WO2007072788A1 - Cellular fiber and method for production thereof - Google Patents

Cellular fiber and method for production thereof Download PDF

Info

Publication number
WO2007072788A1
WO2007072788A1 PCT/JP2006/325215 JP2006325215W WO2007072788A1 WO 2007072788 A1 WO2007072788 A1 WO 2007072788A1 JP 2006325215 W JP2006325215 W JP 2006325215W WO 2007072788 A1 WO2007072788 A1 WO 2007072788A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
foamed
polymer
diameter
shear rate
Prior art date
Application number
PCT/JP2006/325215
Other languages
French (fr)
Japanese (ja)
Inventor
Kousuke Fukudome
Kouki Miyazono
Katsuhiko Mochizuki
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Publication of WO2007072788A1 publication Critical patent/WO2007072788A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure

Definitions

  • the present invention relates to a foamed fiber excellent in fiber uniformity and light weight and a method for producing the same. More specifically, in the present invention, the bubbles inside the fiber are fine and uniform, and the foamed structure is uniform in the longitudinal direction of the fiber. For this reason, the present invention relates to a high-quality foamed fiber having a uniform fiber diameter in the longitudinal direction of the fiber and free of thick spots, and a method for producing the same.
  • a general foam molding material is manufactured by a manufacturing method in which a foaming agent is added to thermoplastic resin, melted and mixed, and foamed during or after discharge. These foam molding materials have closed cells of about several mm to several hundreds / zm inside.
  • low-boiling compounds such as butane and organic / inorganic compounds that generate decomposition gas by thermal decomposition have been used as blowing agents.
  • the former low-boiling compound has a problem that it has an explosive risk and has a large environmental load. Power!
  • the low-boiling compound since the low-boiling compound has low solubility in the molten resin, there is a problem that the bubble diameter in the obtained foam molding material tends to be large.
  • inert gases such as carbon dioxide and nitrogen have attracted attention as foaming agents that have low environmental impact, high foaming efficiency, and no reaction with thermoplastic polymers.
  • the inert gas A foam molding material with a cell diameter of about several tens of meters can be obtained by mixing a molten polymer (carbon dioxide or nitrogen dioxide) in a supercritical state with a molten polymer, dissolving it uniformly in the polymer, and then foaming. ing.
  • the first is that many of the fibers used for clothing and industrial use are thin fibers with a diameter of 50 m or less. For this reason, at the bubble size of a few tens of ⁇ m achieved with molding materials, the physical properties were significantly reduced and practically useless.
  • the second reason is that uniformity (fiber diameter, fiber physical properties) in the longitudinal direction of the fiber is required. In this case, bubbles of a size of several tens / zm level are not practical because they cause thick fibers.
  • the organic-inorganic blowing agent is added to the thermoplastic polymer has also been proposed a technique for obtaining a foamed fiber by foaming during discharge (see Patent Documents 3 to 5.) 0
  • Patent Documents 3 to 5. the foaming agent or the remaining chain generated by thermal decomposition of the foaming agent and the thermoplastic polymer reacted with each other, so that the quality of the fiber being easily colored was lowered and the strength was increased.
  • the base was frequently soiled due to the remaining chain of the foaming agent, and the spinning performance was poor.
  • Patent Document 5 discloses a foamed fiber having a convex portion on the fiber surface.
  • the convex portion on the surface of the fiber is formed by having coarse bubbles inside the fiber and the foam structure being non-uniform in the longitudinal direction of the fiber. Therefore, although it can be used for a specific purpose, it has not been widely used as a foamed fiber for clothing or industry.
  • foamed fibers using carbon dioxide or nitrogen have been proposed.
  • foamed fibrous structure having an average diameter within the fibers have an independent air bubbles substantially spherical 1Z1,000 ⁇ 1Z5 fiber diameter has been proposed (see Patent Document 6.) 0
  • the foamed fiber structure Zotai is After a low molecular compound such as carbon dioxide or nitrogen is exhausted to a fiber structure prepared in advance under high pressure, the fiber structure containing the low molecular compound is subjected to a treatment such as heating to obtain a low molecular compound. Obtained by inflating.
  • an inert gas such as carbon dioxide or nitrogen is used as a foaming agent
  • inorganic particles are contained as a foam nucleating agent
  • the back pressure in the base is set to 50 to 300 kgZcm 2
  • the mixed polymer stays in the base.
  • a foamed fiber in which fine bubbles are formed inside the fiber is proposed by setting the interval to 1 to 15 milliseconds (see Patent Document 7). 0 In this proposal, the inert gas is held under high pressure.
  • a foamed monofilament having a fiber diameter of 500 / zm or less can be obtained.
  • foamed fibers having a bubble diameter of about 20 m and a fiber diameter of 60 m can be obtained.
  • a supercritical fluid such as carbon dioxide or nitrogen is injected into a polymer at the time of spinning and foamed at the time of spinning, so that the volume expansion coefficient is 1.2 to 50 and the cell density is 10 7.
  • a microcellular fiber having a cell / cm 3 or more, a cell length to diameter ratio of 2 or more, and a fiber diameter of 5 ⁇ m or more has been proposed (see Patent Document 9;). This proposal improves fiber properties by quenching the spun yarn to suppress gas outflow from the spun yarn and coalescence of the bubbles, and stretching the bubbles in the longitudinal direction by a spinning draft. According to this proposal, a foamed fiber having a high volume expansion coefficient and improved mechanical properties can be obtained.
  • the cell density of the foam fibers disclosed in the examples tends to decrease particularly when trying to obtain foam fibers having a fineness of 50 m or less. Atsuta. This is because the fiber surface area per volume increases when the spun yarn is cooled. For this reason, it is difficult to suppress the outflow of the foaming agent to the outside of the spun yarn. For this reason, it was a technology that did not generate enough bubble nuclei and the cell density decreased. Further, with the outflow of the foaming agent, foaming agent concentration spots and viscosity spots are produced inside the spun yarn. For this reason, this is a technique in which the bubble growth becomes uneven, coarse bubbles are formed, and the foam structure becomes uneven. Therefore, the obtained foamed fiber has a large thickness variation in the longitudinal direction and a low effect of improving mechanical properties.
  • Patent Document 1 Japanese Patent Laid-Open No. 57-34931
  • Patent Document 2 JP-A-11-92583
  • Patent Document 3 Japanese Patent Laid-Open No. 55-93831
  • Patent Document 4 Japanese Patent Laid-Open No. 4-214407
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-19013
  • Patent Document 6 Japanese Unexamined Patent Application Publication No. 2002-154463
  • Patent Document 7 JP-A-7-252724
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2003-129342
  • Patent Document 9 WO2004—35884 pamphlet
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a foamed fiber that is suitable for clothing and industrial use and has a fineness and excellent longitudinal uniformity of the fiber. is there. Another object of the present invention is to provide a production method for producing the foamed fiber with high productivity.
  • the present inventors give a high shear rate to the mixed polymer of carbon dioxide or nitrogen and a thermoplastic polymer so that it cannot be applied by ordinary melt spinning in the discharge hole.
  • the number of bubble nuclei generated at the time of spinning is remarkably increased, and a foamed fiber having a finer foam diameter and a uniform foamed structure in the longitudinal direction of the fiber can be obtained.
  • the foamed fiber of the present invention is a foamed fiber having thermoplastic polymer strength, It is a foamed fiber characterized by satisfying (1) to (5).
  • Fiber diameter is 1 ⁇ m or more and 50 ⁇ m or less
  • Bubble occupancy in fiber cross section is 10% or more and 90% or less
  • Average bubble diameter is 1 ⁇ m or less
  • the relationship between the strength and the elongation of the foamed fiber satisfies the relationship of the following formula.
  • the method for producing foamed fiber according to the present invention introduces a mixed polymer obtained by kneading a thermoplastic polymer and carbon dioxide or nitrogen in a molten state to a spinneret, and discharges it to a low pressure region to cause foaming by reducing the pressure.
  • the foamed fiber manufacturing method is characterized by satisfying the following (6) to (8) by cooling the foamed polymer and taking it out after taking it out.
  • Back pressure of the base is 8MPa or more lOOMPa or less
  • the shear rate of the mixed polymer in the spinneret hole is the shear rate ( ⁇ ) of the first stage.
  • H is 50,000 to 1,000,000 sec- 1
  • the second stage is a multistage discharge hole diameter so that the shear rate ( ⁇ ) is smaller than ⁇ .
  • the foamed fiber of the present invention is a foamed fiber having fine bubbles inside the fiber and having a highly uniform foamed structure.
  • the foamed fiber of the present invention has a uniform fiber diameter in the longitudinal direction and good mechanical properties, and is excellent in lightness, heat retention, sound insulation, cushioning, touch, and product safety. It is. Therefore, it is particularly suitable for sports clothing, outdoor clothing, uniform clothing such as white clothing, formal clothing and clothing such as winter underwear, swimwear and lining, and various vehicle interior materials such as seat skins, ceiling skins, and inline carpets. It is also suitable for industrial use such as cushions, duvets, blankets, pillows, carpets and curtains, and is also suitable for general consumption materials such as diapers, raw materials and used towels, and hand towels.
  • the fiber in the foamed fiber of the present invention refers to a thin, long and shaped fiber. Examples thereof include long fibers (filaments), short fibers (stable), and short fibers and piles used for electric flocking.
  • a filament is preferred because it has a feature of high uniformity in the longitudinal direction and is vibrant.
  • the number of single fibers may be set as appropriate according to the purpose of use such as apparel use or industrial material use. Depending on the application, monofilament may be used.
  • the cross-sectional shape of the single fiber of the foamed fiber of the present invention may be appropriately selected according to the intended use. Examples include round, polygonal, gear, petal, multileaf, star, and C types.
  • a composite fiber such as a core-sheath type, a sea-island type, or a bimetal type in which the same or different thermoplastic polymers are bonded can be obtained.
  • the blend fiber can be blended at any stage of discharging the same or different thermoplastic polymer from the spinneret. From the viewpoint of low cost and good recyclability, it is preferably a foamed fiber formed from a single type of thermoplastic polymer.
  • the foamed fiber of the present invention has a fiber diameter of 1 ⁇ m or more and 50 ⁇ m or less.
  • the fiber diameter means the diameter of a single fiber. If the cross-section of a single fiber is a perfect circle, it is the diameter.
  • the fiber diameter is obtained by the method shown in the Examples. Specifically, the cross section of the fiber is first observed, and the cross-sectional area surrounded by the outer periphery of the fiber is calculated by image analysis. Then, the diameter corresponding to the circle is obtained from the cross-sectional area, and this is defined as the fiber diameter.
  • the fiber diameter is 50 ⁇ m or less, a high-quality foamed fiber having appropriate flexibility is obtained. Therefore, it can be used widely for clothing and industrial use!
  • the fiber diameter is 1 ⁇ m or more, the mechanical properties of the foamed fiber are maintained and the foamed fiber has practical durability.
  • the fiber diameter may be appropriately selected according to the intended use. For example, when used for clothing, the fiber diameter is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 15 / zm or less.
  • the fiber diameter is preferably 40 m or less, more preferably 30 m or less.
  • the fiber diameter is preferably 3 m or more, more preferably 5 ⁇ m or more, and 8 ⁇ m is more preferable because it suppresses fluctuations in the fiber diameter due to the presence of bubbles and makes it easier to obtain uniform fibers. More preferably, it is more preferably 10 ⁇ m or more.
  • the foamed fiber in the present invention has bubbles inside the fiber. Preferably, it has ten or more independent bubbles divided by thermoplastic polymer walls in the fiber cross section. These bubbles have a shape extending in the longitudinal direction of the fiber and are discontinuous.
  • the foamed fiber in the present invention is obtained by introducing a mixed polymer in which fiber thermoplastic polymer and carbon dioxide or nitrogen or nitrogen are mixed at the spinneret in melt spinning, and reducing the pressure when discharged from the spinneret. It can be obtained by generating bubbles inside.
  • the foam occupancy of the foamed fiber of the present invention has a bubble occupancy of 10% or more and 90% or less in the fiber cross section.
  • various properties such as heat retention can be improved.
  • the mechanical properties as fibers can maintain a practical level.
  • the ratio of air bubbles in the cross section of the fiber is 20% or more, more preferably 30% or more, and more preferably, in terms of becoming a highly expanded foam fiber with characteristics such as light weight and heat retention. Is 40% or more, particularly preferably 50% or more.
  • the bubble occupancy rate is preferably 85% or less, more preferably 80% or less, and even more preferably 75% or less. Yes, particularly preferably 70% or less.
  • the number of bubbles in the fiber cross section of the foamed fiber of the present invention is preferably 10 or more. Due to the foam structure having 10 or more fine bubbles, external force is dispersed in the thermoplastic polymer. Due to this effect, the bubble has excellent durability and becomes a structure that is not easily crushed by bending or abrasion. Moreover, it becomes a foamed fiber excellent in cushioning properties and elasticity.
  • the foamed fiber of the present invention maintains the bubbles that are difficult to collapse even during yarn processing such as drawing and false twisting or when the product is used. It is preferable that the number of bubbles is large in that the durability of the foam structure is more excellent, and the number of bubbles is preferably 50 or more, more preferably 100 or more, and The number is preferably 400 or more, particularly preferably 1000 or more. About 1,000,000 is appropriate for the upper limit of the number of voids. The number of voids can be confirmed by the method of the example.
  • the foamed fiber of the present invention satisfies the relationship between the maximum bubble diameter and the fiber diameter in the fiber cross section.
  • the relationship between the maximum bubble diameter and fiber diameter is preferably the maximum bubble diameter Z fiber diameter ⁇ 0.07.
  • the maximum bubble diameter Z fiber diameter ⁇ 0.05 is more preferred, and the maximum bubble diameter Z fiber diameter ⁇ 0.04 is more preferred.
  • the maximum bubble diameter Z fiber diameter ⁇ 0.0001 is currently the manufacturing limit.
  • the maximum bubble diameter in the fiber cross section of the foamed fiber of the present invention is 10 ⁇ m. More preferably, it is 5 ⁇ m or less, more preferably 3 ⁇ m or less, particularly preferably 1 ⁇ m or less, and most preferably 0.5 m or less. The smaller the maximum bubble diameter, the better. The lower limit is preferably 0.001 / zm or more.
  • the average diameter of the bubbles in the cross section of the fiber is 1 ⁇ m or less from the viewpoint of good uniformity and mechanical properties of the fiber.
  • the average diameter of the bubbles is small, preferably 0.7 / zm or less, more preferably 0.6 m or less, and even more preferably 0.5 m or less.
  • the lower limit of the average diameter of the bubbles the smaller the average diameter of the bubbles, the more suitable the lower limit of the average diameter of the bubbles, so that the foamed fiber has high durability of the bubbles.
  • the average diameter of the bubbles is preferably 0.001 ⁇ m or more, more preferably 0.005 ⁇ m or more, and further preferably 0.01 ⁇ m or more.
  • the foamed fiber of the present invention has bubbles stretched in the longitudinal direction of the fiber.
  • this is formed by extending the bubbles in the longitudinal direction of the fiber in the process of drawing the spun yarn and in the process of stretching the spun.
  • the bubbles existing inside the fiber are in the form extended in the longitudinal direction because the decrease in the mechanical properties of the fiber is reduced.
  • the larger the bubbles, the easier it is to reduce the mechanical properties! The largest in the cross section of the fiber!
  • the diameter of the bubble (the maximum diameter of the bubble) and the length of the bubble in the longitudinal direction of the fiber It is preferable that the ratio with (bubble length) is large.
  • the maximum length of the bubble length Z bubble is preferably 3 or more, more preferably 5 or more, and even more preferably 10 or more.
  • the maximum diameter of the bubble length Z bubble is preferably 10000 or less, more preferably 5000 or less, and even more preferably 1000 or less.
  • the standard deviation of the bubble diameter is preferably 1 ⁇ m or less, more preferably 0.7 m or less, even more preferably 0.5 m or less, and particularly preferably 0. It is as follows. As for the lower limit, 0.01 ⁇ m is the current manufacturing limit.
  • the foamed fiber of the present invention has a fine and uniform foamed structure, U% (half) indicating fluctuation of the fiber diameter in the longitudinal direction is 2 or less. By reducing U% (half) to 2 or less, The processability of the foam fiber is improved. For example, in the case of suppressing fluff during false twisting or making a woven fabric, it becomes a fiber excellent in versatility as a fiber for clothing or industrial use that suppresses the generation of wrinkles and is less likely to cause shading in dyeing.
  • thermoplastic polymer constituting the foamed fiber of the present invention will be described.
  • thermoplastic polymer forming the foamed fiber of the present invention has fiber-forming ability.
  • thermoplastic polymer is synthesized by a mechanism in which a monomer having a bur group, such as radical polymerization, ion polymerization, and cationic polymerization, is produced by an addition polymerization reaction.
  • a monomer having a bur group such as radical polymerization, ion polymerization, and cationic polymerization
  • Polyolefin-based polymers and other bur polymers such as polyethylene, polypropylene, polybutylene, polymethylpentene, polystyrene, polyacrylic acid, polymethacrylic acid, polymethyl methacrylate, polyacrylonitrile, polytetrafluoroethylene , Polyvinylidene fluoride, polysalt vinylidene, polycyanide vinylidene and the like.
  • These may be polymers by homopolymerization, such as polyethylene only or polypropylene only! /, Or a plurality of monomers. It may be a copolymerized polymer formed by carrying out a polymerization reaction in the presence of one copolymer. For example, if polymerization is carried out in the presence of styrene and methyl methacrylate, a copolymerized polymer called poly (styrene methacrylate) is obtained.
  • generates may be a polymer which is such a copolymer.
  • thermoplastic polymer examples include a polyamide polymer formed by the reaction of carboxylic acid or carboxylic acid chloride with amine. Specifically, nylon 6, nylon 7, nylon 9, nylon 11, nylon 12, nylon 6, 6, nylon 4, 6, nylon 6, 9, nylon 6, 10, nylon 6, 12, nylon 5, 7 Nylon 5, 6 and nylon 5, 10 and the like. And within the range not detracting from the gist of the present invention, other aromatic, aliphatic, alicyclic dicarboxylic acid, other aromatic, aliphatic and alicyclic diamine components, or other aromatic, aliphatic and An alicyclic aminocarboxylic acid compound (one compound having both sulfonic acid and amino groups) may be used. Alternatively, it may be a polyamide polymer obtained by copolymerization of the third and fourth copolymer components.
  • thermoplastic polymer examples include polyester polymers formed by esterification reaction of carboxylic acid and alcohol. Specific examples include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polycyclohexane dimethanol terephthalate. And the main point of the present invention is not impaired! Other components are copolymerized within the range!
  • the dicarboxylic acid compound of the copolymerization component includes terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, anthracene dicarboxylic acid, phenanthrene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethanedicarboxylic acid.
  • Aromatic, aliphatic, and cycloaliphatic dicarboxylic acids such as acids and their derivatives, adducts, structural isomers, and optical isomers such as alkyl, alkoxy, aryl, aryl, and imi-imido halides. be able to.
  • these dicarboxylic acid compounds one may be used alone, or two or more may be used in combination.
  • Examples of the diol compound of the copolymer component include ethylene glycol and propylene glycol. , Butyleneglycolanol, pentanediol, hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, hydroquinone, resorcin, dihydroxybiphenyl, naphthalenediol, anthracenediol, phenanthreneol, 2, 2-bis Aromatic, aliphatic and cycloaliphatic diol compounds such as (4-hydroxyphenol) propane, 4,4'-dihydroxydiphenyl ether and bisphenol S and their alkyl, alkoxy, aryl, aryl, Derivatives, adducts, structural isomers and optical isomers such as amino-imino and halides can be mentioned. You can use one of these Zeo-Lui compounds alone or in combination of two or more.
  • Examples of the copolymer component include hydroxycarboxylic acids (one compound having a hydroxyl group and a carboxylic acid).
  • Examples of the hydroxycarboxylic acid include lactic acid, 3-hydroxypropionate, 3-hydroxybutyrate, 3-hydroxybutyrate valerate, hydroxybenzoic acid, hydroxynaphthoic acid, hydroxyanthracenecarboxylic acid, and hydroxyphenanthrene.
  • Aromatic, aliphatic and alicyclic diol compounds such as carboxylic acids, (hydroxyphenol) vinyl carboxylic acids, and their alkyl, alkoxy, aryl, aryl, and amide-containing halogenated compounds Derivatives, adducts, structural isomers and optical isomers. Of these hydroxycarboxylic acids, one kind may be used alone, or two or more kinds may be used in combination.
  • the polyester polymer may be a polymer having hydroxycarboxylic acid as a main repeating unit.
  • Hydroxycarboxylic acids include aromatic, aliphatic and alicyclic. These hydroxycarboxylic acid polymerized polymers include polylactic acid, poly (3-hydroxypropionate), poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate valerate). Mention may be made of poly (hydroxycarboxylic acids).
  • other aromatic, aliphatic and alicyclic dicarboxylic acids, other aromatic, aliphatic and alicyclic diol components, and other hydroxycarboxylic acids are copolymerized without departing from the spirit of the present invention. Also good.
  • thermoplastic polymer of the present invention includes polycarbonate polymers (polymerized by transesterification of alcohol and carbonic acid derivatives), polyimide polymers (carbons). (Polymerized by cyclized polycondensation of acid anhydride and diamine), polybenzimidazole polymer (polymerized by reaction of dicarboxylic acid ester and diamine), polysulfone polymer, polyethylenee polymer, polyphenylene sulfide Examples thereof include synthetic polymers such as polymers, polyether ether ketone polymers, and polyetherol ketone ketone polymers, and polymers derived from natural polymers such as chitin and chitosan derivatives.
  • thermoplastic polymer may be appropriately selected depending on the use of the foamed fiber, but is well balanced in fiber physical properties such as mechanical properties and thermal properties, excellent in versatility, and heat resistant in the foam structure. Of these, polyester polymers, polyamide polymers, and polyolefin polymers are preferred. Polyesterol polymers and polyamide polymers are more preferred.
  • polyester polymers polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polylactic acid are more preferable in that the foamed structure of the foamed fiber has high heat resistance and high durability. .
  • Polyethylene terephthalate and polytrimethylene terephthalate are even more preferred. Polyethylene terephthalate is particularly preferred.
  • nylon 6 and nylon 6, 6 are more preferably used as the polyamide polymer from the viewpoint of durability of the foamed fiber.
  • the foamed fiber of the present invention preferably has a better mechanical property and a highly versatile fiber, and the relationship between strength (cNZdtex) and elongation (%) preferably satisfies the following formula.
  • Strength X (Elongation) ⁇ The value of 5 is an index for evaluating the energy required for a fiber to break. Higher values indicate better mechanical properties and higher practicality. In the prior art, the fibers contained coarse bubbles with respect to the fiber diameter, and the size of the bubbles was not uniform. . However, in the present invention, by increasing the number of bubble nuclei generated by a specific manufacturing method, it is possible to obtain a foam fiber that is sufficiently small relative to the fiber diameter and includes only soot bubbles. Therefore, a foamed fiber satisfying the above formula can be obtained.
  • Strength X (elongation) ° ⁇ 5 is preferably 16 or more in terms of becoming a foamed fiber with better mechanical properties and practicality. More preferred is 17 or more.
  • the strength X (elongation) ⁇ 5 is preferably 40 or less, more preferably 35 or less, and even more preferably 30 or less.
  • the fiber strength of the foamed fiber in the present invention is preferably 2. OcNZdtex or more. When used as a sports uniform or outdoor clothing, and when used as an industrial material, it should be a strong material. In addition, even when the processability of fibers or fiber products is taken into consideration, the yarn properties are required to have high fiber strength. Therefore, it is more preferable that the fiber strength is 2.5 cNZdtex or more. 3. It is more preferable that the fiber strength is OcNZdtex or more. Particularly preferable is 3.5 cNZdtex or more. In general, fibers having high strength tend to have low elongation. Therefore, the strength is preferably 10c NZdtex or less, more preferably 9cNZdtex or less, more preferably 8cN Zdtex or less, and even more preferably 7cNZdtex or less.
  • the foamed fiber in the present invention has excellent lightness because it has bubbles inside the fiber.
  • the apparent specific gravity of the fiber being 90% or less of the specific gravity of the thermoplastic polymer.
  • the apparent specific gravity is 1.24 or less, 1.12 or less for polytrimethylene terephthalate, 1.22 or less for polybutylene terephthalate, 1.13 or less for polylactic acid, 1.02 or less for polyamide, 0. 81 or less, or 0.85 or less for polyethylene.
  • the apparent specific gravity of the fiber is 85% or less with respect to the specific gravity of the thermoplastic polymer, more preferably 80% or less, and even more preferably 75% or less in terms of becoming a lighter fiber. .
  • the specific gravity of the foamed fiber of the present invention is measured by the method of the example. However, for foamed fibers for which it is difficult to measure the specific gravity by this method, the apparent specific gravity is calculated using the bubble occupancy in the fiber cross section and the amorphous density of the thermoplastic polymer.
  • the foamed fiber of the present invention has a quenching agent, a flame retardant, a lubricant, an anti-oxidation agent, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, a foaming nucleating agent, a fluorescent substance within a range not impairing the gist of the invention.
  • Brighteners, end group sealants (compounds or reactive compounds such as epoxy groups, carpositimide groups, etc.) Ma) and a small amount of additives such as thickeners may be retained.
  • the foamed fiber of the present invention uses diacid carbon and / or nitrogen as a foaming agent, and after mixing the diacid carbon and / or nitrogen with a molten thermoplastic polymer. Then, the mixed polymer is guided to the spinneret, discharged at a high shear rate in the spinneret discharge hole, foamed by lowering the pressure, and the foamed spun yarn is cooled and then wound. Manufactured by the method of taking.
  • carbon dioxide and / or nitrogen is used as a foaming agent, which is relatively low in critical temperature and critical pressure of carbon dioxide and nitrogen. Therefore, it is easy to form a single phase of the thermoplastic polymer and carbon dioxide or nitrogen by dissolving in the thermoplastic polymer by mixing in the thermoplastic polymer as a supercritical state. As a result, a fine and uniform foam structure can be formed inside the foam fiber.
  • the critical temperature of carbon dioxide is 31 ° C and the critical pressure is 7.4MPa, while the critical temperature of nitrogen is -147 ° C and the critical pressure is 3.4MPa. If the requirements above the critical temperature and above the critical pressure are met, the fluid will be in a supercritical state.
  • Carbon dioxide or nitrogen used as a foaming agent can be used alone or in combination with carbon dioxide and nitrogen.
  • the mixing ratio can be arbitrarily selected. In view of obtaining a foamed fiber having a higher foaming ratio, that is, having a higher cell occupation ratio in the foamed fiber, it is preferable to use carbon dioxide.
  • the pressure in the spin pack is 10 MPa or more.
  • the pressure in the spin pack is more preferably 20 MPa or more. More preferably, it is 30 MPa or more.
  • the pressure in the spinning pack is 40 MPa or more.
  • Particularly preferred is 50 MPa or more.
  • the pressure inside the spin pack can be measured by placing a pressure gauge in the polymer flow path to the spin pack as well as the gear pump.
  • the back pressure in the die (hereinafter, sometimes abbreviated as the die back pressure) is 8 MPa or more and lOOMPa or less.
  • the foaming mechanism of the foamed fiber of the present invention will be outlined.
  • the amount of carbon dioxide or nitrogen dissolved in the thermoplastic polymer (hereinafter sometimes abbreviated as “solubility”) is higher at higher pressures and lower at lower pressures. For this reason, under high pressure conditions, the mixed polymer forms a single phase in which carbon dioxide or nitrogen is dissolved in the thermoplastic polymer.
  • the solubility of carbon dioxide or nitrogen in the thermoplastic polymer is lowered by the pressure drop when the mixed polymer is discharged.
  • the back pressure of the base is high. It is more preferable that it is lOMPa or more. More preferable is 15 MPa or more. More preferable is 20 MPa or more. Particularly preferable is 30 MPa or more. Is the best.
  • the upper limit of the back pressure of the base is preferably set to lOOMPa or less from the viewpoint of pressure resistance design. Note that the back pressure of the base is calculated from the pressure in the spin pack by the method of the example.
  • the region to which the shear rate ( ⁇ ) is applied is defined as the high shear rate region.
  • the shear rate ( ⁇ ) in the present invention is calculated by the following equation.
  • T Slit length in the high shear rate region (cm)
  • W Slit width (cm) in the high shear rate region.
  • the hole shape is a hole shape other than a round hole, a slit hole and a Y hole
  • the cross-sectional area of the hole is calculated to obtain the diameter D corresponding to the cross-sectional area
  • volume discharge per single hole (Q) (cmVsec) is the weight discharge per single hole (gZsec).
  • thermoplastic polymer Divided by the melt density (g / cm 3 ) of the thermoplastic polymer only. For example, 1.18 for polyethylene terephthalate, 1.14 for polytrimethylene terephthalate, 1.08 for polylactic acid, and 1.00 for nylon 6 It was. For polymers other than the above thermoplastic polymers, adjust the pressure at the inlet and outlet of the gear pump so that the discharge efficiency of the gear pump is 100%, and use the discharge volume per rotation of the gear pump and the rotation speed. Calculated by calculation.
  • bubble nuclei are formed by contacting carbon dioxide or nitrogen in the mixed polymer. For this reason, fluctuations in the concentration of carbon dioxide or nitrogen in the mixed polymer are involved in the formation of bubble nuclei. Usually, bubble nuclei are generated only in the region where the concentration of carbon dioxide or nitrogen is relatively high in the fiber. On the other hand, when a high cutting speed is imparted in the discharge hole as in the present invention, a large amount of carbon dioxide or nitrogen dissolved in the thermoplastic polymer is brought into contact with each other. It is also presumed that bubble nuclei are generated even in a relatively low concentration region of nitrogen.
  • shear rate to be applied to the mixed polymer at the discharge hole is to 50, OOOsec _ 1 or more, the foam fibers finely foamed for cell nuclei is sufficiently generated bubbles do not grow excessively is obtained. Shear rate is more favorable Mashiku is at 60,000Sec _1, even more preferably 70,000Sec _1 or more.
  • the upper limit of the pruning disconnection speed it is preferable than that force is preferred instrument 800,000Sec _1 from the viewpoint of productivity and the spinning stability l, 000, is OOOsec _1, 500, more favorable it is OOOsec _1 Mashigu particularly preferably 300, OOOsec _1.
  • giving a shear rate ( ⁇ ) within the range of the present invention means that the high shear rate region is a round hole.
  • the hole is a Y hole, adjust the slit length (T) and slit width (W), or simply
  • the pore depth (L) in the high shear rate region in the present invention is carbon dioxide or nitrogen.
  • a hole depth (L) of 0.1 mm or more is preferred because it is desirable to apply a uniform shear rate to the mixed polymer of thermoplastic polymer and to easily generate cell nuclei uniformly inside the mixed polymer.
  • L hole depth
  • the gold back pressure should not exceed lOOMPa! / Choose the appropriate range! ,.
  • the mixed polymer 50,000Sec _1 least 1, after applying the shear rate (gamma) below 000,000 SeC _1, smaller than its shear rate (gamma)
  • V preferred to have a region that imparts a shear rate ( ⁇ ).
  • a shear rate
  • the region to which (i) is given is called the low shear rate region.
  • the region to which (i) is given is called the low shear rate region.
  • the cell occupancy is high !, that is, the shear rate ( ⁇ ) and the trimming in terms of high foamed fiber.
  • ⁇ / which is the ratio of the breaking speed (0), is 1.5 or more.
  • the hole shapes for imparting L may be the same or different.
  • the cross-sectional area of the hole is calculated to obtain the diameter D corresponding to the cross-sectional area, and the above (
  • the volume discharge volume (Q) is the volume per single hole.
  • the pore depth (L) in the low shear rate region can be heated with carbon dioxide or nitrogen.
  • the plastic polymer mixed polymer is long in terms of imparting a uniform shear rate, generating bubble nuclei uniformly inside the mixed polymer, and allowing the bubbles to grow easily.
  • the thickness is preferably at least 0.1 mm, more preferably at least 0.2 mm, and even more preferably at least 0.3 mm, particularly preferably at least 0.4 mm.
  • Above hole depth (L) is preferably at least 0.1 mm, more preferably at least 0.2 mm, and even more preferably at least 0.3 mm, particularly preferably at least 0.4 mm.
  • FIGS. 1 to 3 are schematic views of a round hole cap having a high shear rate region and a low shear rate region which are preferable in the present invention.
  • the shear rate (y) is the shear rate (y)
  • the shear rate ( ⁇ ) is calculated using the volume discharge amount Q per hole. At this time, high shear rate
  • the volume discharge amount (Q) and the volume discharge amount (Q) are different. Caution must be taken . That is, when the high shear rate region is 2 holes and the low shear rate region is 1 hole, Q becomes 1Z2 of Q.
  • the shear rate ( ⁇ ) is a parameter of the portion where the shear rate is lowest.
  • a die having a high shear rate region and a die having a low shear rate region can be used in an overlapping manner.
  • the thermoplastic polymer used in the present invention is a force formed by a melt-viscosity thermoplastic polymer that is usually used for synthetic fibers.
  • the thermoplastic polymer and carbon dioxide or nitrogen dioxide are used.
  • a high shear stress is generated when melt and kneading and the carbon dioxide or nitrogen dioxide is easily dissolved in the thermoplastic polymer, and the bubbles are coalesced when the spun yarn is cooled.
  • a thermoplastic polymer having a high melt viscosity is preferable.
  • the melt viscosity is the melt shear viscosity at a shear rate of 20 s ec _1 (below below) measured at a temperature 30 ° C higher than the melting point ( ⁇ ) when the thermoplastic polymer used for the foamed fiber is a crystalline polymer.
  • the shear viscosity is preferably lOOPa-sec or more, more preferably 300 Pa'sec or more, and even more preferably 500 Pa'sec or more.
  • the shear viscosity is preferably ⁇ , ⁇ a 'sec or less, more preferably 8,000 Pa' sec or less, and even more preferably 5,000 Pa 'sec or less.
  • the shear viscosity was measured at the same temperature as the spinning temperature.
  • a mixed polymer of carbon dioxide or nitrogen and a thermoplastic polymer is kneaded by mechanical kneading such as a 1-axis etatruder or 2-axis etatruder, or by stationary kneading such as a static mixer or a high mixer. It is preferred that This is preferable because carbon dioxide or nitrogen dioxide is easily dissolved uniformly. It is more preferable to knead by mechanical kneading such as a 1-axis etha ruder or a 2-shaft eta-truder. These kneading mechanisms may use only one type, or two or more types May be used in combination, or a plurality of types may be used.
  • Carbon dioxide or nitrogen dioxide is preferably injected by a nozzle tube or the like at an arbitrary stage before discharging the molten thermoplastic polymer.
  • carbon dioxide or nitrogen dioxide can be added with high productivity and can be added to the thermoplastic polymer at a high concentration.
  • a nozzle tube is attached to any position where the thermoplastic polymer is melted and kneaded with the etastruder. It is preferred to inject carbon or nitrogen directly into the molten thermoplastic polymer. This facilitates uniform dissolution in carbon dioxide or nitrogen thermoplastic polymers, and is preferred.
  • thermoplastic polymer Carbon dioxide or nitrogen, or a mixture of both, and a thermoplastic polymer is supercritical in all regions where the polymer is introduced into the spin pack and foamed during spinning. Preferred to be in the state. This can be achieved by a spinning machine with an etustruder, which is preferred in the present invention.
  • the amount of thermoplastic polymer supplied can be adjusted by adjusting the discharge rate of the gear pump and the mixed polymer existing in the polymer flow path can be increased to maintain high pressure, and the clearance of the elasto ruder and the polymer flow path can be designed narrowly. It is preferable to employ a method of maintaining the mixed polymer at a high pressure.
  • the pressure at the outlet of the etastruder (hereinafter abbreviated as the tip pressure) be 8 MPa or more, more preferably 9 MPa or more, and lOMPa or more. Is a more preferred embodiment.
  • Carbon dioxide or nitrogen used for injection can be in any of a gaseous state, a liquid state, and a supercritical state, but has a high diffusion rate into the molten thermoplastic polymer and is easily dissolved uniformly. Therefore, it is preferable to inject in a supercritical state. Injection with a supercritical fluid means that the temperature of the molten thermoplastic polymer is 31 ° C or higher when carbon dioxide is used, 147 ° C or higher when nitrogen is used, and 31 ° C when both are used in combination. 7.4MPa or more if the injection pressure is carbon dioxide carbon, satisfying the condition of C or higher, and 3.4MPa or higher if nitrogen is used, or 7.4MPa or higher if both are used in combination. To be achieved.
  • the amount of carbon dioxide and / or nitrogen added to the thermoplastic polymer the more dioxygen carbon or nitrogen mixed when the die force is discharged becomes supersaturated, resulting in more bubble nuclei. Is formed.
  • the amount of added force of carbon dioxide and / or nitrogen is larger.
  • the amount of applied force is 1.5 wt% or more. 2. More preferably, it is more preferably Owt% or more, and more preferably 2.5 wt% or more. If too much carbon dioxide and / or nitrogen is added, the bubbles tend to coalesce easily. Therefore, the amount of carbon dioxide and / or nitrogen added is preferably 10 wt% or less, more preferably 9 wt% or less, and even more preferably 8 wt% or less.
  • the method for producing foamed fiber of the present invention it is easy to generate bubble nuclei by imparting a high shear rate to the thermoplastic polymer and carbon dioxide or nitrogen, or a mixed polymer of both in the discharge hole. ing. Therefore, carbon dioxide or nitrogen dioxide is consumed mainly by the formation of bubble nuclei. Therefore, even if the addition amount of carbon dioxide and / or nitrogen is large, the bubble growth rate does not become excessively high, and the bubbles are not easily coalesced. For this reason, it is possible to spin stably.
  • the discharged spun yarn is cooled. If the spun yarn is not cooled, the bubble nuclei from which carbon dioxide or nitrogen dioxide easily flows out from the spun yarn will not grow, resulting in poor foaming efficiency. The rate may go down.
  • the cooling method V is achieved by a technique in which a material having a temperature lower than that of the spun yarn is brought into contact with the spun yarn. For example, a method of spraying cooling air onto the spun yarn, a method of immersing the spun yarn in cold water, a method of spraying water vapor onto the spun yarn, and the like.
  • a method of cooling the spun yarn by blowing cooling air on the spun yarn with advantages such as uniform cooling of the spun yarn and high spinning speed is preferred. In this case, as the temperature of the cooling air is lower, the spun yarn is cooled more rapidly as the distance from the cooling air spray start point to the base is shorter.
  • the temperature of the cooling air is preferably 30 ° C or less from the viewpoint that the outflow of carbon dioxide or nitrogen can be further suppressed, and the bubble occupation ratio in the fiber cross section of the foamed fiber can be increased. It is more preferable that the temperature is 25 ° C or lower, and further preferable is 20 ° C or lower.
  • the lower limit of the temperature of the cooling air It is too low! If the temperature is too low, water vapor will freeze in the cooling air flow path, causing clogging. Since there are concerns about rubbing, o ° c or higher is appropriate. Further, as described above, the spun yarn is cooled more rapidly as the distance between the cooling air blowing start point and the base is shorter.
  • the distance between the cooling air spray start point and the base is preferably 20 cm or less, more preferably 10 cm or less, and even more preferably 5 cm or less, particularly preferably 3 cm or less. It is. Direct force under the base When cooling air is blown, the base itself may be cooled and the temperature of the base may drop. When the temperature of the die surface is excessively lowered, unmelted polymer is discharged, and as a result, the foam structure of the foamed fiber may become non-uniform. Therefore, it is also preferable to use a heater that locally heats the vicinity of the die. It is a technique.
  • the fiber is taken up at a speed of 1000 to 6,000 mZ (hereinafter sometimes abbreviated as "spinning speed").
  • spun yarn is cooled below the glass transition temperature (T) in a short time.
  • Spinning speed l is more preferably 300 mZ or more l, 500 mZ or more Force S More preferably 2,000 mZ or more is particularly preferable.
  • the spinning speed is more preferably 5,500 mZ or less, more preferably 5, OOmZ or less, and even more preferably 4,500 mZ, in terms of forming a foam fiber with a higher cell occupation ratio. It is as follows.
  • the spun yarn is cooled and the foamed fiber taken up at the above spinning speed is heat-treated without being wound.
  • the solubility of carbon dioxide or nitrogen in thermoplastic polymers is usually greater at lower temperatures, the carbon dioxide or nitrogen may be dissolved inside the drawn foam fibers. Therefore, by applying heat treatment, carbon dioxide or nitrogen dissolved in the foamed fiber was dissolved. It is possible to increase the number of bubbles inside the foamed fiber by reducing the solubility of and generating bubble nuclei. At the same time, the dissolved carbon dioxide or nitrogen flows into bubbles that already exist, and the bubbles grow, resulting in a foam fiber with a high bubble occupancy rate.
  • Such a change in the foam structure due to the heat treatment is a phenomenon peculiar to the foamed fiber immediately after spinning, and is thus achieved by heat-treating the taken-up foamed fiber before winding.
  • the heat treatment temperature is T or higher of the thermoplastic polymer. T + 10 ° C or higher.
  • thermoplastic polymer is a crystalline polymer
  • the fluidity of the thermoplastic polymer becomes too high, which may lead to bubble coalescence and bubble breakage.
  • the treatment is preferably performed at a temperature lower than T + 150 ° C. More preferably crystalline polymer g
  • the melting point is 30 ° C or less, and in the case of an amorphous polymer, T + 120 ° C or less. Even better
  • the melting point is less than 50 ° C, and for amorphous polymers, T + 100 ° C
  • the heating method for the heat treatment is preferably a heating method using a general-purpose apparatus and high heat transfer capability. Therefore, an apparatus using a heating roller, a heating pin, a heating plate, a heating liquid and heating steam, Alternatively, it is preferable to employ a heating method using excitation of molecular vibration represented by a carbon dioxide laser or the like.
  • One heat source can be used for heat treatment in one step !, or multiple heat sources can be combined for heat treatment in multiple steps.
  • the spun yarn is drawn and then drawn. This is because, by stretching, the bubbles inside the foamed fiber are elongated in the longitudinal direction, and the uniformity of the foamed structure in the longitudinal direction is enhanced. In addition, by stretching, the wall of the thermoplastic polymer existing between the bubbles of the foamed fiber is stretched in the fiber axis direction and oriented in the longitudinal direction to have sufficient mechanical properties.
  • the heating method during stretching is represented by a heating pin, a heating plate, a device using a heating liquid or a heating gas, a carbon dioxide laser, or the like, which uses a general-purpose device and a heating method having a high heat transfer capability. It is possible to employ a heating method that utilizes the excitation of molecular vibration. In view of easy uniform stretching, the stretching temperature is preferably T + 10 ° C or higher.
  • thermoplastic polymer is too high, the fluidity of the thermoplastic polymer may become so high that bubbles may be coalesced and broken, so if the thermoplastic polymer is a crystalline polymer, it should be processed below the melting point, and if it is an amorphous polymer, It is preferable to process at a temperature lower than T + 150 ° C.
  • thermoplastic polymer is a crystalline polymer, it should be processed below the melting point, and when it is an amorphous polymer, it should be processed at a temperature lower than T + 150 ° C.
  • the melting point is 30 ° C or lower for a crystalline polymer, and T + 120 ° C or lower for an amorphous polymer. More preferably, for crystalline polymers, the melting point is 50 ° C g
  • V is more preferable, but if it is 10 msec or more, a sufficient effect is exhibited.
  • the method of re-heat treatment after stretching uses a general-purpose apparatus, and the higher the heating efficiency, the more the structure inside the fiber is fixed without being relaxed, and the foamed fiber with high bubble durability is obtained. Therefore, a heating pin, a heating roller, a heating plate, a device using a heating liquid or a heating gas, or a heating method using excitation of molecular vibration represented by a carbon dioxide laser can be employed.
  • Stretching and reheat treatment after stretching may be performed at any stage after winding the foamed fiber and before winding, but as described above, before the wound foamed fiber is wound, heat treatment is performed. In view of the fact that the effect can be realized at the same time, a method of heating and extending after winding and then reheating after winding is particularly preferable.
  • heat treatment is performed by heating several rollers.
  • a stretching method or a heating pin, a heating plate, or a heat source such as a heated liquid between the rollers and a method of stretching while performing heat treatment can be employed.
  • the draw ratio should be adjusted so that the foamed fiber has the desired residual elongation.
  • the above-described spun yarn may be false twisted without being stretched or after being stretched.
  • drawn yarn is used in false twisting, it is heated by a contact or non-contact method, and false twisting is performed with a disk, belt, or pin. Is done.
  • undrawn yarn is used, it is similarly heated with a contact or non-contact type heater or the like, while being stretched without being heated, and with a twisted body (disk, pin, belt). It is Although the false-twisted foamed fiber can be wound as it is, it is wound after being heat-set again.
  • thermoplastic polymer A. Measurement of melting point (T) and glass transition temperature (T) of thermoplastic polymer
  • Measuring device Differential scanning calorimeter (DSC-2), manufactured by PerkinElmer
  • the endothermic peak temperature observed as the deviation of the stepped baseline when the temperature was measured again at a temperature of 16 ° CZ was defined as the glass transition temperature (T).
  • T glass transition temperature
  • the peak temperature was taken as the melting point (T).
  • the melt shear viscosity was measured under the following conditions.
  • Measuring device Capillograph type 1 manufactured by Toyo Seiki Co., Ltd.
  • Measurement temperature T + 30 ° C for crystalline polymer o Spinning temperature for amorphous polymer.
  • Measuring device Zellweger, UT-4
  • the strength and elongation of the foamed fiber were measured under the following conditions. The strength and elongation were measured, and the average value measured five times was taken as each measured value. Using the average value of strength and elongation, strength X (elongation) ° 5 was calculated.
  • a tubular knitted fabric of 100 g ⁇ 10 g consisting only of the foamed fiber of the present invention is prepared. Then, the apparent specific gravity was determined by measuring the weight and volume of the tubular knitted fabric.
  • the weight of the tubular knitted fabric is measured in advance. Then, the weight and volume of the weight-balanced weight are fixed to the tubular knitted fabric, immersed in ion-exchanged water adjusted to a temperature of 4 ° C ⁇ 1 ° C, and defoamed with ultrasonic waves for 5 minutes. After that, the volume of the tubular knitted fabric is measured. Tube knitted fabric 10 The average value of the specific gravity values of 10 pieces of cloth was measured.
  • the second stage was subjected to precision cutting (current: about 30 OOpA treatment time: about 4 minutes, vacuum: 1.4 X 10 _13 Pa).
  • current about 30 OOpA treatment time: about 4 minutes, vacuum: 1.4 X 10 _13 Pa.
  • the sample was cut perpendicular to the fiber axis direction.
  • the sample was cut parallel to the fiber axis direction.
  • WinROOF registered trademark
  • A fiber diameter
  • the cross-sectional area (A) of the fiber means the cross-sectional area of the region that forms one fiber.
  • the fiber diameter (D) was calculated by averaging the fiber diameters obtained at 10 power stations.
  • the fiber was cut so that it passed through the center of gravity of the bubble having the largest area and was parallel to the fiber axis, and the bubble length (L), which is the length of the bubble in the fiber axis direction, was obtained.
  • the number of bubbles (N) was determined by counting all the bubbles present in the fiber cross section. For all bubbles, the cross-sectional area of the bubbles was calculated by image analysis, and the sum (A) was obtained.
  • the average bubble diameter (D) corresponds to the circle of all the bubbles present in the fiber cross section
  • the diameter to calculate was calculated and the number average was taken.
  • the standard deviation ( ⁇ ) of the bubbles was calculated by taking the standard deviation of the diameter corresponding to all the bubble circles.
  • a pressure gauge is attached in the polymer flow path between the gear pump and the spinning pack so that the pressure in the spinning pack during spinning ( ⁇
  • the spinning pack is attached, and the measured value of the pressure gauge is measured until the mixed polymer of thermoplastic polymer and carbon dioxide or nitrogen is introduced into the spinning pack and the spinneret mixed polymer is discharged. Put it on the chart. Based on this chart, the pressure ( ⁇ ) in the spinning pack immediately after discharge is expressed as the pressure loss ( ⁇ ) in the polymer flow path.
  • Thread-making performance is evaluated based on the number of thread breaks. Excellent when no thread breakage occurs ( ⁇ ), good when thread breakage is 1-5 times ( ⁇ ), and when thread breakage is 6-20 times Inferior ( ⁇ ), can't wind up at all! /, Case not allowed (X).
  • PET-1 and PET-2
  • PET-1 having a melt viscosity of 250 Pa 'sec was obtained.
  • PET-1 was further solid-phase polymerized at a temperature of 220 ° C under a nitrogen stream and solid-phase polymerized for 15 hours.
  • the melting point (T) was 260 ° C and the glass transition temperature (T) was 83 ° C and 290
  • PET-2 with a high viscosity of lOOOPa ⁇ sec- 1 at a temperature of ° C was obtained.
  • a low polymer obtained by transesterifying 0.1 parts (0.01 mole parts) of a Japanese salt and distilling off methanol was added to 0.065 parts of trimethyl phosphate and 0.14 parts of titanium tetrabutoxide.
  • the polycondensation reaction was carried out while distilling off 1,3-propanediol, to obtain chip-shaped preborima.
  • the obtained prepolymer was further solid-phase polymerized at a temperature of 220 ° C under a nitrogen stream, and had a glass transition temperature (T) of 52 ° C and a melting point (T) of 230 ° C.
  • melt viscosity at sec-1 was obtained PLA of 2000 Pa 'sec _1.
  • the spun yarn foamed when discharged from the discharge hole of the spinneret was cooled with cooling air, taken up with a roller, and wound up with a winder to produce a foam undrawn yarn (fineness). 124. 8dtex, filament number 24).
  • the spinning conditions at this time are shown below.
  • the shear rate was calculated using the above equation (A) using 1.18 gZcm 3 , which is the melt density of PET.
  • Foaming agent addition amount 3wt% with respect to the spun yarn discharged from the die
  • Base Round base with a hole diameter of 0.15 mm, a hole depth of 0.16 mm, and a hole number of 24
  • Cooling Uses Uniflow with a cooling length of lm. Cooling air temperature 20 ° C, wind speed 0.5m / min
  • the first heating roller When drawing the foam undrawn yarn, the first heating roller is a low temperature of 90 ° C.
  • the second heated roller was drawn between rollers having a temperature of 130 ° C., cooled to room temperature with a third roller, and wound on a bobbin with a spindle to obtain foamed fibers. At this time, the draw ratio was set to 1.4 times.
  • Table 1 shows the physical properties of the foamed fiber of Example 1.
  • Example 1 the internal pressure of the pack and the back pressure of the base were the same, and the bases with different hole diameters and hole depths were used as described below, except that the shear rate ⁇ was changed as shown in Table 1.
  • a foamed unstretched yarn was prepared in the same manner as in Example 1, and the foamed unstretched yarn was treated in the same manner as in Example 1.
  • the foamed fibers of Example 2 and Comparative Examples 1 to 3 were produced by stretching.
  • the foamed fiber of the present invention contains only fine bubbles as compared with the fiber diameter with a smaller ratio of the maximum bubble diameter to the Z fiber diameter, and has coarse bubbles. It was not. For this reason, it was a high-quality foam fiber that was uniform in the longitudinal direction of the fiber with a small U% (half). Also, the variation in bubble diameter, that is, the standard deviation of the bubble diameter was small. For this reason, the mechanical properties were also excellent.
  • the foamed fiber of the present invention uses a die that gives a shear rate much higher than the shear rate applied in ordinary melt spinning to a mixed polymer of thermoplastic polymer and carbon dioxide-dioxide carbon. Achieved for the first time.
  • Comparative Example 3 Although the bubble occupancy ratio was high, the fiber was thick and hard and low quality. Further, it was a foam fiber that was clearly impregnated in the longitudinal direction, had insufficient mechanical properties, and was impractical.
  • Example 2 An undrawn expanded yarn was produced under the same conditions as in Example 1 except that the spinning speed was changed as follows. Further, when the unfoamed yarn was stretched in the same manner as in Example 1, the stretch ratio was adjusted as follows to obtain foamed fibers. The results of Examples 4 to 8 and Comparative Examples 3 to 4 are shown in Table 2.
  • Example 5 Spinning speed 2000 mZ min, draw ratio 2.5 times
  • Example 6 Spinning speed 3000 mZ min, draw ratio 1.
  • Example 7 Spinning speed 5000 mZ min, draw ratio 1.2 times
  • Example 9 Spinning was carried out in the same manner as in Example 1 except that the base for imparting L) was used to obtain a foam undrawn yarn.
  • the shear rate ( ⁇ ) and the back pressure of the base were the same as in Example 1.
  • Example 3 As shown, the following hole spec base was used. The obtained foam undrawn yarn was drawn in the same manner as in Example 1 to obtain foamed fibers. The results of Examples 9-11 are shown in Table 3.
  • the mixed polymer in the discharge hole, has a shear rate ( ⁇ ) as the first step and a shear rate ( ⁇ ) lower than the shear rate ( ⁇ ) as the second step.
  • Example 9 1 1 has a high bubble occupancy, but the bubbles are sufficiently elongated in the fiber axis direction Therefore, the foamed fiber was excellent in mechanical properties.
  • Example 11 a heat-drawing roller that rotates at a speed higher than the spinning speed is disposed after the take-up roller for spinning, and the spinning yarn is drawn between the heating rollers without winding up the spun yarn. I went there.
  • the results of Example 12 are shown in Table 3.
  • Example 1 the foam fibers of Examples 13 to 15 and Comparative Example 7 were the same as Example 1 except that the hole depth of the base was changed as shown below, and the back pressure of the base and the internal pressure of the pack were changed. Got.
  • the results of Examples 13 to 15 and Comparative Example 7 are shown in Table 3.
  • Example 14 hole diameter 0.15 mm, hole depth 0.1 lmm 'Example 15 base: hole diameter 0.15 mm, hole depth 0.45 mm
  • Example 1 As compared with Example 1, Examples 13 to 15 and Comparative Example 7, in the present invention, by setting the pressure on the back surface of the die to 8 MPa or more, the bubbles of the obtained foamed fibers are fine and uniform. Become. This is because the carbon dioxide is in a supercritical state even in the mixed polymer immediately before being discharged, so that the carbon dioxide is easily dissolved uniformly. The higher the back pressure of the base and the internal pressure of the pack, the more the foamed fibers having finer bubbles and smaller U% (half). Examples 16-20 In Example 1, spinning and drawing were performed in the same manner as in Example 1 except that the addition amount of carbon dioxide and carbon dioxide was changed, and foamed fibers were obtained. The results of Examples 16-20 are shown in Table 4.
  • Example 1 and Examples 16 to 20 the addition of carbon dioxide in the range of the preferred addition amount in the present invention makes the bubbles in the foam fibers finer and U% (half) became a small foam-free foamed fiber.
  • Example 21 In producing the foamed fiber by the method of spinning and drawing in Example 12 in a continuous process, PET-2 was used as the thermoplastic polymer. Parts different from Example 12 regarding spinning and drawing conditions Is shown below. The results of Example 21 are shown in Table 4.
  • thermoplastic polymer having a high melt viscosity As shown in the comparison between Example 12 and Example 21, it is preferable to use a thermoplastic polymer having a high melt viscosity, which is preferable in the present invention.
  • a foamed fiber having a small and uniform foamed structure can be obtained. This is because the coalescence of carbon dioxide is uniformly dissolved in the thermoplastic polymer and the coalescence of bubbles is difficult to occur during the process of cooling the spun yarn.
  • the obtained foamed fibers were uniform in the longitudinal direction and excellent in mechanical properties, and thus were suitable for clothing and industrial applications.
  • Example 12 When producing foamed fibers by the method of spinning and drawing in Example 12 in a continuous process, as a thermoplastic polymer, PTT in Example 22, PLA in Example 23, Toray Co., Ltd. in Example 24 Nylon 6 “Amilan” (registered trademark) (type CM1017, hereinafter abbreviated as nylon 6) was used. Regarding the spinning and drawing conditions of Examples 22 to 24, the parts different from Example 12 are shown below. The results of Examples 22 to 24 are shown in Table 4.
  • Second stretching roller temperature 140 ° C
  • foamed fibers having fine bubbles can be obtained.
  • the obtained foamed fiber was a high-quality foamed fiber, and was a foamed fiber excellent in durability of the foamed structure because it was a heat-resistant high-temperature thermoplastic polymer.
  • a foamed fiber having a thin fiber diameter and uniform in the longitudinal direction of the fiber by adopting a die that provides a high shear rate and a low shear rate in multiple stages. It was.
  • the foamed fiber was particularly suitable for use in clothing because it was high-grade, excellent in lightness and heat retention, and had no staining spots.
  • the foamed fiber of the present invention does not have coarse bubbles, and therefore has good mechanical properties. It is excellent in lightness, fiber uniformity, heat retention, cushioning and touch. Therefore, it is particularly suitable for sports clothing, outdoor clothing, uniform clothing such as white clothing, formal clothing, and clothing such as winter underwear, swimwear and lining. It is also useful and useful for industrial applications such as various vehicle interior materials (sheet skin, ceiling skin, in-line carpet), cushions, futons, blankets, pillows, carpets and curtains.
  • FIG. 1 shows a round hole which gives a shear rate ( ⁇ ) and a shear rate ( ⁇ ) in multiple stages in the present invention.
  • FIG. 2 shows a round hole which gives a shear rate ( ⁇ ) and a shear rate ( ⁇ ) in multiple stages in the present invention.
  • FIG. 3 shows a round hole which gives a shear rate ( ⁇ ) and a shear rate ( ⁇ ) in multiple stages in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)

