation flux when separation is performed using the obtained zeolite crystal film by the pervaporation method or the pervaporation method are also improved.
[0014] 多孔質支持体の表面に担持させるゼォライト微粒子の寸法は、多孔質支持体表面 での均一分散性、接着強度の観点から、 0. 01 μ m以上、 10 m以下であることが 好ましぐより好ましくは 0. 1 μ m以上、 5 μ m以下である。 [0014] The size of the zeolite fine particles supported on the surface of the porous support is preferably 0.01 μm or more and 10 m or less from the viewpoint of uniform dispersibility and adhesive strength on the surface of the porous support. More preferably, it is 0.1 μm or more and 5 μm or less.
ゼォライト微粒子としては、 A型、 X型、 Y型、 T型、 L型、 ZSM類、ソーダライト類、 モルデナイト類、シリカライト類等を用いることができるが、その表面に形成するゼオラ イト結晶膜と同じ種類のゼォライトを選択する。  As the zeolite fine particles, A-type, X-type, Y-type, T-type, L-type, ZSMs, sodalites, mordenites, silicalites, etc. can be used, but the zeolite crystal film formed on the surface thereof. Select the same type of zeolite.
欠陥のな ヽゼオライト結晶膜を形成すると!/、う観点から、ゼォライト結晶膜が形成さ れる多孔質支持体の表面には、水熱合成を施す前の状態で、表面の 1%以上の面 積をゼオライト微粒子が占めて 、ることが望まし、。ゼォライト微粒子が表面を占める 面積の割合に上限はない。 From the viewpoint of forming a zeolite crystal film without defects, a zeolite crystal film is formed. It is desirable that zeolite fine particles occupy a surface area of 1% or more of the surface of the porous support before the hydrothermal synthesis. There is no upper limit to the proportion of the area occupied by the zeolite fine particles.
[0015] 本発明に用いられる多孔質支持体は、中空円筒状、即ち、中空糸状、管状であり、 さらにレンコン状、ハ-カム状の形状のものも含まれる。多孔質支持体の大きさは特 に限定されないが、例えば中空糸状及び管状の場合、外径は 0. 5mmから 10cmの 範囲が好ましぐ壁の厚さは、 0. 05mmから 2cmの範囲が好ましい。  [0015] The porous support used in the present invention has a hollow cylindrical shape, that is, a hollow fiber shape and a tubular shape, and also includes a lotus root shape and a Hercam shape. The size of the porous support is not particularly limited. For example, in the case of hollow fibers and tubes, the outer diameter is preferably in the range of 0.5 mm to 10 cm, and the wall thickness is preferably in the range of 0.05 mm to 2 cm. preferable.
[0016] 本発明の複合膜に用いられる多孔質支持体の空孔率は、複合膜の透過流束の観 点から 10%以上、多孔質支持体の材質にもよるが、機械的強度の観点力も 99%以 下が好ましい。より好ましくは 30%以上 95%以下、最も好ましくは 40%以上 90%以 下である。  [0016] The porosity of the porous support used in the composite membrane of the present invention is 10% or more from the viewpoint of the permeation flux of the composite membrane. Depending on the material of the porous support, the porosity of the mechanical support is high. The viewpoint power is preferably 99% or less. More preferably, it is 30% or more and 95% or less, and most preferably 40% or more and 90% or less.
多孔質支持体の細孔径は、パーベーパレーシヨン又はべ一パーパ一ミエーシヨン によって分離する分子の移動が阻害され、透過流束が減少しない大きさが必要であ る。具体的には、平均細孔径は、透過流束の観点から lOnm以上、ゼォライト結晶膜 の均一性の観点から 5 m以下であることが好ましい。より好ましくは 50nm以上、 2 μ m以" hである。  The pore size of the porous support needs to be large enough to prevent the permeation flux from decreasing because the movement of molecules separated by the pervaporation or the pervaporation is inhibited. Specifically, the average pore diameter is preferably lOnm or more from the viewpoint of permeation flux and 5 m or less from the viewpoint of the uniformity of the zeolite crystal film. More preferably, it is 50 nm or more and 2 μm or less.
[0017] 多孔質支持体の原料は、アルミナ、ムライト、シリカ、ジルコユア、ベントナイト、コー ジェライト、シリコンナイトライド、シリコンカーバイド、ガラスなどのセラミックス、ステン レス、アルミニウムなどの金属のような無機物、ポリスルホン、ポリエーテルスルホン、 ポリフッ化ビ-リデン、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、ポリアミド、ポ リイミド、ポリエステル、ポリカーボネート、ポリエーテルケトン、シリコーン、セルロース 及びその誘導体、更にこれらのポリマーを含む共重合体などの有機高分子が用いら れる。  [0017] The raw material of the porous support is made of alumina, mullite, silica, zirconia, bentonite, cordierite, silicon nitride, silicon carbide, ceramics such as glass, inorganic materials such as stainless steel and metals such as aluminum, polysulfone, Polyethersulfone, poly (vinylidene fluoride), polyethylene, polypropylene, polyacrylonitrile, polyamide, polyimide, polyester, polycarbonate, polyetherketone, silicone, cellulose and derivatives thereof, and copolymers containing these polymers. A molecule is used.
[0018] これらのうち円筒状の多孔体を形成でき、細孔径、空孔率の制御が容易な原料とし ては、アルミナ、ムライト、ベントナイト、コージヱライトなどのセラミックス、ポリスルホン 、ポリエーテルスルホン、ポリフッ化ビ-リデン、ポリエチレン、ポリアクリロニトリルなど の有機高分子が好ましい。また、有機高分子とセラミックスの複合物として得られる多 孔質支持体も好ましく用いることができる。更に結晶膜を形成するゼオライトと同じ種 類のゼォライト微粒子と有機高分子とを混合して得られる複合多孔体も好ましい支持 体として用いることができる。 Among these, as raw materials that can form a cylindrical porous body and whose pore diameter and porosity are easy to control, ceramics such as alumina, mullite, bentonite, cordierite, polysulfone, polyethersulfone, polyfluoride Organic polymers such as vinylidene, polyethylene and polyacrylonitrile are preferred. A porous support obtained as a composite of an organic polymer and a ceramic can also be preferably used. Furthermore, the same kind of zeolite that forms the crystalline film A composite porous body obtained by mixing a kind of zeolite fine particles and an organic polymer can also be used as a preferred support.
[0019] 多孔質支持体として無機材料を用いる場合、表面にゼォライト微粒子を担持させる ための、結合剤となる有機高分子は、広い範囲の材質が選択できる。代表的なものと しては、ポリビニルブチラール、ポリエチレングリコール、ポリプロピレングリコール、ポ リスチレン、ポリアクリル酸エステル、ポリメチルメタタリレート、ポリビュルアルコール、 ポリスルホン、ポリエーテルスルホン、ポリフッ化ビ-リデン、ポリエチレン、ポリプロピ レン、ポリアミド、ポリイミド、ポリエステル、ポリカーボネート、ポリエーテルケトン、ポリ ブタジエン、ポリアクリロニトリル、ポリ酢酸ビュル、ポリ塩化ビニル、セルロース及びそ の誘導体、更にこれらのポリマーを含む共重合体が挙げられる。  [0019] When an inorganic material is used as the porous support, a wide range of materials can be selected as the organic polymer serving as a binder for supporting the zeolite fine particles on the surface. Typical examples include polyvinyl butyral, polyethylene glycol, polypropylene glycol, polystyrene, polyacrylate, polymethyl methacrylate, polybutyl alcohol, polysulfone, polyethersulfone, polyvinylidene fluoride, polyethylene, Polypropylene, polyamide, polyimide, polyester, polycarbonate, polyetherketone, polybutadiene, polyacrylonitrile, poly (butyl acetate), polyvinyl chloride, cellulose and derivatives thereof, and copolymers containing these polymers can be mentioned.
有機高分子を結合剤として用いる際には、有機高分子を適当な溶媒に溶解して得 られる溶液に、ゼォライト微粒子を分散させたものを、多孔質支持体に塗布又は浸漬 して付与することが好ましい。また、ラテックスのような乳状液にゼォライト微粒子を分 散させたものを用いて、多孔質支持体に塗布又は浸漬してゼォライト微粒子を付与 しても、該ポリマーが結合剤として作用する限り構わない。  When an organic polymer is used as a binder, a solution obtained by dissolving the organic polymer in an appropriate solvent and dispersed with zeolite fine particles is applied to the porous support or applied. Is preferred. Further, even if the zeolite fine particles are applied by applying or immersing the porous support in a milky liquid such as latex and applying the zeolite fine particles, it does not matter as long as the polymer acts as a binder. .
これらのポリマーの中でも特に一般的な溶剤に溶解しやすぐ塗膜性が良好なもの として、ポリビニルブチラール、ポリビニルアルコール、ポリスルホン、ポリエーテルス ルホン、ポリフッ化ビ-リデン、ポリエチレングリコールが好ましい。  Among these polymers, polyvinyl butyral, polyvinyl alcohol, polysulfone, polyether sulfone, polyvinylidene fluoride, and polyethylene glycol are preferable because they are particularly soluble in a common solvent and have good coating properties.
多孔質支持体として無機材料を用いる場合、無機物は有機溶媒によって溶解され ることはないので、結合剤として用いる有機高分子は上記の任意の有機高分子を、 溶媒はその有機高分子を溶解させるものであれば任意の溶媒を選択することができ る。  When an inorganic material is used as the porous support, since the inorganic substance is not dissolved by the organic solvent, the organic polymer used as the binder dissolves any of the above organic polymers, and the solvent dissolves the organic polymer. Any solvent can be selected.
[0020] 一方、多孔質支持体として有機高分子を用いる場合、結合剤としてラテックスを用 いるのでなければ、結合剤とその溶媒の選択が重要となる。即ち、結合剤である有機 高分子の溶媒が、支持体である有機高分子を溶解させないような、支持体、結合剤、 及び溶剤を選択する必要がある。従って、多孔質支持体としてポリスルホン、ポリエー テルスルホン、ポリフッ化ビ-リデン、ポリエチレン、ポリアクリロニトリルなどの有機高 分子力もなるものを用いる場合、結合剤として用いることができる有機高分子は、ポリ ビュルブチラール、ポリビュルアルコール、ポリエチレングリコールが好ましい。また、 これらの溶媒としては、メタノール、エタノール、 2-プロパノール、 1-ブタノール、メトキ シプロパノール、エチレングリコーノレ、 1,5-ペンタンジオール、ジエチレングリコーノレ モノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコーノレ ジェチノレエーテノレ、エチレングリコールジメチルエーテル、 2-ブトキシエタノール、ェ チレングリコーノレモノイソブチノレエーテル、エチレングリコーノレモノイソプロピノレエーテ ル、エチレングリコールモノへキシルエーテルが好ましく用いられる。さらに、結合剤 有機高分子としてポリビニルアルコール、その溶剤として水、又はアルカリ性水溶液 の組み合わせも、支持体である有機高分子を溶解しな 、組み合わせとして用いられ る。 [0020] On the other hand, when an organic polymer is used as the porous support, selection of the binder and its solvent is important unless latex is used as the binder. That is, it is necessary to select a support, a binder, and a solvent so that the organic polymer solvent that is the binder does not dissolve the organic polymer that is the support. Therefore, in the case where an organic polymer having a high molecular force such as polysulfone, polyethersulfone, polyvinylidene fluoride, polyethylene, or polyacrylonitrile is used as the porous support, the organic polymer that can be used as the binder is Bulbutyral, polybulal alcohol, and polyethylene glycol are preferred. These solvents include methanol, ethanol, 2-propanol, 1-butanol, methoxypropanol, ethylene glycol, 1,5-pentanediol, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, and diethylene glycol dimethylol. Ethenole, ethylene glycol dimethyl ether, 2-butoxyethanol, ethylenic glycolenomonoisobutinoleether, ethylene glycolenomonoisopropino ether, and ethylene glycol monohexyl ether are preferably used. Further, a combination of polyvinyl alcohol as the binder organic polymer and water or an alkaline aqueous solution as the solvent thereof can also be used as a combination without dissolving the organic polymer as the support.
