WO2007075717A1 - Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction - Google Patents

Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction Download PDF

Info

Publication number
WO2007075717A1
WO2007075717A1 PCT/US2006/048478 US2006048478W WO2007075717A1 WO 2007075717 A1 WO2007075717 A1 WO 2007075717A1 US 2006048478 W US2006048478 W US 2006048478W WO 2007075717 A1 WO2007075717 A1 WO 2007075717A1
Authority
WO
WIPO (PCT)
Prior art keywords
benzo
dihydro
group
dioxinyl
addiction
Prior art date
Application number
PCT/US2006/048478
Other languages
French (fr)
Inventor
Virginia L. Smith-Swintosky
Allen B. Reitz
Original Assignee
Janssen Pharmaceutica N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EA200870089A priority Critical patent/EA015962B1/en
Application filed by Janssen Pharmaceutica N.V. filed Critical Janssen Pharmaceutica N.V.
Priority to UAA200809403A priority patent/UA97106C2/en
Priority to ES06845841.3T priority patent/ES2510495T3/en
Priority to CA2634110A priority patent/CA2634110C/en
Priority to CN200680052415.7A priority patent/CN101370494B/en
Priority to BRPI0620048-6A priority patent/BRPI0620048A2/en
Priority to EP06845841.3A priority patent/EP1968572B1/en
Priority to JP2008547454A priority patent/JP5190375B2/en
Priority to NZ569044A priority patent/NZ569044A/en
Priority to AU2006331787A priority patent/AU2006331787B2/en
Publication of WO2007075717A1 publication Critical patent/WO2007075717A1/en
Priority to IL192099A priority patent/IL192099A0/en
Priority to NO20083004A priority patent/NO20083004L/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/357Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having two or more oxygen atoms in the same ring, e.g. crown ethers, guanadrel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/34Tobacco-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/36Opioid-abuse
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention is directed to the use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction.
  • Alcohol abuse typically characterized as a maladaptive pattern of alcohol use, leading to clinically significant impairment or distress, is a serious medical and social problem. It has been suggested that agents producing a selective decrease in alcohol 10 drinking in animals, without producing a parallel decrease in water or food intake, are likely to be clinically effective in the treatment of human alcoholism (Myers 1994). Daidzin, the active ingredient of the Chinese herb Radix pureariea (RP), used as a traditional treatment for "alcohol addiction" in China, fits the profile: it decreases alcohol drinking in the golden hamster, without producing a decrease in water or food intake 15 (Keung and Vallee3 1993).
  • RP Radix pureariea
  • the present invention is directed to a method for the treatment of substance abuse and / or addition comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (I)
  • R 1 and R 2 are each independently selected from the group consisting of hydrogen and lower alkyl
  • R 4 is selected from the group consisting of hydrogen and iower alkyl; a is an integer from 1 to 2;
  • each R 5 is independently selected from the group consisting of halogen, lower alkyl and nitro;
  • the present invention is further directed to a method for the treatment of substance abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of compound of formula (II)
  • Exemplifying the invention is a method of treating alcohol abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or pharmaceutical compositions described herein.
  • a method for treating abuse of and / or addiction to a substance of abuse selected from the group consisting of alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine, morphine, comprising administering to a subject in need thereof a therapeutically effective amount of any of the compound or pharmaceutical compositions described herein.
  • the present invention is further directed to methods for the treatment of substance abuse and / or addiction comprising administering to a subject in need thereof co-therapy with a therapeutically effective amount with at least one anti-addiction agent and a compound of formula (I) or formula (II) as described herein.
  • the present invention is directed to a method for the treatment of substance abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (I)
  • the present invention is further directed to methods for the treatment of substance abuse and / or addiction comprising co-therapy with a therapeutically effective amount with at least one anti-addiction agent and a compound of formula (I) or formula (II) as described herein.
  • the term "substance” when referring to substances of abuse and / or addiction shall include any legal or illegal substance to which a subject or patient may develop an addiction.
  • Drugs classes that maybe subjected to abuse include but are not limited to stimulants, hallucinogens, barbiturates, natural and synthetic opiods, and benzodiazepines. Suitable examples include, but are not limited to alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine, morphine, and the like.
  • anti-addiction agent shall mean any pharmaceutical agent useful for the treatment of substance abuse and / or addition. More particularly, “anti-addiction agents” include drugs of substitution, drugs of replacement (for example, methadone for heroin), drugs that block craving, drugs that block or mitigate withdrawal symptoms, drugs which block the pleasurable sensations and rewards of substance abuse, and the like. Suitable examples include but are not limited to naltrexone (including vivtrex), nalmephene, antabuse, acamprosate, paliperidone and the like. Preferably, wherein the substance of addiction is alcohol, the anti- addiction agent used in the co-therapy methods of the present invention 1 is naltrexone.
  • subject refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
  • terapéuticaally effective amount means that amount of- active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.
  • the present invention is directed to co-therapy or combination therapy, comprising administration of one or more compound(s) of formula (I) or formula (II) and one or more anti-addiction agents
  • therapeutically effective amount shall mean that amount of the combination of agents taken together so that the combined effect elicits the desired biological or medicinal response.
  • the therapeutically effective amount of co-therapy comprising administration of a compound of formula (I) or formula (II) and at least one nti- addiction agent would be the amount of the compound of formula (I) or formula (II) and the amount of the anti-addiction agent that when taken together or sequentially have a combined effect that is therapeutically effective.
  • the amount of the compound of formula (I) or formula (II) and/or the amount of the anti-addiction agent individually may or may not be therapeutically effective.
  • the terms "co-therapy” and “combination therapy” shall mean treatment of a subject in need thereof by administering one or more compounds of formula (I) or formula (II) in combination with one or more anti- addiction agent(s), wherein the compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) are administered by any suitable means, simultaneously, sequentially, separately or in a single pharmaceutical formulation.
  • the number of dosages administered per day for each compound may be the same or different.
  • the compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) may be administered via the same or different routes of administration.
  • suitable methods of administration include, but are not limited to, oral, intravenous (iv), intramuscular (im), subcutaneous (sc), transdermal, and rectal.
  • Compounds may also be administered directly to the nervous system including, but not limited to, intracerebral, intraventricular, intracerebroventricular, intrathecal, intracisternal, intraspinal and / or peri-spinal routes of administration by delivery via intracranial or intravertebral needles and / or catheters with or without pump devices.
  • R 1 is selected from the group consisting of hydrogen and methyl.
  • R 2 is selected from the group consisting of hydrogen and methyl.
  • R 1 and R 2 are each hydrogen or R 1 and R 2 are each methyl.
  • -(CH 2 ) a - is selected from the group consisting of -CH 2 - and -CH 2 -CH 2 -. In another embodiment of the present invention -(CH 2 ) a - is -CH 2 -.
  • R 4 is selected from the group consisting of hydrogen and methyl, preferably, R 4 is hydrogen.
  • a is 1.
  • b is an integer from 0 to 2.
  • c is an integer from 0 to 2.
  • b is an integer from 0 to 1.
  • c is an integer from 0 to 1.
  • the sum of b and c is an integer form 0 to 2, preferably an integer form 0 to 1.
  • b is an integer from 0 to 2 and c is 0.
  • R 5 is selected from the group consisting of halogen and lower alkyl. In another embodiment of the present invention R 5 is selected from chloro, fluoro, bromo and methyl.
  • the stereo-center on the compound of formula (I) is in the S-configuration. In another embodiment of the present invention, the stereo-center on the compound of formula (I) is in the R-configuration.
  • the compound of formula (I) is present as an enantiomerically enriched mixture, wherein the % enantiomeric enrichment (% ee) is greater than about 75%, preferably greater than about 90%, more preferably greater than about 95%, most preferably greater than about 98%.
  • Additional embodiments of the present invention include those wherein the substituents selected for one or more of the variables defined herein (i.e. R 1 , R 2 , R 3 , R 4 , X-Y and A) are independently selected to be any individual substituent or any subset of substituents selected from the complete list as defined herein.
  • Representative compounds of the present invention, useful for the treatment of alcohol abuse and addiction are as listed in Tables 1 below. Additional compounds of the present invention, useful for the treatment of alcohol abuse and addiction, are as listed in Table 3.
  • Tables 1 and 2 below the column headed "stereo" defines the stereo-configuration at the carbon atom of the heterocycle attached at the starred bond. Where no designation is listed, the compound was prepared as a mixture of stereo-configurati ⁇ ns. Where an "R” or “S” designation is listed, the stereo-configuration was based on the enantiomerically enriched starting material.
  • halogen shall mean chlorine, bromine, fluorine and iodine.
  • alkyl whether used alone or as part of a substituent group, includes straight and branched chains.
  • alkyl radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl and the like.
  • lower when used with alkyl means a carbon chain composition of 1 -4 carbon atoms.
  • alkoxy shall denote an oxygen ether radical of the above described straight or branched chain alkyl groups. For example, methoxy, ethoxy, n-propoxy, sec-butoxy, t-butoxy, n-hexyloxy and the like.
  • substituents e.g., alkyl, aryl, etc.
  • that group may have one or more substituents, preferably from one to five substituents, more preferably from one to three substituents, most preferably from one to two substituents, independently selected from the list of substituents.
  • phenyl-alkyl- amino-carbonyl-alkyl refers to a group of the formula
  • LAH Lithium Aluminum Hydride
  • the compounds according to this invention may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
  • the salts of the compounds of this invention refer to non-toxic "pharmaceutically acceptable salts.”
  • Other salts may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts.
  • Suitable pharmaceutically acceptable salts of the compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid.
  • suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g., quaternary ammonium salts.
  • alkali metal salts e.g., sodium or potassium salts
  • alkaline earth metal salts e.g., calcium or magnesium salts
  • suitable organic ligands e.g., quaternary ammonium salts.
  • representative pharmaceutically acceptable salts include the following: acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, N-methylglucamine ammonium salt, oleate,
  • acids and bases which may be used in the preparation of pharmaceutically acceptable salts include the following: acids including acetic acid, 2,2-dichloroactic acid, acylated amino acids, adipic acid, alginic acid, ascorbic acid, L-aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, (+)-camphoric acid, camphorsulfonic acid, (+)-(1S)-camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1 ,2- disulfonic acid, ethane ⁇ ulfonic acid, 2-hydrocy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, D-gluconic acid, D-glucoronic acid,
  • a suitably substituted compound of formula (X) 1 a known compound or compound prepared by known methods, is reacted with sulfamide, a known compound, preferably wherein the sulfamide is present in an amount in the range of about 2 to about 5 equivalents, in an organic solvent such as THF, dioxane, and the like, preferably at an elevated temperature in the range of about 50°C to about 100°C, more preferably at about reflux temperature, to yield the corresponding compound of formula (Ia).
  • organic solvent such as THF, dioxane, and the like
  • a suitably substituted compound of formula (X), a known compound or compound prepared by known methods is reacted with a suitably substituted compound of formula (Xl), a known compound or compound prepared by known methods, in the presence of a base such as TEA, DIPEA, pyridine, and the like, in an organic solvent such as DMF, DMSO, and the like, to yield the corresponding compound of formula (I).
  • a base such as TEA, DIPEA, pyridine, and the like
  • organic solvent such as DMF, DMSO, and the like
  • a suitably substituted compound of formula (XII) a known compound or compound prepared by known method (for example as described in Scheme 3 above) is reacted with NH 4 OH, a known. compound, optionally in an organic solvent such as acetonitrile, and the like, to yield the corresponding compound of formula (XIII).
  • a suitably substituted compound of formula (XIV) a known compound or compound prepared by known methods, is reacted with NH 4 OH, in the presence of a coupling agent such as DCC, and the like, optionally in an organic solvent such as acetonitrile, and the like, to yield the corresponding compound of formula (XV).
  • a suitably substituted compound of formula (XVI) wherein J 1 is a suitable leaving group such as Br, Cl, I, tosyl, mesyl, triflyl, and the like a known compound or compound prepared by known methods (for example, by activating the corresponding compound wherein J 1 is OH), is reacted with a cyanide such as potassium cyanide, sodium cyanide, and the like, in an organic solvent such as DMSO, DMF, THF, and the like, to yield the corresponding compound of formula (XVII).
  • a cyanide such as potassium cyanide, sodium cyanide, and the like
  • a suitably substituted compound of formula (XVIII) a known compound or compound prepared by known methods is activated, according to known method, to yield the corresponding compound of formula (XIX), wherein J 2 is a suitable leaving group, such tosylate, Cl, Br, I, mesylate, triflate, and the like.
  • the compound of formula (XIX) is reacted with a phthalimide salt such as potassium phthlimide, sodium phthalimide, and the like, in an organic solvent such as DMF, DMSO, acetonitrile, and the like, preferably, at an elevated temperature in the range of from 50 0 C to about 200 0 C 1 more preferably, at about reflux temperature, to yield the corresponding compound of formula (XX).
  • a phthalimide salt such as potassium phthlimide, sodium phthalimide, and the like
  • organic solvent such as DMF, DMSO, acetonitrile, and the like
  • the compound of formula (XX) is reacted with N 2 H 4 , a known compound, in an organic solvent such as ethanol, methanol, and the like, preferably, at an elevated temperature in the range of from about 50 0 C to about 100 0 C, more preferably, at about reflux temperature, and the like, to yield the corresponding compound of formula (Xd).
  • the processes for the preparation of the compounds according to the invention give rise to mixture of stereoisomers
  • these isomers may be separated by conventional techniques such as preparative chromatography.
  • the compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution.
  • the compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as ⁇ -)-di-p-toluoyl-D-tartaric acid and/or (+)-di-p-toluoyl-L-tartaric acid followed by fractional crystallization and regeneration of the free base.
  • the compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.
  • any of the processes for preparation of the compounds of the present invention it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991.
  • the protecting groups may be removed at a convenient subsequent stage using methods known from the art.
  • the present invention further comprises pharmaceutical compositions containing one or more compounds of formula (I) with a pharmaceutically acceptable carrier.
  • Pharmaceutical compositions containing one or more of the compounds of the invention described herein as the active ingredient can be prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques.
  • the carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral).
  • suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, r stabilizers, coloring agents and the like;
  • suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like.
  • Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate major site of absorption.
  • the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation.
  • injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.
  • compositions of this invention one or more compounds of the present invention as the active ingredient is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending of the form of preparation desired for administration, e.g., oral or parenteral such as intramuscular.
  • a pharmaceutical carrier may take a wide variety of forms depending of the form of preparation desired for administration, e.g., oral or parenteral such as intramuscular.
  • any of the usual pharmaceutical media may be employed.
  • suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like;
  • suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques.
  • the carrier will usually comprise sterile water, through other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included.
  • injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed.
  • the pharmaceutical compositions herein will contain, per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, an amount of the active ingredient necessary to deliver an effective dose as described above.
  • compositions herein will contain, per unit dosage unit, e.g., tablet, capsule, powder, injection, suppository, teaspoonful and the like, of from about 0.1 -1000 mg and may be given at a dosage of from about 0.01 -150.0 mg/kg/day, preferably from about 0.1 to 100 mg/kg/day, more preferably from about 0.5-50 mg/kg/day, more preferably from about 1.0-25.0 mg/kg/day or any range therein.
  • the dosages may be varied depending upon the requirement of the patients, the severity of the condition being treated and the compound being employed. The use of either daily administration or post- periodic dosing may be employed.
  • compositions are in unit dosage forms from such as tablets, pills, capsules, powders, granules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampoules, autoinjector devices or suppositories; for oral parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation.
  • the composition may be presented in a form suitable for once-weekly or once- monthly administration; for example, an insoluble salt of the active compound, such as the decanoate salt, may be adapted to provide a depot preparation for intramuscular injection.
  • a pharmaceutical carrier e.g.
  • a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a pharmaceutically acceptable salt thereof.
  • preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective dosage forms such as tablets, pills and capsules.
  • This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 1000 mg of the active ingredient of the present invention.
  • the tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action.
  • the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former.
  • the two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release.
  • enteric layers or coatings such materials including a number of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
  • liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include, aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles.
  • Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinylpyrrolidone or gelatin.
  • the method of treating alcohol abuse and / or addiction described in the present invention may also be carried out using a pharmaceutical composition comprising any.of the compounds as defined herein and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition may contain between about 0.1 mg and 1000 mg, preferably about 50 to 500 mg, of the compound, and may be constituted into any form suitable for the mode of administration selected.
  • Carriers include necessary and inert pharmaceutical excipients, including, but not limited to, binders, suspending agents, lubricants, flavorants, sweeteners, preservatives, dyes, and coatings.
  • compositions suitable for oral administration include solid forms, such as pills, tablets, caplets, capsules (each including immediate release, timed release and sustained release formulations), granules, and powders, and liquid forms, such as solutions, syrups, elixers, emulsions, and suspensions.
  • forms useful for parenteral administration include sterile solutions, emulsions and suspensions.
  • compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily.
  • compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal skin patches well known to those of ordinary skill in that art.
  • the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
  • the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like.
  • suitable binders include, without limitation, starch, gelatin, natural sugars such as glucose or beta- lactose, com sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.
  • Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum and the like.
  • liquid forms in suitably flavored suspending or dispersing agents such as the synthetic and natural gums, for example, tragacanth, acacia, methyl- cellulose and the like.
  • suspending or dispersing agents such as the synthetic and natural gums, for example, tragacanth, acacia, methyl- cellulose and the like.
  • sterile suspensions and solutions are desired.
  • Isotonic preparations which generally contain suitable preservatives are employed when intravenous administration is desired.
  • Compounds of this invention may be administered in any of the foregoing compositions and according to dosage regimens established in the art whenever treatment of alcohol abuse and / or addiction is required.
  • the daily dosage of the products may be varied over a wide range from
  • compositions are preferably provided in the form of tablets containing, 0.01 , 0.05, 0.1 , 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 150, 200, 250, 500 and 1000 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated.
  • An effective amount of the drug is ordinarily supplied at a dosage level of from about 0.01 mg/kg to about 1500 mg/kg of body weight per day.
  • the range is from about 0.1 to about 100.0 mg/kg of body weight per day, more preferably, from about 0.5 mg/kg to about 50 mg/kg, more preferably, from about 1.0 to about 25.0 mg/kg of body weight per day.
  • the compounds may be administered on a regimen of 1 to 4 times per day.
  • Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular compound used, the mode of administration, the strength of the preparation, the mode of administration, and the advancement of the disease condition. In addition, factors associated with the particular patient being treated, including patient age, weight, diet and time of administration, will result in the need to adjust dosages.
  • Racemic 2,3-dihydro-1 ,4-benzdioxin-2-ylmethylamine (4.4 g, 26 mmol) and sulfamide (5.1 g, 53 mmol) were combined in 1,4 dioxane (100 mL) and refluxed for,2 h.
  • the reaction was cooled to room temperature and a small amount of solid was filtered and discarded. The filtrate was evaporated in vacuo and the residue was purified using flash column chromatography
  • Catechol (10.26 g, 93.2 mmol), sodium methoxide (25% by weight in methanol, 40.3 g, 186 mmol), and methyl dichloroacetate (13.3 g, 93.2 mmol) were combined in dry methanol (100 ml_). The solution was heated to reflux overnight. The reaction was cooled to room temperature, acidified by addition of concentrated hydrochloric acid and then reduced in volume under vacuum to about 50 mL. Water was added and the mixture was extracted with diethyl ether (3 x 100 mL).
  • Benzo[1 ,3]dioxole-2-carboxylic acid amide (5.44 g, 32.9 mmol) was dissolved in tetrahydrofuran (THF, 100 mL). Lithium aluminum hydride (LAH, 1 M in THF, 39.5 mL, 39.5 mmol) was added slowly to the solution at room temperature. The reaction was stirred at room temperature for 24 hours. Distilled water was added to destroy the excess LAH. Aqueous sodium hydroxide (3.0 M, 100 mL) was added and the solution was extracted with ethyl acetate (3 x 100 mL). The combined organic solution was washed with water and dried over MgSO 4 . The solvent was evaporated to yield C- benzo[1 ,3]dioxol-2-yl-methylamine as a colorless oil. MS (ESI): 152.1 (M+H+)
  • the reaction was diluted with diethyl ether (1 L) and 1 N HCI (1.2 L). The organic layer was separated and . washed 2 times with 1 N HCI (500 mL), 4 times with water (150 mL), once with brine, dried (MgSO 4 ) and evaporated in vacuo to yield a white solid which was purified by flash column chromatography (Hept:EA — 2:1) to yield toluene-4- sulfonic acid (2S)-2,3-dihydro-benzo[1 ,4]dioxin-2-ylmethyl ester as a white solid. The white solid was combined with potassium phthalimide (14.4 g; 78 mmol) in DMF (250.
  • Racemic 2,3-dihydro-1,4-benzdioxin-2-ylmethylamine (8.25 g, 5.0 mmol) and triethylamine (1.52 g, 15 mmol) were combined in DMF (10 mL) and cooled in an ice bath as dimethylsulfamoyl chloride (1.44 g, 10 mmol) was added. The reaction mixture was then stirred for 3 hr with continued cooling. The reaction mixture was partitioned between ethyl acetate and water, and the ethyl acetate solution was washed with brine, dried (MgSCu) and evaporated in vacuo to yield an oil.
  • Racemic 2,3-dihydro-1 ,4-benzdioxin-2-ylmethylamine (825 mg, 5 mmol) was dissolved in ethyl formate (15 ml_), refluxed for 30 min and evaporated in vacuo to yield Nr(2,3-dihydro-benzo[1 ,4]dioxin-2-ylmethyl)-formamide as an oil.
  • the oil in diethyl ether 25 ml_
  • reaction mixture was diluted with diethyl ether and 1 N HCI (750 mL) and the organic layer was separated and washed 2 times with 1 N HCI (250 mL), once with water (150 mL), twice with brine, dried (MgSO-O and evaporated in vacuo to yield light yellow solid of toluene-4-sulfonic acid (2S)-6,7-dichloro-2,3-dihydro-benzo[1 ,4]dioxin-2- ylmethyl ester.
  • the white powdery solid was combined with hydrazine (1.06 g, 33 mmol) in EtOH (80 mL) and heated at reflux for 2 h, then cooled to room temperature. 1 N HCI was added to adjust the reaction mixture's pH to pH 1.0 and the reaction mixture was then stirred for 15 min.
  • White solid was filtered and washed with fresh EtOH (solid discarded) and the filtrate was evaporated in vacuo to a solid, which was partitioned between diethyl ether and dilute aqueous NaOH.
  • (2S)-(-)-N-(2,3-Dihydro-7-nitro-benzo[1 ,4]dioxin-2-ylmethyl)-sulfamide (1.2 g, 4.15 mmol), was prepared from 4-nitrocatechol according to the process outlined in Example 4.
  • the (2S)-(-)-N-(2,3-Dihydro-7-nitro-benzo[1 ,4]dioxin-2- ylmethyl)-sulf amide was then combined with 10% Pd/C in methanol (120 mL) and shaken under hydrogen atmosphere (39 psi) at room temperature for 3 h.
  • Example 13 Alcohol Preferring Rats In Vivo Model Adult male selectively-bred alcohol preferring rats (which are known in the art to be useful for the study of the effect of test compounds on vountary alcohol intake) were grouped into three groups: vehicle and Compound #8 (50 and 100 mg/kg, po). Rats were housed individually in wire mesh cages under a constant room temperature of 22 ⁇ 1°C and 12:12 light-dark cycle (8:00-20:00, dark). The animals were fed Agway Prolab Rat/Mouse/ Hamster 3000 formula and water ad libitum.
  • Alcohol intake was determined using the standard two-bottle choice method. Animals were first given free access to water in a graduated Richter tube for 2 days. Then they were given access to only a solution of 10% (v/v) ethanol for 3 consecutive days. During this period animals became accustomed to drinking from Richter tubes and to the taste and pharmacological effects of alcohol. Thereafter, they were given free access to both water and a solution of 10% alcohol for at least 4 consecutive weeks and throughout the study period. Rats had free access to food. Water and alcohol intake were recorded at 4, 6 and 24 hours after the treatment, whereas food intake was measured at 24 hour. Animals' body weight was measured every day.
  • rats were administered either vehicle or Compound #8 via oral gavage using a cross-over design with random assignment.
  • naltrexone was included as a positive control. Same rats were given an oral dose of naltrexone (20mg/kg). The interval between treatments was at least 3 days. Alcohol and water intake were recorded 4, 6 and 24 h after the drug administration and food intake was recorded at 24 hr. A total of 8-10 animals per group were used.
  • Alcohol intake (g/kg) was calculated by multiplying the volume of alcohol consumed in ml by 10% and 0.7893 (ethanol density)/body weight in kg. Alcohol preference, expressed as percentage, was calculated as follows: (volume of alcohol consumed in ml/total fluid intake in ml) x 100 (Rezvani and Grady, 1994; Rezvani et al., 1997). Statistical differences between drug-treated and control groups were determined by using ANOVA and Turkey Student's t test for multiple comparison.
  • Compound # 8 decreased ethanol consumption ⁇ n alcohol-preferring rats at 6 h (@ 50 and 100 mg/kg dose) post- dosing.
  • an oral composition 100 mg of,the Compound #8 prepared as in Example 7 is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size O hard gel capsule.