Abstract

[PROBLEMS] To provide a high-quality cellular fiber having a small fiber fineness, having no large air bubble therein, and is uniform in fiber diameter in the lengthwise direction. [MEANS FOR SOLVING PROBLEMS] Disclosed is a cellular fiber comprising a thermoplastic polymer and has an average fiber diameter of 1 to 50 μm inclusive, wherein air bubbles constitute 10 to 90% inclusive of the cross-section of the fiber, the ratio of the maximum diameter of an air bubble to the diameter of the fiber is 0.08 or less, and the fiber has a U% (half) of 2 or less. The cellular fiber can be produced by: kneading a thermoplastic polymer and nitrogen and/or carbon dioxide in a molten state to prepare a mixed polymer, introducing the mixed polymer to a spinning die; applying a shear rate (ϜH) of 50,000 to 1,000,000 sec-1 to the mixed polymer at the spinning die; discharging the mixed polymer into a low-pressure area to decrease the pressure of the mixed polymer, thereby causing to foam the polymer; cooling the foamed polymer; drawing the polymer; and winding the polymer.

Description

明 細 書  Specification
発泡繊維およびその製造方法  Foamed fiber and method for producing the same
技術分野  Technical field
[0001] 本発明は、繊維の均一性と軽量性に優れた発泡繊維およびその製造方法に関す るものである。さらに詳しくは、本発明は、繊維内部の気泡が微細かつ均一であり、そ の発泡構造が繊維の長手方向に均一であるものである。このため繊維の長手方向で 繊維直径が均一で、太細斑のない、高品位な発泡繊維、およびその製造方法に関 するものである。  The present invention relates to a foamed fiber excellent in fiber uniformity and light weight and a method for producing the same. More specifically, in the present invention, the bubbles inside the fiber are fine and uniform, and the foamed structure is uniform in the longitudinal direction of the fiber. For this reason, the present invention relates to a high-quality foamed fiber having a uniform fiber diameter in the longitudinal direction of the fiber and free of thick spots, and a method for producing the same.
背景技術  Background art
[0002] 近年、省エネルギーの観点から、熱可塑性榭脂の内部に気泡を含有する発泡材料 が幅広く多く用いられている。発泡材料は、内部に独立な気泡を有する効果により、 軽量性、保温性、断熱性、弾力性などに優れるため、食品用の容器や、梱包剤およ び建材などの成型材料の分野で実用化されている。  [0002] In recent years, from the viewpoint of energy saving, a wide variety of foam materials containing bubbles in the thermoplastic resin are widely used. Foamed material is excellent in lightness, heat retention, heat insulation, elasticity, etc. due to the effect of having independent air bubbles inside, so it is practical in the field of molding materials such as food containers, packing materials and building materials. It has become.
[0003] 一般的な発泡成形材料は、熱可塑性榭脂に発泡剤を添加して溶融混合し、吐出 時または吐出後に発泡させる製造方法によって製造される。これら発泡成形材料は 内部に数 mm〜数百/ z m程度の独立気泡を有している。発泡剤としては、従来、ブタ ンなどの低沸点化合物や熱分解により分解ガスを発生する有機'無機化合物が用い られていた。しかし、前者の低沸点化合物は爆発性の危険があり、環境負荷が大き いという問題があった。力!]えて、低沸点化合物の溶融樹脂への溶解性が低いため、 得られる発泡成形材料内の気泡径は大きくなり易い問題があった。また低沸点化合 物の溶融樹脂への均一溶解が難 、ため、得られる発泡成形材料の気泡のサイズ が不均一となり易い問題があった。一方で後者の有機 ·無機化合物を用いる場合は [0003] A general foam molding material is manufactured by a manufacturing method in which a foaming agent is added to thermoplastic resin, melted and mixed, and foamed during or after discharge. These foam molding materials have closed cells of about several mm to several hundreds / zm inside. Conventionally, low-boiling compounds such as butane and organic / inorganic compounds that generate decomposition gas by thermal decomposition have been used as blowing agents. However, the former low-boiling compound has a problem that it has an explosive risk and has a large environmental load. Power! In addition, since the low-boiling compound has low solubility in the molten resin, there is a problem that the bubble diameter in the obtained foam molding material tends to be large. In addition, since it is difficult to uniformly dissolve the low-boiling compound in the molten resin, there is a problem in that the foam size of the obtained foam molding material tends to be non-uniform. On the other hand, when using the latter organic and inorganic compounds
、使用温度の制約があり、発泡効率が悪ぐやはり気泡の微細化、均一化は難しかつ た。さらに、有機 ·無機化合物とポリマとが反応し、ポリマが変色してしまうという問題も 抱えていた。 However, there is a restriction on the use temperature, and the foaming efficiency is poor. In addition, the organic / inorganic compound and the polymer react to discolor the polymer.
[0004] 近年、環境負荷が小さぐ発泡効率も高ぐ熱可塑性ポリマとの反応もない発泡剤と して、二酸ィ匕炭素や窒素などの不活性ガスが注目を集めている。そして該不活性ガ ス(二酸ィ匕炭素や窒素)を超臨界状態として溶融ポリマに混合し、ポリマ中に均一溶 解させた後、発泡させることにより、気泡径が数十 m程度の発泡成形材料が得られ ている。 [0004] In recent years, inert gases such as carbon dioxide and nitrogen have attracted attention as foaming agents that have low environmental impact, high foaming efficiency, and no reaction with thermoplastic polymers. And the inert gas A foam molding material with a cell diameter of about several tens of meters can be obtained by mixing a molten polymer (carbon dioxide or nitrogen dioxide) in a supercritical state with a molten polymer, dissolving it uniformly in the polymer, and then foaming. ing.
[0005] 軽量性、保温性などの特性向上のため、合成繊維でも実用レベルの発泡繊維を生 産性良く製造することが望まれて 、る。し力しながら未だ実用レベルの発泡繊維は得 られていない。その理由は 2つ上げられる。  [0005] In order to improve characteristics such as lightness and heat retention, it is desired to produce a foamed fiber having a practical level with high productivity even with synthetic fibers. However, no practical foamed fiber has been obtained yet. There are two reasons for this.
[0006] 1つ目は、衣料用、産業用に用いられる繊維の多くが直径 50 m以下の細い繊維 であるためである。このため成型材料で達成されている数十 μ mレベルの気泡サイズ では、物性低下が著しく実用的で無力つた。 [0006] The first is that many of the fibers used for clothing and industrial use are thin fibers with a diameter of 50 m or less. For this reason, at the bubble size of a few tens of μm achieved with molding materials, the physical properties were significantly reduced and practically useless.
[0007] 2つ目は、繊維の長手方向における均一性 (繊維直径、繊維物性)が要求されるた めである。これについても数十/ z mレベルのサイズの気泡では繊維の太細斑を招く ため、実用的で無かった。 [0007] The second reason is that uniformity (fiber diameter, fiber physical properties) in the longitudinal direction of the fiber is required. In this case, bubbles of a size of several tens / zm level are not practical because they cause thick fibers.
[0008] 今までに発泡繊維につ!、て下記の提案がなされて 、る。 [0008] Until now, the following proposal has been made for foamed fibers!
[0009] 例えば、ひも状の芳香族ポリエステル発泡体の製造方法が提案されて ヽる(特許文 献 1参照。 ) oこの提案は、熱可塑性ポリマに、低沸点化合物を発泡剤として添加し、 紡糸口金から吐出する時に発泡させて発泡繊維を得るものである。しかし得られる発 泡繊維は、繊維の断面積が l〜200mm2と大きぐ汎用性の低いものであった。また 前記したように、低沸点化合物は熱可塑性ポリマへの溶解性に乏しいため、均一混 合し難い。このため、形成される気泡は大きぐ発泡構造も長手方向に不均一となり 易かった。 [0009] For example, a method for producing a string-like aromatic polyester foam has been proposed (see Patent Document 1). O This proposal involves adding a low-boiling compound as a foaming agent to a thermoplastic polymer, Foamed fibers are obtained by foaming when discharged from the spinneret. But the resulting foamed fibers, the cross-sectional area of the fiber was as low as L~200mm 2 of the large instrument versatility. Further, as described above, low boiling point compounds are poorly soluble in thermoplastic polymers, and are therefore difficult to mix uniformly. For this reason, the foam formed is large, and the foamed structure is likely to be uneven in the longitudinal direction.
[0010] 同様に、低沸点化合物を添加した脂肪族ポリエステルを紡出時に発泡させ、 1軸延 伸を施した 1〜 100mm2の断面積を有するひも状物を得る技術も提案されて ヽる(特 許文献 2参照。 ) 0この提案において、断面積が lmm2未満では絶対強度が不十分 であると記載されて 、るからもわ力るように、公知の発泡剤を添加して繊維径の細 ヽ 発泡繊維を形成しても、力学物性が低い発泡繊維しか得られない。本発明者らも、 特許文献 2の提案を細繊度の発泡繊維に適用しようと試みた。しかし口金吐出直後 で糸切れが多発し、安定して発泡繊維を巻き取ることはできな力つた。そして紡出糸 の糸切れ部分を観察した結果、繊維内部に繊維直径にも匹敵する粗大な気泡を有 しており、これが製糸性不良の原因であることが判明した。 [0010] Similarly, a technique has also been proposed in which an aliphatic polyester to which a low-boiling compound is added is foamed at the time of spinning to obtain a string-like material having a cross-sectional area of 1 to 100 mm 2 subjected to uniaxial elongation. (Refer to Patent Document 2.) 0 In this proposal, it is stated that the absolute strength is insufficient if the cross-sectional area is less than 1 mm 2 , so that a known foaming agent is added to the fiber so as to be stiff. Even when foamed fibers with a small diameter are formed, only foamed fibers with low mechanical properties can be obtained. The present inventors also tried to apply the proposal of Patent Document 2 to foamed fibers with fineness. However, thread breakage occurred frequently just after the die was discharged, and it was impossible to wind the foamed fiber stably. As a result of observing the yarn breakage of the spun yarn, there are coarse bubbles inside the fiber that are comparable to the fiber diameter. This has been found to be the cause of poor yarn production.
[0011] また、有機 ·無機発泡剤を熱可塑性ポリマに添加し、吐出時に発泡させることにより 発泡繊維を得る技術も提案されている (特許文献 3〜5参照。 )0しかしながら、これら の提案では、発泡剤あるいは発泡剤が熱分解して生成した残鎖と熱可塑性ポリマと が反応してしまい、繊維が着色し易ぐ品位が低下し易力つた。また、発泡剤残鎖に 起因した口金汚れが多発し、製糸性も不良であった。さらに、特許文献 5には、繊維 表面に凸部を有する発泡繊維が開示されている。この繊維表面の凸部は、繊維内部 に粗大な気泡を有すること、発泡構造が繊維の長手方向で不均一であることにより形 成されるものである。そのため、特定の用途に用いることはできるものの、衣料用や産 業用の発泡繊維として汎用的に用いられるものではな力つた。 [0011] Further, the organic-inorganic blowing agent is added to the thermoplastic polymer has also been proposed a technique for obtaining a foamed fiber by foaming during discharge (see Patent Documents 3 to 5.) 0 However, in these proposals Further, the foaming agent or the remaining chain generated by thermal decomposition of the foaming agent and the thermoplastic polymer reacted with each other, so that the quality of the fiber being easily colored was lowered and the strength was increased. In addition, the base was frequently soiled due to the remaining chain of the foaming agent, and the spinning performance was poor. Furthermore, Patent Document 5 discloses a foamed fiber having a convex portion on the fiber surface. The convex portion on the surface of the fiber is formed by having coarse bubbles inside the fiber and the foam structure being non-uniform in the longitudinal direction of the fiber. Therefore, although it can be used for a specific purpose, it has not been widely used as a foamed fiber for clothing or industry.
[0012] 合成繊維についても、二酸ィ匕炭素や窒素などを用いた発泡繊維が提案されている 。例えば、繊維内部に平均直径が繊維直径の 1Z1,000〜1Z5の略球形の独立気 泡を有する発泡繊維構造体が提案されている (特許文献 6参照。 ) 0この発泡繊維構 造体は、予め用意された繊維構造体に高圧下で二酸化炭素や窒素などの低分子化 合物を吸尽させた後、低分子化合物を含む繊維構造体に加熱する等の処理を施し 、低分子化合物を膨張させることで得られる。この提案によれば、確かに繊維内部に サブミクロンオーダーの略球形の独立気泡を形成させることができ、クッション性や保 温性の高!、発泡繊維を得ることができる。しかし低分子化合物を含浸させるためには 、長い時間高圧下で保持する必要があることから、生産性が低いものであった。また 、生産性良く発泡繊維構造体を得るためには、巨大な高圧容器を必要とするため、 高額の設備費用が力かる技術であった。さらに、低分子化合物を膨張させる処理を する前に、低分子化合物が繊維力 抜け出し易いため、発泡倍率の高めることが難 し力つた。そして、発泡繊維の内部の気泡は略球形であるため、クッション性は高い 力 繊維強度が低くなり易ぐ繊維構造体力 繊維を引き出して使うことは到底不可 能であった。 [0012] As synthetic fibers, foamed fibers using carbon dioxide or nitrogen have been proposed. For example, foamed fibrous structure having an average diameter within the fibers have an independent air bubbles substantially spherical 1Z1,000~1Z5 fiber diameter has been proposed (see Patent Document 6.) 0 The foamed fiber structure Zotai is After a low molecular compound such as carbon dioxide or nitrogen is exhausted to a fiber structure prepared in advance under high pressure, the fiber structure containing the low molecular compound is subjected to a treatment such as heating to obtain a low molecular compound. Obtained by inflating. According to this proposal, it is possible to form sub-micron-order substantially spherical closed cells inside the fiber, and it is possible to obtain foamed fibers with high cushioning and heat retention properties. However, in order to impregnate the low molecular weight compound, since it is necessary to hold it under a high pressure for a long time, the productivity is low. In addition, in order to obtain a foamed fiber structure with high productivity, a huge high-pressure vessel is required, which is a technology that requires high equipment costs. Furthermore, since the low molecular weight compound easily escapes the fiber force before the treatment for expanding the low molecular weight compound, it was difficult to increase the expansion ratio. In addition, since the bubbles inside the foamed fiber are almost spherical, the cushioning property is high. The strength of the fiber is low.
[0013] そこで、発泡繊維を連続的に得る手法も提案されている。具体的には、二酸化炭素 や窒素などの不活性ガスを発泡剤とし、発泡核剤として無機粒子を含有させ、口金 における背面圧を 50〜300kgZcm2と高圧とし、口金における混合ポリマの滞留時 間を 1〜15ミリ secとすることにより、繊維内部に微細な気泡を形成した発泡繊維が提 案されている (特許文献 7参照。 ) 0この提案では、不活性ガスを高圧下で保持した後 に、口金での滞留時間を短くして吐出すること、すなわち速い速度で圧力を低下させ ることによって、繊維直径が 500 /z m以下の発泡モノフィラメントが得られる。そして実 施例において、気泡径 20 m程度、繊維直径が 60 mの発泡繊維が得られること が示されている。しかしながら、繊維の長手方向に 7 mもの直径変動を有するもの であった。これは発泡繊維の繊維直径に対して気泡の直径が大きいこと、また気泡 の直径が不均一であったためであった。よって、やはり汎用繊維として用いられるも のではなかった。カロえて、気泡の直径が大きぐその均一性も乏しいことから、製糸性 が悪化し易 、技術であった。 [0013] Therefore, a technique for continuously obtaining foamed fibers has also been proposed. Specifically, an inert gas such as carbon dioxide or nitrogen is used as a foaming agent, inorganic particles are contained as a foam nucleating agent, the back pressure in the base is set to 50 to 300 kgZcm 2, and the mixed polymer stays in the base. A foamed fiber in which fine bubbles are formed inside the fiber is proposed by setting the interval to 1 to 15 milliseconds (see Patent Document 7). 0 In this proposal, the inert gas is held under high pressure. Later, by discharging with a shorter residence time in the die, that is, by reducing the pressure at a high speed, a foamed monofilament having a fiber diameter of 500 / zm or less can be obtained. In the examples, it is shown that foamed fibers having a bubble diameter of about 20 m and a fiber diameter of 60 m can be obtained. However, it had a diameter variation of 7 m in the longitudinal direction of the fiber. This was because the bubble diameter was larger than the fiber diameter of the foamed fiber, and the bubble diameter was non-uniform. Therefore, it was not used as a general-purpose fiber. This is a technique that is easy to deteriorate the spinning performance due to the large diameter of the bubbles and poor uniformity.
[0014] そこで、製糸性の向上および紡出後の気泡の粗大化を抑えるために、芯鞘複合糸 とし、高濃度で二酸ィ匕炭素または窒素を添加したポリマをその芯部に配置することに よって発泡繊維を得る技術が提案されている (特許文献 8参照。 ) 0この提案によれば 、確かに、炭酸ガス濃度の低く発泡させない鞘成分が存在することによって製糸性は 向上する。し力 鞘成分が気泡の成長を抑える効果は低ぐ繊維内部には粗大化し た気泡を有し、繊維の長手方向での太さ斑が生じ易いものであった。また、気泡を含 まない鞘成分を有するため、軽量性、保温性などの特性向上には自ずと限界があつ た。 [0014] Therefore, in order to improve the spinning property and suppress the coarsening of bubbles after spinning, a core-sheath composite yarn is used, and a polymer added with carbon dioxide or nitrogen at a high concentration is arranged in the core. Therefore, a technique for obtaining foamed fibers has been proposed (see Patent Document 8). 0 According to this proposal, the yarn-making property is improved by the existence of a sheath component having a low carbon dioxide gas concentration and which is not foamed. The effect of suppressing the growth of bubbles by the sheath component was low, and the inside of the fibers had coarsened bubbles, and thickness spots in the longitudinal direction of the fibers were likely to occur. In addition, since it has a sheath component that does not contain air bubbles, there are inherent limitations in improving characteristics such as lightness and heat retention.
[0015] また、二酸ィ匕炭素や窒素などの超臨界流体を紡糸時にポリマに注入し、紡出時に 発泡させること〖こよって、体積膨張率が 1. 2〜50、セル密度が 107セル/ cm3以上 であり、セルの長さと直径の比が 2以上であり、繊維直径が 5 μ m以上のマイクロセル ラーファイバーが提案されている(特許文献 9参照。;)。この提案は、紡出糸からの気 体の流出、気泡の合一を抑えるために紡出糸を急冷し、紡糸ドラフトによって気泡を 長手方向に引き延ばすことによって繊維物性を向上させたものである。この提案によ れば、体積膨張率が高ぐ力学物性が向上した発泡繊維を得ることができる。しかし 実施例に開示された発泡繊維のセル密度からゎカゝるように、特に繊維直径が 50 m 以下の細繊度の発泡繊維を得ようとする場合は、セル密度は減少してしまう傾向にあ つた。これは、紡出糸が冷却される際に、体積当たりの繊維表面の面積が大きくなる ため、発泡剤の紡出糸外への流出を抑え難いためである。このため気泡の核が十分 に生成せず、セル密度が小さくなつてしまう技術であった。また発泡剤の流出に伴い 、紡出糸の内部に発泡剤の濃度斑と粘度斑が生じる。このため気泡の成長が不均一 となり、粗大気泡が形成され、発泡構造が不均一になってしまう技術であった。よって 得られる発泡繊維は、長手方向の太さ斑が大きぐまた力学物性を向上させる効果も 低いものであった。 [0015] In addition, a supercritical fluid such as carbon dioxide or nitrogen is injected into a polymer at the time of spinning and foamed at the time of spinning, so that the volume expansion coefficient is 1.2 to 50 and the cell density is 10 7. A microcellular fiber having a cell / cm 3 or more, a cell length to diameter ratio of 2 or more, and a fiber diameter of 5 μm or more has been proposed (see Patent Document 9;). This proposal improves fiber properties by quenching the spun yarn to suppress gas outflow from the spun yarn and coalescence of the bubbles, and stretching the bubbles in the longitudinal direction by a spinning draft. According to this proposal, a foamed fiber having a high volume expansion coefficient and improved mechanical properties can be obtained. However, as can be seen from the cell density of the foam fibers disclosed in the examples, the cell density tends to decrease particularly when trying to obtain foam fibers having a fineness of 50 m or less. Atsuta. This is because the fiber surface area per volume increases when the spun yarn is cooled. For this reason, it is difficult to suppress the outflow of the foaming agent to the outside of the spun yarn. For this reason, it was a technology that did not generate enough bubble nuclei and the cell density decreased. Further, with the outflow of the foaming agent, foaming agent concentration spots and viscosity spots are produced inside the spun yarn. For this reason, this is a technique in which the bubble growth becomes uneven, coarse bubbles are formed, and the foam structure becomes uneven. Therefore, the obtained foamed fiber has a large thickness variation in the longitudinal direction and a low effect of improving mechanical properties.
特許文献 1 :特開昭 57— 34931号公報  Patent Document 1: Japanese Patent Laid-Open No. 57-34931
特許文献 2:特開平 11― 92583号公報  Patent Document 2: JP-A-11-92583
特許文献 3:特開昭 55 - 93831号公報  Patent Document 3: Japanese Patent Laid-Open No. 55-93831
特許文献 4:特開平 4 - 214407号公報  Patent Document 4: Japanese Patent Laid-Open No. 4-214407
特許文献 5:特開 2004 - 19013号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-19013
特許文献 6:特開 2002— 154463号公報  Patent Document 6: Japanese Unexamined Patent Application Publication No. 2002-154463
特許文献 7:特開平 7— 252724号公報  Patent Document 7: JP-A-7-252724
特許文献 8:特開 2003 - 129342号公報  Patent Document 8: Japanese Unexamined Patent Publication No. 2003-129342
特許文献 9 :WO2004— 35884号パンフレット  Patent Document 9: WO2004—35884 pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] 本発明の目的は、上記従来技術の問題点を解消し、衣料用と産業用として好適な 、細繊度で、繊維の長手方向の均一性にも優れた発泡繊維を提供することにある。 本発明の他の目的は、その発泡繊維を生産性良く製造する製造方法を提供すること にある。 [0016] An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a foamed fiber that is suitable for clothing and industrial use and has a fineness and excellent longitudinal uniformity of the fiber. is there. Another object of the present invention is to provide a production method for producing the foamed fiber with high productivity.
課題を解決するための手段  Means for solving the problem
[0017] 本発明者らは、二酸ィ匕炭素または窒素と熱可塑性ポリマとの混合ポリマに対して、 吐出孔内にて通常の溶融紡糸では適用されないほどの高い剪断速度を付与するこ とで、紡出時に生成する気泡核数が格段に多くなり、従来にない微細な発泡径で、 かつ繊維の長手方向の発泡構造も均一な発泡繊維が得られることを見 、だし、本発 明に到達したものである。  [0017] The present inventors give a high shear rate to the mixed polymer of carbon dioxide or nitrogen and a thermoplastic polymer so that it cannot be applied by ordinary melt spinning in the discharge hole. The number of bubble nuclei generated at the time of spinning is remarkably increased, and a foamed fiber having a finer foam diameter and a uniform foamed structure in the longitudinal direction of the fiber can be obtained. Has reached
[0018] すなわち、本発明の発泡繊維は、熱可塑性ポリマ力 なる発泡繊維であって、下記 の(1)〜(5)を満たすことを特徴とする発泡繊維である。 That is, the foamed fiber of the present invention is a foamed fiber having thermoplastic polymer strength, It is a foamed fiber characterized by satisfying (1) to (5).
(1)繊維直径が 1 μ m以上 50 μ m以下  (1) Fiber diameter is 1 μm or more and 50 μm or less
(2)繊維横断面内における気泡占有率が 10%以上 90%以下  (2) Bubble occupancy in fiber cross section is 10% or more and 90% or less
(3)気泡の最大直径 Z繊維直径≤0. 08  (3) Maximum bubble diameter Z fiber diameter ≤ 0.08
(4)気泡の平均直径が 1 μ m以下  (4) Average bubble diameter is 1 μm or less
(5) U% (half)が 2以下。  (5) U% (half) is 2 or less.
[0019] 本発明の発泡繊維の好ましい態様によれば、前記の発泡繊維の強度と伸度の関 係力 下記式の関係を満たすものである。  According to a preferred embodiment of the foamed fiber of the present invention, the relationship between the strength and the elongation of the foamed fiber satisfies the relationship of the following formula.
強度 X (伸度) · 5≥15 Strength X (Elongation) 5 ≥15
そして、本発明の発泡繊維の製造方法は、熱可塑性ポリマと二酸化炭素または窒 素とを溶融状態で混練した混合ポリマを紡糸口金に導き、低圧領域に吐出して圧力 を低下させることにより発泡させ、発泡させたポリマを冷却し、引き取った後に卷取る 発泡繊維の製造方法にお!ヽて、下記の(6)〜(8)を満たすことを特徴とする発泡繊 維の製造方法である。  The method for producing foamed fiber according to the present invention introduces a mixed polymer obtained by kneading a thermoplastic polymer and carbon dioxide or nitrogen in a molten state to a spinneret, and discharges it to a low pressure region to cause foaming by reducing the pressure. The foamed fiber manufacturing method is characterized by satisfying the following (6) to (8) by cooling the foamed polymer and taking it out after taking it out.
(6)吐出孔内での剪断速度( γ H) 50,000〜l,000,OOOsec_1 (6) Shear rate in discharge hole (γ H) 50,000 ~ l, 000, OOOsec _1
(7)紡糸速度 lOOOmZ分〜 6000mZ分  (7) Spinning speed lOOOOmZ min ~ 6000mZ min
(8)口金背面圧が 8MPa以上 lOOMPa以下  (8) Back pressure of the base is 8MPa or more lOOMPa or less
本発明の発泡繊維の製造方法の好ましい態様によれば、前記の紡糸口金孔内で の混合ポリマの剪断速度が、第 1段階の剪断速度(Ύ )  According to a preferred embodiment of the method for producing foamed fibers of the present invention, the shear rate of the mixed polymer in the spinneret hole is the shear rate (Ύ) of the first stage.
Hとして 50,000〜1,000,000 sec—1、第 2段階として γ よりも小さい剪断速度(γ )になるように吐出孔径が多段で H is 50,000 to 1,000,000 sec- 1 , and the second stage is a multistage discharge hole diameter so that the shear rate (γ) is smaller than γ.
H L  H L
拡大する紡糸口金を用いて吐出することである。  It is discharging using the spinneret which expands.
[0020] 本発明の発泡繊維の製造方法の他の好ましい態様によれば、前記の紡出糸を引 き取った後、卷取る前に熱処理を付与して巻き取ることである。 [0020] According to another preferred embodiment of the method for producing a foamed fiber of the present invention, after the spun yarn is drawn, it is wound by applying a heat treatment before winding.
発明の効果  The invention's effect
[0021] 本発明の発泡繊維は、繊維内部に微細な気泡を有し、その発泡構造の均一性も 高い発泡繊維である。そして、環境負荷が小さぐ低コストで発泡繊維を製造すること ができる。また、本発明の発泡繊維は、繊維直径が長手方向に均一で、力学物性も 良好であり、軽量性、保温性、遮音性、クッション性、タツチおよび製品安全性にも優 れている。そのため、特にスポーツ衣料、アウトドア衣料、白衣等のユニフォーム衣料 、フォーマル衣料や、冬物下着、水着および裏地などの衣料用途に好適であり、シ ート表皮、天井表皮、インラインカーペットなどの各種車両内装材ゃ、クッション、布 団、毛布、枕、カーペットおよびカーテンなどの産資用途にも好適であり、おむつ、生 理用品および使!、捨ておしぼりなどの一般消費材として好適に用いられる。 [0021] The foamed fiber of the present invention is a foamed fiber having fine bubbles inside the fiber and having a highly uniform foamed structure. In addition, it is possible to produce foamed fibers at a low cost with a low environmental load. In addition, the foamed fiber of the present invention has a uniform fiber diameter in the longitudinal direction and good mechanical properties, and is excellent in lightness, heat retention, sound insulation, cushioning, touch, and product safety. It is. Therefore, it is particularly suitable for sports clothing, outdoor clothing, uniform clothing such as white clothing, formal clothing and clothing such as winter underwear, swimwear and lining, and various vehicle interior materials such as seat skins, ceiling skins, and inline carpets. It is also suitable for industrial use such as cushions, duvets, blankets, pillows, carpets and curtains, and is also suitable for general consumption materials such as diapers, raw materials and used towels, and hand towels.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 本発明の発泡繊維における繊維とは、細く長!、形状のものを指す。例えば長繊維 ( フィラメント)、短繊維 (ステーブル)、電気植毛加工などに用いられる短 、繊維 (パイ ル)が挙げられる。長手方向の均一性が高い特徴を活力しゃすい点で、フィラメントで あることが好ましい。  [0022] The fiber in the foamed fiber of the present invention refers to a thin, long and shaped fiber. Examples thereof include long fibers (filaments), short fibers (stable), and short fibers and piles used for electric flocking. A filament is preferred because it has a feature of high uniformity in the longitudinal direction and is vibrant.
[0023] 発泡繊維がマルチフィラメントである場合、単繊維の本数は衣料用途あるいは産業 資材用途などの使用目的に応じて適宜設定すればよい。用途によってはモノフィラメ ントでもよい。  [0023] When the foamed fiber is a multifilament, the number of single fibers may be set as appropriate according to the purpose of use such as apparel use or industrial material use. Depending on the application, monofilament may be used.
