WO2007073897A2 - Safety system for reducing the impact energy of a container - Google Patents
Safety system for reducing the impact energy of a container Download PDFInfo
- Publication number
- WO2007073897A2 WO2007073897A2 PCT/EP2006/012143 EP2006012143W WO2007073897A2 WO 2007073897 A2 WO2007073897 A2 WO 2007073897A2 EP 2006012143 W EP2006012143 W EP 2006012143W WO 2007073897 A2 WO2007073897 A2 WO 2007073897A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- airbag
- container
- safety
- wall
- impact energy
- Prior art date
Links
- 230000004308 accommodation Effects 0.000 claims abstract description 20
- 230000033001 locomotion Effects 0.000 claims abstract description 10
- 230000001681 protective effect Effects 0.000 claims description 33
- 230000004913 activation Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 10
- 230000003213 activating effect Effects 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/006—Safety devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C1/00—Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
- B64C1/06—Frames; Stringers; Longerons ; Fuselage sections
- B64C1/061—Frames
- B64C1/062—Frames specially adapted to absorb crash loads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D9/00—Equipment for handling freight; Equipment for facilitating passenger embarkation or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D9/00—Equipment for handling freight; Equipment for facilitating passenger embarkation or the like
- B64D9/003—Devices for retaining pallets or freight containers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D2201/00—Airbags mounted in aircraft for any use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/40—Weight reduction
Definitions
- the present invention relates to a safety system and to a method for reducing the impact energy of a container, to an aircraft, and to the use of a safety system for reducing the impact energy of a container in an aircraft.
- a safety directive for example, relates to the required arrangement of certain containers in the cargo hold. It is, for example, a requirement that the first container behind a protective wall contains a less rigid or softer payload, so as to in this way ensure cushioning between a protective wall and a rigid container.
- This object is met by a safety system and by a method for reducing the impact energy of a container for an aircraft, by an aircraft comprising a safety system, and by the use of a safety system in an aircraft for reducing the impact energy of a container according to the independent claims.
- a safety system for reducing the impact energy of a container for an aircraft comprises an aircraft cargo hold with at least one safety wall, an accommodation device and at least one airbag.
- the accommodation device is affixed to the safety wall, wherein the accommodation unit is designed to accommodate the at least one airbag.
- the at least one airbag can be activated such that air can be injected into the airbag so that the impact energy of a container can be distributed, by means of this activated at least one airbag over an area of the at least one safety wall.
- a method for reducing the impact energy of a container for an aircraft In a first step in an aircraft cargo hold at least one safety wall is provided, and an accommodation unit is affixed to the at least one safety wall.
- the at least one airbag is affixed to the accommodation unit.
- the at least one airbag is activatable such that air can be injected into the airbag so that, by means of the at least one activated airbag the impact energy of the container can be distributed over an area of the at least one safety wall.
- a safety system for reducing the impact energy of a container in an aircraft is provided.
- an aircraft with a safety system for reducing the impact energy of a container is provided.
- the at least one airbag can absorb some of the impact energy and/or can distribute the remaining forces over an area of the at least one safety wall.
- the present invention provides a safety system by means of which the effectiveness of protective walls is significantly improved. While rigid containers can become detached and can cause considerable damage to the protective wall, the impact of the containers is cushioned because of the activated airbags. Furthermore, the inflated airbags distribute the impact energy over a larger area of the protective wall so that the impact energy per unit of area can be significantly reduced. In addition, as a result of the protective system according to the invention it may be unnecessary to comply with additional loading regulations so that there are no longer any restrictions relating to the arrangement of rigid and soft containers in the cargo hold. Aircraft operators can thus affix their containers as they please in the cargo hold, which significantly simplifies logistics. Consequently the times required for loading and unloading are also reduced because an optimal arrangement in a cargo hold becomes possible without any restrictions.
- the accommodation device comprises locking elements so that the airbag can be detached from the surroundings and is thus protected.
- the locking elements can be hinged opened such that the airbag is unfoldable by means of the injection of air in the direction of the surroundings.
- the safety system comprises a multitude of airbags that can be affixed to the at least one safety wall, wherein the multitude of airbags cover certain regions of the protective wall.
- the safety system comprises a multitude of airbags that can be affixed to the at least one safety wall, wherein the multitude of airbags cover certain regions of the protective wall.