Abstract

The present invention is a method for the treatment of alcohol abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of one or more novel benzo-fused heterocycle sulfamide derivatives of formula (I) and / or formula (II) as herein defined.

Description

USE OF BENZO-FUSED HETEROCYCLE SULFAMIDE DERIVATIVES FOR THE TREATMENT OF SUBSTANCE ABUSE AND ADDICTION
CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U. S. Provisional Application
60/751 ,679, filed on December 19, 2005, which is incorporated by reference herein in its entirety.
FIELD OF THE INVENTION The present invention is directed to the use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction.
BACKGROUND OF THE INVENTION Alcohol abuse, typically characterized as a maladaptive pattern of alcohol use, leading to clinically significant impairment or distress, is a serious medical and social problem. It has been suggested that agents producing a selective decrease in alcohol 10 drinking in animals, without producing a parallel decrease in water or food intake, are likely to be clinically effective in the treatment of human alcoholism (Myers 1994). Daidzin, the active ingredient of the Chinese herb Radix pureariea (RP), used as a traditional treatment for "alcohol addiction" in China, fits the profile: it decreases alcohol drinking in the golden hamster, without producing a decrease in water or food intake 15 (Keung and Vallee3 1993). In contrast, many drugs, including specific serotonergic agonist (e.g., sertraline) and opiate antagonists (e.g., naloxone and naltrexone), that have been shown to inhibit alcohol consumption in animals have also impaired water or food consumption at the same time (Myers 1994). However although atypical antipsychotic have been proposed as possible treatments for substance abuse, there medication may undergo substantial hepatic metabolism in substance abuse patients. The population of patients with hepatic impairment is quite high. Consequently it would be advantageous to treat substance abuse patients with an atypical antipsychotic, which was not significantly metabolized in the liver. There remains a need to provide an effective treatment for substance abuse and / or addiction, more abuse of and / or addition to particularly alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine, morphine, and the like.
SUMMARY OF THE INVENTION
The present invention is directed to a method for the treatment of substance abuse and / or addition comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (I)
Figure imgf000003_0001
wherein
R1 and R2 are each independently selected from the group consisting of hydrogen and lower alkyl;
R4 is selected from the group consisting of hydrogen and iower alkyl; a is an integer from 1 to 2;
Figure imgf000003_0002
is selected from the group consisting of
Figure imgf000003_0003
Figure imgf000004_0001
wherein b is an integer from 0 to 4; and wherein c is an integer from 0 to
2; each R5 is independently selected from the group consisting of halogen, lower alkyl and nitro;
provided that when
Figure imgf000004_0002
Figure imgf000004_0003
; or a pharmaceutically acceptable salt thereof.
The present invention is further directed to a method for the treatment of substance abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of compound of formula (II)
Figure imgf000004_0004
or a pharmaceutically acceptable salt thereof.
Exemplifying the invention is a method of treating alcohol abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of any of the compounds or pharmaceutical compositions described herein.
Further exemplifying the invention is a method for treating abuse of and / or addiction to a substance of abuse selected from the group consisting of alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine, morphine, comprising administering to a subject in need thereof a therapeutically effective amount of any of the compound or pharmaceutical compositions described herein.
The present invention is further directed to methods for the treatment of substance abuse and / or addiction comprising administering to a subject in need thereof co-therapy with a therapeutically effective amount with at least one anti-addiction agent and a compound of formula (I) or formula (II) as described herein.
DETAILED DESCRIPTION QF THE INVENTION The present invention is directed to a method for the treatment of substance abuse and / or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula (I)
or a pharmace
Figure imgf000005_0001
utically acceptable salt thereof, wherein , a, R , R2 and R4 are as herein defined.
The present invention is further directed to methods for the treatment of substance abuse and / or addiction comprising co-therapy with a therapeutically effective amount with at least one anti-addiction agent and a compound of formula (I) or formula (II) as described herein.
As sued herein, unless otherwise noted the term "substance" when referring to substances of abuse and / or addiction shall include any legal or illegal substance to which a subject or patient may develop an addiction. Drugs classes that maybe subjected to abuse include but are not limited to stimulants, hallucinogens, barbiturates, natural and synthetic opiods, and benzodiazepines. Suitable examples include, but are not limited to alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine, morphine, and the like.
As used herein, unless otherwise noted, the term "anti-addiction agent" shall mean any pharmaceutical agent useful for the treatment of substance abuse and / or addition. More particularly, "anti-addiction agents" include drugs of substitution, drugs of replacement (for example, methadone for heroin), drugs that block craving, drugs that block or mitigate withdrawal symptoms, drugs which block the pleasurable sensations and rewards of substance abuse, and the like. Suitable examples include but are not limited to naltrexone (including vivtrex), nalmephene, antabuse, acamprosate, paliperidone and the like. Preferably, wherein the substance of addiction is alcohol, the anti- addiction agent used in the co-therapy methods of the present invention1 is naltrexone.
The term "subject" as used herein, refers to an animal, preferably a mammal, most preferably a human, who has been the object of treatment, observation or experiment.
The term "therapeutically effective amount" as used herein, means that amount of- active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation of the symptoms of the disease or disorder being treated.
Wherein the present invention is directed to co-therapy or combination therapy, comprising administration of one or more compound(s) of formula (I) or formula (II) and one or more anti-addiction agents, "therapeutically effective amount" shall mean that amount of the combination of agents taken together so that the combined effect elicits the desired biological or medicinal response. For example, the therapeutically effective amount of co-therapy comprising administration of a compound of formula (I) or formula (II) and at least one nti- addiction agent would be the amount of the compound of formula (I) or formula (II) and the amount of the anti-addiction agent that when taken together or sequentially have a combined effect that is therapeutically effective. Further, it will be recognized by one skilled in the art that in the case of co-therapy with a therapeutically effective amount, as in the example above, the amount of the compound of formula (I) or formula (II) and/or the amount of the anti-addiction agent individually may or may not be therapeutically effective.
As used herein, the terms "co-therapy" and "combination therapy" shall mean treatment of a subject in need thereof by administering one or more compounds of formula (I) or formula (II) in combination with one or more anti- addiction agent(s), wherein the compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) are administered by any suitable means, simultaneously, sequentially, separately or in a single pharmaceutical formulation. Where the compound(s) of formula (I) or formula (II) and the anti- addiction agent(s) are administered in separate dosage forms, the number of dosages administered per day for each compound may be the same or different. The compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) may be administered via the same or different routes of administration. Examples of suitable methods of administration include, but are not limited to, oral, intravenous (iv), intramuscular (im), subcutaneous (sc), transdermal, and rectal. Compounds may also be administered directly to the nervous system including, but not limited to, intracerebral, intraventricular, intracerebroventricular, intrathecal, intracisternal, intraspinal and / or peri-spinal routes of administration by delivery via intracranial or intravertebral needles and / or catheters with or without pump devices. The compound(s) of formula (I) or formula (II) and the anti-addiction agent(s) may be administered according to simultaneous or alternating regimens, at the same or different times during the course of the therapy, concurrently in divided or single forms. In an embodiment of the present invention R1 is selected from the group consisting of hydrogen and methyl. In another embodiment of the present invention R2 is selected from the group consisting of hydrogen and methyl. In yet another embodiment of the present invention R1 and R2 are each hydrogen or R1 and R2 are each methyl.
In an embodiment of the present invention -(CH2)a- is selected from the group consisting of -CH2- and -CH2-CH2-. In another embodiment of the present invention -(CH2)a- is -CH2-.
In an embodiment of the present R4 is selected from the group consisting of hydrogen and methyl, preferably, R4 is hydrogen.
In an embodiment of the present invention a is 1.
In an embodiment of the present invention b is an integer from 0 to 2. In another embodiment of the present invention c is an integer from 0 to 2. In another embodiment of the present invention b is an integer from 0 to 1. In another embodiment of the present invention c is an integer from 0 to 1. In yet another embodiment of the present invention the sum of b and c is an integer form 0 to 2, preferably an integer form 0 to 1. In yet another embodiment of the present invention b is an integer from 0 to 2 and c is 0.
group
Figure imgf000008_0001
Figure imgf000008_0002
,
Figure imgf000009_0001
In an embodiment of the present invention,
Figure imgf000009_0002
is selected from the group consisting of 2-(2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(benzo[1 ,3]dioxolyl), 3- (3,4-dihydro-benzo[1 ,4]dioxepinyl), 2-(6-chloro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(6-fluoro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(chromanyl), 2-(5-fluoro-2,3- dihydro-benzo[1 ,4]dioxinyl), 2-(7-chloro-2,3-dihydro-benzo[1,4]dioxinyl), 2-(6- chloro-benzo[1 ,3]dioxolyl), 2-(7-nitro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(7- methyl-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(5-chloro-2,3-dihydro- benzo[1 ,4]dioxinyl), 2-(6-bromo-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(6,7-dichloro- 2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(8-chloro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2- (2,3-dihydro-naphtho[2,3-b][1 ,4]dioxinyl) and 2-(4-methyl-benzo[1 ,3]dioxolyl).
In another embodiment of the present invention,
Figure imgf000009_0003
is selected from the group consisting 2-(benzo[1 ,3]dioxolyl), 2-(2,3-dihydro- benzo[1 ,4]dioxinyl), 2-(6-chloro-2,3-dihydro-benzo[1)4]dioxinyl), 2-(7-chloro-2,3- dihydro-benzo[1 ,4]dioxinyl), 2-(7-methyl-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(6- bromo-2,3-dihydro-benzo[1 ,4]dioxinyl) and 2-(6,7-dichloro-2,3-dihydro- benzo[1 ,4]dioxinyl). In another embodiment of the present invention,
Figure imgf000010_0001
is selected from the group consisting of 2-(2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(7- mβthyl-2,3-dihydro-benzo[1 ,4]dioxinyl) and 2-(6-bromo-2,3-dihydro- benzo[1 ,4]dioxinyl).
In an embodiment of the present invention R5 is selected from the group consisting of halogen and lower alkyl. In another embodiment of the present invention R5 is selected from chloro, fluoro, bromo and methyl.
In an embodiment of the present invention, the stereo-center on the compound of formula (I) is in the S-configuration. In another embodiment of the present invention, the stereo-center on the compound of formula (I) is in the R-configuration.
In an embodiment of the present invention the compound of formula (I) is present as an enantiomerically enriched mixture, wherein the % enantiomeric enrichment (% ee) is greater than about 75%, preferably greater than about 90%, more preferably greater than about 95%, most preferably greater than about 98%.
Additional embodiments of the present invention, include those wherein the substituents selected for one or more of the variables defined herein (i.e. R1 , R2, R3, R4, X-Y and A) are independently selected to be any individual substituent or any subset of substituents selected from the complete list as defined herein.
Representative compounds of the present invention, useful for the treatment of alcohol abuse and addiction, are as listed in Tables 1 below. Additional compounds of the present invention, useful for the treatment of alcohol abuse and addiction, are as listed in Table 3. In Tables 1 and 2 below, the column headed "stereo" defines the stereo-configuration at the carbon atom of the heterocycle attached at the starred bond. Where no designation is listed, the compound was prepared as a mixture of stereo-configuratiόns. Where an "R" or "S" designation is listed, the stereo-configuration was based on the enantiomerically enriched starting material.
Figure imgf000011_0001
Figure imgf000012_0002
Table 2: Additional Compounds of the Present Invention
Figure imgf000012_0001
Figure imgf000013_0001
As used herein, unless otherwise noted, "halogen" shall mean chlorine, bromine, fluorine and iodine.
As used herein, unless otherwise noted, the term "alkyl" whether used alone or as part of a substituent group, includes straight and branched chains. For example, alkyl radicals include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl and the like. Unless otherwise noted, "lower" when used with alkyl means a carbon chain composition of 1 -4 carbon atoms.
As used herein, unless otherwise noted, "alkoxy" shall denote an oxygen ether radical of the above described straight or branched chain alkyl groups. For example, methoxy, ethoxy, n-propoxy, sec-butoxy, t-butoxy, n-hexyloxy and the like.
As used herein, the notation "*" shall denote the presence of a stereogenic center.
When a particular group is "substituted" (e.g., alkyl, aryl, etc.), that group may have one or more substituents, preferably from one to five substituents, more preferably from one to three substituents, most preferably from one to two substituents, independently selected from the list of substituents.
With reference to substituents, the term "independently" means that when more than one of such substituents is possible, such substituents may be the same or different from each other.
Under standard nomenclature used throughout this disclosure, the terminal portion of the designated side chain is described first, followed by the adjacent functionality toward the point of attachment. Thus, for example, a "phenyl-alkyl- amino-carbonyl-alkyl" substituent refers to a group of the formula
-i-(alkyl)
Figure imgf000014_0001
Abbreviations used in the specification, particularly the Schemes and
