WO2007074864A1 - Antibody capable of recognizing asymmetric dimethylarginine, method for production of the antibody, and method for detection of protein having posttranslationally modified amino acid - Google Patents

Antibody capable of recognizing asymmetric dimethylarginine, method for production of the antibody, and method for detection of protein having posttranslationally modified amino acid Download PDF

Info

Publication number
WO2007074864A1
WO2007074864A1 PCT/JP2006/326045 JP2006326045W WO2007074864A1 WO 2007074864 A1 WO2007074864 A1 WO 2007074864A1 JP 2006326045 W JP2006326045 W JP 2006326045W WO 2007074864 A1 WO2007074864 A1 WO 2007074864A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
antibody
amino acid
adma
post
Prior art date
Application number
PCT/JP2006/326045
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko Komatsu
Hisako Iwabata
Masayuki Ota
Original Assignee
Advanced Life Science Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Life Science Institute, Inc. filed Critical Advanced Life Science Institute, Inc.
Publication of WO2007074864A1 publication Critical patent/WO2007074864A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins

Definitions

  • the present invention relates to a novel antibody or antibody fragment that specifically reacts with asymmetric dimethylarginine, a hybridoma that produces the antibody, a method for producing the antibody, and asymmetric dimethylarginine using the antibody.
  • the present invention relates to a method for detecting a contained protein.
  • Methyl arginine includes symmetric dimethyl arginine (hereinafter sometimes referred to as SDMA), asymmetric dimethyl arginine (hereinafter sometimes referred to as ADMA), and an intermediate from arginine to SDMA or ADMA.
  • SDMA symmetric dimethyl arginine
  • ADMA asymmetric dimethyl arginine
  • MMA monomethylarginine
  • ADMA in blood is thought to affect NO metabolism in vascular tissues and vascular endothelial function, and is considered to be related to arteriosclerotic lesions.
  • Non-Patent Document 1 “Molecular & Cellular Proteomics” (USA), 2003, No. 2, No. 12, p. 1319-1330 Disclosure of the Invention
  • the present inventors thought that asymmetric dimethylarginine exists in addition to the region of the RG rich cluster of the protein.
  • Conventional antibodies were thought to detect proteins with ADMA present in RG-rich clusters. It was difficult to analyze proteins with ADMA existing in other regions.
  • the present inventors have immunized animals with a complex in which a peptide having a structure different from that of a conventional immunogen is bound to a carrier protein. It has been found that an antibody exhibiting reactivity different from that of a known anti-ADMA antibody can be prepared.
  • the antibody of the present invention can detect ADMA present in proteins with a small positive charge.
  • the present inventors have found a method for detecting a basic protein containing ADMA, which has not been identified in the past, by combining the antibody of the present invention with a chemical modification of a protein, in particular, acetylene cocoon.
  • the present invention is based on these findings.
  • the above-mentioned problem is obtained by chemically modifying a protein side chain on a protein containing asymmetric dimethylarginine and reacting specifically with asymmetric dimethylarginine.
  • This can be solved by an antibody that reacts specifically with the metric dimethylarginine-containing protein.
  • the antibody of the present invention it specifically binds to asymmetric dimethylarginine and has the formula (4):
  • ADMA is asymmetric dimethylarginine
  • BSA is ushi serum albumin
  • the antibody of the present invention is a mouse monoclonal antibody, in particular, an antibody secreted and produced by a hybridoma having the accession number FERM BP-10458.
  • the present invention also relates to an antibody fragment, which is a fragment of the antibody, comprising an antigen-binding site that specifically reacts with asymmetric dimethylarginine.
  • the present invention also relates to a hybridoma that produces the above-mentioned antibody, and in particular, a high number having the accession number FERM BP-10458. About Pridoma.
  • the present invention also relates to a method for producing an anti-asymmetric dimethylarginine antibody, characterized in that a peptide represented by the sequence of [5 is a peptide fragment consisting of 5] is bound to a carrier protein to immunize an animal.
  • the peptide is represented by the general formula (9), wherein X is Gly and Z is ⁇ -aminocaproic acid.
  • the animal is an autoimmune disease mouse, particularly an MRL lprZlpr mouse.
  • the present invention includes (1) a step of chemically modifying a protein side chain on a test sample that may contain a post-translationally modified amino acid-containing protein, and (2) a protein side chain.
  • the present invention also relates to a method for detecting the post-translationally modified amino acid-containing protein, comprising a step of detecting a binding (complex) between the chemically modified post-translationally modified amino acid-containing protein and the probe.
  • a preferred embodiment of the method for detecting a post-translationally modified amino acid-containing protein of the present invention is a protein containing a post-translationally modified amino acid-containing protein strength asymmetric dimethylarginine.
  • the chemical modification of the protein side chain is acylation or alkylation.
  • the antibody or antibody fragment specifically reacts with the probe power ADMA for the modified amino acid.
  • the method further comprises a step of fractionating the protein by isoelectric point, molecular weight, or a combination of isoelectric point and molecular weight.
  • the present invention provides (1) a test that may contain a post-translationally modified amino acid-containing protein.
  • a process for changing the charge of the protein on the sample (2) a process for separating the test sample subjected to the charge change by isoelectric point of the protein; and (3) after the separation.
  • the present invention also relates to a method for detecting a post-translationally modified amino acid-containing protein, comprising a step of detecting.
  • fractionation based on the molecular weight of a protein is performed before or after the fractionation step.
  • the probe is an antibody against methyllysine.
  • the antibody of the present invention is useful for searching for and identifying a protein containing asymmetric dimethylarginine.
  • the post-translationally modified amino acid-containing protein detection method combining the antibody and protein chemical modification of the present invention has made it possible to identify a powerful protein containing ADMA that could not be identified conventionally.
  • the antibody and detection method of the present invention it becomes possible to identify an ADMA-containing protein as a target molecule associated with a disease.
  • the antibody of the present invention can be used for therapy by controlling the function of a target molecule associated with the identified disease and for diagnosis by detecting the target molecule.
  • FIG. 1 Antibody titer of immunized mice Shows the antibody titer in blood by the ELISA method of BalbZc and MRL-lprZlpr mice 3 days after the final immunization with RME-GaR £ AC-KLH complex.
  • FIG. 2 Monoclonal antibody reactivity (ELISA by antigen) Established mouse monoclonal antibody DMA2—2G11, ADMA2—2H5, ADMA2—2H7, ADMA2—4E6, A DMA2—5E10, or ADMA2—3C10 (sub) Clones ADMA2—3C10A and A DMA2-3C10B) ADMA-containing peptides RME-LaRC-BSA (A), RME-GaRKC—BSA (B), RME—GaR ⁇ AC—BSA (C), and ADMA-free peptides The reactivity with a troll peptide is shown.
  • FIG. 4 Inhibition of monoclonal antibody reaction by amino acids (ELISA) Inhibition of mouse monoclonal antibodies ADMA2-5E10, ADMA2-3C10, and ADMA2-2H5 by ADMA, MMA, or arginine (Arg). Show.
  • FIG. 5 Effect of sulfo NHS acetate (ELISA)
  • RME-GaRKC-BSA 10 ⁇ g / mL
  • LRGRGRKC—BSA sulfo NHS acetate
  • the mouse monoclonal antibodies ADMA2-5E10, ADMA2-3C10 3 shows changes in reactivity of ADMA2-2H5, polyclonal antibody ASYM24, and monoclonal antibody Clone 7E6.
  • FIG. 6 Effect of sulfo NHS acetate (Western) The reactivity of mouse monoclonal antibody ADM A2-2H5 and polyclonal antibody ASYM24 to the protein of MOLT-4F cells treated or not treated with sulfo NHS acetate is shown.
  • ACK2F12 is a monoclonal antibody against acetyl lysine, indicating that the protein lysine is acetylated.
  • FIG. 7 Western blotting of mouse organs Western blotting using mouse monoclonal antibody ADMA2-2H5 for the extracted tissue protein.
  • FIG. 8 shows the results of Western blotting using mouse monoclonal antibody ADMA2-2H5 after 2D electrophoresis of 2D- Western HepG2 cell protein of HepG2 lysate.
  • FIG. 9 Detection of ADMA-containing protein by sulfo NHS acetate treatment Western blotting using mouse monoclonal antibody ADMA2-2H5 after two-dimensional electrophoresis of protein of HepG2 cells with sulfo NHS acetate treatment or untreated. Show fruit.
  • FIG. 10 Detection of methyllysine-containing protein by treatment with sulfo NHS acetate Shows the results of Western blotting using mouse monoclonal antibody MEK3D7 after 2D electrophoresis of proteins in Hep G2 cells treated with sulfo NHS acetate or untreated .
  • ADMA asymmetric dimethylarginine
  • SDMA symmetric dimethylarginine
  • the antibodies of the present invention include monomethylarginine and arginine. It is an antibody that reacts specifically with ADMA and does not react with ginin. That is, specifically reacting with ADMA means reacting with ADMA but not with SDMA, monomethylarginine, and arginine.
  • the antibody of the present invention specifically reacts with a complex of the following three types of peptides containing ADMA and BSA.
  • RME—GaRKC—BSA RME—GaRKC—BSA
  • the antibody of the present invention does not react with the following peptide-BSA complex containing SDMA and methylated! /, NA! /, Arginine.
  • RME LsRC—BSA
  • the antibody of the present invention is a complex of RSA-GaRKC-BSA lysine acetylated peptide and BSA.
  • RME—GaRacKC—BSA RME—GaRacKC—BSA
  • the antibody of the present invention does not react with LRGRGRKC- BSA lysine acetylated complex, and therefore reacts with ADMA rather than reacting with peptide or BSA acetylated lysine. . Furthermore, the antibody of the present invention becomes highly reactive to proteins by acetylating lysine contained in proteins in cells. Therefore, by acetylating the protein, it becomes possible to detect a protein containing ADMA, which has been impossible to detect conventionally.
  • Clone 7E6 which is a commercially available monoclonal antibody against ADMA, does not react with RME-GaRKC-BSA or RME-GaRacKC BSA.
  • the ASYM24 antibody which is a polyclonal antibody obtained using an ADMA-G rich peptide as an immunogen, is more reactive to RME-GaRKC-BSA than RME-GaRacKC-BSA, in contrast to the antibody of the present invention. To do.
  • the ASYM24 antibody becomes less reactive to the protein by acetylating lysine contained in the protein in the cell.
  • the antibody of the present invention is characterized in that the binding force of the antibody to RME-GaRacK C BSA is stronger than the binding force to RME-GaRKC-BSA.
  • the strong binding force means that the affinity constant is high, the dissociation constant is low, or the binding amount of the antibody is increased.
  • the binding force of the antibody of the present invention to RME—GaRKC BS A or RME—GaRacKC—BSA can be measured by solid-phase enzyme immunoassay (ELISA), Western blotting, radioimmunoassay, etc. is there.
  • RME—Ga RKC-BSA (10 g / mL) is immobilized on an ELISA plate.
  • Antibody to be measured Dilute to 1000 ngZmL, 333 ng / mL, ll lng / mL, 37 ng / mL, 12.3 ng / mL, 4.
  • the binding force of the antibody to RME-GaRacKC-BSA is stronger in any of the above-mentioned antibody concentrations by ImM treatment or 10 mM treatment than OmM treatment (untreated) of sulfo NHS acetate.
  • Absorbance power at 492 nm Specifically, the strong binding force of an antibody indicates that the absorbance (A) of sulfo NHS acetate in ImM treatment or 10 mM treatment is the absorbance (B) of sulfo NHS acetate in OmM treatment.
  • (X) Force means greater than 1, preferably 1.01 or more, more preferably 1.1 or more, and even more preferably 1.5 or more.
  • An increase in binding force can also be expressed by an increase in association constant (Association constant, Ka) or a decrease in dissociation constant (Dissociation constant, Kd).
  • association constant, Ka association constant
  • dissociation constant, Kd dissociation constant
  • the reaction in which an antigen and an antibody are combined to form an antigen-antibody conjugate is a reversible reaction. When the reaction reaches equilibrium, the concentrations of unbound antigen, unbound antibody, and antigen-antibody conjugate are respectively Ag], [Ab], [Ag'Ab]
  • Kd [Ag] [Ab] Z [Ag'Ab], which can be obtained by analysis such as Scatchard plot using radiolabeled antigen. An approximate value can also be obtained by ELISA. For example,
  • [Ag'Ab] Ab-[Ag] / (Kd + [Ag]) It becomes.
  • Kd can be estimated by assuming that [Ag] is hardly affected by the binding of Ag in the liquid phase and is proportional to the signal strength [Ag 'Ad] after washing in the ELISA method. And a decrease in the value of Kd represents an increase in binding force.
  • This estimation method is particularly effective when the concentration of the adsorbed antibody is sufficiently smaller than the Kd value.
  • strong antibody binding means that Ka in sulfo NHS acetate ImM treatment or 10 mM treatment is greater than the value of 1 when divided by Ka in sulfo NHS acetate OmM treatment, Preferably it is 1.01 or more, More preferably, it is 1.1 or more, More preferably, it is 1.5 or more.
  • strong antibody binding means that the Kd in OmM treatment of sulfo NHS acetate divided by Kd in ImM treatment or 10 mM treatment of sulfo NHS acetate is greater than 1. Preferably it is 1.01 or more, More preferably, it is 1.1 or more, More preferably, it is 1.5 or more.
  • the antibody of the present invention includes a polyclonal antibody and a monoclonal antibody, more preferably a monoclonal antibody.
  • the antibody fragment of the present invention is a fragment of the antibody of the present invention, and is an antibody fragment that has the same reaction specificity as the original antibody. That is, the antibody fragment of the present invention specifically reacts with ADMA and does not react with SDM A, monomethylarginine, or unmethylated arginine.
  • RME-GaRacKC-BSA which is a peptide in which lysine continuous with ADMA is acetylated, exhibits a stronger response than RME-GaRKC-BSA, and acetylates lysine contained in proteins in cells. Increases the reactivity to proteins.
  • Examples of the antibody fragment of the present invention include Fab, Fab ⁇ F (ab '), or Fv
  • fragments can be obtained, for example, by digesting the monoclonal antibody of the present invention with a proteolytic enzyme according to a conventional method, and subsequently following a conventional method for protein separation and purification.
  • the antibody of the present invention has the general formula (9): X-ADMA-Z-Cys (9)
  • X is a peptide fragment consisting of the same or different amino acid residues 1 to 5 other than Cys
  • ADMA is asymmetric dimethylarginine
  • Z is the same or different amino acid residues 1 to 5 other than Cys. It is a peptide fragment consisting of 5]
  • the peptide represented by the sequence can be prepared by binding to a carrier protein and immunizing an animal.
  • X is any amino acid other than cysteine.
  • X is not particularly limited as long as it is an amino acid other than Cys, but amino acids that do not affect ADMA on the C-terminal side are preferred.
  • amino acids having nonpolar side chains and uncharged polar side chains Is preferred.
  • Specific amino acids include glycine, alanine, parin, serine and the like, with glycine being particularly preferred.
  • the continuous length of the amino acid of X is not particularly limited, but is preferably an integer of 1 to 5, and more preferably 1.
  • Z is also any amino acid other than cysteine.
  • Z is not particularly limited as long as it is an amino acid other than Cys, but preferably an amino acid that does not affect ADMA on the N-terminal side, for example, an amino acid whose side chain has a nonpolar side chain and an uncharged polar side chain.
  • Specific examples of amino acids include glycine, alanine, Norin, serine, and ⁇ -aminocaproic acid (6-aminocaproic acid), and ⁇ -aminocaproic acid (6-aminocaproic acid) is particularly preferable.
  • the continuous length of the wrinkles is not particularly limited, but is preferably an integer of 1 to 5, more preferably 1.
  • the peptide represented by the general formula (9) is bound to a carrier protein using the thiol group (SH group) of Cys on the C-terminal side. For this reason, when Cys is contained in X or Z, Cys other than the C-terminal side may bind to the carrier protein and ADMA may be hidden, which is not preferable in terms of the structure of the immunogen.
  • the peptide of the general formula (9) can be prepared by chemical synthesis, for example, Fmoc solid phase synthesis method or Boc solid phase synthesis method.
  • the synthesized peptide can be purified by a known method such as HPL C.
  • the peptide is bound to a carrier protein using the SH group of Cys of the peptide of the general formula (9).
  • the “carrier protein” is not particularly limited as long as it is a protein capable of binding to the peptide to form a complex and exhibiting immunogenicity. More than 10,000, preferably 40,000 to 1 million proteins are preferred. Specific examples include sushi serum albumin, immunoglobulin, ovalbumin, mosquito hemocyanin (KLH), and the like.
  • the peptide and carrier can be bound using the SH group of cysteine and the functional group of the carrier protein.
  • the functional group of the carrier protein is not limited as long as it is a functional group that binds to the SH group, and includes a thiol group or an amino group.
  • the binding method can be carried out according to a conventionally known method. For example, maleimide, carbodiimide, glutaraldehyde, sulfo GMBS, or GMBS can be used as a cross-linking agent between a peptide and a carrier protein. it can.
  • the antibodies of the present invention include animal polyclonal antibodies and human mouse monoclonal antibodies.
  • Methods for immunizing animals to obtain antibodies and methods for obtaining hyperprideomas producing monoclonal antibodies It can be carried out by a known method except that a complex of the peptide of the general formula (9) and a carrier protein is used as an immunogen.
  • a complex of the peptide of the general formula (9) and a carrier protein is used as an immunogen.
  • it can be performed according to the method described in the Second Biochemistry Experiment Course (Japan Biochemical Society) or the Immunobiological Research Method (Japan Biochemical Society).
  • the antibody of the present invention can be obtained by immunizing an animal using the complex of the peptide of the general formula (9) and a carrier protein as an immunogen.
  • the animal used for immunization is not particularly limited, and hidge, goat, rabbit, mouse, rat, guinea pig, bird, horse, horse and the like can be used.
  • the animal used for immunization is preferably an animal with an autoimmune disease that easily produces autoantibodies.
  • an MRL-lprZlpr mouse which is an autoimmune disease mouse.
  • the immunization method is not particularly limited as long as a known method is used.
  • the complex is emulsified and mixed with an equal amount of Freund's complete adjuvant or Titer-Max gold (Titer Max), and a rabbit is used. Administered subcutaneously or intraperitoneally in mice. Thereafter, immunize several times with the same procedure at 1-2 week intervals.
  • the antibody of the present invention can be prepared by collecting the blood of the immunized animal to obtain serum or plasma.
  • the hyperidoma of the present invention that produces the monoclonal antibody of the present invention can be obtained from an animal that has undergone the above-described immunization.
  • the peptide dissolved in phosphate buffered saline (PBS) or the like is inoculated from the tail vein.
  • PBS phosphate buffered saline
  • the spleen containing lymphocytes that produce mouse antibody is aseptically removed.
  • This lymphocyte can be established as a hybridoma that produces a monoclonal antibody by cell fusion with myeloma cells in the presence of polyethylene glycol, for example.
  • lymphocytes and myeloma cells are fused in the presence of polyethylene glycol.
  • myeloma cell various known cells can be used, and examples thereof include cells such as p3-NS-l / l-Ag4.1 or SP2Z0-Agl4.
  • Fused cells are selected by killing non-fused cells using a selective medium such as HAT medium.
  • screening is performed for the presence or absence of antibody production in the culture supernatant of the growing hyperidoma. Screening can be performed by measuring the production of specific antibodies against asymmetric dimethylarginine by solid phase enzyme immunoassay (ELISA).
  • ELISA solid phase enzyme immunoassay
  • FERM BP-10458 producing the representative monoclonal antibody of the present invention can be selected. As of November 30, 2005, it was deposited internationally at the National Institute of Advanced Industrial Science and Technology patent biological deposit center (address: 1st, 1st, 1st, 1st, 6th, Tsukuba, Higashi 305-8566, Japan). It was.
  • the hyperidoma of the present invention can be subcultured in any known medium, for example, RPMI1640.
  • the monoclonal antibody of the present invention can be prepared by culturing this hyperidoma, for example, by adding 10% fetal bovine serum to RPMI1640 medium and culturing at 37 ° C in the presence of 5% CO. Antibody produced in the culture supernatant
  • antibodies can be produced in ascites by inoculating Hypridoma into the abdominal cavity of mice and collecting ascites.
  • the antibody of the present invention can be purified by a known method. For example, a purification method using Protein G, a method using a affinity column to which ADMA is bound, or a method using ion exchange column chromatography. It can be purified by methods.
  • the antibody of the present invention reacts more strongly with RME-GaRacKC-BSA in which lysine of RME-GaRKC-BSA is acetylated than with RME-GaRKC-BSA. Furthermore, by reacting cell protein lysine with acetylene, reactivity to many proteins is enhanced. By utilizing this property of the antibody of the present invention, it becomes possible to detect a protein containing ADMA, which could not be detected until now. In other words, since the binding between the antibody of the present invention and ADMA in the protein is strengthened by acetylating the protein, it can be bound to a protein having strong ADMA that could not be identified conventionally.
  • Clone 7E6 a conventionally known antibody, cannot bind to acetylated protein.
  • ASYM24 antibody recognizes RG-rich cluster ADMA and becomes less reactive to acetylated protein, it cannot be effectively used in the method for detecting a post-translationally modified amino acid-containing protein of the present invention.
  • lysine of RME-GaRKC-BSA is a basic amino acid.
  • the acetyl group replaces the hydrogen atom of the side chain of the lysine with the acetyl group. Therefore, it is considered that the positive charge of lysine disappears.
  • the antibody of the present invention is capable of recognizing ADMA.
  • ADMA When a basic amino acid is present in the vicinity of ADMA, binding to ADMA is considered to be inhibited under the influence of positive charge. However, when lysine is acetylated, the positive charge around ADMA is weakened, and the binding of the antibody of the present invention to ADMA is thought to increase. In the case of intracellular proteins, as in the case of the aforementioned peptides, the positive charge around ADMA is neutralized by the acetylation of the lysine amino group present around ADMA recognized by the antibody of the present invention. It may be considered that the antibodies of the present invention can be combined and bind!
  • ASY is a known antibody obtained using an ADMA-G rich peptide as an immunogen.
  • M24 has the ability to weaken the reactivity to the protein by acetylating the lysine of the protein of the cell.
  • ADMA-G-rich peptide is an antibody with a strong positive charge. It is thought that it binds to peptides and proteins with strong positive charges in the vicinity.
  • a method for detecting two post-translationally modified amino acid-containing proteins will be described.
