WO2007074560A1 - Display device driving apparatus, display device driving method, and display device - Google Patents

Display device driving apparatus, display device driving method, and display device Download PDF

Info

Publication number
WO2007074560A1
WO2007074560A1 PCT/JP2006/318076 JP2006318076W WO2007074560A1 WO 2007074560 A1 WO2007074560 A1 WO 2007074560A1 JP 2006318076 W JP2006318076 W JP 2006318076W WO 2007074560 A1 WO2007074560 A1 WO 2007074560A1
Authority
WO
WIPO (PCT)
Prior art keywords
gradation
temperature
display device
gradations
display
Prior art date
Application number
PCT/JP2006/318076
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoo Furukawa
Kazuyoshi Fujioka
Katsuya Ogawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007074560A1 publication Critical patent/WO2007074560A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • Display device drive device display device drive method, and display device
  • the present invention relates to a drive device for a display device used for a display device (for example, a liquid crystal display device) that is required to have temperature-resistant change characteristics such as for vehicle mounting.
  • a display device for example, a liquid crystal display device
  • liquid crystal display devices have attracted attention as in-vehicle display devices.
  • This in-vehicle liquid crystal display device is desired to guarantee video display performance up to a low temperature of about 20 ° C.
  • the response of the liquid crystal becomes dull and the display quality of video is greatly reduced. There was a problem.
  • Patent Document 1 describes a configuration in which gradation conversion (gradation cut) is performed to reduce the gradation range of input data, and the degree is switched according to temperature.
  • Patent Document 2 discloses a configuration in which the frame rate of video data is lowered stepwise according to the temperature.
  • Patent Document 1 Japanese Published Patent Publication “Japanese Laid-Open Patent Publication No. 2004-348151 (Publication Date: February 9, 2004)”
  • Patent Document 2 Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2004-104209 (Publication Date: April 2, 2004)”
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a display device driving device capable of improving moving image display performance at low temperatures.
  • the display device drive device of the present invention is a display device drive device that outputs a desired voltage within a reference voltage range to the display device in response to input data. The voltage range is set based on the ambient temperature.
  • the reference voltage range can be set according to the ambient temperature. Therefore, for example, the reference voltage range at low temperatures is expanded to widen the dynamic range of display gradation voltages at low temperatures, or gradation transition emphasis processing is performed on the expanded portion without changing the dynamic range of display gradation voltages ( It can be used for overshoot or overdrive). Therefore, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved.
  • the input data can be subjected to gradation conversion processing based on the ambient temperature, and the number of display gradations can be reduced from the number of gradations of the input data. Further, gradation transition enhancement processing (preferably gradation transition enhancement processing based on ambient temperature! /) Can be performed.
  • the number of display gradations is reduced from the number of input gradations by compressing the input gradations to display gradations (gradation compression processing). It is also possible to reduce the number of display gradations below the number of input gradations by simply cutting a part of the input gradations to obtain the display gradation (gradation cut). In this way, it is possible to increase the response speed at low temperatures by not including gradations that are difficult to respond to the display gradations. Furthermore, gradations that are not display gradations can be used as gradations for gradation transition enhancement processing (OS gradations). As a result, the response speed at low temperatures can be further improved.
  • OS gradations gradation transition enhancement processing
  • the gradation indicated by the input data is 0 gradation to n gradation
  • the reference voltage range at temperature T1 is set to Vmin to Vmax
  • the reference at temperature T2 lower than temperature T1 is set.
  • the voltage range is set to Vmin, ⁇ Vmax, (Vmin ' ⁇ Vmin and Vmax,> Vmax).
  • gradation conversion processing is not performed and gradations 0 to n are used as display gradations.
  • the gradation conversion process is performed, and the i gradation to the j gradation (0 ⁇ i ⁇ j ⁇ n) may be set as the display gradation.
  • the display gradation voltage range corresponding to the display gradation i gradation to j gradation (0 ⁇ i ⁇ ; j ⁇ n) is Vi, ⁇ Vj, (Vmin ' ⁇ Vi' Vj, Vmax,)
  • the ranges of Vmin, ⁇ Vi, and Vj, ⁇ Vmax ' may be used for gradation transition enhancement processing.
  • j gradation to n gradation (0; j ⁇ n) is displayed gradation. It is also possible to set the display gradation from 0 gradation to i gradation (0 ⁇ i ⁇ n).
  • the frame rate is set based on the ambient temperature. For example, if the frame rate is lowered at low temperatures, the response speed can be improved.
  • the drive device for the display device of the present invention is a digital-analog conversion circuit that can generate a gradation voltage corresponding to each gradation of 0 gradation to m gradation indicated by X-bit data.
  • P gradation to q gradation obtained by cutting at least one of the both ends of the above 0 gradation to m gradation by an amount based on the ambient temperature
  • the display gradation voltage for the input data is selected from the gradation voltage range corresponding to (0 ⁇ p ⁇ q ⁇ m).
  • the gradation transition enhancement process is performed without changing the number of display gradations at a low temperature by using a digital analog conversion circuit that can handle the number of bits more than the number of bits of input data. (Overshoot or overdrive) can be performed, and the video display performance at low temperatures can be improved.
  • the gradation voltage range (reference voltage range of the digital analog conversion circuit) corresponding to 0 gradation to m gradation indicated by the X bit data is Vx to Vy, and the gradation power indicated by the input data is ⁇
  • the range of display gradation voltage is VO ⁇ Vn (Vx ⁇ VO ⁇ Vn ⁇ Vy) and at the temperature T2
  • the display gradation voltage range is set to VO 'to Vn' (Vx ⁇ VO ' ⁇ Vn, ⁇ Vy) by the above cut, and the temperature In T2, the range from V to, is used for gradation transition emphasis processing.
  • the display device drive device of the present invention is a display device drive device that outputs a voltage corresponding to input data to the display device, and can change the range of the voltage that can be output according to the temperature.
  • the output voltage range is Vmin to Vmax.
  • the output voltage range is Vmin 'to Vmax' (Vmin 'Vmin and Vmax,> Vmax)
  • the voltages in the above Vmin and ⁇ Vmin ranges and the above Vmax ⁇ Vmax 'ranges are output (as transition gradation emphasizing voltages) when performing transition gradation emphasis processing.
  • the display device drive device of the present invention is a display device drive device that outputs a voltage corresponding to input data to the display device, and can handle data having a larger number of bits than the number of bits of the input data.
  • the output voltage range is VO to Vn at temperature T1
  • the output voltage range is Vx to Vy (Vx ⁇ VO and Vx ⁇ VO when temperature T2 is lower than temperature T1.
  • the voltage in the above Vx to VO range and the above Vn to Vy range is output when the transition tone emphasis processing is performed (as a voltage for transition tone enhancement). It is characterized by that.
  • the display device drive device of the present invention is a display device drive device that outputs a voltage corresponding to input data to the display device, and can handle data having a larger number of bits than the number of bits of the input data.
  • the temperature output range is Vx to Vy at temperature T1
  • the output voltage range is Vx to Vy at temperature T2 lower than temperature T1.
  • the gradation voltage range is VO 'to Vn, (VO'> Vx and Vn, ⁇ Vy), and the voltage in the above Vx to VO range and the above Vn, to Vy range is the transition gradation. Output when emphasis processing is performed (as voltage for emphasizing transition tone) It is characterized by that.
  • the display device driving method of the present invention is a display device driving method in which a desired voltage within a reference voltage range is output to a display device and driven with respect to input data.
  • the reference voltage range at temperature T1 is set to Vmin to Vmax
  • the reference voltage range at temperature T2 lower than temperature T1 is set to Vmin, ⁇ Vmax.
  • a display device driving method is a display device driving method in which a desired voltage is output to a display device and driven in response to Y-bit input data, and X> Y is satisfied.
  • a digital-analog converter circuit that can generate a gradation voltage corresponding to each gradation from 0 gradation to m gradation indicated by the X bit data, at least one of the both ends of the above 0 gradation to m gradation is surrounded
  • a display device of the present invention includes the above-described display device driving device.
  • FIG. 1 is a block diagram showing a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing Embodiment 2 of the present invention.
  • FIG. 3 is a graph showing gradation-one gradation voltage conversion characteristics of the reference voltage range variable DAC circuit according to the first embodiment.
  • FIG. 4 is a graph showing gradation-one gradation voltage conversion characteristics of the 8-bit DAC circuit in the second embodiment.
  • FIG. 5 is a graph showing gradation-one gradation voltage conversion characteristics of the 8-bit DAC circuit in the second embodiment. It is rough.
  • FIG. 6 is a schematic diagram showing a configuration of a reference voltage range variable DAC circuit according to the first embodiment.
  • FIG. 7 is a schematic diagram for explaining how to apply overshoot during frame thinning.
  • FIG. 8 is a schematic diagram for explaining how to apply overshoot during frame thinning.
  • FIG. 9 is an example of gradation compression in the gradation processing unit in the first embodiment.
  • FIG. 10 shows an example of gradation cut in the gradation processing unit according to the first embodiment.
  • the present liquid crystal display device 1 includes a liquid crystal panel drive device 2 and a liquid crystal panel 3 as shown in FIG.
  • the liquid crystal panel driving device 2 includes a temperature detection unit 5, a signal processing unit 7, a storage unit 6, a liquid crystal controller 18, a source driver 20 including a reference voltage range variable DAC circuit 16, and a gate driver 21.
  • the storage unit 5 includes a first LUT 24 and a second LUT 25.
  • the signal processing unit 7 includes a frame processing unit 10, a gradation processing unit 11, and an OS processing unit 14.
  • the function of each part of the signal processing unit 7 and the liquid crystal controller 18 Control is realized by a processor such as a CPU or a microcomputer (not shown).
  • the temperature detection unit 5 detects the temperature of the liquid crystal display device 1 and transmits it to the signal processing unit 7 and the reference voltage range variable DAC circuit 16 as a temperature signal.
  • the signal processing unit 7 performs processing described later on the input video data using the temperature signal from the temperature detecting unit 5, and uses the processed digital data (gradation data) as a reference voltage range variable DAC circuit 16 Output to.
  • Specific processing contents of the signal processing unit 7 are as follows. In the following description, the input video data is described as 6-bit data (gradation data of 0 to 64 gradations).
  • the frame processing unit 10 determines the frame rate based on the temperature signal from the temperature detection unit 5.
  • frames are thinned out according to the force / temperature signal containing 60 frames of data per second, for example, 30 frames are processed and displayed (this Frame rate is 50 percent).
  • the power of the frame processing unit 10 decreases the frame rate as the temperature decreases (decimates more frames). As the frame rate decreases, the moving image appears to be unstable. It is preferable.
  • the gradation processing unit 11 performs gradation compression processing on the data output from the frame processing unit 10 based on the temperature signal from the temperature detection unit 5.
  • the response of the liquid crystal becomes dull, and display near the minimum and maximum gradations is particularly difficult. Therefore, for example, at a low temperature, the input 0 to 63 gradations are compressed to 16 to 56 gradations. That is, as shown in FIG. 9, the input 0 gradation is converted to 16 gradations, and the output gradation is increased by 5 as the input gradation is increased by 8.
  • the OS processing unit 14 performs gradation transition enhancement processing (overshoot) on the gradation data output from the gradation processing unit 11 based on the temperature signal from the temperature detection unit 5, and the OS Outputs gradation data.