Examples, are as follows:
DCC Dicyclohexyl Carbodiimide
DCE Dichloroethane
DCM Dichloromethane
DIPEA or DIEA Diisopropylethylamine
DMF N,N-Dimethylformamide
DMSO Dimethylsulfoxide
EDC Ethylcarbodiimide
Et3N Or TEA Triethylamine
Et2O Diethyl ether
EA or EtOAc Ethyl acetate
EtOH Ethanol
IPA 2-propanol
Hept Heptane
HOBT 1 -Hydroxybenzotriazole HPLC = High Pressure Liquid Chromatography
LAH = Lithium Aluminum Hydride
M or MeOH = Methanol
NMR = Nuclear Magnetic Resonance
Pd-C = Palladium on Carbon Catalyst
RP HPLC = Reverse Phase High Pressure Liquid
Chromatography
RT or rt = Room temperature
TEA = Triethylamine
TFA = Trifluoroacetic Acid
THF = Tetrahydrofuran
TLC = Thin Layer Chromatography
Where the compounds according to this invention have at least one chiral center, they may accordingly exist as enantiomers. Where the compounds possess two or more chiral centers, they may additionally exist as diastereomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention. Furthermore, some of the crystalline forms for the compounds may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds may form solvates with water (i.e., hydrates) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
For use in medicine, the salts of the compounds of this invention refer to non-toxic "pharmaceutically acceptable salts." Other salts may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts; alkaline earth metal salts, e.g., calcium or magnesium salts; and salts formed with suitable organic ligands, e.g., quaternary ammonium salts. Thus, representative pharmaceutically acceptable salts include the following: acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, calcium edetate, camsylate, carbonate, chloride, clavulanate, citrate, dihydrochloride, edetate, edisylate, estolate, esylate, fumarate, gluceptate, gluconate, glutamate, glycollylarsanilate, hexylresorcinate, hydrabamine, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, mandelate, mesylate, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, N-methylglucamine ammonium salt, oleate, pamoate (embonate), palmitate, pantothenate, phosphate/diphosphate, polygalacturonate, salicylate, stearate, sulfate, subacetate, succinate, tannate, tartrate, teoclate, tosylate, triethiodide and valerate.
Representative acids and bases which may be used in the preparation of pharmaceutically acceptable salts include the following: acids including acetic acid, 2,2-dichloroactic acid, acylated amino acids, adipic acid, alginic acid, ascorbic acid, L-aspartic acid, benzenesulfonic acid, benzoic acid, 4-acetamidobenzoic acid, (+)-camphoric acid, camphorsulfonic acid, (+)-(1S)-camphor-10-sulfonic acid, capric acid, caproic acid, caprylic acid, cinnamic acid, citric acid, cyclamic acid, dodecylsulfuric acid, ethane-1 ,2- disulfonic acid, ethaneεulfonic acid, 2-hydrocy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, D-gluconic acid, D-glucoronic acid, L-glutamic acid, α-oxo-glutaric acid, glycolic acid, hipuric acid, hydrobromic acid, hydrochloric acid, (+)-L-lactic acid, (±)-DL-lactic acid, lactobionic acid, maleic acid, (-)-L-malic acid, malonic acid, (±)-DL-mandelic acid, methanesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1 ,5- disulfonic acid, 1 -hydroxy-2-naphthoic acid, nicotine acid, nitric acid, oleic acid, orotic acid, oxalic acid, palmitric acid, pamoic acid, phosphoric acid, L- pyroglutamic acid, salicylic acid, 4-amino-salicylic acid, sebaic acid, stearic acid, succinic acid, sulfuric acid, tannic acid, (+)-L-tartaric acid, thiocyanic acid, p-toluenesulfonic acid and undecylenic acid; and bases including ammonia, L-arginine, benethamine/ benzathine, calcium hydroxide, choline, deanol, diethanolamine, diethylamine, 2-(diethylamino)- ethanol, ethanolamine, ethylenediamine, N-methyl-glucamine, hydrabamine, I H-imidazole, L-lysine, magnesium hydroxide, 4-(2-hydroxyethyl)-morpholine, piperazine, potassium hydroxide, 1 -(2-hydroxyethyl)-pyrrolidine, secondary amine, sodium hydroxide, triethanolamine, tromethamine and zinc hydroxide.
Compounds of formula (I) may be prepared according to the process outlined in Scheme 1.
Figure imgf000017_0001
Scheme 1
Accordingly, a suitably substituted compound of formula (X)1 a known compound or compound prepared by known methods, is reacted with sulfamide, a known compound, preferably wherein the sulfamide is present in an amount in the range of about 2 to about 5 equivalents, in an organic solvent such as THF, dioxane, and the like, preferably at an elevated temperature in the range of about 50°C to about 100°C, more preferably at about reflux temperature, to yield the corresponding compound of formula (Ia).
Alternatively, a suitably substituted compound of formula (X), a known compound or compound prepared by known methods, is reacted with a suitably substituted compound of formula (Xl), a known compound or compound prepared by known methods, in the presence of a base such as TEA, DIPEA, pyridine, and the like, in an organic solvent such as DMF, DMSO, and the like, to yield the corresponding compound of formula (I).
Compounds of formula (X) wherein
Figure imgf000018_0001
Figure imgf000018_0002
may be prepared according to the process outlined in Scheme 2.
Figure imgf000018_0003
(Xa)
Scheme 2
Accordingly, a suitably substituted compound of formula (XII), a known compound or compound prepared by known method (for example as described in Scheme 3 above) is reacted with NH4OH, a known. compound, optionally in an organic solvent such as acetonitrile, and the like, to yield the corresponding compound of formula (XIII).
. The compound of formula (XIII) is reacted with a suitably selected reducing agent, such as LAH, and the like, and the like, in an organic solvent such as THF, diethyl ether, and the like, to yield the corresponding compound of formula (Xa). Compounds of formula (X) wherein
Figure imgf000019_0001
is selected from
Figure imgf000019_0002
may be prepared according to the process outlined in Scheme 3.
Figure imgf000019_0003
(XIV) (XV)
Figure imgf000019_0004
(Xb)
Scheme 3
Accordingly, a suitably substituted compound of formula (XIV), a known compound or compound prepared by known methods, is reacted with NH4OH, in the presence of a coupling agent such as DCC, and the like, optionally in an organic solvent such as acetonitrile, and the like, to yield the corresponding compound of formula (XV).
The compound of formula (XV) is reacted with a suitably selected reducing agent, such as LAH, and the like, in an organic solvent such as THF, diethyl ether, and the like, to yield the corresponding compound of formula (Xb). Compounds of formula (X) wherein
Figure imgf000020_0001
is selected from
Figure imgf000020_0002
process outlined in Scheme 4.
Figure imgf000020_0003
Scheme 5
Accordingly, a suitably substituted compound of formula (XVI) wherein J1 is a suitable leaving group such as Br, Cl, I, tosyl, mesyl, triflyl, and the like, a known compound or compound prepared by known methods (for example, by activating the corresponding compound wherein J1 is OH), is reacted with a cyanide such as potassium cyanide, sodium cyanide, and the like, in an organic solvent such as DMSO, DMF, THF, and the like, to yield the corresponding compound of formula (XVII).
The compound of formula (XVII) is reduced according to known methods, for example by reacting with a suitable reducing agent such as LAH, borane, and the like, to yield the corresponding compound of formula (Xc). Compounds of formula (X) wherein
Figure imgf000021_0001
is selected from
Figure imgf000021_0002
and wherein a is 1 , may be prepared according to the process outlined in Scheme 5.
Figure imgf000021_0003
(XX) (Xd)
Scheme 5
Accordingly, a suitably substituted compound of formula (XVIII), a known compound or compound prepared by known methods is activated, according to known method, to yield the corresponding compound of formula (XIX), wherein J2 is a suitable leaving group, such tosylate, Cl, Br, I, mesylate, triflate, and the like.
The compound of formula (XIX) is reacted with a phthalimide salt such as potassium phthlimide, sodium phthalimide, and the like, in an organic solvent such as DMF, DMSO, acetonitrile, and the like, preferably, at an elevated temperature in the range of from 500C to about 2000C1 more preferably, at about reflux temperature, to yield the corresponding compound of formula (XX). The compound of formula (XX) is reacted with N2H4, a known compound, in an organic solvent such as ethanol, methanol, and the like, preferably, at an elevated temperature in the range of from about 500C to about 1000C, more preferably, at about reflux temperature, and the like, to yield the corresponding compound of formula (Xd).
One skilled in the art will recognize that compounds of formula (X)
Figure imgf000022_0001
known methods or for example; according to the processes outlined in Schemes 2 through 5 above, by selecting and substituting the corresponding naphthyl-fused compounds for the benzo-fused starting materials.
One skilled in the art will further recognize that wherein a single enantiomer (or a mixture of enantiomers wherein one enantiomer is enriched) of a compound of formula (X) is desired, the above processes as described in Schemes 1 through 5 may be applied by substituting the corresponding single enantiomer (or mixture of enantiomers wherein one enantiomer is enriched) for the appropriate starting material. One skilled in the art will recognize that wherein a reaction step of the present invention may be carried out in a variety of solvents or solvent systems, said reaction step may also be carried out in a mixture of the suitable solvents or solvent systems.
Where the processes for the preparation of the compounds according to the invention give rise to mixture of stereoisomers, these isomers may be separated by conventional techniques such as preparative chromatography. The compounds may be prepared in racemic form, or individual enantiomers may be prepared either by enantiospecific synthesis or by resolution. The compounds may, for example, be resolved into their component enantiomers by standard techniques, such as the formation of diastereomeric pairs by salt formation with an optically active acid, such as {-)-di-p-toluoyl-D-tartaric acid and/or (+)-di-p-toluoyl-L-tartaric acid followed by fractional crystallization and regeneration of the free base. The compounds may also be resolved by formation of diastereomeric esters or amides, followed by chromatographic separation and removal of the chiral auxiliary. Alternatively, the compounds may be resolved using a chiral HPLC column.
During any of the processes for preparation of the compounds of the present invention, it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in Protective Groups in Organic Chemistry, ed. J.F.W. McOmie, Plenum Press, 1973; and T.W. Greene & P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.
The present invention further comprises pharmaceutical compositions containing one or more compounds of formula (I) with a pharmaceutically acceptable carrier. Pharmaceutical compositions containing one or more of the compounds of the invention described herein as the active ingredient can be prepared by intimately mixing the compound or compounds with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques. The carrier may take a wide variety of forms depending upon the desired route of administration (e.g., oral, parenteral). Thus for liquid oral preparations such as suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, r stabilizers, coloring agents and the like; for solid oral preparations, such as powders, capsules and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Solid oral preparations may also be coated with substances such as sugars or be enteric-coated so as to modulate major site of absorption. For parenteral administration, the carrier will usually consist of sterile water and other ingredients may be added to increase solubility or preservation. Injectable suspensions or solutions may also be prepared utilizing aqueous carriers along with appropriate additives.
To prepare the pharmaceutical compositions of this invention, one or more compounds of the present invention as the active ingredient is intimately admixed with a pharmaceutical carrier according to conventional pharmaceutical compounding techniques, which carrier may take a wide variety of forms depending of the form of preparation desired for administration, e.g., oral or parenteral such as intramuscular. In preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed. Thus, for liquid oral preparations, such as for example, suspensions, elixirs and solutions, suitable carriers and additives include water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like; for solid oral preparations such as, for example, powders, capsules, caplets, gelcaps and tablets, suitable carriers and additives include starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques. For parenterals, the carrier will usually comprise sterile water, through other ingredients, for example, for purposes such as aiding solubility or for preservation, may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. The pharmaceutical compositions herein will contain, per dosage unit, e.g., tablet, capsule, powder, injection, teaspoonful and the like, an amount of the active ingredient necessary to deliver an effective dose as described above. The pharmaceutical compositions herein will contain, per unit dosage unit, e.g., tablet, capsule, powder, injection, suppository, teaspoonful and the like, of from about 0.1 -1000 mg and may be given at a dosage of from about 0.01 -150.0 mg/kg/day, preferably from about 0.1 to 100 mg/kg/day, more preferably from about 0.5-50 mg/kg/day, more preferably from about 1.0-25.0 mg/kg/day or any range therein. The dosages, however, may be varied depending upon the requirement of the patients, the severity of the condition being treated and the compound being employed. The use of either daily administration or post- periodic dosing may be employed.
Preferably these compositions are in unit dosage forms from such as tablets, pills, capsules, powders, granules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampoules, autoinjector devices or suppositories; for oral parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation. Alternatively, the composition may be presented in a form suitable for once-weekly or once- monthly administration; for example, an insoluble salt of the active compound, such as the decanoate salt, may be adapted to provide a depot preparation for intramuscular injection. For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 1000 mg of the active ingredient of the present invention. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of material can be used for such enteric layers or coatings, such materials including a number of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.
The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include, aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions, include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinylpyrrolidone or gelatin.