  • (1) a protein side chain is chemically modified on a test sample that may contain a post-translationally modified amino acid-containing protein.
  • the second method for detecting a post-translationally modified amino acid-containing protein of the present invention comprises (1) a treatment for changing a protein charge on a test sample that may contain a post-translationally modified amino acid-containing protein. Steps to be performed, (2) Steps for performing separation by isoelectric point of proteins for test samples subjected to charge change treatment, (3) Specific reaction to post-sorting test samples and post-translationally modified amino acids And (4) detecting the binding between the separated protein and the probe formed by the contacting step. [Hereinafter referred to as charge change detection method] In the chemical modification detection method and the charge change detection method of the present invention, the above steps are usually performed in this order.
  • test sample used in the chemical modification detection method and the charge change detection method of the present invention is not particularly limited as long as it may contain a post-translationally modified amino acid-containing protein.
  • the post-translationally modified amino acid-containing protein detected by the chemical modification detection method and the charge change detection method of the present invention is not limited as long as it contains a post-translationally modified amino acid.
  • the post-translationally modified amino acid recognized by the probe in the chemical modification detection method and the charge change detection method of the present invention is not limited as long as it is an amino acid modified after translation in vivo.
  • examples include amino acids that are phosphorylated, ubiquitinated, acetylated, methylated, farnesylated, sulfated, carboxylated, glycosylated, or lipid modified, and specifically, asymmetric dimethylarginine.
  • the chemical modification detection method is preferably asymmetric dimethylargin, and the charge change detection method is methyllysine.
  • the chemical modification carried out by the chemical modification detection method of the present invention is not particularly limited, but alkylation, acylation, acetylation, amido, glycosylation, succination, phosphorylation, sulfation, Forces such as reboylation, force rubymilation, or methyl cocoon Acidic proteins that favor chemical modification that changes the isoelectric point of the protein when combined with the separation of proteins by isoelectric point
  • a chemical modification that neutralizes the negative charge is preferable
  • a chemical modification that neutralizes the positive charge is preferable.
  • acylic acid in the case of a basic protein, it is preferably acylic acid, and it is not limited as long as it replaces an amine group or a hydroxyl group with an isyl group, and examples thereof include acetylation and benzoylation. Acetyl cocoon is preferable.
  • the acetylene is not limited as long as the amino acid in the protein is acetylylated. As the amino acid to be acetylated, the positive charge disappears when acetylene is used.
  • the acetylating reagent is not particularly limited, and examples thereof include acetic anhydride, N-acetylsuccinimide, N-hydroxysuccinimide acetate (NHS-acetate), N-acetylenomidazole, and sulfo-NHS acetate.
  • the chemical modification in the relationship with the probe that binds to the post-translationally modified amino acid, the chemical modification that inhibits the binding to the probe by chemical modification is not preferable, and the chemical bond is stronger, so that the probe binding becomes stronger. Chemical modification is preferred.
  • chemical modification that neutralizes negative charges is preferable.
  • chemical modification that neutralizes positive charge is preferred.
  • lysine acetylene is preferred.
  • the probe used in the chemical modification detection method of the present invention may be a probe capable of recognizing a post-translationally modified amino acid present in a protein subjected to chemical modification of a protein side chain.
  • modified amino acids such as phosphorylated, ubiquitinated, acetylated, methylated, farnesylated, sulfated, carboxylated, glycosylated, or lipid modified amino acids
  • An antibody is mentioned, More preferably, it is an antibody with respect to ADM A.
  • the post-translationally modified amino acid-containing protein is chemically modified.
  • the post-translationally modified amino acid-containing protein is chemically modified to prevent the antibody from reacting with the protein.
  • the antibody used in the detection method of the present invention can bind to a chemically modified protein, and preferably, the reactivity with a post-translationally modified amino acid is reduced by chemically modifying the protein. More preferably, the antibody is more reactive.
  • a step of separating the post-translationally modified amino acid-containing protein can be further performed.
  • the method for fractionation is not particularly limited as long as it is a method for fractionating proteins.
  • force using a known method can be used, for example, electrophoresis using talylamide gel or capillary.
  • the fractionation step may be performed before or after any step of the detection method, but is preferably before the step (2) of contacting with a probe that recognizes a post-translationally modified amino acid. This is because the isoelectric point of the molecular weight may change due to the binding between the probe and the protein, which may make the analysis difficult.
  • Methods for separating proteins include a method using molecular weight, a method using isoelectric point, and a method using other principles. These methods can be performed alone or in combination. To separate many proteins, a combination of multiple separation principles is preferred. For example, isoelectric point Two-dimensional electrophoresis combined with fractionation by molecular weight.
  • the “basic protein” means a protein having an isoelectric point on the basic side, for example, a protein having 7.0 or more, preferably 8.0 or more, more preferably 9.0 or more. is there.
  • a method for detecting all proteins in a specimen The force that can be used as it is.
  • Preferably, only acidic protein or basic protein is separated and used in the detection method.
  • known protein separation methods can be used. For example, an ion exchange chromatography column can be used.
  • the charge change process carried out by the charge change detection method of the present invention is not particularly limited as long as it is a process that changes the charge of the protein !, but changes the charge using a covalent bond or a non-covalent bond. Can be combined. In the case of non-covalent bonds, ionic bonds and hydrophobic bonds can be used. When a covalent bond is used, the charge of the protein can be changed, for example, by chemically modifying the amino acid side chain of the protein.
  • the chemical modification is not particularly limited, but alkylation, acylation, acetylation, amidation, glycosylation, succination, phosphorylation, sulfation and reboylation, force ruamylation, methylation, phosphorylation, or sulfuric acid
  • acidic proteins chemical modifications that neutralize negative charges are preferred
  • basic proteins chemical modifications that neutralize positive charges are preferred.
  • a basic protein it is preferably an acyl group, and any amine group or hydroxyl group may be substituted with an isyl group, and examples thereof include acetylation and benzoylation, and more preferably. Acetylation.
  • Acetylation is not limited as long as an amino acid in a protein is acetylated.
  • amino acid to be acetylated lysine can be cited as the acetylated amino acid, thereby eliminating the positive charge.
  • the reagent for acetylation is not particularly limited, but acetic anhydride, N-acetylsuccinimide, N-hydroxysuccinimide acetate (NHS-acetate), N-acetylimidazole, or sulfo NHS acetate (sulfo-NHS acetate) Are listed.
  • the charge mutation treatment is not preferable in terms of the relationship with the probe that binds to the post-translationally modified amino acid, and charge mutation treatment that inhibits binding to the probe by charge mutation treatment is not preferable. Is preferable. For example, in the case of a probe that does not easily bind to an acidic protein, charge mutation treatment that neutralizes negative charges is preferable. In the case of a probe that does not easily bind to a basic protein, charge mutation treatment that neutralizes positive charge is preferred. For example, lysine acetylation by chemical modification is preferred.
  • the probe used in the charge change detection method of the present invention is not particularly limited as long as it is a probe capable of recognizing a post-translationally modified amino acid present in a protein subjected to charge change treatment of a protein side chain.
  • Phosphorylated, ubiquitinated, acetylated, methylated, farnesylated, sulfated, carboxylated, glycosylated, and lipid modified amino acids which are antibodies that bind to glycine, and preferably antibodies against methyllysine .
  • the post-translationally modified amino acid-containing protein is subjected to charge change treatment, and therefore an antibody that does not react with the protein by the charge change treatment of the post-translationally modified amino acid-containing protein cannot be used. Therefore, the antibody used in the detection method of the present invention can bind to a protein subjected to charge change treatment.
  • the reactivity of the protein to a post-translationally modified amino acid is reduced by subjecting the protein to charge change treatment. More preferably, the antibody is more reactive.
  • Fractionation by isoelectric point to be performed in step (2) of the charge change detection method of the present invention is not particularly limited as long as it is a method of separating proteins by isoelectric point.
  • An example is point electrophoresis.
  • two-dimensional electrophoresis that combines separation by isoelectric point and molecular weight is preferred. Can be mentioned.
  • the probe bound to the post-translationally modified amino acid can be detected by a known method.
  • the probe can be detected by labeling the probe with a labeling substance.
  • An enzyme eg, peroxidase or alkaline phosphatase
  • a fluorescent dye eg, fluorescein isothiocyanate (FITC)
  • FITC fluorescein isothiocyanate
  • luminescent substance e.g, fluorescein isothiocyanate (FITC)
  • FITC fluorescein isothiocyanate
  • radioactive substance e.g, a radioactive substance.
  • these labeling substances can be detected by a known color development method, luminescence method, fluorescence method or the like.
  • Gly—ADMA—Lys—Cys (shown as SEQ ID NO: 3; hereinafter referred to as RME—GaRKC)
  • RME—LsRC Leu—SDMA—Cys
  • Gly is glycine
  • ADMA is asymmetric dimethyl arginine
  • Acp is epsilon aminocaproic acid
  • Cys is cysteine
  • Leu is leucine
  • SDMA is symmetric dimethylarginine
  • the RME-GaR ⁇ AC peptide was bound to KLH, which is a carrier protein, through C-terminal Cys. That is, KLH (Nacalai Testa Co.) or BSA (Sigma) lOmg was dissolved in PBS lmL containing 5 mM EDTA, and then the crosslinking agent GMBS (N- ⁇ -maleimidobutyryloxysulfosuccinimide ester ( ⁇ ( ⁇ Maleim laobutyryloxy) sulfosuccinimide ester: Concentration 20mg / mL, Dojinki) ⁇ 3.5 ⁇ L was added and allowed to react at 30 ° C for 30 minutes with stirring, and then a PD-10 column (Farmasia Biotech) was added.
  • GMBS N- ⁇ -maleimidobutyryloxysulfosuccinimide ester
  • RME-LaRC, RME—GaRKC® RME—: LPERC and LRGRG RKC are used as peptides, and the complex of each peptide and BS A is prepared by the same procedure as that for the RME GaR ⁇ AC and BSA. Prepared. Obtained RME—LaRC, RME-GaRKC, RM The complex of E—LsRC and LRGRGRKC peptide and BSA is referred to as RME—La RC—BSA RME—GaRKC—BSA RME—: LsRC—BSA ⁇ and LRGRGRKC BSA, respectively.
  • the RME—GaR ⁇ AC KLH complex antigen solution (2 mg / mL) obtained in Example 1 was mixed with an equal amount of Titer—Max Gold (Titer Max USA) until emulsified, and the mixed solution 0. ImL was added.
  • Immunization was carried out by intraperitoneal administration of three 6-week-old female BalbZc mice or 3 6-week-old female MRL-lprZlpr mice (MRLZMpJUmmCrjlprZlpr mice). (First immunization). Twice every 2 weeks, 0. ImL of the mixed solution prepared in the same manner as in the previous period was administered intraperitoneally (second and third immunizations).
  • mice with increased antibody titers were diluted with an equal volume of PBS, and 0.1 mL of the diluted solution was administered to the abdominal cavity of the mice.
  • RME-GaR ⁇ Yoji-10 ⁇ 1 complex antigen solution (2111 8 7111 was diluted with an equal volume of PBS, and 0.0 ImL of the diluted solution was administered intravenously to mice.
  • the mouse-powered spleen was aseptically removed and used in the following cell fusion step (C).
  • each of the RME-GaRKC-BS A complex (10 ⁇ g / mL) prepared in Example 1 was dispensed into a 96-well ELISA plate (Nunc) and left at 4 ° C. overnight. Next, each well of the plate was blocked with phosphate buffered saline (PBS) containing 1% BSA and 0.05% Tween 20 (hereinafter referred to as 1% BSA-PBST) for 30 minutes. After removing this supernatant, the serum obtained in the above step (A) was diluted from 30 times to 7290 times with PBST, and 50 / z L was added.
  • PBS phosphate buffered saline
  • Tween 20 hereinafter referred to as 1% BSA-PBST
  • the antibody titer against RME-GaRK C-BSA was increased in both BalbZc mice and MRL-lprZlpr mice.
  • the antibody titer of MRLlpZlpr mice was particularly high, and one mouse (MRL-1) showed a very high antibody titer.
  • the spleen of the aseptically extracted MRL-1 mouse was placed in a petri dish containing 8 mL of sterile PBS. After spleen cells were drained, the spleen cell suspension was passed through a nylon mesh, collected in a 15 mL centrifuge tube, and centrifuged at 380 X g for 3 minutes. After performing this operation twice, the suspension was suspended in 8 mL of RPMI medium and centrifuged at 380 X g for 3 minutes. This operation was performed twice. The cell pellet thus obtained was resuspended in 8 mL of RPMI 1640 medium, and the number of splenocytes was measured.
  • mouse myeloma cells (myeloma cells) cultured in advance in 50 mL tubes were spalled into the spleen cells (approximately 1 ⁇ 10 7 cells) S P2Z0—Agl4 5 ⁇ 10 7 ), mixed well in RPMI1640 medium, and centrifuged (380 ⁇ g, 5 minutes) o Aspirate the supernatant, thaw the pellet well, and incubate at 37 ° C 1 mL of the 40% polyethylene glycol (PEG) 4000 solution was dropped, and the centrifuge tube was gently rotated by hand for 1 minute to mix the PEG solution and the cell pellet.
  • PEG polyethylene glycol
  • HAT medium (RPMI1 640 medium ⁇ this aminopterin 4 X 10 _7 M, thymidine 1. 6 X 10 _5 M, and hypoxanthine 1 X 10 _4 those that have been ⁇ Ka ⁇ such that M) was suspended in 50 mL.
  • the high-pridoma was screened in the same manner as the antibody titer measurement by the ELISA method in the above step (ii), except that 50 ⁇ L of the high-pridoma culture supernatant was used instead of the serum-powered sample. Each hyperidoma in the well where antibody production was observed was cloned by the limiting dilution method. Ten days later, a hybridoma clone producing the monoclonal antibody of the present invention was screened by the same ELISA method. as a result
  • ADMA2-2G11, ADMA2-2H5, ADMA2-2H7, ADMA2-4E6, ADM A2-5E10, ADMA2-3C10, six clones of high-pridoma strains were established.
  • Hybridoma cell line ADMA2-2—2H5 (Accession No. FERM BP—10458), dated November 30, 2005, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (address: 305-8566 Japan) It was deposited internationally at Tsukuba Sakai Higashi 1-chome 1 Ibaraki Pref. 1 Central 6).
  • the established mouse hyperidoma was cultured in a serum-free medium (Hybridoma—SFM, GIBCO) at 37 ° C. in a 5% carbon dioxide atmosphere for 72 to 96 hours.
  • the culture solution was applied to a protein G column (Amersham Biosciences).
  • the antibody was eluted with a buffer solution of pH 3.5 to obtain a purified monoclonal antibody of the present invention. About 20 mg of antibody was obtained from 5 OOmL of the culture solution.
  • the name of each hybridoma is also used as the name of the monoclonal antibody produced by the hyperidoma force.
  • the antibody was labeled with HRP using Pierce's EZ-Link Plus Activated Peroxidase. This method is a method in which HRP into which an aldehyde group is introduced is bound to an amino group in an antibody molecule. Labeling was performed according to the protocol provided by the manufacturer.
  • the HRP-labeled antibody obtained from ADMA2-2H5 is referred to as HRP-ADMA2-2H5.
  • Example 1 50 ⁇ L each of RME—GaR ⁇ AC—BSA, RME—LaRC—BSA, RME—GaRKC—BSA, and control peptide (10 g / mL) prepared in Example 1 on a 96-well ELISA plate Poured and left overnight at 4 ° C. Each well on the plate was then blocked with 1% BSA-PBST for 30 minutes. After removing this supernatant, each antibody obtained in the step (B) of Example 5 and ASYM24 (upstate), which is a polyclonal antibody against ADMA, were diluted with PBST as a control and added in 50 L portions. . After standing at room temperature for 30 minutes, it was washed 3 times with PBST.
  • RME LsRC— BSA
  • LRGRGRKC— BSA ⁇ AcK— BSA (complex of acetylated lysine and BSA) and MeK— BSA (methyllysine and BSA) are antigens that are immobilized on the plate.
  • Clone 7E6 Abeam
  • SYM11 upstate
  • Monoclonal antibody against ADMA and SYM11 is a polyclonal antibody against symmetric dimethylarginine. The results are shown in Figure 3.
  • ADMA2—5E10, ADMA2—3C10, ADMA2—2H5, and ASYM24 do not react to RME—LsR C—BSA, which is a peptide containing SDMA that reacts with peptides containing AD MA, and LRGRGRKC— Neither BSA, AcK-BSA nor MeK-BSA reacted.
  • Clone 7E6 reacted with RME GaR ⁇ AC -BSA and RME-LaRC-BSA, which are peptides containing ADMA, but showed a slightly non-specific reaction even with peptides that did not contain ADMA.
  • SYM11 reacted with RME-LsRC-BSA, a peptide containing SDMA, but showed a strong non-specific reaction with RME-LsR C BSA, a peptide containing ADMA.
  • ADMA2-5E10, ADMA2-3C10, and ADMA2-2H5 were tested for inhibition by ADMA to confirm their specificity.
  • 50 ⁇ L each of RME GaR ⁇ AC BSA (10 ⁇ g / mL) prepared in Example 1 was dispensed into a 96-well ELISA plate and left overnight at 4 ° C. Next, each well of the plate was blocked with 1% BSA-PBST for 30 minutes. Monoclonal antibody and ADMA, monomethylarginine (MMA), or algin (Arg) were mixed and incubated at 25 ° C for 30 minutes.
  • MMA monomethylarginine
  • Arg algin
  • the final concentrations during incubation are 10 ng / mL for AD MA2-2H5, 37 ng / mL for ADMA2-5E10, 2.34 ng / mL for ADMA2-3C10, and each amino acid has a final concentration of 2 ° to 25 mM.
  • diluted with PBST After removing 1% BSA-PBST from the plate, 50 L each of the antibody and amino acid mixture was added. After standing at room temperature for 30 minutes, it was washed 3 times with PBST. Subsequently, 50 ⁇ L (lOOngZmL) of an HRP-labeled anti-mouse IgG antibody was added, left at room temperature for 30 minutes, and washed again with PBST three times.
  • ADMA2-5E10, ADMA2-3C10, ADMA2-2H5, ASYM24 and Clone 7E6 were diluted with P BST and added in 50 L portions. After standing at room temperature for 30 minutes, it was washed 3 times with PBST. Subsequently, 50 L (1 g / mL) of an HRP-labeled anti-mouse IgG antibody (goat) was added, allowed to stand at room temperature for 30 minutes, and then washed again with PBST three times. 100 L of OPD substrate solution was added to each well, reacted at 25 ° C for 10 minutes, and the absorbance at 492 nm of each well was measured. The results are shown in FIG.
  • the ADMA2-5E10, ADMA2-3C10, and ADMA2-2H5 antibodies became more reactive to RME-GaRK C-BSA as the concentration of the treatment with sulfo NHS acetate increased.
  • the serum of MRL 1 mice obtained in step (2) of Example 2 also became more reactive to RME GaRKC BS A as the concentration of treatment with sulfo NHS acetate increased.
  • ASYM24 became less reactive to RME-GaRKC-BSA as the concentration of treatment with sulfo NHS acetate increased.
  • Clone 7E6 did not react with RME—GaRKC—BSA, but it did not increase its reactivity with force sulfo NHS phosphate treatment.
  • MOLT—4F cells (approximately 5 ⁇ 10 6 cells) were added to Lysis buffer (25 mM Tris—HCl (pH 8.0), 120 mM NaCl, 0.5% NP-40, ImM CaCl, protease inhibitor potency.
  • the control membrane is 10 mM sulfo NHS No cassette treatment was performed. Blocking was performed by immersing in 10 mM Tris-HC1 buffer (pH 7.5) containing 3% BSA, 3% polybutylpyrrolidone K30 (PVP, Wako) and 0.15M-NaCl for 1 hour at 25 ° C.
  • the monoclonal antibody ADMA2-2H5 antibody (1 ⁇ gZmL) against ADMA obtained in Example 2 was reacted at 25 ° C. for 1 hour.
  • the ADMA2-2H5 antibody which is a monoclonal antibody against ADMA, was enhanced in response to some proteins by treatment with sulfo N HS acetate, and there was almost no protein that weakened the reaction.
  • ASYM24 antibody attenuated the reactivity of MOLT-4F to most proteins ( Figure 6).
  • MOLT-4F force Example 7 except that the extracted protein is used in place of the extracted protein and the membrane to which the protein has been transferred is not treated with sulfo NHS acetate.
  • the mouse organ protein was analyzed with the ADMA2-2H5 monoclonal antibody in the same manner as described above. Tissue protein before The Lysis Buffer was prepared, homogenized and used. The results are shown in FIG. Forces that could detect proteins with ADMA in most tissues In the heart and skeletal muscle, proteins with ADM A were less powerful.
  • Example 9 Analysis of HepG2 cell lysate using ADMA2-2H2 monoclonal antibody (two-dimensional electrophoresis)
  • HepG2 cells were suspended in 2D Lysis buffer [9.8Murea® 0.5% CHAPS® lOmMdithiothreitol (DTT)] and disrupted with ultrasound. The disrupted cell lysate was centrifuged (10,000 X g, 5 minutes), and the supernatant was collected.
  • 2D Lysis buffer 9.8Murea® 0.5% CHAPS® lOmMdithiothreitol (DTT)
  • the strip After stripping, the strip is reduced in 0.375M Tris—HCl (pH8), 6M urea, 2% SDS, 20% glycerol, and 130mMDTT (15 minutes), and further 0.375M Tris—HCl (pH8), Alkylation (15 min) in 6M urea, 2% SDS, 20% glycerol, and 135 mM odoacetamide.
  • 0.375M Tris—HCl pH8
  • 6M urea 6M urea
  • 2% SDS 20% glycerol
  • 135 mM odoacetamide The strip after the reductive alkylation treatment was placed on the SDS polyacrylamide midenore and developed in the second dimension.
  • Proteins in the gel subjected to two-dimensional electrophoresis were electrically transferred to a PVDF membrane.
  • This membrane was soaked in 10 mM Tris-HC1 buffer (pH 7.5) containing 3% BSA, 3% PVP and 0.15M-NaCl for 1 hour at 25 ° C. for blocking.
  • the HRP-ADMA2-2H5 antibody (0.2 / z gZmL) prepared in the step (C) of Example 4 was reacted at 25 ° C for 30 minutes. Wash the membrane 3 times with 10 mM Tris-HC1 buffer (pH 7.5) containing 0.5% Tween-20 and 0.15M NaCl, then use ECL Western Blotting Detection Kit (Amersham Co., Ltd.). Used to carry out a luminescent reaction. This luminescence was detected with LAS-1000 (Fuji Film). The results are shown in FIG.
  • the strip After stripping, the strip is reduced in 0.375M Tris—HCl (pH8), 6M urea, 2% SDS, 20% glycerol, and 130mMDTT (15 minutes), and further 0.375M Tris—HCl (pH8), Alkylation (15 min) in 6M urea, 2% SDS, 20% glycerol, and 135 mM odoacetamide.
  • 0.375M Tris—HCl pH8
  • 6M urea 6M urea
  • 2% SDS 20% glycerol
  • 135 mM odoacetamide The strip after the reductive alkylation treatment was placed on the SDS polyacrylamide midenore and developed in the second dimension.
  • a basic protein was detected in the same manner as in Example 10 except that MEK3 D7 (Japanese Patent Application No. 2003-403313), which is an antibody against methyllysine, was used instead of the HRP-ADMA2-2H5 antibody.
  • MEK3 D7 Japanese Patent Application No. 2003-403313
  • HRP-ADMA2-2H5 antibody an antibody against methyllysine
  • the antibody of the present invention has increased reactivity with respect to acetylated protein, and thus can be used for searching and identifying a protein containing asymmetric dimethylarginine, which could not be detected conventionally.
  • the post-translationally modified amino acid-containing protein detection method combining the antibody of the present invention and the protein acetylene can be used for the search and identification of basic proteins including ADMA that cannot be identified conventionally.
  • the antibody of the present invention can be used for diagnosis that detects a target molecule associated with the identified disease, or for therapeutic treatment by controlling the function of the target molecule.