[0024] 本発明の発泡繊維の単繊維の横断面形状は目的用途に応じて適宜選択すればよ い。例えば、丸形、多角形型、歯車型、花びら型、多葉型、星型および C型などが挙 げられる。また目的に応じて、同一または異種の熱可塑性ポリマが接着された、芯鞘 型、海島型およびバイメタル型などの複合繊維とすることができる。そして同一または 異種の熱可塑性ポリマを紡糸口金から吐出するいずれかの段階でブレンドしたブレ ンド繊維とすることもできる。低コストで、リサイクル性も良好である点で、 1種類の熱可 塑性ポリマ単独で形成された発泡繊維であることが好ましい。  [0024] The cross-sectional shape of the single fiber of the foamed fiber of the present invention may be appropriately selected according to the intended use. Examples include round, polygonal, gear, petal, multileaf, star, and C types. Depending on the purpose, a composite fiber such as a core-sheath type, a sea-island type, or a bimetal type in which the same or different thermoplastic polymers are bonded can be obtained. The blend fiber can be blended at any stage of discharging the same or different thermoplastic polymer from the spinneret. From the viewpoint of low cost and good recyclability, it is preferably a foamed fiber formed from a single type of thermoplastic polymer.
[0025] 本発明の発泡繊維は、繊維直径が 1 μ m以上 50 μ m以下である。ここで繊維直径 とは、単繊維の直径を意味するものである。単繊維の横断面が真円の繊維であれば その直径である。本発明の発泡繊維は気泡の形態と繊維の直径を同時に測定する 必要があるため、実施例に示す手法で繊維直径を求める。具体的には、まず繊維横 断面の観察を行い、繊維外周で囲まれる断面積を画像解析により算出する。そして その断面積カゝら円に相当する直径を求め、これを繊維直径とする。このとき繊維横断 面観察をランダムな 10力所で行い、それぞれで得られた繊維直径を平均して、繊維 直径とした。 [0026] 繊維直径が 50 μ m以下であることにより、適度な柔軟性を有する高品位な発泡繊 維となる。よって衣料用と産業用の!/、ずれの用途にぉ 、ても幅広く用いることができ る。また、繊維直径が 1 μ m以上であることにより、発泡繊維の力学物性が維持され 実用的な耐久性を有する発泡繊維となる。上記の範囲を満たす発泡繊維であれば 目的用途に応じて適宜繊維直径を選択すればよい。例えば、衣料用途として用いる 場合、繊維直径は 30 μ m以下であることが好ましぐより好ましくは 20 μ m以下であり 、さらに好ましくは 15 /z m以下である。また、産業用途については、繊維直径は 40 m以下であることが好ましぐより好ましくは 30 m以下である。一方で、気泡の存在 による繊維直径の変動を抑え、均一な繊維を得やすい点で、繊維直径は 3 m以上 であることが好ましぐ 5 μ m以上であることがより好ましぐ 8 μ m以上であることがさら に好ましぐ特に好ましくは 10 μ m以上である。 [0025] The foamed fiber of the present invention has a fiber diameter of 1 µm or more and 50 µm or less. Here, the fiber diameter means the diameter of a single fiber. If the cross-section of a single fiber is a perfect circle, it is the diameter. In the foamed fiber of the present invention, since it is necessary to simultaneously measure the form of bubbles and the diameter of the fiber, the fiber diameter is obtained by the method shown in the Examples. Specifically, the cross section of the fiber is first observed, and the cross-sectional area surrounded by the outer periphery of the fiber is calculated by image analysis. Then, the diameter corresponding to the circle is obtained from the cross-sectional area, and this is defined as the fiber diameter. At this time, the cross-section of the fiber was observed at 10 random locations, and the fiber diameters obtained from each were averaged to obtain the fiber diameter. [0026] When the fiber diameter is 50 µm or less, a high-quality foamed fiber having appropriate flexibility is obtained. Therefore, it can be used widely for clothing and industrial use! In addition, when the fiber diameter is 1 μm or more, the mechanical properties of the foamed fiber are maintained and the foamed fiber has practical durability. As long as the foamed fiber satisfies the above range, the fiber diameter may be appropriately selected according to the intended use. For example, when used for clothing, the fiber diameter is preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 15 / zm or less. For industrial applications, the fiber diameter is preferably 40 m or less, more preferably 30 m or less. On the other hand, the fiber diameter is preferably 3 m or more, more preferably 5 μm or more, and 8 μm is more preferable because it suppresses fluctuations in the fiber diameter due to the presence of bubbles and makes it easier to obtain uniform fibers. More preferably, it is more preferably 10 μm or more.
[0027] 本発明における発泡繊維とは、繊維内部に気泡を有するものである。好ましくは繊 維横断面において熱可塑性ポリマの壁により分割された 10個以上の独立な気泡を 有するものである。この気泡は繊維の長手方向に延ばされた形態を持ち、不連続に 存在している。本発明における発泡繊維は、溶融紡糸において紡糸口金にて繊維 熱可塑性ポリマと二酸ィ匕炭素または窒素を混合した混合ポリマを導き、口金から吐出 するときに圧力を低下させることによって、紡出糸中に気泡を生成させて得ることがで きる。  [0027] The foamed fiber in the present invention has bubbles inside the fiber. Preferably, it has ten or more independent bubbles divided by thermoplastic polymer walls in the fiber cross section. These bubbles have a shape extending in the longitudinal direction of the fiber and are discontinuous. The foamed fiber in the present invention is obtained by introducing a mixed polymer in which fiber thermoplastic polymer and carbon dioxide or nitrogen or nitrogen are mixed at the spinneret in melt spinning, and reducing the pressure when discharged from the spinneret. It can be obtained by generating bubbles inside.
[0028] 次に、本発明の発泡繊維の発泡構造について、より詳細に説明する。  [0028] Next, the foam structure of the foam fiber of the present invention will be described in more detail.
[0029] 本発明の発泡繊維は、繊維横断面における気泡占有率が 10%以上 90%以下で ある。気泡占有率を 10%以上にすることで、保温性などの各種特性の向上効果が発 現する。また、気泡占有率を 90%以下にすることで、繊維としての力学物性が実用レ ベルを保持することができる。より軽量性や保温性などの特性の高 ヽ発泡繊維となる 点で、繊維横断面における気泡の占有率は 20%以上であることが好ましぐより好ま しくは 30%以上であり、さらに好ましくは 40%以上であり、特に好ましくは 50%以上 である。また、気泡占有率の高い発泡繊維は、力学物性が低下し易いため、気泡占 有率は 85%以下であることが好ましぐより好ましくは 80%以下であり、さらに好ましく は 75 %以下であり、特に好ましくは 70 %以下である。 [0030] 本発明の発泡繊維の繊維横断面における気泡の数は 10個以上であることが好ま しい。微細な気泡を 10個以上有する発泡構造により、外力が熱可塑性ポリマに分散 される。この効果により気泡の耐久性に優れ、屈曲や摩耗によって潰れにくい構造と なる。また、クッション性と弾力性に優れる発泡繊維となる。そして、本発明の発泡繊 維は、延伸ゃ仮撚などの糸加工や、製品使用時においても気泡が潰れにくぐ気泡 が維持される。発泡構造の耐久性がより優れたものとなる点で気泡の数が多 、ことが 好ましぐ気泡の数は 50個以上であることが好ましぐより好ましくは 100個以上であ り、さらに好ましくは 400個以上であり、特に好ましくは 1000個以上である。空隙の数 の上限については、概ね 1,000,000個程度が適当である。空隙の数は、実施例の 手法で確認することができる。 [0029] The foam occupancy of the foamed fiber of the present invention has a bubble occupancy of 10% or more and 90% or less in the fiber cross section. By making the bubble occupancy 10% or more, various properties such as heat retention can be improved. In addition, by setting the bubble occupancy to 90% or less, the mechanical properties as fibers can maintain a practical level. It is preferable that the ratio of air bubbles in the cross section of the fiber is 20% or more, more preferably 30% or more, and more preferably, in terms of becoming a highly expanded foam fiber with characteristics such as light weight and heat retention. Is 40% or more, particularly preferably 50% or more. In addition, since foamed fibers with a high bubble occupancy rate tend to deteriorate in mechanical properties, the bubble occupancy rate is preferably 85% or less, more preferably 80% or less, and even more preferably 75% or less. Yes, particularly preferably 70% or less. [0030] The number of bubbles in the fiber cross section of the foamed fiber of the present invention is preferably 10 or more. Due to the foam structure having 10 or more fine bubbles, external force is dispersed in the thermoplastic polymer. Due to this effect, the bubble has excellent durability and becomes a structure that is not easily crushed by bending or abrasion. Moreover, it becomes a foamed fiber excellent in cushioning properties and elasticity. The foamed fiber of the present invention maintains the bubbles that are difficult to collapse even during yarn processing such as drawing and false twisting or when the product is used. It is preferable that the number of bubbles is large in that the durability of the foam structure is more excellent, and the number of bubbles is preferably 50 or more, more preferably 100 or more, and The number is preferably 400 or more, particularly preferably 1000 or more. About 1,000,000 is appropriate for the upper limit of the number of voids. The number of voids can be confirmed by the method of the example.
[0031] 本発明の発泡繊維は、繊維横断面における気泡の最大直径と繊維直径との関係 力 気泡の最大直径 Z繊維直径≤0. 08を満たすものである。気泡の最大直径が繊 維直径よりも十分に小さい発泡構造であることにより、繊維長手方向の均一性を高く することができる。そして力学物性も実用レベルを保持することができる。気泡の最大 直径 Z繊維直径の値は小さいほど、繊維長手方向に均一な発泡繊維となる。そして 上述した気泡の占有率を高くしても力学物性が良好な発泡繊維となる。以上の点か ら、気泡の最大直径と繊維直径との関係は、気泡の最大直径 Z繊維直径≤0. 07で あることが好ましぐ気泡の最大直径 Z繊維直径≤0. 06であることがより好ましぐ気 泡の最大直径 Z繊維直径≤0. 05であることがさらに好ましぐ特に好ましくは、気泡 の最大直径 Z繊維直径≤0. 04である。気泡の最大直径 Z繊維直径の値の下限に ついては、現状では、気泡の最大直径 Z繊維直径≥0. 0001が製造上の限界であ る。  [0031] The foamed fiber of the present invention satisfies the relationship between the maximum bubble diameter and the fiber diameter in the fiber cross section. The maximum bubble diameter Z fiber diameter ≤ 0.08. Uniformity in the longitudinal direction of the fiber can be enhanced by the foamed structure in which the maximum diameter of the bubbles is sufficiently smaller than the fiber diameter. The mechanical properties can also be maintained at a practical level. Maximum bubble diameter The smaller the Z-fiber diameter, the more uniform the foam in the longitudinal direction of the fiber. And even if the bubble occupation rate mentioned above is made high, it becomes a foamed fiber with favorable mechanical properties. In view of the above, the relationship between the maximum bubble diameter and fiber diameter is preferably the maximum bubble diameter Z fiber diameter ≤ 0.07. The maximum bubble diameter Z fiber diameter ≤ 0.06. More preferably, the maximum bubble diameter Z fiber diameter ≤ 0.05 is more preferred, and the maximum bubble diameter Z fiber diameter ≤ 0.04 is more preferred. As for the lower limit of the value of the maximum bubble diameter Z fiber diameter, the maximum bubble diameter Z fiber diameter ≥0.0001 is currently the manufacturing limit.
[0032] 本発明の発泡繊維の繊維横断面における気泡の最大直径が微細であるほど、均 一性の高い発泡繊維となり、また力学物性も良好となることから、気泡の最大直径は 10 μ m以下であることが好ましぐより好ましくは 5 μ m以下であり、さらに好ましくは 3 μ m以下であり、特に好ましくは 1 μ m以下であり、 0. 5 m以下が最良である。気泡 の最大直径は小さいほど好ましい。下限について、 0. 001 /z m以上であることが好 ましい。 [0033] また繊維の均一性、力学物性が良好となる点で、繊維横断面内における気泡の平 均直径が 1 μ m以下である。気泡の平均直径は小さいことが好ましぐ好ましくは 0. 7 /z m以下であり、より好ましくは 0. 6 m以下であり、さらに好ましくは 0. 5 m以下で ある。気泡の平均直径は小さいほど好ましぐ気泡の平均直径の下限については、 適度な大きさを持つことで、気泡の耐久性が高い発泡繊維となる。このため、気泡の 平均直径は 0. 001 μ m以上であることが好ましぐ 0. 005 μ m以上であることがより 好ましぐさらに好ましくは 0. 01 μ m以上である。 [0032] The finer the maximum bubble diameter in the fiber cross section of the foamed fiber of the present invention, the more uniform the foamed fiber and the better the mechanical properties. Therefore, the maximum bubble diameter is 10 μm. More preferably, it is 5 μm or less, more preferably 3 μm or less, particularly preferably 1 μm or less, and most preferably 0.5 m or less. The smaller the maximum bubble diameter, the better. The lower limit is preferably 0.001 / zm or more. [0033] In addition, the average diameter of the bubbles in the cross section of the fiber is 1 μm or less from the viewpoint of good uniformity and mechanical properties of the fiber. It is preferable that the average diameter of the bubbles is small, preferably 0.7 / zm or less, more preferably 0.6 m or less, and even more preferably 0.5 m or less. The lower limit of the average diameter of the bubbles, the smaller the average diameter of the bubbles, the more suitable the lower limit of the average diameter of the bubbles, so that the foamed fiber has high durability of the bubbles. For this reason, the average diameter of the bubbles is preferably 0.001 μm or more, more preferably 0.005 μm or more, and further preferably 0.01 μm or more.
[0034] 本発明の発泡繊維は、上述したように、繊維の長手方向に引き延ばされた気泡を 有している。これは、後述する発泡繊維の製造方法において、紡出糸を引き取る過 程、および紡出を延伸する過程、それぞれにおいて気泡が繊維の長手方向に伸長 されることで形成される。繊維内部に存在する気泡が長手方向に延ばされた形態で ある場合、繊維の力学物性の低下が軽減されるため好ましい。そして大きい気泡ほど 力学物性を低下させ易!ヽことから、繊維横断面にお!ヽて最も大き!ヽ気泡の直径 (気 泡の最大直径)と、その気泡の繊維の長手方向への長さ(気泡長)との比が大きいこ とが好ましい。すなわち気泡長 Z気泡の最大直径が 3以上であることが好ましぐ 5以 上であることがより好ましぐさらに好ましくは 10以上である。一方、気泡長 Z気泡の 最大直径が適度な大きさであることにより繊維の側面から加わる外力によって、潰れ にくい気泡となるため好ましい。よって気泡長 Z気泡の最大直径は 10000以下であ ることが好ましぐ 5000以下であることがより好ましぐさらに好ましくは 1000以下であ る。  [0034] As described above, the foamed fiber of the present invention has bubbles stretched in the longitudinal direction of the fiber. In the foamed fiber manufacturing method described later, this is formed by extending the bubbles in the longitudinal direction of the fiber in the process of drawing the spun yarn and in the process of stretching the spun. It is preferable that the bubbles existing inside the fiber are in the form extended in the longitudinal direction because the decrease in the mechanical properties of the fiber is reduced. The larger the bubbles, the easier it is to reduce the mechanical properties! The largest in the cross section of the fiber! The diameter of the bubble (the maximum diameter of the bubble) and the length of the bubble in the longitudinal direction of the fiber It is preferable that the ratio with (bubble length) is large. That is, the maximum length of the bubble length Z bubble is preferably 3 or more, more preferably 5 or more, and even more preferably 10 or more. On the other hand, since the maximum length of the bubble length Z bubble is an appropriate size, it is preferable because the bubbles are not easily crushed by the external force applied from the side of the fiber. Therefore, the maximum diameter of the bubble length Z bubble is preferably 10000 or less, more preferably 5000 or less, and even more preferably 1000 or less.
[0035] 本発明の発泡繊維は、繊維横断面における気泡の直径の分布が狭いほど、すな わち気泡の直径の標準偏差が小さいほど、外力が熱可塑性ポリマに均一に分散され 、力学物性に優れる発泡繊維となるため好ましい。気泡の直径の標準偏差は 1 μ m 以下であることが好ましぐ 0. 7 m以下であることがより好ましぐ 0. 5 m以下であ ることがさらにより好ましく、特に好ましくは 0. 以下である。また、下限について は、 0. 01 μ mが現状での製造上の限界である。  In the foamed fiber of the present invention, the smaller the bubble diameter distribution in the fiber cross section, that is, the smaller the standard deviation of the bubble diameter, the more uniformly the external force is dispersed in the thermoplastic polymer. It is preferable because it becomes a foamed fiber excellent in. The standard deviation of the bubble diameter is preferably 1 μm or less, more preferably 0.7 m or less, even more preferably 0.5 m or less, and particularly preferably 0. It is as follows. As for the lower limit, 0.01 μm is the current manufacturing limit.
[0036] 本発明の発泡繊維は、微細かつ均一な発泡構造を有することから長手方向の繊維 直径の変動を示す U% (half)は 2以下である。 U% (half)を 2以下とすることで、発 泡繊維の工程通過性が良好となる。例えば、仮撚加工時の毛羽抑制や織物とする 場合には、皺の発生を抑え、染色加工において濃淡斑が生じ難ぐ衣料用や産業用 の繊維として汎用性に優れる繊維となる。 [0036] Since the foamed fiber of the present invention has a fine and uniform foamed structure, U% (half) indicating fluctuation of the fiber diameter in the longitudinal direction is 2 or less. By reducing U% (half) to 2 or less, The processability of the foam fiber is improved. For example, in the case of suppressing fluff during false twisting or making a woven fabric, it becomes a fiber excellent in versatility as a fiber for clothing or industrial use that suppresses the generation of wrinkles and is less likely to cause shading in dyeing.
[0037] 従来の発泡繊維は、繊維内部に粗大な気泡が存在すること、繊維の長手方向の発 泡構造が不均一であったため、 U% (half)が 2より大きい発泡繊維しか得ることがで きな力つた。し力しながら、本発明では、紡糸口金の吐出孔内において通常の溶融 紡糸では想定されな 、高 、剪断速度を、熱可塑性ポリマと二酸ィヒ炭素または窒素の 混合ポリマに付与することによって、気泡核の生成数を劇的に増やせることを見出し た。この効果によって初めて、繊維内部に微細な気泡を均一に有する発泡繊維が得 られたのである。工程通過性、品位が高ぐ汎用性の高い発泡繊維となる点で、本発 明の発泡繊維の U% (half)は 1. 5以下であることが好ましぐ 1. 2以下であることがよ り好ましぐ 1以下であることがさらに好ましぐ特に好ましくは 0. 8以下である。 U% (h alf)は低いほど好ましいことから、下限については、現状では、 0. 01以上が製造上 の限界である。  [0037] Conventional foam fibers have coarse bubbles inside the fibers, and the foam structure in the longitudinal direction of the fibers is non-uniform, so that only foam fibers with U% (half) greater than 2 can be obtained. I had a great power. However, in the present invention, by applying a high shear rate to the mixed polymer of the thermoplastic polymer and carbon dioxide or nitrogen, which is not assumed in ordinary melt spinning, in the discharge hole of the spinneret. They found that the number of bubble nuclei generated can be dramatically increased. For the first time, an expanded fiber having uniform fine bubbles inside the fiber was obtained. It is preferable that the U% (half) of the foamed fiber of the present invention is 1.5 or less in that it is a highly versatile foam fiber with high processability and quality. Is more preferably 1 or less, and even more preferably 0.8 or less. Since U% (half) is preferably as low as possible, the lower limit for production is currently 0.01 or more.
[0038] 次に、本発明の発泡繊維を構成する熱可塑性ポリマについて説明する。  [0038] Next, the thermoplastic polymer constituting the foamed fiber of the present invention will be described.
[0039] 本発明の発泡繊維を形成する熱可塑性ポリマは、繊維形成能を有するものである 。例えば、ポリエステノレ系ポリマ、ポリアミド系ポリマ、ポリイミド系ポリマ、ポリオレフイン 系ポリマやその他ビニノレポリマ、フッ素系ポリマ、セノレロース系ポリマ、シリコーン系ポ リマ、エラストマ一およびその他多種多様なエンジニアリングプラスチックなどを挙げ ることがでさる。 [0039] The thermoplastic polymer forming the foamed fiber of the present invention has fiber-forming ability. For example, polyester polymers, polyamide polymers, polyimide polymers, polyolefin polymers and other vinylenopolymers, fluorine polymers, senorelose polymers, silicone polymers, elastomers, and a variety of other engineering plastics. I'll do it.
[0040] 熱可塑性ポリマとしては、より具体的には、例えば、ラジカル重合、ァ-オン重合お よびカチオン重合のようなビュル基を有したモノマーが付加重合反応によりポリマが 生成する機構により合成されるポリオレフイン系ポリマやその他のビュルポリマなどに おいては、ポリエチレン、ポリプロピレン、ポリブチレン、ポリメチルペンテン、ポリスチ レン、ポリアクリル酸、ポリメタクリル酸、ポリメタクリル酸メチル、ポリアクリロニトリル、ポ リテトラフルォロエチレン、ポリフッ化ビ-リデン、ポリ塩ィ匕ビユリデンおよびポリシアン 化ビ-リデンなどが挙げられる。これらは、例えば、ポリエチレンのみ、あるいはポリプ ロピレンのみのように単独重合によるポリマであってもよ!/、し、あるいは複数のモノマ 一共存下に重合反応を行うことで形成される共重合ポリマであってもよぐ例えば、ス チレンとメチルメタタリレート存在下での重合を行うとポリ (スチレン メタタリレート)と いう共重合したポリマが生成する力 このような共重合体であるポリマであってもよい。 [0040] More specifically, the thermoplastic polymer is synthesized by a mechanism in which a monomer having a bur group, such as radical polymerization, ion polymerization, and cationic polymerization, is produced by an addition polymerization reaction. Polyolefin-based polymers and other bur polymers such as polyethylene, polypropylene, polybutylene, polymethylpentene, polystyrene, polyacrylic acid, polymethacrylic acid, polymethyl methacrylate, polyacrylonitrile, polytetrafluoroethylene , Polyvinylidene fluoride, polysalt vinylidene, polycyanide vinylidene and the like. These may be polymers by homopolymerization, such as polyethylene only or polypropylene only! /, Or a plurality of monomers. It may be a copolymerized polymer formed by carrying out a polymerization reaction in the presence of one copolymer. For example, if polymerization is carried out in the presence of styrene and methyl methacrylate, a copolymerized polymer called poly (styrene methacrylate) is obtained. The force which produces | generates may be a polymer which is such a copolymer.
[0041] また、熱可塑性ポリマとして、例えば、カルボン酸あるいはカルボン酸クロリドと、アミ ンの反応により形成されるポリアミド系ポリマを挙げることができる。具体的にはナイ口 ン 6、ナイロン 7、ナイロン 9、ナイロン 11、ナイロン 12、ナイロン 6, 6、ナイロン 4, 6、 ナイロン 6, 9、ナイロン 6, 10、ナイロン 6, 12、ナイロン 5, 7、ナイロン 5, 6およびナイ ロン 5, 10などが挙げられる。そして本発明の主旨を損ねない範囲で、他の芳香族、 脂肪族、脂環族ジカルボン酸、他の芳香族、脂肪族および脂環族ジァミン成分、ある いは他の芳香族、脂肪族および脂環族ァミノカルボン酸ィ匕合物(1つの化合物が力 ルボン酸とアミノ基を両方有する)が用いられて 、てもよ 、。ある 、は第 3および第 4の 共重合成分が共重合されて ヽるポリアミド系ポリマであってもよ ヽ。  [0041] Further, examples of the thermoplastic polymer include a polyamide polymer formed by the reaction of carboxylic acid or carboxylic acid chloride with amine. Specifically, nylon 6, nylon 7, nylon 9, nylon 11, nylon 12, nylon 6, 6, nylon 4, 6, nylon 6, 9, nylon 6, 10, nylon 6, 12, nylon 5, 7 Nylon 5, 6 and nylon 5, 10 and the like. And within the range not detracting from the gist of the present invention, other aromatic, aliphatic, alicyclic dicarboxylic acid, other aromatic, aliphatic and alicyclic diamine components, or other aromatic, aliphatic and An alicyclic aminocarboxylic acid compound (one compound having both sulfonic acid and amino groups) may be used. Alternatively, it may be a polyamide polymer obtained by copolymerization of the third and fourth copolymer components.
[0042] また熱可塑性ポリマとして、例えば、カルボン酸とアルコールのエステル化反応によ り形成されるポリエステル系ポリマを挙げることができる。具体的には、ポリエチレンテ レフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン ナフタレートおよびポリシクロへキサンジメタノールテレフタレートなどが挙げられる。 そして本発明の主旨を損ねな!/、範囲で、他の成分が共重合されて!、てもよ 、。  [0042] Examples of the thermoplastic polymer include polyester polymers formed by esterification reaction of carboxylic acid and alcohol. Specific examples include polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polycyclohexane dimethanol terephthalate. And the main point of the present invention is not impaired! Other components are copolymerized within the range!
[0043] 共重合成分のジカルボン酸化合物としては、テレフタル酸、イソフタル酸、ナフタレ ンジカルボン酸、ジフエ-ルジカルボン酸、アントラセンジカルボン酸、フエナントレン ジカルボン酸、ジフエ-ルエーテルジカルボン酸、ジフエノキシエタンジカルボン酸、 ジフエ-ルエタンジカルボン酸、アジピン酸、セバシン酸、 1, 4ーシクロへキサンジカ ルボン酸、 5—ナトリウムスルホイソフタル酸、 5—テトラブチルホスホ-ゥムイソフタル 酸、ァゼライン酸、ドデカンジオン酸、へキサヒドロテレフタル酸のような芳香族、脂肪 族、脂環族ジカルボン酸およびそれらのアルキル、アルコキシ、ァリル、ァリール、アミ 入イミ入ハロゲン化物などの誘導体、付加体、構造異性体および光学異性体を挙 げることができる。これらジカルボン酸ィ匕合物のうち 1種を単独で用いてもよいし、 2種 以上を組み合わせて用いてもょ 、。  [0043] The dicarboxylic acid compound of the copolymerization component includes terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, anthracene dicarboxylic acid, phenanthrene dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenoxyethanedicarboxylic acid. , Diphenylethanedicarboxylic acid, adipic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium isophthalic acid, azelaic acid, dodecanedioic acid, hexahydroterephthalate Aromatic, aliphatic, and cycloaliphatic dicarboxylic acids such as acids and their derivatives, adducts, structural isomers, and optical isomers such as alkyl, alkoxy, aryl, aryl, and imi-imido halides. be able to. Of these dicarboxylic acid compounds, one may be used alone, or two or more may be used in combination.
[0044] また共重合成分のジオール化合物としては、エチレングリコール、プロピレングリコ ール、ブチレングリコーノレ、ペンタンジオール、へキサンジオール、 1, 4ーシクロへキ サンジメタノール、ネオペンチルグリコール、ハイドロキノン、レゾルシン、ジヒドロキシ ビフエニル、ナフタレンジオール、アントラセンジオール、フエナントレンジオール、 2, 2—ビス(4—ヒドロキシフエ-ル)プロパン、 4, 4'—ジヒドロキシジフエ-ルエーテル およびビスフエノール Sのような芳香族、脂肪族、脂環族ジオール化合物およびそれ らのアルキル、アルコキシ、ァリル、ァリール、アミ入ィミノおよびハロゲン化物などの 誘導体、付加体、構造異性体および光学異性体を挙げることができる。これらジォー ルイ匕合物のうち 1種を単独で用いてもょ 、し、 2種以上を組み合わせて用いてもょ ヽ [0044] Examples of the diol compound of the copolymer component include ethylene glycol and propylene glycol. , Butyleneglycolanol, pentanediol, hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, hydroquinone, resorcin, dihydroxybiphenyl, naphthalenediol, anthracenediol, phenanthreneol, 2, 2-bis Aromatic, aliphatic and cycloaliphatic diol compounds such as (4-hydroxyphenol) propane, 4,4'-dihydroxydiphenyl ether and bisphenol S and their alkyl, alkoxy, aryl, aryl, Derivatives, adducts, structural isomers and optical isomers such as amino-imino and halides can be mentioned. You can use one of these Zeo-Lui compounds alone or in combination of two or more.
[0045] また共重合成分として、ヒドロキシカルボン酸(1つの化合物に水酸基とカルボン酸 を有する)を挙げることができる。ヒドロキシカルボン酸としては、例えば、乳酸、 3—ヒ ドロキシプロピオネート、 3—ヒドロキシブチレート、 3—ヒドロキシブチレートバリレート 、ヒドロキシ安息香酸、ヒドロキシナフトェ酸、ヒドロキシアントラセンカルボン酸および ヒドロキシフエナントレンカルボン酸、 (ヒドロキシフエ-ル)ビニルカルボン酸のような 芳香族、脂肪族、脂環族ジオールィ匕合物およびそれらのアルキル、アルコキシ、ァリ ル、ァリール、アミ入イミ入ハロゲンィ匕物などの誘導体、付加体、構造異性体および 光学異性体を挙げられる。これらヒドロキシカルボン酸のうち 1種を単独で用いてもよ いし、 2種以上を組み合わせて用いてもよい。 [0045] Examples of the copolymer component include hydroxycarboxylic acids (one compound having a hydroxyl group and a carboxylic acid). Examples of the hydroxycarboxylic acid include lactic acid, 3-hydroxypropionate, 3-hydroxybutyrate, 3-hydroxybutyrate valerate, hydroxybenzoic acid, hydroxynaphthoic acid, hydroxyanthracenecarboxylic acid, and hydroxyphenanthrene. Aromatic, aliphatic and alicyclic diol compounds such as carboxylic acids, (hydroxyphenol) vinyl carboxylic acids, and their alkyl, alkoxy, aryl, aryl, and amide-containing halogenated compounds Derivatives, adducts, structural isomers and optical isomers. Of these hydroxycarboxylic acids, one kind may be used alone, or two or more kinds may be used in combination.
[0046] また、ポリエステル系ポリマとしてはヒドロキシカルボン酸を主たる繰り返し単位とす る重合体であってもよい。ヒドロキシカルボン酸は芳香族、脂肪族および脂環族など を含む。これらのヒドロキシカルボン酸力 重合される重合体としては、ポリ乳酸、ポリ (3—ヒドロキシプロピオネート)、ポリ(3—ヒドロキシブチレート)およびポリ(3—ヒドロ キシブチレートバリレート)のようなポリ(ヒドロキシカルボン酸)を挙げることができる。 また本発明の主旨を損ねない範囲で、他の芳香族、脂肪族および脂環族ジカルボン 酸、他の芳香族、脂肪族および脂環族ジオール成分、他のヒドロキシカルボン酸が 共重合されていてもよい。  [0046] The polyester polymer may be a polymer having hydroxycarboxylic acid as a main repeating unit. Hydroxycarboxylic acids include aromatic, aliphatic and alicyclic. These hydroxycarboxylic acid polymerized polymers include polylactic acid, poly (3-hydroxypropionate), poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate valerate). Mention may be made of poly (hydroxycarboxylic acids). In addition, other aromatic, aliphatic and alicyclic dicarboxylic acids, other aromatic, aliphatic and alicyclic diol components, and other hydroxycarboxylic acids are copolymerized without departing from the spirit of the present invention. Also good.