The method of treating alcohol abuse and / or addiction described in the present invention may also be carried out using a pharmaceutical composition comprising any.of the compounds as defined herein and a pharmaceutically acceptable carrier. The pharmaceutical composition may contain between about 0.1 mg and 1000 mg, preferably about 50 to 500 mg, of the compound, and may be constituted into any form suitable for the mode of administration selected. Carriers include necessary and inert pharmaceutical excipients, including, but not limited to, binders, suspending agents, lubricants, flavorants, sweeteners, preservatives, dyes, and coatings. Compositions suitable for oral administration include solid forms, such as pills, tablets, caplets, capsules (each including immediate release, timed release and sustained release formulations), granules, and powders, and liquid forms, such as solutions, syrups, elixers, emulsions, and suspensions. Forms useful for parenteral administration include sterile solutions, emulsions and suspensions.
Advantageously, compounds of the present invention may be administered in a single daily dose, or the total daily dosage may be administered in divided doses of two, three or four times daily. Furthermore, compounds for the present invention can be administered in intranasal form via topical use of suitable intranasal vehicles, or via transdermal skin patches well known to those of ordinary skill in that art. To be administered in the form of a transdermal delivery system, the dosage administration will, of course, be continuous rather than intermittent throughout the dosage regimen.
For instance, for oral administration in the form of a tablet or capsule, the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water and the like. Moreover, when desired or necessary, suitable binders; lubricants, disintegrating agents and coloring agents can also be incorporated into the mixture. Suitable binders include, without limitation, starch, gelatin, natural sugars such as glucose or beta- lactose, com sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like. Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum and the like.
The liquid forms in suitably flavored suspending or dispersing agents such as the synthetic and natural gums, for example, tragacanth, acacia, methyl- cellulose and the like. For parenteral administration, sterile suspensions and solutions are desired. Isotonic preparations which generally contain suitable preservatives are employed when intravenous administration is desired. Compounds of this invention may be administered in any of the foregoing compositions and according to dosage regimens established in the art whenever treatment of alcohol abuse and / or addiction is required.
The daily dosage of the products may be varied over a wide range from
0.01 to 150 mg / kg per adult human per day. For oral administration, the compositions are preferably provided in the form of tablets containing, 0.01 , 0.05, 0.1 , 0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 25.0, 50.0, 100, 150, 200, 250, 500 and 1000 milligrams of the active ingredient for the symptomatic adjustment of the dosage to the patient to be treated. An effective amount of the drug is ordinarily supplied at a dosage level of from about 0.01 mg/kg to about 1500 mg/kg of body weight per day. Preferably, the range is from about 0.1 to about 100.0 mg/kg of body weight per day, more preferably, from about 0.5 mg/kg to about 50 mg/kg, more preferably, from about 1.0 to about 25.0 mg/kg of body weight per day. The compounds may be administered on a regimen of 1 to 4 times per day.
Optimal dosages to be administered may be readily determined by those skilled in the art, and will vary with the particular compound used, the mode of administration, the strength of the preparation, the mode of administration, and the advancement of the disease condition. In addition, factors associated with the particular patient being treated, including patient age, weight, diet and time of administration, will result in the need to adjust dosages.
One skilled in the art will recognize that, both in vivo and in vitro trials using suitable, known and generally accepted cell and / or animal models are predictive of the ability of a test compound to treat or prevent a given disorder.
One skilled in the art will further recognize that human clinical trails including first-in-human, dose ranging and efficacy trials, in healthy patients and / or those suffering from a given disorder, may be completed according to methods well known in the clinical and medical arts. The following Examples are set forth to aid in the understanding of the invention, and are not intended and should not be construed to limit in any way the invention set forth in the claims which follow thereafter.
Example 1
((3.4-Dihvdro-2H-benzorbiπ.41dioxepin-3-vπmethvπsulfamide
(Compound #3)
Figure imgf000029_0001
Catechol (5.09 g, 46.2 mmol) and potassium carbonate were combined in acetonitrile and heated to reflux for one hour. 2-Chloromethyl-3-chloro-1- propene (5.78 g, 46.2 mmol) was added and the reaction was continued at reflux for 24 hours. The solution was cooled to room temperature and filtered. The filtrate was evaporated and the residue was diluted with water and extracted with diethyl ether (3 x). The combined organic solution was dried over MgSO4 and concentrated. Chromatography (2% ethyl ether in hexane) yielded 3-methylene-3,4-dihydro-2H-benzo[b][1 ,4]dioxepine as a colorless oil. MS (ESI): 163.2 (M+H+)
1 H NMR (300 MHz, CDCI3), δ: 6.94 (m, 4H), 5.07 (s, 2H), 4.76 (s, 4H). 3-Methylene-3,4-dihydro-2H-benzo[b][1 ,4]dioxepine (5.00 g, 30.8 mmol) was dissolved in dry THF (100 mL). Borane-THF (1.0 M in THF, 10.3 ml_) was added at 00C. The reaction was stirred at RT for 5 hours. Aminosulfonic acid (6.97 g, 61.6 mmol) was added. The reaction was heated to reflux overnight. The reaction was cooled to room temperature and aqueous sodium hydroxide (3.0 M, 100 mL) was added. The solution was extracted with ethyl acetate (3 x 100 mL). The combined organic solution was dried over MgSO4. The solution was concentrated under vacuum and purified by chromatography (2% to 8% methanol in dichloromethane) to yield ((3,4-dihydro-2H-benzo|;b][1 ,4]dioxepin- 3-yl)methyl)amine as a colorless oil.
MS (ESI): 180.1 (M+H+) 1H NMR (300 MHz, DMSO), δ: 6.92 (m, 4H), 4.21 (m, 2H), 4.07 (m, 2H), 3.33 (broad, 2H), 3.16 (d, J= 4 Hz, 1H), 2.72 (d, J= 4 Hz, 1 H)1 2.30 (m, 1H).
((3,4-Dihydro-2H-benzo[b][1,4]dioxepin-3-yl)methyl)amine (2.90 g, 16.2 mmol) and sulfamide (3.11 g, 32.4 mmol) were combined in dry dioxane (60 ml) and heated to reflux overnight. Chloroform was added and the precipitate was removed by filtration. The filtrate was concentrated under vacuum and purified by chromatography (2% to 8% acetone in dichloromethane) to yield the title compound as an off-white solid.
258.8 (M+H+) 1 H NMR (300 MHz, DMSO), δ: 6.92 (m, 4H), 6.71 (broad, 1 H), 6.59
(broad, 2H), 4.19 (m, 2H), 4.04 (m, 2H), 3.00 (m, 2H), 2.39 (m, 1 H).
Example 2 N-(2,3-Dihydro-benzoπ ,41dioxin-2-ylmethyl)-sulfamide (Compound #1 )
Figure imgf000030_0001
Racemic 2,3-dihydro-1 ,4-benzdioxin-2-ylmethylamine (4.4 g, 26 mmol) and sulfamide (5.1 g, 53 mmol) were combined in 1,4 dioxane (100 mL) and refluxed for,2 h. The reaction was cooled to room temperature and a small amount of solid was filtered and discarded. The filtrate was evaporated in vacuo and the residue was purified using flash column chromatography
(DCM:Methanol - 10:1) to yield a white solid. The solid was recrystallized from DCM to yield the title compound as a white solid. mp: 97.5 -98.5°C
Elemental Analysis: Anal CaIc: C, 44.25; H, 4.95; N, 11.47; S, 13.13
Anal Found: C, 44.28; H, 4.66; N, 11.21; S, 13.15
H1 NMR (DMSO d6) δ 6.85 (m, 4H), 6.68 (bd s, 3H1 NH), 4.28 (m, 2H), 3.97 (dd, J = 6.9, 11.4 Hz, 1H), 3.20 (m, 1H), 3.10 (m, 1H). Example 3 (Benzori.31dioxol-2-ylmethyl)sulfamide (Compound #21
Figure imgf000031_0001
Catechol (10.26 g, 93.2 mmol), sodium methoxide (25% by weight in methanol, 40.3 g, 186 mmol), and methyl dichloroacetate (13.3 g, 93.2 mmol) were combined in dry methanol (100 ml_). The solution was heated to reflux overnight. The reaction was cooled to room temperature, acidified by addition of concentrated hydrochloric acid and then reduced in volume under vacuum to about 50 mL. Water was added and the mixture was extracted with diethyl ether (3 x 100 mL). The combined organic solution was dried with MgSO4, concentrated to a brown solid, and chromatographed (2% ethyl acetate in hexane) to yield benzo[1 ,3]dioxole-2-carboxyIic acid methyl ester as a colorless oil.
MS (ESI): 195.10 (M+H+). 1 H NMR (300 MHz, CDCI3), δ: 6.89 (broad, 4H), 6.29 (s, 1 H), 4.34 (q, J
=7 Hz, 2H), 1.33 (t, J=T Hz, 3H).
To benzo[1 ,3]dioxole-2-carboxylic acid methyl ester (7.21 g, 40.0 mmol) was added ammonium hydroxide (29% in water, 10 mL) and enough acetonitrile to make the mixture homogeneous (~5 mL). The solution was stirred for two hours at room temperature and then distilled water was added. Benzo[1 ,3]dioxole-2-carboxylic acid amide precipitated as a white solid and was collected by filtration and used without further purification.
MS (ESI): 160.00 (M+H+)
1H NMR (300 MHz, DMSO), δ: 7.99 (s, broad, 1 H)1 7.72 (s, broad, 1H), 6.94 (m, 2H) 6.86 (m, 2H), 6.30 (s, 1 H).
Benzo[1 ,3]dioxole-2-carboxylic acid amide (5.44 g, 32.9 mmol) was dissolved in tetrahydrofuran (THF, 100 mL). Lithium aluminum hydride (LAH, 1 M in THF, 39.5 mL, 39.5 mmol) was added slowly to the solution at room temperature. The reaction was stirred at room temperature for 24 hours. Distilled water was added to destroy the excess LAH. Aqueous sodium hydroxide (3.0 M, 100 mL) was added and the solution was extracted with ethyl acetate (3 x 100 mL). The combined organic solution was washed with water and dried over MgSO4. The solvent was evaporated to yield C- benzo[1 ,3]dioxol-2-yl-methylamine as a colorless oil. MS (ESI): 152.1 (M+H+)
1 H NMR (300 MHz, CDCI3), δ: 6.87 (m, 4H), 6.09 (t, J = 4 Hz, 1 H), 3.13 (d, J = 4 Hz, 2H)
C-Benzo[1 ,3]dioxol-2-yl-methylamine (2.94 g, 19.4 mmol) and sulfamide (3.74 g, 38.9 mmol) were combined in dry dioxane (50 mL) and the solution was heated to reflux overnight. The reaction was concentrated and the residue was chromatographed (2% to 10% acetone in dichloromethane) to yield the title compound as a white solid.
MS (ESI): 230.0 (M+H+)
1 H NMR (300 MHz, CDCI3), δ: 6.87 (m, 4H), 6.25 (t, J= 4 Hz, 1 H), 4.79 (broad, 1 H), 4.62 (broad, 1 H), 3.64 (d, J= 4 Hz, 2H).
\ \
Example 4
(2SH-)-N-(2.3-Dihvdro-benzon .41dioxin-2-ylmethvn-sulfamide
(Compound #4)
Figure imgf000032_0001
Catechol (13.2 g, 0.12 mol) and potassium carbonate (16.6 g, 0.12 mol) were stirred in DMF (250 mL) and (2R)-glycidyl tosylate (22.8 g, 0.10 mol) was added and the reaction was stirred at 600C for 24 h. The reaction was cooled to room temperature and diluted with ice water (1 L) and extracted with diethyl ether (4 times). The combined organic solution was washed 3 times with 10% potassium carbonate, once with water, once with brine and evaporated in vacuo to yield a white solid which was purified by flash column chromatography (DCM:Methanol - 50:1) to yield ((2S)-2,3-dihydro-benzo[1 ,4]dioxin-2-yl)- methanol as a solid. The solid (13.3 g, 68 mmol) was dissolved in pyridine (85 mL) copied to 00C, p-toluenesulfonyl chloride (13.0 g, 68 mmol) was added and the reaction mixture stirred at room temperature for 2Oh. The reaction was diluted with diethyl ether (1 L) and 1 N HCI (1.2 L). The organic layer was separated and . washed 2 times with 1 N HCI (500 mL), 4 times with water (150 mL), once with brine, dried (MgSO4) and evaporated in vacuo to yield a white solid which was purified by flash column chromatography (Hept:EA — 2:1) to yield toluene-4- sulfonic acid (2S)-2,3-dihydro-benzo[1 ,4]dioxin-2-ylmethyl ester as a white solid. The white solid was combined with potassium phthalimide (14.4 g; 78 mmol) in DMF (250. mL) and heated to reflux for 1 h, cooled to room temperature and poured into vigorously stirring water (1.5 L) and stirred 30 min. White solid was filtered and the solid was washed several times with water, 2% NaOH, and water again and let air dry to yield a (2S)-2-(2,3-Dihydro- benzo[1 ,4]dioxin-2-ylmethyl)-isoindole-1 ,3-dione as white powdery solid.
The powdery white solid was combined with hydrazine (2.75 g, 86 mmol) in EtOH (225 mL) and heated at reflux for 2 h, cooled to room temperature and 1 N HCI added to pH 1.0 and stirred for 15 min. White solid was filtered and washed with fresh EtOH (solid discarded) and the filtrate was evaporated in vacuo to a solid, which was partitioned between diethyl ether and dilute aqueous NaOH. The diethyl ether solution was dried (Na2SO4) and evaporated in vacuo to a yield a light yellow oil. The oil was purified by flash column chromatography (DCM:MeOH - 10:1) to yield an oil. A portion of the oil (4.82 g, 29 mmol) in 2-propanol (250 mL) was treated with 1N HCI (30 mL) and heated on steambath until homogeneous and then let cool to room temperature. After 3 h, the mixture was ice cooled for 2 h. A white flaky solid (the corresponding HCI salt of (2S)-C-(2,3-Dihydro-benzo[1 ,4]dioxin-2-yl)- l methylamine) was filtered off and then recrystallized again from 2-propanol to yield a white solid. [αb = -69.6 (c = 1.06, EtOH)
The white solid was partitioned between DCM and dilute NaOH, and the DCM was dried (NaSO4) and evaporated in vacuo to yield (2S)-C-(2,3-Dihydro- benzo[1 ,4]dioxin-2-yl)-methylamine as an oil. [α]D = -57.8 (c = 1.40, CHCI3)
The oil (2.1 g, 12.7 mmol) and sulfamide (2.44 g, 25.4 mmol) were refluxed in dioxane (75 mL) for 2 h and the crude product was purified by flash column chromatography (DCM:MeOH 10:1) to yield a white solid, which was recrystallized from DCM to yield the title compound as a white crystalline solid. mp 102-1030C
[α]D = -45.1° (c = 1.05, M);
1H NMR (DMSOdβ) δ 6.86 (m, 4H), 6.81 (bd s, 3H1 NH)1 4.3 (m, 2H), 3.97 (dd, J = 6÷9, 11.4 Hz, 1 H), 3.20 (dd, J = 5.5, 13.7 Hz, 1 H), 3.10 (dd, J = 6.9, 13.7 Hz, 1H)
Elemental Analysis:
Anal CaIc: C, 44.25; H1 4.95; N, 11.47; S, 13.13
Anal Found: C, 44.20; H1 4.69; N, 11.40; S, 13.22.
Example 5
N-(2,3-Dihvdro-benzoπ,41dioxin-2-ylmethvD-N',N' dimethylsulfamide
(Compound #6)
Figure imgf000034_0001
Racemic 2,3-dihydro-1,4-benzdioxin-2-ylmethylamine (8.25 g, 5.0 mmol) and triethylamine (1.52 g, 15 mmol) were combined in DMF (10 mL) and cooled in an ice bath as dimethylsulfamoyl chloride (1.44 g, 10 mmol) was added. The reaction mixture was then stirred for 3 hr with continued cooling. The reaction mixture was partitioned between ethyl acetate and water, and the ethyl acetate solution was washed with brine, dried (MgSCu) and evaporated in vacuo to yield an oil. The oil was purified using flash column chromatography (ethyl acetate:Heptane - 1 :1) to yield a white solid, which was recrystallized (ethyl acefate/Hexane) to yield the title compound as a white floccular solid. mp 76 -78°C
MS 273 (MH+) Elemental Analysis:
Anal CaIc: C, 48.52; H, 5.92; N, 10.29; S, 11.78 Anal Found: C, 48.63; H, 5.62; N5 10.20; S, 11.90 1H NMR (CDCI3) δ 6.87 (m, 4H), 4.59 (bd m, 1 H, NH), 4.35 (m, 1 H), 4.27 (dd, J = 2.3, 11.4 Hz, 1 H), 4.04 (dd, J = 7.0, 11.4, 1 H), 3.36 (m, 2H), 2.82 (s, 6H).
Example 6
N-(2,3-Dihvdro-benzori.41dioxin-2-ylmethvπ-N-methylsulfamide (Compound #7)
Figure imgf000035_0001
Racemic 2,3-dihydro-1 ,4-benzdioxin-2-ylmethylamine (825 mg, 5 mmol) was dissolved in ethyl formate (15 ml_), refluxed for 30 min and evaporated in vacuo to yield Nr(2,3-dihydro-benzo[1 ,4]dioxin-2-ylmethyl)-formamide as an oil. The oil in diethyl ether (25 ml_) was treated with 1 M LAH in THF (9.0 mL, 9.0 mmol) at 00C and stirred for 5 h at room temperature. The reaction was cooled in an ice bath and quenched with water (0.50 mL), followed by 3 N NaOH (0.50 mL) and water (0.50 mL). The mixture was then stirred at room temperature for 1 h. Solid was filtered and the filtrate was evaporated in vacuo to yield a residue which was partitioned between 1 N HCI and diethyl ether. The aqueous phase was basified with 1 N NaOH and extracted with diethyl ether. The organic phase was dried (MgSO4) and evaporated in vacuo to yield (2,3-dihydro-benzo[1 ,4]dioxin-2-ylmethyl)-methyl-amine as an oil. MS 180 (MH+) 1H NMR (CDCI3) δ 6.85 (m, 4H), 4.30 (m, 2H), 4.02 (dd, J = 7.9, 11.6