Abstract

Disclosed are: a novel antibody capable of reacting specifically with asymmetric dimethylarginine (ADMA) or a fragment of the antibody; a hybridoma capable of producing the antibody; a method for production of the antibody; and a method for analysis of an ADMA-containing basic protein using the antibody. The antibody can bind specifically to ADMA and shows an increased reactivity to a acylated protein. A protein containing ADMA has not been identified yet, but it now becomes possible to detect the protein by utilizing the combination of the antibody and the acetylation of a protein.

Description

明 細 書  Specification
ァシンメトリックジメチルアルギニンを認識する抗体及びその製造方法並 びに翻訳後修飾アミノ酸含有タンパク質の検出方法  Antibody recognizing asymmetric dimethylarginine, production method thereof, and detection method of post-translationally modified amino acid-containing protein
技術分野  Technical field
[0001] 本発明は、ァシンメトリックジメチルアルギニンと特異的に反応する新規抗体又はそ の抗体フラグメント、前記抗体を産生するハイブリドーマ、及び前記抗体の製造方法 並びに前記抗体を用いたァシンメトリックジメチルアルギニン含有タンパク質の検出 方法に関する。  [0001] The present invention relates to a novel antibody or antibody fragment that specifically reacts with asymmetric dimethylarginine, a hybridoma that produces the antibody, a method for producing the antibody, and asymmetric dimethylarginine using the antibody. The present invention relates to a method for detecting a contained protein.
背景技術  Background art
[0002] 生体内のタンパク質は、 mRNAから翻訳された後、そのままの形で機能を発揮する ことはなぐ様々な翻訳後修飾を受けることが知られている。例えば、タンパク質のリン 酸ィ匕は細胞外シグナルを核まで伝達する際のシグナルカスケードとして、又は正常 な細胞周期が進行するための制御因子として重要な役割を果たして 、る。核のクロ マチン構造の形成に関与しているヒストンのァセチルイ匕は、転写を効率的に進行させ るために重要である。また、タンパク質がュビキチンィ匕されるとプロテアノームに運ば れて分解して活性を失うことが知られている。一方、多くのタンパク質は、小胞体膜に 存在するシグナルぺプチダーゼによってシグナルペプチドが切り取られることにより 活性型になる。この様に、タンパク質は mRNAから翻訳された後に、様々な修飾を受 けることにより適切な時期に適切な場所で、それぞれの機能を発揮することになる。 一方で、この翻訳後修飾の異常は、様々な疾患の原因となることが考えられる。  [0002] It is known that in vivo proteins undergo various post-translational modifications after being translated from mRNA, without functioning as they are. For example, protein phosphates play an important role as signal cascades in transmitting extracellular signals to the nucleus or as regulators for normal cell cycle progression. Histone acetylenes, which are involved in the formation of nuclear chromatin structures, are important for efficient transcription. It is also known that when a protein is ubiquitinated, it is transported to the proteanome and decomposes to lose its activity. On the other hand, many proteins become active when the signal peptide is cleaved off by a signal peptidase present in the endoplasmic reticulum membrane. In this way, after being translated from mRNA, the protein is subjected to various modifications, thereby exhibiting each function at an appropriate place at an appropriate time. On the other hand, this post-translational modification abnormality is considered to cause various diseases.
[0003] このようなタンパク質の翻訳後修飾の中で、タンパク質中のアルギニン残基のメチ ル化が、最近注目されるようになって来た。メチルイ匕アルギニンには、シンメトリックジ メチルアルギニン(以下、 SDMAと称することがある)、ァシンメトリックジメチルアルギ ニン(以下、 ADMAと称することがある)、及びアルギニンから SDMA又は ADMA への中間体であるモノメチルアルギニン(以下、 MMAと称することがある)が存在す る。このうち、血中の ADMAは血管組織の NO代謝や血管内皮機能に影響を与える とされており、動脈硬化の病変との関連が考えられている。 [0004] ADMAを含め、タンパク質の翻訳後修飾及びタンパク質の機能発現、又は疾患と の関連を調べるために、まずどのようなタンパク質が翻訳後修飾を受けているのかを 調べることが重要である。翻訳後修飾を受けたタンパク質を検出する手段としては、 それぞれの翻訳後修飾に特異的なプローブ分子を用いる方法が考えられる。例えば 、リン酸化チロシンを認識するプローブとしては、リン酸化チロシンに特異的に反応す る抗体が多数市販されており、広く活用されている。しかしながら、 ADMAを効率よく 検出できる有用な抗体は一般に利用可能な状態ではなぐ ADMAを含む蛋白は、 2 0種類程度が同定されているのみであった。 [0003] Among such post-translational modifications of proteins, methylation of arginine residues in proteins has recently attracted attention. Methyl arginine includes symmetric dimethyl arginine (hereinafter sometimes referred to as SDMA), asymmetric dimethyl arginine (hereinafter sometimes referred to as ADMA), and an intermediate from arginine to SDMA or ADMA. There is a certain monomethylarginine (hereinafter sometimes referred to as MMA). Of these, ADMA in blood is thought to affect NO metabolism in vascular tissues and vascular endothelial function, and is considered to be related to arteriosclerotic lesions. [0004] In order to investigate the post-translational modification of proteins and the functional expression of proteins, or the relationship with diseases, including ADMA, it is important to first examine what proteins have undergone post-translational modifications. As a means for detecting a protein subjected to post-translational modification, a method using a probe molecule specific for each post-translational modification can be considered. For example, as a probe that recognizes phosphorylated tyrosine, many antibodies that react specifically with phosphorylated tyrosine are commercially available and widely used. However, useful antibodies that can detect ADMA efficiently are not generally available. Only about 20 types of proteins containing ADMA have been identified.
[0005] このような状況下で、 Boisvertらは、 ADMA及びグリシンがクラスターを形成して!/ヽ る配列番号 1で表されるペプチド(K G— ADMA— G— ADMA— G— ADMA— G— ADMA— G— P— P— P— P— P— ADMA— G— ADMA— G— ADMA— G —ADMA— G :以下、 ADMA— Gリッチペプチドと称す)を免疫原として用いること により、 ADMAに対する抗体 (ASYM24)を取得した。彼らが、このペプチドを用い た理由は、アルギニンをメチル化する主要な酵素である、 PRMTl (typel)及び PR MT5 (typell)力 アルギニン及びグリシンがクラスターを形成している領域(以下、 R G—リッチクラスターと称す)のアルギニンを選択的にメチルイ匕することが知られてい たからである。彼らは、この抗体を用いた免疫沈降により、 ADMAを含むタンパク質 を分離し、そのアミノ酸配列を決定した力 ほとんどのタンパク質力 RG リッチクラ スターを有していることがわかった。そのため、 ADMAに対する抗体である ASYM2 4抗体は、 RG リッチクラスターに存在する ADMAを認識していると推定される。( 非特許文献 1)。  [0005] Under such circumstances, Boisvert et al. Formed a peptide represented by SEQ ID NO: 1 (KG—ADMA—G—ADMA—G—ADMA—G—) in which ADMA and glycine form a cluster! ADMA-G-P-P-P-P-P-ADMA-G-ADMA-G-ADMA-G-ADMA-G (hereinafter referred to as ADMA-G rich peptide) An antibody (ASYM24) was obtained. The reason why they used this peptide is that the main enzymes that methylate arginine, PRMTl (typel) and PRMT5 (typell) forces Arginine and glycine form a clustered region (hereinafter RG-rich) This is because it was known to selectively methylate arginine (called a cluster). They found that the protein containing ADMA was isolated by immunoprecipitation using this antibody, and the amino acid sequence of the protein was determined to have most of the protein strength RG-rich cluster. Therefore, it is presumed that the ASYM2 4 antibody, which is an antibody against ADMA, recognizes ADMA present in the RG rich cluster. (Non-patent document 1).
[0006] 非特許文献 1:「モレキユラ一'アンド'セルラ一'プロテオミクス(Molecular & Cell ular Proteomics)」、(米国)、 2003年、第 2卷、第 12号、 p. 1319— 1330 発明の開示  [0006] Non-Patent Document 1: “Molecular & Cellular Proteomics” (USA), 2003, No. 2, No. 12, p. 1319-1330 Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、本発明者らは、タンパク質の RG リッチクラスターの領域以外にも、 ァシンメトリックジメチルアルギニンが存在すると考えた。従来の抗体は、 RG リッチ クラスターに存在する ADMAを有するタンパク質を検出すると考えられたため、それ 以外の領域に存在する ADMAを有するタンパク質の解析は困難であった。本発明 者らは、 ADMAを有する新規なタンパク質を検出できる抗体について、鋭意研究し た結果、従来の免疫原と異なる構造のペプチドを担体タンパク質に結合させた複合 体で、動物を免疫することにより、公知の抗 ADMA抗体と異なる反応性を示す抗体 を調製できることを見出した。更に、本発明の抗体は、正荷電の少ないタンパク質に 存在する ADMAを検出することが可能である。また、本発明の抗体とタンパク質の化 学修飾、特には、ァセチルイ匕とを組み合わせることによって、従来同定されていなか つた ADMAを含む塩基性タンパク質を検出する方法を見出した。本発明はこうした 知見に基づくものである。 [0007] However, the present inventors thought that asymmetric dimethylarginine exists in addition to the region of the RG rich cluster of the protein. Conventional antibodies were thought to detect proteins with ADMA present in RG-rich clusters. It was difficult to analyze proteins with ADMA existing in other regions. As a result of earnest research on antibodies capable of detecting a novel protein having ADMA, the present inventors have immunized animals with a complex in which a peptide having a structure different from that of a conventional immunogen is bound to a carrier protein. It has been found that an antibody exhibiting reactivity different from that of a known anti-ADMA antibody can be prepared. Furthermore, the antibody of the present invention can detect ADMA present in proteins with a small positive charge. Further, the present inventors have found a method for detecting a basic protein containing ADMA, which has not been identified in the past, by combining the antibody of the present invention with a chemical modification of a protein, in particular, acetylene cocoon. The present invention is based on these findings.
課題を解決するための手段 Means for solving the problem
前記の課題は、ァシンメトリックジメチルアルギニンに特異的に反応し、ァシンメトリツ クジメチルアルギニンを含有するタンパク質に対してタンパク質側鎖の化学修飾ィ匕処 理を行うことによって得られる化学修飾ィ匕ァシンメトリックジメチルアルギニン含有タン ノ^質に特異的に反応する抗体によって解決することができる。本発明の抗体の好 ましい態様においては、ァシンメトリックジメチルアルギニンに特異的に結合し、式 (4 ):  The above-mentioned problem is obtained by chemically modifying a protein side chain on a protein containing asymmetric dimethylarginine and reacting specifically with asymmetric dimethylarginine. This can be solved by an antibody that reacts specifically with the metric dimethylarginine-containing protein. In a preferred embodiment of the antibody of the present invention, it specifically binds to asymmetric dimethylarginine and has the formula (4):
Gly— ADMA— Lys— Cys— BSA (4)  Gly— ADMA— Lys— Cys— BSA (4)
[ADMAはァシンメトリックジメチルアルギニンであり、 BSAはゥシ血清アルブミンで ある]で表されるペプチドに対する結合力より、式 (8):  [ADMA is asymmetric dimethylarginine, and BSA is ushi serum albumin].
Gly - ADMA - AcLys - Cys - BSA (8) Gly-ADMA-AcLys-Cys-BSA (8)
[ADMAはァシンメトリックジメチルアルギニンであり、 AcLysはァセチル化リジンで あり、 BSAはゥシ血清アルブミンである]で表されるペプチドに対する結合力力 上昇 することを特徴とする抗体である。本発明の抗体の別の好ましい態様においては、マ ウスモノクローナル抗体であり、特には、受託番号 FERM BP— 10458であるハイ プリドーマによって分泌され、産生される抗体である。また、本発明は、前記抗体のフ ラグメントであって、ァシンメトリックジメチルアルギニンに特異的に反応する抗原結合 部位を含むことを特徴とする、抗体フラグメントに関する。また、本発明は、前記抗体 を産生するハイブリドーマであり、特には、受託番号 FERM BP— 10458であるハイ プリドーマに関する。 [ADMA is asymmetric dimethylarginine, AcLys is acetylated lysine, and BSA is ushi serum albumin]. In another preferred embodiment of the antibody of the present invention, it is a mouse monoclonal antibody, in particular, an antibody secreted and produced by a hybridoma having the accession number FERM BP-10458. The present invention also relates to an antibody fragment, which is a fragment of the antibody, comprising an antigen-binding site that specifically reacts with asymmetric dimethylarginine. The present invention also relates to a hybridoma that produces the above-mentioned antibody, and in particular, a high number having the accession number FERM BP-10458. About Pridoma.
[0009] また、本発明は、一般式 (9):  [0009] Further, the present invention provides a general formula (9):
X-ADMA-Z-Cys (9)  X-ADMA-Z-Cys (9)
[式中、 Xは Cys以外の同一又は異なるアミノ酸残基 1〜5からなるペプチドフラグメン トであり、 ADMAはァシンメトリックジメチルアルギニンであり、 Zは Cys以外の同一又 は異なるアミノ酸残基 1〜5からなるペプチドフラグメントである]の配列で表されるぺ プチドを担体タンパク質に結合し、動物を免疫することを特徴とする抗ァシンメトリック ジメチルアルギニン抗体の製造方法にも関する。本発明の抗体の製造方法の好まし い態様においては、 Xが Glyであり、 Zが ε アミノカプロン酸である一般式(9)で表 されるペプチドである。本発明の抗体の製造方法の別の好ま 、態様にぉ 、ては、 動物が、自己免疫疾患マウスであり、特には MRL lprZlprマウスである。  [Wherein X is a peptide fragment consisting of the same or different amino acid residues 1 to 5 other than Cys, ADMA is asymmetric dimethylarginine, and Z is the same or different amino acid residues 1 to 5 other than Cys. The present invention also relates to a method for producing an anti-asymmetric dimethylarginine antibody, characterized in that a peptide represented by the sequence of [5 is a peptide fragment consisting of 5] is bound to a carrier protein to immunize an animal. In a preferred embodiment of the method for producing an antibody of the present invention, the peptide is represented by the general formula (9), wherein X is Gly and Z is ε-aminocaproic acid. In another preferred embodiment of the method for producing an antibody of the present invention, the animal is an autoimmune disease mouse, particularly an MRL lprZlpr mouse.
[0010] 更に、本発明は、(1)翻訳後修飾アミノ酸含有タンパク質を含む可能性のある被検 試料に対して、タンパク質側鎖の化学修飾ィ匕を実施する工程、(2)タンパク質側鎖の 化学修飾化によって得られる翻訳後修飾アミノ酸含有タンパク質に特異的に反応す るプローブと、前記化学修飾化処理被検試料とを接触させる工程、及び (3)前記接 触工程によって形成される、化学修飾化された翻訳後修飾アミノ酸含有タンパク質と 前記プローブとの結合 (複合体)を検出する工程を含むことを特徴とする、前記翻訳 後修飾アミノ酸含有タンパク質の検出方法にも関する。本発明の翻訳後修飾アミノ酸 含有タンパク質の検出方法の好ま 、態様にぉ ヽては、翻訳後修飾アミノ酸含有タ ンパク質力 ァシンメトリックジメチルアルギニンを含有するタンパク質である。本発明 の翻訳後修飾アミノ酸含有タンパク質の検出方法の別の好ま 、態様にぉ 、ては、 タンパク質側鎖の化学修飾化が、ァシル化又はアルキル化である。本発明の翻訳後 修飾アミノ酸含有タンパク質の検出方法の別の好ましい態様においては、修飾ァミノ 酸に対するプローブ力 ADMAに特異的に反応する抗体又は抗体フラグメントであ る。本発明の翻訳後修飾アミノ酸含有タンパク質の検出方法の別の好ましい態様に おいては、タンパク質を等電点、分子量、又は等電点及び分子量の組み合わせ、に より分別する工程を更に含む。  [0010] Furthermore, the present invention includes (1) a step of chemically modifying a protein side chain on a test sample that may contain a post-translationally modified amino acid-containing protein, and (2) a protein side chain. A step of contacting a probe that specifically reacts with a post-translationally modified amino acid-containing protein obtained by chemical modification of the sample and the chemically modified test sample; and (3) formed by the contacting step. The present invention also relates to a method for detecting the post-translationally modified amino acid-containing protein, comprising a step of detecting a binding (complex) between the chemically modified post-translationally modified amino acid-containing protein and the probe. A preferred embodiment of the method for detecting a post-translationally modified amino acid-containing protein of the present invention is a protein containing a post-translationally modified amino acid-containing protein strength asymmetric dimethylarginine. In another preferred embodiment of the method for detecting a post-translationally modified amino acid-containing protein of the present invention, the chemical modification of the protein side chain is acylation or alkylation. In another preferred embodiment of the method for detecting a post-translationally modified amino acid-containing protein of the present invention, the antibody or antibody fragment specifically reacts with the probe power ADMA for the modified amino acid. In another preferred embodiment of the method for detecting a post-translationally modified amino acid-containing protein of the present invention, the method further comprises a step of fractionating the protein by isoelectric point, molecular weight, or a combination of isoelectric point and molecular weight.
[0011] 更に、本発明は、(1)翻訳後修飾アミノ酸含有タンパク質を含む可能性のある被検 試料に対して、タンパク質の電荷を変化させる処理を実施する工程、(2)電荷変化処 理した被検試料に対して、タンパク質の等電点による分別を実施する工程、(3)分別 後の被検試料と、翻訳後修飾アミノ酸に特異的に反応するプローブとを接触させる 工程、及び (4)前記接触工程によって形成される分別されたタンパク質と前記プロ一 ブとの結合 (複合体)を検出する工程を含むことを特徴とする、前記翻訳後修飾アミノ 酸含有タンパク質の検出方法にも関する。本発明の翻訳後修飾アミノ酸含有タンパ ク質の検出方法の好ましい態様においては、分別工程の前又は後に、タンパク質の 分子量による分別を実施する。本発明の翻訳後修飾アミノ酸含有タンパク質の検出 方法の別の好ましい態様においては、プローブが、メチルリジンに対する抗体である 発明の効果 [0011] Furthermore, the present invention provides (1) a test that may contain a post-translationally modified amino acid-containing protein. A process for changing the charge of the protein on the sample; (2) a process for separating the test sample subjected to the charge change by isoelectric point of the protein; and (3) after the separation. A step of contacting a test sample with a probe that specifically reacts with a post-translationally modified amino acid, and (4) binding (complex) of the fractionated protein formed by the contact step and the probe. The present invention also relates to a method for detecting a post-translationally modified amino acid-containing protein, comprising a step of detecting. In a preferred embodiment of the method for detecting a post-translationally modified amino acid-containing protein of the present invention, fractionation based on the molecular weight of a protein is performed before or after the fractionation step. In another preferred embodiment of the method for detecting a post-translationally modified amino acid-containing protein of the present invention, the probe is an antibody against methyllysine.
[0012] 本発明の抗体は、ァシンメトリックジメチルアルギニンを含むタンパク質の探索、同 定に有用である。また、本発明の抗体及びタンパク質の化学修飾化を組み合わせた 翻訳後修飾アミノ酸含有タンパク質の検出方法は、従来同定できな力つた ADMAを 含むタンパク質を同定することを可能にした。本発明の抗体、及び検出方法を用いて 、疾病に関連する標的分子としての、 ADMA含有タンパク質を同定することが可能と なる。更には、本発明の抗体は同定した疾患に関連する標的分子の機能制御による 治療及び標的分子を検出することによる診断に使用することが可能である。  The antibody of the present invention is useful for searching for and identifying a protein containing asymmetric dimethylarginine. In addition, the post-translationally modified amino acid-containing protein detection method combining the antibody and protein chemical modification of the present invention has made it possible to identify a powerful protein containing ADMA that could not be identified conventionally. Using the antibody and detection method of the present invention, it becomes possible to identify an ADMA-containing protein as a target molecule associated with a disease. Furthermore, the antibody of the present invention can be used for therapy by controlling the function of a target molecule associated with the identified disease and for diagnosis by detecting the target molecule.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]免疫マウスの抗体価 RME— GaR £ AC— KLH複合体の最終免疫から 3日 後の、 BalbZc及び MRL— lprZlprマウスの ELIS A法による血中抗体価を示す。 [0013] [Fig. 1] Antibody titer of immunized mice Shows the antibody titer in blood by the ELISA method of BalbZc and MRL-lprZlpr mice 3 days after the final immunization with RME-GaR £ AC-KLH complex.
[図 2]モノクローナル抗体の反応性 (ELISA:抗原別) 榭立したマウスモノクローナ ノレ抗体 DMA2— 2G11、 ADMA2— 2H5、 ADMA2— 2H7、 ADMA2—4E6、 A DMA2— 5E10、又は ADMA2— 3C10 (サブクローン ADMA2— 3C10A及び A DMA2 - 3C10B)の ADMAを含むペプチド RME - LaRC - BSA ( A)、 RME - GaRKC— BSA(B)、 RME— GaR ε AC— BSA (C)、及び ADMAを含まないコン トロールペプチドに対する反応性を示す。抗体のコントロールとして、モノクローナル 抗体 Clone 7E6及びポリクローナル抗体 ASYM24の反応性を示す。 [図 3]モノクローナル抗体の反応性 (ELISA:抗体別) 榭立したマウスモノクローナ ル抗体 ADMA2— 5E10、 ADMA2— 3C10、及び ADMA2— 2H5の ADMAを 含むペプチドである RME— GaR ε AC— BSAゝ RME— GaRKC— BSAゝ RME— LaRC— BSA、 SDMAを含むペプチドである RME— LsRC— BSA、ァセチル化し て!ヽな 、アルギニンを含むペプチドである LRGRGRKC - BSA、 AcK - BSA (ァセ チル化リジンと BSAの複合体)及び MeK— BSA (メチルリジンと BSAの複合体)との 反応を示す。抗体のコントロールとして、ポリクローナル抗体 ASYM24、モノクローナ ル抗体 Clone 7E6及び SDMAに対するポリクローナル抗体 SYM11の反応性を示 す。 [Figure 2] Monoclonal antibody reactivity (ELISA by antigen) Established mouse monoclonal antibody DMA2—2G11, ADMA2—2H5, ADMA2—2H7, ADMA2—4E6, A DMA2—5E10, or ADMA2—3C10 (sub) Clones ADMA2—3C10A and A DMA2-3C10B) ADMA-containing peptides RME-LaRC-BSA (A), RME-GaRKC—BSA (B), RME—GaR ε AC—BSA (C), and ADMA-free peptides The reactivity with a troll peptide is shown. As antibody controls, the reactivity of monoclonal antibody Clone 7E6 and polyclonal antibody ASYM24 is shown. [Figure 3] Reactivity of monoclonal antibodies (ELISA: by antibody) Established mouse monoclonal antibodies ADMA2-5E10, ADMA2-3C10, and ADMA2-2H5 ADMA-containing peptides RME—GaR ε AC—BSA RME—GaRKC—BSA ゝ RME—LaRC—BSA, a peptide containing SDMA RME—LsRC—BSA, acetylated! The reaction with LRGRGRKC-BSA, AcK-BSA (complex of acetylated lysine and BSA) and MeK-BSA (complex of methyllysine and BSA), which are peptides containing arginine, is shown. As antibody controls, the reactivity of polyclonal antibody ASYM24, monoclonal antibody Clone 7E6 and SDMA to polyclonal antibody SYM11 is shown.
[図 4]モノクローナル抗体の反応のアミノ酸による阻害(ELISA) マウスモノクローナ ル抗体 ADMA2— 5E10、 ADMA2— 3C10、 ADMA2— 2H5の ADMAに対する 反応性の ADMA、 MMA、又はアルギンニン(Arg)による阻害反応を示す。  [Fig. 4] Inhibition of monoclonal antibody reaction by amino acids (ELISA) Inhibition of mouse monoclonal antibodies ADMA2-5E10, ADMA2-3C10, and ADMA2-2H5 by ADMA, MMA, or arginine (Arg). Show.
[図 5]スルフォ NHSァセテ トの効果(ELISA) RME - GaRKC - BSA ( 10 μ g/ mL)及び LRGRGRKC— BSAを、スルフォ NHSアセテート処理することにより、マウ スモノクローナル抗体 ADMA2— 5E10、 ADMA2— 3C10、 ADMA2— 2H5、ポリ クローナル抗体 ASYM24、及びモノクローナル抗体 Clone 7E6の反応性の変化を 示す。 [Fig. 5] Effect of sulfo NHS acetate (ELISA) By treating RME-GaRKC-BSA (10 μg / mL) and LRGRGRKC—BSA with sulfo NHS acetate, the mouse monoclonal antibodies ADMA2-5E10, ADMA2-3C10 3 shows changes in reactivity of ADMA2-2H5, polyclonal antibody ASYM24, and monoclonal antibody Clone 7E6.
[図 6]スルフォ NHSァセテ トの効果 (Western) スルフォ NHSァセテ ト処理、又 は未処理の MOLT— 4F細胞のタンパク質に対するマウスモノクローナル抗体 ADM A2 - 2H5,及びポリクローナル抗体 ASYM24の反応性を示す。 ACK2F12はァセ チルリジンに対するモノクローナル抗体であり、タンパク質のリジンがァセチル化され ていることを示す。  [FIG. 6] Effect of sulfo NHS acetate (Western) The reactivity of mouse monoclonal antibody ADM A2-2H5 and polyclonal antibody ASYM24 to the protein of MOLT-4F cells treated or not treated with sulfo NHS acetate is shown. ACK2F12 is a monoclonal antibody against acetyl lysine, indicating that the protein lysine is acetylated.
[図 7]マウス臓器のウェスタンブロッテイング マウスの各臓器の組織力 抽出したタン パク質の、マウスモノクローナル抗体 ADMA2— 2H5を用いた、ウェスタンブロッティ ングを示す。  [FIG. 7] Western blotting of mouse organs Western blotting using mouse monoclonal antibody ADMA2-2H5 for the extracted tissue protein.
[図 8]HepG2 ly sateの 2D— Western HepG2細胞のタンパク質の 2次元電気泳 動後の、マウスモノクローナル抗体 ADMA2— 2H5を用いたウェスタンブロッテイン グの結果を示す。 [図 9]スルフォ NHSアセテート処理による ADMA含有タンパク質の検出 HepG2細 胞のタンパク質をスルフォ NHSアセテート処理、又は未処理の 2次元電気泳動後の 、マウスモノクローナル抗体 ADMA2— 2H5を用いたウェスタンブロッテイングの結 果を示す。 FIG. 8 shows the results of Western blotting using mouse monoclonal antibody ADMA2-2H5 after 2D electrophoresis of 2D- Western HepG2 cell protein of HepG2 lysate. [Fig. 9] Detection of ADMA-containing protein by sulfo NHS acetate treatment Western blotting using mouse monoclonal antibody ADMA2-2H5 after two-dimensional electrophoresis of protein of HepG2 cells with sulfo NHS acetate treatment or untreated. Show fruit.
[図 10]スルフォ NHSアセテート処理によるメチルリジン含有タンパク質の検出 Hep G2細胞のタンパク質をスルフォ NHSアセテート処理、又は未処理の 2次元電気泳動 後の、マウスモノクローナル抗体 MEK3D7を用いたウェスタンブロッテイングの結果 を示す。  [Fig. 10] Detection of methyllysine-containing protein by treatment with sulfo NHS acetate Shows the results of Western blotting using mouse monoclonal antibody MEK3D7 after 2D electrophoresis of proteins in Hep G2 cells treated with sulfo NHS acetate or untreated .