- a multitude of airbags can be affixed to the at least one safety wall, wherein the airbags can cover the entire area of the protective wall.
- every imaginable impact region can be secured with the use of airbags.
- the safety aspect can be significantly improved and reconfiguration of the impact regions or of the safety system when the containers are arranged differently can be avoided.
- At least one airbag comprises an opening through which air can discharge to the environment so that in addition defined cushioning of the impact energy can be set.
- this outlet aperture a particular outflowing volume flow per time unit can be set so that any desired or continuous discharge makes it possible to cushion the impact energy.
- the impact energy is not exclusively distributed over the protective wall by means of the airbags, but in addition it is cushioned by way of the air- volume stream discharging from the airbag.
- the safety system further comprises an activation system for activating the at least one airbag.
- the activation system is designed such that before the container hits the at least one safety wall the at least one airbag for distributing the impact energy can be activated.
- the airbags can thus be arranged on the protective wall in an extremely space-saving manner without being filled with air, and can be filled with air only when a particular signal of the activation system is triggered, thus forming an air cushion between the container and the protective wall.
- the activation system comprises at least one monitoring device for activating the at least one airbag.
- This at least one monitoring device can be selected from the group comprising motion detectors, video cameras and pressure sensors. By means of the video camera, by comparing the video images, movement of the container can be detected, and thereafter filling of the airbag with air can be activated.
- motion detectors can be employed.
- the containers can be fastened on tactile sensors or pressure sensors so that if the position of a container changes, an airbag is activated because of the resulting change in the pressure point.
- the safety system further comprises a fastening element for fastening the payload, wherein the monitoring system monitors the fastening element such that in the case of deformation of the fastening element the at least one airbag is activatable by means of the activation system. For example, if a fastening element ruptures, the monitoring system detects this and by way of the activation system automatically activates the at least one airbag. Defects in, or damage to, fasteners of the containers can thus be detected quickly so that extensive damage can be prevented in a simple manner.
- an impact region of the protective wall can be measured by means of the activation system such that in the impact region the at least one airbag can be activated.
- This provides the option of not activating all the airbags of an entire protective wall but only those airbags that are required for cushioning the impact energy or for protecting the protective wall.
- electrical sensors such as for example a video camera or a movement detector
- a possible impact region on the protective wall can be detected or measured so that it is only in this region that the airbags are activated, thus protecting the protective wall. Since often single-use airbags are used, it is thus possible to avoid wasting the airbags affixed to the protective wall, which helps to reduce costs.
- the designs of the safety system also apply to the method, to the use and to the aircraft, and vice-versa.
- the safety system according to the invention thus provides greater flexibility in the arrangement of containers in an aircraft loading space, which makes it easier for aircraft operators to fasten containers in any desired manner in an aircraft loading space. Furthermore, safety concerning detached containers in an aircraft cargo hold can be considerably increased, and damage to the protective wall or to the aircraft structure can be prevented.
- Fig. 1 shows a diagrammatic view of a safety system, used in the field of aviation, for reducing impact energy
- Fig. 2 shows a diagrammatic view of an arrangement of containers according to a common safety standard in the field of aviation
- Fig. 3 shows a diagrammatic view of an embodiment of the invention
- Fig. 4 shows a diagrammatic view of a securing wall for separating various aircraft regions
- Fig. 5 and Fig. 6 show diagrammatic views of airbags affixed to the securing wall
- Fig. 7 to Fig. 9 show a diagrammatic view of an embodiment of the airbag protection system according to an embodiment of the invention.
- Fig. 10 shows a diagrammatic view of a loading space with stacked containers.
- Fig. 3 shows a diagrammatic view of the safety system according to an embodiment of the present invention.
- the safety system comprises an aircraft cargo hold 10 with at least one safety wall 1, an accommodation unit 4 and at least one airbag 3.
- the accommodation device 4 is affixed to the safety wall, wherein the accommodation device 4 is designed to accommodate the at least one airbag 3.
- the at least one airbag 3 can be activated such that air can be injected into the airbag 3 so that the impact energy of the container 2, 9 can be distributed, by means of this at least one activated airbag 3 over an area of the at least one safety wall 1.
- Fig. 1 shows an application of airbags in the field of aviation, as known from the state of the art.