Hz, 1H), 2.85 (m, 2H), 2.50 (s, 3H)
The oil (380 mg, 2.1 mmol) and sulfamide (820 mg, 8.5 mmol) were combined in dioxane (15 mL), refluxed for 1.5 h and evaporated in vacuo to yield a crude residue. The residue was purified via column chromatography (ethyl acetate/Heptane 1:1) and the resultant solid was recrystallized from ethyl acetate/Hexane to yield the title compound as a white solid, mp 97-98°C MS 257 (M"1) Elemental Analysis:
Anal CaIc: C, 46.50; H, 5.46; N, 10.85; S, 12.41
Anal Found: C, 46.48; H, 5.65; N, 10.90; S5 12.07
1H NMR (CDCI3) δ 6.86 (m, 4H), 4.52 (bs, 2H), 4.46 (m, 1 H), 4.29 (dd, J = 2.3, 11.5 Hz, 1 H), 4.05 (dd, J = 6.5, 11.5 Hz, 1 H), 3.51 (dd, J = 6.7, 14.9 Hz, 1 H), 3.40 (dd, J = 5.9, 14.9 Hz, 1 H), 2.99<(s, 3H).
Example 7 f2S)-M-N-(6-Chloro-2,3-dihvdro-benzoπ,41dioxin-2-ylmethvn-sulfamide
(Compound #8)
Figure imgf000036_0001
Following the procedure outlined in Example 4 above, 4-chlorocatechol was reacted to yield a mixture of (2S)-C-(7-Chloro-2,3-dihydro- benzo[1 ,4]dioxin-2-yl)-methylamine and (2S)-C-(6-Chloro-2,3-dihydro- benzo[1 ,4]dioxin-2-yl)-methylamine (ca. 3:1 ratio of 6-chloro:7-chloro isomers by RP HPLC).
The mixture was dissolved in 2-propanol (100 ml_) and 1 N HCI in diethyl ether was added until pH = 1.0 was attained. The hydrochloride salt that precipitated was filtered (2.65 g) and re-crystallized from methanol/IPA to yield white crystals. The white crystals were partitioned between DCM and dilute NaOH. The DCM was dried and evaporated in vacuo to yield purified (2S)-C- (6-Chloro-2,3-dihydro-benzo[1 ,4]dioxin-2-yl)-methylamine as an oil.
[α]D = -67.8 (c = 1.51 , CHCI3)
The oil (7.75 mmol) and sulf amide (1.50 g, 15.5 mmol) were combined in dioxane (50 ml_) and refluxed for 2.0 h, cooled to room temperature and evaporated in vacuo to yield a solid. The product was purified via flash column using DCM/methanol 20:1 to yield the title compound as a white solid.
MS 277 (M-1)
[α]D = -59.9° (c = 1.11 , M) 1H NMR (CDCI3) δ 6.90 (d, J = 2.2 Hz, 1 H), 6.81 (m, 2H), 4.76 (m, 1H),
4.55 (s, 2H), 4.40 (m, 1 H), 4.29 (dd, J = 2.4, 11.5 Hz, 1 H), 4.05 (dd, J = 7.1 , 11.5 Hz, 1 H), 3.45 (m, 2H)
Elemental Analysis:
Anal CaIc: C, 38.78; H, 3.98; N, 10.05 Anal Found: C, 38.80; H1 3.67; N, 9.99.
The filtrates of the crystallized hydrochloride salt of (2S)-C-(6-Chloro- 2,3-dihydro-benzo[1 ,4]dioxin-2-yl)-methylamine prepared above were recovered (ca. 1 :1 of 6-chloro:7-chloro isomers) and evaporated in vacuo to yield a solid, which was partitioned between DCM (200 mL) and dilute NaOH (0.5 M, 50 mL). The DCM solution was washed once with brine, dried (Na2SO4) and evaporated in vacuo to yield an oil, which was purified via reverse phase HPLC (10 - 50% ACN with 0.16% TFA in water with 0.20% TFA) to yield (2S)-C~(7-Chloro-2,3-dihydro-benzo[1 ,4]dioxin-2-yl)-methylamine as a residue. The residue was combined with sulfamide (0.90 g, 9.4 mmol) in dioxane
(25 mL) and refluxed for 2.5 h, cooled to room temperature and evaporated in vacuo to yield an oil. The oil was purified by flash column chromatography using DCM/methanol - 10:1 to yield (2S)-(-)-N-(7-Chloro-2,3-dihydro- benzo[1 ,4]dioxin-2-ylmethyl)-sulfamide as a white solid. MS 277 (M-1)
1H NMR (CDCI3/CD3OD) δ 6.88 (d, J = 0.7 Hz, 1H), 6.81 (m, 2H), 4.37 (m, 1 H), 4.30 (dd, J = 2.3, 11.6 Hz, 1 H), 4.04 (dd, J = 7.0, 11.6 Hz, 1 H), 3.38 (m, 2H). Example 8 Chroman-2-ylmethylsulfamide (Compound #10)
Figure imgf000038_0001
Chroman-2-carboxylic acid (4.5 g, 25 mmol) and HOBT (3.86 g, 25 mmol) were, combined in DCM (40 ml_) and DMF (10 mL).
Dimethylaminopropyl ethylcarbodiimide (EDC1 4.84 g, 25 mmol) was added at room temperature and the reaction mixture was stirred for 30 min. Ammonium hydroxide (2.26 mL, 33.4 mmol) was added and the reaction mixture was stirred for 16h. The reaction mixture was diluted with DCM (50 mL) and water (50 mL) and the pH of the mixture was adjusted to about pH = 3.0 with 1 N HCl. The DCM was separated and the aqueous phase extracted twice with DCM. The combined DCM phase was dried (Na2SO4) and evaporated in vacuo to yield an oil, which was purified with flash column chromatography (ethyl acetate) to yield an oil. . The oil (5.35 g, 30 mmol) in THF (90 mL) was stirred as 1 M LAH in THF
(36 mL, 36 mmol) was added and the reaction mixture was then stirred at room temperature for 20 h. The reaction was quenched with water, stirred for 2 hours, the solution decanted, dried (Na2SO4) and evaporated in vacuo to yield C-chroman-2-yl-methylamine as an oily amine. The oily amine (1.63 g, 10 mmol) and sulfamide (1.92 g, 20 mmol) were combined in dioxane (50 mL) and brought to reflux for 2 h. The solution was cooled and evaporated in vacuo to yield an oil, which was purified via column chromatography (DCM:Methanol 10:1) to yield a white solid. The solid was recrystallized from ethyl acetate/hexane to yield chroman-2-ylmethylsulfamide as a white solid. mp 100-101°C MS 241 (M-1) Elemental Analysis:
Anal CaIc: C, 49.57; H, 5.82; N1 11.56; S, 13.23 Anal Found: C, 49.57; H5 5.80; N1 11.75; S, 13.33. Example 9 2-(2.3-Dihvdro-benzori .41dioxin-2-vO-ethv[su.f amide (Compound #16)
Figure imgf000039_0001
Potassium cyanide (2.05 g, 31.5 mmol) was added to 2-bromomethyl-
(2,3 dihydrobenzo[1 ,4]dioxine) (6.87 g, 30 mmol) in DMSO (90 ml_) and stirred at ambient temperature for 20 h. The reaction mixture was then diluted with water (250 ml_) and extracted twice with diethyl ether. The diethyl ether was washed with water, then washed twice with brine, dried (Na2SO4) and evaporated in vacuo to yield 2-cyanomethyl-(2,3 dihydrobenzo[1 ,4]d;oxiπe) as a white solid.
1H NMR (CDCI3) δ 6.89 (m, 4H), 4.50 (m, 1 H), 4.31 (dd, J = 2.3, 11.5 Hz, 1H), 4.08 (dd, J = 6.2, 11.6 Hz, 1 H)1 2.78 (d, J = 6.1, Hz, 2H)
The 2-cyanomethyl-(2,3 dihydrobenzo[1 ,4]dioxine) was dissolved in THF (50 mL) and 1M BH3 in THF (80 ml_, 80 mmol) was added and the reaction mixture refluxed for 5 h, then stirred at ambient temperature for 16h. With ice bath cooling, 2N HCI was added until pH = 1.0 was achieved. The reaction mixture was then stirred for 1 h at room temperature and evaporated in vacuo to yield an oil. The oil was partitioned between 3N NaOH and diethyl ether, and the diethyl ether solution was washed with brine, dried (Na2SO4) and evaporated in vacuo to yield crude 2-(2,3 dihydrobenzo[1 ,4]dioxin-2- yl)ethylamine.
MS (M+H)+ 180.
The crude 2-(2,3 dihydrobenzo[1 ,4]dioxin-2-yl)ethylamine in dioxane (100 mL) was combined with sulfamide (3.0 g, 31 mmol) and heated to reflux for 2 h. The solution was cooled and evaporated in vacuo to yield an orange solid, which was purified by column chromatography (DCM:MeOH - 10:1) to yield a white solid. The solid was re-crystallized from DCM to yield the title compound as a solid. MS (M-I) 257 MP 101 - 1030C (corr)
.1H NMR (CDCI3): δ 6.86 (m, 4H), 4.70 (m, 1H), 4.52 (s, 2H), 4.30 (m, 2H), 3.94 (dd, J = 7.4, 11.3 Hz, 1 H), 3.43 (dd, J = 6.4, 12.9 Hz, 2H), 1.94 (dd, J = 6.5, 12.9, 2H). Elemental Analysis:
Measured: C, 46.48; H, 5.60; N, 10.81 ; S, 12.41 Calculated: C, 46.50; H, 5.46; N, 10.85; S, 12.41
Example 10 (2SVM-N-(6,7 Dichloro-2.3-dihvdro-benzori.41d-oxin-2-ylmethylV sulfamide (Compound #29)
Figure imgf000040_0001
4,5 Dichloroatechol (8.6 g, 48 mmol) and potassium carbonate (6.64 g, 48 mmol) were stirred in DMF (200 mL). (2R)-Glycidyl tosylate (9.12 g, 40 mmol) was added and the reaction mixture was stirred at 600C for 24 h. The reaction mixture was cooled to room temperature and then diluted with ice water (600 mL) and extracted with diethyl ether (4 times). The combined organic solution was washed 3 times with 10% potassium carbonate, twice with brine, dried (MgSO4) and evaporated in vacuo to yield a viscous oil of (2S)-2- (6,7-dichloro-2,3-dihydro-benzo[1 ,4]dioxine) methanol.
The (2S)-2-(6,7 dichloro-2,3-dihydro-benzo[1 ,4]dioxine) methanol oil (6.4 g, 27 mmol) was dissolved in pyridine (50 mL) cooled to 00C. Then, p- toluenesulfonyl chloride (5.2 g, 27 mmol) was added and the reaction mixture was stirred at room temperature for 2Oh. The reaction mixture was diluted with diethyl ether and 1 N HCI (750 mL) and the organic layer was separated and washed 2 times with 1 N HCI (250 mL), once with water (150 mL), twice with brine, dried (MgSO-O and evaporated in vacuo to yield light yellow solid of toluene-4-sulfonic acid (2S)-6,7-dichloro-2,3-dihydro-benzo[1 ,4]dioxin-2- ylmethyl ester. 1H NMR (CDCI3): δ 7.79 (d, J = 8.3 Hz, 2H)1 7.36 (d, J = 8.0 Hz, 2H), 6.94 (s, 1H)1 6.83 (s, 1H)1 4.37 (m, 1H), 4.2 (m, 3H)1 4.03 (dd, J = 6.3, 11.7 Hz1 1 H), 2.47 (s, 3H).
Toluene-4-sulfonic acid (2S)-6,7-dichloro-2,3-dihydro-benzo[1 ,4]dioxin- 2-ylmethyl ester (8.0 g, 20.5 mmol) was combined with potassium phthalϊmide (6.1 g, 33 mmol) in. DMF (75 ml_) and heated to reflux for 1 h, cooled to room temperature and poured into vigorously stirring water (0.5 L) and then stirred 30 min. White solid was filtered and the solid was washed several times with water, 2% NaOH, and water again and then let air dry to yield (2S)-2-(6,7- dichloro-2,3-dihydro-benzo[1 ,4]dioxin-2-ylmethyl)-isoindole-1 ,3-dione (6.0 g, 80%) as a white powdery solid.
The white powdery solid was combined with hydrazine (1.06 g, 33 mmol) in EtOH (80 mL) and heated at reflux for 2 h, then cooled to room temperature. 1 N HCI was added to adjust the reaction mixture's pH to pH 1.0 and the reaction mixture was then stirred for 15 min. White solid was filtered and washed with fresh EtOH (solid discarded) and the filtrate was evaporated in vacuo to a solid, which was partitioned between diethyl ether and dilute aqueous NaOH. The diethyl ether solution was dried (Na2SO4) and evaporated in vacuo to a yield a viscous oil of (2S)-2-aminomethyl-(6,7-dichloro-2,3~ dihydro-benzo[1 ,4]dioxine).
1 H NMR (CDCI3): δ 6.98 (s, 1 H), 6.96 (s, 1 H), 4.25 (dd, J = 2.0, 11.2 Hz1 1H), 4.15 (m, 1 H)1 4.0 (m, 1H)1 2.97 (d, J = 5.5 Hz, 2H)
A portion of the oil (3.8 g, 16 mmol) and sulfamide (3.1 g, 32.4 mmol) were refluxed in dioxane (100 mL) for 2 h and the crude product was purified by flash column chromatography (DCM:MeOH 20:1) to yield the title compound as a white solid, which was recrystallized from ethyl acetate / hexane to yield the title compound as a white crystalline solid. MS [M-H]- 311.0 mp 119-121°C [α]D = -53.4 ° (c = 1.17, M)
1H NMR (DMSOd6): δ 7.22 (s, 1H), 7.20 (s, 1H)1 6.91 (bd s, 1H), 6.68 (bd S, 2H), 4.35 (m, 2H)1 4.05 (dd, J = 6.5, 11.5 Hz, 1 H), 3.15 (m, 2H) Elemental Analysis: Elemental Analysis:
Measured: C, 34.52; H, 3.22; N, 8.95; Cl, 22.64; S, 10.24
Calculated: C, 34.64; H, 2.68; N, 8.87; Cl1 22.94; S1 10.35.
Example 11
(2S)-(-)-N-(7-Amino-2.3-dihvdro-benzori,41dioxin-2-ylmethyl)-sulfamide
(Compound #36)
Figure imgf000042_0001
(2S)-(-)-N-(2,3-Dihydro-7-nitro-benzo[1 ,4]dioxin-2-ylmethyl)-sulfamide (1.2 g, 4.15 mmol), was prepared from 4-nitrocatechol according to the process outlined in Example 4. The (2S)-(-)-N-(2,3-Dihydro-7-nitro-benzo[1 ,4]dioxin-2- ylmethyl)-sulf amide, was then combined with 10% Pd/C in methanol (120 mL) and shaken under hydrogen atmosphere (39 psi) at room temperature for 3 h. The solids were filtered and washed with 10% M in DCM and the filtrate was evaporated in vacuo to yield crude product. The crude product was dissolved in 0.2 N HCI (25 mL), frozen and lyophilized to yield the title compound as a white flaky solid, as the corresponding hydrochloride salt. MS (M+H)+ 260
1H NMR (DMSO d6): δ 10.2 (bd s, 3H), 6.86 (m, 1 H), 6.85 (s, 1H), 6.74 (dd, J = 2.5, 8.4 Hz, 1 H), 4.22 (m, 2H), 3.88 (dd, J = 6.7, 11.4 Hz, 1 H), 3.04 (m, 2H)
Example 12
(2SH-)-N-(7-Methyl-2.3-dihvdro-benzoπ,41dioxin-2-ylmethyl)-sulfamide (Compound #19)
Figure imgf000042_0002
Title compound was prepared according to the procedure described in Example 4 above, starting with 4-methylcatechol, to yield a white solid, which was recrystallized from ethyl acetate/ hexane to yield the title compound as a white solid. MS [M-H]" 257
1H NMR (CDCI3): δ 6.76 (m, 1H), 6.66 (m, 2H), 4.80 (m, 1H), 4.57 (bd s, 1 H), 4.40 (m, 1 H), 4.28 (m, 1 H), 4.03 (dd, J = 6.9, 11.4 Hz, 1 H), 3.45 (m, 2H), 2.25 (S, 3H).
Elemental Analysis Calculated; C, 46.50; H, 5.46; N, 10.85; S, 12.41
Found: C, 46.65; H, 5.60; N, 10.84; S, 12.61.
Example 13 Alcohol Preferring Rats In Vivo Model Adult male selectively-bred alcohol preferring rats (which are known in the art to be useful for the study of the effect of test compounds on vountary alcohol intake) were grouped into three groups: vehicle and Compound #8 (50 and 100 mg/kg, po). Rats were housed individually in wire mesh cages under a constant room temperature of 22±1°C and 12:12 light-dark cycle (8:00-20:00, dark). The animals were fed Agway Prolab Rat/Mouse/ Hamster 3000 formula and water ad libitum.
Alcohol intake was determined using the standard two-bottle choice method. Animals were first given free access to water in a graduated Richter tube for 2 days. Then they were given access to only a solution of 10% (v/v) ethanol for 3 consecutive days. During this period animals became accustomed to drinking from Richter tubes and to the taste and pharmacological effects of alcohol. Thereafter, they were given free access to both water and a solution of 10% alcohol for at least 4 consecutive weeks and throughout the study period. Rats had free access to food. Water and alcohol intake were recorded at 4, 6 and 24 hours after the treatment, whereas food intake was measured at 24 hour. Animals' body weight was measured every day. After establishment of a stable baseline for alcohol, food, and water intake, rats were administered either vehicle or Compound #8 via oral gavage using a cross-over design with random assignment. To be able to compare the efficacy of these compounds on alcohol intake with an established FDA- approved drug, naltrexone, was included as a positive control. Same rats were given an oral dose of naltrexone (20mg/kg). The interval between treatments was at least 3 days. Alcohol and water intake were recorded 4, 6 and 24 h after the drug administration and food intake was recorded at 24 hr. A total of 8-10 animals per group were used.
The results below are presented as means +SEM. Alcohol intake (g/kg) was calculated by multiplying the volume of alcohol consumed in ml by 10% and 0.7893 (ethanol density)/body weight in kg. Alcohol preference, expressed as percentage, was calculated as follows: (volume of alcohol consumed in ml/total fluid intake in ml) x 100 (Rezvani and Grady, 1994; Rezvani et al., 1997). Statistical differences between drug-treated and control groups were determined by using ANOVA and Turkey Student's t test for multiple comparison.
As shown in Table 4 below, Compound # 8 decreased ethanol consumption ϊn alcohol-preferring rats at 6 h (@ 50 and 100 mg/kg dose) post- dosing.
Figure imgf000044_0001
Figure imgf000045_0001
Example 14
As a specific embodiment of an oral composition, 100 mg of,the Compound #8 prepared as in Example 7 is formulated with sufficient finely divided lactose to provide a total amount of 580 to 590 mg to fill a size O hard gel capsule.
While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the usual variations, adaptations and/or modifications as come within the scope of the following claims and their equivalents.