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明の抗体は、ァシンメトリックジメチルアルギニン (ADMA)と特異的に反応し、 シンメトリックジメチルアルギニン (SDMA)とは反応しない。本発明の抗体が認識す る ADMAとは、一般式(1):  The antibody of the present invention specifically reacts with asymmetric dimethylarginine (ADMA) and does not react with symmetric dimethylarginine (SDMA). ADMA recognized by the antibody of the present invention is represented by the general formula (1):
[化 1] [Chemical 1]
Figure imgf000008_0001
Figure imgf000008_0001
で表される、アルギニンの側鎖のァミノ基の水素原子 2つが、メチル基で置換された アルギニンである。本発明の抗体が反応しない、 SDMAとは、一般式(2): An arginine in which two hydrogen atoms in the side chain of an arginine represented by the formula are substituted with a methyl group. SDMA to which the antibody of the present invention does not react is a general formula (2):
[化 2] [Chemical 2]
Figure imgf000008_0002
で表されるアルギニンの側鎖のァミノ基の水素原子及びイミノ基の水素原子カ^チル 基に置換されたアルギニンである。本発明の抗体は、モノメチルアルギニン及びアル ギニンにも反応しない、 ADMAに特異的に反応する抗体である。つまり、 ADMAに 特異的に反応するとは、 ADMAに反応し、 SDMA、モノメチルアルギニン、及びァ ルギニンに反応しな 、ことを意味する。
Figure imgf000008_0002
The arginine substituted by the hydrogen atom of the amino group in the side chain of arginine and the hydrogen atom cation group of the imino group. The antibodies of the present invention include monomethylarginine and arginine. It is an antibody that reacts specifically with ADMA and does not react with ginin. That is, specifically reacting with ADMA means reacting with ADMA but not with SDMA, monomethylarginine, and arginine.
[0015] 本発明の抗体は、 ADMAを含む下記の 3種類のペプチドと BSAの複合体に特異 的に反応する。 [0015] The antibody of the present invention specifically reacts with a complex of the following three types of peptides containing ADMA and BSA.
一般式 (3) :  General formula (3):
Leu - ADMA - Cys - BSA (3)  Leu-ADMA-Cys-BSA (3)
(BSAはゥシ血清アルブミンである:以下、 RME - LaRC - BSAと称することがある) 一般式 (4) :  (BSA is ushi serum albumin: hereinafter sometimes referred to as RME-LaRC-BSA) General formula (4):
Gly - ADMA - Ly s - Cys - BSA (4)  Gly-ADMA-Ly s-Cys-BSA (4)
(以下、 RME— GaRKC— BSAと称することがある)  (Hereafter referred to as RME—GaRKC—BSA)
一般式 (5) :  General formula (5):
Gly - ADMA - Acp - Cys - BSA (5)  Gly-ADMA-Acp-Cys-BSA (5)
(Acpは ε アミノカプロン酸である:以下、 RME - GaR ε AC— BSAと称すること がある)  (Acp is ε-aminocaproic acid: hereafter referred to as RME-GaR ε AC— BSA)
[0016] 一方、本発明の抗体は、 SDMA及びメチル化されて!/、な!/、アルギニンを含む下記 のペプチドと BSAの複合体には、反応しない。  [0016] On the other hand, the antibody of the present invention does not react with the following peptide-BSA complex containing SDMA and methylated! /, NA! /, Arginine.
一般式 (6) :  General formula (6):
Leu - SDMA- Cys - BSA (6)  Leu-SDMA- Cys-BSA (6)
(以下、 RME— LsRC— BSAと称することがある)  (Hereafter, it may be called RME—LsRC—BSA)
一般式 (7) :  General formula (7):
Leu - Arg - Gly - Arg - Gly - Arg - Lys - Cys - BSA (7) (以下、 LRGRGR KC BSAと称することがある)  Leu-Arg-Gly-Arg-Gly-Arg-Lys-Cys-BSA (7) (hereinafter sometimes referred to as LRGRGR KC BSA)
[0017] 本発明の抗体の、 ADMAを含む複合体である RME— GaR ε AC— BSAに対す る反応は、遊離の ADMAを反応系に添加することによって、用量依存的に阻害され る力 モノメチルアルギニン及びアルギニンを添加することによっては、阻害されなか つた。これらの反応性は、本発明の抗体が、 1つのァシンメトリックジメチルアルギニン を特異的に認識する抗体であり、 ADMA及びその周辺のアミノ酸を認識する抗体で ないことを示している。 [0017] The reaction of the antibody of the present invention against RME-GaRεAC-BSA, which is a complex containing ADMA, is inhibited in a dose-dependent manner by adding free ADMA to the reaction system. The addition of arginine and arginine was not inhibited. These reactivities are those in which the antibody of the present invention specifically recognizes one asymmetric dimethylarginine, and an antibody that recognizes ADMA and its surrounding amino acids. It shows no.
[0018] 更に、本発明の抗体は、 RME— GaRKC— BSAのリジンをァセチル化したぺプチ ドと BSAの複合体である、  [0018] Further, the antibody of the present invention is a complex of RSA-GaRKC-BSA lysine acetylated peptide and BSA.
一般式 (8) :  General formula (8):
Gly - ADMA - AcLys - Cys - BSA (8)  Gly-ADMA-AcLys-Cys-BSA (8)
(以下、 RME— GaRacKC— BSAと称することがある)、  (Hereinafter sometimes referred to as RME—GaRacKC—BSA),
に対して、 RME— GaRKC— BSAに対する反応より強い反応を示す。本発明の抗 体は、 LRGRGRKC— BSAのリジンがァセチル化された複合体に対しては反応しな いため、ペプチドや BSA中のァセチル化リジンに反応しているのではなぐ ADMA に反応している。更に、本発明の抗体は、細胞中のタンパク質に含まれるリジンをァ セチルイ匕することによって、タンパク質への反応性が強くなる。このため、タンパク質 をァセチルイ匕することよって、従来は検出できな力つた、 ADMAを含むタンパク質を 検出することが可能になる。  On the other hand, it shows a stronger reaction than that for RME-GaRKC-BSA. The antibody of the present invention does not react with LRGRGRKC- BSA lysine acetylated complex, and therefore reacts with ADMA rather than reacting with peptide or BSA acetylated lysine. . Furthermore, the antibody of the present invention becomes highly reactive to proteins by acetylating lysine contained in proteins in cells. Therefore, by acetylating the protein, it becomes possible to detect a protein containing ADMA, which has been impossible to detect conventionally.
[0019] 一方、後述の実施例 6で示すように、市販されて!ヽる、 ADMAに対するモノクロ一 ナル抗体である Clone 7E6は、 RME— GaRKC— BSAにも、 RME— GaRacKC BSAにも反応しない。また、 ADMA— Gリッチペプチドを免疫原として得られた、 ポリクローナル抗体である ASYM24抗体は、本願発明の抗体と対照的に、 RME- GaRacKC— BSAに対するより、 RME— GaRKC— BSAに対して強く反応する。更 に、 ASYM24抗体は、細胞中のタンパク質に含まれるリジンをァセチル化することに よって、タンパク質への反応性が弱くなる。  [0019] On the other hand, as shown in Example 6 described later, Clone 7E6, which is a commercially available monoclonal antibody against ADMA, does not react with RME-GaRKC-BSA or RME-GaRacKC BSA. . In addition, the ASYM24 antibody, which is a polyclonal antibody obtained using an ADMA-G rich peptide as an immunogen, is more reactive to RME-GaRKC-BSA than RME-GaRacKC-BSA, in contrast to the antibody of the present invention. To do. Furthermore, the ASYM24 antibody becomes less reactive to the protein by acetylating lysine contained in the protein in the cell.
[0020] 本発明の抗体は、 RME— GaRKC— BSAに対する結合力より、 RME— GaRacK C BSAに対する抗体の結合力の方が強いという特徴を有する。本明細書で結合 力が強いとは、親和定数が高いこと、解離定数が低いこと、又は抗体の結合量が上 昇することなどを含む意味である。 RME— GaRKC BS A又は RME— GaRacKC — BSAに対する本発明の抗体の結合力は、固相酵素免疫測定法 (ELISA)、ウェス タンブロッテイング、ラジオィムノアッセィ法などによって測定することが可能である。 例えば、 ELISA法で結合力を調べる場合は、(a) ELISA用プレートに、 RME— Ga RKC - BSA ( 10 g/mL)を固相化する。 (b) PBSにスルフォ NHSァセテ―トを 0 mM (未処理)、 ImM又は lOmMで溶解し、 25°〇で1時間処理(50 する。 (c) プレートの各ゥエルを 1%BSA—PBSTで 1時間ブロッキングする。 (d)測定する抗体 を PBSTで 1000ngZmL、 333ng/mL, l l lng/mL, 37ng/mL, 12. 3ng/ mL、 4. lng/mL、又は 1. 4ng/mLに希釈し、 50 /z L添加し、室温で 30分反応さ せる。 (e) HRP標識抗マウス IgG抗体 50 μ L· ( l μ g/mL)を加え、室温で 30分反応 させる。(f) OPD基質溶液 [20mM— o—フエ-レンジァミン、 0. 05%過酸化水素水 を含む 0. 1Mクェン酸リン酸緩衝液 (pH5. 0) ] 100 Lを加え、 25°Cで 10分間反 応させる。(g) 492nmにおける吸光度を測定する。本発明の抗体において RME— GaRacKC— BSAに対する抗体の結合力の方が強いことは、前記のいずれかの抗 体濃度で、スルフォ NHSァセテ トの OmM処理(未処理)より ImM処理又は 10m M処理で、 492nmにおける吸光度力 上昇することで確認できる。具体的に、抗体 の結合力が強いとは、スルフォ NHSアセテートの ImM処理又は 10mM処理におけ る吸光度 (A)を、スルフォ NHSァセテ—トの OmM処理における吸光度(B)で割った ときの値 (X)力 1より大きいことを意味し、好ましくは 1. 01以上、より好ましくは 1. 1 以上、更に好ましくは、 1. 5以上である。 [0020] The antibody of the present invention is characterized in that the binding force of the antibody to RME-GaRacK C BSA is stronger than the binding force to RME-GaRKC-BSA. In this specification, the strong binding force means that the affinity constant is high, the dissociation constant is low, or the binding amount of the antibody is increased. The binding force of the antibody of the present invention to RME—GaRKC BS A or RME—GaRacKC—BSA can be measured by solid-phase enzyme immunoassay (ELISA), Western blotting, radioimmunoassay, etc. is there. For example, when examining the binding force by ELISA, (a) RME—Ga RKC-BSA (10 g / mL) is immobilized on an ELISA plate. (b) Sulfo NHS carbonate in PBS 0 Dissolve in mM (untreated), ImM, or lOmM, and treat for 1 hour at 25 ° (50). (c) Block each well of the plate with 1% BSA-PBST for 1 hour. (d) Antibody to be measured Dilute to 1000 ngZmL, 333 ng / mL, ll lng / mL, 37 ng / mL, 12.3 ng / mL, 4. lng / mL, or 1.4 ng / mL with PBST, add 50 / z L, and 30 minutes at room temperature (E) Add 50 μL · (l μg / mL) of HRP-labeled anti-mouse IgG antibody and allow to react for 30 minutes at room temperature (f) OPD substrate solution [20 mM—o-phenylenediamine, 0 0.1% citrate phosphate buffer solution (pH 5.0) containing 05% hydrogen peroxide solution] Add 100 L and react for 10 minutes at 25 ° C. (G) Measure absorbance at 492 nm. In the antibody of the invention, the binding force of the antibody to RME-GaRacKC-BSA is stronger in any of the above-mentioned antibody concentrations by ImM treatment or 10 mM treatment than OmM treatment (untreated) of sulfo NHS acetate. Absorbance power at 492 nm Specifically, the strong binding force of an antibody indicates that the absorbance (A) of sulfo NHS acetate in ImM treatment or 10 mM treatment is the absorbance (B) of sulfo NHS acetate in OmM treatment. (X) Force means greater than 1, preferably 1.01 or more, more preferably 1.1 or more, and even more preferably 1.5 or more.
また、結合力の上昇は、結合定数 (Association constant, Ka)の上昇や、解離 定数(Dissociation constant, Kd)の低下によっても表現できる。抗原と抗体が結 合して抗原 抗体結合物の形成される反応は、可逆反応であるが、反応が平衡に達 したときの非結合抗原、非結合抗体、抗原 抗体結合物の濃度をそれぞれ [Ag]、 [ Ab]、 [Ag'Ab]とすると、  An increase in binding force can also be expressed by an increase in association constant (Association constant, Ka) or a decrease in dissociation constant (Dissociation constant, Kd). The reaction in which an antigen and an antibody are combined to form an antigen-antibody conjugate is a reversible reaction. When the reaction reaches equilibrium, the concentrations of unbound antigen, unbound antibody, and antigen-antibody conjugate are respectively Ag], [Ab], [Ag'Ab]
Ka= [Ag'Ab],[Ag] [Ab] Ka = [Ag'Ab], [Ag] [Ab]
Kd= [Ag] [Ab]Z [Ag'Ab]となり、放射性標識した抗原を用いて、スキャッチャ— ドプロットなどの解析により求めることができる。また、 ELISA法によっても、近似値を 求めることができる。例えば、  Kd = [Ag] [Ab] Z [Ag'Ab], which can be obtained by analysis such as Scatchard plot using radiolabeled antigen. An approximate value can also be obtained by ELISA. For example,
[Ag] + [Ab]< "~ [Ag'Ab]で平衡状態にあるとすると、  [Ag] + [Ab] <"~ [Ag'Ab]
Kd= [Ag] [Ab]/ [Ag-Ab]  Kd = [Ag] [Ab] / [Ag-Ab]
となる。結合抗体の総量 (濃度)を Ab とすると、 It becomes. If the total amount (concentration) of bound antibody is Ab,
tot  tot
[Ag'Ab] =Ab - [Ag]/ (Kd+ [Ag]) となる。 Abの 50%が Agに結合した時の [Ag]を Ag とすると、 [Ag'Ab] = Ab-[Ag] / (Kd + [Ag]) It becomes. When [Ag] when 50% of Ab is bound to Ag is Ag,
1/2  1/2
[Ag-Ab] = l/2-Abtot  [Ag-Ab] = l / 2-Abtot
なので、これらを代入すると、  So, if you substitute these,
Kd=Ag  Kd = Ag
1/2  1/2
となる。従って、液相中の Agの結合により [Ag]がほとんど影響されず、かつ ELISA 法での洗浄後のシグナル力 [Ag' Ad]に比例すると仮定することによって、 Kdを見積 もることが可能であり、 Kdの値の低下が結合力の上昇を表す。なお、この見積り方法 は、吸着抗体の濃度が Kdの値に較べて十分小さい時に、特に有効である。具体的 に、抗体の結合力が強いとは、スルフォ NHSアセテートの ImM処理又は 10mM処 理における Kaを、スルフォ NHSアセテートの OmM処理における Kaで割ったときの 値力 1より大きいことを意味し、好ましくは 1. 01以上、より好ましくは 1. 1以上、更に 好ましくは、 1. 5以上である。あるいは、抗体の結合力が強いとは、スルフォ NHSァ セテートの OmM処理における Kdを、スルフォ NHSアセテートの ImM処理又は 10 mM処理における Kdで割ったときの値が、 1より大きいことを意味し、好ましくは 1. 01 以上、より好ましくは 1. 1以上、更に好ましくは、 1. 5以上である。  It becomes. Therefore, Kd can be estimated by assuming that [Ag] is hardly affected by the binding of Ag in the liquid phase and is proportional to the signal strength [Ag 'Ad] after washing in the ELISA method. And a decrease in the value of Kd represents an increase in binding force. This estimation method is particularly effective when the concentration of the adsorbed antibody is sufficiently smaller than the Kd value. Specifically, strong antibody binding means that Ka in sulfo NHS acetate ImM treatment or 10 mM treatment is greater than the value of 1 when divided by Ka in sulfo NHS acetate OmM treatment, Preferably it is 1.01 or more, More preferably, it is 1.1 or more, More preferably, it is 1.5 or more. Alternatively, strong antibody binding means that the Kd in OmM treatment of sulfo NHS acetate divided by Kd in ImM treatment or 10 mM treatment of sulfo NHS acetate is greater than 1. Preferably it is 1.01 or more, More preferably, it is 1.1 or more, More preferably, it is 1.5 or more.
[0022] 本発明の抗体には、ポリクローナル抗体及びモノクローナル抗体が含まれる力 より 好ましくは、モノクローナル抗体である。本発明の抗体フラグメントは、本発明の抗体 のフラグメントであって、し力も、もとの抗体と同じ反応特異性を有する抗体フラグメン トである。すなわち、本発明の抗体フラグメントは、 ADMAと特異的に反応し、 SDM A、モノメチルアルギニン、メチル化されていないアルギニンには反応しない。更に、 ADMAに連続するリジンがァセチル化されたペプチドである RME— GaRacKC— BSAに対して、 RME— GaRKC— BSAに対する反応より強い反応を示し、細胞中 のタンパク質に含まれるリジンをァセチルイ匕することによって、タンパク質への反応性 が強くなる。本発明の抗体フラグメントには、例えば、 Fab、 Fab\ F (ab' ) 、又は Fv [0022] The antibody of the present invention includes a polyclonal antibody and a monoclonal antibody, more preferably a monoclonal antibody. The antibody fragment of the present invention is a fragment of the antibody of the present invention, and is an antibody fragment that has the same reaction specificity as the original antibody. That is, the antibody fragment of the present invention specifically reacts with ADMA and does not react with SDM A, monomethylarginine, or unmethylated arginine. In addition, RME-GaRacKC-BSA, which is a peptide in which lysine continuous with ADMA is acetylated, exhibits a stronger response than RME-GaRKC-BSA, and acetylates lysine contained in proteins in cells. Increases the reactivity to proteins. Examples of the antibody fragment of the present invention include Fab, Fab \ F (ab '), or Fv
2 等が含まれる。これらのフラグメントは、例えば、本発明のモノクローナル抗体を常法 によりタンパク質分解酵素によって消化し、続いて、タンパク質の分離'精製の常法に 従って得ることができる。  2 etc. are included. These fragments can be obtained, for example, by digesting the monoclonal antibody of the present invention with a proteolytic enzyme according to a conventional method, and subsequently following a conventional method for protein separation and purification.
[0023] 本発明の抗体は、一般式 (9): X-ADMA-Z-Cys (9) [0023] The antibody of the present invention has the general formula (9): X-ADMA-Z-Cys (9)
[式中、 Xは Cys以外の同一又は異なるアミノ酸残基 1〜5からなるペプチドフラグメン トであり、 ADMAはァシンメトリックジメチルアルギニンであり、 Zは Cys以外の同一又 は異なるアミノ酸残基 1〜5からなるペプチドフラグメントである]  [Wherein X is a peptide fragment consisting of the same or different amino acid residues 1 to 5 other than Cys, ADMA is asymmetric dimethylarginine, and Z is the same or different amino acid residues 1 to 5 other than Cys. It is a peptide fragment consisting of 5]
の配列で表されるペプチドを担体タンパク質に結合し、動物を免疫することによって 調製することができる。  The peptide represented by the sequence can be prepared by binding to a carrier protein and immunizing an animal.
[0024] 前記一般式(9)にお 、て、 Xはシスティン (Cys)以外の任意のアミノ酸である。 Xは Cys以外のアミノ酸であれば、特に限定されないが、 C末側の ADMAに影響を与え ないアミノ酸が好ましぐ例えば、側鎖が非極性側鎖及び非荷電極性側鎖を有するァ ミノ酸が好ましい。具体的なアミノ酸としては、グリシン、ァラニン、パリン、セリンなどが 挙げられ、特に好ましくはグリシンである。また Xのアミノ酸の連続する長さも、特に限 定されないが、好ましくは 1〜5の整数であり、より好ましくは、 1である。  In the general formula (9), X is any amino acid other than cysteine. X is not particularly limited as long as it is an amino acid other than Cys, but amino acids that do not affect ADMA on the C-terminal side are preferred.For example, amino acids having nonpolar side chains and uncharged polar side chains. Is preferred. Specific amino acids include glycine, alanine, parin, serine and the like, with glycine being particularly preferred. Further, the continuous length of the amino acid of X is not particularly limited, but is preferably an integer of 1 to 5, and more preferably 1.
Zもシスティン(Cys)以外の任意のアミノ酸である。 Zは Cys以外のアミノ酸であれば 、特に限定されないが、好ましくは、 N末側の ADMAに影響を与えないアミノ酸、例 えば、側鎖が非極性側鎖及び非荷電極性側鎖を有するアミノ酸が好ましい。具体的 なアミノ酸としては、グリシン、ァラニン、ノ リン、セリン、 ε —アミノカプロン酸(6—アミ ノカプロン酸)などが挙げられ、特には ε —アミノカプロン酸(6—アミノカプロン酸)が 好ましい。また Ζの連続する長さも、特に限定されないが、好ましくは 1〜5の整数であ り、より好ましくは、 1である。前記一般式(9)で表されるペプチドは、 C末側の Cysの チオール基 (SH基)を利用して、担体タンパク質と結合させる。そのため、 X又は Zに Cysが含まれる場合は、 C末側以外の Cysが担体タンパク質と結合してしまい、 AD MAが隠されてしまうことがあるため、免疫原の構造上好ましくない。  Z is also any amino acid other than cysteine. Z is not particularly limited as long as it is an amino acid other than Cys, but preferably an amino acid that does not affect ADMA on the N-terminal side, for example, an amino acid whose side chain has a nonpolar side chain and an uncharged polar side chain. preferable. Specific examples of amino acids include glycine, alanine, Norin, serine, and ε-aminocaproic acid (6-aminocaproic acid), and ε-aminocaproic acid (6-aminocaproic acid) is particularly preferable. Further, the continuous length of the wrinkles is not particularly limited, but is preferably an integer of 1 to 5, more preferably 1. The peptide represented by the general formula (9) is bound to a carrier protein using the thiol group (SH group) of Cys on the C-terminal side. For this reason, when Cys is contained in X or Z, Cys other than the C-terminal side may bind to the carrier protein and ADMA may be hidden, which is not preferable in terms of the structure of the immunogen.
[0025] 前記一般式の(9)のペプチドは、化学合成によって調製することができ、例えば、 F moc固相合成法、 Boc固相合成法によって合成できる。合成したペプチドは、 HPL C等の公知の方法で精製することができる。前記一般式の(9)のペプチドの Cysの S H基を利用して、ペプチドを担体タンパク質に結合させる。  [0025] The peptide of the general formula (9) can be prepared by chemical synthesis, for example, Fmoc solid phase synthesis method or Boc solid phase synthesis method. The synthesized peptide can be purified by a known method such as HPL C. The peptide is bound to a carrier protein using the SH group of Cys of the peptide of the general formula (9).
[0026] 本明細書で、「担体タンパク質」とは、前記ペプチドと結合して複合体を形成し、免 疫原性を発揮できるタンパク質であれば、特に限定されないが、例えば、分子量が約 1万以上、好ましくは、 4万〜 100万のタンパク質が好ましい。具体的には、ゥシ血清 アルブミン、免疫グロブリン、オボアルブミン、スカシガイへモシァニン (KLH)等を挙 げることができる。前記ペプチドと担体の結合は、システィンの SH基と担体タンパク 質の官能基を利用して結合させることができる。担体タンパク質の官能基としては、 S H基と結合する官能基であれば限定されず、チオール基又はアミノ基が、挙げられる 。結合方法は、従来公知の方法に従って、実施することができるが、例えば、マレイミ ド、カルボジミド、グルタールアルデヒド、スルフォ GMBS、又は GMBSなどをぺプチ ドと担体タンパク質との架橋剤として使用することができる。 In the present specification, the “carrier protein” is not particularly limited as long as it is a protein capable of binding to the peptide to form a complex and exhibiting immunogenicity. More than 10,000, preferably 40,000 to 1 million proteins are preferred. Specific examples include sushi serum albumin, immunoglobulin, ovalbumin, mosquito hemocyanin (KLH), and the like. The peptide and carrier can be bound using the SH group of cysteine and the functional group of the carrier protein. The functional group of the carrier protein is not limited as long as it is a functional group that binds to the SH group, and includes a thiol group or an amino group. The binding method can be carried out according to a conventionally known method. For example, maleimide, carbodiimide, glutaraldehyde, sulfo GMBS, or GMBS can be used as a cross-linking agent between a peptide and a carrier protein. it can.
[0027] 本発明の抗体には、動物のポリクローナル抗体及びヒトゃマウスのモノクローナル 抗体を含むが、抗体を得るために動物を免疫する方法、及びモノクローナル抗体を 産生するハイプリドーマを得るための方法は、免疫原として一般式(9)のペプチドと 担体タンパク質の複合体を免疫原として用いることを除 1、て、公知の方法によって実 施することができる。例えば、続生化学実験講座 (日本生化学会編)、又は免疫生化 学研究法(日本生化学会編)に記載の方法に従って、行うことができる。  [0027] The antibodies of the present invention include animal polyclonal antibodies and human mouse monoclonal antibodies. Methods for immunizing animals to obtain antibodies and methods for obtaining hyperprideomas producing monoclonal antibodies It can be carried out by a known method except that a complex of the peptide of the general formula (9) and a carrier protein is used as an immunogen. For example, it can be performed according to the method described in the Second Biochemistry Experiment Course (Japan Biochemical Society) or the Immunobiological Research Method (Japan Biochemical Society).
[0028] 前記一般式(9)のペプチドと担体タンパク質の複合体を免疫原として用いて、動物 を免疫することによって、本発明の抗体を取得することができる。免疫に用いる動物 は、特に限定されないが、ヒッジ、ャギ、ゥサギ、マウス、ラット、モルモット、トリ、ゥシ、 ゥマなどを用いることができる。し力しながら、ァシンメトリックジメチルアルギニンは、 本来、正常な動物の生体内に存在するアミノ酸であるため、免疫機能が正常な動物 では、 ADMAに対する抗体が産生されにくいことがある。そのため、免疫に用いる動 物は、自己抗体を産生しやすい、 自己免疫疾患の動物が好ましい。特に、マウスで 本発明の抗体を取得する場合は、自己免疫疾患マウスである、 MRL— lprZlprマウ スを用いることが好ましい。  [0028] The antibody of the present invention can be obtained by immunizing an animal using the complex of the peptide of the general formula (9) and a carrier protein as an immunogen. The animal used for immunization is not particularly limited, and hidge, goat, rabbit, mouse, rat, guinea pig, bird, horse, horse and the like can be used. However, since asymmetric dimethylarginine is an amino acid that is naturally present in the body of a normal animal, an antibody against ADMA may be difficult to produce in an animal with normal immune function. Therefore, the animal used for immunization is preferably an animal with an autoimmune disease that easily produces autoantibodies. In particular, when obtaining the antibody of the present invention in a mouse, it is preferable to use an MRL-lprZlpr mouse, which is an autoimmune disease mouse.
[0029] 免疫の方法は、公知の方法を用いればよぐ特に限定されないが、例えば、前記複 合体を等量のフロイントの完全アジュバント又は Titer— Max gold (Titer Max社) と乳化混合し、ゥサギの皮下や、マウスの腹腔内に投与する。以後、 1〜2週間間隔 で、同様の操作を行い、数回免疫する。このようにして免疫した動物の血液を採血し 、血清又は血漿とすることにより、本発明の抗体を調製することができる。 [0030] 本発明のモノクローナル抗体を産生する本発明のハイプリドーマは、前記の免疫操 作を行った動物から取得することができる。例えば、マウスに前記の免疫を行った 2週 後に、尾静脈からリン酸緩衝化生理食塩水 (PBS)等に溶解した前記ペプチドを接 種する。その 2〜3日後に、マウス力 抗体を産生するリンパ球を含む脾臓を無菌的 に摘出する。このリンパ球を、例えば、ポリエチレングリコールの存在下で、ミエローマ 細胞と細胞融合させる方法により、モノクローナル抗体を産生するノ、イブリドーマとし て榭立可能である。 [0029] The immunization method is not particularly limited as long as a known method is used. For example, the complex is emulsified and mixed with an equal amount of Freund's complete adjuvant or Titer-Max gold (Titer Max), and a rabbit is used. Administered subcutaneously or intraperitoneally in mice. Thereafter, immunize several times with the same procedure at 1-2 week intervals. The antibody of the present invention can be prepared by collecting the blood of the immunized animal to obtain serum or plasma. [0030] The hyperidoma of the present invention that produces the monoclonal antibody of the present invention can be obtained from an animal that has undergone the above-described immunization. For example, two weeks after the immunization of mice, the peptide dissolved in phosphate buffered saline (PBS) or the like is inoculated from the tail vein. Two to three days later, the spleen containing lymphocytes that produce mouse antibody is aseptically removed. This lymphocyte can be established as a hybridoma that produces a monoclonal antibody by cell fusion with myeloma cells in the presence of polyethylene glycol, for example.