  • the first LUT 24 is used for this gradation transition enhancement processing.
  • the first LUT 24 is a look-up table that combines the previous frame gradation Z, the current frame gradation, and the OS gradation, and a plurality of them are prepared according to the temperature. That is, the OS processing unit 14 selects the first LUT 24 corresponding to the temperature signal and outputs the OS gradation using this. However, when there is no need for overshoot, such as when there is no tone transition, the tone processing unit 11 outputs the output tone as it is. For example, at room temperature, if the previous frame is 24 gradations and the current frame is 40 gradations, 43 gradations are output as the OS gradation, and at low temperatures, the previous frame is 24 gradations and the current frame power is 0 gradation. For example, 50 gradations are output as the OS gradation.
  • the liquid crystal controller 18 controls the source driver 20 including the reference voltage range variable DAC circuit 16 and the gate driver 21.
  • the source driver 20 and the gate driver 21 drive a source line and a gate line (not shown) arranged in the liquid crystal panel 3.
  • the output voltage is written to pixels arranged in a matrix near the intersection of the source line and the gate line, and the liquid crystal panel 3 is displayed.
  • the reference voltage range variable DAC circuit 16 converts the gradation output from the OS processing unit 14 into an analog output voltage based on the temperature signal from the temperature detection unit 5.
  • Figure 6 shows a configuration example for realizing this.
  • variable resistors R0, Rl, R2 ' ⁇ -R (n + 1) are connected in series, and the potential between each variable resistor is V0 (minimum reference Voltage), VI, V2 ' ⁇ ⁇ ⁇ (maximum reference voltage).
  • the second LUT 25 of the storage unit 6 is a look-up table in which gradation and resistance value data (for example, 10-bit data) are combined, and a plurality of second LUTs 25 are prepared according to the temperature.
  • the liquid crystal controller 18 selects the second LUT 25 according to the temperature signal and outputs resistance value data to each of the variable resistors R0, R1, R2 '.
  • the resistance values of the variable resistors R0, Rl, R2-... are changed.
  • the reference voltage range is changed, and the correspondence between each gradation (the gradation output from the OS processing unit 14) and the gradation voltage becomes variable according to the temperature.
  • FIG. 3 is a graph showing an example of gradation-voltage conversion for each temperature ( ⁇ 1 ⁇ ⁇ 2) by the reference voltage range variable DAC circuit 16.
  • T1 is normal temperature and ⁇ 2 is low temperature (for example, -20 ° C or less).
  • the reference voltage range is set from 2.5V (Vmin) to 6.3V (Vmax), and the display gradation voltage range is the gradation voltage corresponding to 0 gradation 2.5V power
  • the gradation voltage corresponding to 63 gradations is 6.3 V, and a gradation voltage as shown in the graph of FIG. 3 is output for each gradation of 0 to 63 gradations inputted.
  • the reference voltage range is set to 0.5 V (Vmin ') to 8.
  • OV (V max') the display gradation voltage range is 16 gradations.
  • the gradation voltage corresponding to (display gradation) 2.5V to 56 gradations
  • the gradation voltage as shown in the graph of Fig. 3 is output. Note that 0.5 to 2.5 V (2.5 V not included) corresponding to 0 to 15 gradations in Fig. 3 and 6.3 to 8.0 V (6.3 V not included) corresponding to 57 to 63 gradations.
  • the key is input to the reference voltage range variable DAC circuit 16).
  • gray scales that are not display gray scales are used as OS gray scales, and the extended reference range (0.5 to 8.0 V) is used as the output voltage range, so that the response speed at low temperatures is further improved. Can be improved.
  • the display gradation voltage range (2.5 to 6.3 V) is maintained as it is by extending the reference voltage range from room temperature (T1) at low temperatures (T2).
  • the extended portion (0.5 to 2.5 V-6.3 to 8.0 V) can be used for overshoot. Therefore, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved.
  • the liquid crystal display device 101 includes a liquid crystal panel driving device 102 and a liquid crystal panel 103 as shown in FIG.
  • the liquid crystal panel drive device 102 includes a temperature detection unit 105, a signal processing unit 107, a storage unit 106, a liquid crystal controller 118, a source driver 120 including an 8-bit DAC circuit 116, and a gate driver 121.
  • the storage unit 106 includes a first LUT 124.
  • the signal processing unit 107 includes a frame processing unit 110, a gradation processing unit 111, and And an OS processing unit 114.
  • the functions of each part of the signal processing unit 107 and the control of the liquid crystal controller 118 are realized by a processor such as a CPU or a microcomputer (not shown).
  • the temperature detection unit 105 detects the temperature of the liquid crystal display device 101, and transmits this to the signal processing unit 107 as a temperature signal.
  • the signal processing unit 107 performs processing to be described later on the input video data using the temperature signal from the temperature detection unit 105 !, and outputs the processed digital data (gradation data) to the 8-bit DAC circuit 116. Output.
  • Specific processing contents of the signal processing unit 107 are as follows. In the following, the input video data is described as 6-bit data (gradation data of 0 to 64 gradations).
  • the frame processing unit 110 has the same function as the frame processing unit 10 shown in FIG.
  • the gradation processing unit 111 performs gradation conversion processing based on the temperature signal from the temperature detection unit 105. That is, the 6-bit data output from the frame processing unit 110 is converted to 8-bit display gradation data. For example, at room temperature (temperature T1), 6-bit 0 gradation is converted to 64-bit expression with 8 bits, 16-bit gradation with 6 bits is converted to 96 gradations with 8-bit expression, and 32 gradations of 6 bits are 8 bits. Representing 128 gray scales [8, 48, 8 and 8 shades, 160 representing 16 dots [63, 6, 63, 16 shades, 8-bit representation, 188 Convert to gradation.
  • 6-bit 0 gradation is converted to 64 gradation of 8-bit representation
  • 6-bit 16 gradation is converted to 96 gradation of 8-bit representation
  • 6-bit 32 gradation is 8 Converts 6-bit 48 gradations to 8-bit representation 160 gradations and 6-bit 63 gradations to 8-bit representation 188 gradations to 128-bit gradations.
  • the OS processing unit 114 Based on the temperature signal from the temperature detection unit 105, the OS processing unit 114 performs gradation transition emphasis (overdrive) processing on the display gradation from which the gradation processing unit 111 also outputs, and the OS Output gradation.
  • the first LUT 24 is used for this gradation transition enhancement processing.
  • the first LUT 24 is a lookup table that combines the previous frame gradation Z current frame gradation and the OS gradation, and a plurality of them are prepared according to the temperature. That is, the OS processing unit 114 selects the first LUT 124 corresponding to the temperature signal and outputs the OS gradation using this.
  • the gradation output from the gradation processing unit 111 is output as it is. For example, at normal temperature, if the previous frame is 96 gradations and the current frame is 160 gradations, 172 gradations are output as the OS gradation, and at low temperatures, the previous frame is 96 gradations and the current frame is 160 gradations If the OS gradation is 186 floor Output the key.
  • the liquid crystal controller 118 controls the source driver 120 including the 8-bit DAC circuit 116 and the gate driver 121.
  • the source driver 120 and the gate driver 121 drive a source line and a gate line (not shown) arranged on the liquid crystal panel 103.
  • the output voltage is written to pixels arranged in a matrix near the intersection of the source line and the gate line, and the liquid crystal panel 103 is displayed.
  • the 8-bit DAC circuit 116 converts the gradation output from the OS processing unit 114 into an analog voltage.
  • This 8-bit DAC circuit 116 has a reference voltage range of 0.5 V (Vx) to 8.0 V (Vy), and the gradation voltage corresponding to 0 gradation is 0.5 V and the gradation corresponding to 255 gradations.
  • the regulated voltage is 8.0V.
  • FIG. 4 is a graph showing an example of gradation-gradation voltage conversion for each temperature (Tl-T2) by the 8-bit DAC circuit 116.
  • T1 is normal temperature and T2 is low temperature (for example, -20 ° C or less).
  • the display gradation voltage range corresponds to gradation voltage 2.5V (V0) corresponding to 8 bits 64 gradations (6 bits 0 gradation) to 8 bits 188 gradations (6 bits 63 gradations).
  • the gradation voltage is 6.3V (Vn).
  • a gradation voltage as shown in the graph of FIG. 4 is generated for each gradation (64) of 64 to 192 gradations to which the OS processing unit 14 force is also input.
  • the output voltage range is 2.5V to 6.3V, which is the same as the display gradation voltage range.
  • the display gradation voltage range corresponds to gradation voltage 2.5V (V0,) corresponding to 8 bits 64 gradations (6 bits 0 gradation) to 8 bits 188 gradations (6 bits 63 gradations).
  • the gradation voltage to be used is 6.3V (Vn,).
  • the gradation voltage as shown in the graph of Fig. 4 is applied to 64 gradations (corresponding to 6 bits 0 to 63 gradations) out of 64 to 192 gradations where the OS processing unit 14 power is also input. Is output.
  • T 2 [Koo! Take 0 to 64 gradations (corresponding to 0.5 to 2.5 V (not including 2.5 V)) and 192 to 255 gradations 6.3 to 8 0V (not including 6.3V) is input as the OS gradation (for example, if the previous frame is 190 gradations and the current frame is 96 gradations in T2, 40 gradations are used as the OS gradation) Input to the 8-bit DAC circuit 116). Therefore, at T2, the output voltage The range is 0.5 V to 8. OV, which is wider than the display gradation voltage range.
  • the display gradation number (64) and the display gradation voltage range (2.5 V to 6.3 V) are not changed from T1 at low temperature (T2).
  • the parts of 5V (Vx) to 2.5V (VO,) and 6.3V (Vn,) to 8.OV (Vy) can be used for overshoot. Therefore, high contrast and high-speed response can be realized even at low temperatures, and moving picture display performance can be improved.
  • FIG. 5 is a graph showing another example of gradation-one gradation voltage conversion by the 8-bit DAC circuit 116.
  • the range of display gradation voltage corresponds to gradation voltage 0.5V (VO) power corresponding to 8 bits 0 gradation (6 bits 0 gradation) and 8 bits 255 gradation (6 bits 63 gradation).
  • the gradation voltage to be 8. OV (Vn).
  • the gradation voltage shown in the graph of FIG. 5 is applied to 64 gradations (corresponding to 6 bits 0 to 63 gradations) out of the 0 to 255 gradations input from the OS processing unit 14. Generated.
  • 6-bit 0 gradation is 8-bit representation 0 gradation
  • 6-bit 16 gradation is 8-bit representation 64 gradation
  • 6-bit 32 gradations are converted to 96 gradations in 8-bit expression
  • 48 gradations in 6 bits are converted to 192 gradations in 8-bit expression
  • 63 gradations in 6 bits are converted to 255 gradations in 8-bit expression.
  • the output voltage range is 0.5V to 8.OV, which is equal to the display gradation voltage range.
  • the display gradation voltage range corresponds to gradation voltage 2.5V (VO,) corresponding to 8 bits 64 gradations (6 bits 0 gradation) to 8 bits 188 gradations (6 bits 63 gradations).
  • the gradation voltage to be used is 6.3V (Vn,). Then, the gradation voltage as shown in the graph of FIG. 5 is applied to 64 gradations (corresponding to 6 bits 0 to 63 gradations) out of 64 to 192 gradations to which the OS processing unit 14 power is also input.
  • T 2 [Koo! Take 0 to 64 gradations (corresponding to 0.5 to 2.5 V (not including 2.5 V)) and 192 to 255 gradations 6.3 to 8 0V (not including 6.3V) is input to the 8-bit DAC circuit 116 as the OS gradation (for example, if the previous frame is 190 gradations and the current frame is 96 gradations at T2, the OS 40 gradations are input to the 8-bit DAC circuit 116).
  • the output voltage range is 0.5V to 8.0V, which is wider than the display gradation voltage range.
  • the number of display gradations (64) does not change from T1 (room temperature) from 0.5V (Vx) to 2.5V (VO,) and 6 3V (Vn,) to 8. OV (Vy) can be used for overshoot. Accordingly, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved.
  • the cut amount under T1 (room temperature) can be reduced to 0 or less, the display gradation voltage range at T1 can be widened (0.5 to 8. OV), and the contrast can be improved. it can.
  • the OS processing unit 14 may perform processing as shown in FIG. 7 or FIG. Figures 7 and 8 show the case where the frame rate is set to 20 [Hz] (2 frames out of 3 frames are thinned out). As shown in Fig. 8, the response speed can be maximized by gradually decreasing the OS gradation from the first frame to the third frame. In addition, as shown in FIG. 7, if the OS gradation is constant over the first to third frames, the appearance of the video can be improved.
  • the display device drive device of the present invention is suitable for a display device mounted on a steerable moving body such as a vehicle, for example.