[0021] 有機高分子を用いて多孔質支持体表面にゼォライト微粒子を担持させる方法とし ては、有機高分子とその溶媒との溶液にゼォライト微粒子を分散させた分散溶液を 調合し、これに多孔質支持体を浸潰した後に引上げ、乾燥することが好ましい。また 、分散溶液を刷毛などによって多孔質支持体表面に直接塗布、乾燥すること〖こよつ て、ゼォライト微粒子を支持体表面に担持させることもできる。  [0021] As a method for supporting the zeolite fine particles on the surface of the porous support using the organic polymer, a dispersion solution in which the zeolite fine particles are dispersed in a solution of the organic polymer and its solvent is prepared, and the porous support is prepared. It is preferable that the quality support is lifted after being crushed and dried. Alternatively, the fine particles of zeolite can be supported on the surface of the support by applying the dispersion directly to the surface of the porous support with a brush or the like and drying.
[0022] 有機高分子を結合剤として用いることにより、ゼォライト微粒子は多孔質支持体表 面に強固に固定されるため、凝集力によって固定する従来の担持法に比べて、種結 晶を担持してから水熱合成を施すまでの支持体の取り扱!/ヽが極めて容易になる。即 ち、凝集力によって種を担持した場合には、水熱合成を施す前に表面に触れたり、 衝撃を加えたりすると種は部分的に剥離しやすぐまた合成液内の対流などによって 種となるゼォライト微粒子が支持体力 脱離することもあるため、水熱合成後に得ら れる結晶膜の緻密性が低下する傾向がある。  [0022] By using an organic polymer as a binder, the zeolite fine particles are firmly fixed to the surface of the porous support, so that the seed crystals are supported as compared with the conventional supporting method in which the fine particles are fixed by cohesive force. It is extremely easy to handle the support from the start to the hydrothermal synthesis! That is, when the seeds are supported by cohesive force, the seeds partially peel off when touching the surface or applying an impact before hydrothermal synthesis, and the seeds are separated from the seeds immediately by convection in the synthesis solution. Since the zeolite fine particles may be detached from the support force, the denseness of the crystal film obtained after hydrothermal synthesis tends to decrease.
[0023] これに対して、有機高分子を結合剤として用いることにより、水熱合成前及び水熱 合成中の種の脱離を抑制するため、緻密な結晶膜の成膜が容易となり、分離性能の 高 ヽゼオライト結晶膜が高収率で得られる。  [0023] On the other hand, the use of an organic polymer as a binder suppresses the elimination of species before and during hydrothermal synthesis, thus facilitating the formation of a dense crystal film and separation. High performance zeolite crystal membranes can be obtained in high yield.
結合剤として水ガラス、シリカゾルのような無機結合剤を用いる場合に対して、本発 明の有機高分子を結合剤として用いる場合は、結合剤の溶媒として有機溶剤を用い ることができるため、親水性の支持体だけでなぐポリスルホン、ポリフッ化ビ-リデン、 ポリエチレンのような疎水性の高い支持体にも容易に且つ均一に種を担持させること ができる。 In contrast to the case where an inorganic binder such as water glass or silica sol is used as a binder, when the organic polymer of the present invention is used as a binder, an organic solvent can be used as a solvent for the binder. Polysulfone, polyvinylidene fluoride, only with a hydrophilic support, A seed can be easily and uniformly supported on a highly hydrophobic support such as polyethylene.
[0024] 本発明の複合膜は、多孔質支持体の表面にゼォライト結晶からなる層(膜)が形成 されている。ゼォライト結晶は、粒界を形成して緻密にパッキングされ、中空円筒状の 多孔質支持体表面に層 (膜)を形成して!/、る。  [0024] In the composite membrane of the present invention, a layer (membrane) made of zeolite crystals is formed on the surface of the porous support. Zeolite crystals form grain boundaries and are packed densely to form a layer (film) on the surface of a hollow cylindrical porous support.
ゼォライトとしては、各種親水性ゼォライト、疎水性ゼォライトを用いることができる。 親水性ゼォライトとしては、 A型、 X型、 Y型、 T型、 L型が、疎水性ゼォライトとしては 、 ZSM類、ソーダライト類、モルデナイト類、シリカライト類がそれぞれ挙げられる。ま た、これらがアルカリ金属又はアルカリ土類金属を含む場合、それを他の金属イオン で置き換えた各種ゼォライト等も用いることができる。  As the zeolite, various hydrophilic zeolites and hydrophobic zeolites can be used. Examples of the hydrophilic zeolite include A type, X type, Y type, T type, and L type, and examples of the hydrophobic zeolite include ZSMs, sodalites, mordenites, and silicalites. Moreover, when these contain an alkali metal or an alkaline earth metal, various zeolites in which they are replaced with other metal ions can also be used.
[0025] ゼォライト結晶膜を形成する結晶の寸法は、分離性能と透過流束がともに低下する のを防ぐ上で、 0. 01 μ m力ら 10 μ mの範囲にあることが好ましぐより好ましくは 0. 1 μ m力ら 5 μ mである。 [0025] The size of the crystals forming the zeolite crystal film is preferably in the range of 0.01 μm force to 10 μm in order to prevent both separation performance and permeation flux from deteriorating. Preferably 0.1 μm force or 5 μm.
ゼォライト層の厚みは、分離性能の観点から 0. 1 μ m以上、透過流束の観点から 5 0 μ m以下であることが好ましぐより好ましくは 0. 5 μ m力ら 30 μ mである。  The thickness of the zeolite layer is preferably 0.1 μm or more from the viewpoint of separation performance and 50 μm or less from the viewpoint of the permeation flux, more preferably 0.5 μm force or 30 μm. is there.
本発明の複合膜におけるゼォライト結晶膜は、本発明の多孔質支持体を、ゼォライ トの原料を含む合成液に接触させ、適当な条件で水熱合成を施すことにより形成さ れる。  The zeolite crystal film in the composite film of the present invention is formed by bringing the porous support of the present invention into contact with a synthesis solution containing a zeolite raw material and performing hydrothermal synthesis under appropriate conditions.
[0026] ゼォライトの原料となるシリカ成分としては、ケィ酸ナトリウム、水ガラス、コロイダルシ リカ、二酸化珪素、アルコキシシランの加水分解物等を用いることができる。ゼォライト の原料となるアルミナ成分としては、アルミン酸ナトリウム、水酸ィ匕アルミニウム、硝酸 アルミニウム、塩ィ匕アルミニウム、ベーマイト等を用いることができる。また、水熱合成 時のアルカリ性を発現し、かつ、ゼォライトを形成するナトリウムの原料としては、水酸 化ナトリウムが用いられる。必要に応じてカルシウム酸化物成分として、水酸化カルシ ゥム、酸ィ匕カルシウム、硝酸カルシウム、塩化カルシウム等、マグネシウム酸ィ匕物成分 として、水酸化マグネシウム、酸ィ匕マグネシウム、硝酸マグネシウム、塩ィ匕マグネシゥ ム等、バリウム酸化物成分として、硝酸バリウム、塩化バリウム、水酸化バリウム等が用 いられる。 [0027] 水熱合成においては、上記のゼォライトの原料を含む合成液をオートクレープのよ うな密閉できる容器に入れ、ここに有機高分子を結合剤としてゼォライト微粒子を付 与した多孔質支持体を浸潰し、適度な温度で適度な時間、合成反応を進行させてゼ オライト結晶膜を多孔質支持体表面に形成する。この際、多孔質支持体の外表面に のみゼォライト結晶膜を形成する際には、円筒状である多孔質支持体の両端の開口 部を封止するなどして合成液が内表面に接触しな 、ようにした上で、合成液に浸漬 する。また、多孔質支持体の内表面にのみゼォライト結晶膜を形成する際には、外表 面をテフロン (登録商標)シールなどで被覆して、合成液の外表面への接触を遮断し 、円筒状である多孔質支持体の内部に合成液を充填して、支持体を合成液に浸漬し 、適度な温度で適度な時間、合成反応を進行させるか、あるいは多孔質支持体の内 部に温度を制御した合成液を循環させるなどの方法によりゼォライト結晶膜を形成す る。 [0026] As the silica component used as a raw material for zeolite, sodium silicate, water glass, colloidal silica, silicon dioxide, alkoxysilane hydrolyzate, and the like can be used. Examples of the alumina component that is a raw material for zeolite include sodium aluminate, aluminum hydroxide, aluminum nitrate, aluminum salt, boehmite, and the like. Further, sodium hydroxide is used as a raw material of sodium that exhibits alkalinity during hydrothermal synthesis and forms zeolite. If necessary, calcium hydroxide, calcium hydroxide, calcium carbonate, calcium nitrate, calcium chloride, etc., magnesium oxide, magnesium hydroxide, magnesium oxide, magnesium nitrate, salt匕 Barium nitrate, barium chloride, barium hydroxide, etc. are used as barium oxide components such as magnesium. [0027] In hydrothermal synthesis, a synthetic support containing the above-mentioned zeolite raw material is placed in a sealable container such as an autoclave, and a porous support provided with zeolite fine particles using an organic polymer as a binder is provided here. The zeolite crystal film is formed on the surface of the porous support by immersing and allowing the synthesis reaction to proceed at an appropriate temperature for an appropriate time. At this time, when the zeolite crystal film is formed only on the outer surface of the porous support, the synthetic solution comes into contact with the inner surface by sealing the openings at both ends of the cylindrical porous support. After so doing, immerse in the synthesis solution. In addition, when forming a zeolite crystal film only on the inner surface of the porous support, the outer surface is covered with a Teflon (registered trademark) seal or the like to block the contact of the synthetic solution with the outer surface, thereby forming a cylindrical shape. The inside of the porous support is filled with the synthesis solution, and the support is immersed in the synthesis solution and the synthesis reaction is allowed to proceed at an appropriate temperature for an appropriate time, or the temperature inside the porous support is increased. A zeolite crystal film is formed by a method such as circulating a synthetic solution in which the temperature is controlled.
[0028] 本発明の複合膜を用いて、パーベーパレーシヨン法によって 2種以上の液体の混 合溶液力 少なくとも 1種の液体を分離することができる。  [0028] By using the composite membrane of the present invention, a mixed solution force of two or more liquids can be separated by a pervaporation method.
混合溶液としては、水と有機物との混合溶液、 2種以上の有機物の混合溶液が好 適に用いられる。  As the mixed solution, a mixed solution of water and an organic material or a mixed solution of two or more organic materials is preferably used.