[0031] 細胞融合を行う場合は、例えば、ポリエチレングリコールの存在下で、リンパ球及び ミエローマ細胞を融合させる。ミエローマ細胞は、各種の公知の細胞を用いることが できるが、例えば、 p3 -NS - l/l -Ag4. 1又は SP2Z0— Agl4などの細胞が挙げ られる。融合した細胞は、選択培地、例えば HAT培地を用いて、融合しなカゝつた細 胞を死滅させることによって選択する。次に、増殖してきたハイプリドーマの培養上清 中の抗体産生の有無をスクリーニングする。スクリーニングは、ァシンメトリックジメチ ルアルギニンに対する特異抗体の産生を固相酵素免疫測定法 (ELISA法)によって 測定することによって実施することができる。このようにして、本発明の抗体を産生す るハイプリドーマを選択することができ、本発明の代表的なモノクローナル抗体を産 生するハイブリドーマ細胞株 ADMA2— 2H5〔受託番号 FERM BP— 10458〕は、 平成 17年 11月 30日付けで、独立行政法人産業技術総合研究所特許生物寄託セ ンター(あて名:〒 305— 8566 日本国茨城県つくば巿東 1丁目 1番地 1 中央第 6) に国際寄託された。  [0031] When cell fusion is performed, for example, lymphocytes and myeloma cells are fused in the presence of polyethylene glycol. As the myeloma cell, various known cells can be used, and examples thereof include cells such as p3-NS-l / l-Ag4.1 or SP2Z0-Agl4. Fused cells are selected by killing non-fused cells using a selective medium such as HAT medium. Next, screening is performed for the presence or absence of antibody production in the culture supernatant of the growing hyperidoma. Screening can be performed by measuring the production of specific antibodies against asymmetric dimethylarginine by solid phase enzyme immunoassay (ELISA). Thus, the hybridoma cell line ADMA2-2H5 [Accession No. FERM BP-10458] producing the representative monoclonal antibody of the present invention can be selected. As of November 30, 2005, it was deposited internationally at the National Institute of Advanced Industrial Science and Technology patent biological deposit center (address: 1st, 1st, 1st, 1st, 6th, Tsukuba, Higashi 305-8566, Japan). It was.
[0032] 本発明のハイプリドーマは、公知の任意の培地、例えば、 RPMI1640で継代培養 することができる。本発明のモノクローナル抗体は、このハイプリドーマを培養すること によって、調製することができる力 例えば、 RPMI1640培地に 10%ゥシ胎児血清 を加え、 5%CO存在下、 37°Cで培養することによって、培養上清中に抗体が産生さ  [0032] The hyperidoma of the present invention can be subcultured in any known medium, for example, RPMI1640. The monoclonal antibody of the present invention can be prepared by culturing this hyperidoma, for example, by adding 10% fetal bovine serum to RPMI1640 medium and culturing at 37 ° C in the presence of 5% CO. Antibody produced in the culture supernatant
2  2
れる。また、マウスの腹腔内にハイプリドーマを接種し、腹水を回収することによって、 腹水中に抗体を産生させることが可能である。本発明の抗体は、公知の方法により精 製することができるが、例えば、 ProteinGを用いた精製法、 ADMAを結合させたァ フィ-ティーカラムを用いる方法、又はイオン交換カラムクロマトグラフィーを用いる方 法などで精製することができる。 It is. In addition, antibodies can be produced in ascites by inoculating Hypridoma into the abdominal cavity of mice and collecting ascites. The antibody of the present invention can be purified by a known method. For example, a purification method using Protein G, a method using a affinity column to which ADMA is bound, or a method using ion exchange column chromatography. It can be purified by methods.
[0033] 本発明の抗体は、前記のように、 RME— GaRKC— BSAに対する反応よりも、 RM E - GaRKC - BS Aのリジンがァセチル化した RME - GaRacKC - BS Aに対して 強く反応する。更に、細胞のタンパク質のリジンをァセチルイ匕することによって、多く のタンパク質への反応性が強くなる。この本発明の抗体の性質を利用することによつ て、今まで検出することのできな力つた、 ADMAを含むタンパク質を検出することが 可能になる。つまり、タンパク質をァセチルイ匕することにより、本発明の抗体とタンパク 質中の ADMAとの結合が強くなるために、従来同定できな力つた ADMAを有する タンパク質と結合することができる。従来公知の抗体である Clone 7E6は、ァセチル 化したタンパク質に結合することができない。また ASYM24抗体は、 RGリッチクラス ターの ADMAを認識し、ァセチルイ匕したタンパク質への反応性が悪くなることから、 本発明の翻訳後修飾アミノ酸含有タンパク質の検出方法に効果的に使用できない。  [0033] As described above, the antibody of the present invention reacts more strongly with RME-GaRacKC-BSA in which lysine of RME-GaRKC-BSA is acetylated than with RME-GaRKC-BSA. Furthermore, by reacting cell protein lysine with acetylene, reactivity to many proteins is enhanced. By utilizing this property of the antibody of the present invention, it becomes possible to detect a protein containing ADMA, which could not be detected until now. In other words, since the binding between the antibody of the present invention and ADMA in the protein is strengthened by acetylating the protein, it can be bound to a protein having strong ADMA that could not be identified conventionally. Clone 7E6, a conventionally known antibody, cannot bind to acetylated protein. In addition, since the ASYM24 antibody recognizes RG-rich cluster ADMA and becomes less reactive to acetylated protein, it cannot be effectively used in the method for detecting a post-translationally modified amino acid-containing protein of the present invention.
[0034] 《作用》  [0034] << Action >>
本発明の抗体が、 RME— GaRKC— BSAに対するより、 RME - GaRacKC - BS Aに対して強く反応する理由、及びタンパク質のリジンをァセチルイ匕することにより、タ ンパク質への反応性が強くなる理由は、完全に解明されているわけではないが、以 下のように推論することができる。し力しながら、本発明は以下の説明によって限定さ れるものではない。まず、 RME— GaRKC— BSAのリジンは塩基性アミノ酸だ力 ァ セチルイ匕によりリジンの側鎖のァミノ基の水素原子が、ァセチル基に置換される。そ のため、リジンの正電荷が消失するものと考えられる。本発明の抗体は、 ADMAを認 識している力 ADMAの周辺に塩基性アミノ酸が存在していると、正電荷の影響で ADMAへの結合が阻害されると考えられる。ところが、リジンがァセチルイ匕されること により、 ADMAの周辺の正電荷が弱まり、本発明の抗体の ADMAへの結合が強ま ると考えられる。細胞内のタンパク質の場合も、前記ペプチドと同様に、本発明の抗 体が認識する ADMAの周辺に存在する、リジンのァミノ基がァセチル化されることに よって、 ADMAの周辺の正電荷が中和され、本発明の抗体が結合できるようになる のではな!/ヽかと考えられる。  The reason why the antibody of the present invention reacts more strongly with RME-GaRacKC-BSA than with RME-GaRKC-BSA, and the reason why protein lysine enhances the reactivity to protein. Is not fully elucidated, but can be inferred as follows. However, the present invention is not limited by the following description. First, lysine of RME-GaRKC-BSA is a basic amino acid. The acetyl group replaces the hydrogen atom of the side chain of the lysine with the acetyl group. Therefore, it is considered that the positive charge of lysine disappears. The antibody of the present invention is capable of recognizing ADMA. When a basic amino acid is present in the vicinity of ADMA, binding to ADMA is considered to be inhibited under the influence of positive charge. However, when lysine is acetylated, the positive charge around ADMA is weakened, and the binding of the antibody of the present invention to ADMA is thought to increase. In the case of intracellular proteins, as in the case of the aforementioned peptides, the positive charge around ADMA is neutralized by the acetylation of the lysine amino group present around ADMA recognized by the antibody of the present invention. It may be considered that the antibodies of the present invention can be combined and bind!
[0035] 一方、 ADMA— Gリッチペプチドを免疫原として得られた、公知の抗体である ASY M24は、本発明の抗体と対照的に、細胞のタンパク質のリジンをァセチルイ匕すること により、タンパク質への反応性が弱くなる力 ADMA— Gリッチペプチドは、正電荷 が強ぐ抗体 ASYM24は、 ADMA周辺の正電荷が強いペプチド及びタンパク質と 結合するものと考えられる。 [0035] On the other hand, ASY is a known antibody obtained using an ADMA-G rich peptide as an immunogen. In contrast to the antibody of the present invention, M24 has the ability to weaken the reactivity to the protein by acetylating the lysine of the protein of the cell. ADMA-G-rich peptide is an antibody with a strong positive charge. It is thought that it binds to peptides and proteins with strong positive charges in the vicinity.
[0036] 次に、本発明による 2つの翻訳後修飾アミノ酸含有タンパク質の検出方法にっ ヽて 、説明する。本発明の第 1の翻訳後修飾アミノ酸含有タンパク質の検出方法は、 (1) 翻訳後修飾アミノ酸含有タンパク質を含む可能性のある被検試料に対して、タンパク 質側鎖の化学修飾化を実施する工程、 (2)タンパク質側鎖の化学修飾ィ匕によって得 られる翻訳後修飾アミノ酸含有タンパク質に特異的に反応するプローブと、前記化学 修飾化処理被検試料とを接触させる工程、及び (3)前記接触工程によって形成され る、化学修飾ィ匕された翻訳後修飾アミノ酸含有タンパク質と前記プローブとの結合を 検出する工程、を含むことを特徴としている [以下、化学修飾化検出方法と称す]。本 発明の第 2の翻訳後修飾アミノ酸含有タンパク質の検出方法は、(1)翻訳後修飾アミ ノ酸含有タンパク質を含む可能性のある被検試料に対して、タンパク質の電荷を変 化させる処理を実施する工程、(2)電荷変化処理した被検試料に対して、タンパク質 の等電点による分別を実施する工程、(3)分別後の被検試料と、翻訳後修飾アミノ酸 に特異的に反応するプローブとを接触させる工程、及び (4)前記接触工程によって 形成される、分別されたタンパク質と前記プローブとの結合を検出する工程、を含む ことを特徴としている。 [以下、電荷変化検出方法と称す]本発明の化学修飾検出方 法及び電荷変化検出方法では、通常前記の工程をこの順序で行う。  Next, a method for detecting two post-translationally modified amino acid-containing proteins according to the present invention will be described. In the first method for detecting a post-translationally modified amino acid-containing protein of the present invention, (1) a protein side chain is chemically modified on a test sample that may contain a post-translationally modified amino acid-containing protein. (2) contacting a probe that specifically reacts with a post-translationally modified amino acid-containing protein obtained by chemical modification of the protein side chain with the chemically modified test sample; and (3) And a step of detecting the binding between the chemically modified post-translationally modified amino acid-containing protein formed by the contacting step and the probe [hereinafter referred to as a chemical modification detection method]. The second method for detecting a post-translationally modified amino acid-containing protein of the present invention comprises (1) a treatment for changing a protein charge on a test sample that may contain a post-translationally modified amino acid-containing protein. Steps to be performed, (2) Steps for performing separation by isoelectric point of proteins for test samples subjected to charge change treatment, (3) Specific reaction to post-sorting test samples and post-translationally modified amino acids And (4) detecting the binding between the separated protein and the probe formed by the contacting step. [Hereinafter referred to as charge change detection method] In the chemical modification detection method and the charge change detection method of the present invention, the above steps are usually performed in this order.
[0037] 本発明の化学修飾化検出方法及び電荷変化検出方法に用いられる被検試料は、 翻訳後修飾アミノ酸含有タンパク質を含む可能性のある試料であれば特に限定され るものではないが、例えば、培養細胞、培養細胞の培養上清、植物の組織、動物の 生体試料、特には組織、血液、血漿、血清、尿などが挙げられる。  [0037] The test sample used in the chemical modification detection method and the charge change detection method of the present invention is not particularly limited as long as it may contain a post-translationally modified amino acid-containing protein. , Cultured cells, culture supernatants of cultured cells, plant tissues, biological samples of animals, particularly tissues, blood, plasma, serum, urine and the like.
[0038] 本発明の化学修飾化検出方法及び電荷変化検出方法で検出される翻訳後修飾 アミノ酸含有タンパク質は、翻訳後修飾アミノ酸を含むタンパク質であれば限定され な ヽ。本発明の化学修飾化検出方法及び電荷変化検出方法でプローブの認識する 翻訳後修飾アミノ酸は、生体内で翻訳後に修飾されたアミノ酸であれば、限定されな いが、例えば、リン酸化、ュビキチン化、ァセチル化、メチル化、フアルネシル化、硫 酸化、カルボキシル化、糖鎖修飾、又は脂質修飾されたアミノ酸が挙げられ、具体的 には、ァシンメトリックジメチルアルギニン、メチルリジン、リン酸化チロシン、リン酸ィ匕 セリン、又はリン酸化スレオニンが挙げられる。特に、化学修飾検出方法では、好まし くはァシンメトリックジメチルアルギンであり、電荷変化検出方法では、メチルリジンで ある。 [0038] The post-translationally modified amino acid-containing protein detected by the chemical modification detection method and the charge change detection method of the present invention is not limited as long as it contains a post-translationally modified amino acid. The post-translationally modified amino acid recognized by the probe in the chemical modification detection method and the charge change detection method of the present invention is not limited as long as it is an amino acid modified after translation in vivo. However, examples include amino acids that are phosphorylated, ubiquitinated, acetylated, methylated, farnesylated, sulfated, carboxylated, glycosylated, or lipid modified, and specifically, asymmetric dimethylarginine. , Methyllysine, phosphorylated tyrosine, phosphoric acid serine, or phosphorylated threonine. In particular, the chemical modification detection method is preferably asymmetric dimethylargin, and the charge change detection method is methyllysine.
[0039] 本発明の化学修飾化検出方法で実施する化学修飾は、特に限定されないが、ァ ルキル化、ァシル化、ァセチル化、アミドィ匕、グリコシル化、スクシ-ル化、リン酸化、 硫酸化、リボイル化、力ルバミル化、又はメチルイ匕などが挙げられる力 タンパク質の 等電点による分別の操作と組み合わせて行う場合は、タンパク質の等電点を変化さ せるような化学修飾が好ましぐ酸性タンパク質の場合は、負電荷を中和させるような 化学修飾が、塩基性タンパク質の場合は、正電ィ匕を中和するような化学修飾が好ま しい。特に塩基性タンパク質の場合は、好ましくはァシルイ匕であり、アミン基又は水酸 基をァシル基で置換するものであれば、限定されないが、例えば、ァセチル化、ベン ゾィル化、が挙げられ、より好ましくはァセチルイ匕である。ァセチルイ匕は、タンパク質 中のアミノ酸がァセチルイ匕されるものであれば限定されな 、。ァセチルイ匕されるァミノ 酸としては、リジンが挙げられる力 ァセチルイ匕されることにより、正電荷が消失する。 また、ァセチル化する試薬も、特に限定されないが、無水酢酸、 N—ァセチルスクシ ンイミド、 N—ヒドロキシスクシンイミドアセテート(NHS—アセテート)、 N—ァセチノレイ ミダゾール、又はスルフォ NHSアセテート(sulfo— NHS acetate)が挙げられる。 また、化学修飾化は、翻訳後修飾アミノ酸と結合するプローブとの関係では、化学修 飾によりプローブとの結合を阻害する化学修飾は好ましくなぐ化学修飾により、プロ ーブの結合が強くなるような化学修飾が好ましい。例えば、酸性蛋白と結合しにくい プローブの場合は、負の電荷を中和させるような化学修飾が好ましい。また、塩基性 タンパク質と結合しにくいプローブの場合は、正電ィ匕を中和させる化学修飾が好まし ぐ例えば、リジンのァセチルイ匕が好ましい。  [0039] The chemical modification carried out by the chemical modification detection method of the present invention is not particularly limited, but alkylation, acylation, acetylation, amido, glycosylation, succination, phosphorylation, sulfation, Forces such as reboylation, force rubymilation, or methyl cocoon Acidic proteins that favor chemical modification that changes the isoelectric point of the protein when combined with the separation of proteins by isoelectric point In the case of, a chemical modification that neutralizes the negative charge is preferable, and in the case of a basic protein, a chemical modification that neutralizes the positive charge is preferable. In particular, in the case of a basic protein, it is preferably acylic acid, and it is not limited as long as it replaces an amine group or a hydroxyl group with an isyl group, and examples thereof include acetylation and benzoylation. Acetyl cocoon is preferable. The acetylene is not limited as long as the amino acid in the protein is acetylylated. As the amino acid to be acetylated, the positive charge disappears when acetylene is used. The acetylating reagent is not particularly limited, and examples thereof include acetic anhydride, N-acetylsuccinimide, N-hydroxysuccinimide acetate (NHS-acetate), N-acetylenomidazole, and sulfo-NHS acetate. . In addition, in the chemical modification, in the relationship with the probe that binds to the post-translationally modified amino acid, the chemical modification that inhibits the binding to the probe by chemical modification is not preferable, and the chemical bond is stronger, so that the probe binding becomes stronger. Chemical modification is preferred. For example, in the case of a probe that does not easily bind to an acidic protein, chemical modification that neutralizes negative charges is preferable. In addition, in the case of a probe that does not easily bind to a basic protein, chemical modification that neutralizes positive charge is preferred. For example, lysine acetylene is preferred.
[0040] 本発明の化学修飾ィ匕検出方法で用いるプローブは、タンパク質側鎖の化学修飾ィ匕 を実施されたタンパク質に存在する翻訳後修飾アミノ酸を認識できるプローブであれ ば特に限定されないが、例えば、修飾アミノ酸に結合する抗体であるリン酸化、ュビ キチン化、ァセチル化、メチル化、フアルネシル化、硫酸化、カルボキシル化、糖鎖 修飾、又は脂質修飾されたアミノ酸に対する抗体が挙げられ、より好ましくは、 ADM Aに対する抗体である。本発明の化学修飾ィ匕検出方法においては、翻訳後修飾アミ ノ酸含有タンパク質を化学修飾化するため、翻訳後修飾アミノ酸含有タンパク質を化 学修飾ィ匕することによって、前記タンパク質と反応しなくなる抗体は使用することがで きない。そのため、本発明の検出方法に使用する抗体は、化学修飾化されたタンパ ク質と結合することができ、好ましくは、タンパク質が化学修飾ィ匕することにより、翻訳 後修飾アミノ酸に対する反応性が低下せず、より好ましくは、反応性が高くなる抗体 である。 [0040] The probe used in the chemical modification detection method of the present invention may be a probe capable of recognizing a post-translationally modified amino acid present in a protein subjected to chemical modification of a protein side chain. For example, for antibodies that bind to modified amino acids, such as phosphorylated, ubiquitinated, acetylated, methylated, farnesylated, sulfated, carboxylated, glycosylated, or lipid modified amino acids An antibody is mentioned, More preferably, it is an antibody with respect to ADM A. In the chemical modification detection method of the present invention, the post-translationally modified amino acid-containing protein is chemically modified. Therefore, the post-translationally modified amino acid-containing protein is chemically modified to prevent the antibody from reacting with the protein. Cannot be used. Therefore, the antibody used in the detection method of the present invention can bind to a chemically modified protein, and preferably, the reactivity with a post-translationally modified amino acid is reduced by chemically modifying the protein. More preferably, the antibody is more reactive.
[0041] また、本発明の化学修飾化検出方法では、翻訳後修飾アミノ酸含有タンパク質を 分別する工程を更に実施することができる。分別する方法は、タンパク質が分別され る方法であれば特に限定されず、公知の方法を用いることができる力 例えば、アタリ ルアミドゲル又はキヤピラリーを用いた電気泳動などを用いることができる。また分別 する工程は、検出方法のどの工程の前後に行ってもよいが、好ましくは、翻訳後修飾 アミノ酸を認識するプローブと接触させる工程(2)の前である。プローブとタンパク質 が結合することにより、分子量ゃ等電点が変化することがあり、分析が困難になる場 合があるからである。タンパク質を分離する方法には、分子量を利用する方法、等電 点を利用する方法、また他の原理を利用した方法がある。これらの方法は、単独で行 つても、組み合わせて実施することも可能である力 多くのタンパク質を分別するため には、複数の分離原理を組み合わせて分別する方法が好ましぐ例えば、等電点及 び分子量による分別を組み合わせた 2次元電気泳動が挙げられる。  [0041] Further, in the chemical modification detection method of the present invention, a step of separating the post-translationally modified amino acid-containing protein can be further performed. The method for fractionation is not particularly limited as long as it is a method for fractionating proteins. For example, force using a known method can be used, for example, electrophoresis using talylamide gel or capillary. The fractionation step may be performed before or after any step of the detection method, but is preferably before the step (2) of contacting with a probe that recognizes a post-translationally modified amino acid. This is because the isoelectric point of the molecular weight may change due to the binding between the probe and the protein, which may make the analysis difficult. Methods for separating proteins include a method using molecular weight, a method using isoelectric point, and a method using other principles. These methods can be performed alone or in combination. To separate many proteins, a combination of multiple separation principles is preferred. For example, isoelectric point Two-dimensional electrophoresis combined with fractionation by molecular weight.
[0042] タンパク質はァミノ基およびカルボキシル基などを有する両性電解質のため、ァミノ 酸の種類や構成によって、電荷が異なる。そのため、 pH勾配中で電気泳動を行うと 、等電点の違いにより、分別することができる。本明細書で「塩基性タンパク質」とは 等電点が塩基性側のタンパク質のことを意味し、例えば 7. 0以上、好ましくは 8. 0以 上、より好ましくは 9. 0以上のタンパク質である。本発明の化学修飾化検出方法及び 電荷変化検出方法の検出方法において、検体中のすべてのタンパク質を検出方法 にそのまま用いることも可能である力 好ましくは、酸性タンパク質又は塩基性タンパ ク質のみを分離して、検出方法に用いる。酸性タンパク質又は塩基性タンパク質の分 離方法は、公知のタンパク質の分離方法を使用することができるが、例えば、イオン 交換クロマトグラフィーカラムを使用することができる。 [0042] Since proteins are ampholytes having an amino group and a carboxyl group, the charge varies depending on the type and configuration of the amino acid. Therefore, when electrophoresis is performed in a pH gradient, it can be separated by the difference in isoelectric point. In the present specification, the “basic protein” means a protein having an isoelectric point on the basic side, for example, a protein having 7.0 or more, preferably 8.0 or more, more preferably 9.0 or more. is there. In the detection method of the chemically modified detection method and the charge change detection method of the present invention, a method for detecting all proteins in a specimen The force that can be used as it is. Preferably, only acidic protein or basic protein is separated and used in the detection method. As a method for separating acidic protein or basic protein, known protein separation methods can be used. For example, an ion exchange chromatography column can be used.