Abstract

In a liquid crystal panel driving apparatus, when the gray scales indicated by an input data are zero to n gray scales, a reference voltage range at a temperature T1 is set to Vmin to Vmax, and a reference voltage range at a temperature T2 lower than the temperature T1 is set to Vmin' to Vmax' (where Vmin' < Vmin and Vmax' > Vmax). At the temperature T1, no gray scale conversions are performed, and the zero to n gray scales are used as display gray scales. At the temperature T2, the gray scale conversions are performed, and i to j gray scales are used as display gray scales (where 0 < i < j < n). Further, gray scale voltages corresponding to the i to j gray scales are set to Vi' to Vj' (where Vmin' < Vi' < Vj' < Vmax'), and at the temperature T2, the ranges of Vmin' to Vi' and Vj' to Vmax' are used in a gray-scale transition emphasizing process. In this way, the moving image display performance at low temperatures can be improved.

Description

明 細 書  Specification
表示装置の駆動装置、表示装置の駆動方法、表示装置  Display device drive device, display device drive method, and display device
技術分野  Technical field
[0001] 本発明は、車両搭載用等の耐温度変化特性が要求される表示装置 (例えば、液晶 表示装置)に用いられる表示装置の駆動装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a drive device for a display device used for a display device (for example, a liquid crystal display device) that is required to have temperature-resistant change characteristics such as for vehicle mounting.
背景技術  Background art
[0002] 近年、車載用表示装置として液晶表示装置が注目されている。この車載用液晶表 示装置には 20°C程度の低温まで動画表示性能を保証することが望まれるが、そ の一方で、低温では液晶の応答が鈍くなり、動画の表示品位が大きく低下するという 問題があった。  In recent years, liquid crystal display devices have attracted attention as in-vehicle display devices. This in-vehicle liquid crystal display device is desired to guarantee video display performance up to a low temperature of about 20 ° C. On the other hand, at low temperatures, the response of the liquid crystal becomes dull and the display quality of video is greatly reduced. There was a problem.
[0003] この問題に対し、特許文献 1記載には、入力データの階調レンジを小さくする階調 変換 (階調カット)を行 、、その程度を温度によって切り替える構成が記載されて 、る 。また、特許文献 2には、温度に応じて映像データのフレームレートを段階的に下げ て 、く構成が開示されて 、る。  [0003] To deal with this problem, Patent Document 1 describes a configuration in which gradation conversion (gradation cut) is performed to reduce the gradation range of input data, and the degree is switched according to temperature. Further, Patent Document 2 discloses a configuration in which the frame rate of video data is lowered stepwise according to the temperature.
特許文献 1 :日本国公開特許公報「特開 2004— 348151号公報 (公開日: 2004年 1 2月 9日)」  Patent Document 1: Japanese Published Patent Publication “Japanese Laid-Open Patent Publication No. 2004-348151 (Publication Date: February 9, 2004)”
特許文献 2 :日本国公開特許公報「特開 2004— 104209号公報 (公開日: 2004年 4 月 2日)」  Patent Document 2: Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2004-104209 (Publication Date: April 2, 2004)”
発明の開示  Disclosure of the invention
[0004] し力しながら、特許文献 1記載の構成では、低温下で応答速度を維持するためには 、ノーマリーブラックモードで 4パーセント程黒を浮かせるまでダイナミックレンジを削 らねばならず、こうなるとコントラストが維持できないという問題があった。  However, in the configuration described in Patent Document 1, in order to maintain the response speed at a low temperature, the dynamic range must be reduced until 4% of black is floated in the normally black mode. Then, there was a problem that the contrast could not be maintained.
[0005] また、特許文献 2記載の構成では、低温でコントラストを維持するためには、映像デ ータのフレームレートを 10〔Hz〕程度まで落とす必要があり、こうなると動画表示にが たつきが目立ってしまうという問題があった。  [0005] In addition, in the configuration described in Patent Document 2, in order to maintain the contrast at a low temperature, it is necessary to reduce the frame rate of the video data to about 10 [Hz]. There was a problem that would stand out.
[0006] 本発明は、上記課題に鑑みてなされたものであり、その目的は、低温下での動画表 示性能を向上させうる表示装置の駆動装置を提供する点にある。 [0007] 本発明の表示装置の駆動装置は、上記課題を解決するために、入力データに対し て基準電圧レンジ内の所望電圧を表示装置に出力する表示装置の駆動装置であつ て、上記基準電圧レンジが周囲温度に基づいて設定されることを特徴とする。 [0006] The present invention has been made in view of the above problems, and an object of the present invention is to provide a display device driving device capable of improving moving image display performance at low temperatures. [0007] In order to solve the above problems, the display device drive device of the present invention is a display device drive device that outputs a desired voltage within a reference voltage range to the display device in response to input data. The voltage range is set based on the ambient temperature.
[0008] 上記構成によれば、周囲温度に応じて基準電圧レンジを設定できる。したがって、 例えば低温下での基準電圧レンジを拡張し、低温下での表示階調電圧のダイナミツ クレンジを広げる、あるいは表示階調電圧のダイナミックレンジをそのままに拡張され た部分を階調遷移強調処理 (オーバーシュートあるいはオーバードライブ)に用いる といったことが可能となる。したがって、低温下でも高コントラストおよび高速応答を実 現することができ、動画表示性能を向上させることができる。  [0008] According to the above configuration, the reference voltage range can be set according to the ambient temperature. Therefore, for example, the reference voltage range at low temperatures is expanded to widen the dynamic range of display gradation voltages at low temperatures, or gradation transition emphasis processing is performed on the expanded portion without changing the dynamic range of display gradation voltages ( It can be used for overshoot or overdrive). Therefore, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved.
[0009] 本発明においては、入力データに、周囲温度に基づいた階調変換処理を行い、表 示階調数を入力データの階調数より減らすこともできる。また、階調遷移強調処理( 好ましくは周囲温度に基づ!/、た階調遷移強調処理)を行うこともできる。  In the present invention, the input data can be subjected to gradation conversion processing based on the ambient temperature, and the number of display gradations can be reduced from the number of gradations of the input data. Further, gradation transition enhancement processing (preferably gradation transition enhancement processing based on ambient temperature! /) Can be performed.
[0010] 例えば、低温下では入力階調を圧縮して表示階調とする(階調圧縮処理)ことで表 示階調数を入力階調数より減らす。なお、入力階調の一部を単純にカットして表示階 調とすること (階調カット)で表示階調数を入力階調数より減らすことも可能である。こ うして表示階調に応答が苦しい階調を含めないようすることで低温下での応答速度を 高めることができる。さらに、表示階調としない階調を、階調遷移強調処理用の階調( OS階調)として用いることもできる。これにより、低温下での応答速度を一層向上させ ることがでさる。  [0010] For example, at a low temperature, the number of display gradations is reduced from the number of input gradations by compressing the input gradations to display gradations (gradation compression processing). It is also possible to reduce the number of display gradations below the number of input gradations by simply cutting a part of the input gradations to obtain the display gradation (gradation cut). In this way, it is possible to increase the response speed at low temperatures by not including gradations that are difficult to respond to the display gradations. Furthermore, gradations that are not display gradations can be used as gradations for gradation transition enhancement processing (OS gradations). As a result, the response speed at low temperatures can be further improved.
[0011] 上記の場合、入力データが示す階調を 0階調〜 n階調として、温度 T1での基準電 圧レンジが Vmin〜Vmaxに設定されるとともに、温度 T1より低い温度 T2での基準 電圧レンジが Vmin,〜Vmax, (Vmin' < Vmin かつ Vmax, >Vmax)に設定さ れ、温度 T1では、階調変換処理を行わず、 0階調〜 n階調を表示階調とするのに対 し、温度 T2では、上記階調変換処理を行い、 i階調〜 j階調 (0<i<j<n)を表示階 調とすれば良い。また、上記表示階調 i階調〜 j階調 (0<i<; j <n)に対応する表示階 調電圧レンジを Vi,〜Vj, (Vmin' <Vi'く Vj,く Vmax,)として、 Vmin,〜Vi,およ び Vj,〜Vmax'のレンジを、階調遷移強調処理に用いればよい。なお、温度 T2に おいて入力階調を圧縮して表示階調とする際、 j階調〜 n階調 (0く; j <n)を表示階調 としたり、 0階調〜 i階調 (0<i<n)を表示階調とすることも可能である。 [0011] In the above case, the gradation indicated by the input data is 0 gradation to n gradation, the reference voltage range at temperature T1 is set to Vmin to Vmax, and the reference at temperature T2 lower than temperature T1 is set. The voltage range is set to Vmin, ~ Vmax, (Vmin '<Vmin and Vmax,> Vmax). At temperature T1, gradation conversion processing is not performed and gradations 0 to n are used as display gradations. On the other hand, at the temperature T2, the gradation conversion process is performed, and the i gradation to the j gradation (0 <i <j <n) may be set as the display gradation. Also, the display gradation voltage range corresponding to the display gradation i gradation to j gradation (0 <i <; j <n) is Vi, ~ Vj, (Vmin '<Vi' Vj, Vmax,) As such, the ranges of Vmin, ~ Vi, and Vj, ~ Vmax 'may be used for gradation transition enhancement processing. When the input gradation is compressed to display gradation at temperature T2, j gradation to n gradation (0; j <n) is displayed gradation. It is also possible to set the display gradation from 0 gradation to i gradation (0 <i <n).
[0012] 本発明においては、上記周囲温度に基づいてフレームレートが設定されることが好 ましい。例えば低温下でフレームレートを下げれば、応答速度を向上させることがで きる。 In the present invention, it is preferable that the frame rate is set based on the ambient temperature. For example, if the frame rate is lowered at low temperatures, the response speed can be improved.
[0013] 本発明の表示装置の駆動装置は、上記課題を解決するために、 Xビットデータが示 す 0階調〜 m階調の各階調に対応する階調電圧を生成できるデジタルアナログ変換 回路を備え、 Y<Xを満たす Yビットの入力データに対して、上記 0階調〜 m階調の 両端部分の少なくとも一方を周囲温度に基づく量だけカットして得られる P階調〜 q階 調 (0≤p< q≤m)に対応する階調電圧レンジ内から、該入力データに対する表示階 調電圧を選択することを特徴とする。  [0013] In order to solve the above-described problem, the drive device for the display device of the present invention is a digital-analog conversion circuit that can generate a gradation voltage corresponding to each gradation of 0 gradation to m gradation indicated by X-bit data. For Y-bit input data satisfying Y <X, P gradation to q gradation obtained by cutting at least one of the both ends of the above 0 gradation to m gradation by an amount based on the ambient temperature The display gradation voltage for the input data is selected from the gradation voltage range corresponding to (0≤p <q≤m).