[0047] その他に、本発明の熱可塑性ポリマとしては、ポリカーボネート系ポリマ(アルコー ルと炭酸誘導体のエステル交換反応により重合される)、ポリイミド系ポリマ (カルボン 酸無水物とジァミンの環化重縮合により重合される)、ポリべンゾイミダゾール系ポリマ (ジカルボン酸エステルとジァミンの反応により重合される)、ポリスルホン系ポリマ、ポ リエーテノレ系ポリマ、ポリフエ二レンスルフイド系ポリマ、ポリエーテルエーテルケトン 系ポリマ、ポリエーテノレケトンケトン系ポリマなどの合成ポリマゃセノレロース系ポリマや 、キチンおよびキトサンの誘導体など、天然高分子由来のポリマなども挙げられる。 [0047] In addition, the thermoplastic polymer of the present invention includes polycarbonate polymers (polymerized by transesterification of alcohol and carbonic acid derivatives), polyimide polymers (carbons). (Polymerized by cyclized polycondensation of acid anhydride and diamine), polybenzimidazole polymer (polymerized by reaction of dicarboxylic acid ester and diamine), polysulfone polymer, polyethylenee polymer, polyphenylene sulfide Examples thereof include synthetic polymers such as polymers, polyether ether ketone polymers, and polyetherol ketone ketone polymers, and polymers derived from natural polymers such as chitin and chitosan derivatives.
[0048] 熱可塑性ポリマについては、発泡繊維の用途によって適宜選択すればよいが、力 学的特性や熱的特性などの繊維物性にバランス良く優れ、汎用性にも優れ、発泡構 造の耐熱性にも優れる点で、ポリエステル系ポリマ、ポリアミド系ポリマ、ポリオレフイン 系ポリマが好ましい。そしてポリエステノレ系ポリマおよびポリアミド系ポリマがより好まし い。  [0048] The thermoplastic polymer may be appropriately selected depending on the use of the foamed fiber, but is well balanced in fiber physical properties such as mechanical properties and thermal properties, excellent in versatility, and heat resistant in the foam structure. Of these, polyester polymers, polyamide polymers, and polyolefin polymers are preferred. Polyesterol polymers and polyamide polymers are more preferred.
[0049] ポリエステル系ポリマの中では、発泡繊維の発泡構造の耐熱性が高ぐ耐久性の高 い発泡繊維となる点で、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、 ポリブチレンテレフタレート、ポリ乳酸がより好ましい。ポリエチレンテレフタレートとポリ トリメチレンテレフタレートがさらにより好ましい。ポリエチレンテレフタレートが特に好 ましい。  [0049] Among polyester polymers, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polylactic acid are more preferable in that the foamed structure of the foamed fiber has high heat resistance and high durability. . Polyethylene terephthalate and polytrimethylene terephthalate are even more preferred. Polyethylene terephthalate is particularly preferred.
[0050] また、ポリアミド系ポリマも同様に、発泡繊維の耐久性の観点から、ナイロン 6とナイ ロン 6, 6がより好ましく用いられる。  [0050] Similarly, nylon 6 and nylon 6, 6 are more preferably used as the polyamide polymer from the viewpoint of durability of the foamed fiber.
[0051] 本発明の発泡繊維は、より力学特性が良好となり汎用性が高い繊維となる点で、強 度 (cNZdtex)と伸度(%)の関係が下記式を満たすことが好ま 、。  [0051] The foamed fiber of the present invention preferably has a better mechanical property and a highly versatile fiber, and the relationship between strength (cNZdtex) and elongation (%) preferably satisfies the following formula.
強度 X (伸度) · 5≥15 Strength X (Elongation) 5 ≥15
強度 X (伸度) · 5の値は、繊維が破断までに要するエネルギーを評価する指標で ある。この値が高いほど力学物性に優れ、実用性が高いことを示す。従来技術では、 繊維内部に繊維直径に対して粗大な気泡を含んでいたこと、気泡の大きさが不均一 であったことが原因で、上記の式を満たす繊維を得ることができな力つた。しかし本発 明では、特定の製造方法によって気泡核の生成数を増やすことで、繊維直径に対し て十分小さ!ヽ気泡のみを含む発泡繊維が得られる。よって上記の式を満たす発泡繊 維を得ることができる。より力学物性に優れ、実用性に優れる発泡繊維となる点で強 度 X (伸度 ) °· 5の値は 16以上であることが好ましぐ 17以上であることがより好ましぐ 18以上であることがさらに好ましぐ特に好ましくは 20以上である。一方、強度 X (伸 度) · 5が大きすぎると、繊維の剛性が過度に高くなつて、繊維が堅くなる場合がある。 そのため、強度 X (伸度) 5は 40以下であることが好ましぐ 35以下であることがより 好ましぐさらに好ましくは 30以下である。 Strength X (Elongation) · The value of 5 is an index for evaluating the energy required for a fiber to break. Higher values indicate better mechanical properties and higher practicality. In the prior art, the fibers contained coarse bubbles with respect to the fiber diameter, and the size of the bubbles was not uniform. . However, in the present invention, by increasing the number of bubble nuclei generated by a specific manufacturing method, it is possible to obtain a foam fiber that is sufficiently small relative to the fiber diameter and includes only soot bubbles. Therefore, a foamed fiber satisfying the above formula can be obtained. Strength X (elongation) ° · 5 is preferably 16 or more in terms of becoming a foamed fiber with better mechanical properties and practicality. More preferred is 17 or more. It is more preferable that it is 18 or more, and it is particularly preferably 20 or more. On the other hand, if the strength X (elongation) · 5 is too large, the fiber may become too stiff and the fiber may become stiff. Therefore, the strength X (elongation) 5 is preferably 40 or less, more preferably 35 or less, and even more preferably 30 or less.
[0052] 本発明における発泡繊維の繊維強度は、 2. OcNZdtex以上であることが好ましい 。スポーツ用ユニフォームあるいはアウトドア用衣料として用いる場合、さらには産業 用素材として用いる場合を考えた場合には、丈夫な素材である必要がある。また、繊 維あるいは繊維製品の加工性を考慮した場合であっても糸物性は繊維強度が高 ヽ ことが求められる。よって繊維強度は 2. 5cNZdtex以上であることがより好ましぐ 3 . OcNZdtex以上であることがさらに好ましぐ特に好ましくは 3. 5cNZdtex以上で ある。一般に強度の高い繊維は、伸度が低くなる傾向にある。そのため、強度は 10c NZdtex以下であることが好ましぐ 9cNZdtex以下であることがより好ましぐ 8cN Zdtex以下であることがさらに好ましぐ特に好ましくは 7cNZdtex以下である。  [0052] The fiber strength of the foamed fiber in the present invention is preferably 2. OcNZdtex or more. When used as a sports uniform or outdoor clothing, and when used as an industrial material, it should be a strong material. In addition, even when the processability of fibers or fiber products is taken into consideration, the yarn properties are required to have high fiber strength. Therefore, it is more preferable that the fiber strength is 2.5 cNZdtex or more. 3. It is more preferable that the fiber strength is OcNZdtex or more. Particularly preferable is 3.5 cNZdtex or more. In general, fibers having high strength tend to have low elongation. Therefore, the strength is preferably 10c NZdtex or less, more preferably 9cNZdtex or less, more preferably 8cN Zdtex or less, and even more preferably 7cNZdtex or less.
[0053] 本発明における発泡繊維は、繊維内部に気泡を有するため軽量性に優れて!/ヽる。  [0053] The foamed fiber in the present invention has excellent lightness because it has bubbles inside the fiber.
ここで、軽量性が優れているとは、繊維の見かけ比重が熱可塑性ポリマの比重に対し 90%以下であることと定義し、例えば、ポリエチレンテレフタレートであれば見掛け比 重が 1. 24以下、ポリトリメチレンテレフタレートであれば 1. 12以下、ポリブチレンテレ フタレートであれば 1. 22以下、ポリ乳酸であれば 1. 13以下、以下ポリアミドであれ ば 1. 02以下、ポリプロピレンであれば 0. 81以下、ポリエチレンであれば 0. 85以下 であることを指す。より軽量性の高い繊維となる点で繊維の見かけ比重が、熱可塑性 ポリマの比重に対し 85%以下であることが好ましぐより好ましくは 80%以下であり、 さらに好ましくは 75%以下である。本発明の発泡繊維の比重は、実施例の手法によ り測定される。しかし該方法による比重の測定が困難である発泡繊維については、繊 維横断面における気泡の占有率と熱可塑性ポリマの非晶密度を用いて見掛け比重 を計算する。  Here, excellent lightness is defined as the apparent specific gravity of the fiber being 90% or less of the specific gravity of the thermoplastic polymer. For example, in the case of polyethylene terephthalate, the apparent specific gravity is 1.24 or less, 1.12 or less for polytrimethylene terephthalate, 1.22 or less for polybutylene terephthalate, 1.13 or less for polylactic acid, 1.02 or less for polyamide, 0. 81 or less, or 0.85 or less for polyethylene. It is preferable that the apparent specific gravity of the fiber is 85% or less with respect to the specific gravity of the thermoplastic polymer, more preferably 80% or less, and even more preferably 75% or less in terms of becoming a lighter fiber. . The specific gravity of the foamed fiber of the present invention is measured by the method of the example. However, for foamed fibers for which it is difficult to measure the specific gravity by this method, the apparent specific gravity is calculated using the bubble occupancy in the fiber cross section and the amorphous density of the thermoplastic polymer.
[0054] 本発明の発泡繊維は、発明の主旨を損ねない範囲で艷消剤、難燃剤、滑剤、酸ィ匕 防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、発泡核剤、蛍光増白剤、末端 基封止剤(エポキシ基、カルポジイミド基などの反応性基を有する化合物またはポリ マ)および増粘剤等の添加剤を少量保持してもよ 、。 [0054] The foamed fiber of the present invention has a quenching agent, a flame retardant, a lubricant, an anti-oxidation agent, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, a foaming nucleating agent, a fluorescent substance within a range not impairing the gist of the invention. Brighteners, end group sealants (compounds or reactive compounds such as epoxy groups, carpositimide groups, etc.) Ma) and a small amount of additives such as thickeners may be retained.
[0055] 以下、本発明の発泡繊維の製造方法について具体的に述べる。 [0055] Hereinafter, the production method of the foamed fiber of the present invention will be specifically described.
[0056] 本発明の発泡繊維は、発泡剤として二酸ィ匕炭素または窒素、あるいはその両者を 用い、溶融させた熱可塑性ポリマに二酸ィ匕炭素または窒素、あるいはその両者を混 合した後、その混合ポリマを紡糸口金に導き、紡糸口金の吐出孔内において高剪断 速度を付与して吐出し、圧力を低下させることによって発泡させ、発泡した紡出糸を 冷却した後、引き取った後に巻き取る方法によって製造される。 [0056] The foamed fiber of the present invention uses diacid carbon and / or nitrogen as a foaming agent, and after mixing the diacid carbon and / or nitrogen with a molten thermoplastic polymer. Then, the mixed polymer is guided to the spinneret, discharged at a high shear rate in the spinneret discharge hole, foamed by lowering the pressure, and the foamed spun yarn is cooled and then wound. Manufactured by the method of taking.
[0057] 本発明の発泡繊維の製造方法においては、発泡剤として二酸ィ匕炭素または窒素、 あるいはその両者を用いるが、これは、二酸化炭素および窒素の臨界温度と臨界圧 力が比較的低いため、超臨界状態として熱可塑性ポリマ中に混合することで、熱可 塑性ポリマに溶解し、熱可塑性ポリマと二酸ィ匕炭素または窒素との単一相を形成し 易!、ためである。これにより発泡繊維の内部に微細で均一な発泡構造を形成できる [0057] In the method for producing foamed fiber of the present invention, carbon dioxide and / or nitrogen is used as a foaming agent, which is relatively low in critical temperature and critical pressure of carbon dioxide and nitrogen. Therefore, it is easy to form a single phase of the thermoplastic polymer and carbon dioxide or nitrogen by dissolving in the thermoplastic polymer by mixing in the thermoplastic polymer as a supercritical state. As a result, a fine and uniform foam structure can be formed inside the foam fiber.
[0058] 二酸化炭素の臨界温度は 31°Cで、臨界圧力は 7. 4MPaであり、一方、窒素の臨 界温度は— 147°Cで、臨界圧力は 3. 4MPaである。臨界温度以上、臨界圧力以上 の両要件を満たす場合、上記の流体は超臨界状態となる。発泡剤として用いられる 二酸化炭素または窒素は、それぞれ単独でも用いることができるし、二酸化炭素と窒 素を混合して使用してもよい。その混合比については任意に選択できる。より発泡倍 率の高い、すなわち発泡繊維中の気泡占有率が高い発泡繊維が得られる点で、二 酸ィ匕炭素を用いることが好まし 、。 [0058] The critical temperature of carbon dioxide is 31 ° C and the critical pressure is 7.4MPa, while the critical temperature of nitrogen is -147 ° C and the critical pressure is 3.4MPa. If the requirements above the critical temperature and above the critical pressure are met, the fluid will be in a supercritical state. Carbon dioxide or nitrogen used as a foaming agent can be used alone or in combination with carbon dioxide and nitrogen. The mixing ratio can be arbitrarily selected. In view of obtaining a foamed fiber having a higher foaming ratio, that is, having a higher cell occupation ratio in the foamed fiber, it is preferable to use carbon dioxide.
[0059] 本発明の発泡繊維の製造方法において、少なくとも紡糸パックの内部において二 酸ィ匕炭素または窒素を超臨界状態とすることが好ましい。紡糸パック内の流路、濾層 およびフィルターなどの構成は任意であるが、紡糸パック内の圧力が高くなる構成と することが好ま U、。このために紡糸パックの各部材はその圧力に耐える機械設計と することが肝要である。そして二酸ィ匕炭素または窒素が熱可塑性ポリマに溶解して単 一相を形成するほど発泡繊維の気泡が微細化する。よって紡糸パック内の圧力を 10 MPa以上とすることが好ましぐ紡糸パック内の圧力は 20MPa以上であることがより 好ましぐ 30MPa以上であることがより好ましぐ 40MPa以上であることがさらにより 好ましぐ特に好ましくは 50MPa以上である。紡糸パック内の圧力は高いほど好まし いが、あまりに高くすると、紡糸パック、口金、ポリマ流路およびギヤポンプなどの耐圧 設計のために装置が大型化してしまう。そして得られる発泡繊維の汎用性が低くなつ てしまう。よって 200MPa以下とすることが好ましい。紡糸パック内の圧力はギヤポン プカも紡糸パックまでのポリマ流路に圧力計を配することで、測定することができる。 [0059] In the method for producing foamed fibers of the present invention, it is preferable that carbon dioxide or nitrogen dioxide is brought into a supercritical state at least inside the spinning pack. The configuration of the flow path, filter layer and filter in the spin pack is arbitrary, but it is preferable that the pressure in the spin pack increases. For this reason, it is essential that each component of the spin pack has a mechanical design that can withstand the pressure. The bubbles in the foamed fibers become finer as carbon dioxide or nitrogen dioxide dissolves in the thermoplastic polymer to form a single phase. Therefore, it is preferable that the pressure in the spin pack is 10 MPa or more. The pressure in the spin pack is more preferably 20 MPa or more. More preferably, it is 30 MPa or more. More preferably, it is 40 MPa or more. Than Particularly preferred is 50 MPa or more. The higher the pressure in the spinning pack, the better. However, if the pressure is too high, the equipment becomes large due to pressure-resistant design of the spinning pack, the base, the polymer flow path, and the gear pump. And the versatility of the foamed fiber obtained will become low. Therefore, it is preferable to set it to 200 MPa or less. The pressure inside the spin pack can be measured by placing a pressure gauge in the polymer flow path to the spin pack as well as the gear pump.
[0060] 本発明の発泡繊維の製造方法において、口金における背面圧(以下、口金背面圧 と略記することがある)は 8MPa以上 lOOMPa以下である。まず本発明の発泡繊維の 発泡機構にっ 、て概説する。二酸ィ匕炭素または窒素の熱可塑性ポリマへの溶解量( 以下、溶解度と略記することがある)は、高圧状態ほど高ぐ低圧状態では溶解度で は低い。このため高圧状態では、混合ポリマは、二酸ィ匕炭素または窒素が熱可塑性 ポリマ中に溶解した単一相を形成している。そして混合ポリマを吐出する時の圧力低 下によつて、熱可塑性ポリマへの二酸ィ匕炭素または窒素の溶解度が低下する。この ため吐出直後の紡出糸中には、二酸ィヒ炭素または窒素が過飽和状態で存在してい る。そして過飽和状態の紡出糸の内部で、二酸ィ匕炭素または窒素が遊離して気泡核 が生じる。この気泡核に紡出糸の内部に溶存する二酸ィ匕炭素または窒素が流入し、 気泡が成長して大きくなる。その後、紡出糸が冷却によって固化し発泡が完了する。 これが発泡繊維における発泡機構である。このとき、吐出前の混合ポリマに高い圧力 がかかっているほど、吐出前後での二酸化炭素または窒素の溶解度の差が大きくな るため多くの気泡が形成されるのである。このため、口金における背面圧を 8MPa以 上であることが必要である。このように吐出直前まで混合ポリマに高い圧力をカ卩えるこ とによって、発泡現象が安定ィ匕し製糸性も高まるため好ましい。以上のことから、口金 の背面圧は高いことが好ましぐ lOMPa以上であることがより好ましぐ 15MPa以上 であることがさらに好ましぐ 20MPa以上であることが特に好ましぐ 30MPa以上で あることが最良である。また、口金の背面圧の上限については、耐圧設計の観点から 、 lOOMPa以下とすることが好ましい。なお口金背面圧は紡糸パック内の圧力から実 施例の方法にて算出する。  [0060] In the method for producing foamed fibers of the present invention, the back pressure in the die (hereinafter, sometimes abbreviated as the die back pressure) is 8 MPa or more and lOOMPa or less. First, the foaming mechanism of the foamed fiber of the present invention will be outlined. The amount of carbon dioxide or nitrogen dissolved in the thermoplastic polymer (hereinafter sometimes abbreviated as “solubility”) is higher at higher pressures and lower at lower pressures. For this reason, under high pressure conditions, the mixed polymer forms a single phase in which carbon dioxide or nitrogen is dissolved in the thermoplastic polymer. The solubility of carbon dioxide or nitrogen in the thermoplastic polymer is lowered by the pressure drop when the mixed polymer is discharged. For this reason, carbon dioxide or nitrogen is present in a supersaturated state in the spun yarn immediately after discharge. Inside the supersaturated spun yarn, carbon dioxide or nitrogen is released and bubble nuclei are formed. Dioxide carbon or nitrogen dissolved in the spun yarn flows into the bubble nucleus, and the bubble grows and becomes larger. Thereafter, the spun yarn is solidified by cooling to complete foaming. This is the foaming mechanism in the foamed fiber. At this time, the higher the pressure applied to the mixed polymer before ejection, the greater the difference in the solubility of carbon dioxide or nitrogen before and after ejection, so that more bubbles are formed. For this reason, it is necessary that the back pressure at the base is 8 MPa or more. In this way, it is preferable to apply a high pressure to the mixed polymer until immediately before discharge, since the foaming phenomenon is stabilized and the yarn-forming property is improved. From the above, it is preferable that the back pressure of the base is high. It is more preferable that it is lOMPa or more. More preferable is 15 MPa or more. More preferable is 20 MPa or more. Particularly preferable is 30 MPa or more. Is the best. In addition, the upper limit of the back pressure of the base is preferably set to lOOMPa or less from the viewpoint of pressure resistance design. Note that the back pressure of the base is calculated from the pressure in the spin pack by the method of the example.
[0061] 本発明の発泡繊維の製造方法において、紡糸口金孔における二酸ィ匕炭素または 窒素と熱可塑性ポリマの混合ポリマに、剪断速度(Ύ ) 50,000〜l,000,OOOsec_1 を与え吐出する。本発明にお 、て、剪断速度( γ )を付与する領域を高剪断速度領 [0061] In the manufacturing method of the foamed fiber of the present invention, a mixed polymer of the diacid I匕炭oxygen or nitrogen and a thermoplastic polymer in the spinneret holes, the shear rate (Ύ) 50,000~l, 000, OOOsec _1 To discharge. In the present invention, the region to which the shear rate (γ) is applied is defined as the high shear rate region.
Η  Η
域と呼ぶ。本発明における剪断速度(γ )は、下記の式によって算出するものとする  This is called the area. The shear rate (γ) in the present invention is calculated by the following equation.
Η  Η
(Α)高剪断速度領域が丸孔である場合、 (Note) When the high shear rate region is a round hole,
y = 32Q / π Ό 3 y = 32Q / π Ό 3
Η Η Η  Η Η Η
(Β)高剪断速度領域がスリット孔の場合、  (Note) When the high shear rate region is a slit hole,
y = 6Q /T W 2 y = 6Q / TW 2
H H H H  H H H H
(C)高剪断速度領域が Y孔の場合、  (C) When the high shear rate region is Y hole,
y = 6Q Z3T W 2 y = 6Q Z3T W 2
H H H H  H H H H
ただし、  However,
y :高剪断速度領域で付与される剪断速度  y: shear rate applied in the high shear rate region
H  H
Q :単孔当たりの体積吐出量 (cm 3Zsec) Q: Volume discharge per single hole ( cm 3 Zsec)
H  H
D :高剪断速度領域が丸孔である場合の孔の直径 (cm)  D: Diameter of the hole (cm) when the high shear rate region is a round hole
H  H
T :高剪断速度領域のスリット長 (cm)  T: Slit length in the high shear rate region (cm)
H  H
W :高剪断速度領域のスリット幅 (cm)。  W: Slit width (cm) in the high shear rate region.
H  H
[0062] また、例えば、孔形状が、丸孔、スリット孔および Y孔以外の孔形状である場合は、 孔の横断面積を計算してその断面積に相当する直径 D を求め、上記 (A)の式を用  [0062] Also, for example, when the hole shape is a hole shape other than a round hole, a slit hole and a Y hole, the cross-sectional area of the hole is calculated to obtain the diameter D corresponding to the cross-sectional area, and the above (A )
H  H
いて算出するものとする。  To calculate.
[0063] 単孔当たりの体積吐出量 (Q ) (cmVsec)は、単孔当たりの重量吐出量 (gZsec [0063] Volume discharge per single hole (Q) (cmVsec) is the weight discharge per single hole (gZsec
H  H
)を熱可塑性ポリマのみの溶融密度 (g/cm3)で除することによって算出する。熱可 塑性ポリマの溶融密度は、例えば、ポリエチレンテレフタレートであれば 1. 18、ポリト リメチレンテレフタレートであれば 1. 14、ポリ乳酸であれば 1. 08、ナイロン 6であれ ば 1. 00を用いた。上記の熱可塑性ポリマ以外のポリマの場合は、ギヤポンプの吐出 効率が 100%となるように、ギヤポンプの入口、出口の圧力を調整し、ギヤポンプの 1 回転当たりの吐出容積と、回転数を用いて計算により算出した。 ) Divided by the melt density (g / cm 3 ) of the thermoplastic polymer only. For example, 1.18 for polyethylene terephthalate, 1.14 for polytrimethylene terephthalate, 1.08 for polylactic acid, and 1.00 for nylon 6 It was. For polymers other than the above thermoplastic polymers, adjust the pressure at the inlet and outlet of the gear pump so that the discharge efficiency of the gear pump is 100%, and use the discharge volume per rotation of the gear pump and the rotation speed. Calculated by calculation.
[0064] 熱可塑性ポリマのみからなる溶融紡糸では、通常 l,OOOsec―1〜 10,OOOsec_1程 度の剪断速度で吐出することが一般的である。これは本発明のように高い剪断速度 を付与すると、ベンディングによる口金汚れや、不均一吐出が起こり、製糸性が悪ィ匕 し易いためである。し力しながら、本発明の発泡繊維の製造方法においては、多数の 気泡核を生成させることによって、発泡繊維中に微細発泡を形成することを鋭意検討 した結果、通常の範囲よりも遙かに高い剪断速度を付与することにより、むしろ製糸 性が向上するとともに、均一性の高い微細気泡を有する発泡繊維が得られる。 [0064] In the melt spinning comprising only a thermoplastic polymer, which is usually l, OOOsec- 1 ~ 10, it is common to discharge at OOOsec _1 extent of shear rate. This is because when a high shear rate is applied as in the present invention, the base becomes dirty due to bending and uneven discharge occurs, resulting in poor yarn production. It is because it is easy to do. However, in the method for producing foamed fiber of the present invention, as a result of earnestly examining the formation of fine foam in the foamed fiber by generating a large number of cell nuclei, the result is far beyond the normal range. By imparting a high shear rate, rather, the spinning property is improved, and a foamed fiber having highly uniform fine bubbles can be obtained.
[0065] その理由は、以下の理由によるものと推定される。恐らく気泡核は混合ポリマ内部 おいて、二酸ィ匕炭素または窒素同士が接触することで生成する。このため気泡核の 生成には、混合ポリマ内部における二酸ィ匕炭素または窒素の濃度揺らぎが関与して いる。そして通常は繊維内部において二酸ィ匕炭素または窒素の濃度が比較的高濃 度な領域でのみ気泡核が生成する。一方で、本発明のように吐出孔内において高剪 断速度を付与した場合、熱可塑性ポリマに溶解している二酸ィ匕炭素または窒素同士 が多く接触させられることとなり、二酸ィ匕炭素または窒素が比較的低濃度な領域にお いても気泡核を生成させるものと推定される。これにより格段に多くの気泡核力 紡出 糸中で均一に形成されるものと推定される。そして、高い剪断速度を付与した場合で あっても口金汚れや、不均一吐出は起こらず安定して製糸できるものと推定される。  [0065] The reason is presumed to be as follows. Presumably, bubble nuclei are formed by contacting carbon dioxide or nitrogen in the mixed polymer. For this reason, fluctuations in the concentration of carbon dioxide or nitrogen in the mixed polymer are involved in the formation of bubble nuclei. Usually, bubble nuclei are generated only in the region where the concentration of carbon dioxide or nitrogen is relatively high in the fiber. On the other hand, when a high cutting speed is imparted in the discharge hole as in the present invention, a large amount of carbon dioxide or nitrogen dissolved in the thermoplastic polymer is brought into contact with each other. It is also presumed that bubble nuclei are generated even in a relatively low concentration region of nitrogen. As a result, it is estimated that it is formed uniformly in a much larger number of bubble nuclear spinning yarns. Even when a high shear rate is applied, it is presumed that the yarn can be stably produced without causing the base stain or non-uniform discharge.
[0066] 上述した吐出時の圧力低下を大きくすることによつても気泡核を多く生成させること ができる力 さらに上記に示す高い剪断速度を付与することにより、格段に多くの気 泡核が生成するのである。同様の理由により、同一の剪断速度を付与する場合であ つても、口金背面圧を高くすることが好ましい。吐出孔内にて混合ポリマに付与する 剪断速度が 50,OOOsec_ 1以上とすることにより、気泡核が十分に生成し気泡が過度 に成長しないため微細発泡化した発泡繊維が得られるのである。剪断速度は、より好 ましくは 60,000sec_1以上であり、さらにより好ましくは 70,000sec_1以上である。剪 断速度の上限については、紡糸安定性と生産性の観点から l,000,OOOsec_1である ことが好ましぐ 800,000sec_1であること力より好ましく、 500,OOOsec_1であることが さらに好ましぐ特に好ましくは 300,OOOsec_1である。 [0066] A force that can generate a large number of bubble nuclei even by increasing the pressure drop during discharge described above. Further, by applying the high shear rate shown above, a much larger number of bubble nuclei are generated. To do. For the same reason, it is preferable to increase the back pressure of the die even when the same shear rate is applied. By shear rate to be applied to the mixed polymer at the discharge hole is to 50, OOOsec _ 1 or more, the foam fibers finely foamed for cell nuclei is sufficiently generated bubbles do not grow excessively is obtained. Shear rate is more favorable Mashiku is at 60,000Sec _1, even more preferably 70,000Sec _1 or more. The upper limit of the pruning disconnection speed, it is preferable than that force is preferred instrument 800,000Sec _1 from the viewpoint of productivity and the spinning stability l, 000, is OOOsec _1, 500, more favorable it is OOOsec _1 Mashigu particularly preferably 300, OOOsec _1.
[0067] 本発明の範囲の剪断速度(γ )を付与することは、高剪断速度領域が丸孔である  [0067] Giving a shear rate (γ) within the range of the present invention means that the high shear rate region is a round hole.
Η  Η
場合および丸孔として計算される場合は、孔の直径 D (cm)を調整すること、スリット  If the hole diameter is calculated as a round hole, adjust the hole diameter D (cm), slit
H  H
孔ゃ Y孔である場合は、スリット長 (T )とスリット幅 (W )を調整すること、あるいは単  If the hole is a Y hole, adjust the slit length (T) and slit width (W), or simply
H H  H H
孔あたりの体積吐出量を調整すること、によって達成することができる。 [0068] また、本発明における高剪断速度領域の孔深度 (L )は、二酸化炭素または窒素と This can be achieved by adjusting the volume discharge amount per hole. [0068] Further, the pore depth (L) in the high shear rate region in the present invention is carbon dioxide or nitrogen.
H  H
熱可塑性ポリマの混合ポリマに均一に剪断速度を付与し、混合ポリマ内部に均一に 気泡核を生成し易い点で長いことが好ましぐ孔深度 (L )は 0. 1mm以上であること  A hole depth (L) of 0.1 mm or more is preferred because it is desirable to apply a uniform shear rate to the mixed polymer of thermoplastic polymer and to easily generate cell nuclei uniformly inside the mixed polymer.
H  H
が好ましぐ 0. 2mm以上であることがより好ましぐ 0. 3mm以上であることがさらによ り好ましぐ特に好ましくは 0. 4mm以上である。孔深度 (L )の上限については、口  Is more preferably 0.2 mm or more, and even more preferably 0.3 mm or more, and particularly preferably 0.4 mm or more. For the upper limit of the hole depth (L),
H  H
金背面圧が lOOMPaを超えな!/、範囲で適宜選択すればよ!、。  The gold back pressure should not exceed lOOMPa! / Choose the appropriate range! ,.
[0069] 本発明の発泡繊維の製造に用いられる口金は、混合ポリマに 50,000sec_1以上 1 , 000,000SeC _1以下の剪断速度(γ )を付与した後に、その剪断速度(γ )より小さ [0069] die used in the production of foamed fiber of the present invention, the mixed polymer 50,000Sec _1 least 1, after applying the shear rate (gamma) below 000,000 SeC _1, smaller than its shear rate (gamma)
Η Η  Η Η
V、剪断速度( γ )を付与する領域を有することが好ま 、。本発明にお 、て、剪断速  V, preferred to have a region that imparts a shear rate (γ). In the present invention, the shear rate
 Shi
度(0  Degree (0