本発明の電荷変化検出方法で実施する電荷変化処理は、タンパク質の電荷を変 化させる処理であれば特に限定されな!、が、共有結合又は非共有結合を利用して、 電荷を変化させるものを結合させることができる。非共有結合の場合は、イオン結合 や疎水結合が利用できる。共有結合を利用する場合は、例えば、タンパク質のァミノ 酸側鎖をィ匕学修飾することにより、タンパク質の電荷を変化させることができる。化学 修飾は特に限定されないが、アルキル化、ァシル化、ァセチル化、アミド化、グリコシ ル化、スクシ-ル化、リン酸化、硫酸化及びリボイル化、力ルバミル化、メチル化、リン 酸化、又は硫酸ィ匕などが挙げられるが、酸性タンパク質の場合は、負電荷を中和さ せるような化学修飾が、塩基性タンパク質の場合は、正電荷を中和するような化学修 飾が好ましい。特に塩基性タンパク質の場合は、好ましくはァシルイ匕であり、アミン基 又は水酸基をァシル基で置換するものであれば、限定されないが、例えば、ァセチ ル化、ベンゾィル化、が挙げられ、より好ましくはァセチル化である。ァセチル化は、 タンパク質中のアミノ酸がァセチル化されるものであれば限定されない。ァセチル化 されるアミノ酸としては、リジンが挙げられる力 ァセチルイ匕されることにより、正電荷が 消失する。また、ァセチル化する試薬も、特に限定されないが、無水酢酸、 N—ァセ チルスクシンイミド、 N—ヒドロキシスクシンイミドアセテート(NHS—アセテート)、 N— ァセチルイミダゾール、又はスルフォ NHSアセテート(sulfo— NHS acetate)が挙 げられる。また、電荷変異処理は、翻訳後修飾アミノ酸と結合するプローブとの関係 では、電荷変異処理によりプローブとの結合を阻害する電荷変異処理は好ましくなく 、電荷変異処理により、プローブの結合が強くなるような電荷変異処理が好ましい。 例えば、酸性蛋白と結合しにくいプローブの場合は、負の電荷を中和させるような電 荷変異処理が好ましい。また、塩基性タンパク質と結合しにくいプローブの場合は、 正電荷を中和させる電荷変異処理が好ましぐ例えば、化学修飾によるリジンのァセ チル化が好ましい。 [0044] 本発明の電荷変化検出方法で用いるプローブは、タンパク質側鎖の電荷変化処理 を実施されたタンパク質に存在する翻訳後修飾アミノ酸を認識できるプローブであれ ば特に限定されないが、例えば、修飾アミノ酸に結合する抗体であるリン酸化、ュビ キチン化、ァセチル化、メチル化、フアルネシル化、硫酸化、カルボキシル化、糖鎖 修飾、脂質修飾されたアミノ酸が挙げられ、好ましくは、メチルリジンに対する抗体で ある。本発明の電荷変化検出方法においては、翻訳後修飾アミノ酸含有タンパク質 を電荷変化処理するため、翻訳後修飾アミノ酸含有タンパク質の電荷変化処理によ つて、タンパク質と反応しなくなる抗体は使用することができない。そのため、本発明 の検出方法に使用する抗体は、電荷変化処理されたタンパク質と結合することがで き、好ましくは、タンパク質が電荷変化処理することにより、翻訳後修飾アミノ酸に対 する反応性が低下せず、より好ましくは、反応性が高くなる抗体である。 The charge change process carried out by the charge change detection method of the present invention is not particularly limited as long as it is a process that changes the charge of the protein !, but changes the charge using a covalent bond or a non-covalent bond. Can be combined. In the case of non-covalent bonds, ionic bonds and hydrophobic bonds can be used. When a covalent bond is used, the charge of the protein can be changed, for example, by chemically modifying the amino acid side chain of the protein. The chemical modification is not particularly limited, but alkylation, acylation, acetylation, amidation, glycosylation, succination, phosphorylation, sulfation and reboylation, force ruamylation, methylation, phosphorylation, or sulfuric acid In the case of acidic proteins, chemical modifications that neutralize negative charges are preferred, and in the case of basic proteins, chemical modifications that neutralize positive charges are preferred. In particular, in the case of a basic protein, it is preferably an acyl group, and any amine group or hydroxyl group may be substituted with an isyl group, and examples thereof include acetylation and benzoylation, and more preferably. Acetylation. Acetylation is not limited as long as an amino acid in a protein is acetylated. As the amino acid to be acetylated, lysine can be cited as the acetylated amino acid, thereby eliminating the positive charge. The reagent for acetylation is not particularly limited, but acetic anhydride, N-acetylsuccinimide, N-hydroxysuccinimide acetate (NHS-acetate), N-acetylimidazole, or sulfo NHS acetate (sulfo-NHS acetate) Are listed. In addition, the charge mutation treatment is not preferable in terms of the relationship with the probe that binds to the post-translationally modified amino acid, and charge mutation treatment that inhibits binding to the probe by charge mutation treatment is not preferable. Is preferable. For example, in the case of a probe that does not easily bind to an acidic protein, charge mutation treatment that neutralizes negative charges is preferable. In the case of a probe that does not easily bind to a basic protein, charge mutation treatment that neutralizes positive charge is preferred. For example, lysine acetylation by chemical modification is preferred. [0044] The probe used in the charge change detection method of the present invention is not particularly limited as long as it is a probe capable of recognizing a post-translationally modified amino acid present in a protein subjected to charge change treatment of a protein side chain. Phosphorylated, ubiquitinated, acetylated, methylated, farnesylated, sulfated, carboxylated, glycosylated, and lipid modified amino acids, which are antibodies that bind to glycine, and preferably antibodies against methyllysine . In the charge change detection method of the present invention, the post-translationally modified amino acid-containing protein is subjected to charge change treatment, and therefore an antibody that does not react with the protein by the charge change treatment of the post-translationally modified amino acid-containing protein cannot be used. Therefore, the antibody used in the detection method of the present invention can bind to a protein subjected to charge change treatment. Preferably, the reactivity of the protein to a post-translationally modified amino acid is reduced by subjecting the protein to charge change treatment. More preferably, the antibody is more reactive.
[0045] 本発明の電荷変化検出方法の工程 (2)で実施する「等電点による分別」は、タンパ ク質を等電点により分別する方法であれば特に限定されないが、例えば、等電点電 気泳動が挙げられる。更に、多くのタンパク質を分別するためには、等電点による分 別に、他の分離原理を組み合わせて分別する方法が好ましぐ例えば、等電点及び 分子量による分別を組み合わせた 2次元電気泳動が挙げられる。  [0045] "Fractionation by isoelectric point" to be performed in step (2) of the charge change detection method of the present invention is not particularly limited as long as it is a method of separating proteins by isoelectric point. An example is point electrophoresis. Furthermore, in order to separate many proteins, it is preferable to use a separation method that combines other separation principles in addition to separation by isoelectric point. For example, two-dimensional electrophoresis that combines separation by isoelectric point and molecular weight is preferred. Can be mentioned.
[0046] 翻訳後修飾アミノ酸に結合したプローブは、公知の方法によって検出することが可 能であり、例えば、そのプローブを標識物質によって標識しておくことによって検出可 能であり、標識物質としては、酵素(例えば、ペルォキシダーゼ又はアルカリフォスフ ァターゼ)、蛍光色素 [例えば、フルォレセインイソチオシァネート (FITC) ]、発光物 質、又は放射性物質を用いることができる。例えば、これらの標識物質を公知の発色 法、発光法、蛍光法などによって検出することができる。  [0046] The probe bound to the post-translationally modified amino acid can be detected by a known method. For example, the probe can be detected by labeling the probe with a labeling substance. An enzyme (eg, peroxidase or alkaline phosphatase), a fluorescent dye [eg, fluorescein isothiocyanate (FITC)], a luminescent substance, or a radioactive substance can be used. For example, these labeling substances can be detected by a known color development method, luminescence method, fluorescence method or the like.
実施例  Example
[0047] 以下、実施例によって本発明を具体的に説明する力 これらは本発明の範囲を限 定するものではない。  [0047] Hereinafter, the ability to specifically explain the present invention by way of examples. These do not limit the scope of the present invention.
[0048] 《実施例 1》抗原の調製 <Example 1> Preparation of antigen
(A)ペプチドの合成  (A) Peptide synthesis
以下の配列のペプチドを Fmoc固相法により合成した。 Gly—ADMA—Acp— Cys (配列番号 2で示す:以下、 RME— GaR ε ACと称す る) Peptides with the following sequences were synthesized by the Fmoc solid phase method. Gly—ADMA—Acp—Cys (shown as SEQ ID NO: 2; hereinafter referred to as RME—GaR ε AC)
Leu— ADMA— Cys (以下、 RME— LaRCと称する)  Leu—ADMA—Cys (hereinafter referred to as RME—LaRC)
Gly— ADMA— Lys— Cys (配列番号 3で示す:以下、 RME— GaRKCと称する) Leu— SDMA— Cys (以下、 RME— LsRCと称する)  Gly—ADMA—Lys—Cys (shown as SEQ ID NO: 3; hereinafter referred to as RME—GaRKC) Leu—SDMA—Cys (hereinafter referred to as RME—LsRC)
Leu Arg— Gly Arg— Gly Arg— Lys Cys (配列番号 4で示す:以下、 LR GRGRKCと称する)  Leu Arg— Gly Arg— Gly Arg— Lys Cys (shown as SEQ ID NO: 4; hereinafter referred to as LR GRGRKC)
前記の配列のペプチドにおいて、 Glyはグリシンを、 ADMAはァシンメトリックジメ チルアルギニンを、 Acpはィプシロンアミノカプロン酸を、 Cysはシスティンを、 Leuは ロイシンを、 SDMAはシンメトリックジメチルアルギニンを、 Argはアルギニンを、意味 する。  In the peptides of the above sequences, Gly is glycine, ADMA is asymmetric dimethyl arginine, Acp is epsilon aminocaproic acid, Cys is cysteine, Leu is leucine, SDMA is symmetric dimethylarginine, Arg Means arginine.
[0049] (B)ペプチドとスカシガイへモシァニン (KLH)又は BSAとの結合  [0049] (B) Binding of peptide to mussel guanine (KLH) or BSA
前記 RME— GaR ε ACペプチドを、 C末端の Cysを介して、担体タンパク質である KLHに結合させた。すなわち、 KLH (ナカライテスタ社)又は BSA (Sigma) lOmgを 5mMEDTA入り PBS lmLに溶解し、次いで、 DMSOに溶解した架橋剤 GMBS ( N - γ—マレイミドブチリルォキシスルフォスクシンイミドエステル(Ν ( γ Maleim laobutyryloxy) sulfosuccinimide ester :濃度 20mg/mL、同仁ィ匕学) ύ3. 5 μ Lを添加した。撹拌しながら、 30°Cで 30分間反応させた後に、 PD— 10カラム (フアル マシア'バイオテク)を用いて、ゲル濾過法にて未反応の GMBSを除去した。続いて 、 GMBSを付カ卩した KLHIOmg又は BSAlOmgに対して、ペプチド lmg [ 100 L、 PBSに lOmgZmLで溶解]を添加した。撹拌しながら、 30°Cで 3時間反応させた後 に、 2 Lの 2 メルカプトエタノールを添カ卩し、更に 30分室温で反応させた後、未反 応のペプチドを PD— 10カラムによるゲル濾過で除去した。得られた RME— GaR ε ACペプチドと KLHの複合体を、 RME— GaR ε AC— KLHと、 BSAとの複合体を R ME - GaR ε AC— BSAと称する。  The RME-GaRεAC peptide was bound to KLH, which is a carrier protein, through C-terminal Cys. That is, KLH (Nacalai Testa Co.) or BSA (Sigma) lOmg was dissolved in PBS lmL containing 5 mM EDTA, and then the crosslinking agent GMBS (N-γ-maleimidobutyryloxysulfosuccinimide ester (Ν (γ Maleim laobutyryloxy) sulfosuccinimide ester: Concentration 20mg / mL, Dojinki) 匕 3.5 μL was added and allowed to react at 30 ° C for 30 minutes with stirring, and then a PD-10 column (Farmasia Biotech) was added. Then, unreacted GMBS was removed by gel filtration, and then lmg peptide [100 L, dissolved in lOmgZmL in PBS] was added to KLHIOmg or BSAlOmg with GMBS attached. However, after reacting at 30 ° C for 3 hours, 2 L of 2-mercaptoethanol was added, and further reacted at room temperature for 30 minutes, and then unreacted peptide was filtered by gel filtration using a PD-10 column. The resulting RME—GaR ε AC peptide and KLH Complexes, and RME- GaR ε AC- KLH, a complex of the BSA R ME - called GaR ε AC- BSA.
[0050] ペプチドとして、 RME -LaRC, RME— GaRKCゝ RME— : LsRCゝ及び LRGRG RKCを用いる以外は、前記 RME GaR ε AC及び BSAの結合と同じ手順で各ぺ プチドと BS Aの複合体を調製した。得られた RME— LaRC、 RME - GaRKC, RM E— LsRC、及び LRGRGRKCのペプチドと BSAの複合体を、それぞれ RME— La RC— BSA RME— GaRKC— BSA RME—: LsRC— BSAゝ及び LRGRGRKC BSAと称する。 [0050] RME-LaRC, RME—GaRKC® RME—: LPERC and LRGRG RKC are used as peptides, and the complex of each peptide and BS A is prepared by the same procedure as that for the RME GaR ε AC and BSA. Prepared. Obtained RME—LaRC, RME-GaRKC, RM The complex of E—LsRC and LRGRGRKC peptide and BSA is referred to as RME—La RC—BSA RME—GaRKC—BSA RME—: LsRC—BSA ゝ and LRGRGRKC BSA, respectively.
[0051] 《実施例 2》モノクローナル抗体産生ハイプリドーマの榭立 <Example 2> Establishment of a monoclonal antibody-producing hyperpridoma
(A)免疫  (A) Immunity
実施例 1で得られた RME— GaR ε AC KLH複合体抗原溶液 ( 2mg/mL)を等 量の Titer— Max Gold (Titer Max USA社)と乳化するまで混和し、その混合 液 0. ImLを 3匹の 6週齢のメスの BalbZcマウス、又は 3匹の 6週齢のメスの MRL— lprZlprマウス(MRLZMpJUmmCrj lprZlprマウス)の腹腔内に投与することに より、免疫を行った。(第 1回免疫)。 2週おきに 2回、前期と同様の方法で調整した混 合液 0. ImLを腹腔内に投与した (第 2及び 3回免疫)。第 2及び第 3回免疫を行って 2週後にマウス力 採血し、以下 (B)の抗体価の測定に使用した。抗体価の上昇した マウスに対し、 RME - GaR ε AC— KLH複合体抗原溶液を(2mgZmL)を等量の PBSで希釈し、その希釈液 0. ImLをマウスの腹腔に投与した。投与した次の日に、 RME - GaR ε八じー10^1複合体抗原溶液を(211187111 を等量の PBSで希釈し 、その希釈液 0. 0 ImLをマウスの静脈内に投与した (最終免疫)。最終免疫から 3日 経過した後に、マウス力 脾臓を無菌的に摘出し、以下の(C)の細胞融合の工程に 使用した。 The RME—GaR ε AC KLH complex antigen solution (2 mg / mL) obtained in Example 1 was mixed with an equal amount of Titer—Max Gold (Titer Max USA) until emulsified, and the mixed solution 0. ImL was added. Immunization was carried out by intraperitoneal administration of three 6-week-old female BalbZc mice or 3 6-week-old female MRL-lprZlpr mice (MRLZMpJUmmCrjlprZlpr mice). (First immunization). Twice every 2 weeks, 0. ImL of the mixed solution prepared in the same manner as in the previous period was administered intraperitoneally (second and third immunizations). Two weeks after the second and third immunizations, mouse force was collected and used for the antibody titer measurement in (B) below. For mice with increased antibody titers, RME-GaRεAC-KLH complex antigen solution (2 mgZmL) was diluted with an equal volume of PBS, and 0.1 mL of the diluted solution was administered to the abdominal cavity of the mice. On the next day of administration, RME-GaR ε Yoji-10 ^ 1 complex antigen solution (2111 8 7111 was diluted with an equal volume of PBS, and 0.0 ImL of the diluted solution was administered intravenously to mice. (Final immunization) After 3 days from the final immunization, the mouse-powered spleen was aseptically removed and used in the following cell fusion step (C).
[0052] (B) ELISA法による抗体価の測定  [0052] (B) Measurement of antibody titer by ELISA
96穴 ELISA用プレート(Nunc社)に、実施例 1で調製した RME— GaRKC— BS A複合体(10 μ g/mL)を各々 50 μ Lずつ分注し、 4°Cで一夜放置した。次に、この プレートの各ゥエルを 1 %BSA及び 0. 05%Tween20を含むリン酸緩衝ィ匕生理食塩 水(PBS) (以下、 1 %BSA—PBSTと称す)で 30分ブロッキングした。この上清を除 去した後、前記工程 (A)で得られた血清を PBSTで 30倍から、 7290倍まで希釈し、 50 /z Lを加えた。室温で 30分放置した後、 0. 5%Tween20ZPBS (以下、 PBSTと 称する)で 3回洗浄した。続いて、西洋わさびペルォキシダーゼ (HRP)標識抗マウス IgG抗体 (ャギ) 50 L ( 1 g/mL)を加え、室温で 2時間放置した後、再び、 PBS Tで 3回洗浄した。 OPD基質溶液 [20mM— o フエ-レンジァミン、 0. 05%過酸ィ匕 水素水を含む 0. 1Mクェン酸リン酸緩衝液 (pH5. 0) ] 100 Lを各ゥエルにカロえ、 2 5°Cで 10分間反応させ、各ゥエルの 492nmにおける吸光度を測定した。結果を図 1 に示す。 50 μL each of the RME-GaRKC-BS A complex (10 μg / mL) prepared in Example 1 was dispensed into a 96-well ELISA plate (Nunc) and left at 4 ° C. overnight. Next, each well of the plate was blocked with phosphate buffered saline (PBS) containing 1% BSA and 0.05% Tween 20 (hereinafter referred to as 1% BSA-PBST) for 30 minutes. After removing this supernatant, the serum obtained in the above step (A) was diluted from 30 times to 7290 times with PBST, and 50 / z L was added. After standing at room temperature for 30 minutes, it was washed 3 times with 0.5% Tween20ZPBS (hereinafter referred to as PBST). Subsequently, horseradish peroxidase (HRP) -labeled anti-mouse IgG antibody (goat) 50 L (1 g / mL) was added, allowed to stand at room temperature for 2 hours, and washed again with PBS T three times. OPD Substrate Solution [20mM—o-Phenylenediamine, 0.05% peracid 0.1 M citrate phosphate buffer containing hydrogen water (pH 5.0)] 100 L was added to each well, reacted at 25 ° C. for 10 minutes, and the absorbance of each well was measured at 492 nm. The results are shown in Figure 1.
[0053] BalbZcマウス及び MRL—lprZlprマウスのいずれのマウスでも、 RME— GaRK C— BSAに対して、抗体価が上昇していた。し力し、 BalbZcマウスと比較して、 MR L lprZlprマウスの抗体価が高ぐ特に 1匹のマウス(MRL— 1)は非常に高い抗体 価を示した。  [0053] The antibody titer against RME-GaRK C-BSA was increased in both BalbZc mice and MRL-lprZlpr mice. However, compared with BalbZc mice, the antibody titer of MRLlpZlpr mice was particularly high, and one mouse (MRL-1) showed a very high antibody titer.
[0054] (C)細胞融合  [0054] (C) Cell fusion
無菌的に摘出した前記 MRL— 1マウスの脾臓を滅菌した PBS 8mLを入れたシャ ーレに入れた。脾臓細胞を流出させた後、この脾臓細胞懸濁液をナイロンメッシュに 通し、 15mL遠心チューブに集めて 380 X gで 3分間遠心した。この操作を 2回行つ た後、 RPMI培地 8mLに懸濁し、 380 X gで 3分間遠心した。この操作を 2回行った。 このようにして得られた細胞ペレットを RPMI 1640培地 8mLで再懸濁し、脾細胞数 を測定した。  The spleen of the aseptically extracted MRL-1 mouse was placed in a petri dish containing 8 mL of sterile PBS. After spleen cells were drained, the spleen cell suspension was passed through a nylon mesh, collected in a 15 mL centrifuge tube, and centrifuged at 380 X g for 3 minutes. After performing this operation twice, the suspension was suspended in 8 mL of RPMI medium and centrifuged at 380 X g for 3 minutes. This operation was performed twice. The cell pellet thus obtained was resuspended in 8 mL of RPMI 1640 medium, and the number of splenocytes was measured.
[0055] 一方、 50mLチューブに予め培養してぉ 、たマウス骨髄腫細胞(ミエローマ細胞) S P2Z0— Agl4 [理ィ匕学研究所ジーンバンク] (約 1 X 107個)に前記脾臓細胞(5 X 1 07個)を加え、 RPMI1640培地中でよく混合し、遠心分離を行った(380 X g、 5分間 ) oその上清を吸引し、ペレットをよく解きほぐし、 37°Cに保温しておいた 40%ポリエ チレングリコール(PEG) 4000溶液 lmLを滴下し、遠心チューブを手で、 1分間穏ゃ かに回転することによって PEG溶液と細胞ペレットとを混合させた。次に、 37°Cに保 温しておいた RPMI1640培地 10mLを加え、チューブを穏やかに回転させた。その 後、遠心分離(170 X g、 5分)を行い、上清を除去した後、細胞ペレットを 10%ゥシ 胎児血清と、 5%ブライクローン (ヒト IL— 6、大日本製薬)を含む HAT培地 (RPMI1 640培地〖こアミノプテリン 4 X 10_7M、チミジン 1. 6 X 10_5M、及びヒポキサンチン 1 X 10_4Mになるように添カ卩したもの) 50mLに懸濁した。この細胞懸濁液を 96ゥエル 細胞培養プレートの各ゥエルに 100 μ Lずつ分注し、 5%炭酸ガスを含む 37°Cの炭 酸ガス培養器で培養を開始した。培養中、 2〜3日間隔で各ゥエルの培地約 100 L を除き、新たに前記の HAT培地 100 Lをカ卩えることにより HAT培地中で増殖する ハイプリドーマを選択した。約 10日目に、以下のハイプリドーマのスクリーニングを行 つた o [0055] On the other hand, mouse myeloma cells (myeloma cells) cultured in advance in 50 mL tubes were spalled into the spleen cells (approximately 1 × 10 7 cells) S P2Z0—Agl4 5 × 10 7 ), mixed well in RPMI1640 medium, and centrifuged (380 × g, 5 minutes) o Aspirate the supernatant, thaw the pellet well, and incubate at 37 ° C 1 mL of the 40% polyethylene glycol (PEG) 4000 solution was dropped, and the centrifuge tube was gently rotated by hand for 1 minute to mix the PEG solution and the cell pellet. Next, 10 mL of RPMI 1640 medium kept at 37 ° C was added, and the tube was gently rotated. Then, after centrifugation (170 X g, 5 minutes) and removing the supernatant, the cell pellet contains 10% urine fetal serum and 5% Blyclone (human IL-6, Dainippon Pharmaceutical). HAT medium (RPMI1 640 medium 〖this aminopterin 4 X 10 _7 M, thymidine 1. 6 X 10 _5 M, and hypoxanthine 1 X 10 _4 those that have been添Ka卩such that M) was suspended in 50 mL. 100 μL of this cell suspension was dispensed into each well of a 96-well cell culture plate, and culture was started in a 37 ° C carbon dioxide incubator containing 5% carbon dioxide. During culture, remove about 100 L of each well medium at intervals of 2-3 days, and grow in HAT medium by adding 100 L of the above HAT medium. Selected High Pridoma. On the 10th day, the following high-pridoma screening was performed: o
[0056] (D)ハイブリドーマのスクリーニング  [0056] (D) Screening of hybridoma
血清力もの試料の代わりに、ハイプリドーマの培養上清 50 μ Lを用いること以外は 、前記工程 (Β)の ELISA法による抗体価の測定と同様の方法で、ハイプリドーマの スクリーニングを行った。抗体産生が認められたゥエル中の各ハイプリドーマを、限界 希釈法によりクローユングした。 10日後に、同様の ELISA法によって、本発明のモノ クローナル抗体を産生するハイブリドーマのクローンをスクリーニングした。その結果 The high-pridoma was screened in the same manner as the antibody titer measurement by the ELISA method in the above step (ii), except that 50 μL of the high-pridoma culture supernatant was used instead of the serum-powered sample. Each hyperidoma in the well where antibody production was observed was cloned by the limiting dilution method. Ten days later, a hybridoma clone producing the monoclonal antibody of the present invention was screened by the same ELISA method. as a result
、 ADMA2- 2G11, ADMA2— 2H5、 ADMA2— 2H7、 ADMA2—4E6、 ADM A2— 5E10、 ADMA2— 3C10の 6クローンのハイプリドーマ株を榭立した。ハイブリ ドーマ細胞株 ADMA2— 2H5〔受託番号 FERM BP— 10458〕〖こついては、平成 17年 11月 30日付けで、独立行政法人産業技術総合研究所特許生物寄託センター (あて名:〒 305— 8566 日本国茨城県つくば巿東 1丁目 1番地 1 中央第 6)に国 際寄託された。 ADMA2-2G11, ADMA2-2H5, ADMA2-2H7, ADMA2-4E6, ADM A2-5E10, ADMA2-3C10, six clones of high-pridoma strains were established. Hybridoma cell line ADMA2-2—2H5 (Accession No. FERM BP—10458), dated November 30, 2005, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (address: 305-8566 Japan) It was deposited internationally at Tsukuba Sakai Higashi 1-chome 1 Ibaraki Pref. 1 Central 6).
[0057] 《実施例 4》榭立したモノクローナル抗体の調製 [Example 4] Preparation of isolated monoclonal antibody
(A)培養上清力ものモノクローナル抗体の調製  (A) Preparation of monoclonal antibody with strong culture supernatant
榭立したマウスハイプリドーマを、無血清培地(Hybridoma— SFM、 GIBCO)で、 37°Cにて 5%二酸ィ匕炭素雰囲気中において 72〜96時間培養した。培養液を、プロ ティン Gカラム(アマシャムバイオサイエンス社)にアプライした。カラムカゝら抗体を pH 3. 5の緩衝液で溶出して、精製された本発明のモノクローナル抗体を得た。培養液 5 OOmLから約 20mgの抗体がとれた。なお、本明細書においては、各ハイブリドーマ の名称を、そのハイプリドーマ力 産生されるモノクローナル抗体の名称としても使用 する。  The established mouse hyperidoma was cultured in a serum-free medium (Hybridoma—SFM, GIBCO) at 37 ° C. in a 5% carbon dioxide atmosphere for 72 to 96 hours. The culture solution was applied to a protein G column (Amersham Biosciences). The antibody was eluted with a buffer solution of pH 3.5 to obtain a purified monoclonal antibody of the present invention. About 20 mg of antibody was obtained from 5 OOmL of the culture solution. In the present specification, the name of each hybridoma is also used as the name of the monoclonal antibody produced by the hyperidoma force.
(B)腹水からのモノクローナル抗体の調製  (B) Preparation of monoclonal antibody from ascites
6週齢の BalbZc— nuZnuマウスの腹腔内に増殖させたハイプリドーマ ADMA2 — 2H5をマウス一匹あたり 5 X 106細胞となるように接種した。 5匹のマウスから約 15 mLの腹水が得られ、 2mLの腹水から約 lOmgの抗体が得られた。腹水中のモノクロ ーナル抗体の精製は、前記の培養上清中からの精製と同様の方法で行った。 [0058] (C)抗体の HRP標識 Hypridoma ADMA2-2H5 grown in the abdominal cavity of 6-week-old BalbZc-nuZnu mice was inoculated at 5 × 10 6 cells per mouse. About 15 mL of ascites was obtained from 5 mice, and about 10 mg of antibody was obtained from 2 mL of ascites. Purification of the monoclonal antibody in the ascites was performed in the same manner as the purification from the culture supernatant. [0058] (C) HRP labeling of antibody
抗体の HRP標識は、 Pierce社の EZ— Link Plus Activated Peroxidaseを用 いて行った。この方法は、抗体分子中のアミノ基にアルデヒド基を導入された HRPを 結合させる方法である。標識はメーカーの提供するプロトコールに従って実施した。 ADMA2— 2H5から得られた HRP標識抗体を HRP—ADMA2— 2H5と称する。  The antibody was labeled with HRP using Pierce's EZ-Link Plus Activated Peroxidase. This method is a method in which HRP into which an aldehyde group is introduced is bound to an amino group in an antibody molecule. Labeling was performed according to the protocol provided by the manufacturer. The HRP-labeled antibody obtained from ADMA2-2H5 is referred to as HRP-ADMA2-2H5.
[0059] 《実施例 5》榭立したモノクローナル抗体の反応性の検討  [Example 5] Examination of reactivity of established monoclonal antibody
(A)榭立したモノクローナル抗体の ADMA含有ペプチドに対する反応性  (A) Reactivity of established monoclonal antibodies to ADMA-containing peptides
96穴 ELISA用プレートに、実施例 1で調製した RME— GaR ε AC— BSA、 RME — LaRC— BSA、 RME— GaRKC— BSA、及びコントロールペプチド(10 g/m L)を各々 50 μ Lずつ分注し、 4°Cで一夜放置した。次に、このプレートの各ゥエルを 1 %BSA— PBSTで 30分ブロッキングした。この上清を除去した後、前記実施例 5の 工程(B)で得られた各抗体及びコントロールとして ADMAに対するポリクローナル抗 体である ASYM24 (upstate社)を、 PBSTで希釈し、 50 Lずつ添加した。室温で 30分放置した後、 PBSTで 3回洗浄した。続いて、 HRP標識抗マウス IgG抗体 50 L ( 1 g/mL)又は、 HRP標識抗ゥサギ IgG抗体 50 L ( 1 g/mL)を加え、室温 で 1時間放置した後、再び、 PBSTで 3回洗浄した。 OPD基質溶液 100 Lを各ゥェ ルに加え、 25°Cで 30分間反応させ、各ゥヱルの 492nmにおける吸光度を測定した 。結果を図 2に示す。各モノクローナル抗体は、 RME— GaR ε AC— BSA、 RME— LaRC— BSA、及び RME— GaRKC— BSAには反応した力 コントロールペプチド には反応しなかった。  50 μL each of RME—GaR ε AC—BSA, RME—LaRC—BSA, RME—GaRKC—BSA, and control peptide (10 g / mL) prepared in Example 1 on a 96-well ELISA plate Poured and left overnight at 4 ° C. Each well on the plate was then blocked with 1% BSA-PBST for 30 minutes. After removing this supernatant, each antibody obtained in the step (B) of Example 5 and ASYM24 (upstate), which is a polyclonal antibody against ADMA, were diluted with PBST as a control and added in 50 L portions. . After standing at room temperature for 30 minutes, it was washed 3 times with PBST. Next, add 50 L (1 g / mL) of HRP-labeled anti-mouse IgG antibody or 50 L (1 g / mL) of HRP-labeled anti-rabbit IgG antibody, leave it at room temperature for 1 hour, and then again with PBST three times. Washed. 100 L of OPD substrate solution was added to each well, reacted at 25 ° C for 30 minutes, and the absorbance of each tool at 492 nm was measured. The result is shown in figure 2. Each monoclonal antibody reacted with RME-GaRεAC-BSA, RME-LaRC-BSA, and RME-GaRKC-BSA, but did not react with the control peptide.
[0060] (B)榭立したモノクローナル抗体の ADMA抗原に対する特異性  [0060] (B) Specificity of established monoclonal antibodies for ADMA antigen