Claims

We Claim:
1. A method for treating substance abuse or addiction comprising administering to a subject in need thereof, a therapeutically effective amount of a compound of formula (I)
Figure imgf000046_0001
wherein
R1 and R2 are each independently selected from the group consisting of hydrogen and lower alkyl;
R4 is selected from the group consisting of hydrogen and lower alkyl; a is an integer from 1 to 2;
Figure imgf000046_0002
is selected from the group consisting of
Figure imgf000046_0003
wherein b is an integer from 0 to 4; and wherein c is an integer from 0 to
2; each R5 is independently selected from the group consisting of halogen, lower alkyl and nitro;
provided that when
Figure imgf000047_0001
IS or
Figure imgf000047_0002
; or a pharmaceutically acceptable salt thereof.
2. The method as in Claim 1 , wherein
R1 and R2 are each independently selected from the group consisting^ hydrogen and lower alkyl;
R4 is selected from the group consisting of hydrogen and lower alkyl; a is an integer from 1 to 2;
Figure imgf000047_0003
is selected from the group consisting of
Figure imgf000047_0004
Figure imgf000048_0001
wherein b is an integer from 0 to 2; and wherein c is an integer from 0 to
1 ; each R5 is independently selected from the group consisting of halogen, lower alkyl and nitro;
provided that when
Figure imgf000048_0002
Figure imgf000048_0003
; or a pharmaceutically acceptable salt thereof.
3. The method as in Claim 2, wherein
R1 and R2 are each independently selected from the group consisting of hydrogen and lower alkyl;
R4 is selected from the group consisting of hydrogen and lower alkyl; a is an integer from 1 to 2;
Figure imgf000048_0004
is selected from the group consisting of
Figure imgf000048_0005
Figure imgf000049_0001
wherein b is an integer from 0 to 2; and wherein c is 0; each R5 is independently selected from the group consisting of halogen, lower alkyl and nitro;
provided that when
Figure imgf000049_0002
accepta . is then a is 1 ; or a pharmaceutically ble salt thereof.
4. The method as in Claim 3, wherein
R1 and R2 are each independently selected from the group consisting of hydrogen and lower alkyl;
R4 is selected from the group consisting of hydrogen and methyl; a is an integer from 1 to 2;
Figure imgf000049_0003
is selected from the group consisting of 2-(2,3-dihydro- benzo[1 ,4]dioxinyl), 2-(benzo[1 ,3]dioxolyl), 2-(3,4-dihydro-2H- benzo[1 ,4]dioxepinyl), 2-(2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(6-chloro-2,3- dihydro-benzo[1 ,4]dioxinyl), 2-(6-fluoro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2- (chromanyl), 2-(5-fluoro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(7-chloro-2,3- dihydro-benzo[1 ,4]dioxinyl), 2-(6-chloro-benzo[1 ,3]dioxolyl), 2-(7-nitro-2,3- dihydro-benzo[1 ,4]dioxinyl), 2-(7-methyl-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(5- chloro-2,3-dihydro-benzo[1,4]dioxinyl), 2-(6-bromo-2,3-dihydro- benzo[1 ,4]dioxinyl), 2-(6,7-dichloro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(8-chloro- 2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(2,3-dihydro-naphtho[2,3-b][1 ,4]dioxinyl) and 2-(4-methyl-benzo[1 ,3]dioxolyl);
provided that when
Figure imgf000050_0001
is 2-(3,4-dihydro-2H-benzo[1 ,4]dioxepinyl), then a is 1 ; or a pharmaceutically acceptable salt thereof.
5. The method as in Claim 4, wherein
R1 and R2 are each independently selected from the group consisting of hydrogen and methyl; R4 is selected from the group consisting of hydrogen and methyl; a is an integer from 1 to 2;
Figure imgf000050_0002
is selected from the group consisting of 2-(benzo[1 ,3]dioxolyl), 2-(2,3- dihydro-benzo[1 ,4]dioxinyl), 2-(2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(6-chloro-2,3- dihydro-benzo[1 ,4]dioxinyl), 2-(7-chloro-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(7- methyl-2,3-dihydro-benzo[1 ,4]dioxinyl), 2-(6-bromo-2,3-dihydro- benzo[1 ,4]dioxinyl) and 2-(6,7-dichloro-2,3-dihydro-benzo[1 ,4]dioxinyl); or a pharmaceutically acceptable salt thereof.
6. The method of Claim 1 , wherein the compound of formula (I) is selected from the group consisting of (2S)-(-)-N-(6-chloro-2,3-dihydro-benzo[1 ,4]dioxin-
2-ylmethyl)-sulfamide; and pharmaceutically acceptable salts thereof.
7. The method of Claim 1 wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine and morphine.
8. The method of Claim 1, wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamohetamine and nicotine.
9. The method of Claim 1 , wherein the substance of abuse or addiction is alcohol or nicotine.
10. The method of Claim 1 , wherein the substance of abuse or addiction is alcohol.
11. A method of treating substance abuse or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound selected from the group consisting (2S)-(-)-N-(6-chloro-2,3- dihydro-benzo[1 ,4]dioxin-2-ylmethyl)-sulfamide; and pharmaceutically acceptable salts thereof.
12. The method of Claim 11 , wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine and morphine.
13. The method of Claim 11 , wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine and nicotine.
14. The method of Claim 11 , wherein the substance of abuse or addiction is alcohol or nicotine.
15. The method of Claim 11 , wherein the substance of abuse or addiction is alcohol.
16. A method for the treatment.of alcohol abuse or addiction comprising administering to a subject in need thereof a therapeutically effective amount of a compound of formula, (II)
Figure imgf000052_0001
or a pharmaceutically acceptable salt thereof.
17. The method of Claim 16, wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine, ketamine, Ecstacy, nicotine, oxycontin / oxycodone, codeine and morphine.
18. The method of Claim 16, wherein the substance of abuse or addiction is selected from the group consisting of alcohol, cocaine, heroine, methamphetamine and nicotine.
19. The method of Claim 16, wherein the substance of abuse or addiction is alcohol or nicotine.
20. The method of Claim 16, wherein the substance of abuse or addiction is alcohol.
PCT/US2006/048478 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction WO2007075717A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BRPI0620048-6A BRPI0620048A2 (en) 2005-12-19 2006-12-19 use of benzofused heterocycle sulfamide derived compounds for the treatment of substance abuse and addiction
UAA200809403A UA97106C2 (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
ES06845841.3T ES2510495T3 (en) 2005-12-19 2006-12-19 Use of benzo-condensed heterocyclic sulfamide derivatives for the treatment of substance abuse and addiction
CA2634110A CA2634110C (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
CN200680052415.7A CN101370494B (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
EA200870089A EA015962B1 (en) 2005-12-19 2006-12-19 Method for the treatment of alcohol abuse and addiction
EP06845841.3A EP1968572B1 (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
AU2006331787A AU2006331787B2 (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
NZ569044A NZ569044A (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
JP2008547454A JP5190375B2 (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocyclic sulfamide derivatives to treat substance abuse and addiction
IL192099A IL192099A0 (en) 2005-12-19 2008-06-12 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
NO20083004A NO20083004L (en) 2005-12-19 2008-07-03 Use of benzofused heterocyclic sulfamide derivatives for the treatment of drug addiction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US75167905P 2005-12-19 2005-12-19
US60/751,679 2005-12-19
US11/612,202 US8691867B2 (en) 2005-12-19 2006-12-18 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
US11/612,202 2006-12-18