[0014] 上記構成によれば、入力データのビット数より多 、ビット数に対応可能なデジタルァ ナログ変換回路を用いることで、低温下において表示階調数を変えることなく階調遷 移強調処理 (オーバーシュートあるいはオーバードライブ)を行うことが可能となり、低 温下での動画表示性能を向上させることができる。  [0014] According to the above configuration, the gradation transition enhancement process is performed without changing the number of display gradations at a low temperature by using a digital analog conversion circuit that can handle the number of bits more than the number of bits of input data. (Overshoot or overdrive) can be performed, and the video display performance at low temperatures can be improved.
[0015] 例えば、 Xビットデータが示す 0階調〜 m階調に対応する階調電圧のレンジ (デジタ ルアナログ変換回路の基準電圧レンジ)が Vx〜Vyであり、入力データが示す階調 力^階調〜 n階調である場合に、温度 T1および該 T1より低い温度 T2で、 0階調〜 n 階調を表示階調とし、温度 T1では上記カットによって表示階調電圧のレンジを VO〜 Vn (Vx<VO<Vn<Vy)に設定するとともに、温度 T2では上記カットによって表示 階調電圧のレンジを VO'〜Vn' (Vx<VO' <Vn, <Vy)に設定し、温度 T2では、 V 〜 ,ぉょひ 〜 のレンジを、階調遷移強調処理に用いる。こうすれば、低温 (Τ2)下において表示階調数および表示階調電圧のレンジを変えることなく階調遷 移強調処理を行うことが可能となる。したがって、低温下でも高コントラストおよび高速 応答を実現することができ、動画表示性能を向上させることができる。  [0015] For example, the gradation voltage range (reference voltage range of the digital analog conversion circuit) corresponding to 0 gradation to m gradation indicated by the X bit data is Vx to Vy, and the gradation power indicated by the input data is ^ If the gradation is n gradations, display gradation is 0 gradation to n gradations at temperature T1 and temperature T2 lower than T1, and at temperature T1, the range of display gradation voltage is VO ~ Vn (Vx <VO <Vn <Vy) and at the temperature T2, the display gradation voltage range is set to VO 'to Vn' (Vx <VO '<Vn, <Vy) by the above cut, and the temperature In T2, the range from V to, is used for gradation transition emphasis processing. In this way, it is possible to perform gradation transition emphasis processing without changing the number of display gradations and the display gradation voltage range at low temperatures (Τ2). Therefore, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved.
[0016] また、 Xビットデータが示す 0階調〜 m階調に対応する階調電圧のレンジが Vx〜V yであり、入力データが示す階調が 0階調〜 n階調である場合に、温度 T1および該 T 1より低い温度 T2で、 0階調〜 n階調を表示階調とし、温度 T1では上記カットを行わ ずに表示階調電圧のレンジを VO〜Vnに設定するとともに、温度 T2では上記カット によって表示階調電圧のレンジを V0'〜Vn, (Vx<V0' <Vn, <Vy)に設定し、温 度 T2では、 Vx〜VO'および Vn'〜Vyのレンジを、階調遷移強調処理に用いること もできる。こうすれば、温度 T2下において、表示階調数を (T1時から)変えることなく 階調遷移強調処理 (オーバーシュートあるいはオーバードライブ)を行うことが可能と なる。したがって、低温下でも高コントラストおよび高速応答を実現することができ、動 画表示性能を向上させることができる。カロえて、 T1 (例えば、常温)でのカット量を 0と しているため、 T1での表示階調電圧のレンジを広くとることができる。 [0016] When the range of the gradation voltage corresponding to 0 gradation to m gradation indicated by the X bit data is Vx to V y, and the gradation indicated by the input data is 0 gradation to n gradation In addition, at temperature T1 and temperature T2 lower than T1, gradations 0 to n are set as display gradations, and at temperature T1, the display gradation voltage range is set to VO to Vn without performing the above cut. The above cut at temperature T2 To set the display gradation voltage range to V0 'to Vn, (Vx <V0'<Vn,<Vy). At temperature T2, the range of Vx to VO 'and Vn' to Vy is emphasized by gradation transition. It can also be used for processing. In this way, it is possible to perform gradation transition emphasis processing (overshoot or overdrive) without changing the number of display gradations (from time T1) under temperature T2. Therefore, high contrast and high-speed response can be realized even at low temperatures, and video display performance can be improved. Since the cut amount at T1 (for example, normal temperature) is 0, the display gradation voltage range at T1 can be widened.
[0017] また、本発明の表示装置の駆動装置は、入力データに対応する電圧を表示装置に 出力する表示装置の駆動装置であって、出力可能な電圧のレンジを温度に応じて変 更でき、温度 T1では、出力される電圧のレンジが Vmin〜Vmaxであり、温度 T1より 低い温度 T2では、出力される電圧のレンジが Vmin'〜Vmax' (Vmin 'く Vmin か つ Vmax, >Vmax)であるとともに、上記 Vmin,〜Vminのレンジおよび上記 Vma x〜Vmax'のレンジにある電圧は、遷移階調強調処理を行うときに (遷移階調強調 用の電圧として)出力されることを特徴とする。  [0017] Further, the display device drive device of the present invention is a display device drive device that outputs a voltage corresponding to input data to the display device, and can change the range of the voltage that can be output according to the temperature. At temperature T1, the output voltage range is Vmin to Vmax. At temperature T2, which is lower than temperature T1, the output voltage range is Vmin 'to Vmax' (Vmin 'Vmin and Vmax,> Vmax) In addition, the voltages in the above Vmin and ~ Vmin ranges and the above Vmax ~ Vmax 'ranges are output (as transition gradation emphasizing voltages) when performing transition gradation emphasis processing. And
[0018] また、本発明の表示装置の駆動装置は、入力データに対応する電圧を表示装置に 出力する表示装置の駆動装置であって、入力データのビット数より大きなビット数の データに対応可能なデジタルアナログ変換回路を備え、温度 T1では、出力される電 圧のレンジが VO〜Vnであり、温度 T1より低い温度 T2では、出力される電圧のレン ジが Vx〜Vy(Vx<VO かつ Vy>Vn)であるとともに、上記 Vx〜VOのレンジおよ び上記 Vn〜Vyのレンジにある電圧は、遷移階調強調処理を行うときに (遷移階調強 調用の電圧として)出力されることを特徴とする。  [0018] The display device drive device of the present invention is a display device drive device that outputs a voltage corresponding to input data to the display device, and can handle data having a larger number of bits than the number of bits of the input data. The output voltage range is VO to Vn at temperature T1, and the output voltage range is Vx to Vy (Vx <VO and Vx <VO when temperature T2 is lower than temperature T1. Vy> Vn), and the voltage in the above Vx to VO range and the above Vn to Vy range is output when the transition tone emphasis processing is performed (as a voltage for transition tone enhancement). It is characterized by that.
[0019] また、本発明の表示装置の駆動装置は、入力データに対応する電圧を表示装置に 出力する表示装置の駆動装置であって、入力データのビット数より大きなビット数の データに対応可能なデジタルアナログ変換回路を備え、温度 T1では、出力される電 圧のレンジが Vx〜Vyであり、温度 T1より低い温度 T2では、出力される電圧のレン ジが Vx〜Vyであるとともに、表示階調電圧のレンジが VO'〜Vn, (VO' >Vx かつ Vn, <Vy)であり、かつ上記 Vx〜VO,のレンジおよび上記 Vn,〜Vyのレンジにあ る電圧は、遷移階調強調処理を行うときに (遷移階調強調用の電圧として)出力され ることを特徴とする。 [0019] The display device drive device of the present invention is a display device drive device that outputs a voltage corresponding to input data to the display device, and can handle data having a larger number of bits than the number of bits of the input data. The temperature output range is Vx to Vy at temperature T1, and the output voltage range is Vx to Vy at temperature T2 lower than temperature T1. The gradation voltage range is VO 'to Vn, (VO'> Vx and Vn, <Vy), and the voltage in the above Vx to VO range and the above Vn, to Vy range is the transition gradation. Output when emphasis processing is performed (as voltage for emphasizing transition tone) It is characterized by that.
[0020] また、本発明の表示装置の駆動方法は、入力データに対し、基準電圧レンジ内の 所望電圧を表示装置に出力してこれを駆動する、表示装置の駆動方法であって、入 力データが示す階調が 0階調〜 n階調である場合に、温度 T1での基準電圧レンジを Vmin〜Vmaxに設定するとともに、温度 T1より低い温度 T2での基準電圧レンジを Vmin,〜Vmax, (Vmin' <Vmin かつ Vmax, >Vmax)に設定し、温度 T1では 、 0階調〜 n階調を表示階調とする一方、温度 T2では、入力データに階調変換処理 (例えば、階調圧縮あるいは階調カット)を行い、 i階調〜 j階調 (0く iく; j <n)を表示 階調とすることを特徴とする。  [0020] Further, the display device driving method of the present invention is a display device driving method in which a desired voltage within a reference voltage range is output to a display device and driven with respect to input data. When the gradation indicated by the data is from 0 to n, the reference voltage range at temperature T1 is set to Vmin to Vmax, and the reference voltage range at temperature T2 lower than temperature T1 is set to Vmin, ~ Vmax. , (Vmin '<Vmin and Vmax,> Vmax), and at temperature T1, gradations 0 to n are displayed gradations, while at temperature T2, gradation conversion processing is performed on the input data (for example, (I.e., tone compression or gradation cut), and i gradation to j gradation (0 to i; j <n) are set as display gradations.
[0021] また、本発明の表示装置の駆動方法は、 Yビットの入力データに対して所望電圧を 表示装置に出力してこれを駆動する、表示装置の駆動方法であって、 X>Yを満た す Xビットデータが示す 0階調〜 m階調の各階調に対応する階調電圧を生成できる デジタルアナログ変換回路を用い、上記 0階調〜 m階調の両端部分の少なくとも一 方を周囲温度に基づく量だけカットして得られる p階調〜 q階調 (0≤p< q≤m)に対 応する階調電圧レンジ内から、上記入力データに対する表示階調電圧を選択するこ とを特徴とする。  [0021] A display device driving method according to the present invention is a display device driving method in which a desired voltage is output to a display device and driven in response to Y-bit input data, and X> Y is satisfied. Using a digital-analog converter circuit that can generate a gradation voltage corresponding to each gradation from 0 gradation to m gradation indicated by the X bit data, at least one of the both ends of the above 0 gradation to m gradation is surrounded Select the display gradation voltage for the above input data from the gradation voltage range corresponding to p gradation to q gradation (0≤p <q≤m) obtained by cutting only the amount based on temperature. It is characterized by.
[0022] また、本発明の表示装置は、上記した表示装置の駆動装置を備えることを特徴とす る。  [0022] In addition, a display device of the present invention includes the above-described display device driving device.
[0023] 以上のように、本発明の表示装置の駆動装置によれば、低温下でも高コントラスト および高速応答を実現することができ、動画表示性能を向上させることができる。 図面の簡単な説明  As described above, according to the display device drive device of the present invention, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved. Brief Description of Drawings
[0024] [図 1]本発明の実施の形態 1を示すブロック図である。 FIG. 1 is a block diagram showing a first embodiment of the present invention.
[図 2]本発明の実施の形態 2を示すブロック図である。  FIG. 2 is a block diagram showing Embodiment 2 of the present invention.
[図 3]実施の形態 1における基準電圧レンジ可変 DAC回路の階調一階調電圧変換 特性を示すグラフである。  FIG. 3 is a graph showing gradation-one gradation voltage conversion characteristics of the reference voltage range variable DAC circuit according to the first embodiment.
[図 4]実施の形態 2における 8ビット DAC回路の階調一階調電圧変換特性を示すグ ラフである。  FIG. 4 is a graph showing gradation-one gradation voltage conversion characteristics of the 8-bit DAC circuit in the second embodiment.
[図 5]実施の形態 2における 8ビット DAC回路の階調一階調電圧変換特性を示すグ ラフである。 FIG. 5 is a graph showing gradation-one gradation voltage conversion characteristics of the 8-bit DAC circuit in the second embodiment. It is rough.