- helicopters can be protected, in the case of a crash, by means of inflatable airbags 3 so that the helicopter structure does not break up when it hits the ground, and so that the passengers are protected.
- Fig. 2 shows a common arrangement of containers, as described, for example, in safety directives in the field of aviation.
- the diagram shows that in each case between the safety wall 1 and the first rigid and solid container 2 a soft container with cushioning characteristics 2', 2" has to be affixed so that if the container 2 becomes detached the impact energy acting on the safety wall 1 is reduced.
- restrictions in relation to the arrangement of the containers are prescribed, which results in a disadvantage to the aircraft operator, and in the logistics for loading a loading space becoming significantly more complex.
- Fig. 3 an optimal safety system is provided. Due to the cushioning system by way of the airbags 3, which are attached to the protective wall 1 by means of the accommodation units 4, there is now an option of affixing a rigid container 2 that comprises poor cushioning characteristics directly behind the protective wall 1.
- Fig. 4 shows a possible option of using the safety system according to the invention in an aircraft.
- a passenger space 8 is separated from the cargo hold by means of the protective wall 1. It becomes clear that if containers become detached the passenger region 8 has to be protected against the containers entering said passenger region 8, so that dangerous situations can be prevented.
- Fig. 4 diagrammatically shows that the airbags 3 of the protective wall 1 can spread in the direction of the cargo hold so that detached containers, that hit the protective wall, can be cushioned.
- Fig. 5 shows one possible way of accommodating the airbags on a protective wall 1.
- the accommodation units 4, which in the diagram are shown as indentations in the protective wall 1, can accommodate the airbags 3.
- a locking element 5 to protect the airbags 3 from the surroundings.
- the locking elements open up, and the airbags can extend in the direction of the surroundings by means of air injection.
- Fig. 6 also shows an opening 6 from which the injected air can escape from the airbag 3 at a certain discharge rate, i.e. a certain air mass flow per unit of time.
- This provides the option, by means of a defined discharge rate or an outflowing volume flow, to obtain additionally defined cushioning. For example, if a container 2 hits the airbags 3, then the airbag not only distributes the impact energy over a particular region of the protective wall 1, but it also, in addition, cushions the impact energy of the container 2 by way of an air mass flow that issues from the opening 5 at a defined rate.
- Figs 7 to 9 show an exemplary embodiment of the invention with an activation system.
- a container is held to an aircraft floor by means of the fastening element 7. Due to a deformation of the fastening element 7, for example by the rupturing of the fastening element 7 as a result of air pockets or other flight manoeuvres, the activation system automatically and without manual intervention activates triggering of the airbag 3.
- Fig. 7 shows that already before the container 9, 2 hits the safety wall 1, the airbags 3 are filled with air.
- Fig. 8 shows how the air-filled airbags 3 distribute the impact energy over an area of the securing wall 1.
- Fig. 10 shows a possible arrangement of containers that can be vertically stacked while nevertheless being protected by the airbags 3 in the protective wall 1.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Buffer Packaging (AREA)
- Air Bags (AREA)
- Vibration Dampers (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE602006012223T DE602006012223D1 (en) | 2005-12-23 | 2006-12-15 | SAFETY SYSTEM TO REDUCE THE INHIBIT ENERGY OF A CONTAINER |
EP06841003A EP1963177B1 (en) | 2005-12-23 | 2006-12-15 | Safety system for reducing the impact energy of a container |