し )を付与する領域を低剪断速度領域と呼ぶ。高剪断速度領域の後に低剪断 速度領域を持つことにより、さらに多くの気泡核が生成し、生成した多数の気泡核を 均一かつ適度に成長させることができる。そのため、得られる発泡繊維の繊維横断面 における気泡の占有率を高くすることができる。また、低剪断領域を有することにより 、混合ポリマの吐出線速度を遅くでき、紡出糸内部の気泡が伸長され易くなる。よつ て発泡繊維の力学的特性が向上するという利点もある。  The region to which (i) is given is called the low shear rate region. By having a low shear rate region after a high shear rate region, more bubble nuclei are generated, and a large number of generated bubble nuclei can be uniformly and moderately grown. Therefore, it is possible to increase the occupancy rate of bubbles in the fiber cross section of the obtained foamed fiber. Further, by having a low shear region, the discharge linear velocity of the mixed polymer can be slowed, and the bubbles inside the spun yarn are easily stretched. Therefore, there is an advantage that the mechanical properties of the foam fiber are improved.
[0070] 気泡の占有率が高! 、、すなわち高発泡の発泡繊維となる点で剪断速度( γ )と剪 [0070] The cell occupancy is high !, that is, the shear rate (γ) and the trimming in terms of high foamed fiber.
Η  Η
断速度(0 )の比である γ / は、大きいことが好ましぐ 1. 5以上であることが好  It is preferable that γ /, which is the ratio of the breaking speed (0), is 1.5 or more.
L H L  L H L
ましぐ 2. 0以上であることがさらに好ましぐ特に好ましくは 2. 5以上である。剪断速 度(γ )  It is more preferably 2.0 or more, particularly preferably 2.5 or more. Shear rate (γ)
L は剪断速度(γ )  L is the shear rate (γ)
Ηと同様に、下記式によって算出することができる。剪断速 度(0  Similar to Η, it can be calculated by the following formula. Shear rate (0
H )を付与する孔形状と剪断速度(0  H) gives pore shape and shear rate (0
L )を付与する孔形状は、同じであっても異 なっていてもよい。  The hole shapes for imparting L) may be the same or different.
(D)低剪断速度領域が丸孔である場合、  (D) When the low shear rate region is a round hole,
y = 32Q / π Ό 3 y = 32Q / π Ό 3
L L L  L L L
(E)低剪断速度領域がスリット孔の場合、  (E) When the low shear rate region is a slit hole,
y = 6Q /T W 2 y = 6Q / TW 2
L L L L  L L L L
(F)低剪断速度領域が Y孔の場合、  (F) When the low shear rate region is a Y hole,
y = 6Q Z3T W 2 y = 6Q Z3T W 2
L L L L  L L L L
ただし、 Ύ However, Ύ
し:低剪断速度領域で付与される剪断速度  Shi: Shear rate applied in the low shear rate region
Q :低剪断速度領域の体積吐出量 (cm3Zsec) Q: Volume discharge in the low shear rate region (cm 3 Zsec)
 Shi
D:低剪断速度領域の孔の直径 (cm)  D: Hole diameter in the low shear rate region (cm)
 Shi
T:低剪断速度領域のスリット長(cm)  T: Slit length in the low shear rate region (cm)
 Shi
W:低剪断速度領域のスリット幅 (cm)  W: Slit width in the low shear rate region (cm)
 Shi
例えば、低剪断速度領域の孔形状が、丸孔、スリット孔および Y孔以外の孔形状で ある場合は、孔の横断面積を計算してその断面積に相当する直径 Dを求め、上記(  For example, when the hole shape in the low shear rate region is a hole shape other than a round hole, slit hole, and Y hole, the cross-sectional area of the hole is calculated to obtain the diameter D corresponding to the cross-sectional area, and the above (
 Shi
D)の式を用いて算出するものとする。体積吐出量 (Q )は、上記の単孔当たりの体積  It shall be calculated using the formula of D). The volume discharge volume (Q) is the volume per single hole.
 Shi
吐出量 (Q )  Discharge rate (Q)
Hと同様の手法により算出することができる。  It can be calculated by the same method as H.
[0071] 本発明における低剪断速度領域の孔深度 (L )は、二酸化炭素または窒素と熱可  [0071] In the present invention, the pore depth (L) in the low shear rate region can be heated with carbon dioxide or nitrogen.
 Shi
塑性ポリマの混合ポリマに均一に剪断速度を付与し、混合ポリマ内部に均一に気泡 核を生成させ、気泡を成長させ易い点で長いことが好ましい。孔深度 (L )  It is preferable that the plastic polymer mixed polymer is long in terms of imparting a uniform shear rate, generating bubble nuclei uniformly inside the mixed polymer, and allowing the bubbles to grow easily. Hole depth (L)
しは、 0. lm m以上であることが好ましぐ 0. 2mm以上であることがより好ましぐ 0. 3mm以上で あることがさらにより好ましぐ特に好ましくは 0. 4mm以上である。孔深度 (L )の上  The thickness is preferably at least 0.1 mm, more preferably at least 0.2 mm, and even more preferably at least 0.3 mm, particularly preferably at least 0.4 mm. Above hole depth (L)
し 限につ!、ては、口金背面圧が lOOMPaを超えな!/、範囲で適宜選択すればよ!、。  However, the pressure on the back of the base should not exceed lOOMPa! ,.
[0072] 図 1〜3は、本発明にて好ましいとされる高剪断速度領域と低剪断速度領域を有す る丸孔口金の模式図である。図 1〜3に例示した口金により、混合ポリマに剪断速度( y FIGS. 1 to 3 are schematic views of a round hole cap having a high shear rate region and a low shear rate region which are preferable in the present invention. With the die illustrated in Figs. 1-3, the shear rate (y
H )と剪断速度(γ )  H) and shear rate (γ)
Lを与えることができる。この模式断面図を用いて、高剪断速度 領域と、低剪断速度領域を有する口金を用いた場合の剪断速度(γ )  L can be given. Using this schematic cross-sectional view, the shear rate (γ) when a die having a high shear rate region and a low shear rate region is used.
Ηと剪断速度( y  Η and shear rate (y
し )の計算方法について、具体的に説明する。  The calculation method of (ii) will be specifically described.
[0073] 図 1に示すように、高剪断速度領域力 ^孔に対して、低剪断速度領域が 1孔であり、 それぞれが管形状である場合、図 1の高剪断速度領域の孔径 D (図中、符号 1)と、  [0073] As shown in Fig. 1, when the high shear rate region force ^ hole has one hole in the low shear rate region and each has a tube shape, the hole diameter D ( In the figure, reference numeral 1)
H  H
高剪断速度領域の単孔当たりの体積吐出量 Q  Volume discharge volume per single hole in high shear rate region Q
Hを用いて、剪断速度(0  Using H, shear rate (0
H )を算出す る。そして図 1の低剪断速度領域の孔径 D (図中、符号 3)と、低剪断速度領域の単  H) is calculated. Then, the pore diameter D (reference numeral 3 in the figure) in the low shear rate region in FIG.
 Shi
孔当たりの体積吐出量 Qを用いて、剪断速度(γ )を算出する。このとき、高剪断速  The shear rate (γ) is calculated using the volume discharge amount Q per hole. At this time, high shear rate
し し  Lion
度領域が 1孔に対して、低剪断速度領域力 ^孔であるため、 Q と Qは同一である。  Q and Q are the same because the strength region is a low shear rate region force ^ hole for one hole.
H L  H L
[0074] また、図 2に示すように高剪断速度領域が複数孔に対して、低剪断速度領域が 1孔 である場合は、体積吐出量 (Q )と体積吐出量 (Q )は異なるので注意が必要である 。すなわち、高剪断速度領域が 2孔に対して、低剪断速度領域が 1孔である場合、 Q は Qの 1Z2となる。 Further, as shown in FIG. 2, when the high shear rate region has a plurality of holes and the low shear rate region has one hole, the volume discharge amount (Q) and the volume discharge amount (Q) are different. Caution must be taken . That is, when the high shear rate region is 2 holes and the low shear rate region is 1 hole, Q becomes 1Z2 of Q.
H L  H L
[0075] また、図 3に示すように、低剪断速度領域がポリマが進む方向に対して垂直方向に 広がりを持つ形状である場合、剪断速度(γ )は最も剪断速度が低くなる部分のパラ  [0075] Further, as shown in Fig. 3, when the low shear rate region has a shape extending in a direction perpendicular to the direction in which the polymer proceeds, the shear rate (γ) is a parameter of the portion where the shear rate is lowest.
 Shi
メーターを用いて計算する。すなわち、図 3の場合、低剪断速度領域の孔径 Dは、  Calculate using a meter. That is, in the case of FIG. 3, the pore diameter D in the low shear rate region is
し 図 3中の符号 3の部分の孔径を用いる。  However, the hole diameter indicated by reference numeral 3 in FIG. 3 is used.
[0076] 本発明では、高剪断速度領域を有する口金と、低剪断速度領域を有する口金を 2 枚重ね合わせて使用することもできる。  [0076] In the present invention, a die having a high shear rate region and a die having a low shear rate region can be used in an overlapping manner.
[0077] 本発明で用いられる熱可塑性ポリマは、通常合成繊維に供する溶融粘度の熱可塑 性ポリマで形成される力 後述する発泡繊維の製造方法において、熱可塑性ポリマと 二酸ィ匕炭素または窒素とを溶融混練する際に高い剪断応力が発現し、熱可塑性ポリ マ中に二酸ィ匕炭素または窒素が均一に溶解し易い点、および紡出糸が冷却される 際に気泡の合一 *破泡が起こり難 、易 、点から、溶融粘度の高 、熱可塑性ポリマで あることが好ましい。  [0077] The thermoplastic polymer used in the present invention is a force formed by a melt-viscosity thermoplastic polymer that is usually used for synthetic fibers. In the method for producing foamed fibers described later, the thermoplastic polymer and carbon dioxide or nitrogen dioxide are used. A high shear stress is generated when melt and kneading and the carbon dioxide or nitrogen dioxide is easily dissolved in the thermoplastic polymer, and the bubbles are coalesced when the spun yarn is cooled. * From the standpoint that foam breakage hardly occurs, a thermoplastic polymer having a high melt viscosity is preferable.
[0078] 溶融粘度は、発泡繊維の材料となる熱可塑性ポリマが結晶性ポリマである場合、融 点 (Τ )よりも 30°C高い温度で測定した剪断速度 20sec _1における溶融剪断粘度( 以下、剪断粘度と略記することがある。)によって評価した。剪断粘度は、 lOOPa- se c以上であることが好ましぐ 300Pa' sec以上であることがより好ましぐさらに好ましく は 500Pa ' sec以上である。また、気泡成長させるためには、剪断粘度は、 ΙΟ,ΟΟΟΡ a ' sec以下であることが好ましぐ 8,000Pa ' sec以下であることがより好ましぐさらに 好ましくは 5,000Pa' sec以下である。また、融点を示さない非晶性ポリマについては 紡糸温度と同一の温度で剪断粘度を測定した。 [0078] The melt viscosity is the melt shear viscosity at a shear rate of 20 s ec _1 (below below) measured at a temperature 30 ° C higher than the melting point (Τ) when the thermoplastic polymer used for the foamed fiber is a crystalline polymer. , Sometimes abbreviated as shear viscosity). The shear viscosity is preferably lOOPa-sec or more, more preferably 300 Pa'sec or more, and even more preferably 500 Pa'sec or more. In order to grow bubbles, the shear viscosity is preferably ΙΟ, ΟΟΟΡ a 'sec or less, more preferably 8,000 Pa' sec or less, and even more preferably 5,000 Pa 'sec or less. . For amorphous polymers not showing a melting point, the shear viscosity was measured at the same temperature as the spinning temperature.
[0079] 二酸ィ匕炭素または窒素と熱可塑性ポリマとの混合ポリマは、 1軸エタストルーダーや 2軸エタストルーダーなどの機械混練や、スタティックミキサーやハイミキサーなどの 静置混練により、混練されることが好ましい。これにより二酸ィ匕炭素または窒素が均一 に溶解され易ぐ好ましい。 1軸エタストルーダーや 2軸エタストルーダーなどの機械 混練により混練されることがより好ましぐ 2軸エタストルーダーにより混練されることが さらに好ましい態様である。これらの混練機構は 1種のみを用いてもよいし、 2種以上 を併用してもよいし、 1種を複数個用いてもよい。 [0079] A mixed polymer of carbon dioxide or nitrogen and a thermoplastic polymer is kneaded by mechanical kneading such as a 1-axis etatruder or 2-axis etatruder, or by stationary kneading such as a static mixer or a high mixer. It is preferred that This is preferable because carbon dioxide or nitrogen dioxide is easily dissolved uniformly. It is more preferable to knead by mechanical kneading such as a 1-axis etha ruder or a 2-shaft eta-truder. These kneading mechanisms may use only one type, or two or more types May be used in combination, or a plurality of types may be used.
[0080] 二酸ィ匕炭素または窒素は、溶融した熱可塑性ポリマを吐出以前の任意の段階で、 ノズル管などにより注入されることが好ましい。これにより二酸ィ匕炭素または窒素を生 産性良く添加でき、熱可塑性ポリマへ高濃度で添加できる。そして、本発明にて好ま L ヽとされるエタストルーダーを付帯する紡糸機を用いる場合、エタストルーダーで熱 可塑性ポリマを溶融混練するいずれかの位置にノズル管を付帯させて二酸ィ匕炭素ま たは窒素を溶融した熱可塑性ポリマに直接注入することが好ましい。これにより二酸 化炭素または窒素の熱可塑性ポリマ中に均一に溶解させ易く、好ま 、。  [0080] Carbon dioxide or nitrogen dioxide is preferably injected by a nozzle tube or the like at an arbitrary stage before discharging the molten thermoplastic polymer. As a result, carbon dioxide or nitrogen dioxide can be added with high productivity and can be added to the thermoplastic polymer at a high concentration. In the case of using a spinning machine attached with an etastruder, which is preferred in the present invention, a nozzle tube is attached to any position where the thermoplastic polymer is melted and kneaded with the etastruder. It is preferred to inject carbon or nitrogen directly into the molten thermoplastic polymer. This facilitates uniform dissolution in carbon dioxide or nitrogen thermoplastic polymers, and is preferred.
[0081] 二酸化炭素または窒素、ある ヽはその両者と熱可塑性ポリマとの混合ポリマは、紡 糸パックに導かれ、紡出時に発泡するまでの全ての領域において、二酸化炭素また は窒素が超臨界状態であることが好ま 、。これは本発明にて好ま U、とされるエタ ストルーダーを付帯する紡糸機により達成することができる。例えば、熱可塑性ポリマ の供給量をギヤポンプの吐出量を調整し、ポリマ流路に存在する混合ポリマを多くす ることにより高圧に維持する方法や、エタストルーダーのクリアランスやポリマ流路を 狭く設計し、混合ポリマを高圧に維持する方法を採用することが好ましい。  [0081] Carbon dioxide or nitrogen, or a mixture of both, and a thermoplastic polymer is supercritical in all regions where the polymer is introduced into the spin pack and foamed during spinning. Preferred to be in the state. This can be achieved by a spinning machine with an etustruder, which is preferred in the present invention. For example, the amount of thermoplastic polymer supplied can be adjusted by adjusting the discharge rate of the gear pump and the mixed polymer existing in the polymer flow path can be increased to maintain high pressure, and the clearance of the elasto ruder and the polymer flow path can be designed narrowly. It is preferable to employ a method of maintaining the mixed polymer at a high pressure.
[0082] 本発明にお 、て好ま 、とされるエタストルーダーを付帯する紡糸機を用いる場合 、二酸ィ匕炭素または窒素が熱可塑性ポリマ中に均一に溶解し易い点で、ェクストル ーダ一とギヤポンプとのポリマ流路において、エタストルーダーの出口の圧力(以下、 先端圧と略記する)を 8MPa以上とすることが好ましぐ 9MPa以上とすることがより好 ましぐ lOMPa以上とすることがさらに好ましい態様である。  [0082] In the present invention, when a spinning machine attached with an etastruder, which is preferably used, is used, an extruder is used because carbon dioxide or nitrogen dioxide is easily dissolved in a thermoplastic polymer uniformly. In the polymer flow path between the gear pump and the gear pump, it is preferable that the pressure at the outlet of the etastruder (hereinafter abbreviated as the tip pressure) be 8 MPa or more, more preferably 9 MPa or more, and lOMPa or more. Is a more preferred embodiment.
[0083] 注入するときの二酸化炭素または窒素は、気体状態、液体状態および超臨界状態 のいずれも採用することができるが、溶融した熱可塑性ポリマへの拡散速度が速ぐ 均一に溶解させやすい点で、超臨界状態で注入することが好ましい。超臨界流体で 注入するとは、溶融した熱可塑性ポリマの温度が、二酸化炭素を用いる場合は 31°C 以上、窒素を用いる場合であれば 147°C以上、両者を併用する場合であれが 31 °C以上の条件を満たし、かつ注入する圧力が二酸ィヒ炭素であれば 7. 4MPa以上、 窒素であれば 3. 4MPa以上、両者を併用する場合であれば 7. 4MPa以上とするこ とで達成される。 [0084] 二酸化炭素または窒素、あるいはその両者の熱可塑性ポリマに対する添加量は多 いほど、口金力 吐出される際に混合された二酸ィ匕炭素または窒素が過飽和状態と なり、多くの気泡核が形成される。そのため、二酸化炭素または窒素、あるいはその 両者の添力卩量は多いほど好ましい。添力卩量は具体的には 1. 5wt%以上であることが より好ましぐ 2. Owt%以上であることがより好ましぐ特に好ましくは 2. 5wt%以上 である。二酸化炭素または窒素、あるいはその両者をあまり多く添加すると、力えって 気泡の合一 '破泡が起こり易くなる傾向にある。そのため、二酸化炭素または窒素、 あるいはその両者の添カ卩量は、 10wt%以下であることが好ましぐ 9wt%以下である ことがより好ましぐさらに好ましくは 8wt%以下である。 [0083] Carbon dioxide or nitrogen used for injection can be in any of a gaseous state, a liquid state, and a supercritical state, but has a high diffusion rate into the molten thermoplastic polymer and is easily dissolved uniformly. Therefore, it is preferable to inject in a supercritical state. Injection with a supercritical fluid means that the temperature of the molten thermoplastic polymer is 31 ° C or higher when carbon dioxide is used, 147 ° C or higher when nitrogen is used, and 31 ° C when both are used in combination. 7.4MPa or more if the injection pressure is carbon dioxide carbon, satisfying the condition of C or higher, and 3.4MPa or higher if nitrogen is used, or 7.4MPa or higher if both are used in combination. To be achieved. [0084] The greater the amount of carbon dioxide and / or nitrogen added to the thermoplastic polymer, the more dioxygen carbon or nitrogen mixed when the die force is discharged becomes supersaturated, resulting in more bubble nuclei. Is formed. For this reason, it is preferable that the amount of added force of carbon dioxide and / or nitrogen is larger. Specifically, it is more preferable that the amount of applied force is 1.5 wt% or more. 2. More preferably, it is more preferably Owt% or more, and more preferably 2.5 wt% or more. If too much carbon dioxide and / or nitrogen is added, the bubbles tend to coalesce easily. Therefore, the amount of carbon dioxide and / or nitrogen added is preferably 10 wt% or less, more preferably 9 wt% or less, and even more preferably 8 wt% or less.
[0085] 本発明の発泡繊維の製造方法では、吐出孔内にて熱可塑性ポリマと二酸化炭素 または窒素、あるいはその両者の混合ポリマに高い剪断速度を付与することにより気 泡核を生成させ易くしている。そのため、二酸ィ匕炭素または窒素は主として気泡核が 生成することによって消費される。よって、二酸化炭素または窒素、あるいはその両 者の添加量が多くとも、気泡の成長速度が過度に速くならず、気泡の合一'破泡は起 こり難 、。このため安定して紡糸することが可能である。  In the method for producing foamed fiber of the present invention, it is easy to generate bubble nuclei by imparting a high shear rate to the thermoplastic polymer and carbon dioxide or nitrogen, or a mixed polymer of both in the discharge hole. ing. Therefore, carbon dioxide or nitrogen dioxide is consumed mainly by the formation of bubble nuclei. Therefore, even if the addition amount of carbon dioxide and / or nitrogen is large, the bubble growth rate does not become excessively high, and the bubbles are not easily coalesced. For this reason, it is possible to spin stably.
[0086] 吐出された紡出糸は、冷却される。紡出糸に冷却を施さないと、紡出糸から二酸ィ匕 炭素または窒素が流出し易ぐ気泡核がほとんど成長せずに発泡効率が悪くなり、発 泡繊維の横断面における気泡の占有率が低くなつてしまうことがある。冷却方法につ V、ては、紡出糸よりも低 、温度の物質を紡出糸に接触させる手法により達成される。 例えば、冷却風を紡出糸に吹き付ける方法、冷水に紡出糸を浸す方法、水蒸気を紡 出糸に吹き付ける方法など挙げられる。紡出糸を均一に冷却でき、紡糸速度を高く できるなどの利点のある冷却風を紡出糸に吹き付けて冷却する方法が好ま 、。この 場合、冷却風の温度が低いほど、冷却風吹き付け開始点と口金からの距離が短いほ ど、紡出糸が急冷される。  [0086] The discharged spun yarn is cooled. If the spun yarn is not cooled, the bubble nuclei from which carbon dioxide or nitrogen dioxide easily flows out from the spun yarn will not grow, resulting in poor foaming efficiency. The rate may go down. The cooling method V is achieved by a technique in which a material having a temperature lower than that of the spun yarn is brought into contact with the spun yarn. For example, a method of spraying cooling air onto the spun yarn, a method of immersing the spun yarn in cold water, a method of spraying water vapor onto the spun yarn, and the like. A method of cooling the spun yarn by blowing cooling air on the spun yarn with advantages such as uniform cooling of the spun yarn and high spinning speed is preferred. In this case, as the temperature of the cooling air is lower, the spun yarn is cooled more rapidly as the distance from the cooling air spray start point to the base is shorter.
[0087] より二酸ィ匕炭素または窒素の流出を抑え、発泡繊維の繊維横断面における気泡占 有率を高くできる点で、冷却風の温度は、 30°C以下であることが好ましぐ 25°C以下 であることがより好ましぐさらに好ましくは 20°C以下である。冷却風の温度の下限に つ!、ては、あまりに低!、温度とすると冷却風の流路で水蒸気が凍結して目詰まりを起 こす懸念があるため、 o°c以上が適当である。また、上述のように冷却風吹き付け開 始点と口金の距離が短いほど紡出糸条が急冷される。 [0087] The temperature of the cooling air is preferably 30 ° C or less from the viewpoint that the outflow of carbon dioxide or nitrogen can be further suppressed, and the bubble occupation ratio in the fiber cross section of the foamed fiber can be increased. It is more preferable that the temperature is 25 ° C or lower, and further preferable is 20 ° C or lower. The lower limit of the temperature of the cooling air! It is too low! If the temperature is too low, water vapor will freeze in the cooling air flow path, causing clogging. Since there are concerns about rubbing, o ° c or higher is appropriate. Further, as described above, the spun yarn is cooled more rapidly as the distance between the cooling air blowing start point and the base is shorter.
[0088] 冷却風吹き付け開始点と口金との距離は、 20cm以下であることが好ましぐ 10cm 以下であることがより好ましぐ 5cm以下であることがさらに好ましぐ特に好ましくは 3 cm以下である。 口金直下力 冷却風を吹き付ける場合、口金面自身が冷却されて 口金面の温度が下がることがある。 口金面の温度が過度に低下すると、未溶融のポリ マが吐出され、結果として発泡繊維の発泡構造が不均一になることがあるため、口金 付近を局所的に加熱するヒーターを用いることも好ましい手法である。  [0088] The distance between the cooling air spray start point and the base is preferably 20 cm or less, more preferably 10 cm or less, and even more preferably 5 cm or less, particularly preferably 3 cm or less. It is. Direct force under the base When cooling air is blown, the base itself may be cooled and the temperature of the base may drop. When the temperature of the die surface is excessively lowered, unmelted polymer is discharged, and as a result, the foam structure of the foamed fiber may become non-uniform. Therefore, it is also preferable to use a heater that locally heats the vicinity of the die. It is a technique.
[0089] 本発明の発泡繊維の製造方法において、吐出後に冷却された後、 1000〜6,000 mZ分の速度で引き取る(以下、紡糸速度と略記することがある。 ) o紡糸速度を 100 OmZ分以上とすることで、紡出糸が短時間でガラス転移温度 (T )以下に冷却され  [0089] In the method for producing foamed fibers of the present invention, after cooling after discharge, the fiber is taken up at a speed of 1000 to 6,000 mZ (hereinafter sometimes abbreviated as "spinning speed"). As a result, the spun yarn is cooled below the glass transition temperature (T) in a short time.
g  g
て固化するため、気泡の成長が抑制され過度に大きな気泡が成長することが無いの である。また二酸ィ匕炭素または窒素が紡出糸から系外へ流出しに《なることから、生 成する気泡核数が増加する。そして流出が抑えられることで、二酸化炭素または窒素 の濃度斑ができないことから気泡の直径が均一化される。さらに気泡が発泡繊維の 長手方向に伸長され、長くなることで発泡繊維の力学物性が向上するという利点もあ る。紡糸速度 l,300mZ分以上であることがより好ましぐ l,500mZ以上であること 力 Sさらに好ましぐ特に好ましくは 2,000mZ分以上である。  Therefore, the growth of bubbles is suppressed and excessively large bubbles do not grow. In addition, carbon dioxide or nitrogen dioxide will flow out of the system from the spun yarn, increasing the number of bubble nuclei generated. And by suppressing the outflow, the bubble diameter is made uniform because there is no concentration of carbon dioxide or nitrogen. In addition, there is an advantage that the mechanical properties of the foamed fibers are improved by extending and lengthening the bubbles in the longitudinal direction of the foamed fibers. Spinning speed l is more preferably 300 mZ or more l, 500 mZ or more Force S More preferably 2,000 mZ or more is particularly preferable.
[0090] また、紡糸速度が高!、ほど気泡の成長が抑えられて気泡の占有率の低!、発泡繊 維となる傾向にある。そこで 6,000mZ分以下とすることにより、適度に気泡が成長し た発泡繊維を得られる。より気泡占有率の高い発泡繊維となる点で、紡糸速度は、 5, 500mZ分以下であることがより好ましぐ 5,OOOmZ分以下であることがさらにより好 ましぐ特に好ましくは 4,500mZ分以下である。  [0090] In addition, the higher the spinning speed, the more the bubble growth is suppressed, and the lower the occupancy rate of the bubbles, the more tend to become foamed fibers. Therefore, by setting the amount to 6,000 mZ or less, it is possible to obtain a foamed fiber having moderately grown bubbles. The spinning speed is more preferably 5,500 mZ or less, more preferably 5, OOmZ or less, and even more preferably 4,500 mZ, in terms of forming a foam fiber with a higher cell occupation ratio. It is as follows.
[0091] 本発明の発泡繊維の製造方法においては、紡出糸が冷却され、上述の紡糸速度 で引き取られた発泡繊維は巻き取ることなく熱処理されることが好ましい。熱可塑性 ポリマに対する、二酸ィ匕炭素または窒素の溶解度は、通常低温ほど大きいため、引 き取られた発泡繊維の内部には二酸ィ匕炭素または窒素が溶存することがある。そこ で、熱処理を施すことによって、発泡繊維の内部に溶存した二酸ィ匕炭素または窒素 の溶解度を低下させて、気泡核を生成させて発泡繊維内部の気泡数を増やすことが できる。同時に溶存した二酸ィ匕炭素または窒素が既に存在する気泡に流入して気泡 が成長するため、気泡占有率を高い発泡繊維となる。このような熱処理による発泡構 造の変化は、紡糸直後の発泡繊維特有の現象であるため、引き取られた発泡繊維を 巻き取る前に熱処理することで達成される。 [0091] In the method for producing foamed fiber of the present invention, it is preferable that the spun yarn is cooled and the foamed fiber taken up at the above spinning speed is heat-treated without being wound. Since the solubility of carbon dioxide or nitrogen in thermoplastic polymers is usually greater at lower temperatures, the carbon dioxide or nitrogen may be dissolved inside the drawn foam fibers. Therefore, by applying heat treatment, carbon dioxide or nitrogen dissolved in the foamed fiber was dissolved. It is possible to increase the number of bubbles inside the foamed fiber by reducing the solubility of and generating bubble nuclei. At the same time, the dissolved carbon dioxide or nitrogen flows into bubbles that already exist, and the bubbles grow, resulting in a foam fiber with a high bubble occupancy rate. Such a change in the foam structure due to the heat treatment is a phenomenon peculiar to the foamed fiber immediately after spinning, and is thus achieved by heat-treating the taken-up foamed fiber before winding.
[0092] 熱処理温度は、熱可塑性ポリマの T以上であることが好ましぐ T + 10°C以上であ  [0092] It is preferable that the heat treatment temperature is T or higher of the thermoplastic polymer. T + 10 ° C or higher.
g g  g g
ることがより好ましぐさらに好ましくは T +20°C以上である。熱処理温度があまり高  More preferably, it is T + 20 ° C or more. Heat treatment temperature is too high
g  g
いと、熱可塑性ポリマの流動性が高くなりすぎて気泡の合一 ·破泡を招くことがあるの で、熱可塑性ポリマが結晶性ポリマの場合は融点以下で処理し、非晶性ポリマの場 合は T + 150°Cより低い温度で処理することが好ましい。より好ましくは結晶性ポリマ g  If the thermoplastic polymer is a crystalline polymer, the fluidity of the thermoplastic polymer becomes too high, which may lead to bubble coalescence and bubble breakage. In this case, the treatment is preferably performed at a temperature lower than T + 150 ° C. More preferably crystalline polymer g
の場合は融点— 30°C以下、非晶性ポリマの場合は T + 120°C以下である。さらに好  In the case of, the melting point is 30 ° C or less, and in the case of an amorphous polymer, T + 120 ° C or less. Even better
g  g
ましくは結晶性ポリマの場合は融点— 50°C以下、非晶性ポリマの場合は T + 100°C  For crystalline polymers, the melting point is less than 50 ° C, and for amorphous polymers, T + 100 ° C
g 以下である。また、熱処理を施す時間は長いほど好ましいが、 10msec以上であれば 十分な効果を発揮する。  g or less. Further, the longer the heat treatment time is, the better. However, if it is 10 msec or more, a sufficient effect is exhibited.
[0093] 熱処理する際の加熱方法は、汎用の装置を用いて、熱伝達能力が高い加熱方法 が好ましいことから、加熱ローラー、加熱ピン、加熱プレート、加熱液体および加熱蒸 気を用いた装置や、あるいは炭酸ガスレーザー等に代表される分子振動の励起を利 用した加熱手法などを採用することが好ましい。 1つの熱源を用いて 1段階で熱処理 を行ってもよ!、し、複数個の熱源を組み合わせて多段階で熱処理を施してもょ ヽ。  [0093] The heating method for the heat treatment is preferably a heating method using a general-purpose apparatus and high heat transfer capability. Therefore, an apparatus using a heating roller, a heating pin, a heating plate, a heating liquid and heating steam, Alternatively, it is preferable to employ a heating method using excitation of molecular vibration represented by a carbon dioxide laser or the like. One heat source can be used for heat treatment in one step !, or multiple heat sources can be combined for heat treatment in multiple steps.