[図 6]実施の形態 1の基準電圧レンジ可変 DAC回路の構成を示す模式図である。  FIG. 6 is a schematic diagram showing a configuration of a reference voltage range variable DAC circuit according to the first embodiment.
[図 7]フレーム間引き時のオーバーシュートのかけ方を説明する模式図である。  FIG. 7 is a schematic diagram for explaining how to apply overshoot during frame thinning.
[図 8]フレーム間引き時のオーバーシュートのかけ方を説明する模式図である。  FIG. 8 is a schematic diagram for explaining how to apply overshoot during frame thinning.
[図 9]実施の形態 1における階調処理部での階調圧縮の一例である。  FIG. 9 is an example of gradation compression in the gradation processing unit in the first embodiment.
[図 10]実施の形態 1における階調処理部での階調カットの一例である。  FIG. 10 shows an example of gradation cut in the gradation processing unit according to the first embodiment.
符号の説明  Explanation of symbols
[0025] 1 101 液晶表示装置 (表示装置) [0025] 1 101 Liquid crystal display device (display device)
2 102 液晶パネル駆動装置 (表示装置の駆動装置)  2 102 LCD panel drive (display drive)
3 103 液晶パネル  3 103 LCD panel
5 105 温度検出部  5 105 Temperature detector
6 106 記憶部  6 106 Memory
7 107 信号処理部  7 107 Signal processor
10 110 フレーム処理部  10 110 Frame processing section
11 111 階調処理部  11 111 Gradation processing section
14 114 OS (オーバーシュート)処理部  14 114 OS (overshoot) processor
16 基準電圧レンジ可変 DAC回路  16 Reference voltage range variable DAC circuit
18 118 液晶コントローラ  18 118 LCD controller
116 8ビット DAC回路(デジタルアナログ変換回路)  116 8-bit DAC circuit (digital / analog conversion circuit)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明の実施の一形態を図 1〜図 10に基づいて説明すれば以下の通りである。  [0026] One embodiment of the present invention will be described below with reference to Figs.
[0027] 〔実施の形態 1〕  [Embodiment 1]
本液晶表示装置 1 (表示装置)は、図 1に示されるように、液晶パネル駆動装置 2と、 液晶パネル 3とを備える。液晶パネル駆動装置 2は、温度検出部 5、信号処理部 7、 記憶部 6、液晶コントローラ 18、基準電圧レンジ可変 DAC回路 16を含むソースドライ ノ 20、およびゲートドライバ 21を備える。記憶部 5は、第 1LUT24および第 2LUT2 5を備える。また、信号処理部 7は、フレーム処理部 10、階調処理部 11、および OS 処理部 14を備える。なお、この信号処理部 7の各部の機能や液晶コントローラ 18の 制御は、図示しない CPUやマイコン等のプロセッサによって実現される。 The present liquid crystal display device 1 (display device) includes a liquid crystal panel drive device 2 and a liquid crystal panel 3 as shown in FIG. The liquid crystal panel driving device 2 includes a temperature detection unit 5, a signal processing unit 7, a storage unit 6, a liquid crystal controller 18, a source driver 20 including a reference voltage range variable DAC circuit 16, and a gate driver 21. The storage unit 5 includes a first LUT 24 and a second LUT 25. The signal processing unit 7 includes a frame processing unit 10, a gradation processing unit 11, and an OS processing unit 14. The function of each part of the signal processing unit 7 and the liquid crystal controller 18 Control is realized by a processor such as a CPU or a microcomputer (not shown).
[0028] 温度検出部 5は、液晶表示装置 1の温度を検出し、これを温度信号として信号処理 部 7と基準電圧レンジ可変 DAC回路 16とに送信する。 The temperature detection unit 5 detects the temperature of the liquid crystal display device 1 and transmits it to the signal processing unit 7 and the reference voltage range variable DAC circuit 16 as a temperature signal.
[0029] 信号処理部 7は、温度検出部 5からの温度信号を用いて入力映像データに後述す る処理を行 ヽ、処理後のデジタルデータ(階調データ)を基準電圧レンジ可変 DAC 回路 16に出力する。信号処理部 7の具体的な処理内容は以下のとおりである。なお 、以下では入力映像データを 6ビットデータ (0〜64階調の階調データ)として説明す る。 [0029] The signal processing unit 7 performs processing described later on the input video data using the temperature signal from the temperature detecting unit 5, and uses the processed digital data (gradation data) as a reference voltage range variable DAC circuit 16 Output to. Specific processing contents of the signal processing unit 7 are as follows. In the following description, the input video data is described as 6-bit data (gradation data of 0 to 64 gradations).
[0030] フレーム処理部 10は、温度検出部 5からの温度信号に基づいてフレームレートを 決定する。入力映像データが 60〔Hz〕で送られる場合には、 1秒あたり 60フレーム分 のデータが含まれる力 温度信号に応じてフレームを間引き、例えば 30フレームだけ 後段の処理を行い、表示する(この場合、フレームレートは 50パーセント)。フレーム 処理部 10は温度の低下に従ってフレームレートを下げる(より多くのフレームを間引 く)力 フレームレートの低下に伴って動画にがたつきが現れるためフレームレートの 下げ幅は必要最小限にすることが好ましい。  The frame processing unit 10 determines the frame rate based on the temperature signal from the temperature detection unit 5. When input video data is sent at 60 [Hz], frames are thinned out according to the force / temperature signal containing 60 frames of data per second, for example, 30 frames are processed and displayed (this Frame rate is 50 percent). The power of the frame processing unit 10 decreases the frame rate as the temperature decreases (decimates more frames). As the frame rate decreases, the moving image appears to be unstable. It is preferable.
[0031] 階調処理部 11は、温度検出部 5からの温度信号に基づいて、フレーム処理部 10 から出力されたデータに対して階調圧縮処理を行う。低温下では液晶の応答が鈍く なり、特に最小および最大階調近傍の表示が苦しくなる。そこで、例えば低温下では 、入力される 0〜63階調を 16〜56階調に圧縮する。すなわち、図 9に示すように、入 力される 0階調を 16階調に変換し、以後入力される階調が 8増えるのに従って出力 する階調を 5増加させる。例えば、入力される 1、 2、 3、 4、 5、 6、 7、 8階調に対し、 ( 表示階調として) 16、 17、 17、 18、 19、 19、 20、 21階調を出力し、入力される 56、 5 7、 58、 59、 60、 61、 62、 63階調に対して、(表示階調として;) 51、 52、 52、 53、 54 、 54、 55、 56階調を出力する。こうすれば、表示階調には 0〜15階調および 57〜6 3階調が含まれず、応答速度が高まる。  The gradation processing unit 11 performs gradation compression processing on the data output from the frame processing unit 10 based on the temperature signal from the temperature detection unit 5. At low temperatures, the response of the liquid crystal becomes dull, and display near the minimum and maximum gradations is particularly difficult. Therefore, for example, at a low temperature, the input 0 to 63 gradations are compressed to 16 to 56 gradations. That is, as shown in FIG. 9, the input 0 gradation is converted to 16 gradations, and the output gradation is increased by 5 as the input gradation is increased by 8. For example, for input 1, 2, 3, 4, 5, 6, 7, 8 gradations, output 16, 17, 17, 18, 19, 19, 20, 21 gradations (as display gradations) For the 56, 5 7, 58, 59, 60, 61, 62, 63 gradations that are input (as display gradations;) 51, 52, 52, 53, 54, 54, 55, 56th floor Output the key. In this way, the display gradation does not include the 0 to 15 gradation and the 57 to 63 gradation, and the response speed increases.
[0032] なお、階調処理部 11においては、上記のような階調圧縮処理のほか、図 10に示す ように、入力される 0階調〜 15階調および 57階調〜 63階調を単純にカットする階調 カット処理を行うことも可能である。 [0033] OS処理部 14は、温度検出部 5からの温度信号に基づいて、階調処理部 11から出 力された階調データに対して階調遷移強調処理 (オーバーシュート)を行い、 OS階 調データを出力する。この階調遷移強調処理には第 1LUT24を用いる。第 1LUT2 4は、前フレーム階調 Z現フレーム階調と OS階調とを組み合わせたルックアップテー ブルであり、温度に応じて複数用意されている。すなわち、 OS処理部 14は、温度信 号に応じた第 1LUT24を選択するとともにこれを用いて OS階調を出力する。もっとも 、階調遷移がない場合等オーバーシュートの必要がない場合には、階調処理部 11 力も出力された階調をそのまま出力する。例えば、常温時には、前フレームが 24階 調で現フレームが 40階調であれば OS階調として 43階調を出力し、低温時には、前 フレームが 24階調で現フレーム力 0階調であれば OS階調として 50階調を出力す る。 Note that in the gradation processing unit 11, in addition to the gradation compression processing as described above, as shown in FIG. 10, the input 0 gradation to 15 gradation and 57 gradation to 63 gradation are performed. It is also possible to perform gradation cut processing that simply cuts. [0033] The OS processing unit 14 performs gradation transition enhancement processing (overshoot) on the gradation data output from the gradation processing unit 11 based on the temperature signal from the temperature detection unit 5, and the OS Outputs gradation data. The first LUT 24 is used for this gradation transition enhancement processing. The first LUT 24 is a look-up table that combines the previous frame gradation Z, the current frame gradation, and the OS gradation, and a plurality of them are prepared according to the temperature. That is, the OS processing unit 14 selects the first LUT 24 corresponding to the temperature signal and outputs the OS gradation using this. However, when there is no need for overshoot, such as when there is no tone transition, the tone processing unit 11 outputs the output tone as it is. For example, at room temperature, if the previous frame is 24 gradations and the current frame is 40 gradations, 43 gradations are output as the OS gradation, and at low temperatures, the previous frame is 24 gradations and the current frame power is 0 gradation. For example, 50 gradations are output as the OS gradation.
[0034] 液晶コントローラ 18は、基準電圧レンジ可変 DAC回路 16を含むソースドライバ 20 と、ゲートドライバ 21とを制御する。このソースドライバ 20およびゲートドライバ 21によ つて液晶パネル 3に配されたソースラインおよびゲートライン(図示せず)が駆動され る。これにより上記ソースラインおよびゲートラインの交差点近傍にマトリクス状に配さ れた画素に上記出力電圧が書き込まれ、液晶パネル 3の表示が行われる。  The liquid crystal controller 18 controls the source driver 20 including the reference voltage range variable DAC circuit 16 and the gate driver 21. The source driver 20 and the gate driver 21 drive a source line and a gate line (not shown) arranged in the liquid crystal panel 3. As a result, the output voltage is written to pixels arranged in a matrix near the intersection of the source line and the gate line, and the liquid crystal panel 3 is displayed.