CA2628722A CA2628722C (en) | 2005-12-23 | 2006-12-15 | Safety system for reducing the impact energy of a container |
JP2008546213A JP2009520621A (en) | 2005-12-23 | 2006-12-15 | Safety system that reduces the impact energy of containers |
BRPI0620333-7A BRPI0620333A2 (en) | 2005-12-23 | 2006-12-15 | safety system for reducing the impact energy of a container on an aircraft and method for reducing the impact energy |
US12/087,199 US7975963B2 (en) | 2005-12-23 | 2006-12-15 | Safety system for reducing the impact energy of a container |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US75390505P | 2005-12-23 | 2005-12-23 | |
US60/753,905 | 2005-12-23 | ||
DE102005061928.2 | 2005-12-23 | ||
DE102005061928A DE102005061928B4 (en) | 2005-12-23 | 2005-12-23 | Safety system for reducing an impact energy of a payload container |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2007073897A2 true WO2007073897A2 (en) | 2007-07-05 |
WO2007073897A3 WO2007073897A3 (en) | 2007-08-23 |
WO2007073897B1 WO2007073897B1 (en) | 2007-10-18 |
Family
ID=38135620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/012143 WO2007073897A2 (en) | 2005-12-23 | 2006-12-15 | Safety system for reducing the impact energy of a container |
Country Status (9)
Country | Link |
---|---|
US (1) | US7975963B2 (en) |
EP (1) | EP1963177B1 (en) |
JP (1) | JP2009520621A (en) |
CN (1) | CN101341068A (en) |
BR (1) | BRPI0620333A2 (en) |
CA (1) | CA2628722C (en) |
DE (2) | DE102005061928B4 (en) |
RU (1) | RU2410285C2 (en) |
WO (1) | WO2007073897A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3061945A1 (en) * | 2017-01-17 | 2018-07-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | PRESSURIZED FLUID BOTTLE |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100213313A1 (en) * | 2006-11-06 | 2010-08-26 | Goodrich Corporation | Integrated aircraft cargo loading and cargo video monitoring system |
US8515656B2 (en) * | 2007-11-02 | 2013-08-20 | Goodrich Corporation | Integrated aircraft cargo loading and monitoring system |
IL190214A0 (en) * | 2008-03-17 | 2009-05-04 | Rafael Advanced Defense Sys | Airbag system with improved performance for a wide range of loads |
US11066171B2 (en) * | 2016-04-04 | 2021-07-20 | B/E Aerospace, Inc. | Contoured class divider |
US10843799B2 (en) * | 2016-04-04 | 2020-11-24 | B/E Aerospace, Inc. | Contoured class divider |
US10676194B2 (en) | 2016-04-04 | 2020-06-09 | B/E Aerospace, Inc. | Contoured class divider |
CN106184761A (en) * | 2016-08-18 | 2016-12-07 | 广东工业大学 | A kind of novel logistics UAV system cargo hold |
CN106741879A (en) * | 2016-12-09 | 2017-05-31 | 合肥赛为智能有限公司 | A kind of unmanned plane with protection device |
US10434926B2 (en) | 2017-05-18 | 2019-10-08 | John M. Wesley | Airlift shoring |
DE102017209263A1 (en) * | 2017-06-01 | 2018-12-06 | Robert Bosch Gmbh | Mobile transport container for a vehicle for securing the load of a cargo, method for securing the load of a cargo and system |
CN107161518B (en) * | 2017-06-21 | 2018-10-23 | 宁波工程学院 | A kind of shipping shelf |
CN109934521B (en) | 2017-12-18 | 2021-07-13 | 北京京东尚科信息技术有限公司 | Cargo protection method, apparatus, system and computer-readable storage medium |
US10906520B2 (en) * | 2018-07-20 | 2021-02-02 | Textron Innovations Inc. | Airbag to secure payload |
US10919631B2 (en) * | 2018-10-29 | 2021-02-16 | Safran Cabin Inc. | Aircraft with multiple doors and multiple zones |
US11034452B2 (en) * | 2018-10-29 | 2021-06-15 | Safran Cabin Inc. | Aircraft with staggered seating arrangement |
JP7427429B2 (en) * | 2019-11-14 | 2024-02-05 | Ihi運搬機械株式会社 | Drone cargo receiving device |
CN111268103B (en) * | 2020-02-14 | 2024-03-05 | 广东工业大学 | Sea-air dual-purpose unmanned aerial vehicle with air bag |
KR20220085397A (en) * | 2020-12-15 | 2022-06-22 | 현대자동차주식회사 | Cargo packaging system and control method for mobility |