[0094] 本発明の発泡繊維の製造方法において、紡出糸は引き取った後、延伸を施すこと が好ましい。延伸することによって発泡繊維の内部の気泡が長手方向に伸長されて 、発泡構造の長手方向への均一性が高まるからである。また、延伸によって発泡繊 維の気泡と気泡の間に存在する熱可塑性ポリマの壁が繊維軸方向に伸長され、長 手方向に配向することによって十分な力学物性を持つものとなる。  [0094] In the method for producing foamed fiber of the present invention, it is preferable that the spun yarn is drawn and then drawn. This is because, by stretching, the bubbles inside the foamed fiber are elongated in the longitudinal direction, and the uniformity of the foamed structure in the longitudinal direction is enhanced. In addition, by stretching, the wall of the thermoplastic polymer existing between the bubbles of the foamed fiber is stretched in the fiber axis direction and oriented in the longitudinal direction to have sufficient mechanical properties.
[0095] 延伸時の加熱方法は、汎用の装置を用いて、熱伝達能力の高い加熱方法が好ま しぐ加熱ピン、加熱プレート、加熱液体や加熱気体を用いた装置あるいは炭酸ガス レーザー等に代表される分子振動の励起を利用した加熱手法などを採用することが できる。均一延伸し易い点で、延伸温度は T + 10°C以上が好ましい。延伸温度が高 すぎると熱可塑性ポリマの流動性が高くなりすぎて気泡の合一 ·破泡を招くことがある ので、熱可塑性ポリマが結晶性ポリマの場合は融点以下で処理し、非晶性ポリマの 場合は T + 150°Cより低い温度で処理することが好ましい。 [0095] The heating method during stretching is represented by a heating pin, a heating plate, a device using a heating liquid or a heating gas, a carbon dioxide laser, or the like, which uses a general-purpose device and a heating method having a high heat transfer capability. It is possible to employ a heating method that utilizes the excitation of molecular vibration. In view of easy uniform stretching, the stretching temperature is preferably T + 10 ° C or higher. High stretching temperature If the thermoplastic polymer is too high, the fluidity of the thermoplastic polymer may become so high that bubbles may be coalesced and broken, so if the thermoplastic polymer is a crystalline polymer, it should be processed below the melting point, and if it is an amorphous polymer, It is preferable to process at a temperature lower than T + 150 ° C.
g  g
[0096] また、延伸した後、再度 T + 10°C以上の温度で熱処理する方法が好ま 、。延伸 g  [0096] In addition, a method of heat treatment at a temperature of T + 10 ° C or higher again after stretching is preferred. Stretching g
後に熱処理を施すことで気泡の周りが熱固定され、耐熱性に優れた発泡繊維となる 。発泡構造を維持して熱処理を施す点で、熱可塑性ポリマが結晶性ポリマの場合は 融点以下で処理し、非晶性ポリマの場合は T + 150°Cより低い温度で処理すること g  By performing a heat treatment later, the periphery of the bubbles is heat-set, and the foamed fiber has excellent heat resistance. When the thermoplastic polymer is a crystalline polymer, it should be processed below the melting point, and when it is an amorphous polymer, it should be processed at a temperature lower than T + 150 ° C.
が好ましい。より好ましくは結晶性ポリマの場合は融点— 30°C以下、非晶性ポリマの 場合は T + 120°C以下である。さらに好ましくは結晶性ポリマの場合は融点 50°C g  Is preferred. More preferably, the melting point is 30 ° C or lower for a crystalline polymer, and T + 120 ° C or lower for an amorphous polymer. More preferably, for crystalline polymers, the melting point is 50 ° C g
以下、非晶性ポリマの場合は T + 100°C以下である。また、熱処理を施す時間は長 g  In the case of an amorphous polymer, T + 100 ° C or less. Also, the heat treatment time is long g
V、ほど好まし 、が、 10msec以上であれば十分な効果を発揮する。  V is more preferable, but if it is 10 msec or more, a sufficient effect is exhibited.
[0097] 延伸後の再熱処理の方法は、汎用の装置を用いて、加熱効率の高い方式ほど繊 維内部の構造が緩和されることなく固定され、気泡の耐久性が高い発泡繊維が得ら れることから、加熱ピン、加熱ローラー、加熱プレート、加熱液体や加熱気体を用いた 装置あるいは炭酸ガスレーザー等に代表される分子振動の励起を利用した加熱手 法などを採用することができる。  [0097] The method of re-heat treatment after stretching uses a general-purpose apparatus, and the higher the heating efficiency, the more the structure inside the fiber is fixed without being relaxed, and the foamed fiber with high bubble durability is obtained. Therefore, a heating pin, a heating roller, a heating plate, a device using a heating liquid or a heating gas, or a heating method using excitation of molecular vibration represented by a carbon dioxide laser can be employed.
[0098] 延伸および延伸後の再熱処理は、発泡繊維を巻き取った後、巻き取る前のいずれ の段階で行ってもよいが、上述したように、引き取った発泡繊維を巻き取る前に熱処 理することによる効果も同時に発現できる点で、引き取った後、巻き取る前に加熱延 伸し、その後、再熱処理する手法が特に好ましい。  [0098] Stretching and reheat treatment after stretching may be performed at any stage after winding the foamed fiber and before winding, but as described above, before the wound foamed fiber is wound, heat treatment is performed. In view of the fact that the effect can be realized at the same time, a method of heating and extending after winding and then reheating after winding is particularly preferable.
[0099] 具体的には、紡出糸を引き取った後、複数のローラー間でローラーの速度差を利 用して延伸する際に、いくつかのローラーを加熱ローラーすることで熱処理を施しな がら延伸する手法や、ローラー間に加熱ピンや、加熱プレートや、加熱液体などの熱 源を配置して熱処理を施しながら延伸する手法を採用することができる。延伸倍率は 、発泡繊維が所望の残留伸度となるように調整すればょ 、。  [0099] Specifically, after drawing the spun yarn, when drawing using a roller speed difference between a plurality of rollers, heat treatment is performed by heating several rollers. A stretching method or a heating pin, a heating plate, or a heat source such as a heated liquid between the rollers and a method of stretching while performing heat treatment can be employed. The draw ratio should be adjusted so that the foamed fiber has the desired residual elongation.
[0100] また、前述の紡出糸は、延伸を施さずに、あるいは延伸を施した後に仮撚加工され てもよい。仮撚加工において延伸糸を用いる場合には、接触型もしくは非接触型の 方法により加熱され、ディスク状物、ベルト状物、あるいはピン状物によって仮撚加工 される。未延伸糸を用いる場合には、同様に接触型もしくは非接触型のヒーターなど により加熱した後もしくは加熱されることなく延伸を施しながら、施撚体 (ディスク、ピン 、ベルト)によって仮撚カ卩ェされる。仮撚加工された発泡繊維は、そのまま巻き取るこ とが可能であるものの、再度熱セットされた後に巻き取られる。 [0100] Further, the above-described spun yarn may be false twisted without being stretched or after being stretched. When drawn yarn is used in false twisting, it is heated by a contact or non-contact method, and false twisting is performed with a disk, belt, or pin. Is done. When undrawn yarn is used, it is similarly heated with a contact or non-contact type heater or the like, while being stretched without being heated, and with a twisted body (disk, pin, belt). It is Although the false-twisted foamed fiber can be wound as it is, it is wound after being heat-set again.
実施例  Example
[0101] 以下、実施例により、本発明の発泡繊維とその製造方法について、具体的かつより 詳細に説明する。実施例中の物性値は、下記の方法によって測定した。  [0101] Hereinafter, the foamed fiber of the present invention and the method for producing the same will be described specifically and in detail with reference to Examples. The physical property values in the examples were measured by the following methods.
A.熱可塑性ポリマの融点 (T )とガラス転移温度 (T )の測定  A. Measurement of melting point (T) and glass transition temperature (T) of thermoplastic polymer
m g  m g
以下の条件で τ  Τ under the following conditions
m、 τを測定した。  m and τ were measured.
g  g
[0102] 測定装置:パーキンエルマ一社製、示差走査熱量分析装置 (DSC— 2)  [0102] Measuring device: Differential scanning calorimeter (DSC-2), manufactured by PerkinElmer
試料直量:試料 lOmg  Direct sample amount: Sample lOmg
昇温速度: 16°CZ分。  Temperature increase rate: 16 ° CZ min.
[0103] Tと Tの定義を以下に説明する。一旦昇温速度 16°CZ分で測定した際に観測さ  [0103] The definitions of T and T are described below. Once observed at a temperature increase rate of 16 ° CZ
m g  m g
れる吸熱ピーク温度 (Τ )を観測後、 T + 20°Cの温度で 5分間保持する。その後  After observing the endothermic peak temperature (Τ), hold at a temperature of T + 20 ° C for 5 minutes. afterwards
ml ml  ml ml
室温まで急冷する (急冷時間および室温保持時間を合わせて 5分間保持)。そして再 度 16°CZ分の昇温条件で測定した際に、段状の基線のずれとして観測される吸熱 ピーク温度をガラス転移温度 (T )とした。また結晶の融解温度として観測される吸熱  Cool to room temperature (keep cooling time and room temperature holding time together for 5 minutes). The endothermic peak temperature observed as the deviation of the stepped baseline when the temperature was measured again at a temperature of 16 ° CZ was defined as the glass transition temperature (T). The endotherm observed as the melting temperature of the crystal
g  g
ピーク温度を融点 (T )とした。  The peak temperature was taken as the melting point (T).
B.熱可塑性ポリマの溶融粘度の測定  B. Measurement of melt viscosity of thermoplastic polymer
以下の条件で溶融剪断粘度を測定した。  The melt shear viscosity was measured under the following conditions.
[0104] 測定装置:東洋精機社製、キヤピログラフ 1型  [0104] Measuring device: Capillograph type 1 manufactured by Toyo Seiki Co., Ltd.
剪断速度: 20sec_1 Shear rate: 20sec _1
測定温度:結晶性ポリマの場合 T + 30°Co非晶性ポリマの場合紡糸温度。 Measurement temperature: T + 30 ° C for crystalline polymer o Spinning temperature for amorphous polymer.
C. U% (half)の測定  C. U% (half) measurement
以下の条件で U% (half)を測定した。  U% (half) was measured under the following conditions.
[0105] 測定装置:ツェルべ一ガー(Zellweger)社製、 UT—4 [0105] Measuring device: Zellweger, UT-4
供糸速度: 200mZ分  Yarn feeding speed: 200mZ min
測定時間: 1分。 D.発泡繊維の強度と伸度の測定 Measurement time: 1 minute. D. Measurement of foam fiber strength and elongation
以下の条件で発泡繊維の強度、伸度を測定した。強度および伸度を測定し、 5回 測定した平均値をそれぞれの測定値とした。強度と伸度の平均値を用いて、強度 X ( 伸度) °· 5を算出した。 The strength and elongation of the foamed fiber were measured under the following conditions. The strength and elongation were measured, and the average value measured five times was taken as each measured value. Using the average value of strength and elongation, strength X (elongation) ° 5 was calculated.
[0106] 測定条件:オリエンテック社製、テンシロン引張試験機 (TENSIRON UCT— 100 )  [0106] Measurement conditions: Tensilon tensile tester (TENSIRON UCT—100) manufactured by Orientec
初期試料長:未延伸糸の場合 50mm、延伸糸の場合 200mm  Initial sample length: 50mm for undrawn yarn, 200mm for drawn yarn
I張速度:未延伸糸の場合 400mmZ分、延伸糸の場合 200mmZ分 温度: 25°C  I Tension speed: 400mmZ for undrawn yarn, 200mmZ for drawn yarn Temperature: 25 ° C
相対湿度: 65%  Relative humidity: 65%
E.発泡繊維の見かけ比重の測定  E. Measurement of apparent specific gravity of foam fiber
(a)繊維の見かけ比重は、 JIS—L— 1013 : 1999 8. 17. 1 (日本規格協会発行、 化学繊維フィラメント糸試験方法)に定められた浮沈法に基づき測定した。 20°C±0 (a) The apparent specific gravity of the fiber was measured based on the float / sink method defined in JIS-L-1013: 1999 8.1.7.1 (published by the Japanese Standards Association, chemical fiber filament yarn test method). 20 ° C ± 0
. 1°Cの温度下、比重液に繊維を浸漬して 30分間放置した後の浮沈状態を確認する 。そして前述 8. 17. 1項記載のとおり、浮かびも沈みもしない比重液を調整し、該比 重液の比重値を測定する。繊維 5本を測定した比重値の平均値を測定した。このとき 比重液としては、繊維の見かけ比重が 1以上であれば NaBr水溶液を用いた。繊維 の見かけ比重が 1〜0. 789の間であれば重液に水を軽液にエチルアルコールを用 いた混合液体を用いた。繊維の見かけ比重が 0. 789-0. 659の間であれば重液 にエチルアルコールを軽液に n—へキサンを用いた混合液体を用いた。 Check the floating state after immersing the fiber in the specific gravity liquid at a temperature of 1 ° C for 30 minutes. Then, adjust the specific gravity liquid that does not float or sink as described in Section 8.1.1, and measure the specific gravity value of the specific gravity liquid. An average value of specific gravity values obtained by measuring five fibers was measured. At this time, as the specific gravity liquid, an aqueous NaBr solution was used if the apparent specific gravity of the fiber was 1 or more. When the apparent specific gravity of the fiber was between 1 and 0.789, a mixed liquid using water as a heavy liquid and ethyl alcohol as a light liquid was used. When the apparent specific gravity of the fibers was between 0.789 and 659, a mixed liquid using ethyl alcohol as a heavy liquid and n- hexane as a light liquid was used.
(b)繊維の見かけ比重が 0. 659未満の場合  (b) When the apparent specific gravity of the fiber is less than 0.659
本発明の発泡繊維のみからなる 100g± 10gの筒編布帛を作成する。そして該筒 編布帛の重量と体積を測定して見かけ比重を求めた。  A tubular knitted fabric of 100 g ± 10 g consisting only of the foamed fiber of the present invention is prepared. Then, the apparent specific gravity was determined by measuring the weight and volume of the tubular knitted fabric.
[0107] まず該筒編布帛の重量を事前に測定する。そしてあら力じめ重量および体積の分 力つたおもりを筒編布帛に固定し、 4°C± 1°Cの温度に調製したイオン交換水に浸漬 して 5分間の超音波による脱泡を行った後、筒編布帛の体積を測定する。筒編布帛 1 0枚測定した布帛の比重値の平均値を測定した。 First, the weight of the tubular knitted fabric is measured in advance. Then, the weight and volume of the weight-balanced weight are fixed to the tubular knitted fabric, immersed in ion-exchanged water adjusted to a temperature of 4 ° C ± 1 ° C, and defoamed with ultrasonic waves for 5 minutes. After that, the volume of the tubular knitted fabric is measured. Tube knitted fabric 10 The average value of the specific gravity values of 10 pieces of cloth was measured.
F.発泡繊維の発泡構造の観察 試料台に貼り付けたカーボンテープ上に単繊維を設置し、白金蒸着処理 (蒸着膜 圧: 25〜50オングストローム 処理時間:約 120秒)を行う。そして収束イオンビーム( FIB)切削加工 走査型電子顕微鏡 (SEM)観察装置 (FEI社製 STRATADB23 5)にて、加速電圧 30kVで加速した Ga収束イオンビームにより、切削加工を施す。 切削加工は 2工程で行った。 1段階目に粗切削加工 (電流:約 7000pA 処理時間: 約 20分、真空度:1. 4 X 10_13Pa)を施した。 2段階目に精密切削加工 (電流:約 30 OOpA 処理時間:約 4分、真空度:1. 4 X 10_13Pa)を施した。繊維横断面観察を行 う際は試料を繊維軸方向に対して垂直に切削した。繊維縦断面観察を行う場合には 試料を繊維軸方向に対して平行に切削した。 F. Observation of foam structure of foam fiber A single fiber is placed on the carbon tape affixed to the sample stage, and a platinum deposition process (deposition film pressure: 25-50 angstroms processing time: about 120 seconds) is performed. Then, the focused ion beam (FIB) cutting is performed with a Ga focused ion beam accelerated at an acceleration voltage of 30 kV with a scanning electron microscope (SEM) observation device (STRAIDB235 5 manufactured by FEI). Cutting was performed in two steps. In the first stage, rough cutting (current: about 7000 pA treatment time: about 20 minutes, degree of vacuum: 1.4 X 10 _13 Pa) was performed. The second stage was subjected to precision cutting (current: about 30 OOpA treatment time: about 4 minutes, vacuum: 1.4 X 10 _13 Pa). When observing the cross section of the fiber, the sample was cut perpendicular to the fiber axis direction. When performing fiber longitudinal section observation, the sample was cut parallel to the fiber axis direction.
[0108] 切削加工を施した後、該装置が所持する走査型電子顕微鏡を用い繊維横断面、 および繊維縦断面の観察を行った (真空度 1. 4 X 10_ 19Pa、試料傾斜 52度、加速 電圧 5kV、倍率 80000倍)。このとき該倍率で繊維横断面、および縦断面の全体像 が撮影できない場合は、それぞれの位置で部分写真を撮影し、画像ソフトを用いて 張り合わせることで全体像を得た。 [0108] After cutting, the cross section of the fiber and the longitudinal section of the fiber were observed using a scanning electron microscope possessed by the apparatus (vacuum degree 1.4 X 10 _ 19 Pa, sample inclination 52 degrees , Acceleration voltage 5kV, magnification 80000 times). At this time, when the whole image of the fiber cross section and the vertical cross section could not be taken at the magnification, partial pictures were taken at the respective positions, and the whole image was obtained by pasting them using image software.
(a)繊維の断面積 (A )と繊維直径 (D )の測定  (a) Measurement of fiber cross-sectional area (A) and fiber diameter (D)
F F  F F
繊維横断面写真を用い、コンピュータソフトウェアの三谷商事社製の" WinROOF" (登録商標)(バージョン 2. 3)にて、画像解析により、繊維の断面積 (A )、繊維直径  Using the cross-sectional photograph of the fiber, the computer software "WinROOF" (registered trademark) (version 2.3) manufactured by Mitani Shoji Co., Ltd. was analyzed by image analysis, and the fiber cross-sectional area (A), fiber diameter
F  F
(D )を求めた。繊維の断面積 (A )とは、繊維 1本を形成する領域の断面積を意味 (D) was determined. The cross-sectional area (A) of the fiber means the cross-sectional area of the region that forms one fiber.
F F F F
する。該断面積 (A )から円に相当する直径を算出した。上記の繊維横断面観察をラ  To do. A diameter corresponding to a circle was calculated from the cross-sectional area (A). The above fiber cross-section observation
F  F
ンダムな 10力所で行 ヽ、それぞれで得られた繊維直径を平均化したものを繊維直径 (D )とした。  The fiber diameter (D) was calculated by averaging the fiber diameters obtained at 10 power stations.
F  F
(b)気泡の最大直径 (D )と気泡長 (L )の測定  (b) Measurement of maximum bubble diameter (D) and bubble length (L)
M M  M M
繊維横断面写真において、最大の面積を有する気泡の断面積を、同様に画像解 析により算出し、その断面積から円に相当する直径を算出して気泡の最大直径 (D  In the cross-sectional photograph of the fiber, the cross-sectional area of the bubble with the largest area is similarly calculated by image analysis, and the diameter corresponding to the circle is calculated from the cross-sectional area to calculate the maximum bubble diameter (D
M  M
)を求めた。  )
[0109] さらに最大の面積を有する気泡の重心を通り、かつ繊維軸と平行となるように繊維 を切削して該気泡の繊維軸方向の長さである気泡長 (L )を求めた。  [0109] Further, the fiber was cut so that it passed through the center of gravity of the bubble having the largest area and was parallel to the fiber axis, and the bubble length (L), which is the length of the bubble in the fiber axis direction, was obtained.
M  M
[0110] 気泡の最大直径 Z繊維直径 =D ZD 気泡長 Z気泡の最大直径 =L ZD [0110] Maximum bubble diameter Z Fiber diameter = D ZD Bubble length Z bubble maximum diameter = L ZD
M M  M M
(c)気泡の総断面積 (A )と気泡数 (N)の測定  (c) Measurement of total cross-sectional area (A) and number of bubbles (N)
all  all
繊維横断面に存在する全ての気泡を数えて気泡数 (N)を求めた。また全ての気泡 について気泡の断面積を画像解析にて算出してその総和 (A )を求めた。  The number of bubbles (N) was determined by counting all the bubbles present in the fiber cross section. For all bubbles, the cross-sectional area of the bubbles was calculated by image analysis, and the sum (A) was obtained.
all  all
[0111] 気泡の占有率 = A /A  [0111] Bubble occupancy = A / A
all F  all F
(d)気泡の平均直径 (D )と気泡の直径の標準偏差( σ )の測定  (d) Measurement of average bubble diameter (D) and standard deviation of bubble diameter (σ)
A  A
気泡の平均直径 (D )は繊維横断面内において存在する全ての気泡の円に相当  The average bubble diameter (D) corresponds to the circle of all the bubbles present in the fiber cross section
A  A
する直径を算出し、その数平均をとることで算出した。また、気泡の標準偏差( σ )は 、全ての気泡の円に相当する直径の標準偏差をとることで算出した。  The diameter to calculate was calculated and the number average was taken. The standard deviation (σ) of the bubbles was calculated by taking the standard deviation of the diameter corresponding to all the bubble circles.
G.紡糸パック内の圧力と口金背面圧の測定  G. Measurement of pressure inside spin pack and back pressure of base
ギヤポンプと、紡糸パックとの間のポリマ流路において、圧力計を付帯させ、紡糸時 の紡糸パック内の圧力(Ρ  In the polymer flow path between the gear pump and the spinning pack, a pressure gauge is attached so that the pressure in the spinning pack during spinning (Ρ
1 )、口金背面圧 (Ρ )  1), back pressure of base (Ρ)
2を測定する。  Measure 2
[0112] まず紡糸パックを取り付け、熱可塑性ポリマと二酸ィ匕炭素または窒素の混合ポリマ を紡糸パックに導いて、紡糸口金力 混合ポリマが吐出するまでの間で、該圧力計の 測定値をチャートに打ち出す。このチャートを元に、吐出直後の紡糸パック内の圧力 (Ρ )を、ポリマ流路の圧損 (Ρ )  [0112] First, the spinning pack is attached, and the measured value of the pressure gauge is measured until the mixed polymer of thermoplastic polymer and carbon dioxide or nitrogen is introduced into the spinning pack and the spinneret mixed polymer is discharged. Put it on the chart. Based on this chart, the pressure (Ρ) in the spinning pack immediately after discharge is expressed as the pressure loss (Ρ) in the polymer flow path.
B、濾過層の圧損 (Ρ )  B, filtration layer pressure loss (Ρ)
A C、フィルター圧損 (Ρ ) A C, filter pressure loss (Ρ)
D、背面圧 D, back pressure
(P ) +P +P +P ) (P) + P + P + P)
E に分離する(P =P  Separate into E (P = P
A B C D E。そして吐出開始から 1時間が経過し、安 定ィ匕した紡糸パック内の圧力を P  A B C D E. After 1 hour has elapsed from the start of discharge, the pressure in the stable spinning pack is reduced to P
1とした。口金背面圧(P )  It was set to 1. Back pressure of base (P)
2 は P =P /P X P  2 is P = P / P X P
2 E A 1の式 から算出した。  2 E A 1 Calculated from the formula.
H.製糸性と延伸性の評価  H. Evaluation of yarn production and stretchability
100kgの発泡繊維を作製する際、紡糸工程での製糸性を評価した。製糸性は、糸 切れ回数により評価し、糸切れが全く起こらない場合は優れる(◎)、糸切れが 1〜5 回の場合に良好(〇)、糸切れが 6〜20回である場合に劣る(△)、全く巻き取ること ができな!/、場合を不可( X )とした。  When producing 100 kg of foamed fibers, the spinning performance in the spinning process was evaluated. Thread-making performance is evaluated based on the number of thread breaks. Excellent when no thread breakage occurs (◎), good when thread breakage is 1-5 times (○), and when thread breakage is 6-20 times Inferior (△), can't wind up at all! /, Case not allowed (X).
[0113] また延伸工程においては、単糸切れが起こって単糸がローラーに巻き付く回数で 延伸性を評価した。単糸が全く巻き付力ない場合を優れる(◎)、単糸巻き付き力^〜 5回の場合に良好(〇)、 6〜20回である場合に劣る(△)、全く延伸ができない場合 を不可(X )とした。 I.熱可塑性ポリマの調整 [0113] In the drawing step, the drawability was evaluated by the number of times that a single yarn breakage occurred and the single yarn was wound around a roller. Excellent when the single yarn has no wrapping force (◎), good when the single yarn wrapping force is ~~ 5 times (○), inferior when it is 6-20 times (△), and cannot be drawn at all Impossible (X). I. Preparation of thermoplastic polymer
(a)ポリエチレンテレフタレート(PET— 1と PET— 2)の調整  (a) Preparation of polyethylene terephthalate (PET-1 and PET-2)
テレフタル酸 166重量部とエチレングリコール 75重量部の通常のエステル化反応 によって得られた低重合体に、着色防止剤としてリン酸 85%水溶液を 0. 03重量部、 重縮合触媒として三酸ィ匕アンチモンを 0. 06重量部、調色剤として酢酸コバルト 4水 塩を 0. 06重量部添加して重縮合反応を行った。そして融点 (T )が 260°Cであり、 ガラス転移温度 (T )が 80°Cであり、 290°Cの温度で剪断速度 20sec_1における溶 To a low polymer obtained by the usual esterification reaction of 166 parts by weight of terephthalic acid and 75 parts by weight of ethylene glycol, 0.03 part by weight of a 85% aqueous solution of phosphoric acid as an anti-coloring agent and triacid as a polycondensation catalyst A polycondensation reaction was carried out by adding 0.06 parts by weight of antimony and 0.06 parts by weight of cobalt acetate tetrahydrate as a toning agent. The melting point (T) is 260 ° C, the glass transition temperature (T) is 80 ° C, and the melting point (T) is 290 ° C and the shear rate is 20 sec_1 .
g  g
融粘度が 250Pa' secである PET— 1を得た。 PET-1 having a melt viscosity of 250 Pa 'sec was obtained.
PET— 1をさらに 220°Cの温度で窒素気流下で固相重合して、 15時間、固相重合 することにより、融点 (T )が 260°Cであり、ガラス転移温度 (T )が 83°Cであり、 290  PET-1 was further solid-phase polymerized at a temperature of 220 ° C under a nitrogen stream and solid-phase polymerized for 15 hours. The melting point (T) was 260 ° C and the glass transition temperature (T) was 83 ° C and 290
m g  m g
°Cの温度における溶融粘度が lOOOPa · sec—1と高粘度である PET— 2を得た。PET-2 with a high viscosity of lOOOPa · sec- 1 at a temperature of ° C was obtained.
(b)ポリトリメチレンテレフタレート(PTT)の調整 (b) Preparation of polytrimethylene terephthalate (PTT)
テレフタル酸ジメチル 130部(6. 7モル部)、 1, 3—プロノ ンジオール 114部(15モ ル部)、酢酸カルシウム 1水和塩 0. 24部(0. 014モル部)、酢酸リチウム 2水和塩 0. 1部(0. 01モル部)を仕込んでメタノールを留去しながらエステル交換反応を行うこと により得られた低重合体に、トリメチルホスフェート 0. 065部とチタンテトラブトキシド 0 . 134部を添加して、 1, 3—プロパンジォールを留去しながら、重縮合反応を行い、 チップ状のプレボリマを得た。得られたプレポリマを、さらに 220°Cの温度で窒素気流 下で固相重合を行い、ガラス転移温度 (T )が 52°Cであり、融点 (T )が 230°Cであり  Dimethyl terephthalate 130 parts (6.7 mole parts), 1,3-prononediol 114 parts (15 mole parts), calcium acetate monohydrate 0.24 parts (0.014 mole parts), lithium acetate 2 water A low polymer obtained by transesterifying 0.1 parts (0.01 mole parts) of a Japanese salt and distilling off methanol was added to 0.065 parts of trimethyl phosphate and 0.14 parts of titanium tetrabutoxide. The polycondensation reaction was carried out while distilling off 1,3-propanediol, to obtain chip-shaped preborima. The obtained prepolymer was further solid-phase polymerized at a temperature of 220 ° C under a nitrogen stream, and had a glass transition temperature (T) of 52 ° C and a melting point (T) of 230 ° C.
g m  g m
、 260°Cの温度で剪断速度 20sec_ 1における溶融粘度が lOOOPa' sec—1の PTTを 得た。 , A melt viscosity at a temperature of 260 ° C at a shear rate of 20sec _ 1 was obtained lOOOPa 'sec- 1 of PTT.
(c)ポリ乳酸 (PLA)の調整  (c) Preparation of polylactic acid (PLA)
L—ラクチド 300重量部に触媒としてォクチル酸スズを 0. 005重量部添加し、窒素 置換を行った後、 170°Cの温度で反応させて、重量平均分子量 15. 3万、ガラス転 移温度 (T )が 58°Cであり、融点 (T )が 170°Cであり、 200°Cの温度で剪断速度 20  After adding 0.005 parts by weight of tin octylate as a catalyst to 300 parts by weight of L-lactide and replacing with nitrogen, the reaction was carried out at a temperature of 170 ° C, resulting in a weight average molecular weight of 153,000 and a glass transition temperature. (T) is 58 ° C, melting point (T) is 170 ° C, shear rate 20 at a temperature of 200 ° C
g m  g m
sec—1における溶融粘度が 2000Pa' sec_1の PLAを得た。 melt viscosity at sec-1 was obtained PLA of 2000 Pa 'sec _1.
実施例 1 Example 1
2軸エタストルーダーのシリンダー最上流部から 1Z3の位置に、溶融ポリマに直接 二酸化炭素を注入するノズルを付帯する紡糸機を使用して発泡繊維の未延伸糸を 作製した。熱可塑性ポリマとして PET— 1を用い、 2軸エタストルーダーで溶融ポリマ に対し二酸ィ匕炭素を注入し、同エタストルーダー内で溶融ポリマと二酸ィ匕炭素を機 械混練した後、混合ポリマをギヤポンプにて計量し、紡糸パックへと供給した。そして 紡糸口金の吐出孔から吐出する時に発泡させた紡出糸を、冷却風にて冷却し、ロー ラーにて引き取って、巻き取り機で巻き取ることによって発泡未延伸糸を作製した (繊 度 124. 8dtex、フィラメント数 24)。このときの紡糸条件を下記に示す。なお、剪断速 度は、 PETの溶融密度である 1. 18gZcm3を用いて上述した上記 (A)の式を用い て算出した。 Directly into the molten polymer at 1Z3 position from the most upstream part of the cylinder of the 2-axis ETASRUDER An undrawn yarn of foamed fiber was produced using a spinning machine with a nozzle for injecting carbon dioxide. Using PET-1 as the thermoplastic polymer, injecting diacid-carbon into the molten polymer with a biaxial etatruder, and mechanically kneading the molten polymer and diacid-carbon in the etatruder, The mixed polymer was weighed with a gear pump and supplied to the spinning pack. The spun yarn foamed when discharged from the discharge hole of the spinneret was cooled with cooling air, taken up with a roller, and wound up with a winder to produce a foam undrawn yarn (fineness). 124. 8dtex, filament number 24). The spinning conditions at this time are shown below. The shear rate was calculated using the above equation (A) using 1.18 gZcm 3 , which is the melt density of PET.