[0035] 基準電圧レンジ可変 DAC回路 16は、温度検出部 5からの温度信号に基づいて O S処理部 14から出力された階調をアナログの出力電圧に変換する。これを実現する 構成例を図 6に示す。同図に示すように、基準電圧レンジ可変 DAC回路 16におい ては、可変抵抗 R0、 Rl、 R2' · -R(n+ 1)が直列に接続され、各可変抵抗間の電位 が V0 (最小基準電圧)、 VI、 V2' · ·νη (最大基準電圧)とされる。また、記憶部 6の 第 2LUT25は、階調と抵抗値データ (例えば、 10ビットデータ)とを組み合わせたル ックアップテーブルであり、温度に応じて複数用意されている。すなわち、液晶コント ローラ 18は、温度信号に応じた第 2LUT25を選択するとともにこれを用いて抵抗値 データを各可変抵抗 R0、 Rl、 R2' · ·に出力する。これにより、各可変抵抗 R0、 Rl、 R2- · ·の抵抗値が変更される。この結果、基準電圧レンジが変更され、各階調 (OS 処理部 14から出力された階調)と階調電圧との対応関係が温度に応じて可変となる [0036] 図 3は、基準電圧レンジ可変 DAC回路 16による温度 (Τ1 ·Τ2)ごとの階調—電圧 変換例を示すグラフである。なお、 T1は常温、 Τ2は低温 (例えば、—20°C以下)で ある。温度 T1 (常温)においては、基準電圧レンジが 2. 5V(Vmin)〜6. 3V (Vmax )に設定され、表示階調電圧のレンジは、 0階調に対応する階調電圧 2. 5V力 63 階調に対応する階調電圧 6. 3Vであり、入力される 0〜63階調の各階調に対して図 3のグラフで示すような階調電圧が出力される。 The reference voltage range variable DAC circuit 16 converts the gradation output from the OS processing unit 14 into an analog output voltage based on the temperature signal from the temperature detection unit 5. Figure 6 shows a configuration example for realizing this. As shown in the figure, in the variable reference voltage range DAC circuit 16, variable resistors R0, Rl, R2 '· -R (n + 1) are connected in series, and the potential between each variable resistor is V0 (minimum reference Voltage), VI, V2 '· · νη (maximum reference voltage). The second LUT 25 of the storage unit 6 is a look-up table in which gradation and resistance value data (for example, 10-bit data) are combined, and a plurality of second LUTs 25 are prepared according to the temperature. That is, the liquid crystal controller 18 selects the second LUT 25 according to the temperature signal and outputs resistance value data to each of the variable resistors R0, R1, R2 '. As a result, the resistance values of the variable resistors R0, Rl, R2-... Are changed. As a result, the reference voltage range is changed, and the correspondence between each gradation (the gradation output from the OS processing unit 14) and the gradation voltage becomes variable according to the temperature. FIG. 3 is a graph showing an example of gradation-voltage conversion for each temperature (Τ1 · Τ2) by the reference voltage range variable DAC circuit 16. T1 is normal temperature and 、 2 is low temperature (for example, -20 ° C or less). At temperature T1 (room temperature), the reference voltage range is set from 2.5V (Vmin) to 6.3V (Vmax), and the display gradation voltage range is the gradation voltage corresponding to 0 gradation 2.5V power The gradation voltage corresponding to 63 gradations is 6.3 V, and a gradation voltage as shown in the graph of FIG. 3 is output for each gradation of 0 to 63 gradations inputted.
[0037] 一方、温度 T2 (低温)においては、基準電圧レンジが 0. 5V (Vmin' )〜8. OV(V max' )に設定されており、表示階調電圧のレンジは、 16階調 (表示階調)に対応す る階調電圧 2. 5Vから 56階調 (表示階調)に対応する階調電圧 6. 3Vであり、 16〜2 6階調の各表示階調に対して図 3のグラフで示すような階調電圧が出力される。なお 、図 3の 0〜15階調に対応する 0. 5〜2. 5V (2. 5V含まず)および 57〜63階調に 対応する 6. 3〜8. 0V(6. 3V含まず)は、 OS処理部 14から OS階調として基準電圧 レンジ可変 DAC回路 16に入力されたものである(例えば、前フレームが 48階調で現 フレームが 24階調であれば OS階調として 13階調が基準電圧レンジ可変 DAC回路 16に入力される)。このように、表示階調としない階調を OS階調に用い、拡張された 基準レンジ (0. 5〜8. 0V)を出力電圧レンジとすることで、低温下での応答速度を一 層向上させることができる。  [0037] On the other hand, at temperature T2 (low temperature), the reference voltage range is set to 0.5 V (Vmin ') to 8. OV (V max'), and the display gradation voltage range is 16 gradations. The gradation voltage corresponding to (display gradation) 2.5V to 56 gradations The gradation voltage corresponding to (display gradation) 6.3V, for each display gradation of 16 to 26 gradations The gradation voltage as shown in the graph of Fig. 3 is output. Note that 0.5 to 2.5 V (2.5 V not included) corresponding to 0 to 15 gradations in Fig. 3 and 6.3 to 8.0 V (6.3 V not included) corresponding to 57 to 63 gradations. Is input to the reference voltage range variable DAC circuit 16 from the OS processing unit 14 as the OS gradation (for example, if the previous frame is 48 gradations and the current frame is 24 gradations, the OS gradation is the 13th floor) The key is input to the reference voltage range variable DAC circuit 16). In this way, gray scales that are not display gray scales are used as OS gray scales, and the extended reference range (0.5 to 8.0 V) is used as the output voltage range, so that the response speed at low temperatures is further improved. Can be improved.
[0038] 本実施の形態によれば、低温 (T2)下では常温 (T1)より基準電圧レンジを拡張す ることで、表示階調電圧のレンジ(2. 5〜6. 3V)をそのままに、拡張された部分 (0. 5〜2. 5V- 6. 3〜8. 0V)をオーバーシュートに用いることが可能となる。したがって 、低温下でも高コントラストおよび高速応答を実現することができ、動画表示性能を向 上させることができる。  [0038] According to the present embodiment, the display gradation voltage range (2.5 to 6.3 V) is maintained as it is by extending the reference voltage range from room temperature (T1) at low temperatures (T2). The extended portion (0.5 to 2.5 V-6.3 to 8.0 V) can be used for overshoot. Therefore, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved.
[0039] 〔実施の形態 2〕  [Embodiment 2]
本液晶表示装置 101 (表示装置)は、図 2に示されるように、液晶パネル駆動装置 1 02と、液晶パネル 103とを備える。液晶パネル駆動装置 102は、温度検出部 105、 信号処理部 107、記憶部 106、液晶コントローラ 118、 8ビット DAC回路 116を含む ソースドライバ 120、およびゲートドライバ 121を備える。記憶部 106は、第 1LUT12 4を備える。また、信号処理部 107は、フレーム処理部 110、階調処理部 111、およ び OS処理部 114を備える。なお、この信号処理部 107の各部の機能や液晶コント口 ーラ 118の制御は、図示しない CPUやマイコン等のプロセッサによって実現される。 The liquid crystal display device 101 (display device) includes a liquid crystal panel driving device 102 and a liquid crystal panel 103 as shown in FIG. The liquid crystal panel drive device 102 includes a temperature detection unit 105, a signal processing unit 107, a storage unit 106, a liquid crystal controller 118, a source driver 120 including an 8-bit DAC circuit 116, and a gate driver 121. The storage unit 106 includes a first LUT 124. The signal processing unit 107 includes a frame processing unit 110, a gradation processing unit 111, and And an OS processing unit 114. The functions of each part of the signal processing unit 107 and the control of the liquid crystal controller 118 are realized by a processor such as a CPU or a microcomputer (not shown).
[0040] 温度検出部 105は、液晶表示装置 101の温度を検出し、これを温度信号として信 号処理部 107に送信する。  [0040] The temperature detection unit 105 detects the temperature of the liquid crystal display device 101, and transmits this to the signal processing unit 107 as a temperature signal.
[0041] 信号処理部 107は、温度検出部 105からの温度信号を用いて入力映像データに 後述する処理を行!、、処理後のデジタルデータ(階調データ)を 8ビット DAC回路 11 6に出力する。信号処理部 107の具体的な処理内容は以下のとおりである。なお、以 下では入力映像データを 6ビットデータ (0〜64階調の階調データ)として説明する。  [0041] The signal processing unit 107 performs processing to be described later on the input video data using the temperature signal from the temperature detection unit 105 !, and outputs the processed digital data (gradation data) to the 8-bit DAC circuit 116. Output. Specific processing contents of the signal processing unit 107 are as follows. In the following, the input video data is described as 6-bit data (gradation data of 0 to 64 gradations).
[0042] フレーム処理部 110は、図 1に示すフレーム処理部 10と同様の機能を備える。  The frame processing unit 110 has the same function as the frame processing unit 10 shown in FIG.
[0043] 階調処理部 111は、温度検出部 105からの温度信号に基づいて階調変換処理を 行う。すなわち、フレーム処理部 110から出力された 6ビットデータを 8ビットの表示階 調データに変換する。例えば、常温 (温度 T1)では、 6ビットの 0階調を 8ビット表現の 64階調に、 6ビットの 16階調を 8ビット表現の 96階調に、 6ビットの 32階調を 8ビット表 現の 128階調【こ、 6ヒ、、ットの 48階調を 8ヒ、、ット表現の 160階調【こ、 6ヒ、、ットの 63階調を 8 ビット表現の 188階調に変換する。また、低温 (温度 T2)でも、 6ビットの 0階調を 8ビッ ト表現の 64階調に、 6ビットの 16階調を 8ビット表現の 96階調に、 6ビットの 32階調を 8ビット表現の 128階調に、 6ビットの 48階調を 8ビット表現の 160階調に、 6ビットの 6 3階調を 8ビット表現の 188階調に変換する。  The gradation processing unit 111 performs gradation conversion processing based on the temperature signal from the temperature detection unit 105. That is, the 6-bit data output from the frame processing unit 110 is converted to 8-bit display gradation data. For example, at room temperature (temperature T1), 6-bit 0 gradation is converted to 64-bit expression with 8 bits, 16-bit gradation with 6 bits is converted to 96 gradations with 8-bit expression, and 32 gradations of 6 bits are 8 bits. Representing 128 gray scales [8, 48, 8 and 8 shades, 160 representing 16 dots [63, 6, 63, 16 shades, 8-bit representation, 188 Convert to gradation. In addition, even at low temperatures (temperature T2), 6-bit 0 gradation is converted to 64 gradation of 8-bit representation, 6-bit 16 gradation is converted to 96 gradation of 8-bit representation, and 6-bit 32 gradation is 8 Converts 6-bit 48 gradations to 8-bit representation 160 gradations and 6-bit 63 gradations to 8-bit representation 188 gradations to 128-bit gradations.
[0044] OS処理部 114は、温度検出部 105からの温度信号に基づいて、階調処理部 111 力も出力された表示階調に対して階調遷移強調 (オーバードライブ)処理を行 、、 O S階調を出力する。この階調遷移強調処理には第 1LUT24を用いる。第 1LUT24 は、前フレーム階調 Z現フレーム階調と OS階調とを組み合わせたルックアップテー ブルであり、温度に応じて複数用意されている。すなわち、 OS処理部 114は、温度 信号に応じた第 1LUT124を選択するとともにこれを用いて OS階調を出力する。も つとも、階調遷移がない場合等オーバーシュートの必要がない場合には、階調処理 部 111から出力された階調をそのまま出力する。例えば、常温時には、前フレームが 96階調で現フレームが 160階調であれば OS階調として 172階調を出力し、低温時 には、前フレームが 96階調で現フレームが 160階調であれば OS階調として 186階 調を出力する。 [0044] Based on the temperature signal from the temperature detection unit 105, the OS processing unit 114 performs gradation transition emphasis (overdrive) processing on the display gradation from which the gradation processing unit 111 also outputs, and the OS Output gradation. The first LUT 24 is used for this gradation transition enhancement processing. The first LUT 24 is a lookup table that combines the previous frame gradation Z current frame gradation and the OS gradation, and a plurality of them are prepared according to the temperature. That is, the OS processing unit 114 selects the first LUT 124 corresponding to the temperature signal and outputs the OS gradation using this. In any case, when there is no need for overshoot such as when there is no gradation transition, the gradation output from the gradation processing unit 111 is output as it is. For example, at normal temperature, if the previous frame is 96 gradations and the current frame is 160 gradations, 172 gradations are output as the OS gradation, and at low temperatures, the previous frame is 96 gradations and the current frame is 160 gradations If the OS gradation is 186 floor Output the key.
[0045] 液晶コントローラ 118は、 8ビット DAC回路 116を含むソースドライバ 120と、ゲート ドライバ 121とを制御する。このソースドライバ 120およびゲートドライバ 121によって 液晶パネル 103に配されたソースラインおよびゲートライン(図示せず)が駆動される 。これにより上記ソースラインおよびゲートラインの交差点近傍にマトリクス状に配され た画素に上記出力電圧が書き込まれ、液晶パネル 103の表示が行われる。  The liquid crystal controller 118 controls the source driver 120 including the 8-bit DAC circuit 116 and the gate driver 121. The source driver 120 and the gate driver 121 drive a source line and a gate line (not shown) arranged on the liquid crystal panel 103. As a result, the output voltage is written to pixels arranged in a matrix near the intersection of the source line and the gate line, and the liquid crystal panel 103 is displayed.