水及び有機物を含む混合溶液力もパーベーパレーシヨン法によって水又は有機物 を選択的に分離する場合、例えば、発酵によって得られるエタノールと水を含む混合 溶液力 エタノール又は水を選択的に分離するには、従来、蒸留が一般的な分離方 法であった。しかし、発酵により得られるエタノールと水の混合物は多量の水を含む ために、蒸留によって分離濃縮するためには、多量のエネルギーが必要となる。 このような場合に、本発明の複合膜を用いると、ゼォライトの種類を適宜選択するこ とにより、パーベーパレーシヨン法によって水と有機物の混合物から、目的物のみを 選択的に、し力も少な 、エネルギー消費で分離することが可能となる。  In the case of selectively separating water or organic matter by the pervaporation method, for example, mixed solution force containing ethanol and water obtained by fermentation To selectively separate ethanol or water Conventionally, distillation has been a common separation method. However, since the mixture of ethanol and water obtained by fermentation contains a large amount of water, a large amount of energy is required to separate and concentrate by distillation. In such a case, when the composite membrane of the present invention is used, by selectively selecting the type of zeolite, the pervaporation method can be used to selectively select only the target product from the mixture of water and organic matter and to reduce the force. It becomes possible to separate by energy consumption.
[0029] 水のみを選択的に分離する場合には、ゼォライトの種類として、 A型、 X型、 T型等 の親水性ゼォライトを使用する。一方、エタノールを選択的に分離する場合には、 ZS M類、シリカライト類等の疎水性ゼォライトを使用する。上記以外の混合物の場合に も、種類と目的によって、最適なゼォライトを選択すればよい。 2種以上の有機物の混合溶液を分離する例としては、アセトン、メチルェチルケトン などのケトン類、四塩化炭素、トリクロロエチレンなどのハロゲンィ匕炭化水素、ベンゼ ン、シクロへキサンなどの芳香族類と、メタノール、エタノール、プロパノールなどのァ ルコール類との混合溶液から、アルコール類を抽出する例が挙げられる。 [0029] When only water is selectively separated, hydrophilic zeolite such as A-type, X-type and T-type is used as the type of zeolite. On the other hand, when ethanol is selectively separated, hydrophobic zeolite such as ZSMs and silicalites is used. In the case of a mixture other than the above, the optimum zeolite may be selected depending on the type and purpose. Examples of separating a mixed solution of two or more organic substances include ketones such as acetone and methyl ethyl ketone, halogenated hydrocarbons such as carbon tetrachloride and trichloroethylene, and aromatics such as benzene and cyclohexane. Examples include extracting alcohols from a mixed solution with alcohols such as methanol, ethanol and propanol.
実施例  Example
[0030] 以下、実施例によって本発明を具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to examples.
本発明にお 、て、多孔質支持体の平均細孔径及び空孔率は Micromeritics社製ポ アサイザ 9320ポロシメータ(商品名)を用いた水銀圧入法によって測定した。測定に おいては、セル容積約 6cm3、ステム体積 0. 4cm3のセルを用いて、圧力 0MPa〜2 06. 8MPaの範囲で水銀を圧入した。測定に用いる多孔質支持体は、測定前に 15 0°Cのオーブン中に 4時間保持して乾燥させ、デシケータ中にて室温にまで冷却した 後に測定に供した。また、測定セルに充填するサンプル量は全水銀圧入容積が 0. 1 ml〜0. 3mlの範囲になるように調整し、本測定においては 0. lg〜0. 5gのサンプ ルを用いた。 In the present invention, the average pore diameter and porosity of the porous support were measured by a mercury intrusion method using a pore sizer 9320 porosimeter (trade name) manufactured by Micromeritics. In the measurement, mercury was injected by using a cell having a cell volume of about 6 cm 3 and a stem volume of 0.4 cm 3 in a pressure range of 0 MPa to 206.8 MPa. The porous support used for the measurement was kept in an oven at 150 ° C. for 4 hours before drying, dried, cooled to room temperature in a desiccator, and then used for the measurement. The amount of sample to be filled in the measurement cell was adjusted so that the total mercury intrusion volume was in the range of 0.1 ml to 0.3 ml, and a sample of 0.1 lg to 0.5 g was used in this measurement.
[0031] (1)多孔質支持体の平均細孔径  [0031] (1) Average pore diameter of porous support
水銀圧入法において、圧入する際の圧力と、その圧力で水銀が浸入する細孔径の 関係は、次の式(1)の Washburnの式によって表される。  In the mercury intrusion method, the relationship between the pressure at the time of intrusion and the pore diameter at which mercury intrudes at that pressure is expressed by the following Washburn equation (1).
[0032] [数 1]  [0032] [Equation 1]
Figure imgf000014_0001
Figure imgf000014_0001
上記式(1)において、各文字は以下を表す, In the above formula (1), each character represents:
D:多孔質支持体の細孔径  D: Pore diameter of porous support
P :水銀を圧入する際の圧力 y:水銀の表面張力(480dyneZcm) P: Pressure when injecting mercury y: Surface tension of mercury (480dyneZcm)
0:水銀と細孔壁面の接触角(ここでは 130° )  0: Contact angle between mercury and pore wall (130 ° in this case)
[0033] 上式により、圧入圧力 Pと細孔径 Dの関係が求められる。圧入圧力 Pとそれまでに圧 入された水銀量は測定により得られるので、上記の関係式から多孔質支持体の体積 平均による平均細孔径を求めることができる。 [0033] From the above equation, the relationship between the press-fit pressure P and the pore diameter D is obtained. Since the intrusion pressure P and the amount of mercury injected so far can be obtained by measurement, the average pore diameter based on the volume average of the porous support can be obtained from the above relational expression.
[0034] (2)多孔質支持体の空孔率 [0034] (2) Porosity of porous support
測定セル内の多孔質支持体サンプルの体積は、測定セルにサンプルと水銀を注 入した状態での圧力印加前のセル内でのサンプルと水銀の体積の総和と、注入した 水銀の体積の差として求められる。多孔質支持体の空孔率は、測定圧力範囲の最 高圧力まで水銀を圧入した際の全水銀圧入量に対応する体積に対する、その測定 に用いた多孔質支持体サンプルの体積の比として求められる。  The volume of the porous support sample in the measurement cell is the sum of the volume of the sample and mercury in the cell before applying pressure when the sample and mercury are injected into the measurement cell, and the volume difference of the injected mercury. As required. The porosity of the porous support is determined as the ratio of the volume of the porous support sample used for the measurement to the volume corresponding to the total mercury intrusion when mercury is injected to the maximum pressure in the measurement pressure range. It is done.
[0035] (3)エネルギー分散型 X線分光法 (EDS) [0035] (3) Energy dispersive X-ray spectroscopy (EDS)
水熱合成前後の複合膜中の有機結合剤の存在分布は、堀場製作所製 EMAX— 7000を用いたエネルギー分散型 X線分光法 (EDS)によるマッピングにより求めた。 測定において、電子線加速電圧は 15kV、作動距離 12mm、ビーム電流 0. 4nAの 条件で電子線を照射し、炭素原子の特性 X線を検知することにより、マッピングを行 つた o  The distribution of organic binder in the composite membrane before and after hydrothermal synthesis was determined by mapping by energy dispersive X-ray spectroscopy (EDS) using EMAX-7000 manufactured by Horiba. In the measurement, the electron beam acceleration voltage was 15kV, the working distance was 12mm, the beam current was 0.4nA, and the mapping was performed by detecting the characteristic X-rays of carbon atoms by irradiating the electron beam.
[0036] (実施例 1)  [Example 1]
(ゼオライト微粒子分散溶液の作製)  (Preparation of zeolite fine particle dispersion)
結合剤としてポリスルホン (Aldrich製、 Mn=16000) 3g〖こジメチルァセトアミド 25. 5 gを加え、均一に溶解するまで攪拌した。ここにポリエチレングリコール 400 (和光純 薬製) 1. 5gを添加し、更に均一透明な高分子溶液が得られるまで攪拌した。この高 分子溶液に、 A型ゼオライト微粒子(Sigma- Aldrich製、 Molecular Sieve 4A、粒径く 5 μ m) 6gを加え、 2時間攪拌することにより均一なゼォライト微粒子分散溶液を作製し た。  As a binder, 3 g of polysulfone (manufactured by Aldrich, Mn = 16000) 25.5 g of dimethylacetamide was added and stirred until it was uniformly dissolved. Here, 1.5 g of polyethylene glycol 400 (manufactured by Wako Pure Chemical Industries, Ltd.) was added and further stirred until a uniform transparent polymer solution was obtained. To this high molecular solution, 6 g of A-type zeolite fine particles (manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size: 5 μm) were added and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion.
[0037] (ゼオライト微粒子の多孔質支持体への担持)  [0037] (Support of zeolite fine particles on porous support)
多孔質支持体として、外径 1. 6mm,膜厚 0. 4mm,水銀圧入法によって求められ た空孔率が 37%であり、平均細孔径が 0. の、アルミナ多孔質支持体を用意 した。 As the porous support, an alumina porous support with an outer diameter of 1.6 mm, a film thickness of 0.4 mm, a porosity determined by the mercury intrusion method of 37%, and an average pore diameter of 0 is prepared. did.
このアルミナ多孔質支持体をポリエチレングリコール # 2000 (関東ィ匕学製)の 50% 水溶液に 1分間浸漬した後、 60°Cのオーブンにて 2時間乾燥させた。このアルミナ多 孔質支持体を上記のゼォライト微粒子分散溶液中に 10秒間浸漬し、 60°Cオーブン にて 1分間乾燥させた後、水に 3分間浸漬してポリスルホンを凝固させた。更に 60°C の水に 3時間浸漬してポリエチレングリコールを抽出した後、断面の走査型電子顕微 鏡観察により、ムライトチューブの表面には厚さ約 5 mのポリスルホンとゼォライト微 粒子力もなる多孔質層が形成されていた。このようにして有機高分子を結合材として 支持体に担持させたゼォライト微粒子は支持体に衝撃を加えても脱離することなぐ また指で擦っても脱離しな力つた。  The alumina porous support was immersed in a 50% aqueous solution of polyethylene glycol # 2000 (manufactured by Kanto Yigaku) for 1 minute and then dried in an oven at 60 ° C. for 2 hours. This alumina porous support was immersed in the above zeolite fine particle dispersion for 10 seconds, dried in an oven at 60 ° C. for 1 minute, and then immersed in water for 3 minutes to solidify polysulfone. After extracting polyethylene glycol by immersing in water at 60 ° C for 3 hours, the surface of the mullite tube is porous with about 5 m thick polysulfone and zeolite fine particles by scanning electron microscopic observation. A layer was formed. In this way, the zeolite fine particles supported on the support using the organic polymer as a binder did not separate even when impacted on the support and did not separate even when rubbed with a finger.
図 1に、得られたゼォライト微粒子を担持させた支持体の断面電子顕微鏡 (SEM) 像、並びにエネルギー分散型 X線分光法 (EDS)により観測される断面におけるシリ コン及び炭素の存在分布を示す。 SEM像より多孔質支持体表面にゼォライト微粒子 が付与されて ヽることが示される。また EDS像にぉ 、てはゼオライト微粒子を構成す るシリコン (Si)原子及び結合剤を構成する炭素 (C)原子が存在する部分は明るく示さ れており、この EDS法により得られた像から、ゼォライト微粒子の周辺に炭素が偏在 しており、ゼォライト微粒子が有機高分子によって相互に支持体表面に結合されてい ることが示される。  Figure 1 shows the cross-sectional electron microscope (SEM) image of the support carrying the resulting zeolite fine particles and the distribution of silicon and carbon in the cross section observed by energy dispersive X-ray spectroscopy (EDS). . The SEM image shows that zeolite fine particles are applied to the surface of the porous support. Also, the EDS image shows brightly the part where the silicon (Si) atoms that make up the zeolite fine particles and the carbon (C) atoms that make up the binder are present, and from the image obtained by this EDS method. This indicates that carbon is unevenly distributed around the zeolite fine particles, and the zeolite fine particles are bound to the support surface by the organic polymer.