KR20230083026A (en) | 2021-12-02 | 2023-06-09 | 현대자동차주식회사 | Apparatus for absorbing shock and control method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0354403A2 (en) * | 1988-08-11 | 1990-02-14 | Deutsche Aerospace Airbus Gesellschaft mit beschränkter Haftung | Load-supporting device |
US20040016846A1 (en) * | 2002-07-23 | 2004-01-29 | Blackwell-Thompson Judith C. | Launch vehicle payload carrier and related methods |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2669402A (en) * | 1951-08-11 | 1954-02-16 | Douglas Aircraft Co Inc | High strength cable network for impact bulkheads |
US3603535A (en) * | 1968-11-13 | 1971-09-07 | Maurice Depolo | Lifesaving support system |
US3847091A (en) * | 1972-11-13 | 1974-11-12 | Acf Ind Inc | Inflatable dunnage |
US4222696A (en) * | 1975-06-09 | 1980-09-16 | Guins Sergei G | Adjustable fluid actuated horizontal bulkhead |
DE3827278A1 (en) * | 1988-08-11 | 1990-02-15 | Messerschmitt Boelkow Blohm | DEVICE FOR INTERRUPTING LOADS |
SU1742152A1 (en) | 1990-07-25 | 1992-06-23 | Камышинское Высшее Военное Строительное Командное Училище | Container for storage and transportation of foodstuff |
CN2085359U (en) | 1991-01-03 | 1991-09-25 | 孔文铭 | Easy-to-load and-unload quakeproof container |
DE4116443A1 (en) * | 1991-05-18 | 1992-11-19 | Airbus Gmbh | INTERCEPTION WALL IN A PLANE OF A PLANE |
DE4136973C2 (en) * | 1991-11-11 | 1996-01-18 | Daimler Benz Aerospace Airbus | Load locking device in aircraft |
JP2897516B2 (en) * | 1992-03-13 | 1999-05-31 | 日産自動車株式会社 | Shock absorber for parachute drop |
US5301902A (en) * | 1992-11-09 | 1994-04-12 | Kalberer Robert C | Aircraft airbag protection apparatus and method |
DE4313592C2 (en) * | 1993-04-26 | 2000-02-17 | Daimler Chrysler Aerospace | Wide-body aircraft |
US5921507A (en) * | 1994-05-16 | 1999-07-13 | Flight Safety Systems, Inc. | Aircraft control yoke |
JP3522371B2 (en) * | 1995-01-19 | 2004-04-26 | 綾子 大塚 | Safety aircraft |
US5649721A (en) * | 1995-01-20 | 1997-07-22 | The Boeing Co. | Impact protection apparatus |
US5558300A (en) * | 1995-02-02 | 1996-09-24 | Flight Safety Systems, Inc. | Adaptable aircraft airbag protection apparatus and method |
DE19728550B4 (en) * | 1996-07-16 | 2009-02-05 | Volkswagen Ag | Cargo securing device for a cargo space of a motor vehicle |
US6017175A (en) * | 1996-11-12 | 2000-01-25 | Kasgro Rail Corp. | Vehicle load divider |
IL120498A (en) * | 1997-03-20 | 2001-04-30 | Israel State | External airbag protection system for helicopter |
US6019237A (en) * | 1998-04-06 | 2000-02-01 | Northrop Grumman Corporation | Modified container using inner bag |
US6588705B1 (en) * | 2001-11-21 | 2003-07-08 | Skepsis Incorporated | Security screen device for protecting persons and property |
JP2003165381A (en) | 2001-11-28 | 2003-06-10 | Hitachi Transport Syst Ltd | Load displacement detection system for onboard cargo |
DE10229815B4 (en) * | 2002-06-28 | 2006-12-14 | Bos Gmbh & Co. Kg | Vehicle compartment protection system |
US6969110B2 (en) * | 2003-08-01 | 2005-11-29 | Daimlerchrysler Corporation | Impact load transfer element |
JP2005249598A (en) * | 2004-03-04 | 2005-09-15 | Denso Corp | Load detecting device |
US7198233B1 (en) * | 2005-09-19 | 2007-04-03 | Kistler Aerospace Corporation | Reusable orbital vehicle with interchangeable cargo modules |
IL184216A0 (en) * | 2007-06-25 | 2008-01-06 | Rafael Advanced Defense Sys | Two-stage airbag inflation system with pyrotechnic delay |
DE07844510T1 (en) * | 2007-10-22 | 2010-10-21 | Bell Helicopter Textron, Inc., Fort Worth | IMPACT DAMPING SYSTEM FOR A PLANE |
PL2243704T3 (en) * | 2007-12-18 | 2014-08-29 | Rojo Camillo Garcia | Airbag system for aircraft |
IL190214A0 (en) * | 2008-03-17 | 2009-05-04 | Rafael Advanced Defense Sys | Airbag system with improved performance for a wide range of loads |
-
2005
- 2005-12-23 DE DE102005061928A patent/DE102005061928B4/en not_active Expired - Fee Related
-
2006
- 2006-12-15 WO PCT/EP2006/012143 patent/WO2007073897A2/en active Application Filing
- 2006-12-15 BR BRPI0620333-7A patent/BRPI0620333A2/en not_active IP Right Cessation