Publications (1)

Publication Number Publication Date
WO2007075717A1 true WO2007075717A1 (en) 2007-07-05

Family

ID=37983564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/048478 WO2007075717A1 (en) 2005-12-19 2006-12-19 Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction

Country Status (15)

Country Link
US (1) US8691867B2 (en)
EP (1) EP1968572B1 (en)
JP (1) JP5190375B2 (en)
KR (1) KR20080089411A (en)
AU (1) AU2006331787B2 (en)
BR (1) BRPI0620048A2 (en)
CA (1) CA2634110C (en)
CR (1) CR10172A (en)
EA (1) EA015962B1 (en)
ES (1) ES2510495T3 (en)
IL (1) IL192099A0 (en)
NI (1) NI200800175A (en)
NO (1) NO20083004L (en)
NZ (1) NZ569044A (en)
WO (1) WO2007075717A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120189A1 (en) * 2008-03-26 2009-10-01 Janssen Pharmaceutica N.V. Use of benzo-fused heterocycle sulfamide derivatives for the treatment of anxiety
US8084490B2 (en) 2004-06-16 2011-12-27 Janssen Pharmaceutica N.V. Sulfamate and sulfamide derivatives useful for the treatment of epilepsy and related disorders
US8283478B2 (en) 2005-05-20 2012-10-09 Janssen Pharmaceutica Nv Process for preparation of sulfamide derivatives
US8497298B2 (en) 2005-12-19 2013-07-30 Janssen Pharmaceutica Nv Use of benzo-fused heterocycle sulfamide derivatives for lowering lipids and lowering blood glucose levels
US8691867B2 (en) 2005-12-19 2014-04-08 Janssen Pharmaceutica Nv Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
US8809385B2 (en) 2008-06-23 2014-08-19 Janssen Pharmaceutica Nv Crystalline form of (2S)-(-)-N-(6-chloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide
US8815939B2 (en) 2008-07-22 2014-08-26 Janssen Pharmaceutica Nv Substituted sulfamide derivatives
US8853263B2 (en) 2006-05-19 2014-10-07 Janssen Pharmaceutica Nv Co-therapy for the treatment of epilepsy and related disorders
US8937096B2 (en) 2005-12-19 2015-01-20 Janssen Pharmaceutica Nv Use of benzo-fused heterocyle sulfamide derivatives for the treatment of mania and bipolar disorder

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090247616A1 (en) * 2008-03-26 2009-10-01 Smith-Swintosky Virginia L Use of benzo-fused heterocyle sulfamide derivatives for the treatment of anxiety
US20090247617A1 (en) * 2008-03-26 2009-10-01 Abdel-Magid Ahmed F Process for the preparation of benzo-fused heteroaryl sulfamates
JP2011519839A (en) * 2008-04-29 2011-07-14 エヌエスエイビー、フィリアル アヴ ノイロサーチ スウェーデン エービー、スヴェーリエ Modulator of dopamine neurotransmission
CN102015674B (en) * 2008-04-29 2014-10-29 Nsab神经研究瑞典公司分公司 Modulators of dopamine neurotransmission
AU2009242092A1 (en) * 2008-04-29 2009-11-05 Nsab, Filial Af Neurosearch Sweden Ab, Sverige Modulators of dopamine neurotransmission
AU2012314317A1 (en) 2011-09-29 2014-04-03 Janssen Pharmaceutica Nv Improved process for the preparation of sulfamide derivatives
KR20140082736A (en) 2011-09-29 2014-07-02 얀센 파마슈티카 엔.브이. Process for the preparation of sulfamide derivatives

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049017A1 (en) * 1999-02-18 2000-08-24 Eli Lilly And Company Limited 1-((indoly azacycloalkyl) alkyl)-2,1, 3-benzothiadiazole 2,2-dioxides exhibiting 5-ht2a receptor activity
WO2006007436A1 (en) * 2004-06-16 2006-01-19 Janssen Pharmaceutica, N.V. Sulfamate and sulfamide derivatives for the treatment of epilepsy and related disorders

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527861A (en) * 1948-05-07 1950-10-31 Monsanto Chemicals Mono alkyl sulfamides
BE636655A (en) * 1962-09-14
DE1211166B (en) 1962-11-20 1966-02-24 Ciba Geigy Process for the production of new sulfamides
US3320314A (en) 1964-01-22 1967-05-16 Sandoz Ag Chlorobenzyl sulfamides
US3318952A (en) * 1964-01-22 1967-05-09 Sandoz Ag Dibenzylsulfamides
US3383414A (en) * 1964-08-26 1968-05-14 Sandoz Ag Benzocycloalkyl sulfamides
DE1542785A1 (en) 1965-07-24 1970-05-06 Bayer Ag Insect and mite repellants
US3539573A (en) * 1967-03-22 1970-11-10 Jean Schmutz 11-basic substituted dibenzodiazepines and dibenzothiazepines
US3621096A (en) * 1969-04-03 1971-11-16 Univ North Carolina Antidepressant method and composition for same comprising a tricyclic antidepressant and a thyroid hormone
DE2022370A1 (en) 1970-05-08 1971-12-02 Bayer Ag N-fluorodichloromethylthio-sulfamic acid derivatives, process for their preparation and their microbicidal and fungicidal use
US5212326A (en) * 1979-08-20 1993-05-18 Abbott Laboratories Sodium hydrogen divalproate oligomer
FR2479825A1 (en) * 1980-04-04 1981-10-09 Fabre Sa Pierre BENZODIOXAN 1,4 METHOXY-2 PROPANOLAMINES, THEIR PREPARATION AND THEIR USE AS MEDICAMENTS
US4513006A (en) 1983-09-26 1985-04-23 Mcneil Lab., Inc. Anticonvulsant sulfamate derivatives
US4804663A (en) * 1985-03-27 1989-02-14 Janssen Pharmaceutica N.V. 3-piperidinyl-substituted 1,2-benzisoxazoles and 1,2-benzisothiazoles
IE58370B1 (en) * 1985-04-10 1993-09-08 Lundbeck & Co As H Indole derivatives
GB8607684D0 (en) * 1986-03-27 1986-04-30 Ici America Inc Thiazepine compounds
US4831031A (en) * 1988-01-22 1989-05-16 Pfizer Inc. Aryl piperazinyl-(C2 or C4) alkylene heterocyclic compounds having neuroleptic activity
US5158952A (en) * 1988-11-07 1992-10-27 Janssen Pharmaceutica N.V. 3-[2-[4-(6-fluoro-1,2-benzisoxozol-3-yl)-1-piperidinyl]ethyl]-6,7,8,9 tetrahydro-9-hydroxy-2-methyl-4H-pyrido [1,2-a]pyrimidin-4-one, compositions and method of use
US5238945A (en) * 1989-04-11 1993-08-24 H. Lundbeck A/S Method of treating psychoses
GB8908085D0 (en) * 1989-04-11 1989-05-24 Lundbeck & Co As H New therapeutic use
US5194446A (en) * 1989-06-12 1993-03-16 A. H. Robins Company, Incorporated Compounds having one or more aminosulfaonyloxy radicals useful as pharmaceuticals
US5273993A (en) * 1989-06-12 1993-12-28 A. H. Robins Company, Incorporated Compounds having one or more aminosulfonyloxy radicals useful as pharmaceuticals
US5192785A (en) * 1989-09-03 1993-03-09 A. H. Robins Company, Incorporated Sulfamates as antiglaucoma agents
US5229382A (en) * 1990-04-25 1993-07-20 Lilly Industries Limited 2-methyl-thieno-benzodiazepine
US5189179A (en) 1990-08-29 1993-02-23 Merrell Dow Pharmaceuticals Inc. Serotonin 5ht1a agonists
AU641052B2 (en) 1990-11-02 1993-09-09 Aventisub Ii Inc. 3-amidoindolyl derivatives
GB9026998D0 (en) 1990-12-12 1991-01-30 Glaxo Group Ltd Medicaments
US5120758A (en) 1991-02-08 1992-06-09 Ciba-Geigy Corporation Certain benzodioxole, benzodioxane and benzodioxepin derivatives useful as 5-lipoxygenase inhibitors
GB9104890D0 (en) 1991-03-08 1991-04-24 Glaxo Group Ltd Compositions
IL103172A (en) * 1991-09-19 1997-01-10 Mcneilab Inc Preparation of chlorosulfate and sulfamate derivatives of 2, 3:4, 5-bis-o-(1-methylethylidene)-beta-d-fructopyranose and (1-methylcyclohexyl) methanol
US5242942A (en) * 1992-04-28 1993-09-07 Mcneilab, Inc. Anticonvulsant fructopyranose cyclic sulfites and sulfates
US5258402A (en) * 1992-06-11 1993-11-02 Mcneil-Ppc, Inc. Imidate derivatives of pharmaceutically useful anticonvulsant sulfamates
US5312925A (en) * 1992-09-01 1994-05-17 Pfizer Inc. Monohydrate of 5-(2-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)-ethyl)-6-chloro-1,3-dihydro-2H-indol-2-one-hydrochloride
US5384327A (en) 1992-12-22 1995-01-24 Mcneilab, Inc. Anticonvulsant sorbopyranose sulfamates
AU695336B2 (en) 1993-12-23 1998-08-13 Ortho Pharmaceutical Corporation Anticonvulsant pseudofructopyranose sulfamates
GB9417532D0 (en) 1994-08-31 1994-10-19 Zeneca Ltd Aromatic compounds
CA2216648A1 (en) * 1995-02-15 1996-08-22 Bearsden Bio, Inc. Alkylcarboxy amino acids-modulators of the kainate receptor
JP3235448B2 (en) * 1995-03-24 2001-12-04 ダイソー株式会社 Method for producing 1,4-benzodioxane derivative
US5998380A (en) * 1995-10-13 1999-12-07 New England Medical Center Hospitals, Inc. Treatment of migraine
AU7655796A (en) 1995-11-30 1997-06-19 C & C Research Laboratories Sulfamide derivatives
WO1997019682A1 (en) 1995-12-01 1997-06-05 Synaptic Pharmaceutical Corporation Aryl sulfonamide and sulfamide derivatives and uses thereof
AU2587297A (en) 1996-03-25 1997-10-17 Eli Lilly And Company Method for treating pain
WO1998000124A1 (en) 1996-06-28 1998-01-08 Ortho Pharmaceutical Corporation Use of topiramate or derivatives thereof for the manufacture of a medicament for the treatment of postischemic neurodegeneration
US5753693A (en) * 1996-06-28 1998-05-19 Ortho Pharmaceutical Corporation Anticonvulsant derivatives useful in treating manic-depressive bipolar disorder
US5753694A (en) 1996-06-28 1998-05-19 Ortho Pharmaceutical Corporation Anticonvulsant derivatives useful in treating amyotrophic lateral sclerosis (ALS)
UA53655C2 (en) 1996-06-28 2003-02-17 Орто-Макнейл Фармасьютікел, Інк. Method for treating obesity
ES2188971T3 (en) 1996-08-14 2003-07-01 Searle & Co CRYSTAL FORM OF THE 4- (5-METHYL-3-PHENYLISOXAZOL-4-IL) BENZENSULFONAMIDE.
JP2001500121A (en) * 1996-08-23 2001-01-09 アルゴス ファーマシューティカル コーポレーション Anticonvulsants comprising a composition for treating neuropathic pain
WO1998015270A1 (en) 1996-10-08 1998-04-16 Ortho Pharmaceutical Corporation Anticonvulsant derivatives useful in treating neuropathic pain
US20020015713A1 (en) * 1996-10-24 2002-02-07 Murdock Robert W. Methods and transdermal compositions for pain relief
US5935933A (en) * 1997-07-16 1999-08-10 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in treating neuropathic pain
US5760007A (en) * 1997-07-16 1998-06-02 Ortho Pharmaceutical Corporation Anticonvulsant derivatives useful in treating neuropathic pain
DE69827149T2 (en) * 1997-08-15 2006-03-09 Fairbanks, Carolyn Ann, Rochester AGMATIN FOR THE TREATMENT OF NEUROPATHIC PAIN
GB9803536D0 (en) 1998-02-19 1998-04-15 Black James Foundation Histamine H,receptor ligands
UA65607C2 (en) 1998-03-04 2004-04-15 Орто-Макнейл Фармацевтикал, Інк. Pharmaceutical composition (variants) and process for its preparation
DK72798A (en) 1998-05-28 1998-05-28 Novo Nordisk As Treatment of GABA-uptake related disorders
JP2002516864A (en) 1998-05-29 2002-06-11 イーライ・リリー・アンド・カンパニー Combination therapy for treatment of bipolar disease
EP1100504A2 (en) 1998-07-02 2001-05-23 Eisai Co., Ltd. Pharmaceutical compositions and their uses for treatment of demyelinating disorders
US6541520B1 (en) 1998-08-05 2003-04-01 Brookhaven Science Associates Treatment of addiction and addiction-related behavior
US6319903B1 (en) 1999-01-19 2001-11-20 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in treating cluster headaches
AR022321A1 (en) 1999-01-21 2002-09-04 Ortho Mcneil Pharm Inc USEFUL ANTI-CONVULSIVE DERIVATIVES FOR THE TREATMENT OF TRANSFORMED MIGRANE
HUP0200469A3 (en) 1999-02-24 2003-03-28 Univ Cincinnati Cincinnati Use of sulfamate derivatives for treating impulse control disorders
AU3898700A (en) 1999-03-15 2000-10-04 John Claude Krusz Treatment of acute headaches and chronic pain using rapidly-cleared anesthetic drug at sub-anesthetic dosages
NZ514811A (en) 1999-04-08 2005-01-28 Ortho Mcneil Pharm Inc Anticonvulsant derivatives useful in reducing blood glucose levels
WO2000061140A1 (en) 1999-04-08 2000-10-19 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in maintaining weight loss
CA2369093C (en) * 1999-04-08 2005-10-18 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in lowering lipids
CA2369095C (en) * 1999-04-08 2006-07-25 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful in treating chronic neurodegenerative disorders
CA2372806A1 (en) 1999-05-04 2000-11-09 Keith R. Edwards Intravenous valproate for acute treatment of migraine headache
EP2308481B1 (en) 1999-06-14 2015-05-06 Vivus, Inc. Combination therapy for the treatment of hypertension associated with obesity
WO2001013904A2 (en) * 1999-08-20 2001-03-01 Ortho-Mcneil Pharmaceutical, Inc. Composition comprising a tramadol material and an anticonvulsant drug
US6391163B1 (en) * 1999-09-27 2002-05-21 Applied Materials, Inc. Method of enhancing hardness of sputter deposited copper films
FR2803848B1 (en) 2000-01-19 2002-02-15 Adir NOVEL BENZENESULFONAMIDE DERIVATIVES, PROCESS FOR THEIR PREPARATION AND THE PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
US6322503B1 (en) * 2000-02-17 2001-11-27 G. Roger Sparhawk, Jr. Method of diagnosing, tracking, and treating depression
US20010036943A1 (en) 2000-04-07 2001-11-01 Coe Jotham W. Pharmaceutical composition for treatment of acute, chronic pain and/or neuropathic pain and migraines
MY126897A (en) * 2000-07-07 2006-10-31 Ortho Mcneil Pharm Inc Anticonvulsant derivatives useful for preventing the development of type ii diabetes mellitus and syndrome x
DE10035227A1 (en) 2000-07-20 2002-01-31 Solvay Pharm Gmbh Selection and use of lipogenesis inhibitors for the treatment and prevention of obesity
US6627653B2 (en) * 2000-08-02 2003-09-30 Ortho-Mcneil Pharmaceutical, Inc. Anticonvulsant derivatives useful for the treatment of depression
PE20021046A1 (en) 2000-09-30 2002-12-14 Gruenenthal Chemie SULFONYLGUANIDINE HAVING AFFINITY TO THE GABAPENTIN ATTACHMENT POINT
US7256184B2 (en) * 2000-10-16 2007-08-14 Rodriguez Victorio C Treatment of aging disorders in humans
AU2002240235B2 (en) * 2001-01-30 2006-07-06 Merck & Co., Inc. Acyl sulfamides for treatment of obesity, diabetes and lipid disorders
US6849635B2 (en) 2001-05-07 2005-02-01 Smithkline Beecham Corporation Sulfonamides
JP2004536071A (en) 2001-05-25 2004-12-02 クイーンズ ユニバーシティ アット キングストン Heterocyclic beta amino acids and their use as antiepileptic agents
US20030100594A1 (en) 2001-08-10 2003-05-29 Pharmacia Corporation Carbonic anhydrase inhibitor
US6559293B1 (en) * 2002-02-15 2003-05-06 Transform Pharmaceuticals, Inc. Topiramate sodium trihydrate
US8637512B2 (en) * 2002-07-29 2014-01-28 Glaxo Group Limited Formulations and method of treatment
RU2246727C2 (en) 2003-02-12 2005-02-20 Санкт-Петербургский научно-исследовательский психоневрологический институт им. В.М. Бехтерева (НИПИ) Method for predicting pre-clinical stage of epilepsy
RU2226357C1 (en) 2003-02-12 2004-04-10 Санкт-Петербургский научно-исследовательский психоневрологический институт им. В.М.Бехтерева Method for diagnosing the cases of epilepsy at preclinical development state
US7425631B2 (en) 2003-04-10 2008-09-16 Amgen Inc. Compounds and methods of use
JPWO2004093912A1 (en) 2003-04-23 2006-07-13 協和醗酵工業株式会社 Preventive and / or therapeutic agent for neutrophilic inflammatory disease
DE10318422B4 (en) 2003-04-23 2006-08-10 Infineon Technologies Ag High frequency bipolar transistor with silicide region and method of making the same
GB0309781D0 (en) 2003-04-29 2003-06-04 Glaxo Group Ltd Compounds
US6949518B1 (en) * 2003-06-25 2005-09-27 Pao-Hsien Chu Methods for treating macular degeneration with topiramate
CN1845914A (en) 2003-09-02 2006-10-11 默克公司 Ophthalmic compositions for treating ocular hypertension
CN1897950A (en) * 2003-10-14 2007-01-17 惠氏公司 Fused-aryl and heteroaryl derivatives and methods of their use
MY147767A (en) * 2004-06-16 2013-01-31 Janssen Pharmaceutica Nv Novel sulfamate and sulfamide derivatives useful for the treatment of epilepsy and related disorders
JP5026963B2 (en) 2004-06-22 2012-09-19 バーテックス ファーマシューティカルズ インコーポレイテッド Heterocyclic derivatives for adjusting calcium channels
PL1781639T3 (en) 2004-07-28 2012-07-31 Janssen Pharmaceutica Nv Substituted indolyl alkyl amino derivatives as novel inhibitors of histone deacetylase
US20060276528A1 (en) * 2004-08-24 2006-12-07 Abdel-Magid Ahmed F Novel benzo-fused heteroaryl sulfamide derivatives useful as anticonvulsant agents
US20060047001A1 (en) 2004-08-24 2006-03-02 Parker Michael H Novel benzo-fused heteroaryl sulfamide derivatives useful as anticonvulsant agents
MX2007013151A (en) * 2005-04-22 2008-01-16 Wyeth Corp Benzodioxane and benzodioxolane derivatives and uses thereof.
WO2006127184A1 (en) * 2005-05-20 2006-11-30 Janssen Pharmaceutica N.V. Process for preparation of sulfamide derivatives
US20070155824A1 (en) * 2005-12-19 2007-07-05 Smith-Swintosky Virginia L Use of benzo-fused heterocycle sulfamide derivatives for disease modification / epileptogenesis
US20070155827A1 (en) 2005-12-19 2007-07-05 Smith-Swintosky Virginia L Use of benzo-fused heterocycle sulfamide derivatives for the treatment of depression
US8691867B2 (en) 2005-12-19 2014-04-08 Janssen Pharmaceutica Nv Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
AR058389A1 (en) 2005-12-19 2008-01-30 Janssen Pharmaceutica Nv USE OF SULFAMIDE BENZO-FUSED HETEROCICLIC DERIVATIVES FOR THE TREATMENT OF OBESITY
US8937096B2 (en) 2005-12-19 2015-01-20 Janssen Pharmaceutica Nv Use of benzo-fused heterocyle sulfamide derivatives for the treatment of mania and bipolar disorder
US8497298B2 (en) 2005-12-19 2013-07-30 Janssen Pharmaceutica Nv Use of benzo-fused heterocycle sulfamide derivatives for lowering lipids and lowering blood glucose levels
US8716231B2 (en) 2005-12-19 2014-05-06 Janssen Pharmaceutica Nv Use of benzo-fused heterocycle sulfamide derivatives for the treatment of pain
US20070155823A1 (en) 2005-12-19 2007-07-05 Smith-Swintosky Virginia L Use of benzo-fused heterocycle sulfamide derivatives as neuroprotective agents
US20070191452A1 (en) 2006-02-15 2007-08-16 Smith-Swintosky Virginia L Use of benzo-heteroaryl sulfamide derivatives for the treatment of pain
US20070191474A1 (en) 2006-02-15 2007-08-16 Smith-Swintosky Virginia L Use of benzo-fused heterocyle sulfamide derivatives for the treatment of migraine
TW200738669A (en) 2006-02-22 2007-10-16 Janssen Pharmaceutica Nv Crystalline forms of N-(benzo[b]thien-3-ylmethyl)-sulfamide
AU2007253814A1 (en) * 2006-05-19 2007-11-29 Janssen Pharmaceutica N.V. Co-therapy for the treatment of epilepsy
US20070293476A1 (en) * 2006-05-19 2007-12-20 Smith-Swintosky Virginia L Co-therapy for the treatment of epilepsy and related disorders
EP2238122A1 (en) 2008-01-07 2010-10-13 Janssen Pharmaceutica, N.V. Preparation of sulfamide derivatives
US20090247617A1 (en) * 2008-03-26 2009-10-01 Abdel-Magid Ahmed F Process for the preparation of benzo-fused heteroaryl sulfamates
EA201071120A1 (en) 2008-03-26 2011-06-30 Янссен Фармацевтика Н.В. METHOD OF OBTAINING HETEROARILBENZE DERIVATIVES OF SULFAMATES AND CRYSTALLINE FORM N - ((2S) -6-CHLOR-2,3-DIGYDRO-L, 4-BENZODIOXIN-2-IL) METHYL SULFAMIDE
US20090247618A1 (en) * 2008-03-26 2009-10-01 Ballentine Scott A Process for preparation of benzo-fused heteroaryl derivatives
JP2011517448A (en) 2008-03-26 2011-06-09 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Process for the preparation of benzo-fused dioxin derivatives
PE20110060A1 (en) * 2008-06-23 2011-01-31 Janssen Pharmaceutica Nv CRYSTALLINE FORM OF (2S) - (-) - N- (6-CHLORO-2,3-DIHYDRO-BENZO [1,4] DIOXIN-2-ILMETHYL) -SULFAMIDE
US8815939B2 (en) * 2008-07-22 2014-08-26 Janssen Pharmaceutica Nv Substituted sulfamide derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049017A1 (en) * 1999-02-18 2000-08-24 Eli Lilly And Company Limited 1-((indoly azacycloalkyl) alkyl)-2,1, 3-benzothiadiazole 2,2-dioxides exhibiting 5-ht2a receptor activity
WO2006007436A1 (en) * 2004-06-16 2006-01-19 Janssen Pharmaceutica, N.V. Sulfamate and sulfamide derivatives for the treatment of epilepsy and related disorders