(ゼオライト結晶膜の形成) (Formation of zeolite crystal film)
長さ 10cmの上記の多孔質支持体を用意し、水熱合成法により多孔質支持体表面 に、 A型ゼオライト結晶からなる層を形成させた。合成液は水、ケィ酸ナトリウム、アル ミン酸ナトリウム及び水酸化ナトリウムを、 Na 0 : SiO: AI O: H 0 = 2 : 2 : 1: 125の  The above porous support having a length of 10 cm was prepared, and a layer made of A-type zeolite crystals was formed on the surface of the porous support by a hydrothermal synthesis method. The synthesis solution is water, sodium silicate, sodium aluminate and sodium hydroxide, Na 0: SiO: AI O: H 0 = 2: 2: 1: 125
2 2 2 3 2  2 2 2 3 2
モル比に配合したスラリーを用い、このスラリーを入れたテフロン (登録商標)製の容 器に、上記の多孔質支持体を浸漬して、この容器をオートクレープに入れ、 100°Cで 3時間 15分、水熱合成反応を行った。 Using a slurry blended in a molar ratio, immerse the above porous support in a Teflon (registered trademark) container containing the slurry, and place the container in an autoclave at 100 ° C for 3 hours. Hydrothermal synthesis reaction was performed for 15 minutes.
反応後、多孔質支持体を取り出し、十分水洗した後、 60°Cで 3時間乾燥させた。乾 燥後の多孔質支持体の断面を電子顕微鏡により観察したところ、多孔質支持体上に 有機高分子とゼォライト微粒子による多孔質層があり、その合成液に接触した側の表 面に厚さ約 5 mの結晶膜が生成していることが確認された。図 2にこの SEM像を示 す。図 2中、 Iはゼオライト結晶層 (膜)、 IIはゼオライト徴粒子 Z有機高分子結合材層 、 ΙΠはアルミナ多孔質支持体層である。またこれを広角 X線回折によって解析した結 果、 A型ゼオライト結晶による緻密な層が形成されていることが確認された。 After the reaction, the porous support was taken out, washed thoroughly with water, and dried at 60 ° C. for 3 hours. When the cross section of the porous support after drying was observed with an electron microscope, there was a porous layer of organic polymer and zeolite fine particles on the porous support, and the surface on the side in contact with the synthesis solution was observed. It was confirmed that a crystal film with a thickness of about 5 m was formed on the surface. Figure 2 shows this SEM image. In FIG. 2, I is a zeolite crystal layer (film), II is a zeolite particle Z organic polymer binder layer, and ΙΠ is an alumina porous support layer. As a result of analyzing this by wide-angle X-ray diffraction, it was confirmed that a dense layer of A-type zeolite crystals was formed.
図 3には得られた支持体上のゼォライト緻密膜の断面 SEM像並びに、 EDS法によ り観測される断面における炭素の存在分布を示す。 EDS法により得られた像から、炭 素 (C)はゼオライト結晶膜の表面及びゼォライト微粒子と有機高分子結合材カゝらなる 多孔質層に分散して存在していることが示される。なお、このゼォライト結晶膜表面に 存在する結合剤は、以下に述べるパーベーパレーシヨンによる脱水試験の間に流出 してなくなることもあるが、分離性能には影響を及ぼさない。  Figure 3 shows the cross-sectional SEM image of the dense zeolite film on the obtained support and the carbon distribution in the cross-section observed by the EDS method. From the image obtained by the EDS method, it is shown that carbon (C) is dispersed and present on the surface of the zeolite crystal film and in the porous layer composed of the zeolite fine particles and the organic polymer binder. Note that the binder present on the surface of the zeolite crystal membrane may flow out during the dehydration test by the pervaporation described below, but does not affect the separation performance.
(パーベーパレーシヨンによる脱水試験) (Dehydration test with pervaporation)
このようにして得られた複合膜を 20本用意し、両端をシリコン榭脂で固着し、片側を 密閉してモジュールを作製した。このモジュールを用いて、パーベーパレーシヨン法 によってエタノール水溶液力 水を選択的に分離する試験を行った。図 4にこの試験 に用いたモジュールによる分離装置の模式図を示す。モジュール 5の内部にェタノ ール 90重量%の水溶液を 75°Cの温度で循環することにより供給し、モジュール 5内 の多孔質支持体の内側を真空ポンプ 1によって減圧して、各複合膜の外表面から中 空内部に、エタノール水溶液中の水を透過させた。複合膜を透過して分離された水 は真空ライン 2を通過して、液体窒素によって冷却されたトラップ 3に集めた。真空ラ イン 2とトラップ 3との間には真空計 4を設置している。図中でトラップ 6は真空ポンプ 力も油が逆流した場合に、ここで捕捉するために設置した。  Twenty composite membranes thus obtained were prepared, both ends were fixed with silicone resin, and one side was sealed to produce a module. Using this module, an ethanol aqueous solution was selectively separated by the pervaporation method. Figure 4 shows a schematic diagram of the separation device using the modules used in this test. A 90% by weight aqueous solution of ethanol is supplied inside module 5 by circulating it at a temperature of 75 ° C., and the inside of the porous support in module 5 is depressurized by vacuum pump 1 to Water in an ethanol aqueous solution was allowed to permeate from the outer surface to the interior of the air. Water separated through the composite membrane passed through vacuum line 2 and was collected in trap 3 cooled by liquid nitrogen. Between the vacuum line 2 and the trap 3, a vacuum gauge 4 is installed. In the figure, trap 6 was installed to trap the vacuum pump force when oil flows backward.
冷却トラップ 3中の水の重量を測定し、膜の単位面積、単位時間当たりの透過量を 求めることにより透過流束 (Q)を求めた。トラップされた水に含まれるエタノール濃度 をガスクロマトグラフィーを用いて測定することにより、分離係数 )を求めた。具体 的には、供給側のエタノール及び水の重量濃度をそれぞれ、 X  The weight of water in the cooling trap 3 was measured, and the permeation flux (Q) was determined by determining the permeation amount per unit area and unit time of the membrane. By measuring the concentration of ethanol contained in the trapped water using gas chromatography, the separation factor was determined. Specifically, the weight concentrations of ethanol and water on the supply side are
1重量%、及び X  1% by weight and X
2重 量%とし、トラップ中の透過側のエタノール及び水の濃度をそれぞれ、 Y重量%及び Y重量%とすると、分離係数 (ひ)は下記の式 (2)によって計算される。  The separation factor (H) is calculated by the following equation (2), assuming that the concentration of ethanol and water on the permeate side in the trap is Y wt% and Y wt%, respectively.
2  2
α = (Χ /Χ ) / (Υ /Υ ) · ' · (2) 20本の複合膜力 得られたモジュールを用いて、エタノール 90重量%の水溶液か ら、 75°Cの温度においてパーベーパレーシヨン法によって、水を選択的に抽出する 分離実験を行ったところ、水の透過流束 (Q)は 5. 3kgZm2h、分離係数 )は 1300 0であった。 α = (Χ / Χ) / (Υ / Υ) · '· (2) Separation experiment was conducted to selectively extract water from an aqueous solution of 90% by weight of ethanol using a pervaporation method at a temperature of 75 ° C. The permeation flux (Q) of water was 5.3 kgZm 2 h, and the separation factor was 130000.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本中 1本の a力 000であったが、残りの 19本は全て 10000以上の分離係数であつ た。また、分離係数が 10000以上の複合膜の全ての透過流束は 5. Okg/m 以上 であった。  After the evaluation, the module was disassembled and individual separation experiments were performed on the composite membrane. One of the 20 samples had a force of 000, but the remaining 19 samples all had a separation factor of 10000 or more. In addition, the permeation flux of the composite membrane with a separation factor of 10000 or more was 5. Okg / m or more.
[0040] (実施例 2) [0040] (Example 2)
(ゼオライト微粒子分散溶液の作製)  (Preparation of zeolite fine particle dispersion)
結合剤としてポリビニルブチラール 300 (和光純薬製、平均重合度 200— 400) 0. 4g、メトキシプロパノール 19. 8gを混合し、結合剤が完全に溶解した後、 A型ゼオラ イト微粒子 (水澤ィ匕学社製シルトン— B、粒径 0.8 ;ζ ΐη) 0. 4gを加え、十分に攪拌す ることにより、ゼォライト微粒子分散溶液を作製した。  As a binder, polyvinyl butyral 300 (manufactured by Wako Pure Chemical Industries, average polymerization degree 200-400) 0.4 g and methoxypropanol 19.8 g were mixed, and after the binder was completely dissolved, A type zeolite fine particles (Mizusawa A zeolite fine particle dispersion was prepared by adding 0.4 g of Shilton-B, particle size 0.8;
[0041] (ゼオライト微粒子の多孔質支持体への担持) [0041] (Support of zeolite fine particles on porous support)
外径 1. 2mm、膜厚 0. 2mm、平均細孔径 0. 25 m、空孔率 48%のアルミナ粒 子の焼結によって得られたアルミナ多孔質支持体の両端を封止した後、ゼォライト微 粒子分散溶液に 10秒間浸潰した。引上げ後、 60°C空気雰囲気下において 1時間乾 燥させること〖こより、アルミナ多孔質支持体表面に、結合剤によってゼォライト微粒子 を担持させた。担持させたゼォライト微粒子は支持体に衝撃を加えても脱離すること なぐまた指で擦っても脱離しな力つた。  After sealing both ends of an alumina porous support obtained by sintering alumina particles having an outer diameter of 1.2 mm, a film thickness of 0.2 mm, an average pore diameter of 0.25 m, and a porosity of 48%, zeolite It was soaked in the fine particle dispersion for 10 seconds. After pulling up, drying was performed in an air atmosphere at 60 ° C. for 1 hour, whereby zeolite fine particles were supported on the surface of the porous alumina support by a binder. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they did not desorb even when rubbed with a finger.