プレートに固相化する抗原として、更に ADMAを含まないペプチドである、 RME — LsRC— BSA、 LRGRGRKC— BSAゝ AcK— BSA (ァセチル化リジンと BSAの 複合体)及び MeK— BSA (メチルリジンと BSAの複合体)を加えたこと、及び対照の 抗体として、 Clone 7E6 (Abeam社)及び SYM 1 1 (upstate社)を測定した以外は 、前記 (A)と同じ操作を行った。 Clone 7E6は市販されて!、る ADMAに対するモノ クローナル抗体であり、 SYM 1 1はシンメトリックジメチルアルギンニンに対するポリク ローナル抗体である。結果を図 3に示す。 [0061] ADMA2— 5E10、 ADMA2— 3C10、 ADMA2— 2H5、及び ASYM24は、 AD MAを含むペプチドに対して反応した力 SDMAを含むペプチドである RME— LsR C— BSAには反応せず、 LRGRGRKC— BSA、 AcK— BSA及び MeK— BSAに も反応しなかった。 Clone 7E6は ADMAを含むペプチドである RME GaR ε AC -BSA, RME— LaRC— BSAには反応したが、 ADMAを含まないペプチドに対し ても、若干、非特異的な反応を示した。また SYM11は SDMAを含むペプチドである 、 RME— LsRC— BSAに反応したが、 ADMAを含むペプチドである、 RME— LsR C BSAにより強い非特異的な反応を示した。 RME — LsRC— BSA, LRGRGRKC— BSA ゝ AcK— BSA (complex of acetylated lysine and BSA) and MeK— BSA (methyllysine and BSA) are antigens that are immobilized on the plate. The same procedure as in (A) was performed except that Clone 7E6 (Abeam) and SYM11 (upstate) were measured as control antibodies. Clone 7E6 is commercially available! Monoclonal antibody against ADMA and SYM11 is a polyclonal antibody against symmetric dimethylarginine. The results are shown in Figure 3. [0061] ADMA2—5E10, ADMA2—3C10, ADMA2—2H5, and ASYM24 do not react to RME—LsR C—BSA, which is a peptide containing SDMA that reacts with peptides containing AD MA, and LRGRGRKC— Neither BSA, AcK-BSA nor MeK-BSA reacted. Clone 7E6 reacted with RME GaR ε AC -BSA and RME-LaRC-BSA, which are peptides containing ADMA, but showed a slightly non-specific reaction even with peptides that did not contain ADMA. SYM11 reacted with RME-LsRC-BSA, a peptide containing SDMA, but showed a strong non-specific reaction with RME-LsR C BSA, a peptide containing ADMA.
[0062] (C)榭立したモノクローナル抗体の反応のアミノ酸による競合  [0062] (C) Amino acid competition of established monoclonal antibody reaction
ADMA2- 5E10, ADMA2— 3C10、 ADMA2— 2H5について、 ADMAによる 阻害試験を行い、特異性を確認した。 96穴 ELISA用プレートに、実施例 1で調製し た RME GaR ε AC BSA (10 μ g/mL)を 50 μ Lずつ分注し、 4°Cで一夜放置 した。次に、このプレートの各ゥエルを 1%BSA— PBSTで 30分ブロッキングした。モ ノクローナル抗体及び ADMA、モノメチルアルギ-ン(MMA)、又はアルギ-ン(Ar g)を混合し、 25°Cで 30分インキュベートした。インキュベート時の最終濃度は、 AD MA2— 2H5は 10ng/mL、 ADMA2— 5E10は 37ng/mL、 ADMA2— 3C10 は 2. 34ng/mLであり、各アミノ酸は、終濃度が 2°〜25mMの範囲内で、 PBSTで 希釈した。プレートから 1%BSA— PBSTを除去した後、前記抗体とアミノ酸の混合 液を 50 Lずつ添カ卩した。室温で 30分放置した後、 PBSTで 3回洗浄した。続いて、 HRP標識抗マウス IgG抗体 50 μ L (lOOngZmL)を加え、室温で 30分放置した後 、再び、 PBSTで 3回洗浄した。 OPD基質溶液 100 Lを各ゥエルに加え、 25°Cで 1 0分間反応させ、各ゥ ルの 492nmにおける吸光度を測定した。結果を図 4に示す。 いずれの抗体も、 ADMAによっては競合される力 MMA、 Argでは競合されなかつ た。 ADMA2-5E10, ADMA2-3C10, and ADMA2-2H5 were tested for inhibition by ADMA to confirm their specificity. 50 μL each of RME GaR ε AC BSA (10 μg / mL) prepared in Example 1 was dispensed into a 96-well ELISA plate and left overnight at 4 ° C. Next, each well of the plate was blocked with 1% BSA-PBST for 30 minutes. Monoclonal antibody and ADMA, monomethylarginine (MMA), or algin (Arg) were mixed and incubated at 25 ° C for 30 minutes. The final concentrations during incubation are 10 ng / mL for AD MA2-2H5, 37 ng / mL for ADMA2-5E10, 2.34 ng / mL for ADMA2-3C10, and each amino acid has a final concentration of 2 ° to 25 mM. Within range, diluted with PBST. After removing 1% BSA-PBST from the plate, 50 L each of the antibody and amino acid mixture was added. After standing at room temperature for 30 minutes, it was washed 3 times with PBST. Subsequently, 50 μL (lOOngZmL) of an HRP-labeled anti-mouse IgG antibody was added, left at room temperature for 30 minutes, and washed again with PBST three times. 100 L of OPD substrate solution was added to each well, reacted at 25 ° C for 10 minutes, and the absorbance at 492 nm of each well was measured. The results are shown in Fig. 4. Neither antibody competes with ADMA, but competes with MMA and Arg.
[0063] 《実施例 6》モノクローナル抗体の反応性のスルフォ NHSァセテ ト(sulfo— NHS acetate)処理による増強(ELISA)  Example 6 Enhancement of Monoclonal Antibody Reactivity by Treatment with Sulfo-NHS Acetate (ELISA)
96穴 ELISA用プレートに、実施例 2で調製した RME— GaRKC— BSA(10 μ g/ mL)及び LRGRGRKC— BSA (10 μ g/mL)を各々 50 μ Lずつ分注し、 4°Cで一 夜放置した。次に、 PBS、又は PBSにスルフォ NHSアセテートを、 ImM又は 10mM 溶解したものを 50 Lずつ添カ卩し、 25°Cで 1時間処理した。次に、プレートの各ゥェ ルを 1%BSA—PBSTで 1時間ブロッキングした。この上清を除去した後、 ADMA2 — 5E10、 ADMA2— 3C10、 ADMA2— 2H5、 ASYM24及び Clone 7E6を、 P BSTで希釈し、 50 Lずつ添カ卩した。室温で 30分放置した後、 PBSTで 3回洗浄し た。続 、て、 HRP標識抗マウス IgG抗体 (ャギ) 50 L (1 g/mL)を加え、室温で 30分放置した後、再び、 PBSTで 3回洗浄した。 OPD基質溶液 100 Lを各ゥエル に加え、 25°Cで 10分間反応させ、各ゥエルの 492nmにおける吸光度を測定した。 結果を図 5に示す。 ADMA2— 5E10、 ADMA2— 3C10、 ADMA2— 2H5の各抗 体は、スルフォ NHSアセテートでの処理の濃度が高くなるに従って、 RME— GaRK C— BSAに対する反応性が高くなつた。また、実施例 2の工程(2)で得られた、 MRL 1マウスの血清も各モノクローナル抗体と同様にスルフォ NHSアセテートでの処理 の濃度が高くなるに従って、 RME GaRKC BS Aに対する反応性が高くなつた( 図には示していない)。対照的に、 ASYM24はスルフォ NHSアセテートでの処理の 濃度が高くなるに従って、 RME— GaRKC— BSAに対する反応性が低くなつた。ま た、 Clone 7E6は、 RME— GaRKC— BSAに対して反応していなかった力 スル フォ NHSァセテ一ト処理で、反応性が強くなることはな力つた。 Dispense 50 μL each of RME—GaRKC—BSA (10 μg / mL) and LRGRGRKC—BSA (10 μg / mL) prepared in Example 2 to a 96-well ELISA plate at 4 ° C. one Left at night. Next, PBS or a solution of sulfo NHS acetate dissolved in ImM or 10 mM in PBS was added 50 L at a time and treated at 25 ° C. for 1 hour. Next, each well of the plate was blocked with 1% BSA-PBST for 1 hour. After removing the supernatant, ADMA2-5E10, ADMA2-3C10, ADMA2-2H5, ASYM24 and Clone 7E6 were diluted with P BST and added in 50 L portions. After standing at room temperature for 30 minutes, it was washed 3 times with PBST. Subsequently, 50 L (1 g / mL) of an HRP-labeled anti-mouse IgG antibody (goat) was added, allowed to stand at room temperature for 30 minutes, and then washed again with PBST three times. 100 L of OPD substrate solution was added to each well, reacted at 25 ° C for 10 minutes, and the absorbance at 492 nm of each well was measured. The results are shown in FIG. The ADMA2-5E10, ADMA2-3C10, and ADMA2-2H5 antibodies became more reactive to RME-GaRK C-BSA as the concentration of the treatment with sulfo NHS acetate increased. In addition, as in the case of each monoclonal antibody, the serum of MRL 1 mice obtained in step (2) of Example 2 also became more reactive to RME GaRKC BS A as the concentration of treatment with sulfo NHS acetate increased. (Not shown in the figure). In contrast, ASYM24 became less reactive to RME-GaRKC-BSA as the concentration of treatment with sulfo NHS acetate increased. In addition, Clone 7E6 did not react with RME—GaRKC—BSA, but it did not increase its reactivity with force sulfo NHS phosphate treatment.
《実施例 7》モノクローナル抗体の反応性のスルフォ NHSァセテ ト(sulfo— NHS acetate)処理による増強(Western blot) Example 7 Enhancement of monoclonal antibody reactivity by treatment with sulfo-NHS acetate (Western blot)
MOLT— 4F細胞(約 5 X 106個)を、 Lysis buffer (25mM Tris— HCl (pH8. 0 )、 120mM NaCl、0. 5% NP—40、 ImM CaCl、プロテアーゼインヒビター力 MOLT—4F cells (approximately 5 × 10 6 cells) were added to Lysis buffer (25 mM Tris—HCl (pH 8.0), 120 mM NaCl, 0.5% NP-40, ImM CaCl, protease inhibitor potency.
2  2
クテル(protease inhibitor cocktail: Roche社)に懸濁し、溶解させた。そして、 その細胞溶解液を超音波で破砕した。破砕した細胞溶解液を遠心分離(10, 000 X g、 15分間)し、上清を回収した。各上清10 /^ (10 /^タンパク量)を12%303—? AGEゲルに電気泳動した後、ゲル中のタンパク質をポリピリ-デンジフルオライド (P olyvinylidene difluoride、 Bio— rad社:以下、 PVDFと称す)メンブレンに電気的 に転写した。このメンブレンを、 10mMスルフォ NHSアセテートで 1時間処理すること によって、タンパク質をァセチル化した。対照のメンブレンは、 10mMスルフォ NHS ァセテ—ト処理を行わなかった。 3%BSA、 3%ポリビュルピロリドン K30 (PVP、 Wa ko)及び 0. 15M— NaClを含む 10mMトリス— HC1緩衝液(pH7. 5)中に 25°Cで 1 時間浸し、ブロッキングした。一次抗体として、前記実施例 2で取得した、 ADMAに 対するモノクローナル抗体 ADMA2— 2H5抗体(1 μ gZmL)を、 25°Cで 1時間反 応させた。対照として、前記 ADMAに対するゥサギポリクローナル抗体である、 ASY M24 (0. 11 μ g/mL)及びァセチルリジンに対するモノクローナル抗体である ACK 2F12 (1 g/mL)を 25°Cで 30分反応させた。 It was suspended and dissolved in kutel (protease inhibitor cocktail: Roche). The cell lysate was crushed with ultrasonic waves. The disrupted cell lysate was centrifuged (10,000 X g, 15 minutes), and the supernatant was collected. Each supernatant 10 / ^ (10 / ^ protein amount) 12% 303? After electrophoresis on an AGE gel, the protein in the gel was electrically transferred to a polypyridene difluoride (Polyvinylidene difluoride, Bio-rad: hereinafter referred to as PVDF) membrane. The membrane was treated with 10 mM sulfo NHS acetate for 1 hour to acetylate the protein. The control membrane is 10 mM sulfo NHS No cassette treatment was performed. Blocking was performed by immersing in 10 mM Tris-HC1 buffer (pH 7.5) containing 3% BSA, 3% polybutylpyrrolidone K30 (PVP, Wako) and 0.15M-NaCl for 1 hour at 25 ° C. As a primary antibody, the monoclonal antibody ADMA2-2H5 antibody (1 μgZmL) against ADMA obtained in Example 2 was reacted at 25 ° C. for 1 hour. As controls, Usagi polyclonal antibody against ADMA, ASY M24 (0.11 μg / mL), and ACK 2F12 (1 g / mL), a monoclonal antibody against acetylyllysine, were reacted at 25 ° C. for 30 minutes.
[0065] 0. 05%Tween— 20及び 0. 15M— NaClを含む 10mMトリス— HC1緩衝液(pH 7. 5)でメンブレンを 3回洗浄した後、二次抗体として HRP標識マウス抗マウス IgG ( KPL社)又は HRP標識抗ゥサギ IgG (KPL社)を、 0. 5%スキムミルク及び 0. 15M — NaClを含む 10mMトリス— HC1緩衝液(pH7. 5)で 20000倍希釈し 25。Cで 30分 反応させた。前記と同様の方法でメンブレンを洗浄した後、 ECLウェスタンプロテイン グ検出キット (アマシャム株式会社)を用いて、ペルォキシダーゼと過酸化水素とによ つて触媒されるルミノールの発光反応を行わせた。この発光を LAS— 1000 (富士フ イルム社)で検出した。結果を図 6に示す。  [0065] After washing the membrane three times with 0.05% Tween—20 and 0.15M—NaCl-containing 10 mM Tris—HC1 buffer (pH 7.5), HRP-labeled mouse anti-mouse IgG ( KPL) or HRP-labeled anti-rabbit IgG (KPL) is diluted 20000 times with 10 mM Tris-HC1 buffer (pH 7.5) containing 0.5% skim milk and 0.15M-NaCl. The mixture was reacted at C for 30 minutes. After the membrane was washed by the same method as described above, a luminol luminescence reaction catalyzed by peroxidase and hydrogen peroxide was performed using an ECL Western protein detection kit (Amersham Co., Ltd.). This luminescence was detected with LAS-1000 (Fujifilm). The result is shown in FIG.
[0066] ADMAに対するモノクローナル抗体である、 ADMA2— 2H5抗体は、スルフォ N HSアセテート処理によって、いくつかのタンパク質への反応が増強し、反応が弱くな るタンパク質はほとんどなかった。対照的に、 ASYM24抗体は MOLT—4Fのほと んどのタンパク質への反応性力 減弱した(図 6)。またァセチルリジンに対するモノク ローナル抗体である、 ACK2F12の反応性は、スルフォ NHSアセテート処理によつ て非常に強くなつており、細胞中のタンパク質のリジンがァセチルイ匕されたことを示し ている。  [0066] The ADMA2-2H5 antibody, which is a monoclonal antibody against ADMA, was enhanced in response to some proteins by treatment with sulfo N HS acetate, and there was almost no protein that weakened the reaction. In contrast, ASYM24 antibody attenuated the reactivity of MOLT-4F to most proteins (Figure 6). The reactivity of ACK2F12, a monoclonal antibody to acetylyllysine, was enhanced by sulfo NHS acetate treatment, indicating that the lysine of the protein in the cell was acetylated.
[0067] 《実施例 8》ADMA2— 2H5モノクローナル抗体によるマウス臓器 lysateの解析 (We stern blot)  [0067] << Example 8 >> Analysis of mouse organ lysate using ADMA2-2H2 monoclonal antibody (Western blot)
MOLT— 4F力 抽出したタンパク質の代わりにマウスの糸且織力 抽出したタンパク 質を使用すること、及びタンパク質を転写したメンブレンをスルフォ NHSアセテートで の処理を行わないことを除いては、実施例 7の方法と同様の方法でマウス臓器のタン パク質を ADMA2— 2H5モノクローナル抗体で解析した。組織のタンパク質は、前 記 Lysis Bufferをカ卩え、ホモジェナイズし、用いた。結果を図 7に示す。ほとんどの 組織で、 ADMAを有するタンパク質を検出できた力 心臓及び骨格筋では、 ADM Aを有するタンパク質は少な力つた。 MOLT-4F force Example 7 except that the extracted protein is used in place of the extracted protein and the membrane to which the protein has been transferred is not treated with sulfo NHS acetate. The mouse organ protein was analyzed with the ADMA2-2H5 monoclonal antibody in the same manner as described above. Tissue protein before The Lysis Buffer was prepared, homogenized and used. The results are shown in FIG. Forces that could detect proteins with ADMA in most tissues In the heart and skeletal muscle, proteins with ADM A were less powerful.
[0068] 《実施例 9》ADMA2— 2H5モノクローナル抗体による HepG2細胞 lysateの解析(2 次元電気泳動) [0068] << Example 9 >> Analysis of HepG2 cell lysate using ADMA2-2H2 monoclonal antibody (two-dimensional electrophoresis)
HepG2細胞を 2D用 Lysis buffer [9. 8Mureaゝ 0. 5%CHAPSゝ lOmMdithio threitol(DTT) ]に懸濁し、超音波で破砕した。破砕した細胞溶解液を遠心分離(1 0, 000 X g、 5分間)し、上清を回収した。  HepG2 cells were suspended in 2D Lysis buffer [9.8Murea® 0.5% CHAPS® lOmMdithiothreitol (DTT)] and disrupted with ultrasound. The disrupted cell lysate was centrifuged (10,000 X g, 5 minutes), and the supernatant was collected.
[0069] 20 μ gのタンノ ク質を 9. 8M尿素、 0. 5%CHAPS、 lOmMDTT, 0. 2%Biolyte s、 0. 001%ブロムフエノールブルー 125 L〖こ溶解し、このタンパク質溶液にて pH レンジ 3— 10の IPGストリップ(strip) (7cm)を膨潤させた。膨潤後の stripを等電点 電気泳動装置(BioRad)にセットし、 Stepl: 250Vで 1時間、 Step2 : 250〜4000V で 2時間(直線勾配で増加)、 Step3 :4000Vで 10時間の設定で、等電点電気泳動 を行った。泳動終了後の stripを 0. 375M Tris— HCl(pH8)、 6M尿素、 2%SDS 、 20%glycerol、及び 130mMDTT中で還元し(15分)、更に 0. 375M Tris—H Cl(pH8)、 6M尿素、 2%SDS、 20%glycerol、及び 135mMョードアセトアミド中で アルキル化した(15分)。還元アルキル化処理の終了した stripを SDSポリアクリルァ ミドゲノレ〖こ乗せ、二次元目の展開を行った。  [0069] Dissolve 20 μg of tannic acid in 9.8 M urea, 0.5% CHAPS, lOmMDTT, 0.2% Biolytes, 0.001% bromphenol blue 125 L, and use this protein solution. An IPG strip (7 cm) in the pH range 3-10 was swollen. Set the strip after swelling in an isoelectric focusing device (BioRad), Stepl: 250V for 1 hour, Step2: 250-4000V for 2 hours (increase with linear gradient), Step3: 4000V for 10 hours, Isoelectric focusing was performed. After stripping, the strip is reduced in 0.375M Tris—HCl (pH8), 6M urea, 2% SDS, 20% glycerol, and 130mMDTT (15 minutes), and further 0.375M Tris—HCl (pH8), Alkylation (15 min) in 6M urea, 2% SDS, 20% glycerol, and 135 mM odoacetamide. The strip after the reductive alkylation treatment was placed on the SDS polyacrylamide midenore and developed in the second dimension.
[0070] 2次元電気泳動したゲル中のタンパク質を PVDFメンブレンに電気的に転写した。  [0070] Proteins in the gel subjected to two-dimensional electrophoresis were electrically transferred to a PVDF membrane.
このメンブレンを、 3%BSA、 3%PVP及び 0. 15M— NaClを含む 10mMトリス一 H C1緩衝液 (pH7. 5)中に 25°Cで 1時間浸し、ブロッキングした。実施例 4の工程 (C) で調製した、 HRP— ADMA2— 2H5抗体(0. 2 /z gZmL)を、 25°Cで 30分反応さ せた。 0. 5%Tween— 20及び 0. 15M— NaClを含む 10mMトリス— HC1緩衝液(p H7. 5)でメンブレンを 3回洗浄した後、 ECLウェスタンブロティング検出キット(アマシ ャム株式会社)を用いて、発光反応を行った。この発光を LAS— 1000 (富士フィル ム社)で検出した。結果を図 7に示す。  This membrane was soaked in 10 mM Tris-HC1 buffer (pH 7.5) containing 3% BSA, 3% PVP and 0.15M-NaCl for 1 hour at 25 ° C. for blocking. The HRP-ADMA2-2H5 antibody (0.2 / z gZmL) prepared in the step (C) of Example 4 was reacted at 25 ° C for 30 minutes. Wash the membrane 3 times with 10 mM Tris-HC1 buffer (pH 7.5) containing 0.5% Tween-20 and 0.15M NaCl, then use ECL Western Blotting Detection Kit (Amersham Co., Ltd.). Used to carry out a luminescent reaction. This luminescence was detected with LAS-1000 (Fuji Film). The results are shown in FIG.
[0071] 《実施例 10》抗 ADMA抗体による塩基性タンパク質の検出  [Example 10] Detection of basic protein by anti-ADMA antibody
(A)塩基性タンパク質のァセチルイ匕 HepG2細胞を前記 Lysis bufferに懸濁し、超音波で破砕した。破砕した細胞溶 解液を遠心分離(10, OOO X g、 15分間)し、上清を回収した。回収した培養上清を 平衡化 buffer(25mM Tris—HCl (pH8. 0)、 0. 5% NP—40、 ImM CaCl ) (A) Basic protein acetylene HepG2 cells were suspended in the Lysis buffer and sonicated. The disrupted cell lysate was centrifuged (10, OOO X g, 15 minutes), and the supernatant was collected. The collected culture supernatant is equilibrated buffer (25 mM Tris-HCl (pH 8.0), 0.5% NP-40, ImM CaCl)
2 で 10倍希釈した。平衡化 bufferで平衡ィ匕した Q - Sepharoseに希釈した培養上清 をアプライし、通過画分を回収した。通過画分をアセトン沈殿し、遠心エバポレーター によって乾燥させた。ペレットを 2D用 Lysis buffer [9. 8Murea、 0. 5%CHAPS、 lOmMdithiothreitol(DTT) ]に溶解し、可溶化した。 50 gのタンパク質に対して 、 DMSOに溶かしたスルフォ NHSアセテートを最終濃度 10mMとなるように添カロし た。 25°Cで一時間反応した後、 1/10量の 1M Tris-HCl (pH8. 0)を添カ卩して反 応を停止させた。対照の試料は、スルフォ NHSアセテート処理を行わなかった。反 応液中のタンパク質をアセトン沈殿し、再度 2D用 lysis bufferに可溶ィ匕して、 2次元 電気泳動の試料とした。  Diluted 10-fold with 2. The culture supernatant diluted with Q-Sepharose equilibrated with the equilibration buffer was applied, and the flow-through fraction was collected. The passing fraction was acetone-precipitated and dried by a centrifugal evaporator. The pellet was dissolved in 2D Lysis buffer [9.8Murea, 0.5% CHAPS, lOmMdithiothreitol (DTT)] and solubilized. Sulfo NHS acetate dissolved in DMSO was added to 50 g of protein to a final concentration of 10 mM. After reacting at 25 ° C for 1 hour, 1/10 volume of 1M Tris-HCl (pH 8.0) was added to stop the reaction. The control sample was not treated with sulfo NHS acetate. The protein in the reaction solution was precipitated with acetone and again dissolved in 2D lysis buffer to prepare a sample for two-dimensional electrophoresis.
[0072] (B)二次元電気泳動による細胞内 ADMA含有タンパク質の分析  [0072] (B) Analysis of intracellular ADMA-containing protein by two-dimensional electrophoresis
20 /z gのタンノ ク質を 9. 8M尿素、 0. 5%CHAPS、 lOmMDTT, 0. 2%Biolyte s、 0. 001%ブロムフエノールブルー 125 L〖こ溶解し、このタンパク質溶液にて pH レンジ 3— 10の IPGストリップ(strip) (7cm)を膨潤させた。膨潤後の stripを等電点 電気泳動装置(BioRad)にセットし、 Stepl: 250Vで 1時間、 Step2 : 250〜4000V で 2時間(直線勾配で増加)、 Step3 :4000Vで 10時間の設定で、等電点電気泳動 を行った。泳動終了後の stripを 0. 375M Tris— HCl(pH8)、 6M尿素、 2%SDS 、 20%glycerol、及び 130mMDTT中で還元し(15分)、更に 0. 375M Tris—H Cl(pH8)、 6M尿素、 2%SDS、 20%glycerol、及び 135mMョードアセトアミド中で アルキル化した(15分)。還元アルキル化処理の終了した stripを SDSポリアクリルァ ミドゲノレ〖こ乗せ、二次元目の展開を行った。  Dissolve 20 L / zg of tannin in 9.8 M urea, 0.5% CHAPS, lOmMDTT, 0.2% Biolytes, 0.001% bromophenol blue 125 L, and use this protein solution to adjust the pH range. — Ten IPG strips (7 cm) were swollen. Set the strip after swelling in an isoelectric focusing device (BioRad), Stepl: 250V for 1 hour, Step2: 250-4000V for 2 hours (increase with linear gradient), Step3: 4000V for 10 hours, Isoelectric focusing was performed. After stripping, the strip is reduced in 0.375M Tris—HCl (pH8), 6M urea, 2% SDS, 20% glycerol, and 130mMDTT (15 minutes), and further 0.375M Tris—HCl (pH8), Alkylation (15 min) in 6M urea, 2% SDS, 20% glycerol, and 135 mM odoacetamide. The strip after the reductive alkylation treatment was placed on the SDS polyacrylamide midenore and developed in the second dimension.
[0073] (C)モノクローナル抗体 ADMA2 - 2H5による検出  [0073] (C) Detection with monoclonal antibody ADMA2-2H5
2次元電気泳動したゲル中のタンパク質を PVDFメンブレンに電気的に転写した。 このメンブレンを、 3%BSA、 3%PVP及び 0. 15M— NaClを含む 10mMトリス一 H C1緩衝液 (pH7. 5)中に 25°Cで 1時間浸し、ブロッキングした。実施例 4の工程 (C) で調製した、 HRP— ADMA2— 2H5抗体(0. 2 /z gZmL)を、 25°Cで 30分反応さ せた。 05%Tween— 20及び 0. 15M— NaClを含む lOmMトリス— HC1緩衝液(p H7. 5)でメンブレンを 3回洗浄した後、 ECLウェスタンブロティング検出キット(アマシ ャム株式会社)を用いて、発光反応を行った。この発光を LAS— 1000 (富士フィル ム社)で検出した。結果を図 9に示す。スルフォ NHSアセテート処理を行わない場合 は、塩基性タンパク質力 ¾H10付近に集中しているために、塩基性タンパク質のスポ ットの分別が困難である。しかし、スルフォ NHSァセテ—ト処理を行った場合は、タン パク質のスポットが分離しており、解析が可能である。 ASYM24及び Clone 7E6を 用いた場合は、ァセチルイ匕されたタンパク質への反応が弱ぐほとんどのスポットが検 出できなかった。 Proteins in the gel subjected to two-dimensional electrophoresis were electrically transferred to a PVDF membrane. This membrane was soaked in 10 mM Tris-HC1 buffer (pH 7.5) containing 3% BSA, 3% PVP and 0.15M-NaCl for 1 hour at 25 ° C. for blocking. The HRP-ADMA2-2H5 antibody (0.2 / z gZmL) prepared in step (C) of Example 4 was reacted at 25 ° C for 30 minutes. Let After washing the membrane 3 times with 05% Tween-20 and 0.15M-lOmM Tris-HC1 buffer (pH 7.5), using ECL Western Blotting Detection Kit (Amersham Co., Ltd.) The luminescence reaction was performed. This luminescence was detected with LAS-1000 (Fuji Film). The results are shown in FIG. When the sulfo NHS acetate treatment is not performed, the basic protein strength is concentrated in the vicinity of H10, so that it is difficult to separate the spots of the basic protein. However, when the sulfo NHS acetate treatment is performed, the protein spots are separated and can be analyzed. When ASYM24 and Clone 7E6 were used, most spots where the reaction to the acetylated protein was weak could not be detected.
[0074] 《実施例 11》抗メチルリジン抗体による塩基性タンパク質の検出  [Example 11] Detection of basic protein with anti-methyllysine antibody
HRP—ADMA2— 2H5抗体の代わりに、メチルリジンに対する抗体である MEK3 D7 (特願平 2003— 403313)を使用すること以外は、実施例 10と同じ方法で、塩基 性タンパク質の検出を行った。結果を図 10に示す。スルフォ NHSァセテ—ト処理を 行わない場合は、塩基性タンパク質力 ¾H10付近に集中しているために、塩基性タン パク質のスポットの分別が困難である。し力し、スルフォ NHSアセテート処理を行った 場合は、タンパク質のスポットが分離しており、解析が可能である。  A basic protein was detected in the same manner as in Example 10 except that MEK3 D7 (Japanese Patent Application No. 2003-403313), which is an antibody against methyllysine, was used instead of the HRP-ADMA2-2H5 antibody. The result is shown in FIG. When the sulfo NHS acetate treatment is not performed, the basic protein strength is concentrated in the vicinity of H10, so that it is difficult to separate the basic protein spots. However, when treated with sulfo NHS acetate, protein spots are separated and can be analyzed.
産業上の利用可能性  Industrial applicability
[0075] 本発明の抗体は、ァセチルイ匕したタンパク質に対して、反応性が強まるため、従来 検出できな力 た、ァシンメトリックジメチルアルギニンを含むタンパク質の探索、同定 に用いることができる。また、本発明の抗体及びタンパク質のァセチルイ匕を組み合わ せた翻訳後修飾アミノ酸含有タンパク質の検出方法は、従来同定できなカゝつた AD MAを含む塩基性タンパク質の探索、同定に用いることができる。本発明の抗体、及 び検出方法を用い、疾患との相関を調べることにより、疾病に関連する標的分子であ る ADMA含有タンパク質を同定することが可能となる。更に、本発明の抗体は、同定 された疾患に関連する標的分子を検出する診断、又はその標的分子を機能制御す ること〖こよる '治療〖こ使用することが可會である。 [0075] The antibody of the present invention has increased reactivity with respect to acetylated protein, and thus can be used for searching and identifying a protein containing asymmetric dimethylarginine, which could not be detected conventionally. Further, the post-translationally modified amino acid-containing protein detection method combining the antibody of the present invention and the protein acetylene can be used for the search and identification of basic proteins including ADMA that cannot be identified conventionally. By examining the correlation with a disease using the antibody of the present invention and the detection method, it becomes possible to identify an ADMA-containing protein that is a target molecule associated with the disease. Furthermore, the antibody of the present invention can be used for diagnosis that detects a target molecule associated with the identified disease, or for therapeutic treatment by controlling the function of the target molecule.
以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は 本発明の範囲に含まれる。  As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.