[0046] 8ビット DAC回路 116は、 OS処理部 114から出力された階調をアナログの電圧に 変換する。この 8ビット DAC回路 116は、その基準電圧レンジが 0. 5V (Vx)〜8. 0V (Vy)であり、 0階調に対応する階調電圧は 0. 5V、 255階調に対応する階調電圧 8 . 0Vである。  [0046] The 8-bit DAC circuit 116 converts the gradation output from the OS processing unit 114 into an analog voltage. This 8-bit DAC circuit 116 has a reference voltage range of 0.5 V (Vx) to 8.0 V (Vy), and the gradation voltage corresponding to 0 gradation is 0.5 V and the gradation corresponding to 255 gradations. The regulated voltage is 8.0V.
[0047] 図 4は、 8ビット DAC回路 116による温度 (Tl -T2)ごとの階調—階調電圧変換例 を示すグラフである。なお、 T1は常温、 T2は低温 (例えば、—20°C以下)である。  FIG. 4 is a graph showing an example of gradation-gradation voltage conversion for each temperature (Tl-T2) by the 8-bit DAC circuit 116. T1 is normal temperature and T2 is low temperature (for example, -20 ° C or less).
[0048] 温度 T1 (常温)では、 8ビットの両端部分の階調をカットしつつ、 6ビット 64階調全て を表示する。すなわち、表示階調電圧のレンジは、 8ビット 64階調 (6ビット 0階調)に 対応する階調電圧 2. 5V (V0)から 8ビット 188階調 (6ビット 63階調)に対応する階 調電圧 6. 3V(Vn)である。そして、 OS処理部 14力も入力される 64〜192階調の各 階調 (64個)に対して図 4のグラフで示すような階調電圧が生成される。なお、 T1で は、出力電圧のレンジが 2. 5V〜6. 3Vであり、表示階調電圧のレンジと等しい。  [0048] At temperature T1 (room temperature), all 6-bit and 64 gradations are displayed while the gradations at both ends of 8-bit are cut. In other words, the display gradation voltage range corresponds to gradation voltage 2.5V (V0) corresponding to 8 bits 64 gradations (6 bits 0 gradation) to 8 bits 188 gradations (6 bits 63 gradations). The gradation voltage is 6.3V (Vn). Then, a gradation voltage as shown in the graph of FIG. 4 is generated for each gradation (64) of 64 to 192 gradations to which the OS processing unit 14 force is also input. At T1, the output voltage range is 2.5V to 6.3V, which is the same as the display gradation voltage range.
[0049] 一方、温度 T2 (低温)では、 8ビットの両端部分の階調をカットしてカット部分をォー バーシュートに用いつつ、 6ビット 64階調全てを表示する。すなわち、表示階調電圧 のレンジは、 8ビット 64階調(6ビット 0階調)に対応する階調電圧 2. 5V(V0,)から 8 ビット 188階調(6ビット 63階調)に対応する階調電圧 6. 3V(Vn,)である。そして、 O S処理部 14力も入力される 64〜192階調の中の(6ビット 0〜63階調に対応する) 64 個の階調に対して図 4のグラフで示すような階調電圧が出力される。上記のとおり、 T 2【こお!ヽて 0〜64階調【こ対応する 0. 5〜2. 5V(2. 5V含まず;)および 192〜255階 調に対応する 6. 3〜8. 0V (6. 3V含まず)は、 OS階調として入力されたものである( 例えば、 T2において前フレームが 190階調で現フレームが 96階調であれば OS階 調として 40階調が 8ビット DAC回路 116に入力される)。よって、 T2では、出力電圧 レンジが 0. 5V〜8. OVであり、表示階調電圧のレンジより広くなる。 [0049] On the other hand, at the temperature T2 (low temperature), all the 6-bit and 64 gradations are displayed while the gradation at both ends of the 8-bit is cut and the cut part is used for overshoot. In other words, the display gradation voltage range corresponds to gradation voltage 2.5V (V0,) corresponding to 8 bits 64 gradations (6 bits 0 gradation) to 8 bits 188 gradations (6 bits 63 gradations). The gradation voltage to be used is 6.3V (Vn,). And the gradation voltage as shown in the graph of Fig. 4 is applied to 64 gradations (corresponding to 6 bits 0 to 63 gradations) out of 64 to 192 gradations where the OS processing unit 14 power is also input. Is output. As described above, T 2 [Koo! Take 0 to 64 gradations (corresponding to 0.5 to 2.5 V (not including 2.5 V)) and 192 to 255 gradations 6.3 to 8 0V (not including 6.3V) is input as the OS gradation (for example, if the previous frame is 190 gradations and the current frame is 96 gradations in T2, 40 gradations are used as the OS gradation) Input to the 8-bit DAC circuit 116). Therefore, at T2, the output voltage The range is 0.5 V to 8. OV, which is wider than the display gradation voltage range.
[0050] 本実施の形態によれば、低温 (T2)下において、表示階調数 (64個)および表示階 調電圧のレンジ(2. 5V〜6. 3V)を T1から変えることなぐ 0. 5V(Vx)〜2. 5V(VO ,)および 6. 3V(Vn,)〜8. OV(Vy)の部分をオーバーシュートに用いることが可能 となる。したがって、低温下でも高コントラストおよび高速応答を実現することができ、 動画表示性能を向上させることができる。 [0050] According to the present embodiment, the display gradation number (64) and the display gradation voltage range (2.5 V to 6.3 V) are not changed from T1 at low temperature (T2). The parts of 5V (Vx) to 2.5V (VO,) and 6.3V (Vn,) to 8.OV (Vy) can be used for overshoot. Therefore, high contrast and high-speed response can be realized even at low temperatures, and moving picture display performance can be improved.
[0051] 図 5は、 8ビット DAC回路 116による他の階調一階調電圧変換例を示すグラフであ る。 FIG. 5 is a graph showing another example of gradation-one gradation voltage conversion by the 8-bit DAC circuit 116.
[0052] すなわち、温度 T1 (常温)では、 8ビットの両端部分の階調をカットせず、 6ビット 64 階調全てを表示する。すなわち、表示階調電圧のレンジは、 8ビット 0階調 (6ビット 0 階調)に対応する階調電圧 0. 5V(VO)力ら 8ビット 255階調 (6ビット 63階調)に対応 する階調電圧 8. OV (Vn)である。そして、 OS処理部 14から入力される 0〜255階調 の中の(6ビット 0〜63階調に対応する) 64個の階調に対して図 5のグラフで示すよう な階調電圧が生成される。なお、前段の階調処理部 111では、 T1において、 6ビット の 0階調が 8ビット表現の 0階調に、 6ビットの 16階調が 8ビット表現の 64階調に、 6ビ ットの 32階調が 8ビット表現の 96階調に、 6ビットの 48階調が 8ビット表現の 192階調 に、 6ビットの 63階調が 8ビット表現の 255階調に変換される。このように、 T1では、出 力電圧レンジが 0. 5V〜8. OVであり、表示階調電圧のレンジと等しい。  That is, at the temperature T1 (room temperature), all the 6-bit 64 gradations are displayed without cutting the gradations at both ends of the 8-bit. In other words, the range of display gradation voltage corresponds to gradation voltage 0.5V (VO) power corresponding to 8 bits 0 gradation (6 bits 0 gradation) and 8 bits 255 gradation (6 bits 63 gradation). The gradation voltage to be 8. OV (Vn). The gradation voltage shown in the graph of FIG. 5 is applied to 64 gradations (corresponding to 6 bits 0 to 63 gradations) out of the 0 to 255 gradations input from the OS processing unit 14. Generated. Note that in the gradation processing unit 111 at the previous stage, in T1, 6-bit 0 gradation is 8-bit representation 0 gradation, 6-bit 16 gradation is 8-bit representation 64 gradation, 6-bit 32 gradations are converted to 96 gradations in 8-bit expression, 48 gradations in 6 bits are converted to 192 gradations in 8-bit expression, and 63 gradations in 6 bits are converted to 255 gradations in 8-bit expression. Thus, at T1, the output voltage range is 0.5V to 8.OV, which is equal to the display gradation voltage range.
[0053] 一方、温度 T2 (常温)では、 8ビットの両端部分の階調をカットしてカット部分をォー バーシュートに用いつつ、 6ビット 64階調全てを表示する。すなわち、表示階調電圧 のレンジは、 8ビット 64階調(6ビット 0階調)に対応する階調電圧 2. 5V(VO,)から 8 ビット 188階調(6ビット 63階調)に対応する階調電圧 6. 3V(Vn,)である。そして、 O S処理部 14力も入力される 64〜192階調の中の(6ビット 0〜63階調に対応する) 64 個の階調に対して図 5のグラフで示すような階調電圧が出力される。上記のとおり、 T 2【こお!ヽて 0〜64階調【こ対応する 0. 5〜2. 5V(2. 5V含まず;)および 192〜255階 調に対応する 6. 3〜8. 0V (6. 3V含まず)は、 8ビット DAC回路 116に OS階調とし て入力されたものである(例えば、 T2において前フレームが 190階調で現フレームが 96階調であれば OS階調として 40階調が 8ビット DAC回路 116に入力される)。よつ て、 T2では、出力電圧レンジが 0. 5V〜8. 0Vであり、表示階調電圧のレンジより広 くなる。 [0053] On the other hand, at the temperature T2 (room temperature), all the 6-bit and 64 gradations are displayed while the gradations at both ends of the 8-bit are cut and the cut portions are used for overshoot. In other words, the display gradation voltage range corresponds to gradation voltage 2.5V (VO,) corresponding to 8 bits 64 gradations (6 bits 0 gradation) to 8 bits 188 gradations (6 bits 63 gradations). The gradation voltage to be used is 6.3V (Vn,). Then, the gradation voltage as shown in the graph of FIG. 5 is applied to 64 gradations (corresponding to 6 bits 0 to 63 gradations) out of 64 to 192 gradations to which the OS processing unit 14 power is also input. Is output. As described above, T 2 [Koo! Take 0 to 64 gradations (corresponding to 0.5 to 2.5 V (not including 2.5 V)) and 192 to 255 gradations 6.3 to 8 0V (not including 6.3V) is input to the 8-bit DAC circuit 116 as the OS gradation (for example, if the previous frame is 190 gradations and the current frame is 96 gradations at T2, the OS 40 gradations are input to the 8-bit DAC circuit 116). Yotsu At T2, the output voltage range is 0.5V to 8.0V, which is wider than the display gradation voltage range.
[0054] この構成によれば、低温 (T2)下において、表示階調数 (64個)を T1 (常温)から変 えることなく 0. 5V(Vx)〜2. 5V (VO,)および 6. 3V (Vn,)〜8. OV(Vy)の部分を オーバーシュートに用いることが可能となる。したがって、低温下でも高コントラストお よび高速応答を実現することができ、動画表示性能を向上させることができる。加え て、 T1 (常温)下でのカット量を 0あるいは少なくできるため、 T1での表示階調電圧の レンジを広くとることができ(0. 5〜8. OV)、コントラストを向上させることができる。  [0054] According to this configuration, at low temperature (T2), the number of display gradations (64) does not change from T1 (room temperature) from 0.5V (Vx) to 2.5V (VO,) and 6 3V (Vn,) to 8. OV (Vy) can be used for overshoot. Accordingly, high contrast and high-speed response can be realized even at low temperatures, and moving image display performance can be improved. In addition, since the cut amount under T1 (room temperature) can be reduced to 0 or less, the display gradation voltage range at T1 can be widened (0.5 to 8. OV), and the contrast can be improved. it can.
[0055] なお、フレーム処理部 10によってフレーム間引きを行う場合、 OS処理部 14では、 図 7あるいは図 8に示すような処理を行えばよ!、。図 7 · 8はフレームレートを 20 [Hz] にする(3フレームのうち 2フレームを間引く)場合である。図 8に示すように、 OS階調 を 1フレーム〜 3フレーム目にかけて段階的に下げていくことで、応答速度を最大に することができる。また、図 7に示すように、 OS階調を 1フレーム〜 3フレーム目にかけ て一定とすれば、映像としての見栄えを向上させることができる。  [0055] When the frame processing unit 10 performs frame thinning, the OS processing unit 14 may perform processing as shown in FIG. 7 or FIG. Figures 7 and 8 show the case where the frame rate is set to 20 [Hz] (2 frames out of 3 frames are thinned out). As shown in Fig. 8, the response speed can be maximized by gradually decreasing the OS gradation from the first frame to the third frame. In addition, as shown in FIG. 7, if the OS gradation is constant over the first to third frames, the appearance of the video can be improved.
産業上の利用可能性  Industrial applicability
[0056] 本発明の表示装置の駆動装置は、例えば、車両等の操縦可能な移動体に搭載す る表示装置に好適である。 The display device drive device of the present invention is suitable for a display device mounted on a steerable moving body such as a vehicle, for example.