図 5に、得られたゼォライト微粒子を担持させた支持体の断面電子顕微鏡 (SEM) 像、及びエネルギー分散型 X線分光法 (EDS)により観測される断面における炭素の 存在分布を示す。 SEM像から、多孔質支持体表面にゼォライト微粒子が付与されて いることが示される。また EDS像においては、結合剤を構成する炭素原子が存在す る部分が白く示されており、この EDS法により得られた像から、ゼォライト微粒子の周 辺に炭素が偏在しており、ゼォライト微粒子が有機高分子によって相互に支持体表 面に結合されて 、ることが示される。 このゼォライト微粒子を担持させた多孔質支持体の表面に実施例 1と同様にして水 熱合成により、 A型ゼオライト結晶膜 (層)を形成させた。反応後、多孔質支持体を取 り出し、十分水洗した後、 60°Cで 3時間乾燥させた。乾燥後の多孔質支持体の断面 を電子顕微鏡により観察したところ、合成液に接触した側の表面に厚さ約 5 mの結 晶膜が生成しており、これを広角 X線回折によって解析した結果、 A型ゼオライト結晶 による緻密な膜 (層)が形成されていることが確認された。 Figure 5 shows the cross-sectional electron microscope (SEM) image of the support on which the obtained zeolite fine particles are supported, and the carbon distribution in the cross section observed by energy dispersive X-ray spectroscopy (EDS). The SEM image shows that zeolite fine particles are applied to the surface of the porous support. In the EDS image, the part where the carbon atoms constituting the binder are present is shown in white. From the image obtained by this EDS method, carbon is unevenly distributed around the zeolite fine particles. Are bound to the surface of the support by the organic polymer. An A-type zeolite crystal film (layer) was formed on the surface of the porous support supporting the zeolite fine particles by hydrothermal synthesis in the same manner as in Example 1. After the reaction, the porous support was taken out, thoroughly washed with water, and dried at 60 ° C for 3 hours. When the cross section of the porous support after drying was observed with an electron microscope, a crystal film with a thickness of about 5 m was formed on the surface in contact with the synthesis solution, which was analyzed by wide-angle X-ray diffraction. As a result, it was confirmed that a dense film (layer) of A-type zeolite crystals was formed.
図 6に、得られた支持体上のゼォライト緻密膜の断面 SEM像、及び EDS法により 観測される断面における炭素の存在分布を示す。 EDS法により得られた像から、炭 素はゼオライト緻密膜の表層に分散して存在しており、水熱合成後、結合剤として用 いた有機高分子は主にゼォライト緻密膜の表面に偏在していることが示される。なお 、このゼォライト緻密膜表面に存在する結合剤は、以下に述べるパーベーパレーショ ンによる脱水試験の間に流出してなくなることもあるが、分離性能には影響を及ぼさ ない。  Figure 6 shows the cross-sectional SEM image of the dense zeolite film on the obtained support and the carbon distribution in the cross-section observed by the EDS method. From the image obtained by the EDS method, carbon is present in a dispersed state on the surface of the dense zeolite membrane, and after hydrothermal synthesis, the organic polymer used as a binder is mainly distributed on the surface of the dense zeolite membrane. Is shown. Note that the binder present on the surface of the zeolite fine membrane may not flow out during the dehydration test by pervaporation described below, but does not affect the separation performance.
[0042] (パーベーパレーシヨンによる脱水試験)  [0042] (Dehydration test with pervaporation)
このようにして得られた複合膜を 20本用意し、実施例 1と同様にモジュールを作製 し、エタノール 90重量0 /0の水溶液から、 75°Cの温度においてパーベーパレーシヨン 法によって、水を選択的に抽出する分離実験を行ったところ、水の透過流束 (Q)は 3 . 6kg/m 、分離係数 (ひ)は 14000であった。 Thus obtained composite membrane was prepared twenty obtained by, to prepare a module in the same manner as in Example 1, from an aqueous solution of ethanol 90 weight 0/0, the par base Palais Chillon method at a temperature of 75 ° C, water In a separation experiment, the water permeation flux (Q) was 3.6 kg / m 2 and the separation factor (s) was 14000.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本中 1本の a力 000であったが、残りの 19本は全て 10000以上の分離係数であつ た。また、分離係数が 10000以上の複合膜の全ての透過流束は 3. 3kg/m2h以上 であった。 After the evaluation, the module was disassembled and individual separation experiments were performed on the composite membrane. One of the 20 samples had a force of 000, but the remaining 19 samples all had a separation factor of 10000 or more. In addition, the permeation flux of the composite membrane with a separation factor of 10,000 or more was 3.3 kg / m 2 h or more.
[0043] (比較例 1)  [0043] (Comparative Example 1)
実施例 2で用いた多孔質支持体へのゼォライト微粒子の担持方法にぉ 、て、分散 液に結合剤であるポリビニルプチラールを添加しな ヽ以外は、実施例 2と同じ方法で 、多孔質支持体上に A型ゼオライト結晶膜を形成した。  Except for the method of supporting the zeolite fine particles on the porous support used in Example 2, and without adding polyvinylpropylal as a binder to the dispersion, the same method as in Example 2 was used. An A-type zeolite crystal film was formed on the support.
これを 20本用 、て実施例 1と同様にモジュールを作製し、実施例 1と同様にェタノ ール 90重量0 /0水溶液力 パーベーパレーシヨン法によって、分離実験を行ったとこ ろ、水の透過量 (Q)は 1. 8kg/m2h、分離係数 (ひ)は 1900であった。 評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本中 5本に明確なリークが見られ、 1本の分離係数は 50以下であり、 2本の分離係数 ίま 300力ら 500であり、 3本の分離係数 ίま 1000力ら 2000であり、 10000以上の分離 係数を示したものは残りの 12本のみであった。これは水熱合成により得られた 20本 の複合膜の内、約半数にゼォライト結晶膜に欠陥を有するものが含まれていることを 示している。また、分離係数が 10000以上の複合膜の全ての透過流束は 2. Okg/ m 以下であった。 This for twenty to prepare a module in the same manner as in Example 1 Te, by similarly Etano Lumpur 90 weight 0/0 aqueous force per base Palais Chillon method as in Example 1 were carried out separation experiments Toko The water permeation rate (Q) was 1.8 kg / m 2 h, and the separation factor (H) was 1900. After the evaluation, the module was disassembled and a separate separation experiment was performed on the composite membrane. As a result, 5 out of 20 clear leaks were observed, and one separation factor was 50 or less. 300 force to 500, 3 separation factors ί 1000 force to 2000, and only the remaining 12 had a separation factor of 10000 or more. This indicates that about half of the 20 composite films obtained by hydrothermal synthesis contain defects in the zeolite crystal film. The permeation flux of the composite membrane with a separation factor of 10000 or more was 2. Okg / m or less.
[0044] (実施例 3) [0044] (Example 3)
結合剤としてポリビュルアルコール (クラレ製ポバール RS— 117 (商品名)) 0. 4g、 水 19. 6gを混合し、結合剤が完全に溶解した後、 A型ゼオライト微粒子 (水澤ィ匕学社 製シルトン一 B (商品名)、粒径 0.8 m) 0. 6gを加え、十分に攪拌することにより、ゼ オライト微粒子分散溶液を作製した。実施例 1で用いた多孔質支持体を水に 10秒間 浸漬して支持体の細孔内部に水を含浸させた後、 60°Cの空気雰囲気下に 30秒間 入れることにより支持体の表面部分のみを乾燥させた。続いて、ゼォライト微粒子分 散液に 10秒間浸漬し、引上げ後 60°C空気雰囲気下において 1時間乾燥させること により、多孔質支持体表面に、結合剤によってゼォライト微粒子を担持させた。担持 させたゼォライト微粒子は支持体に衝撃を加えても脱離することなぐまた指で擦って も脱離しな力つた。  Polybur alcohol (Poval RS-117 (trade name) made by Kuraray) as a binder was mixed with 0.4 g and 19.6 g of water, and after the binder was completely dissolved, A-type zeolite fine particles (manufactured by Mizusawa igakusha) A zeolite fine particle dispersion solution was prepared by adding 0.6 g of Silton I B (trade name), particle size 0.8 m) and stirring sufficiently. The porous support used in Example 1 was immersed in water for 10 seconds to impregnate the pores of the support with water, and then placed in an air atmosphere at 60 ° C. for 30 seconds to obtain a surface portion of the support. Only dried. Subsequently, the zeolite was immersed in a zeolite fine particle dispersion for 10 seconds, dried and then dried in an air atmosphere at 60 ° C. for 1 hour, whereby the zeolite fine particles were supported on the surface of the porous support by a binder. The supported zeolite fine particles did not detach even when an impact was applied to the support, and did not detach when rubbed with a finger.
これを 20本用いて実施例 1と同様に水熱合成を施した後、モジュールを作製し、実 施例 1と同様にエタノール 90重量%水溶液力 パーベーパレーシヨン法によって、分 離実験を行ったところ、水の透過流束 (Q)は 4. 3kgZm2h、分離係数 )は 1300 0であった。 Using 20 of these, hydrothermal synthesis was performed in the same manner as in Example 1, and then a module was prepared. Similar to Example 1, a 90% ethanol aqueous solution power pervaporation method was used to perform a separation experiment. As a result, the permeation flux (Q) of water was 4.3 kgZm 2 h, and the separation factor was 130000.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本中 1本の a力 000であったが、残りの 19本は全て 10000以上の分離係数であつ た。また、分離係数が 10000以上の複合膜の全ての透過流束は 4. 0kg/m2h以上 であった。 After the evaluation, the module was disassembled and individual separation experiments were performed on the composite membrane. One of the 20 samples had a force of 000, but the remaining 19 samples all had a separation factor of 10000 or more. In addition, the permeation flux of the composite membrane with a separation factor of 10,000 or more was 4.0 kg / m 2 h or more.
[0045] (実施例 4) 結合剤としてポリフッ化ビ-リデン (ARKEMAi^KYNAR— 720 (商品名)) 2g、ジ メチルァセトアミド 18gを混合し、均一透明な高分子溶液が得られるまで攪拌した。こ の高分子溶液に、 A型ゼオライト微粒子(Sigma- Aldrich製、 Molecular Sieve 4A、粒 径く 5 m) 2gを加え、 2時間攪拌することにより均一なゼォライト微粒子分散溶液を 作製した。実施例 1で用いた多孔質支持体をこのゼォライト微粒子分散液に 10秒間 浸漬し、引上げ後 60°C空気雰囲気下において 1時間乾燥させることにより、多孔質 支持体表面に、結合剤によってゼォライト微粒子を担持させた。担持させたゼォライ ト微粒子は支持体に衝撃を加えても脱離することなぐまた指で擦っても脱離しなか つた o [0045] (Example 4) As a binder, 2 g of poly (vinylidene fluoride) (ARKEMAi ^ KYNAR—720 (trade name)) and 18 g of dimethylacetamide were mixed and stirred until a uniform transparent polymer solution was obtained. To this polymer solution, 2 g of A-type zeolite fine particles (manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size: 5 m) was added and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion. The porous support used in Example 1 was dipped in this zeolite fine particle dispersion for 10 seconds, and after lifting, dried in an air atmosphere at 60 ° C. for 1 hour, so that the zeolite fine particles were bonded to the surface of the porous support by a binder. Was supported. The supported zeolite fine particles were not detached even when impact was applied to the support, and they were not detached even when rubbed with a finger.
これを 20本用いて実施例 1と同様に水熱合成を施した後モジュールを作製し、実 施例 1と同様にエタノール 90重量%水溶液力 パーベーパレーシヨン法によって、分 離実験を行ったところ、水の透過流束 (Q)は 3. 7kgZm 、分離係数 )は 1200 0であった。  Using 20 of these, hydrothermal synthesis was performed in the same manner as in Example 1, and then a module was prepared. Similarly to Example 1, a 90% ethanol aqueous solution force pervaporation method was used to perform a separation experiment. However, the water permeation flux (Q) was 3.7 kgZm, and the separation factor was 1200.000.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本中 1本の a力 ¾000であったが、残りの 19本は全て 10000以上の分離係数であつ た。また、分離係数が 10000以上の複合膜の全ての透過流束は 3. 6kg/m 以上 であった。  After the evaluation, the module was disassembled and individual separation experiments were performed on the composite membrane. One of the 20 samples had an a force of ¾000, but the remaining 19 samples all had a separation factor of 10,000 or more. In addition, the permeation flux of the composite membrane with a separation factor of 10000 or more was 3.6 kg / m or more.