[実施例 1の紡糸条件]  [Spinning conditions of Example 1]
'紡糸温度: 290°C  'Spinning temperature: 290 ° C
•混練機温度: 280°C  • Kneader temperature: 280 ° C
'エタストルーダー回転数: 300rpm  'Etast Ruder speed: 300rpm
•エタストルーダー先端圧: lOMPa  • Etastruder tip pressure: lOMPa
•発泡剤:二酸化炭素  • Foaming agent: carbon dioxide
•発泡剤添加量:口金から吐出された紡出糸に対して 3wt%  • Foaming agent addition amount: 3wt% with respect to the spun yarn discharged from the die
'発泡剤注入圧力: 8MPa 'Foaming agent injection pressure: 8MPa
•口金:丸孔であり、孔径 0. 15mm,孔深度 0. 16mm,孔数 24である口金  • Base: Round base with a hole diameter of 0.15 mm, a hole depth of 0.16 mm, and a hole number of 24
- y : 88711sec_1 -y: 88711sec _1
H  H
.濾層:30 #モランダムサンド  Filter layer: 30 # Morundum Sand
•フィルタ: 10 m不織布フィルター • Filter: 10m non-woven filter
•吐出量: 49. 9gZ分 • Discharge rate: 49.9gZ
'パック内圧: 20MPa 'Pack internal pressure: 20MPa
•口金背面圧: 15MPa  • Back pressure of the base: 15MPa
•冷却:冷却長 lmのュニフロー使用。冷却風温度 20°C、風速 0. 5m/分  • Cooling: Uses Uniflow with a cooling length of lm. Cooling air temperature 20 ° C, wind speed 0.5m / min
•油剤:脂肪族エステル 10%濃度エマルジョン油剤を糸に対して 10%付着 Oil: 10% aliphatic ester emulsion oil adheres 10% to the yarn
'紡糸速度: 4000m/分 'Spinning speed: 4000m / min
上記の発泡未延伸糸の延伸を行うに際し、第 1加熱ローラーが 90°Cの温度のロー ラー、第 2加熱ローラーが 130°Cの温度のローラー間で延伸し、第 3ローラーで室温 に冷却し、スピンドルでボビンに巻き取ることにより発泡繊維を得た。このとき延伸倍 率は、 1. 4倍とした。実施例 1の発泡繊維の物性を表 1に示す。 When drawing the foam undrawn yarn, the first heating roller is a low temperature of 90 ° C. The second heated roller was drawn between rollers having a temperature of 130 ° C., cooled to room temperature with a third roller, and wound on a bobbin with a spindle to obtain foamed fibers. At this time, the draw ratio was set to 1.4 times. Table 1 shows the physical properties of the foamed fiber of Example 1.
[表 1] [table 1]
Figure imgf000036_0001
Figure imgf000036_0001
実施例 2、比較例 1〜3 Example 2, Comparative Examples 1-3
実施例 1において、パック内圧および口金の背面圧が同一であり、下記のとおり孔 径と孔深度の異なる口金を用い、表 1のとおり剪断速度 γ を変更したこと以外は、実  In Example 1, the internal pressure of the pack and the back pressure of the base were the same, and the bases with different hole diameters and hole depths were used as described below, except that the shear rate γ was changed as shown in Table 1.
Η  Η
施例 1と同様にして発泡未延伸糸を作製し、その発泡未延伸糸を実施例 1と同様に 延伸して実施例 2と比較例 1〜3の発泡繊維を作製した。 A foamed unstretched yarn was prepared in the same manner as in Example 1, and the foamed unstretched yarn was treated in the same manner as in Example 1. The foamed fibers of Example 2 and Comparative Examples 1 to 3 were produced by stretching.
[0117] し力しながら、比較例 3の通常の溶融紡糸に適用される範囲の剪断速度を付与した 場合は、口金吐出部で紡出糸内部に生成した気泡が音を立てて破泡し、吐出が不 安定となったため、同じ紡糸速度では巻き取ることができな力つた。そこで、紡糸速度 を下げていったところ、製糸性は悪いものの、紡糸速度 200mZ分で巻き取ることが できた。比較例 3の未延伸の発泡繊維は、長手方向に太細を有する発泡繊維であり 、延伸時に糸切れが多発した。このため未延伸の発泡繊維し力得られな力つた。実 施例 2と比較例 1〜3の結果を、表 1に示す。  [0117] When a shear rate within the range applicable to the normal melt spinning of Comparative Example 3 was applied while compressing, the bubbles generated inside the spun yarn at the spout discharge section made a noise and bubbled. Because the discharge became unstable, it was unable to wind at the same spinning speed. Therefore, when the spinning speed was lowered, although the spinning performance was poor, it was able to wind up at a spinning speed of 200 mZ. The unstretched foamed fiber of Comparative Example 3 is a foamed fiber that is thick and thin in the longitudinal direction, and many yarn breaks occurred during stretching. For this reason, unstretched foamed fiber was used, and the force was not obtained. Table 1 shows the results of Example 2 and Comparative Examples 1 to 3.
•実施例 2 :孔径 =0. 18mm、孔深度 =0 . 26mm、 y = 5133 , sec  Example 2: Hole diameter = 0.18mm, hole depth = 0.26mm, y = 5133, sec
H  H
•比較例 1:孔径 = 0. 20mm,孔深度 = 0 . 3omm、 y = d7425sec  • Comparative Example 1: Hole diameter = 0.20mm, hole depth = 0.3omm, y = d7425sec
H  H
•比較例 2 :孔径 =0. 23mm,孔深度 =0 . 5mm、 y = 24607sec  • Comparative Example 2: Hole diameter = 0.23mm, hole depth = 0.5mm, y = 24607sec
H  H
•比較例 3 :孔径 =0. 35mm,孔深度 = 1 . 6mm、 y = 6983sec 、  Comparative Example 3: Hole diameter = 0.35mm, hole depth = 1.6mm, y = 6983sec,
紡糸速度 = 200mZ分  Spinning speed = 200mZ min
表 1から分力ゝるように、本発明の発泡繊維は、気泡の最大直径 Z繊維直径の比が 小さぐ繊維直径に比較して微細な気泡のみを含有しており、粗大な気泡を有さない ものであった。このため U% (half)が小さぐ繊維の長手方向に均一な高品位な発泡 繊維であった。また、気泡の直径のバラツキ、すなわち気泡の直径の標準偏差も小さ かった。このため力学的物性にも優れていた。本発明の発泡繊維は、熱可塑性ポリ マと二酸ィ匕炭素の混合ポリマに対して、通常の溶融紡糸で適用される剪断速度よりも 、遙かに高 、剪断速度を与える口金を用いることにより初めて達成された。  As can be seen from Table 1, the foamed fiber of the present invention contains only fine bubbles as compared with the fiber diameter with a smaller ratio of the maximum bubble diameter to the Z fiber diameter, and has coarse bubbles. It was not. For this reason, it was a high-quality foam fiber that was uniform in the longitudinal direction of the fiber with a small U% (half). Also, the variation in bubble diameter, that is, the standard deviation of the bubble diameter was small. For this reason, the mechanical properties were also excellent. The foamed fiber of the present invention uses a die that gives a shear rate much higher than the shear rate applied in ordinary melt spinning to a mixed polymer of thermoplastic polymer and carbon dioxide-dioxide carbon. Achieved for the first time.
[0118] 比較例 1、 2では、剪断速度が不足していた。このため吐出時の気泡核の生成数が 少なぐ最大直径 Z繊維直径ならびに気泡の平均直径が大きぐ粗大な気泡を含む ものであった。よって長手方向の均一性に劣る発泡繊維であり、実用レベルにない発 泡繊維であった。  [0118] In Comparative Examples 1 and 2, the shear rate was insufficient. For this reason, the maximum diameter Z fiber diameter with a small number of bubble nuclei generated during ejection and coarse bubbles with a large average bubble diameter were included. Therefore, it was a foamed fiber that was inferior in uniformity in the longitudinal direction, and was a foamed fiber that was not at a practical level.
[0119] 比較例 3は、気泡の占有率は高いものの、繊維が太いためゴァゴァとして硬く低品 位であった。また長手方向に明らかな太細があり、力学的特性も不十分で実用的で ない発泡繊維であった。  [0119] In Comparative Example 3, although the bubble occupancy ratio was high, the fiber was thick and hard and low quality. Further, it was a foam fiber that was clearly impregnated in the longitudinal direction, had insufficient mechanical properties, and was impractical.
実施例 3〜8、比較例 4〜6 実施例 1において、紡糸速度を下記のごとく変更したこと以外は、実施例 1と同一条 件で発泡未延伸糸を作製した。また、該発泡未延伸糸を実施例 1と同様にして延伸 するに際し、それぞれ延伸倍率を下記のように調整して、発泡繊維を得た。実施例 4 〜8と比較例 3〜4の結果を、表 2に示す。 Examples 3-8, Comparative Examples 4-6 In Example 1, an undrawn expanded yarn was produced under the same conditions as in Example 1 except that the spinning speed was changed as follows. Further, when the unfoamed yarn was stretched in the same manner as in Example 1, the stretch ratio was adjusted as follows to obtain foamed fibers. The results of Examples 4 to 8 and Comparative Examples 3 to 4 are shown in Table 2.
•実施例 3:紡糸速度 lOOOmZ分、延伸倍率 3. 0倍 Example 3: Spinning speed lOOOOmZ, draw ratio 3.0 times
•実施例 4:紡糸速度 1500mZ分、延伸倍率 2. 8倍 Example 4: Spinning speed 1500 mZ min, draw ratio 2.8 times
•実施例 5:紡糸速度 2000mZ分、延伸倍率 2. 5倍 ·実施例 6:紡糸速度 3000mZ 分、延伸倍率 1. 8倍 ·実施例 7:紡糸速度 5000mZ分、延伸倍率 1. 2倍  Example 5: Spinning speed 2000 mZ min, draw ratio 2.5 timesExample 6: Spinning speed 3000 mZ min, draw ratio 1. 8 timesExample 7: Spinning speed 5000 mZ min, draw ratio 1.2 times
,実施例 8:未延伸 , Example 8: Unstretched
•比較例 4:紡糸速度 500mZ分、延伸倍率 4. 0倍  • Comparative Example 4: Spinning speed 500mZ, draw ratio 4.0 times
•比較例 5:紡糸速度 700mZ分、延伸倍率 3. 5倍 • Comparative Example 5: Spinning speed 700mZ min, draw ratio 3.5 times
•比較例 6:紡糸速度 7000mZ分、未延伸 • Comparative Example 6: Spinning speed 7000mZ min, unstretched
[表 2] [Table 2]
Figure imgf000039_0001
Figure imgf000039_0001
表 2からわ力るように、本発明において、気泡の最大直径 繊維直径が小さいほと U% (half)が小さい均一な発泡繊維となった。また、気泡の最大直径 Z繊維直径が 小さぐ気泡の平均直径が小さぐ気泡の直径の標準偏差が小さいほど力学的物性 にも優れた発泡繊維となった。すなわち本発明の発泡繊維の製造方法において、紡 糸速度が高いほど微細な気泡を多数有する発泡繊維とすることができることがわ力る 。これは紡出糸の冷却が速やかに起こり、二酸化炭素の濃度斑が起こりにくぐ気泡 の成長が抑制されるためである。ただし、比較例 6のように、紡糸速度が速すぎると、 ほとんど気泡を有さない発泡繊維となってしまった。これは冷却速度が過度に高くな つて気泡の成長が十分に起こらなくなる傾向にあるためである。 As shown in Table 2, in the present invention, uniform foamed fibers with smaller maximum diameter of bubbles and smaller U% (half) were obtained. In addition, the maximum diameter of bubbles Z The diameter of fibers is small The average diameter of bubbles is small The standard deviation of the diameter of bubbles is small, the mechanical properties are Also became an excellent foamed fiber. In other words, in the method for producing foamed fibers of the present invention, it is obvious that the higher the spinning speed, the more the foamed fibers can have many fine bubbles. This is because cooling of the spun yarn occurs quickly, and the growth of bubbles, which is difficult to cause carbon dioxide concentration spots, is suppressed. However, as in Comparative Example 6, when the spinning speed was too high, the foamed fiber had almost no bubbles. This is because the cooling rate tends to be too high and bubble growth tends not to occur sufficiently.
実施例 9〜11 Examples 9-11
実施例 1において、図 1に示した剪断速度(γ  In Example 1, the shear rate (γ
H )を付与した後に剪断速度(γ  H) after applying shear rate (γ
L )を 付与する口金を用いたこと以外は、実施例 1と同様にして紡糸を行って発泡未延伸 糸を得た。実施例 9〜11では、剪断速度(γ )と口金背面圧が、実施例 1と同一にな  Spinning was carried out in the same manner as in Example 1 except that the base for imparting L) was used to obtain a foam undrawn yarn. In Examples 9 to 11, the shear rate (γ) and the back pressure of the base were the same as in Example 1.
Η  Η
るように下記の孔スペックの口金を使用した。得られた発泡未延伸糸を、実施例 1と 同様に延伸し、発泡繊維を得た。実施例 9〜11の結果を、表 3に示す。 As shown, the following hole spec base was used. The obtained foam undrawn yarn was drawn in the same manner as in Example 1 to obtain foamed fibers. The results of Examples 9-11 are shown in Table 3.
•実施例 9 : D =0. 15mm, L =0. 15mm, y =88711sec_1 • Example 9:.. D = 0 15mm , L = 0 15mm, y = 88711sec _1
H H H  H H H
D =0. 35mm, L =0. 10mm, y =6983sec_1 D = 0.35mm, L = 0.10mm, y = 6983sec _1
L L L  L L L
•実施例 10 : D =0. 15mm, L =0. 15mm, y =88711sec_ 1 • Example 10:.. D = 0 15mm , L = 0 15mm, y = 88711sec _ 1
H H H  H H H
D =0. 50mm, L =0. 24mm, y = 2395sec_1 D = 0.50mm, L = 0.24mm, y = 2395sec _1
L L L  L L L
•実施例 11 : D =0. 15mm, L =0. 15mm, y =88711sec_ 1 • Example 11:.. D = 0 15mm , L = 0 15mm, y = 88711sec _ 1
H H H  H H H
D =0. 80mm, L =0. 90mm, y = 585sec_1 D = 0.80mm, L = 0.90mm, y = 585sec _1
L L L  L L L
[表 3] [Table 3]
Figure imgf000041_0001
Figure imgf000041_0001
表 3からわ力るように本発明において、吐出孔内で混合ポリマに第 1段階として剪断 速度(Ύ )、第 2段階として剪断速度(γ )よりも低い剪断速度(γ )となる、口金孔  As shown in Table 3, in the present invention, in the discharge hole, the mixed polymer has a shear rate (Ύ) as the first step and a shear rate (γ) lower than the shear rate (γ) as the second step. Hole
L  L
が多段で拡大する口金を用いることにより、発泡繊維の気泡の占有率を大きくできる ことがわかる。これは紡出糸内部に多くの気泡核が生成し、適度に成長するためであ る。そして、 γ / の比が大きいほど、気泡占有率の高い発泡繊維となった。実施 例 9 1 1は、気泡の占有率が高いが、気泡が繊維軸方向に十分に伸長されている ため、力学的特性にも優れる発泡繊維であった。 It can be seen that by using a base that expands in multiple stages, the bubble occupancy of the foamed fiber can be increased. This is because many bubble nuclei are generated inside the spun yarn and grow appropriately. The larger the ratio of γ /, the higher the bubble occupancy ratio. Example 9 1 1 has a high bubble occupancy, but the bubbles are sufficiently elongated in the fiber axis direction Therefore, the foamed fiber was excellent in mechanical properties.
実施例 12 Example 12
実施例 11にお 、て、紡糸速度以上の速度で回転する加熱延伸ローラーを紡糸の 引き取りローラーの後に配置し、紡出糸を巻き取ることなく加熱ローラー間で延伸し、 紡糸'延伸を連続工程で行った。実施例 12の結果を、表 3に示す。  In Example 11, a heat-drawing roller that rotates at a speed higher than the spinning speed is disposed after the take-up roller for spinning, and the spinning yarn is drawn between the heating rollers without winding up the spun yarn. I went there. The results of Example 12 are shown in Table 3.
'紡糸速度: 4000m/分 'Spinning speed: 4000m / min
•延伸倍率:1. 4倍 • Stretch ratio: 1.4 times
'第 1延伸ローラー温度:90°C 'First stretching roller temperature: 90 ° C
'第 2延伸ローラー温度:130°C 'Second stretching roller temperature: 130 ° C
実施例 11と 12を比較するとわ力るように、紡出糸を巻き取ることなく延伸することに よって、気泡占有率の高い発泡繊維となることがわかる。これは引き取った紡出糸中 に溶存する二酸化炭素が気泡に流入することにより、気泡が適度に成長するためで ある。得られた発泡繊維は、気泡が微細であるため、長手方向に均一であり、優れた 力学特性を有していた。  Comparing Examples 11 and 12, it can be seen that a foamed fiber having a high cell occupancy is obtained by drawing without spinning the spun yarn. This is because the carbon dioxide dissolved in the taken-out spun yarn flows into the bubbles, so that the bubbles grow appropriately. The obtained foamed fiber was uniform in the longitudinal direction because of fine air bubbles, and had excellent mechanical properties.
実施例 13〜15、比較例 7 Examples 13-15, Comparative Example 7
実施例 1において、下記に示すように口金の孔深度を変更し、口金背面圧、パック 内圧を変更したこと以外は、実施例 1と同様にして実施例 13〜15、比較例 7の発泡 繊維を得た。実施例 13〜15、比較例 7の結果を、表 3に示す。  In Example 1, the foam fibers of Examples 13 to 15 and Comparative Example 7 were the same as Example 1 except that the hole depth of the base was changed as shown below, and the back pressure of the base and the internal pressure of the pack were changed. Got. The results of Examples 13 to 15 and Comparative Example 7 are shown in Table 3.
•実施例 13の口金:孔径が 0. 15mm,孔深度が 0. 08mm • Base of Example 13: hole diameter 0.15mm, hole depth 0.08mm
•実施例 14の口金:孔径が 0. 15mm、孔深度が 0. l lmm'実施例 15の口金:孔径 が 0. 15mm,孔深度が 0. 45mm  • Base of Example 14: hole diameter 0.15 mm, hole depth 0.1 lmm 'Example 15 base: hole diameter 0.15 mm, hole depth 0.45 mm
•比較例 7の口金:孔径が 0. 15mm、孔深度が 0. 05mm  • Base of Comparative Example 7: Hole diameter 0.15mm, hole depth 0.05mm
実施例 1、実施例 13〜15、比較例 7を比較するとわ力るように、本発明において口 金背面圧を 8MPa以上とすることで、得られる発泡繊維の気泡は微細で均一なものと なる。これは吐出される直前の混合ポリマ中でも二酸ィ匕炭素が超臨界状態であるた め、二酸ィ匕炭素が均一に溶解し易いためである。そして、口金背面圧とパック内圧が 高いほど、より微細な気泡を有し、 U% (half)が小さぐ斑のない発泡繊維となった。 実施例 16〜20 実施例 1において、二酸ィ匕炭素の添加量を変更したこと以外は、実施例 1と同様に して紡糸、延伸を行い、発泡繊維を得た。実施例 16〜20の結果を、表 4に示す。実 施例 1と実施例 16〜20から明らかなように、本発明において好ましいとされる添加量 の範囲で二酸ィ匕炭素を添加することによって、発泡繊維中の気泡が微細化して U% (half)が小さぐ斑のない発泡繊維となった。そして気泡の最大直径 Z繊維直径、気 泡の平均直径、気泡の直径の標準偏差力 、さくなるほど発泡繊維のタフネスが高ま り、力学的特性にも優れた発泡繊維となった。 As compared with Example 1, Examples 13 to 15 and Comparative Example 7, in the present invention, by setting the pressure on the back surface of the die to 8 MPa or more, the bubbles of the obtained foamed fibers are fine and uniform. Become. This is because the carbon dioxide is in a supercritical state even in the mixed polymer immediately before being discharged, so that the carbon dioxide is easily dissolved uniformly. The higher the back pressure of the base and the internal pressure of the pack, the more the foamed fibers having finer bubbles and smaller U% (half). Examples 16-20 In Example 1, spinning and drawing were performed in the same manner as in Example 1 except that the addition amount of carbon dioxide and carbon dioxide was changed, and foamed fibers were obtained. The results of Examples 16-20 are shown in Table 4. As is clear from Example 1 and Examples 16 to 20, the addition of carbon dioxide in the range of the preferred addition amount in the present invention makes the bubbles in the foam fibers finer and U% (half) became a small foam-free foamed fiber. The maximum diameter of bubbles, Z fiber diameter, average diameter of bubbles, standard deviation force of bubble diameter, the toughness of the foamed fibers increased, and the foamed fibers were excellent in mechanical properties.
[表 4] [Table 4]
Figure imgf000044_0001
Figure imgf000044_0001
実施例 21 Example 21
実施例 12の紡糸 ·延伸を連続工程で行う手法で発泡繊維を製造するに際し、熱可 塑性ポリマとして PET— 2を用いた。紡糸'延伸条件について実施例 12と異なる部分 を下記に示す。実施例 21の結果を表 4に示す。 In producing the foamed fiber by the method of spinning and drawing in Example 12 in a continuous process, PET-2 was used as the thermoplastic polymer. Parts different from Example 12 regarding spinning and drawing conditions Is shown below. The results of Example 21 are shown in Table 4.
[実施例 21 (PET- 2)の紡糸'延伸条件] [Example 21 (PET-2) spinning 'drawing conditions']
,紡糸温度: 305°C Spinning temperature: 305 ° C
•混練機温度: 295°C • Kneader temperature: 295 ° C
•口金スペック: D =0. 20mm, L =0. 20mm, y =88711sec_ 1 • Base specification: D = 0.20mm, L = 0.20mm, y = 88711sec _ 1
H H H  H H H
D =0. 80mm, L =0. 90mm, y = 585sec_1 D = 0.80mm, L = 0.90mm, y = 585sec _1
L L L  L L L
'パック内圧: 80MPa  'Pack internal pressure: 80MPa
•口金背面圧: 60MPa  • Back pressure of base: 60MPa
'紡糸速度: 3000mZ分 'Spinning speed: 3000mZ min
実施例 12と実施例 21を比較するとゎカゝるように、本発明にお ヽて好ま 、熱可塑 性ポリマである、溶融粘度の高いポリマを用いることで、気泡の最大直径 Z繊維直径 が小さぐ均一な発泡構造を有する発泡繊維を得ることができる。これは二酸化炭素 が熱可塑性ポリマ中に均一に溶解され、かつ紡出糸が冷却される過程において気泡 の合一が起こりにくいためである。得られた発泡繊維は、長手方向に均一で力学的 特性にも優れるため、衣料用、産業用途に好適な発泡繊維であった。  As shown in the comparison between Example 12 and Example 21, it is preferable to use a thermoplastic polymer having a high melt viscosity, which is preferable in the present invention. A foamed fiber having a small and uniform foamed structure can be obtained. This is because the coalescence of carbon dioxide is uniformly dissolved in the thermoplastic polymer and the coalescence of bubbles is difficult to occur during the process of cooling the spun yarn. The obtained foamed fibers were uniform in the longitudinal direction and excellent in mechanical properties, and thus were suitable for clothing and industrial applications.
実施例 22〜24 Examples 22-24
実施例 12の紡糸 ·延伸を連続工程で行う手法で発泡繊維を製造するに際し、熱可 塑性ポリマとして、実施例 22では PTTを、実施例 23では PLAを、実施例 24では東 レ (株)製ナイロン 6"アミラン"(登録商標)(タイプ CM1017、以下ナイロン 6と略記す る。)を用いた。実施例 22〜24の紡糸 ·延伸条件について、実施例 12と異なる部分 を下記に示す。また実施例 22〜24の結果を、表 4に示す。  When producing foamed fibers by the method of spinning and drawing in Example 12 in a continuous process, as a thermoplastic polymer, PTT in Example 22, PLA in Example 23, Toray Co., Ltd. in Example 24 Nylon 6 “Amilan” (registered trademark) (type CM1017, hereinafter abbreviated as nylon 6) was used. Regarding the spinning and drawing conditions of Examples 22 to 24, the parts different from Example 12 are shown below. The results of Examples 22 to 24 are shown in Table 4.
[実施例 22 (PTT)の紡糸'延伸条件] [Example 22 (PTT) spinning 'drawing conditions]
'紡糸温度: 265°C 'Spinning temperature: 265 ° C
•混練機温度: 255°C • Kneader temperature: 255 ° C
,口金スペック: D =0. 15mm, L =0. 15mm, y = 91823sec_ 1 、 Base specification: D = 0.15mm, L = 0.15mm, y = 91823sec _ 1
H H H  H H H
D =0. 80mm, L =0. 90mm, y =605sec_1 D = 0.80mm, L = 0.90mm, y = 605sec _1
L L L  L L L
( γ 、 γ は PTTの溶融密度を 1. 14として計算)  (γ and γ are calculated assuming the melt density of PTT is 1.14)
H L  H L
•パック内圧: 65MPa •口金背面圧: 45MPa • Pack internal pressure: 65MPa • Back pressure of the base: 45MPa
'紡糸速度: 3000mZ分 'Spinning speed: 3000mZ min
'第 1延伸ローラー温度:70°C  'First stretching roller temperature: 70 ° C
•第 2延伸ローラー温度: 140°C • Second stretching roller temperature: 140 ° C
[実施例 23 (PLA)の紡糸'延伸条件] [Example 23 (PLA) spinning 'drawing conditions]
'紡糸温度: 230°C 'Spinning temperature: 230 ° C
•混練機温度: 220°C • Kneader temperature: 220 ° C
•口金スペック: D =0. 15mm, L =0. 15mm, y = 96925sec_ 1 • the base specs:.. D = 0 15mm, L = 0 15mm, y = 96925sec _ 1
H H H  H H H
D =0. 80mm, L =0. 90mm, y =639sec_1 D = 0.80mm, L = 0.90mm, y = 639sec _1
L L L  L L L
( γ 、 γ は PLAの溶融密度を 1. 08として計算)  (γ and γ are calculated assuming PLA melt density as 1.08)
H L  H L
'パック内圧: 65MPa  'Pack internal pressure: 65MPa
•口金背面圧: 50MPa  • Back pressure of base: 50MPa
[実施例 24 (ナイロン 6)の紡糸'延伸条件]  [Example 24 (Nylon 6) spinning 'drawing conditions]
'紡糸温度: 245°C 'Spinning temperature: 245 ° C
•混練機温度: 235°C • Kneader temperature: 235 ° C
,口金スペック: D =0. 15mm, L =0. 15mm, y = 104679sec_ 1 , Base spec: D = 0.15mm, L = 0.15mm, y = 104679sec _ 1
H H H  H H H
D =0. 80mm, L =0. 90mm, y =690sec_1 D = 0.80mm, L = 0.90mm, y = 690sec _1
L L L  L L L
( γ 、 γ はナイロン 6の溶融密度を 1. 00として計算)  (γ and γ are calculated assuming that nylon 6 has a melt density of 1.00)
H L  H L
'パック内圧: 30MPa  'Pack internal pressure: 30MPa
•口金背面圧: 20MPa  • Back pressure of base: 20MPa
'紡糸速度: 3000mZ分 'Spinning speed: 3000mZ min
'第 1延伸ローラー温度 : 60°C  'First stretching roller temperature: 60 ° C
'第 2延伸ローラー温度:150°C 'Second stretching roller temperature: 150 ° C
表 4からわ力るように、本発明にて好ましい熱可塑性ポリマである PTT、 PLAおよび ナイロン 6を用いることにより、微細な気泡を有する発泡繊維を得ることができる。得ら れた発泡繊維は高品位の発泡繊維であり、耐熱性の高 ヽ熱可塑性ポリマカゝらなるこ とから、発泡構造の耐久性に優れる発泡繊維であった。  As shown in Table 4, by using PTT, PLA, and nylon 6 which are preferable thermoplastic polymers in the present invention, foamed fibers having fine bubbles can be obtained. The obtained foamed fiber was a high-quality foamed fiber, and was a foamed fiber excellent in durability of the foamed structure because it was a heat-resistant high-temperature thermoplastic polymer.
実施例 25〜27 実施例 12において、吐出量を 14.8gZ分、パック内圧を 18MPa、口金背面圧を 1 5MPaとし、口金孔スペックを下記に示すように変更したこと以外は、実施例 12と同 様にして実施例 25〜27の発泡繊維を得た。実施例 25〜27の結果を表 5に示す。 •実施例 25:D =0.10mm, L =0.10mm, y =88711sec_1 Examples 25-27 In Example 12, the discharge amount was 14.8gZ, the pack internal pressure was 18MPa, the back pressure of the base was 15MPa, and the base hole spec was changed as shown below. 25-27 foam fibers were obtained. The results of Examples 25 to 27 are shown in Table 5. • Example 25: D = 0.10mm, L = 0.10mm, y = 88711sec _1
H H H  H H H
D =0.20mm, L =0.10mm, y =11089sec_1 D = 0.20mm, L = 0.10mm, y = 11089sec _1
L L L  L L L
•実施例 26:D =0.10mm, L =0.10mm, y =88711sec_1 • Example 26: D = 0.10mm, L = 0.10mm, y = 88711sec _1
H H H  H H H
D =0.35mm, L =0.40mm, y =2069sec_1 D = 0.35mm, L = 0.40mm, y = 2069sec _1
L L L  L L L
•実施例 27:D =0.10mm, L =0.10mm, y =88711sec_1 • Example 27: D = 0.10mm, L = 0.10mm, y = 88711sec _1
H H H  H H H
D =0.50mm, L =1.00mm, y =710sec_1 D = 0.50mm, L = 1.00mm, y = 710sec _1
L L L  L L L
[表 5] [Table 5]
Figure imgf000048_0001
本発明において、好ましいとされる高剪断速度と低剪断速度を多段で与える口金 を採用することによって、繊維直径が細く、繊維の長手方向に均一な発泡繊維を得ら れた。該発泡繊維は、高品位で、軽量性、保温性に優れ、染色斑もないことから特に 衣料用途に好適な発泡繊維であった。
Figure imgf000048_0001
In the present invention, it is possible to obtain a foamed fiber having a thin fiber diameter and uniform in the longitudinal direction of the fiber by adopting a die that provides a high shear rate and a low shear rate in multiple stages. It was. The foamed fiber was particularly suitable for use in clothing because it was high-grade, excellent in lightness and heat retention, and had no staining spots.
産業上の利用可能性  Industrial applicability
[0128] 本発明の発泡繊維は、粗大な気泡を有さないため力学物性が良好である。そして 軽量性、繊維の均一性、保温性、クッション性およびタツチに優れている。このため、 特にスポーツ衣料、アウトドア衣料、白衣等のユニフォーム衣料、フォーマル衣料や、 冬物下着、水着および裏地などの衣料用途に好適である。また各種車両内装材 (シ ート表皮、天井表皮、インラインカーペット)や、クッション、布団、毛布、枕、カーぺッ トおよびカーテンなどの産資用途にも好適に用いられ、有用である。  [0128] The foamed fiber of the present invention does not have coarse bubbles, and therefore has good mechanical properties. It is excellent in lightness, fiber uniformity, heat retention, cushioning and touch. Therefore, it is particularly suitable for sports clothing, outdoor clothing, uniform clothing such as white clothing, formal clothing, and clothing such as winter underwear, swimwear and lining. It is also useful and useful for industrial applications such as various vehicle interior materials (sheet skin, ceiling skin, in-line carpet), cushions, futons, blankets, pillows, carpets and curtains.
図面の簡単な説明  Brief Description of Drawings
[0129] [図 1]図 1は、本発明における多段で剪断速度(γ )と剪断速度(γ )を与える丸孔  [0129] [FIG. 1] FIG. 1 shows a round hole which gives a shear rate (γ) and a shear rate (γ) in multiple stages in the present invention.
H L  H L
口金の一例を示す説明するための模式断面図である。  It is a schematic cross section for demonstrating an example of a nozzle | cap | die.
[図 2]図 2は、本発明における多段で剪断速度(γ )と剪断速度(γ )を与える丸孔  [FIG. 2] FIG. 2 shows a round hole which gives a shear rate (γ) and a shear rate (γ) in multiple stages in the present invention.
H L  H L
口金の他の一例を示す説明するための模式断面図である。  It is a schematic cross section for demonstrating another example of a nozzle | cap | die.
[図 3]図 3は、本発明における多段で剪断速度(γ )と剪断速度(γ )を与える丸孔  [FIG. 3] FIG. 3 shows a round hole which gives a shear rate (γ) and a shear rate (γ) in multiple stages in the present invention.
H L  H L
口金の他の一例を示す説明するための模式断面図である。  It is a schematic cross section for demonstrating another example of a nozzle | cap | die.
符号の説明  Explanation of symbols
[0130] 1 : D (高剪断速度領域の孔径) [0130] 1: D (pore diameter in the high shear rate region)
H  H
2 :L (高剪断速度領域の孔深度)  2: L (hole depth in high shear rate region)
H  H
3 : D (低剪断速度領域の孔径)  3: D (pore diameter in the low shear rate region)
 Shi
4 :L (低剪断速度領域の孔深度)  4: L (hole depth in low shear rate region)