Claims

請求の範囲 The scope of the claims
[1] 入力データに対し、基準電圧レンジ内の所望電圧を表示装置に出力する表示装 置の駆動装置であって、  [1] A display device driving device that outputs a desired voltage within a reference voltage range to a display device with respect to input data.
上記基準電圧レンジが周囲温度に基づいて設定されることを特徴とする表示装置 の駆動装置。  The display device driving device, wherein the reference voltage range is set based on an ambient temperature.
[2] 周囲温度の低下に伴って上記基準電圧レンジを広げることを特徴とする請求項 1 記載の表示装置の駆動装置。  2. The display device driving device according to claim 1, wherein the reference voltage range is expanded as the ambient temperature decreases.
[3] 入力データに、周囲温度に基づいた階調変換処理を行い、表示階調数を入力デ 一タの階調数より減らすことを特徴とする請求項 2記載の表示装置の駆動装置。 3. The display device driving device according to claim 2, wherein gradation conversion processing based on ambient temperature is performed on the input data, and the number of display gradations is reduced from the number of gradations of the input data.
[4] 階調遷移強調処理を行うことを特徴とする請求項 2記載の表示装置の駆動装置。 4. The display device driving device according to claim 2, wherein gradation transition emphasis processing is performed.
[5] 上記階調遷移強調処理を周囲温度に基づいて行うことを特徴とする請求項 4記載 の表示装置の駆動装置。 5. The display device driving device according to claim 4, wherein the gradation transition enhancement process is performed based on an ambient temperature.
[6] 入力データが示す階調が 0階調〜 n階調である場合に、 [6] When the gray scale indicated by the input data is 0 to n,
温度 T1での基準電圧レンジが Vmin〜Vmaxに設定されるとともに、温度 T1より低 い温度 T2での基準電圧レンジが Vmin,〜Vmax' (Vmin' < Vmin かつ Vmax' The reference voltage range at temperature T1 is set to Vmin to Vmax, and the reference voltage range at temperature T2 lower than temperature T1 is Vmin, ~ Vmax '(Vmin' <Vmin and Vmax '
>Vmax)に設定され、 > Vmax)
温度 T1では、階調変換処理を行わず、 0階調〜 n階調を表示階調とするのに対し 温度 T2では、階調変換処理を行い、 i階調〜 j階調 (0く iく; j <n)を表示階調とする ことを特徴とする請求項 3記載の表示装置の駆動装置。  At temperature T1, gradation conversion processing is not performed, and gradations 0 to n are used as display gradations. At temperature T2, gradation conversion processing is performed and i gradations to j gradations (0 to i The drive device for a display device according to claim 3, wherein j <n) is a display gradation.
[7] 上記 i階調〜 j階調に対応する階調電圧を Vi,〜 Vj, (Vmin ' <Vi' <Vj ' < Vmax, )として、 [7] The gradation voltages corresponding to the above i gradation to j gradation are Vi, ~ Vj, (Vmin '<Vi' <Vj '<Vmax,)
温度 T2では Vmin'〜Vi,および Vj,〜Vmax'のレンジを、階調遷移強調処理に 用いることを特徴とする請求項 6記載の表示装置の駆動装置。  7. The display device drive device according to claim 6, wherein ranges of Vmin ′ to Vi and Vj and to Vmax ′ are used for gradation transition emphasis processing at temperature T2.
[8] 上記周囲温度に基づいてフレームレートが設定されることを特徴とする請求項 1記 載の表示装置の駆動装置。 8. The display device driving apparatus according to claim 1, wherein a frame rate is set based on the ambient temperature.
[9] Yビットの入力データに対して、 [9] For Y-bit input data,
X>Yを満たす Xビットデータが示す 0階調〜 m階調の各階調に対応する階調電圧 を生成できるデジタルアナログ変換回路を備え、 Gradation voltage corresponding to each gradation from 0 gradation to m gradation indicated by X bit data satisfying X> Y Equipped with a digital-to-analog converter circuit that can generate
上記 0階調〜 m階調の両端部分の少なくとも一方を周囲温度に基づく量だけカット して得られる P階調〜 q階調 (0≤p< q≤m)に対応する階調電圧レンジ内から、上記 入力データに対する表示階調電圧を選択することを特徴とする表示装置の駆動装置  Within the gradation voltage range corresponding to P gradation to q gradation (0≤p <q≤m) obtained by cutting at least one of both ends of 0 gradation to m gradation above by the amount based on the ambient temperature A display grayscale voltage for the input data is selected from
[10] 階調遷移強調処理を行うことを特徴とする請求項 9記載の表示装置の駆動装置。 10. The display device driving apparatus according to claim 9, wherein gradation transition emphasis processing is performed.
[11] 上記階調遷移強調処理を周囲温度に基づいて行うことを特徴とする請求項 10記 載の表示装置の駆動装置。 11. The drive device for a display device according to claim 10, wherein the gradation transition enhancement process is performed based on an ambient temperature.
[12] Xビットデータが示す 0階調〜 m階調に対応する階調電圧のレンジが Vx〜Vyであ り、入力データが示す階調が 0階調〜 n階調である場合に、 [12] When the range of gradation voltage corresponding to 0 gradation to m gradation indicated by X-bit data is Vx to Vy and the gradation indicated by input data is 0 gradation to n gradation,
温度 T1および該 T1より低い温度 T2で、 0階調〜 n階調を表示階調とし、 温度丁1では上記カットにょって表示階調電圧のレンジを¥0〜¥11 <¥0< ¥11 <Vy)に設定するとともに、温度 T2では上記カットによって表示階調電圧のレンジを VO,〜Vn, (Vx<VO' <Vn' <Vy)に設定し、  At temperature T1 and temperature T2 lower than T1, 0 to n gradations are set as display gradations, and at temperature Ding 1 the display gradation voltage range is set to ¥ 0 to ¥ 11 <¥ 0 <¥ 11 <Vy), and at the temperature T2, the display gradation voltage range is set to VO, ~ Vn, (Vx <VO '<Vn' <Vy) by the above cut,
温度 T2では、 Vx〜VO'および Vn'〜Vyのレンジを、階調遷移強調処理に用いる ことを特徴とする請求項 10記載の表示装置の駆動装置。  11. The drive device for a display device according to claim 10, wherein ranges of Vx to VO ′ and Vn ′ to Vy are used for gradation transition emphasis processing at the temperature T2.
[13] Xビットデータが示す 0階調〜 m階調に対応する階調電圧のレンジが Vx〜Vyであ り、入力データが示す階調が 0階調〜 n階調である場合に、 [13] When the range of gradation voltage corresponding to 0 to m gradation indicated by X-bit data is Vx to Vy and the gradation indicated by input data is 0 to n gradation,
温度 T1および該 T1より低い温度 T2で、 0階調〜 n階調を表示階調とし、 温度 T1では上記カットを行わずに表示階調電圧のレンジを VO〜Vnに設定すると ともに、温度 T2では上記カットによって表示階調電圧のレンジを VO'〜Vn' (Vx<V 0' <Vn' <Vy)に設定し、  At temperature T1 and temperature T2 lower than T1, 0 to n gradations are used as display gradations. At temperature T1, the display gradation voltage range is set to VO to Vn without performing the above cut, and temperature T2 In the above cut, the display gradation voltage range is set to VO 'to Vn' (Vx <V 0 '<Vn' <Vy)
温度 T2では、 Vx〜VO'および Vn'〜Vyのレンジを、階調遷移強調処理に用いる ことを特徴とする請求項 10記載の表示装置の駆動装置。  11. The drive device for a display device according to claim 10, wherein ranges of Vx to VO ′ and Vn ′ to Vy are used for gradation transition emphasis processing at the temperature T2.
[14] 入力データに対応する電圧を表示装置に出力する表示装置の駆動装置であって 出力可能な電圧のレンジを周囲温度に応じて変更でき、 [14] A drive device for a display device that outputs a voltage corresponding to input data to the display device, and the output voltage range can be changed according to the ambient temperature.
温度 T1では、出力される電圧のレンジが Vmin〜Vmaxであり、 温度 Tlより低い温度 T2では、出力される電圧のレンジが Vmin,〜Vmax' (Vmin ' <Vmin かつ Vmax, >Vmax)であるとともに、上記 Vmin,〜 Vminのレンジお よび上記 Vmax〜Vmax'のレンジにある電圧は、遷移階調強調処理を行うときに出 力されることを特徴とする表示装置の駆動装置。 At temperature T1, the output voltage range is Vmin to Vmax. At temperature T2 lower than temperature Tl, the output voltage range is Vmin, ~ Vmax '(Vmin'<Vmin and Vmax,> Vmax), and the above Vmin, ~ Vmin range and above Vmax ~ Vmax ' A driving device for a display device, wherein the voltage in the range is output when performing the transition gradation emphasis processing.
[15] 入力データに対応する電圧を表示装置に出力する表示装置の駆動装置であって 入力データのビット数より大きなビット数のデータに対応可能なデジタルアナログ変 換回路を備え、 [15] A display device driving device for outputting a voltage corresponding to input data to the display device, comprising a digital-to-analog conversion circuit capable of handling data having a number of bits larger than the number of bits of the input data,
温度 T1では、出力される電圧のレンジが VO〜Vnであり、  At temperature T1, the output voltage range is VO to Vn,
温度 T1より低い温度 T2では、出力される電圧のレンジが Vx〜Vy(Vxく VO かつ Vy>Vn)であるとともに、上記 Vx〜VOのレンジおよび上記 Vn〜Vyのレンジにあ る電圧は、遷移階調強調処理を行うときに出力されることを特徴とする表示装置の駆 動装置。  At temperature T2, which is lower than temperature T1, the output voltage range is Vx to Vy (Vx VO and Vy> Vn), and the voltage in the above Vx to VO range and the above Vn to Vy range is A drive device for a display device, which is output when performing transition tone emphasis processing.
[16] 入力データに対応する電圧を表示装置に出力する表示装置の駆動装置であって 入力データのビット数より大きなビット数のデータに対応可能なデジタルアナログ変 換回路を備え、  [16] A display device driving device for outputting a voltage corresponding to input data to the display device, comprising a digital-to-analog conversion circuit capable of handling data having a number of bits larger than the number of bits of the input data,
温度 T1では、出力される電圧のレンジが Vx〜Vyであり、  At temperature T1, the output voltage range is Vx to Vy,
温度 T1より低い温度 T2では、出力される電圧のレンジが Vx〜Vyであるとともに、 表示階調電圧のレンジが VO'〜Vn, (VO' >Vx かつ Vn' <Vy)であり、かつ上 記 Vx〜VO'のレンジおよび上記 Vn,〜Vyのレンジにある電圧は、遷移階調強調処 理を行うときに出力されることを特徴とする表示装置の駆動装置。  At temperature T2, which is lower than temperature T1, the output voltage range is Vx to Vy, the display gradation voltage range is VO 'to Vn, (VO'> Vx and Vn '<Vy), and A drive device for a display device, wherein the voltage in the range of Vx to VO ′ and the voltage in the range of Vn and Vy are output when the transition gradation emphasis processing is performed.
[17] 入力データに対して基準電圧レンジ内の所望電圧を表示装置に出力してこれを駆 動する、表示装置の駆動方法であって、 [17] A method for driving a display device, which outputs a desired voltage within a reference voltage range to input data to a display device, and drives the display device.
入力データが示す階調が 0階調〜 n階調である場合に、温度 T1での基準電圧レン ジを Vmin〜Vmaxに設定するとともに、温度 T1より低い温度 T2での基準電圧レン ジを Vmin,〜Vmax, (Vmin'く Vmin かつ Vmax, >Vmax)〖こ設定し、温度 Tl では、 0階調〜 n階調を表示階調とする一方、温度 T2では、入力データに階調変換 処理を行 ヽ、 i階調〜 j階調 (0<i<j <n)を表示階調とすることを特徴とする表示装 置の駆動方法。 When the gradation indicated by the input data is from 0 to n, the reference voltage range at temperature T1 is set to Vmin to Vmax, and the reference voltage range at temperature T2 lower than temperature T1 is set to Vmin. , ~ Vmax, (Vmin 'and Vmin and Vmax,> Vmax) are set, and at temperature Tl, gradations 0 to n are used as display gradations, while at temperature T2, gradations are converted into input data. A method for driving a display device, characterized in that processing is performed and display gradations are from i gradation to j gradation (0 <i <j <n).
[18] Yビットの入力データに対して所望電圧を表示装置に出力してこれを駆動する、表 示装置の駆動方法であって、  [18] A driving method for a display device, wherein a desired voltage is output to a display device and driven in response to Y-bit input data,
X>Yを満たす Xビットデータが示す 0階調〜 m階調の各階調に対応する階調電圧 を生成できるデジタルアナログ変換回路を用い、  Using a digital-to-analog converter that can generate gradation voltages corresponding to each gradation from 0 gradation to m gradation indicated by X bit data satisfying X> Y,
上記 0階調〜 m階調の両端部分の少なくとも一方を周囲温度に基づく量だけカット して得られる P階調〜 q階調 (0≤p< q≤m)に対応する階調電圧レンジ内から、上記 入力データに対する表示階調電圧を選択することを特徴とする表示装置の駆動方法  Within the gradation voltage range corresponding to P gradation to q gradation (0≤p <q≤m) obtained by cutting at least one of both ends of 0 gradation to m gradation above by the amount based on the ambient temperature A display gradation voltage for the input data is selected from
[19] 請求項 1〜16のいずれか 1項記載の表示装置の駆動装置を備えることを特徴とす る表示装置。 [19] A display device comprising the display device driving device according to any one of [1] to [16].
PCT/JP2006/318076 2005-12-26 2006-09-12 Display device driving apparatus, display device driving method, and display device WO2007074560A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-373483 2005-12-26
JP2005373483 2005-12-26

Publications (1)

Publication Number Publication Date
WO2007074560A1 true WO2007074560A1 (en) 2007-07-05

Family

ID=38217786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318076 WO2007074560A1 (en) 2005-12-26 2006-09-12 Display device driving apparatus, display device driving method, and display device

Country Status (1)

Country Link
WO (1) WO2007074560A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248639A (en) * 2006-03-14 2007-09-27 Nec Lcd Technologies Ltd Liquid crystal driving method and liquid crystal driving device
JP2009020340A (en) * 2007-07-12 2009-01-29 Renesas Technology Corp Display device and display device driving circuit
WO2011148704A1 (en) * 2010-05-28 2011-12-01 シャープ株式会社 Liquid crystal display device
JP2014191109A (en) * 2013-03-26 2014-10-06 Japan Display Inc Liquid crystal display device and electronic apparatus
JP2014199313A (en) * 2013-03-29 2014-10-23 株式会社ジャパンディスプレイ Liquid display device and electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140990A (en) * 1984-12-12 1986-06-28 シャープ株式会社 Temperature compensation circuit for liquid crystal display element
JPH02271390A (en) * 1989-04-12 1990-11-06 Japan Aviation Electron Ind Ltd Liquid crystal display device
JPH0318823A (en) * 1989-06-15 1991-01-28 Matsushita Electric Ind Co Ltd Video signal correcting device
JPH07191608A (en) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp Liquid crystal display device
JP2002062850A (en) * 2000-08-18 2002-02-28 Advanced Display Inc Liquid crystal display device
JP2003207762A (en) * 2001-11-09 2003-07-25 Sharp Corp Liquid crystal display device
JP2004104209A (en) * 2002-09-05 2004-04-02 Auto Network Gijutsu Kenkyusho:Kk Moving picture display apparatus
JP2005037749A (en) * 2003-07-16 2005-02-10 Kawasaki Microelectronics Kk Liquid crystal drive device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140990A (en) * 1984-12-12 1986-06-28 シャープ株式会社 Temperature compensation circuit for liquid crystal display element
JPH02271390A (en) * 1989-04-12 1990-11-06 Japan Aviation Electron Ind Ltd Liquid crystal display device
JPH0318823A (en) * 1989-06-15 1991-01-28 Matsushita Electric Ind Co Ltd Video signal correcting device
JPH07191608A (en) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp Liquid crystal display device
JP2002062850A (en) * 2000-08-18 2002-02-28 Advanced Display Inc Liquid crystal display device
JP2003207762A (en) * 2001-11-09 2003-07-25 Sharp Corp Liquid crystal display device
JP2004104209A (en) * 2002-09-05 2004-04-02 Auto Network Gijutsu Kenkyusho:Kk Moving picture display apparatus
JP2005037749A (en) * 2003-07-16 2005-02-10 Kawasaki Microelectronics Kk Liquid crystal drive device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248639A (en) * 2006-03-14 2007-09-27 Nec Lcd Technologies Ltd Liquid crystal driving method and liquid crystal driving device
US8514158B2 (en) 2006-03-14 2013-08-20 Nlt Technologies, Ltd. Liquid crystal driving device
JP2009020340A (en) * 2007-07-12 2009-01-29 Renesas Technology Corp Display device and display device driving circuit
US8325128B2 (en) 2007-07-12 2012-12-04 Renesas Electronics Corporation Display device and driving circuit thereof
WO2011148704A1 (en) * 2010-05-28 2011-12-01 シャープ株式会社 Liquid crystal display device
CN102918582A (en) * 2010-05-28 2013-02-06 夏普株式会社 Liquid crystal display device
JP2014191109A (en) * 2013-03-26 2014-10-06 Japan Display Inc Liquid crystal display device and electronic apparatus
US9728146B2 (en) 2013-03-26 2017-08-08 Japan Display Inc. Liquid-crystal display device and electronic apparatus
JP2014199313A (en) * 2013-03-29 2014-10-23 株式会社ジャパンディスプレイ Liquid display device and electronic device
US9390668B2 (en) 2013-03-29 2016-07-12 Japan Display Inc. Liquid-crystal display device and electronic apparatus

Similar Documents

Publication Publication Date Title
US7317460B2 (en) Liquid crystal display for improving dynamic contrast and a method for generating gamma voltages for the liquid crystal display
JP4549944B2 (en) Image processing circuit
JP4627773B2 (en) Drive circuit device
JP2007033864A (en) Image processing circuit and image processing method
JP5319897B2 (en) Display device, driving device and driving method thereof
JP2007004136A (en) Display device, controller driver and driving method for display panel
US20030080931A1 (en) Apparatus for converting a digital signal to an analog signal for a pixel in a liquid crystal display and method therefor
JP2004226952A (en) Apparatus for accelerating response of display and driving method
WO2007074560A1 (en) Display device driving apparatus, display device driving method, and display device
US7202845B2 (en) Liquid crystal display device
US7312776B2 (en) Apparatus set in a liquid crystal display for executing gamma correction and method thereof
JP4086868B2 (en) Display device, controller driver, approximate calculation correction circuit, and display panel driving method
CN109326252B (en) Display driver, display controller, electro-optical device, and electronic apparatus
JP5280203B2 (en) Liquid crystal panel driving device, liquid crystal display device, in-vehicle display device
JP2008122635A (en) Display method and display device using the method
JP2008020858A (en) Liquid crystal display device and method of driving the same
US6999098B2 (en) Apparatus for converting floating point values to gamma corrected fixed point values
JPH1132237A (en) Gamma correction device
US6580410B1 (en) Liquid crystal display
US8803774B2 (en) Liquid crystal display and processing method thereof
TWI413976B (en) Overdrive system, display system and method thereof
JP2009265260A (en) Display method and display device
TWI436320B (en) Source driver
WO2007037042A1 (en) Liquid crystal display device, instrument panel, automotive vehicle, and liquid crystal display method
JP2006163290A (en) Image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06797868

Country of ref document: EP

Kind code of ref document: A1