(実施例 5) (Example 5)
結合剤としてポリエーテルスルホン(Solvay製 RADEL A— 100) 4g、ジメチルァ セトアミド 16gを混合し、均一透明な高分子溶液が得られるまで攪拌した。この高分 子溶液に、 A型ゼオライト微粒子(Sigma- Aldrich製、 Molecular Sieve 4A、粒径く 5 m) 2gを加え、 2時間攪拌することにより均一なゼォライト微粒子分散溶液を作製した 。実施例 1で用いた多孔質支持体をこのゼォライト微粒子分散液に 10秒間浸漬し、 引上げ後 60°C空気雰囲気下において 1時間乾燥させることにより、多孔質支持体表 面に、結合剤によってゼォライト微粒子を担持させた。担持させたゼォライト微粒子は 支持体に衝撃を加えても脱離することなぐまた指で擦っても脱離しな力つた。  As binders, 4 g of polyethersulfone (RADEL A-100 from Solvay) and 16 g of dimethylacetamide were mixed and stirred until a uniform transparent polymer solution was obtained. To this polymer solution, 2 g of A-type zeolite fine particles (manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size: 5 m) were added and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion. The porous support used in Example 1 was dipped in this zeolite fine particle dispersion for 10 seconds, and then pulled up and dried in an air atmosphere at 60 ° C. for 1 hour, so that the surface of the porous support was filled with zeolite. Fine particles were supported. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they did not desorb even when rubbed with a finger.
これを 20本用いて実施例 1と同様に水熱合成を施した後モジュールを作製し、実 施例 1と同様にエタノール 90重量%水溶液力 パーベーパレーシヨン法によって、分 離実験を行ったところ、水の透過流束 (Q)は 4. 3kgZm2h、分離係数 )は 1400 0であった。 Using 20 of these, hydrothermal synthesis was carried out in the same manner as in Example 1, and then a module was prepared. As in Example 1, a 90% ethanol aqueous solution power pervaporation method was used. In the separation experiment, the permeation flux (Q) of water was 4.3 kgZm 2 h, and the separation factor was 1400.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本全ての αは 10000以上の分離係数であり、全ての透過流束は 4. 0kgZm2h以上 であった。 After the evaluation, the module was disassembled and individual separation experiments were conducted on the composite membrane. As a result, all 20 αs had separation factors of 10000 or more, and all permeation fluxes were 4.0 kgZm 2 h or more.
[0047] (実施例 6) [Example 6]
結合剤としてポリエチレングリコール(Clariant製 Type 2000P) 4g、水 17gを混 合し、均一透明な高分子溶液が得られるまで攪拌した。この高分子溶液に、 A型ゼォ ライト微粒子(Sigma- Aldrich製、 Molecular Sieve 4A、粒径く 5 m) 2gを加え、 2時 間攪拌することにより均一なゼォライト微粒子分散溶液を作製した。実施例 1で用い た多孔質支持体をこのゼォライト微粒子分散液に 10秒間浸漬し、引上げ後 60°C空 気雰囲気下において 1時間乾燥させることにより、多孔質支持体表面に、結合剤によ つてゼォライト微粒子を担持させた。担持させたゼォライト微粒子は支持体に衝撃を 加えても脱離することなぐまた指で擦っても脱離しな力つた。  As a binder, 4 g of polyethylene glycol (Type 2000P manufactured by Clariant) and 17 g of water were mixed and stirred until a uniform transparent polymer solution was obtained. To this polymer solution was added 2 g of type A zeolite fine particles (manufactured by Sigma-Aldrich, Molecular Sieve 4A, particle size 5 m) and stirred for 2 hours to prepare a uniform zeolite fine particle dispersion. The porous support used in Example 1 was dipped in this zeolite fine particle dispersion for 10 seconds, and after being pulled up and dried in an air atmosphere at 60 ° C. for 1 hour, the surface of the porous support was coated with a binder. Thus, zeolite fine particles were supported. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they were not detached even when rubbed with a finger.
これを 20本用いて実施例 1と同様に水熱合成を施した後モジュールを作製し、実 施例 1と同様にエタノール 90重量%水溶液力 パーベーパレーシヨン法によって、分 離実験を行ったところ、水の透過流束 (Q)は 3. 6kgZm 、分離係数 )は 1100 0であった。  Using 20 of these, hydrothermal synthesis was performed in the same manner as in Example 1, and then a module was prepared. Similarly to Example 1, a 90% ethanol aqueous solution force pervaporation method was used to perform a separation experiment. However, the permeation flux (Q) of water was 3.6 kgZm and the separation factor was 1100.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本中 2本の α力 ¾000であったが、残りの 18本は全て 10000以上の分離係数であつ た。また、分離係数が 10000以上の複合膜の全ての透過流束は 3. 5kg/m2h以上 であった。 After the evaluation, the module was disassembled and a separation experiment was performed individually on the composite membrane. As a result, 2 of 20 α forces were 3,000, but the remaining 18 all had a separation factor of 10000 or more. In addition, the permeation flux of the composite membrane with a separation factor of 10,000 or more was 3.5 kg / m 2 h or more.
[0048] (実施例 7) [0048] (Example 7)
多孔質支持体としてポリフッ化ビ-リデン力 なる有機中空糸(旭化成ケミカルズ製 PVDF— TP、外径 2mm、膜厚 0. 3mm、平均細孔径 0. 45 m)を用い、実施例 2 で用いたものと同じ分散液を用いて種となるゼォライト微粒子を担持した。担持させ たゼオライト微粒子は支持体に衝撃を加えても脱離することなぐまた指で擦っても脱 離しなカゝつた。図 7にゼオライト微粒子を担持した、有機中空糸の SEM像を示す。図 7から、ゼォライト微粒子は多孔質支持体表面に均一に付与されていることが示され る。ゼォライト微粒子を担持したこの多孔質支持体を、実施例 1と同じ条件で水熱合 成を施して A型ゼオライト結晶膜を形成した。得られた複合膜を 75°Cに保持した 90 重量%のエタノール水溶液に接触させ、中空糸内側を減圧することにより、パーベー パレーシヨン法によって分離実験を行ったところ、水の透過流束 (Q)は 4. 2kg/m2h 、分離係数( α )は 10000であった。 An organic hollow fiber (PVDF—TP manufactured by Asahi Kasei Chemicals, outer diameter 2 mm, film thickness 0.3 mm, average pore diameter 0.45 m) made of polyvinylidene fluoride as a porous support was used in Example 2. Zeolite microparticles as seeds were supported using the same dispersion liquid. The supported zeolite fine particles were not detached even when an impact was applied to the support, and they were not detached even when rubbed with a finger. Figure 7 shows an SEM image of an organic hollow fiber carrying zeolite fine particles. Figure 7 shows that the zeolite fine particles are uniformly applied to the surface of the porous support. The porous support carrying the zeolite fine particles was hydrothermally synthesized under the same conditions as in Example 1 to form an A-type zeolite crystal membrane. The obtained composite membrane was brought into contact with a 90% by weight ethanol aqueous solution maintained at 75 ° C, and the inside of the hollow fiber was depressurized, and a separation experiment was conducted by the pervaporation method. Water permeation flux (Q) Was 4.2 kg / m 2 h and the separation factor (α) was 10,000.
評価後、モジュールを分解し複合膜を個別に分離実験を行ったところ、 20本中 3本 の at力 S3000力ら 5000の範囲であった力 残りの 17本は全て 10000以上の分離係 数であった。また、分離係数が 10000以上の複合膜の全ての透過流束は 4. Okg/ m 以上であった。  After the evaluation, the module was disassembled and the composite membrane was individually separated. As a result, 3 out of 20 at forces S3000 force and the force that was in the range of 5000 The remaining 17 were all separated by 10000 or more. there were. The permeation flux of the composite membrane with a separation factor of 10,000 or more was 4. Okg / m or more.
[0049] (実施例 8) [0049] (Example 8)
ポリスルホン (Aldrich製、 Mn=22000) 20g、 A型ゼオライト微粒子(水澤ィ匕学社製 シルトン— B (商品名)、粒径 0.8 μ m) 65g、及びジメチルァセトアミド 250gの混合物 力 なる紡糸原液を用意し、これを内径 0. 5mm,外形 1. 5mmの二重環状ノズルを 用いて湿式紡糸した。このとき、芯液及びゲル化浴液としては水を用い、芯液流量 5 mlZ分、原液流量 20mlZ分、ゲル化浴温度 10°C、巻き取り速度 17mZ分で紡糸 した。上記方法によって紡糸後乾燥することにより、外径 1. 8mm,内径 1. Ommの 中空糸が得られ、これを多孔質支持体として使用した。水銀圧入法によって求められ たこの多孔質支持体の平均細孔径は 0. 4 /ζ πι、空孔率は 47%であった。この多孔 質支持体に実施例 2で用いたものと同じ分散液を用いて種となるゼォライト微粒子を 担持し、実施例 1と同じ条件で水熱合成を施して Α型ゼオライト結晶膜を形成させた o得られた複合膜を 75°Cに保持した 90重量%のエタノール水溶液に接触させ、中 空糸内側を減圧することにより、パーベーパレーシヨン法によって分離実験を行った ところ、水の透過流束(Q)は 4. 5kgZm2h、分離係数 )は 10000であった。 Polysulfone (Aldrich, Mn = 22000) 20g, A-type zeolite fine particles (Suilton-B (trade name), particle size 0.8 μm) 65g, and dimethylacetamide 250g This was wet-spun using a double annular nozzle with an inner diameter of 0.5 mm and an outer diameter of 1.5 mm. At this time, water was used as the core solution and the gelling bath solution, and spinning was performed at a core solution flow rate of 5 mlZ, a stock solution flow rate of 20 mlZ, a gelling bath temperature of 10 ° C, and a winding speed of 17 mZ. By spinning after spinning by the above method, a hollow fiber having an outer diameter of 1.8 mm and an inner diameter of 1. Omm was obtained and used as a porous support. The average pore diameter of this porous support determined by mercury porosimetry was 0.4 / ζ πι, and the porosity was 47%. This porous support is loaded with zeolite fine particles as seeds using the same dispersion as used in Example 2, and hydrothermal synthesis is performed under the same conditions as in Example 1 to form a cage zeolite crystal film. O The obtained composite membrane was brought into contact with a 90% by weight aqueous ethanol solution maintained at 75 ° C, and the inner side of the hollow fiber was depressurized to conduct a separation experiment by the pervaporation method. The flux (Q) was 4.5 kgZm 2 h, and the separation factor was 10,000.
[0050] (実施例 9)  [0050] (Example 9)
(ベーパーパ一ミエーシヨンによる脱水試験)  (Dehydration test with vapor permeation)
実施例 1で作成した複合膜を用いて、ベーパーパ一ミエーシヨン法によってェタノ ールと水の蒸気からなる混合気体から水を選択的に分離する試験を行った。図 8にこ の試験に用いた分離装置の模式図を示す。 Using the composite membrane prepared in Example 1, water was selectively separated from a mixed gas composed of ethanol and water vapor by the vapor permeation method. Figure 8 The schematic diagram of the separation apparatus used for this test is shown.