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
JOHNSON B A: "Progress in the development of topiramate for treating alcohol dependence: From a hypothesis to a proof-of-concept study", ALCOHOLISM: CLINICAL AND EXPERIMENTAL RESEARCH 2004 UNITED STATES, vol. 28, no. 8, 2004, pages 1137 - 1144, XP002432600, ISSN: 0145-6008 *
JOHNSON, B.A., ALCOHOL CLIN EXP RES, vol. 28, no. 8, 2004, pages 1137 - 1144
MARYANOFF B E ET AL: "Comparison of sulfamate and sulfamide groups for the inhibition of carbonic anhydrase-II by using topiramate as a structural platform", JOURNAL OF MEDICINAL CHEMISTRY 24 MAR 2005 UNITED STATES, vol. 48, no. 6, 24 March 2005 (2005-03-24), pages 1941 - 1947, XP002431411, ISSN: 0022-2623 *
RAGAMURAN, J. ET AL., AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY, vol. 39, no. 8, 2005, pages 736 - 737
RAGURAMAN J ET AL: "Effects of topiramate in alcohol dependence [2]", AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY 2005 AUSTRALIA, vol. 39, no. 8, 2005, pages 736 - 737, XP002432599, ISSN: 0004-8674 1440-1614 *
SCOZZAFAVA A ET AL: "Modulation of carbonic anhydrase activity and its applications in therapy", EXPERT OPINION ON THERAPEUTIC PATENTS 2004 UNITED KINGDOM, vol. 14, no. 5, 2004, pages 667 - 702, XP002431413, ISSN: 1354-3776 *
SCOZZAFAVA, A. ET AL., EXPERT OPINION ON THERAPEUTIC PATENTS, vol. 14, no. 5, 2004, pages 667 - 702

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084490B2 (en) 2004-06-16 2011-12-27 Janssen Pharmaceutica N.V. Sulfamate and sulfamide derivatives useful for the treatment of epilepsy and related disorders
US8283478B2 (en) 2005-05-20 2012-10-09 Janssen Pharmaceutica Nv Process for preparation of sulfamide derivatives
US8497298B2 (en) 2005-12-19 2013-07-30 Janssen Pharmaceutica Nv Use of benzo-fused heterocycle sulfamide derivatives for lowering lipids and lowering blood glucose levels
US8691867B2 (en) 2005-12-19 2014-04-08 Janssen Pharmaceutica Nv Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
US8937096B2 (en) 2005-12-19 2015-01-20 Janssen Pharmaceutica Nv Use of benzo-fused heterocyle sulfamide derivatives for the treatment of mania and bipolar disorder
US8853263B2 (en) 2006-05-19 2014-10-07 Janssen Pharmaceutica Nv Co-therapy for the treatment of epilepsy and related disorders
WO2009120189A1 (en) * 2008-03-26 2009-10-01 Janssen Pharmaceutica N.V. Use of benzo-fused heterocycle sulfamide derivatives for the treatment of anxiety
EA019544B1 (en) * 2008-03-26 2014-04-30 Янссен Фармацевтика Н.В. Use of benzo-fused heterocycle sulfamide derivatives for the treatment of anxiety
AU2008353489B2 (en) * 2008-03-26 2014-11-27 Janssen Pharmaceutica N.V. Use of benzo-fused heterocycle sulfamide derivatives for the treatment of anxiety
KR101511574B1 (en) 2008-03-26 2015-04-15 얀센 파마슈티카 엔.브이. Use of benzo-fused heterocycle sulfamide derivatives for the treatment of anxiety
US8809385B2 (en) 2008-06-23 2014-08-19 Janssen Pharmaceutica Nv Crystalline form of (2S)-(-)-N-(6-chloro-2,3-dihydro-benzo[1,4]dioxin-2-ylmethyl)-sulfamide
US8815939B2 (en) 2008-07-22 2014-08-26 Janssen Pharmaceutica Nv Substituted sulfamide derivatives

Also Published As

Publication number Publication date
AU2006331787A1 (en) 2007-07-05
JP5190375B2 (en) 2013-04-24
NI200800175A (en) 2012-05-28
JP2009520033A (en) 2009-05-21
NZ569044A (en) 2011-04-29
CA2634110C (en) 2014-08-05
NO20083004L (en) 2008-09-09
ES2510495T3 (en) 2014-10-21
AU2006331787B2 (en) 2013-01-10
US8691867B2 (en) 2014-04-08
CA2634110A1 (en) 2007-07-05
EP1968572A1 (en) 2008-09-17
EP1968572B1 (en) 2014-08-06
US20070155825A1 (en) 2007-07-05
IL192099A0 (en) 2009-08-03
KR20080089411A (en) 2008-10-06
CR10172A (en) 2009-01-14
EA015962B1 (en) 2012-01-30
BRPI0620048A2 (en) 2011-11-01
EA200870089A1 (en) 2009-02-27

Similar Documents

Publication Publication Date Title
EP1968572B1 (en) Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
EP2150249B1 (en) Use of benzo-fused heterocycle sulfamide derivatives for the treatment of migraine
CA2634093C (en) Use of benzo-fused heterocycle sulfamide derivatives for the treatment of obesity
EP1768970B1 (en) Sulfamate and sulfamide derivatives for the treatment of epilepsy and related disorders
CA2570614C (en) Sulfamate and sulfamide derivatives for the treatment of epilepsy and related disorders
EP1968571B1 (en) Use of benzo-fused heterocycle sulfamide derivatives as neuroprotective agents
MX2008008095A (en) Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
EP2276481B1 (en) Use of benzo-fused heterocycle sulfamide derivatives for the treatment of anxiety
TWI408129B (en) Use of benzo-fused heterocycle sulfamide derivatives for the treatment of substance abuse and addiction
KR101198831B1 (en) Sulfamate and sulfamide derivatives for the treatment of epilepsy and related disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 569044

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 12008501426

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2008061015

Country of ref document: EG

Ref document number: 2008061012

Country of ref document: EG

WWE Wipo information: entry into national phase

Ref document number: 2006331787

Country of ref document: AU

Ref document number: 2634110

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/008095

Country of ref document: MX

Ref document number: 2008547454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 08064992

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2006331787

Country of ref document: AU

Date of ref document: 20061219

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087017546

Country of ref document: KR

Ref document number: 200870089

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2959/KOLNP/2008

Country of ref document: IN

Ref document number: 2006845841

Country of ref document: EP

Ref document number: CR2008-010172

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 200680052415.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: PI0620048

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080619