Claims

請求の範囲 [1] 熱可塑性ポリマ力もなる発泡繊維であって、下記の(1)〜(5)を満たすことを特徴と する発泡繊維。 Claims [1] A foamed fiber that also has thermoplastic polymer strength, and satisfies the following (1) to (5).
(1)繊維直径が 1 μ m以上 50 μ m以下  (1) Fiber diameter is 1 μm or more and 50 μm or less
(2)繊維横断面内における気泡占有率が 10%以上 90%以下  (2) Bubble occupancy in fiber cross section is 10% or more and 90% or less
(3)気泡の最大直径 Z繊維直径≤0. 08  (3) Maximum bubble diameter Z fiber diameter ≤ 0.08
(4)気泡の平均直径が 1 μ m以下  (4) Average bubble diameter is 1 μm or less
(5) U% (half)が 2以下  (5) U% (half) is 2 or less
[2] 発泡繊維の強度と伸度の関係が、下記式の関係を満たすことを特徴とする請求項 1 記載の発泡繊維。  2. The foamed fiber according to claim 1, wherein the relationship between the strength and the elongation of the foamed fiber satisfies the relationship of the following formula.
強度 X (伸度) · 5≥15 Strength X (Elongation) 5 ≥15
[3] 熱可塑性ポリマと二酸ィ匕炭素または窒素、ある 、はその両者とを溶融状態で混練し た混合ポリマを紡糸口金に導き、低圧領域に吐出して圧力を低下させることにより発 泡させ、発泡させたポリマを冷却し、引き取った後に卷取る発泡繊維の製造方法に お!、て、下記の(6)〜(8)を満たすことを特徴とする発泡繊維の製造方法。  [3] Foaming is achieved by introducing a mixed polymer obtained by kneading a thermoplastic polymer and carbon dioxide or nitrogen, or both of them in a molten state, to a spinneret and discharging it to a low pressure region to reduce the pressure. The foamed fiber manufacturing method is characterized by satisfying the following (6) to (8), wherein the foamed polymer is cooled and taken off after being cooled.
(6)吐出孔内での剪断速度( γ H) 50,000〜l,000,OOOsec_1 (6) Shear rate in discharge hole (γ H) 50,000 ~ l, 000, OOOsec _1
(7)紡糸速度 lOOOmZ分〜 6000mZ分  (7) Spinning speed lOOOOmZ min ~ 6000mZ min
(8)口金背面圧が 8MPa以上 lOOMPa以下  (8) Back pressure of the base is 8MPa or more lOOMPa or less
[4] 吐出孔内での混合ポリマの剪断速度が、第 1段階の剪断速度( γ )として 50,000〜  [4] The shear rate of the mixed polymer in the discharge hole is 50,000 to 1 as the first stage shear rate (γ).
Η  Η
l,000,000sec_1、第 2段階として γ よりも小さい剪断速度(γ )になるように吐出す l, 000,000sec _1 , as the second stage, discharge at a shear rate (γ) smaller than γ
H L  H L
ることを特徴とする請求項 3に記載の発泡繊維の製造方法。  The method for producing a foamed fiber according to claim 3, wherein:
[5] 紡出糸を引き取った後、卷取る前に熱処理を付与して巻き取ることを特徴とする請求 項 3または 4に記載の発泡繊維の製造方法。 [5] The method for producing a foamed fiber according to [3] or [4], wherein after the spun yarn is taken up, it is wound by applying a heat treatment before taking off the spun yarn.
PCT/JP2006/325215 2005-12-20 2006-12-19 Cellular fiber and method for production thereof WO2007072788A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-366258 2005-12-20
JP2005366258 2005-12-20

Publications (1)

Publication Number Publication Date
WO2007072788A1 true WO2007072788A1 (en) 2007-06-28

Family

ID=38188565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325215 WO2007072788A1 (en) 2005-12-20 2006-12-19 Cellular fiber and method for production thereof

Country Status (1)

Country Link
WO (1) WO2007072788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916467B (en) * 2017-11-24 2023-06-16 宁波格林美孚新材料科技有限公司 Forming process of thermoplastic polyurethane elastomer foaming monofilament

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126974A (en) * 1993-09-03 1995-05-16 Polymer Processing Res Inst Filament assembly composed of thermotropic liquid crystal polymer and its production
WO2000064657A1 (en) * 1999-04-28 2000-11-02 3M Innovative Properties Company Uniform small cell foams and a continuous process for making same
WO2004035884A1 (en) * 2002-10-18 2004-04-29 Kolon Industries, Inc A microcellular foamed fiber, and a process of preparing for the same
US6846562B1 (en) * 2003-08-06 2005-01-25 Milliken & Company Method of forming light dispersing fiber and fiber formed thereby
JP2006009167A (en) * 2004-06-23 2006-01-12 Oji Paper Co Ltd Fibrous foam and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126974A (en) * 1993-09-03 1995-05-16 Polymer Processing Res Inst Filament assembly composed of thermotropic liquid crystal polymer and its production
WO2000064657A1 (en) * 1999-04-28 2000-11-02 3M Innovative Properties Company Uniform small cell foams and a continuous process for making same
WO2004035884A1 (en) * 2002-10-18 2004-04-29 Kolon Industries, Inc A microcellular foamed fiber, and a process of preparing for the same
US6846562B1 (en) * 2003-08-06 2005-01-25 Milliken & Company Method of forming light dispersing fiber and fiber formed thereby
JP2006009167A (en) * 2004-06-23 2006-01-12 Oji Paper Co Ltd Fibrous foam and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916467B (en) * 2017-11-24 2023-06-16 宁波格林美孚新材料科技有限公司 Forming process of thermoplastic polyurethane elastomer foaming monofilament

Similar Documents

Publication Publication Date Title
US20100080992A1 (en) Polyester multifilament for resin reinforcement and process for producing the same
KR20080059232A (en) Crimped yarn, method for manufacture thereof, and fiber structure
EP1756339A1 (en) Low density light weight filament and fiber
JP4872339B2 (en) Core-sheath type composite fiber, crimped yarn, and fiber structure using them
JP2006345920A (en) Stuffing
US20090243141A1 (en) Manufacturing method of polyester fiber for airlaid nonwoven fabrics
TWI304448B (en) Poly (trimethylene terephthalate) bicomponent fiber process
WO2007072788A1 (en) Cellular fiber and method for production thereof
EP1590511B1 (en) Spin annealed poly(trimethylene terephthalate) yarn
JP5262514B2 (en) Polyester composite fiber
JP5366172B2 (en) Method for producing polytetrafluoroethylene fiber, and polytetrafluoroethylene fiber
JP4100206B2 (en) Manufacturing method of composite fiber excellent in light weight
JP2010018927A (en) Polyester nanofiber
JP4321232B2 (en) Lightweight polyester composite fiber
JP5346207B2 (en) Polyetherester and polyetherester composition
JP2008280649A (en) Method for producing foamed fiber and foamed fiber obtained by the method
CA2500434C (en) A microcellular foamed fiber, and a process of preparing for the same
JP2007191850A (en) Foamed fiber and method for producing the same
JP5157346B2 (en) Polyester fiber for seat belt
JP5262059B2 (en) Manufacturing method of composite fiber
JP2011202289A (en) Polymer alloy fiber and fiber structure
JP2007056382A (en) Method for producing high specific gravity composite fiber
JP2005171394A (en) Hollow blended fiber excellent in lightweight property
JP2007332517A (en) Method for melt-spinning polyethylene naphthalate fibers
JP2006161218A (en) Modified cross-section fiber having excellent lightness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834925

Country of ref document: EP

Kind code of ref document: A1