容積 1リットルのオートクレーブ 7の内部にエタノール 90重量0 /0の水溶液 200gを入 れ、密閉して 130°Cにまで全体を過熱することにより、オートクレープ内部をエタノー ルと水の蒸気による混合気体の雰囲気とした。オートクレープ内部に設置した複合膜 8の内側を真空ポンプ 1によって減圧して、複合膜 8の外表面から中空内部に、ェタノ ール水溶液中の水を透過させた。複合膜 8を透過して分離された水は真空ライン 2を 通過して、液体窒素によって冷却されたトラップ 3に集めた。真空ライン 2とトラップ 3と の間には真空計 4を設置している。図中でトラップ 6は真空ポンプから油が逆流した 場合に、ここで捕捉するために設置した。パーベーパレーシヨン法と同様に冷却トラッ プ 3中の水の重量並びに、トラップされた水に含まれるエタノール濃度から、ベーパ 一パーミエーシヨン法による透過流束と分離係数を求めた結果、水の透過流束 (Q) は 16. 2kgZm2h、分離係数 )は 16000であった。 Is entering the internal aqueous solution 200g of ethanol 90 weight 0/0 of the volume one liter autoclave 7, by heating the whole up to the closed to 130 ° C, mixed with internal autoclave with steam of ethanol and water gas And the atmosphere. The inside of the composite membrane 8 installed inside the autoclave was depressurized by the vacuum pump 1, and water in the ethanol aqueous solution was permeated from the outer surface of the composite membrane 8 into the hollow interior. The water separated through the composite membrane 8 passed through the vacuum line 2 and collected in the trap 3 cooled by liquid nitrogen. A vacuum gauge 4 is installed between the vacuum line 2 and the trap 3. In the figure, trap 6 was installed to capture the oil backflow from the vacuum pump. Similar to the pervaporation method, the permeation flux and separation factor by the vapor permeation method were determined from the weight of water in the cooling trap 3 and the ethanol concentration in the trapped water. The permeation flux (Q) was 16.2 kgZm 2 h, and the separation factor was 16000.
[0051] (比較例 2) [0051] (Comparative Example 2)
結合剤として水ガラス(和光純薬製、 SiO /Na 0 = 2. 06-2. 31 (モル比)) 2. 0  Water glass as a binder (Wako Pure Chemical Industries, SiO / Na 0 = 2. 06-2.31 (molar ratio)) 2.0
2 2  twenty two
g、水 18. Ogを混合し、結合剤が完全に溶解した後、 A型ゼオライト微粒子 (水澤ィ匕 学社製シルトン一 B (商品名)、粒径 0.8 m) 0. 4gを加え、十分に攪拌することによ り、ゼォライト微粒子分散溶液を作製した。多孔質支持体として実施例 2で用いたも のと同じ有機中空糸を用い、両端を封止した後、ゼォライト微粒子分散溶液に 10秒 間浸漬し、引上げ後 60°C空気雰囲気下において 1時間乾燥させることにより、水ガラ ス結合剤によってゼォライト微粒子を担持させる処理を行った。図 9に上記のようにし てゼオライト微粒子の担持処理を施した有機中空糸の SEM像を示す。図 9から、水 ガラスを結合剤として用いた場合には、有機中空糸表面には殆んどゼオライト微粒子 が担持されていないことが示される。この多孔質支持体を実施例 1と同じ条件で水熱 合成を施した後、パーベーパレーシヨン法による分離実験を行ったところ、供給液と 透過液の組成に差異はなぐ全く分離性能を示さなカゝつた。  g, water 18. Og was mixed and the binder was completely dissolved, then added A type zeolite fine particles (Silton B (trade name) manufactured by Mizusawa i 匕 gakusha, particle size 0.8 m) 0.4 g By stirring the mixture, a zeolite fine particle dispersion was prepared. The same organic hollow fiber as used in Example 2 was used as the porous support, both ends were sealed, immersed in a zeolite fine particle dispersion for 10 seconds, and then pulled up for 1 hour in an air atmosphere at 60 ° C. By drying, a treatment for supporting zeolite fine particles with a water glass binder was performed. Figure 9 shows an SEM image of the organic hollow fiber that has been loaded with zeolite fine particles as described above. FIG. 9 shows that when water glass is used as the binder, almost no zeolite fine particles are supported on the surface of the organic hollow fiber. This porous support was subjected to hydrothermal synthesis under the same conditions as in Example 1, and then subjected to a separation experiment by the pervaporation method. As a result, the separation performance was completely different with no difference in the composition of the feed liquid and the permeate. It ’s nasty.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本の全てに明確なリークが見られ、分離性能を示したものは 1本もなカゝつた。  After the evaluation, the module was disassembled and separate experiments were conducted on the composite membranes. As a result, clear leakage was observed in all of the 20 membranes, and there was a single product that showed separation performance.
[0052] (比較例 3) 結合剤として水ガラス(和光純薬製、 SiO /Na 0 = 2. 06-2. 31 (モル比)) 10. [0052] (Comparative Example 3) Water glass as a binder (Wako Pure Chemical Industries, SiO / Na 0 = 2. 06-2.31 (molar ratio)) 10.
2 2  twenty two
0g、水 10. 0gを混合し、結合剤が完全に溶解した後、 A型ゼオライト微粒子 (水澤ィ匕 学社製シルトン一 B (商品名)、粒径 0.8 m) 0. 5gを加え、十分に攪拌することによ り、ゼォライト微粒子分散溶液を作製した。多孔質支持体として実施例 1で用いたも のと同じアルミナ多孔質支持体を用い、両端を封止した後、特許文献 6に開示されて いる方法に従い、ゼォライト微粒子分散溶液に 1分間浸漬し、引上げ後水流によって 表面に付着して 、るゼオライト微粒子を洗 、流し、その後 60°C空気雰囲気下にお!/ヽ て 1時間乾燥させることにより、水ガラス結合剤によってゼォライト微粒子を担持させ る処理を行った。この多孔質支持体を実施例 1と同じ条件で水熱合成を施した後、パ 一べ一パレーシヨン法による分離実験を行ったところ、水の透過流束 (Q)は 1. 9kg After mixing 0 g and 10.0 g of water and completely dissolving the binder, add 0.5 g of A-type zeolite fine particles (Shilton I (Mizusawa Igaku Co., Ltd., trade name), particle size 0.8 m)) By stirring the mixture, a zeolite fine particle dispersion was prepared. The same alumina porous support as used in Example 1 was used as the porous support, both ends were sealed, and then immersed in a zeolite fine particle dispersion for 1 minute according to the method disclosed in Patent Document 6. The zeolite fine particles adhering to the surface by water flow after washing are washed and washed, and then dried in a 60 ° C air atmosphere for 1 hour to support the zeolite fine particles with the water glass binder. Processed. This porous support was subjected to hydrothermal synthesis under the same conditions as in Example 1 and then subjected to a separation experiment by the single-partition method. The water permeation flux (Q) was 1.9 kg.
/m 、分離係数 )は 1500であった。 / m, separation factor) was 1500.
評価後、モジュールを分解し複合膜について個別に分離実験を行ったところ、 20 本中 6本に明確なリークが見られ、 6の分離係数は 100力ら 2000であり、 10000以 上の分離係数を示したものは残りの 8本のみであった。これは水熱合成により得られ た 20本の複合膜の内、半数以上にゼォライト結晶膜に欠陥を有するものが含まれて いることを示している。また、分離係数が 10000以上の複合膜の全ての透過流束は 2 . 0kgZm2h以下であった。 After the evaluation, the module was disassembled and the separation experiment was performed individually on the composite membrane. As a result, 6 out of 20 clear leaks were observed, and the separation factor for 6 was 100 forces and 2000, and the separation factor was over 10,000. Only the remaining eight were shown. This indicates that more than half of the 20 composite films obtained by hydrothermal synthesis contain defects in the zeolite crystal film. Further, all the permeation fluxes of the composite membrane having a separation factor of 10,000 or more were 2.0 kgZm 2 h or less.
これらの結果から、混合物から目的物を経済的に分離する方法として、本発明の複 合膜を用いると、従来技術に比べて高い処理能力が得られることは明らかである。 産業上の利用可能性  From these results, it is clear that when the composite membrane of the present invention is used as a method for economically separating the target product from the mixture, a higher processing capacity can be obtained than in the prior art. Industrial applicability
[0053] 本発明の複合膜は、液体、気体、又はそれらの混合物力 特定の成分のみを抽出 する分離膜として好適に利用できる。特に、共沸状態となるため、従来の蒸留法では 分離できなかった、エタノールと水のような系にも本発明の複合膜を利用することが できる。 [0053] The composite membrane of the present invention can be suitably used as a separation membrane for extracting only a specific component of liquid, gas, or a mixture force thereof. In particular, because of the azeotropic state, the composite membrane of the present invention can be used in a system such as ethanol and water that could not be separated by a conventional distillation method.
図面の簡単な説明  Brief Description of Drawings
[0054] [図 1]有機結合剤により無機多孔質支持体表面に種結晶を担持させた断面の SEM 及び EDS像。  [0054] [Fig. 1] SEM and EDS images of a cross section in which a seed crystal is supported on the surface of an inorganic porous support by an organic binder.
[図 2]有機結合剤により無機多孔質支持体表面に種結晶を担持させた後、水熱合成 により得られたゼォライト結晶膜と支持体断面の SEM像。 [Fig.2] Hydrothermal synthesis after seed crystal is supported on the surface of inorganic porous support by organic binder A SEM image of the zeolite crystal film and the cross section of the support obtained by.
[図 3]有機結合剤により無機多孔質支持体表面に種結晶を担持させた後、水熱合成 により得られたゼォライト結晶膜と支持体断面の SEM及び EDS像。  [Fig. 3] SEM and EDS images of zeolite crystal film and support cross section obtained by hydrothermal synthesis after supporting seed crystal on the surface of inorganic porous support with organic binder.
圆 4]本発明の複合膜を用いたモジュールによる分離装置の模式図。 [4] A schematic diagram of a separation apparatus using a module using the composite membrane of the present invention.
圆 5]有機結合剤により無機多孔質支持体表面に種結晶を担持させた断面の SEM 及び EDS像。 [5] SEM and EDS images of a cross-section with a seed crystal supported on the surface of an inorganic porous support by an organic binder.
[図 6]有機結合剤により無機多孔質支持体表面に種結晶を担持させた後、水熱合成 により得られたゼォライト結晶膜と支持体断面の SEM及び EDS像。  [Fig. 6] SEM and EDS images of zeolite crystal film and cross section of support obtained by hydrothermal synthesis after seed crystal is supported on the surface of inorganic porous support by organic binder.
圆 7]有機結合剤を用いて有機多孔質支持体表面に種結晶を担持させた多孔質支 持体の表面 SEM像。 [7] Surface SEM image of a porous support with a seed crystal supported on the surface of an organic porous support using an organic binder.
圆 8]本発明の複合膜を用いたモジュールによる分離装置の模式図。 8] Schematic diagram of a separation apparatus using modules using the composite membrane of the present invention.
圆 9]無機結合剤 (水ガラス)を用いて有機多孔質支持体表面に種結晶を担持させた 多孔質支持体の表面 SEM像。 [9] Surface SEM image of a porous support with a seed crystal supported on the surface of the organic porous support using an inorganic binder (water glass).