- 2006-12-15 JP JP2008546213A patent/JP2009520621A/en not_active Ceased
- 2006-12-15 RU RU2008130276/11A patent/RU2410285C2/en not_active IP Right Cessation
- 2006-12-15 CN CNA2006800477688A patent/CN101341068A/en active Pending
- 2006-12-15 US US12/087,199 patent/US7975963B2/en not_active Expired - Fee Related
- 2006-12-15 EP EP06841003A patent/EP1963177B1/en not_active Not-in-force
- 2006-12-15 CA CA2628722A patent/CA2628722C/en not_active Expired - Fee Related
- 2006-12-15 DE DE602006012223T patent/DE602006012223D1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0354403A2 (en) * | 1988-08-11 | 1990-02-14 | Deutsche Aerospace Airbus Gesellschaft mit beschränkter Haftung | Load-supporting device |
US20040016846A1 (en) * | 2002-07-23 | 2004-01-29 | Blackwell-Thompson Judith C. | Launch vehicle payload carrier and related methods |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3061945A1 (en) * | 2017-01-17 | 2018-07-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | PRESSURIZED FLUID BOTTLE |
Also Published As
Publication number | Publication date |
---|---|
CA2628722A1 (en) | 2007-07-05 |
RU2410285C2 (en) | 2011-01-27 |
US7975963B2 (en) | 2011-07-12 |
CN101341068A (en) | 2009-01-07 |
CA2628722C (en) | 2013-02-12 |
WO2007073897A3 (en) | 2007-08-23 |
EP1963177A2 (en) | 2008-09-03 |
US20080315037A1 (en) | 2008-12-25 |
EP1963177B1 (en) | 2010-02-10 |
JP2009520621A (en) | 2009-05-28 |
DE102005061928A1 (en) | 2007-07-05 |
BRPI0620333A2 (en) | 2011-11-08 |
WO2007073897B1 (en) | 2007-10-18 |
RU2008130276A (en) | 2010-01-27 |
DE102005061928B4 (en) | 2010-04-22 |
DE602006012223D1 (en) | 2010-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2628722C (en) | Safety system for reducing the impact energy of a container | |
US5992794A (en) | External airbag protection system for helicopters | |
EP2825456B1 (en) | Aircraft airbag system | |
US10569890B2 (en) | Airbag assembly for leg flail protection and associated systems and methods | |
US11059448B2 (en) | Curtain airbag assembly | |
US7232001B2 (en) | Collision air bag and flotation system | |
JP5853306B2 (en) | Structure-attached airbag assembly and related systems and methods | |
KR102676736B1 (en) | Protection system for passenger of vehicle | |
US6010286A (en) | Apparatus for rigidly retaining cargo | |
US9637078B2 (en) | Object restraint systems and methods of operation thereof | |
CN109153420A (en) | Airbag safety systems for sulky vehicle | |
EP3060426A2 (en) | Leg restraint device for side-facing seated vehicle occupants | |
CN110290983B (en) | Dual airbag system for taking safety measures for large passenger distances | |
US5301902A (en) | Aircraft airbag protection apparatus and method | |
US11155354B2 (en) | Airbag systems | |
US8888127B2 (en) | Protective device for protecting an occupant of a vehicle, a seat, and an associated vehicle | |
EP3569504B1 (en) | Aircraft air pads having restricted deployment volumes | |
US11897407B2 (en) | Vehicle seat having a seat system and having an airbag apparatus | |
US20230202375A1 (en) | Large Animal Hauling Vehicle With Supplemental Animal Stability System | |
US20200070183A1 (en) | Safety Device For Delivering An Anti-Trauma Substance In An Automobile Collision | |
Shanahan | Occupant Restraint in US Army Aviation: An Historical and Personal Perspective | |
CA2086890A1 (en) | Inflatable bolster for head strike protection in bulkhead seating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680047768.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2628722 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006841003 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008546213 Country of ref document: JP Ref document number: 12087199 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008130276 Country of ref document: RU |
|
WWP | Wipo information: published in national office |
Ref document number: 2006841003 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0620333 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080623 |