Claims

請求の範囲 ギニンを含有するタンパク質に対してタンパク質側鎖の化学修飾化処理を行うこと〖こ よって得られる化学修飾ィ匕ァシンメトリックジメチルアルギニン含有タンパク質に特異 的に反応する抗体。  Claims An antibody that reacts specifically with a chemically-modified asymmetric dimethylarginine-containing protein obtained by subjecting a protein containing ginin to chemical modification of the protein side chain.
[2] ァシンメトリックジメチルアルギニンに特異的に結合し、式 (4):  [2] Binds specifically to asymmetric dimethylarginine, with formula (4):
Gly— ADMA— Lys— Cys— BSA (4)  Gly— ADMA— Lys— Cys— BSA (4)
[ADMAはァシンメトリックジメチルアルギニンであり、 BSAはゥシ血清アルブミンで ある]で表されるペプチドに対する結合力より、式 (8):  [ADMA is asymmetric dimethylarginine, and BSA is ushi serum albumin].
Gly - ADMA - AcLys - Cys - BSA (8)  Gly-ADMA-AcLys-Cys-BSA (8)
[ADMAはァシンメトリックジメチルアルギニンであり、 AcLysはァセチル化リジンで あり、 BSAはゥシ血清アルブミンである]で表されるペプチドに対する結合力力 上昇 することを特徴とする抗体。  An antibody characterized in that its binding power to a peptide represented by [ADMA is asymmetric dimethylarginine, AcLys is acetylated lysine, and BSA is ushi serum albumin] increases.
[3] マウスモノクローナル抗体である、請求項 1又は 2に記載の抗体。 [3] The antibody according to claim 1 or 2, which is a mouse monoclonal antibody.
[4] 受託番号 FERM BP— 10458であるハイプリドーマ力も産生される抗体である、 請求項 3に記載のマウスモノクローナル抗体。 [4] The mouse monoclonal antibody according to claim 3, which is an antibody that also produces a hyperpridoma force of accession number FERM BP-10458.
[5] 請求項 1〜4のいずれか一項に記載の抗体のフラグメントであって、ァシンメトリック ジメチルアルギニンに特異的に反応する抗原結合部位を含むことを特徴とする、抗 体フラグメント。 [5] An antibody fragment according to any one of claims 1 to 4, comprising an antigen-binding site that specifically reacts with asymmetric dimethylarginine.
[6] 請求項 1〜4のいずれか一項に記載の抗体を産生するハイブリドーマ。  [6] A hybridoma that produces the antibody according to any one of claims 1 to 4.
[7] 前記ハイプリドーマ力 受託番号 FERM BP— 10458である請求項 6に記載のハ イブリドーマ。  7. The hybridoma according to claim 6, wherein the hybridoma power accession number is FERM BP-10458.
[8] 一般式 (9) : [8] General formula (9):
X— ADMA— Z— Cys (9)  X— ADMA— Z— Cys (9)
[式中、 Xは Cys以外の同一又は異なるアミノ酸残基 1〜5からなるペプチドフラグメン トであり、 ADMAはァシンメトリックジメチルアルギニンであり、 Zは Cys以外の同一又 は異なるアミノ酸残基 1〜5からなるペプチドフラグメントである]の配列で表されるぺ プチドを担体タンパク質に結合し、動物を免疫することを特徴とする、抗ァシンメトリツ クジメチルアルギニン抗体の製造方法。 [Wherein X is a peptide fragment consisting of the same or different amino acid residues 1 to 5 other than Cys, ADMA is asymmetric dimethylarginine, and Z is the same or different amino acid residues 1 to 5 other than Cys. A peptide fragment consisting of 5], which binds a peptide represented by the sequence to a carrier protein and immunizes an animal. A method for producing a dimethyl arginine antibody.
[9] 前記一般式(1)の、 X力 Glyであり、 Zが ε—アミノカプロン酸である一般式(9)で表 されるペプチドを用いる、請求項 8に記載の抗ァシンメトリックジメチルアルギニン抗 体の製造方法。  [9] The anti-asymmetric dimethylarginine according to claim 8, wherein the peptide represented by the general formula (9) of the general formula (1) is an X force Gly and Z is ε-aminocaproic acid. Antibody manufacturing method.
[10] 前記動物が、自己免疫疾患マウスである請求項 8又は 9に記載の抗ァシンメトリック ジメチルアルギニン抗体の製造方法。  10. The method for producing an anti-asymmetric dimethylarginine antibody according to claim 8 or 9, wherein the animal is an autoimmune disease mouse.
[11] 前記自己免疫疾患マウスが MRL— lprZlprマウスである請求項 10に記載の抗ァ シンメトリックジメチルアルギニン抗体の製造方法。 [11] The method for producing an anti-asymmetric dimethylarginine antibody according to [10], wherein the autoimmune disease mouse is an MRL-lprZlpr mouse.
[12] (1)翻訳後修飾アミノ酸含有タンパク質を含む可能性のある被検試料に対して、タン ノ ク質側鎖の化学修飾ィ匕を実施する工程、 [12] (1) A step of chemically modifying a protein side chain on a test sample that may contain a post-translationally modified amino acid-containing protein,
(2)タンパク質側鎖の化学修飾化によって得られる翻訳後修飾アミノ酸含有タンパク 質に特異的に反応するプローブと、前記化学修飾化処理被検試料とを接触させるェ 程、及び (3)前記接触工程によって形成される、化学修飾化された翻訳後修飾アミノ 酸含有タンパク質と前記プローブとの複合体を検出する工程  (2) contacting a probe that specifically reacts with a protein containing a post-translationally modified amino acid obtained by chemical modification of a protein side chain with the chemically modified test sample; and (3) the contact A step of detecting a complex of a chemically modified post-translationally modified amino acid-containing protein and the probe formed by the step
を含むことを特徴とする、前記翻訳後修飾アミノ酸含有タンパク質の検出方法。  The method for detecting a post-translationally modified amino acid-containing protein, comprising:
[13] 前記翻訳後修飾アミノ酸含有タンパク質が、ァシンメトリックジメチルアルギニンを含 有するタンパク質である、請求項 12に記載の翻訳後修飾アミノ酸含有タンパク質の 検出方法。 13. The method for detecting a post-translationally modified amino acid-containing protein according to claim 12, wherein the post-translationally modified amino acid-containing protein is a protein containing asymmetric dimethylarginine.
[14] 前記タンパク質側鎖の化学修飾化が、ァシルイ匕である請求項 12又は 13に記載の 翻訳後修飾アミノ酸含有タンパク質の検出方法。  [14] The method for detecting a post-translationally modified amino acid-containing protein according to [12] or [13], wherein the chemical modification of the protein side chain is ashirui.
[15] 前記修飾アミノ酸に対するプローブ力 請求項 1〜5いずれか一項に記載の抗体又 は抗体フラグメントである、請求項 12〜 14いずれか一項に記載の翻訳後修飾アミノ 酸含有タンパク質の検出方法。 [15] Probe power for the modified amino acid Detection of the post-translationally modified amino acid-containing protein according to any one of claims 12 to 14, which is the antibody or antibody fragment according to any one of claims 1 to 5. Method.
[16] 前記タンパク質を等電点、分子量、又は等電点及び分子量の組み合わせ、により 分別する工程を更に含む、請求項 12〜 15 ヽずれか一項に記載の翻訳後修飾ァミノ 酸含有タンパク質の検出方法。 [16] The post-translationally modified amino acid-containing protein according to any one of claims 12 to 15, further comprising a step of fractionating the protein by isoelectric point, molecular weight, or a combination of isoelectric point and molecular weight. Detection method.
[17] (1)翻訳後修飾アミノ酸含有タンパク質を含む可能性のある被検試料に対して、タン パク質の電荷を変化させる処理を実施する工程、 (2)電荷変化処理した被検試料に対して、タンパク質の等電点による分別を実施す る工程、 [17] (1) A step of subjecting a test sample possibly containing a post-translationally modified amino acid-containing protein to a process of changing the charge of the protein, (2) A step of performing separation based on the isoelectric point of the protein on the test sample subjected to charge change treatment,
(3)分別後の被検試料と、翻訳後修飾アミノ酸に特異的に反応するプローブとを接 触させる工程、及び  (3) contacting the test sample after separation with a probe that specifically reacts with the post-translationally modified amino acid; and
(4)前記接触工程によって形成される、分別されたタンパク質と前記プローブとの複 合体を検出する工程  (4) A step of detecting a complex between the separated protein and the probe formed by the contact step
を含むことを特徴とする、前記翻訳後修飾アミノ酸含有タンパク質の検出方法。  The method for detecting a post-translationally modified amino acid-containing protein, comprising:
[18] 前記分別工程の前又は後に、タンパク質の分子量による分別を実施する請求項 17 に記載の翻訳後修飾アミノ酸含有タンパク質の検出方法。 18. The method for detecting a post-translationally modified amino acid-containing protein according to claim 17, wherein the fractionation according to the molecular weight of the protein is performed before or after the fractionation step.
[19] 前記プローブが、メチルリジンに対する抗体である請求項 17又は 18に記載の翻訳 後修飾アミノ酸含有タンパク質の検出方法。 [19] The method for detecting a post-translationally modified amino acid-containing protein according to claim 17 or 18, wherein the probe is an antibody against methyllysine.
PCT/JP2006/326045 2005-12-28 2006-12-27 Antibody capable of recognizing asymmetric dimethylarginine, method for production of the antibody, and method for detection of protein having posttranslationally modified amino acid WO2007074864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005378963A JP2007176872A (en) 2005-12-28 2005-12-28 Antibody recognizing asymmetric dimethylarginine, method for producing the same, and method for detecting modified amino acid-containing protein after translation
JP2005-378963 2005-12-28

Publications (1)

Publication Number Publication Date
WO2007074864A1 true WO2007074864A1 (en) 2007-07-05

Family

ID=38218086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326045 WO2007074864A1 (en) 2005-12-28 2006-12-27 Antibody capable of recognizing asymmetric dimethylarginine, method for production of the antibody, and method for detection of protein having posttranslationally modified amino acid

Country Status (2)

Country Link
JP (1) JP2007176872A (en)
WO (1) WO2007074864A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628868A (en) * 2011-12-30 2012-08-08 北京九强生物技术股份有限公司 Latex enhanced immunoturbidimetry kit for detection of asymmetric dimethylarginine content
US8481690B2 (en) 2008-08-07 2013-07-09 Idexx Laboratories, Inc. Methods for detecting symmetrical dimethylarginine
CN106290822A (en) * 2016-07-28 2017-01-04 武汉景川诊断技术股份有限公司 D dimer immunity latex microsphere preparation method and application
US10775365B2 (en) 2015-02-20 2020-09-15 Idexx Laboratories, Inc. Homogenous immunoassay with compensation for background signal
US11035861B2 (en) 2013-09-05 2021-06-15 Idexx Laboratories, Inc. Methods for detecting renal disease
US11422136B2 (en) 2017-10-19 2022-08-23 Idexx Laboratories, Inc. Detection of symmetrical dimethylarginine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6321921B2 (en) * 2013-05-10 2018-05-09 学校法人 埼玉医科大学 Anti-TLS monoclonal antibody and method for producing the same, hybridoma and method for producing the same, and anti-TLS monoclonal antibody-containing composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054296A1 (en) * 2003-12-02 2005-06-16 Advanced Life Science Institute, Inc. Antibodies recognizing methyllysine, process for producing the same and utilization thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054296A1 (en) * 2003-12-02 2005-06-16 Advanced Life Science Institute, Inc. Antibodies recognizing methyllysine, process for producing the same and utilization thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"DeStreak Rehydration Solution", AMERSHAM BIOSCIENCES, October 2002 (2002-10-01), XP003015039, Retrieved from the Internet <URL:http://www.apczech.cz/pdf/DF_DeStreak.pdf> *
COTE J. ET AL.: "Sam68 RNA Binding Protein Is an In Vivo Substrate for Protein Arginine N-Methyltransferase 1", MOLECULAR BIOLOGY OF THE CELL, vol. 14, 2003, pages 274 - 287, XP003015038 *
KOMATSU Y. ET AL.: "Four different clones of mouse anti-acetyllysine monoclonal antibodies having different recognition properties share a common immunoglobulin framework structure", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 272, 2003, pages 161 - 175, XP004400049 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481690B2 (en) 2008-08-07 2013-07-09 Idexx Laboratories, Inc. Methods for detecting symmetrical dimethylarginine
US9091684B2 (en) 2008-08-07 2015-07-28 Idexx Laboratories, Inc. Methods for detecting symmetrical dimethylarginine
US9970927B2 (en) 2008-08-07 2018-05-15 Idexx Laboratories, Inc. Methods for detecting symmetrical dimethylarginine
CN102628868A (en) * 2011-12-30 2012-08-08 北京九强生物技术股份有限公司 Latex enhanced immunoturbidimetry kit for detection of asymmetric dimethylarginine content
CN102628868B (en) * 2011-12-30 2014-09-17 北京九强生物技术股份有限公司 Latex enhanced immunoturbidimetry kit for detection of asymmetric dimethylarginine content
US11035861B2 (en) 2013-09-05 2021-06-15 Idexx Laboratories, Inc. Methods for detecting renal disease
US10775365B2 (en) 2015-02-20 2020-09-15 Idexx Laboratories, Inc. Homogenous immunoassay with compensation for background signal
US11913942B2 (en) 2015-02-20 2024-02-27 Idexx Laboratories, Inc. Homogenous immunoassay with compensation for background signal
CN106290822A (en) * 2016-07-28 2017-01-04 武汉景川诊断技术股份有限公司 D dimer immunity latex microsphere preparation method and application
CN106290822B (en) * 2016-07-28 2018-06-19 武汉景川诊断技术股份有限公司 Latex microsphere preparation method and application is immunized in d-dimer
US11422136B2 (en) 2017-10-19 2022-08-23 Idexx Laboratories, Inc. Detection of symmetrical dimethylarginine

Also Published As

Publication number Publication date
JP2007176872A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
US5750349A (en) Antibodies to β-amyloids or their derivatives and use thereof
JP3837494B2 (en) Soluble RAGE protein
WO2007074864A1 (en) Antibody capable of recognizing asymmetric dimethylarginine, method for production of the antibody, and method for detection of protein having posttranslationally modified amino acid
WO2007021255A1 (en) Antibodies to alpha-synuclein
AU600439B2 (en) Ras oncogene peptides and antibodies
US20160313351A1 (en) Antibody capable of binding to specific region of periostin, and method for measuring periostin using same
JP2003530089A (en) Antibodies that bind epitopes that present γ-carboxyglutamic acid
IL210382A (en) Immunoassay for detection of neurotoxic amino acid associated with neurological disorders
JP4940424B2 (en) Markers of neuronal oxidative damage and use thereof
US20040076992A1 (en) Novel cell adhesion molecule specific to activated leukocyte
US20050100979A1 (en) Methods for detecting oxidative stress
KR20150114558A (en) Indoxyl sulfate measurement method
JP4254242B2 (en) Hair growth activity evaluation method and hair growth activity evaluation kit
WO2005037870A1 (en) Antibody and use of the same
JP2558956B2 (en) Immunological assay method for human osteocalcin, reagent and kit therefor, antibody against human osteocalcin, hybridoma producing the same, and method for producing the same
JP4314365B2 (en) Specific antibody against endothelin-2 / VIC, production method and use thereof
JPH04252955A (en) Measuring method, reagent and kit for protein
JPWO2005054296A1 (en) Antibody recognizing methyllysine, method for producing the same and use thereof
EP1783142A1 (en) Mouse monoclonal antibody recognizing acetyllysine, labeled antibody and utilization of the same
JP3522877B2 (en) Anti-tyrosinase monoclonal antibody F (ab &#39;) 2 fragment
JPH08269099A (en) Monoclonal antibody and hybridoma
WO2001042450A1 (en) Antibody binding to human airway trypsin-like enzyme and utilization thereof
JP4726031B2 (en) Immunoassay method for X-type phospholipase A2
JP2016114360A (en) Method for detecting human t-cell leukemia virus hbz protein
WO2000009739A1 (en) Monoclonal antibody against canine trypsin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843427

Country of ref document: EP

Kind code of ref document: A1