Claims

請求の範囲 The scope of the claims
[I] 有機高分子を結合剤として表面にゼォライト微粒子を付与した多孔質支持体を、ゼ オライトの原料を含む合成液に接触させ、水熱合成を施すことにより該多孔質支持体 の表面にゼォライト結晶膜を形成することを含む複合膜の製造方法。  [I] A porous support having an organic polymer as a binder and having zeolite fine particles applied to the surface is brought into contact with a synthesis solution containing a zeolite raw material, and hydrothermal synthesis is performed on the surface of the porous support. A method for producing a composite film comprising forming a zeolite crystal film.
[2] 前記多孔質支持体は、ゼォライト微粒子を有機高分子の溶液に分散させた分散溶 液を用いて、多孔質支持体の内表面又は外表面の少なくとも一方の表面にゼォライ ト微粒子を付与して得られる円筒状の多孔質支持体である、請求項 1記載の方法。  [2] The porous support is provided with a zeolite fine particle on at least one of the inner surface and the outer surface of the porous support using a dispersion solution in which zeolite fine particles are dispersed in an organic polymer solution. The method according to claim 1, which is a cylindrical porous support obtained as described above.
[3] 前記有機高分子が、ポリビュルブチラール、ポリビュルアルコール、ポリスルホン、 ポリエーテルスルホン、ポリフッ化ビ-リデン、及びポリエチレングリコールからなる群 力 選ばれる、請求項 1記載の方法。  [3] The method according to claim 1, wherein the organic polymer is selected from the group consisting of polybutyral, polybulualcohol, polysulfone, polyethersulfone, polyvinylidene fluoride, and polyethylene glycol.
[4] 前記多孔質支持体がセラミックス又は金属力も選ばれる無機物力もなる、請求項 1 記載の方法。  [4] The method according to claim 1, wherein the porous support also has a ceramic or metal force that can be selected.
[5] 前記多孔質支持体が有機高分子からなる、請求項 1記載の方法。  5. The method according to claim 1, wherein the porous support is made of an organic polymer.
[6] 前記多孔質支持体が、有機高分子とゼォライト微粒子の混合物力もなる、湿式紡 糸によって得られる中空糸である、請求項 1記載の方法。  6. The method according to claim 1, wherein the porous support is a hollow fiber obtained by wet spinning, which also has a mixture force of an organic polymer and zeolite fine particles.
[7] 前記ゼォライト結晶膜が、 A型、 X型、 Y型、 T型、 L型、 ZSM類、ソーダライト類、モ ルデナイト類及びシリカライト類力 なる群力 選ばれた一種力 なる、請求項 1記載 の方法。 [7] The zeolite crystal film is an A-type, X-type, Y-type, T-type, L-type, ZSMs, sodalites, mordenites, and silicalites. The method according to Item 1.
[8] 請求項 1〜7のいずれか一項に記載の製造方法によって得られた複合膜。  [8] A composite membrane obtained by the production method according to any one of claims 1 to 7.
[9] 前記多孔質支持体上に、有機高分子とゼォライト微粒子力 なる層を有し、さらに その上にゼォライト結晶膜を有する 3層構造であることを特徴とする、請求項 1〜7の いずれか一項に記載の方法によって得られた複合膜。  [9] The three-layer structure according to [1] to [7], wherein the porous support has a layer having an organic polymer and a zeolite fine particle force, and further has a zeolite crystal film thereon. A composite membrane obtained by the method according to any one of the above.
[10] 前記ゼォライト結晶膜が親水性ゼォライトからなる、請求項 8又は 9記載の複合膜。 10. The composite film according to claim 8 or 9, wherein the zeolite crystal film is made of hydrophilic zeolite.
[II] 前記ゼォライト結晶膜が疎水性ゼォライトからなる、請求項 8又は 9記載の複合膜。  [II] The composite film according to claim 8 or 9, wherein the zeolite crystal film is made of hydrophobic zeolite.
[12] 請求項 7〜10のいずれか一項に記載の複合膜を用いて、パーベーパレーシヨン法 又はべ一パーパ一ミエーシヨン法によって、 2種以上の成分からなる混合溶液又は混 合気体から少なくとも 1種の成分を分離することを含む物質分離方法。 [12] Using the composite membrane according to any one of claims 7 to 10, from a mixed solution or a mixed gas composed of two or more components by a pervaporation method or a single permeation method. A material separation method comprising separating at least one component.
[13] 水と有機物からなる混合溶液から少なくとも 1種の成分を分離する、請求項 12記載 の方法。 13. The method according to claim 12, wherein at least one component is separated from the mixed solution composed of water and organic matter. the method of.
2種以上の有機物からなる混合溶液から少なくとも 1種の成分を分離する、請求項 1 2記載の方法。  The method according to claim 12, wherein at least one component is separated from a mixed solution composed of two or more organic substances.
PCT/JP2006/316250 2005-12-28 2006-08-18 Process for producing composite membrane WO2007077646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005377758A JP2009066462A (en) 2005-12-28 2005-12-28 Method for preparing composite membrane
JP2005-377758 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007077646A1 true WO2007077646A1 (en) 2007-07-12

Family

ID=38228006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316250 WO2007077646A1 (en) 2005-12-28 2006-08-18 Process for producing composite membrane

Country Status (2)

Country Link
JP (1) JP2009066462A (en)
WO (1) WO2007077646A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115610A (en) * 2008-11-14 2010-05-27 Sumitomo Electric Ind Ltd Zeolite composite separation membrane and method for manufacturing the same
JP2012236155A (en) * 2011-05-12 2012-12-06 Hitachi Zosen Corp Zeolite composite membrane
CN106390767A (en) * 2016-11-08 2017-02-15 华南理工大学 Honeycomb ceramic composite membrane and method for preparing same
EP3090798A4 (en) * 2013-12-31 2017-09-13 Nanjing University of Technology High-strength hollow fiber molecular sieve membrane and preparation method therefor
CN108939928A (en) * 2018-06-29 2018-12-07 中国石油大学(华东) A kind of preparation method with the nanocrystalline mixed substrate membrane containing nano-grade molecular sieve for filler of sodalite

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101885255B1 (en) * 2012-03-30 2018-08-03 코오롱인더스트리 주식회사 Porous Membrane and Method for Manufacturing The Same
CN105363352A (en) * 2015-11-14 2016-03-02 大连理工大学 Method for synthesizing high acid resistant MOR zeolite molecular sieve membrane from fluorine-containing dilute solution
BR112018010206B1 (en) * 2015-11-20 2023-01-31 1934612 Ontario Inc APPARATUS, SYSTEMS, AND METHODS FOR PURIFYING A FLUID WITH A SILICON CARBIDE MEMBRANE
CN108816060A (en) * 2017-09-06 2018-11-16 史玉成 A kind of synthesizer of medication chemistry molecular screen membrane
DE112020001430T5 (en) * 2019-03-25 2021-12-16 Ngk Insulators, Ltd. Process for the production of a zeolite membrane complex and a zeolite membrane complex
CN112870992B (en) * 2021-01-13 2022-01-25 同济大学 Zeolite membrane and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502609A (en) * 1994-07-08 1998-03-10 エクソン リサーチ アンド エンジニアリング カンパニー Zeolite layer with controlled crystal width and preferred orientation grown on growth promoting layer
JP2002537990A (en) * 1999-03-11 2002-11-12 エクソンモービル ケミカル パテンツ インコーポレイテッド Crystalline molecular sieve layer and method for producing the same
WO2005014481A1 (en) * 2003-08-06 2005-02-17 Bussan Nanotech Research Institute, Inc. Method and apparatus for manufacturing zeolite membrane, and zeolite tubular separation membrane provided by the method
JP2005074382A (en) * 2003-09-03 2005-03-24 Mitsui Eng & Shipbuild Co Ltd Mixture separation membrane and mixture separation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10502609A (en) * 1994-07-08 1998-03-10 エクソン リサーチ アンド エンジニアリング カンパニー Zeolite layer with controlled crystal width and preferred orientation grown on growth promoting layer
JP2002537990A (en) * 1999-03-11 2002-11-12 エクソンモービル ケミカル パテンツ インコーポレイテッド Crystalline molecular sieve layer and method for producing the same
WO2005014481A1 (en) * 2003-08-06 2005-02-17 Bussan Nanotech Research Institute, Inc. Method and apparatus for manufacturing zeolite membrane, and zeolite tubular separation membrane provided by the method
JP2005074382A (en) * 2003-09-03 2005-03-24 Mitsui Eng & Shipbuild Co Ltd Mixture separation membrane and mixture separation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115610A (en) * 2008-11-14 2010-05-27 Sumitomo Electric Ind Ltd Zeolite composite separation membrane and method for manufacturing the same
JP2012236155A (en) * 2011-05-12 2012-12-06 Hitachi Zosen Corp Zeolite composite membrane
EP3090798A4 (en) * 2013-12-31 2017-09-13 Nanjing University of Technology High-strength hollow fiber molecular sieve membrane and preparation method therefor
CN106390767A (en) * 2016-11-08 2017-02-15 华南理工大学 Honeycomb ceramic composite membrane and method for preparing same
CN108939928A (en) * 2018-06-29 2018-12-07 中国石油大学(华东) A kind of preparation method with the nanocrystalline mixed substrate membrane containing nano-grade molecular sieve for filler of sodalite
CN108939928B (en) * 2018-06-29 2021-06-04 中国石油大学(华东) Preparation method of mixed matrix membrane with sodalite nanocrystalline as filler

Also Published As

Publication number Publication date
JP2009066462A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
WO2007077646A1 (en) Process for producing composite membrane
JP6373381B2 (en) Zeolite membrane, method for producing the same, and separation method using the same
JP6228923B2 (en) Ceramic separation membrane structure and repair method thereof
JP5324067B2 (en) Method for producing zeolite membrane
US10933382B2 (en) Supported zeolite membranes
JP4204273B2 (en) DDR type zeolite membrane composite and method for producing the same
JP6622714B2 (en) Method for producing zeolite membrane structure
JP5051815B2 (en) Marinoite-type zeolite composite membrane and method for producing the same
JP5051816B2 (en) Philipsite type zeolite composite membrane and method for producing the same
US7951738B2 (en) Process for producing zeolite separation membrane
JP4751996B2 (en) Method for producing ZSM-5 type zeolite membrane
JP2012016688A (en) Heat crack-prevented zeolite separation film, and method of manufacturing the same
WO2012128218A1 (en) Porous body and honeycomb-shaped ceramic separation-membrane structure
JP6785483B2 (en) Composite membrane with zeolite thin film and its manufacturing method
WO2007097417A1 (en) Process for producing zeolite separation membrane
JP2010180080A (en) Method for producing zeolite membrane
KR100903952B1 (en) A method for preparing of hydrophilic zeolite membrane
JP2006320896A (en) Compound membrane, and its manufacturing method
JP5734196B2 (en) Method for producing DDR type zeolite
JP2004002160A (en) Method for coating zeolite crystal, substrate coated therewith, production method for zeolite membrane, zeolite membrane, and separation method using the membrane
WO2005021141A1 (en) Gas separating body and method for producing same
JP2008043864A (en) Zeolite composite membrane and its manufacturing method
JP4506251B2 (en) Separation membrane and method for producing separation membrane
JP2002263456A (en) Method for treating zeolite membrane and separation method
JP2011115691A (en) Method for manufacturing zeolite separation membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782811

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP