WO2007072648A1 - 質量分析システムおよび質量分析方法 - Google Patents

質量分析システムおよび質量分析方法 Download PDF

Info

Publication number
WO2007072648A1
WO2007072648A1 PCT/JP2006/323291 JP2006323291W WO2007072648A1 WO 2007072648 A1 WO2007072648 A1 WO 2007072648A1 JP 2006323291 W JP2006323291 W JP 2006323291W WO 2007072648 A1 WO2007072648 A1 WO 2007072648A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
substance
analysis
mass spectrometry
mass
Prior art date
Application number
PCT/JP2006/323291
Other languages
English (en)
French (fr)
Inventor
Akihito Kaneko
Takeshi Sakamoto
Megumu Kondo
Original Assignee
Japan Health Sciences Foundation
National Institute Of Biomedical Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation, National Institute Of Biomedical Innovation filed Critical Japan Health Sciences Foundation
Priority to JP2007551017A priority Critical patent/JPWO2007072648A1/ja
Publication of WO2007072648A1 publication Critical patent/WO2007072648A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement

Definitions

  • the present invention relates to an algorithm that can analyze a substance accurately and efficiently when the structure and quantitative values of biopolymers such as proteins, polypeptides, and sugars are analyzed by mass spectrometry.
  • the present invention relates to a mass spectrometry system including Furthermore, the present invention relates to a mass spectrometry method using the mass spectrometry system.
  • Liquid chromatography mass spectrometry (hereinafter simply referred to as “LC / MS”) is a part of liquid chromatography (LC) and mass spectrometry (MS analysis) and the interface that connects them. The part is composed of.
  • MS is an ion source that ionizes a sample and accelerates generated ions toward the mass spectrometer.
  • Mass that separates ions according to mass / charge ratio (m / z) (hereinafter simply referred to as “m / z”) It consists of an analyzer and an ion detector that detects ions separated according to m / z.
  • Electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are particularly useful as ionization methods.
  • ESI method uses protein solution This is a method of ionizing by spraying from a fine nozzle.
  • MALDI it is mixed with a substance called a matrix, crystallized on the measurement substrate, and the irradiated laser light is absorbed by the matrix to vaporize proteins together and ionize. To do.
  • Measurement methods for analyzing ionized samples include the ion trap method, time-of-flight (TOF) method, quadrupole (qQ) method, and Fourier transform method.
  • MALDI-TOF type combining MALDI method and TOF method
  • ESI qQ type combining ESI method and q Q method
  • E SI qQ-TOF type combining advantages of MALDI-TOF type and ESI qQ type Etc.
  • LC / MS is widely used as a powerful tool for protein identification and post-translational modification analysis.
  • a protein is digested with a specific proteolytic enzyme, the resulting mass of peptide fragments is unique (fingerprint) to each protein. Since the amount of information is small with only fingerprints obtained by enzymatic digestion, etc., analysis of peptide fragments by the P-mark tid Mass Finger Print (PMF) method enables more reliable protein identification.
  • PMF P-mark tid Mass Finger Print
  • Non-Patent Document 1 Today's Chemist at Work, Vol. 9, No.2, 46-48, 2000
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-91344
  • An object of the present invention includes at least a liquid chromatography (hereinafter simply referred to as “LC”) and a mass analysis (hereinafter referred to as “MS analysis”) system, and a protein that may be contained in a sample.
  • the object of the present invention is to provide a mass spectrometric system and a mass spectrometric method for accurate and efficient substance analysis in a system for analyzing substances such as quality, polypeptide, sugar, etc., with reduced time.
  • the present inventors have made time information (1) on the peak substance obtained by LC and MS analysis of the peak substance obtained by LC.
  • the obtained m / z information (2) and the quantitative value information (3) obtained by calculating the quantitative value of the substance are registered in the database (1).
  • a mass spectrometry system that includes algorithms that can avoid re-analysis. Furthermore, it is based on the mass spectrometry method using this mass spectrometry system.
  • the present invention comprises the following.
  • a system for analyzing substances that may be contained in a sample including at least liquid chromatography (LC) and mass spectrometry (MS analysis), and an algorithm consisting of the following procedures: :
  • An analysis system for substances that may be contained in a sample including at least LC and MS analysis, and an algorithm consisting of the following procedures:
  • the mass spectrometric system of the present invention is obtained by analyzing time information (1) of the peak substance obtained by LC and MS analysis of the peak substance obtained by LC with respect to the already measured analyte.
  • the m / z information (2) and the quantitative value information (3) obtained by calculating the quantitative value of the substance are registered in the database (1). For substances registered in the database (1), Can be avoided.
  • the analysis results are obtained in the order of the strongest peak by MS analysis with respect to the time information of the peak material obtained from LC and the m / z value obtained from MS analysis.
  • this selection method it was difficult to obtain analysis results for trace substances that could only yield low peaks by MS analysis even if the same sample was measured multiple times.
  • the mass spectrometry system of the present invention even if a strong peak is obtained by MS analysis, the already analyzed substance is registered in the database, so that it is possible to avoid analyzing the registered substance repeatedly. . Therefore, even a trace amount substance in a sample can be analyzed quickly, efficiently and comprehensively.
  • the mass spectrometer of the present invention refers to a database in which past measurement results are accumulated, and creates parameters so as not to measure peptide fragments having a certain mass number in advance. And can be measured. As a result, it is possible to avoid duplicate analysis.
  • MSMS analysis information may not be obtained.
  • information that has been obtained MSMS analysis information only after repeated measurement can be added to the peptide map.
  • MSMS analysis information cannot be obtained in the measurement of a sample, the data is enhanced as if MSMS information was obtained by referring to the peptide map based on the MS analysis information and time information. It becomes possible to make it.
  • FIG. 1 is a view showing a flowchart of an algorithm included in the mass spectrometry system described in the first embodiment.
  • the mass spectrometry system of the present invention includes at least an LC and an MS analysis system, and includes an algorithm including the following steps.
  • the mass spectrometry system of the present invention includes at least LC and MS analysis systems as described above, and the database (1) includes information (A) including time information (1) and m / z information (2). And information (B) consisting of quantitative value information (3), the quantitative value information (3) may be obtained by MSMS analysis.
  • the mass spectrometry system of the present invention includes an algorithm consisting of the following procedures.
  • LC is not particularly limited as long as it is any LC known per se or will be developed in the future as long as MS analysis can be performed thereafter.
  • Specific examples of LC include hydrophobic chromatography, gel permeation chromatography, gel filtration chromatography, adsorption chromatography, ion exchange chromatography, salting out chromatography, reverse phase chromatography, affinity.
  • the power exemplified by chromatography is not limited to these. Particularly preferred is hydrophobic chromatography.
  • the sample applicable to the mass spectrometry system or the mass spectrometry method of the present invention is not limited to a biological sample as long as it can contain a protein to be subjected to mass spectrometry.
  • body fluids typified by blood, serum, plasma, urine, lymph, sweat, various secretions, etc., and various cell culture media or cells for producing proteins using techniques such as genetic recombination technology
  • Suspensions and substances that may contain environmental pollutants in the environmental field can be obtained as specimens.
  • a sample obtained by degrading the obtained specimen using a specific proteolytic enzyme can be used as a sample and subjected to the mass spectrometry system of the present invention.
  • specimen collected from a subject or cultured cells is referred to as “specimen”, and a specimen pretreated to be applied to the mass spectrometry system of the present invention is referred to as “sample”. Further, among the substances contained in the sample, for example, peptide fragments may be referred to as “analysis objects” as necessary.
  • proteins contained in a specimen such as blood and tissue are tanned. It is preferable to pre-treat with a peptide degrading enzyme and fragment the peptide. The subsequent analysis accuracy is improved by peptide fragmentation of the protein contained in the sample.
  • the type of enzyme to be used can be appropriately selected depending on the relationship between the protein and the subsequent experiment. Specifically, when mass spectrometry is performed after LC analysis, trypsin or lysine endopeptidase is often used in order to disperse peptide fragments when viewed by mass and to allow ionization. Les.
  • LC may be performed before the enzyme treatment and / or LC in order to perform analysis more precisely and more efficiently.
  • LC are hydrophobic chromatography, gel permeation chromatography, gel filtration chromatography, adsorption chromatography, ion exchange chromatography, salting-out chromatography, reverse phase chromatography, affinity chromatography, as shown in the above examples.
  • Examples include tea chromatography.
  • a biological sample such as blood or tissue is subjected to any of the chromatography exemplified above, and the peak substance containing the analysis target is taken out and used as a sample, whereby impurities can be reduced.
  • MS analysis includes any mass spectrometry known per se or developed in the future.
  • a mass spectrometry system can be used for this purpose.
  • MS analysis has various combinations depending on ionization and ion measurement, and each has its own characteristics.
  • Examples of the mass spectrometry system of the present invention include a MALDI-TOF type combining the MALDI method and the TOF method, an ESI qQ type combining the ESI method and the qQ method, and the like.
  • the ESI qQ-TOF type is particularly preferably used.
  • the m / z information (2) in step 2) is continuously acquired along with the time information (1).
  • “substantially simultaneously with acquisition of time information (1)” means that m / z information is acquired immediately after acquiring time information (1) that does not mean exactly the same time.
  • MSMS analysis when a certain peak substance is obtained by LC, the obtained peak substance is directly subjected to MS analysis without being retained.
  • MSMS analysis following MS analysis is also performed continuously. If MS analysis cannot be performed continuously after LC analysis without missing timing, MS information, that is, m / z information (2) cannot be obtained for the peak substance in a series of operation procedures. In addition, the MSMS analysis that should be performed is not performed. However, if an MS analysis can be performed on the peak substance while performing the analysis operation on the same sample multiple times, the mass analysis of the present invention can be performed, and if necessary, the MSMS analysis is also performed. be able to.
  • a mode in which MS analysis is performed on a substance analyzed by LC and held on a device is as follows.
  • the peak substance obtained in each step 1) above is stored on the device according to the time information (1), and the m / z information (2) in the same procedure 2) is stored for the substance stored on the device. Each of which is acquired. Since the substance analyzed by LC is once held on the device, it will be held, and as long as the sample remains, MS analysis and as many times as necessary If this is the case, then MSMS analysis is performed.
  • a standard product having an absolute quantitative value for the protein or peptide fragment is provided.
  • the standard product is measured by LC or MS analysis, etc., and a standard curve is created from the value obtained by each analysis and the absolute quantitative value determined for the standard product.
  • an absolute quantitative value can be obtained by applying the obtained value to a standard curve created with a standard product and converting the quantitative value.
  • the quantitative values obtained in this way can be obtained in different measurement systems as long as they are analyzed under the same conditions. Such quantitative values have meaning in the quantitative values themselves obtained by conversion, and as long as the measurement conditions are the same, values obtained by different measurement systems can be compared.
  • the quantitative value of the relative standard substance is defined as 1.0, for example, if the quantitative value of the measurement object is twice that of the relative standard substance, 2.0 If the relative value is 30%, it can be converted to 0.3.
  • the individual quantitative value information itself has no special meaning, and the ratio of the quantitative value information to the relative standard substance is meaningful. Individual quantitative value information cannot be directly compared between measurements even if the measurement conditions are the same, and what makes sense is the quantitative ratio in the same measurement system.
  • an MS analysis method using an isotope labeling method can be used.
  • MS analysis using the isotope labeling method for example, using the stable isotope 2 H, 15 N or 13 C, the intensity ratio of the peak of mass analysis between the stable isotope labeled protein and the control There are those that evaluate the abundance ratio.
  • an isotope-coded affinity tag (ICAT) method has been reported in which a stable isotope-labeled biotinylation reagent is bound to a thiol such as a cystine residue, followed by purification with an avidin column and mass spectrometry.
  • a 9-carbon linker in a biotin-type labeling agent for thiol labeling with 12 C or 13 C carbon can be used. Extract the proteins separately from the two samples, label each with L-type or H-type piotin labeling agents, mix both samples, and perform limited digestion with trypsin or the like. Thereafter, only peptides labeled with biotin on an avidin column (ie, peptide fragments containing cysteine) are obtained and subjected to mass spectrometry. In ordinary protein mixtures, a large amount of peptide fragments are generated, and the abundance ratio is not comparable unless the desired protein is purified, but the ICAT method is limited to peptides containing cysteine. Can be compared with the abundance of various proteins in the mixture.
  • all peptides can be labeled using ammine-specific stable isotopes for relative quantification or absolute quantification of proteins in up to four different biological samples.
  • the reagent to be used is commercially available (iTRAQ TM reagent).
  • SILAC Stable Isotope Labeling by Amino Acids in Cell Cuture
  • gene transfer is performed on cells cultured in a medium containing stable isotope-labeled amino acid, and protein is expressed in MSMS analysis. Quantification of phosphorylated protein can also be performed.
  • the ICAT method is suitable as the method of the present invention.
  • the term "peak substance” refers to the peak substance obtained by LC before the MS analysis of the present invention, unless otherwise specified, and "time information (1)” This is the time information of peak substances obtained by LC.
  • “mass number / charge ratio (m / z) information (2)” refers to information obtained by MS analysis of the peak substance.
  • the “quantitative value information (3)” refers to the analysis target obtained by automatically calculating in the system from the result of the MS analysis or the MS analysis continuously performed after the MS analysis. This is a fixed amount of peptide.
  • information including the time information (1) and m / z information (2) is referred to as information (A), and information including the quantitative value information (3) is information (B).
  • information including the quantitative value information (3) is information (B).
  • information including the quantitative value information (3) is information (B).
  • a database (1) included in the mass spectrometry system of the present invention That is, in the database (1) of the present invention, time information (1), m / z information (2) and quantitative value information (3) are stored as information.
  • the peptide fragment sequence can be identified by the Peptid Mass Finger Print (PMF) technique to identify the protein.
  • PMF Peptid Mass Finger Print
  • peptide sequence information can be obtained to identify proteins.
  • the mass spectrometry system of the present invention is applied, for example, when it is intended to obtain information with higher accuracy than information obtained from a known Mascot® search result.
  • the first strong m / z information (2) is usually selected.
  • the above-described "select only peptide fragments selected from the obtained information (2) in the system in the system” means that the mass spectrometry system of the present invention uses the MS analysis to increase the strength. In addition to the normal selection of things, they are selected by setting new selection criteria.
  • An example of a new selection criterion is to exclude already analyzed substances and select strong ones from unanalyzed substances.
  • the information on the analyzed substance when measured under the same conditions is registered in the database (1) of the present invention, and the avoidance list (1) is based on the database (1).
  • Force S will be created, so selection criteria can be set to exclude re-analysis for substances on the avoidance list (1). As a result, it is possible to avoid the repeated analysis of the already analyzed substances among the analysis objects included in the sample, and to perform the analysis in order from the strongest of the remaining analysis objects.
  • information (A) is acquired as time information (1) and m / z information (2) that have already been acquired.
  • the quantitative value information (B) of M is converted to 1.0 and the quantitative value of the quantitative value information (B) of M
  • the quantitative ratio (B / B) to information (B) is measured as an ⁇ value. Constant as selection criteria If the threshold value is set and the threshold value is in the range of lZ ⁇ a ⁇ , the quantification of M and M
  • the constant value as the selection criterion can be appropriately set according to the analysis object.
  • the ⁇ value may be a positive real number.
  • a certain amount of a specific protein is expressed in the blood of a healthy person.
  • the fluctuation of the expression level of a protein was about 30% in a healthy person as a result of considering homeostasis and individual differences for a protein.
  • the force of the analysis object is determined to be normal if it is between S 1 / 1. 3 to: 1. 3, otherwise It is judged that there is a possibility of the disease.
  • the present invention extends to a mass spectrometer including the mass analysis system.
  • pretreatment is performed before the sample is attached to the mass spectrometry system.
  • the sample containing each protein obtained by extraction is labeled with a biotin-type labeling agent for thiol labeling labeled with carbon 12 C or 13 C, respectively.
  • the sample containing the peptide fragment containing cysteine is subjected to hydrophobic chromatography, which is the LC of this system, and the peak substance obtained by the hydrophobic chromatography is directly subjected to ESI qQ-TOF type MS analysis.
  • the m / z of two kinds of peptide fragments (M, M) to be compared are obtained by MS analysis, and the time information (1) and m / z obtained by LC are obtained.
  • Quantitative value information (3) is obtained by calculating the quantitative values (B, B) of the two analytical objects from the integral information obtained using each MS spectrum for the two analytical objects. To do.
  • a constant value of 1.5 is set in advance for the peptide to be analyzed.
  • the quantitative value (B) of the substance (M) of the blood-derived substance of healthy people is converted to 1.0.
  • the quantitative value (B) of 1 1 1 1 1 is judged to be substantially the same as the quantitative value (B) of M.
  • the quality is judged normal.
  • mass analysis is performed in the case of acquiring m / z information (2) continuously after obtaining time information (1) of the peak substance obtained from the LC included in the mass spectrometry system.
  • time information (1) of the peak substance obtained from the LC included in the mass spectrometry system.
  • pretreatment is performed before the sample is attached to the mass spectrometry system.
  • an avoidance list consisting of time information and m / z is created based on the information registered in database (1).
  • the sample containing the plurality of peptide fragments in 2) above is again subjected to hydrophobic chromatography, which is the LC of this system, and the peak material obtained by the hydrophobic chromatography is directly subjected to ESI qQ-TOF type MS analysis. .
  • the results obtained by MS analysis are compared with the information registered in the database (1), and if it is determined that the substance is the same as the substance on the avoidance list (1), the information (C) It is not attached to the MS analysis to obtain the substance, but only when the result obtained by the MS analysis is judged to be different from the substances on the avoidance list (1) above. Get information (C) by MS analysis.
  • the time required for the LC included in the mass spectrometry system was divided into 192 sections, and the peak substances obtained from the LC were separated by the time of 192 sections (time information (1)).
  • time information (1) A mass spectrometry system and a mass spectrometry method using the system when acquiring m / z information (2) for each material spotted on the device will be described.
  • Figure 2 shows an algorithm for performing the following mass analysis.
  • the pretreatment method of this example is performed in the same manner as in Example 1.
  • the pretreated sample is subjected to hydrophobic chromatography, which is the LC of this system, and 192 categories of substances obtained by the hydrophobic chromatography are spotted on the device.
  • Time Information (A, A) is obtained from time information (1) and m / z information (2) obtained by C.
  • the mass spectrometry system and the mass spectrometry method of the present invention can avoid a plurality of analyses, and even when the amount of the measurement sample is very small, the analysis of the trace substances can be performed efficiently and accurately. It can be carried out.
  • this method enables measurement of protein expression level, analysis of sugar chain structure, comparison and identification of disease-related proteins, and the like.
  • Such mass analysis methods can be applied to analysis of proteins produced by artificial means such as gene recombination techniques, clinical tests for disease diagnosis, and the like.

Abstract

 本発明は、複数の物質が存在しうる試料中に含まれる物質、とりわけ微量物質をもれなく正確で効率的に解析するための質量分析システムを提供することを課題とする。さらには、該質量分析システムを用いた物質の解析方法を提供することを課題とする。既に解析結果を取得した物質について、次回の質量分析で重複して解析を行うことを避けるため、既解析物質において取得した情報(時間情報、m/z値、定量値等)を独自にデータベース化し、該データベースに蓄積されたデータと同様のデータを有するピーク物質について、再度の解析を回避しうるアルゴリズムを含む質量分析システムによる。

Description

明 細 書
質量分析システムおよび質量分析方法
技術分野
[0001] 本発明は、質量分析によりタンパク質、ポリペプチド、糖等の生体高分子の構造お よび定量値を解析する場合に、時間が短縮され、かつ正確で効率的に物質を解析し うるアルゴリズムを含む質量分析システムに関する。さらには該質量分析システムを 用いた質量分析方法に関する。
[0002] 本出願は、参照によりここに援用されるところの日本出願特願 2005— 368472号 優先権を請求する。
背景技術
[0003] ある試料中に存在する微量の物質を精密に測定するためには、多数の共存物質か らの分離と対象物の正確な検出'同定とが必要となる。分離の方法としては、分離能 力に優れたクロマトグラフィーがあり、検出 ·同定の方法としては、同定能力に優れた マススぺタトロメトリー (MS:質量分析法)がある。この 2種類の手法をオンライン等で結 合させた優れた分離能、検出感度、同定能力を有する分析法として、ガスクロマトグ ラフィー質量分析法(GC/MS : Gas Chromatgraphy/Mass Spectrometry)や、 f夜体クロ マトグラフィー質量分析法 (LC/MS: Liquid Chromatgraphy/Mass Spectrometry)等が 挙げられる。
[0004] 液体クロマトグラフィー質量分析法(以下、単に「LC/MS」とレ、う。)は、液体クロマト グラフィー(LC)および質量分析 (MS分析)の部分と、それを結びつけるインターフエ ースの部分とで構成される。
MSは、試料をイオン化し、生成イオンを質量分析計の方向へ加速するイオン源、ィ オンを質量/電荷比 (m/z) (以下、単に「m/z」という。)に従い分離する質量分析計と m/zに従って分離されたイオンを検出するイオン検出器から構成される。 MS分析は、 イオン化とイオン計測法により種々の組み合わせが存在し、それぞれ特色がある。 イオン化法では特にエレクトロスプレーイオン化 (ESI)法とマトリクスアシステッドレー ザ一ディソープシヨンイオン化 (MALDI)法が有用である。 ESI法は、タンパク質溶液を 微細なノズルから噴射してイオン化する方法で、 MALDIではマトリクスと呼ばれる物質 と混合して測定基板上に結晶化させ、照射したレーザー光をマトリクスが吸収するこ とでタンパク質を一緒に気化させ、イオン化する。
イオン化された試料を解析する計測法としては、イオントラップ法、飛行時間 (TOF) 法、四重極 (qQ)法、フーリエ変換法等が挙げられる。
質量分析装置として、 MALDI法と TOF法を組み合わせた MALDI-TOF型、 ESI法と q Q法を組み合わせた ESI qQ型、 MALDI-TOF型と ESI qQ型の長所を組み合わせた E SI qQ-TOF型等が公知である。
[0005] LC/MSは、タンパク質同定や翻訳後修飾解析のための強力なツールとして広く利 用される。タンパク質を特定のタンパク質分解酵素で消化すると、得られるペプチド 断片の質量のセットは、各タンパク質に固有 (フィンガープリント)である。酵素消化等 で得られるフィンガープリントだけでは情報量が少ないため、 P印 tid Mass Finger Prin t(PMF)の手法によりペプチド断片の配列を解析することで、タンパク質の同定をより 確実に行うことができる。すでに幾種かのタンパク質について、ペプチド断片の質量 のセットに関する情報が一般のデータベースに登録されており、これらのデータべ一 ス情報と、解析用検索ツール、例えば公知の Mascot(R)(Matrix Science)を利用して、 ペプチド配列の同定並びにタンパク質の同定を行うこともできる。
[0006] LC/MSや GC/MSでは、解析時間を短縮することが課題として挙げられてきた。上 記課題解決のために、クロマトグラフィーに要する時間を短縮することで、分析に要 する時間を短縮することの各種検討がなされてきた (非特許文献 1、特許文献 1)。
[0007] MS分析では、クロマトグラフ上のピーク値 (頂点'最大値)を解析することによって m/ z情報を得るが、多段階分析可能なタンデム型質量分析装置では、 1度目の MS分析 で検出されたイオンピークのうち、強度の強いピークの順に、親イオンとして選択した ものについて 2度目の MS分析がなされるデータディペンダント (Data D印 endent)機能 を有する。 Finnigan社製のイオントラップ型質量分析装置では、 2度目の MS分析をす る際の親イオン MSにおけるピーク情報から選択する際、ユーザーが予め指定した m/ z値を持つイオン種を、親イオンとして選択回避する、ダイナミックイクスクルージョン( Dynamic Exclusion)機能を備えている。前記ダイナミックイクスクルージョン機能では、 m/z値のみを判断基準としてしまうため、 m/z値としては同じでも質量数や電荷数が 異なる未分析の物質についても選択回避されてしまう可能性がある。そこで、 MS分析 装置から得られる質量数や電荷数等の生データを有効活用して重複解析を回避す る方法について開示があった(特許文献 2)。しかし、より正確に重複解析を回避する 方法が求められている。
非特許文献 1 : Today's Chemist at Work, Vol. 9, No.2, 46-48, 2000
特許文献 1 :特許第 3091866号公報
特許文献 2:特開 2005— 91344号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明の課題は、少なくとも液体クロマトグラフィー(以下、単に「LC」という。)と質 量分析(以下「MS分析」という。)システムを含み、試料中に含有可能性のあるタンパ ク質、ポリペプチド、糖等の物質を解析するシステムにおいて、時間が短縮され、 つ正確で効率的な物質解析のための質量分析システムおよび質量分析方法を提供 することである。
課題を解決するための手段
[0009] 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、 LCにより得ら れたピーク物質の時間情報(1)、前記 LCにより得られたピーク物質の MS分析により 得られた m/z情報(2)および前記物質の定量値を計算して得た定量値情報(3)をデ ータベース(1)に登録し、すでにデータベース(1)に登録された物質については、再 度の解析を回避しうるアルゴリズムを含む質量分析システムによる。さらには、該質量 分析システムを用いた質量分析方法による。
[0010] 即ち本発明は以下よりなる。
1.試料中に含有可能性のある物質の解析システムにおいて、少なくとも液体クロマト グラフィー(LC)と質量分析 (MS分析)を含み、以下の手順からなるアルゴリズムを含 むことを特徴とする質量分析システム:
1) LCにより得られたピーク物質の時間情報(1)を取得し;
2)前記 LCにより得られたピーク物質をさらに MS分析したものについて、ピーク物質 中の物質の質量数 Z電荷比 (m/z)情報(2)を取得し;
3)前記 1)により得られた時間情報(1)と、前記 2)により得られた m/z情報 (2)を情報 (A)として取得し;
4)前記情報 (A)にかかる物質の定量値を計算して定量値情報 (3)を取得し;
5)前記定量値情報 (3)を含むものを情報 (B)として取得し、
6)情報 (A)および情報 (B)をデータベース(1)に登録する。
2.試料中に含有可能性のある物質の解析システムにおいて、少なくとも LCと MS分 析を含み、以下の手順からなるアルゴリズムを含むことを特徴とする質量分析システ ム:
1) LCにより得られたピーク物質の時間情報(1)を取得し;
2)前記 LCにより得られたピーク物質をさらに MS分析したものについて、ピーク物質 中の物質の質量数/電荷比 (m/z)情報(2)を取得し;
3)前記 1)により得られた時間情報(1)と、前記 2)により得られた m/z情報(2)を情報 (A)として取得し;
4)情報 (A)に力かる物質をシステム内部で分解し、それを再度 MS分析し;
5)情報 (A)にかかる物質の定量値を、上記再度の MS分析により定量値を計算して 定量値情報 (3)を取得し;
6)前記定量値情報 (3)を含むものを情報 (B)として取得し、
7)情報 (A)および情報 (B)をデータベース(1)に登録する。
3.情報 (A)および情報(B)に加えて、解析対象物の構造に力かる情報(C)をさらに データベース(1)に登録する前項 1または 2に記載の質量分析システム。
4.前項 1に記載の手順:!)〜 4)または前項 2に記載の手順:!)〜 5)を繰り返して行つ た後、解析対象物が、前記データベース(1)に登録された物質と同じと判断された場 合に、既に解析した物質であると判断し、前記データベース(1)に登録された物質と 異なると判断された場合に、未解析物質と判断する、前項:!〜 3のいずれか 1に記載 の質量分析システム。
5.前記未解析物質と判断された物質について、取得した情報 (A)および (B)、また は、取得した情報 (A)、(B)および(C)をさらにデータベース(1)に登録する前項 4に 記載の質量分析システム。
6.既に解析した物質若しくは未解析物質を、データベース(1)に基づいて作成した 回避リスト(1)から判断する前項 4または 5に記載の質量分析システム。
7.物質 Mについての定量値の判定基準定数をひとしたときに、情報 (A、 A )およ
0 1 び(B 、 B )を各々取得し、比較したい物質 (M M )について、各々前項 1に記載の
0 1 0、 1
手順 4)および 5)による定量値情報(3)を得、一方の物質 (M )の定量値情報 (B )を
0 0
1. 0と換算し、他方の物質 (M )の定量値情報 (B )の定量値情報 (B )に対する定
1 1 0
量比(B /B )を α と換算し、 α 値が 1/ α≤ α ≤ αの範囲にある場合は、 Μと
1 0 1 1 1 0
Μの定量値は実質的に同一と判断し、 a 値が 1/ α > α あるいは α > αの場合
1 1 1 1
には Μと Μの定量値が異なると判断する、前項:!〜 6のいずれか 1に記載の質量分
0 1
析システム。
8.前記 MS分析が、同位体標識法を用いた比較定量法により行われる前項:!〜 7の レ、ずれか 1に記載の質量分析システム。
9.同位体標識法を用いた比較定量法が、 ICAT法である前項 8に記載の質量分析シ ステム。
10.物質 Mについての定量値の判定基準定数を αとしたときに、定量値情報(3)か ら得られる相対定量値 α の値が l/ ct≤ ct ≤ αの範囲にある場合は、定量値に変
1 1
動がないと判断し、 a 値が lZひ 〉ひ あるいはひ >ひの場合には定量値が変動 すると判断する、前項 8または 9に記載の質量分析システム。
11.定数(ひ)が、正の実数から選択される値である前項 7または 10に記載の質量分 析システム。
12.前項 1または 2に記載の手順 1)の時間情報(1)の取得と実質的に同時に、同手 順 2)の m/z情報 (2)を、時間情報(1)に沿って継続的に取得することを特徴とする前 項 1〜: 11のいずれ力 1に記載の質量分析システム。
13.前項 1または 2に記載の手順 1)で得られたピーク物質を、時間情報(1)に応じて デバイス上に保存し、該デバイス上に保存した物質について、同手順 2)の m/z情報( 2)を各々取得することを特徴とする前項 1〜: 11のいずれ力 4に記載の質量分析シス テム。 14.前項 1〜: 13のいずれ力 1に記載の質量分析システムを含む質量分析装置。
15.前項 1〜: 13のいずれ力 1に記載の質量分析システムを用いて行う質量分析方法
16.測定試料が、タンパク質および/またはペプチド断片を含む試料である前項 15 に記載の質量分析方法。
17. LCの前に、異なる種類の LCによる分析を行う、前項 15または 16に記載の質量 分析方法。
発明の効果
[0011] 本発明の質量分析システムは、既に測定された解析対象物について、 LCにより得 られたピーク物質の時間情報(1)、前記 LCにより得られたピーク物質の MS分析によ り得られた m/z情報(2)および前記物質の定量値を計算して得た定量値情報(3)が データベース(1)に登録されており、データベース(1)に登録された物質については 、再度の解析を回避することができる。
[0012] 従来の方法では、 LCより得られたピーク物質の時間情報および MS分析より得られ た m/z値に関し、 MS分析による最も強いピークの順に解析結果が得られるため、同 様のピークの選択方法では、同一試料に関して例え複数回測定を行ったとしても、 結局は MS分析により低いピークしか得られない微量物質の解析結果を得ることは困 難であった。本発明の質量分析システムによると、 MS分析による強いピークであって も、既に解析された物質はデータベースに登録されているので、該登録された物質 については重複して解析することが回避される。よって、試料中の微量物質であって も迅速かつ効率的、かつ網羅的に解析することができる。
[0013] 本発明の質量分析装置は、ある試料を測定する際に、過去の測定実績を蓄積した データベースを参照し、事前にある時間のある質量数のペプチド断片を測定しない ようにパラメータを作成し、測定を行うことができる。これにより、重複する解析を回避 すること力 Sできる。
[0014] また、ある試料について MS分析情報があるものの、 MSMS分析情報が得られない場 合がある。このとき、複数回測定を繰り返した後にようやく MSMS分析情報が得られた ものについて、ペプチドマップ上に情報を付加することができる。それにより、その後 の試料の測定において、 MSMS分析情報が得られない場合に、 MS分析情報と時間 情報をもとに、ペプチドマップを参照することにより、あた力も MSMS情報が得られたか のようにデータを充実させることが可能となる。また、当該 MSMS分析情報が得られた 以前の過去の結果についても、同様の方法で、あた力 MSMS分析情報が得られた かのように、データを充実させることが可能となる。
図面の簡単な説明
[0015] [図 1]実施例 1に記載の質量分析システムに含まれるアルゴリズムのフローチャートを 示す図である。
[図 2]実施例 3に記載の質量分析システムに含まれるアルゴリズムのフローチャートを 示す図である。
発明を実施するための最良の形態
[0016] 本発明の質量分析システムは、少なくとも LCと MS分析システムを含み、以下の手 順からなるアルゴリズムを含む。
1) LCにより得られたピーク物質の時間情報(1)を取得し;
2)前記 LCにより得られたピーク物質をさらに MS分析したものについて、ピーク物質 中の物質の m/z情報(2)を取得し;
3)前記 1)により得られた時間情報(1)と、前記 2)により得られた m/z情報(2)を情報 (A)として取得し;
4)前記情報 (A)にかかる物質の定量値を計算して定量値情報(3)を取得し;
5)前記定量値情報 (3)を含むものを情報 (B)として取得し、
6)情報 (A)および情報 (B)をデータベース(1)に登録する。
[0017] 本発明の質量分析システムでは、上述のごとく少なくとも LCと MS分析システムを含 み、データベース(1)には、時間情報(1)および m/z情報(2)からなる情報 (A)と、定 量値情報(3)からなる情報 (B)を含むが、該定量値情報(3)は、 MSMS分析により得 られる場合がある。この場合には、本発明の質量分析システムは、以下の手順からな るアルゴリズムを含む。
1) LCにより得られたピーク物質の時間情報(1)を取得し;
2)前記 LCにより得られたピーク物質をさらに MS分析したものについて、ピーク物質 中の物質の m/z情報(2)を取得し;
3)前記 1)により得られた時間情報(1)と、前記 2)により得られた m/z情報 (2)を情報 (A)として取得し;
4)情報 (A)に力かる物質をシステム内部で分解し、それを再度 MS分析し;
5)情報 (A)にかかる物質の定量値を、上記再度の MS分析により定量値を計算して 定量値情報 (3)を取得し;
6)前記定量値情報 (3)を含むものを情報 (B)として取得し、
7)情報 (A)および情報 (B)をデータベース(1)に登録する。
[0018] 本発明において、「LC」とは、 自体公知あるいは今後開発されるあらゆる LCであつ て、その後に MS分析実行可能であればよぐ特に限定されない。 LCの例として、具 体的には、疎水性クロマトグラフィー、ゲル浸透クロマトグラフィー、ゲル濾過クロマト グラフィー、吸着クロマトグラフィー、イオン交換クロマトグラフィー、塩析クロマトグラフ ィー、逆相クロマトグラフィー、ァフィ二ティークロマトグラフィー等が例示される力 こ れらに限定されるものではない。特に好適には、疎水性クロマトグラフィーが挙げられ る。
[0019] 本発明の質量分析システム、または質量分析方法に適用できる検体は、質量分析 の対象となるタンパク質の含有可能性のあるものであればよぐ生体検体に限定され ることはなレ、。例えば、血液、血清、血漿、尿、リンパ液、汗、各種分泌物等に代表さ れる体液や、遺伝子組換技術等の技術を用いてタンパク質等を産生させるための各 種細胞の培養液若しくは細胞懸濁液、環境分野における環境汚染物質等の含有可 能性のあるものを検体として取得することができる。取得した検体を、特定のタンパク 質分解酵素を用いて分解したものを試料とし、本発明の質量分析システムに付すこと ができる。
本明細書において、被験者または培養細胞等から採取した被検物を「検体」といい 、本発明の質量分析システムに付すために前処理した被検物を「試料」という。また、 試料中に含まれる物質のうち、例えばペプチド断片等を、必要に応じて、「解析対象 物」という場合もある。
[0020] 上記 LC分析の前に、例えば血液や組織等の検体中に含まれるタンパク質を、タン ノ^質分解酵素により前処理し、ペプチド断片化させることが好ましい。検体中に含 まれるタンパク質をペプチド断片化することにより、後の分析精度が向上する。使用 する酵素の種類は、タンパク質および後の実験との関係により、適宜選択することが できる。具体的には、 LC分析後に質量分析を行う場合には、ペプチド断片を質量で 見た時にばらっかせるためと、イオンィ匕させることを考慮し、トリプシンやリジンエンド ぺプチダーゼを使用することが多レ、。
[0021] 本発明の質量分析システムでは、より精密に、より効率的に分析を行うために、上 記酵素処理および/または LCの前に、異なる LCを行ってもよい。 LCの例は、上記例 示したように、疎水性クロマトグラフィー、ゲル浸透クロマトグラフィー、ゲル濾過クロマ トグラフィー、吸着クロマトグラフィー、イオン交換クロマトグラフィー、塩析クロマトダラ フィ一、逆相クロマトグラフィー、ァフィ二ティークロマトグラフィー等があげられる。例 えば血液や組織等の生体検体を上記に例示されるいずれかのクロマトグラフィーに 付し、解析対象物を含むピーク物質を取り出して試料とすることで、不純物を低減化 させることができる。得られた試料について、上述の酵素処理することで、解析対象 物であるペプチド産物を多く含む試料を得ることができる。
[0022] 本発明において、「MS分析」は、 自体公知あるいは今後開発されるあらゆる質量分 祈が挙げられる。
異なる試料に含まれるタンパク質の発現量や翻訳後修飾量がどの程度変化してい るのか調べることで、細胞や組織の機能変化を観察したり、疾患と特定のタンパク質 の発現量に基づく診断を行ったりすることができる。本発明においては、このような目 的のために質量分析システムを利用することができる。
[0023] MS分析は、イオン化とイオン計測法により種々の組み合わせが存在し、それぞれ 特色がある。本発明の質量分析システムとして、 MALDI法と TOF法を組み合わせた MALDI-TOF型、 ESI法と qQ法を組み合わせた ESI qQ型等が挙げられる力 これらに 限定されるものではなレ、。本発明においては、特に好適に ESI qQ-TOF型が用いら れる。
[0024] 本発明の質量分析システムでは、 LCと MS分析を連続して行う態様と、 LCで分析し た物質を一旦デバイス上に保持したものについて MS分析を行う態様とが挙げられる [0025] LCと MS分析を連続して行う態様とは次のとおりである。
上記の各手順 1)の時間情報(1)の取得と実質的に同時に、同手順 2)の m/z情報( 2)を、時間情報(1)に沿って継続的に取得することを特徴とする。ここで、「時間情報 (1)の取得と実質的に同時」とは、厳密に同時を意味するのではなぐ時間情報(1) を取得した直後に連続して m/z情報を取得することをいう。
[0026] 本態様では、 LCによりあるピーク物質が得られると、得られたピーク物質は、保持さ れることなぐそのまま MS分析に付される。また、 MS分析に続く MSMS分析も連続して 行われる。タイミングを逃して LC分析に連続して MS分析を実行できなければ、一連 の操作手順において、そのピーク物質については MS情報、即ち m/z情報(2)が得ら れない。また、続いて行われるべき MSMS分析も行われなくなる。し力し、同じ試料に ついて複数回解析操作を行う中で、当該ピーク物質について MS分析を実行すること ができれば、本発明の質量分析を実行することができ、必要な場合は MSMS分析も 行うことができる。
[0027] LCで分析した物質をー且デバイス上に保持したものについて MS分析を行う態様は 、次のとおりである。
上記の各手順 1)で得られたピーク物質を、時間情報(1)に応じてデバイス上に保 存し、該デバイス上に保存した物質について、同手順 2)の m/z情報(2)を各々取得 することを特徴とする。 LCで分析した物質を一旦デバイス上に保持されてレ、るので、 保持されてレ、る物質にっレ、ては、試料が残存する限りにおレ、ては何度でも MS分析 および必要な場合は続いて MSMS分析が行われる。
[0028] タンパク質の定量方法としては、大きく分けて 2種類ある。 1つは絶対的な定量方法 であり、 1つは相対的な定量方法である。
[0029] あるタンパク質または酵素処理して得たあるペプチド断片について、絶対的な定量 値を求める場合、そのタンパク質またはそのペプチド断片について、絶対的な定量 値を定めた標準品を設ける。該標準品を、 LCまたは MS分析等により測定し、各分析 により得られた値と、標準品に定めた絶対的定量値から標準曲線を作成する。次に 絶対的定量値を求めたいタンパク質またはペプチド断片を、標準品と同条件で分析 し、得られた値を標準品で作成した標準曲線に当てはめ、定量値を換算することによ り、絶対的な定量値を得ることができる。このようにして得られた定量値は、同一条件 で分析する限り、異なる測定系でも求めることができる。かかる定量値は、換算して得 られた定量値そのものに意味があり、測定条件が同一である限り、異なる測定系によ り得られた値を比較することができる。
[0030] 一方、あるタンパク質または酵素処理して得たあるペプチド断片について、相対的 な定量値を求める場合は、測定対象物の相対的基準となる物質とともに定量する必 要がある。この場合は、相対的基準となる物質の定量値を例えば 1. 0と定めたときに 、測定対象物の定量値が仮に相対的基準となる物質の 2倍ある場合には、 2. 0の相 対値であり、 30%の定量値の場合は、 0. 3と換算することができる。この場合、個々 の定量値情報自体には特別な意味はなぐ相対的基準となる物質との定量値情報の 比に意味がある。個々の定量値情報は、たとえ測定条件が同一であったとしても、測 定間でその値を直接比較することはできず、意味を成すものは同一測定系における 定量比である。
[0031] タンパク質の相対的定量値を比較する方法として、同位体標識法を用いた MS分析 法を利用することができる。同位体標識法を用いた MS分析の例として、例えば、安定 同位体 2H、 15Nまたは13 C等を用いて、安定同位体標識されたタンパク質とコントロー ルとの質量分析のピークの強度比で存在比を評価するものがある。例えば、システィ ン残基等のチオールに安定同位体標識されたビォチン化試薬を結合させ、アビジン カラムで精製後、質量分析する Isotope-coded Affinity Tag(ICAT)法が報告されてい る。 ICAT法では、チオール標識用ビォチン型標識剤のリンカ一部分の炭素 9個を12 C あるいは13 Cとしたものを使用することができる。 2種の試料から別個にタンパク質を抽 出後、それぞれ L型または H型のピオチン標識剤で標識後、両試料を混合してトリプ シン等で限定消化する。その後、アビジンカラムでビォチン標識化されたペプチド( すなわちシスティンを含むペプチド断片)のみを取得して質量分析する。通常のタン ノ^質混合物では膨大なペプチド断片が生じ、所望のタンパク質を精製してからでな ければ、存在比の比較ができる状態ではないが、 ICAT法ではシスティンを含むぺプ チドに限定されるため、混合物内における種々のタンパク質の存在比と比較可能とな る。
[0032] 他の例として、 4種類までの異なる生体サンプル中のタンパク質について、相対定 量もしくは絶対定量するために、ァミン特異的な安定同位体を用いて、全てのぺプチ ドを標識可能とする試薬が市販されている(i TRAQ™試薬)。その他、 Stable Isotope Labeling by Amino Acids in Cell Cuture(SILAC)を応用し、安定同位体標識したアミ ノ酸を含む培地で培養した細胞に遺伝子導入を行レ、、タンパク質を発現させて MSM S分析でリン酸化タンパク質の定量を行うこともできる。本発明の方法としては ICAT法 が好適である。
[0033] 本発明において「ピーク物質」とは、特に説明しない場合には、本発明の MS分析の 前に LCにより得られるピーク物質をレ、い、「時間情報(1)」とは、該 LCにより得られる ピーク物質の時間情報をいう。本発明において、「質量数/電荷比 (m/z)の情報(2)」 とは、前記ピーク物質を MS分析したことにより得られる情報をいう。本発明において、 「定量値情報(3)」とは、前記 MS分析、または該 MS分析の後に継続して行われる MS 分析の結果よりシステム内で自動的に計算して得られる解析対象物のペプチドの定 量イ直をいう。
[0034] 本発明におレ、て、前記時間情報(1)および m/z情報(2)を含むものを情報 (A)とし 、前記定量値情報(3)を含むものを情報 (B)とし、本発明の質量分析システムに含ま れるデータベース(1)として蓄積する。すなわち、本発明のデータベース(1)には、 時間情報(1)、 m/z情報 (2)および定量値情報 (3)が情報として蓄積される。
[0035] 本発明の m/zの情報(2)を用いて、 Peptid Mass Finger Print (PMF)の手法によりべ プチド断片の配列を同定し、タンパク質を同定することができる。本発明の m/zの情 報(2)と開放されたデータベースおよび例えば公知の Mascot(R)(Matrix Science)を利 用してペプチド配列情報を得、タンパク質を同定することができる。
[0036] しかし、公開されている情報のみから得られる結果よりもさらに精度のよい解析結果 を得ようとするならば、更なる解析を行うことが好ましい。上記以外のペプチド断片の 配列を同定する方法として、まず MS分析によりペプチド断片そのものの m/zを測定し て上記情報(2)を取得し、得られた情報(2)から一定の基準で選択したペプチドのみ をシステム内で選択し、例えば MSMS分析等により配列情報を得、タンパク質を同定 することができる。得られた配列情報等、本発明の解析対象物の構造にかかる情報 は、本明細書において、情報(C)という。
[0037] 本発明の質量分析システムは、例えば公知の Mascot(R)の検索結果から得られる 情報よりも更に精度の高い情報を得ようとする場合に適用される。 MSMS分析を行う 場合には、一度目の m/zの情報(2)のうち強度の強レ、ものが通常選択される。
[0038] 上記、「得られた情報(2)から、一定の基準で選択したペプチド断片のみをシステム 内で選択し」とは、本発明の質量分析システムでは、 MS分析による強度の強レ、ものが 通常選択されることに加えて、新たな選択基準を設置することにより選択される。新た な選択基準の例として、既解析物質は排除し、未解析物質のうち強度の強いものを 選択することが挙げられる。いい換えれば、本発明においては、同条件下で測定した 場合の既解析物質の情報は、本発明のデータベース(1)に登録されており、該デー タベース(1)に基づいて回避リスト(1)力 S作製されることになるので、回避リスト(1)に 掲載されている物質については再度の解析を排除するよう選択基準を設けることが できる。このことにより、試料に含まれる解析対象物のうち既解析物質については重 複した解析を避けることができ、残りの解析対象物のうち、強度の強いものから順に 解析を行うことができる。
[0039] また、回避リストに掲載されている物質ではない物質について、強度に関わらず、 選択的に解析を行うことが要望される場合もある。この様な場合には、別途包含リスト を作成し、包含リストにおいて人為的に特定の物質を優先的に解析するよう設定する こともできる。
[0040] さらに、他の選択基準を設けることもできる。例えば物質 Mを含む 2種の試料があり 、各試料に含まれる物質 Mを Mおよび Mとしたときに、 Mと Mの定量値を比較し
0 1 0 1
て何らかの判断を下したい場合を例示する。最初に Mを含む試料について解析し、
0
Mについては既に取得した時間情報(1)と m/z情報(2)として情報 (A )を取得し、
0 0 定量値情報(3)として情報 (B )を取得し、これらの情報をデータベース(1)に登録し
0
、 Mを回避リスト(1)に掲載する。 Mについて、同様に情報 (A )および情報(B )を
0 1 1 1 取得する。 Mの定量値情報 (B )を 1. 0と換算し、 Mの定量値情報 (B )の定量値
0 0 1 1
情報 (B )に対する定量比(B /B )を α 値として計測する。選択基準としての定数 ひ値を設定しておき、 ひ 値が lZひ≤ a ≤ひの範囲にある場合は、 Mと M の定量
1 1 0 1 値は実質的に同一と判断され、 1Zひ >ひ あるいはひ >ひの場合には定量値が異
1 1
なると半 IJ断される。ここにおいて、 Mと M力 得られる情報は、全て同条件下の解析
0 1
により得られることはいうまでもなレ、。同条件下での情報を得るために、上記 2種の試 料について、 Mと Mを識別できるよう標識化したものを混合し、同一解析系にて比
0 1
較することもできる。
[0041] ここにおいて、選択基準としての定数ひ値は、解析対象物に応じて適宜設定するこ とができる。 α値は正の実数であればよい。
例えば、健常人の血液には、特定のタンパク質が一定量発現している。レ、くつかの 測定を重ねた結果、あるタンパク質に関し、恒常性と個人差を考慮した結果、健常人 ではそのタンパク質の発現量の振れ幅が例えば 30%程度であったことがわかったと する。この場合、選択基準としての α値を 1. 3と設定すれば、解析対象物のひ 力 S 1 / 1. 3〜: 1. 3の間にある場合は正常と判断され、そうでない場合は疾患の可能性が あると判断されることとなる。
[0042] 本発明は、上記に示した質量分析システムおよび質量分析方法に加えて、該質量 分析システムを含む質量分析装置にも及ぶ。
実施例
[0043] 以下、本発明の理解を深めるために、実施例を示して説明するが、本発明はこれら 実施例に限定されるものではない。
[0044] (実施例 1 )
本実施例では、質量分析システムに含まれる LCより得られたピーク物質の時間情 報(1 )を取得した後、連続して継続的に m/z情報 (2)を取得する場合の質量分析シ ステムおよび該システムを用いた質量分析方法について説明する。図 1には、以下 の質量分析を遂行するためのアルゴリズムが示されている。
[0045] 1 )前処理
本実施例では、検体を質量分析システムに付す前に、前処理を行う。
1-1) まず、健常人の血液と比較したい者 (被験者)の血液を各々検体として採取す る。 1-2) 2種の検体について、各々解析目的のタンパク質を抽出し、該タンパク質を含 む溶液を試料とする。
1-3) 抽出して得た各タンパク質を含む試料を、各々炭素12 Cあるいは13 Cでラベルし たチオール標識用ビォチン型標識剤で標識する。
1- 4) 標識した各試料を混合し、トリプシンを用いて限定消化し、ペプチド断片を得る 。その後、アビジンカラムでビォチン標識化したペプチド(すなわちシスティンを含む ペプチド断片)のみを取得する。
[0046] 2)質量分析システムを用いた物質の解析 1
2- 1) 上記システィンを含むペプチド断片を含む試料を本システムの LCである疎水 性クロマトグラフィーにかけ、該疎水性クロマトグラフィーにより得られたピーク物質を 直接 ESI qQ-TOF型の MS分析を行う。 MS分析により解析対象物である比較したい 2 種のペプチド断片(M、 M )の m/zが取得され、 LCにより得られた時間情報(1)と m/
0 1
Z情報(2)から情報 (A、 A )が取得される。
0 1
2-2) 同位体標識ごとに決定される質量差のものを同一ペプチド断片とみなし、比較 したい物質を同定する。
2-3) 2種の解析対象物について、各 MSスペクトルを用いて得られる積分情報から 2 種の解析対象物の定量値 (B、 B )を計算して定量値情報(3)を各々取得する。
0 1
[0047] 3)質量分析システムを用いた物質の解析 2
解析対象物であるペプチドに関し、定数ひを予め 1. 5と設定する。健常人の血液 由来物質の物質 (M )の定量値 (B )を 1. 0と換算する。被験者の血液由来物質のタ
0 0
ンパク質(M )の定量値(B )の換算値ひ 力 1/1. 5く ひ く 1. 5の場合には、 M
1 1 1 1 1 の定量値 (B )は、 Mの定量値 (B )と実質同一と判断され、被験者は、解析対象物
1 0 0
質に関しては正常と判断される。
[0048] (実施例 2)
本実施例では、質量分析システムに含まれる LCより得られたピーク物質の時間情 報(1)を取得した後、連続して継続的に m/z情報 (2)を取得する場合の質量分析シ ステムおよび該システムを用いた質量分析方法について説明する。
1)前処理 本実施例では、検体を質量分析システムに付す前に、前処理を行う。
1-1) まず、被検者の血液を検体として採取する。
1-2) 検体について、解析目的のタンパク質を抽出する。
1- 3) 抽出して得たタンパク質を含む試料を、トリプシンを用いて限定消化する。その 後、イオン交換クロマトグラフィーに付し、ペプチド断片を含む試料を調製する。
[0049] 2)質量分析システムを用いた物質の解析
上記複数のペプチド断片を含む試料を本システムの LCである疎水性クロマトグラフ ィーにかけ、該疎水性クロマトグラフィーにより得られたピーク物質を直接 ESI qQ-TO F型の MS分析を行う。具体的には LCの時間に沿って、次のステップ 2-1)〜2-4)を繰り 返すことで測定が行われる。
2- 1) MS分析により m/zが取得され、 LCにより得られた時間情報(1)と m/z情報(2) 力も情報 (A)が取得される。
2-2) 各 MSスペクトルを用いて得られる積分情報から各ペプチド断片の物質の定量 値を計算して定量値情報 (3)を得、情報 (B)とする。
2-3) 処理条件および得られた情報 (A)および情報(B)の内容が、本質量分析シス テムにおいて、データベース(1)に登録される。
2-4) 次に MS分析により得られたピークのうち、強度が強いピークに該当する、 2種 類のペプチド断片に対応する m/zに対して ESI qQ-TOF型の MSMS分析を行レ、、ぺ プチド断片の配列を決定するための情報として、情報 (C)を取得する。
[0050] 3) 2度目以降の質量分析システムを用いた物質の解析
まず、データベース (1)に登録された情報をもとに、時間情報と m/zからなる回避リス トを作成する。
上記 2)の上記複数のペプチド断片を含む試料を、再度本システムの LCである疎 水性クロマトグラフィーにかけ、該疎水性クロマトグラフィーにより得られたピーク物質 を直接 ESI qQ-TOF型の MS分析を行う。 MS分析により得られた結果を、データべ一 ス(1)に登録された情報と照合し、上記回避リスト(1)に掲載された物質と同じと判断 された場合には、情報(C)を取得するための MS分析には付さず、 MS分析により得ら れた結果が、上記回避リスト(1)に掲載された物質と異なると判断された場合にのみ 、 MS分析に付し情報 (C)を取得する。
[0051] (実施例 3)
本実施例では、質量分析システムに含まれる LCに要した時間を 192区分に分割し、 該 LCより得られたピーク物質の 192区分の時間(時間情報(1) )で分離して得られた 各物質をデバイス上にスポットしたものについて、各々 m/z情報(2)を取得する場合 の質量分析システムおよび該システムを用いた質量分析方法について説明する。図 2には、以下の質量分析を遂行するためのアルゴリズムが示されている。
[0052] 1)前処理
本実施例の前処理法は、実施例 1と同様に行う。
[0053] 2)質量分析システムを用いた物質の解析 1
2-1) 上記前処理した試料を本システムの LCである疎水性クロマトグラフィーにかけ 、該疎水性クロマトグラフィーにより得られた 192区分の物質をデバイス上にスポットす る。
2-2) 各スポットした物質について、各々 MALDI-TOF型の MS分析を行う。 MS分析に より解析対象物である比較したい 2種のペプチド断片(M、 M )の m/zが取得され、 L
0 1
Cにより得られた時間情報(1)と m/z情報(2)から情報 (A、 A )が取得される。
0 1
2-3) 同位体標識ごとに決定される質量差のものを同一ペプチド断片とみなし、比較 したい物質を同定する。
2-4) 2種の解析対象物の各 MSスペクトルを用いて得られる積分情報から 2種の解析 対象物の定量値 (B、 B )を計算して定量値情報 (3)を各々取得する。
0 1
[0054] 3)質量分析システムを用いた物質の解析
解析対象物の物質について、定数ひを予め 1. 5と設定する。健常人の血液由来物 質の物質 (M )の定量値 (B )を 1. 0と換算する。被験者の血液由来物質の物質 (M
0 0
)の定量値(B )の換算値ひ 力 1/1 · 5く ひ く 1. 5の場合には、 Mの定量値(B
1 1 1 1 1
)は、 Mの定量値 (B )と実質同一と判断され、被験者は、解析対象物質に関しては
1 0 0
正常と判断される。
産業上の利用可能性
[0055] ある試料を解析する際に、事前にペプチドマップに関するデータベースを参照し、 本発明の質量分析システムにおいて、ある時間のある m/z値を示すペプチド断片に ついては、解析を行わないようにパラメータを作成し、解析を行うことにより、無駄な情 報を取得することを防止し、新たな情報を取得する可能性を挙げることができる。 さらに、ある試料について解析した後に、ある時間のある m/zに関する情報 (A)はあ るが、 MSMS分析に関する情報 (C)がない場合に、複数回の測定により、先に得た情 報 (A)に合致する情報について情報 (C)が得られたときに、情報 (C)が得られなか つたときの MSMS分析結果を推測することができる。
[0056] 以上説明したように、本発明の質量分析システムを用いると、同一試料の繰り返し 測定の際、時間と質量に関する情報を質量分析システムの内部データベースに登録 することが可能である。重複する分析を回避するため、未解析物質に関する情報量 が増え、今まで特定が困難であった微量物質の同定に有効である。
[0057] さらに本発明の質量分析システムおよび質量分析方法により、複数回の解析を回 避することができ、測定試料が微量な場合であっても、微量物質の解析を効率的か つ正確に行うことができる。また、本方法により、タンパク質の発現量の計測や、糖鎖 構造の解析、疾患関連タンパク質の比較、同定等を行うことができる。かかる質量分 析方法は、遺伝子組換技術等の人工的手段により産生したタンパク質の解析や、疾 患診断のための臨床検査等に応用することができる。

Claims

請求の範囲
試料中に含有可能性のある物質の解析システムにおいて、少なくとも液体クロマトグ ラフィー(LC)と質量分析 (MS分析)を含み、以下の手順からなるアルゴリズムを含む ことを特徴とする質量分析システム:
1) LCにより得られたピーク物質の時間情報(1)を取得し;
2)前記 LCにより得られたピーク物質をさらに MS分析したものについて、ピーク物質 中の物質の質量数/電荷比 (m/z)情報(2)を取得し;
3)前記 1)により得られた時間情報(1)と、前記 2)により得られた m/z情報(2)を情報 (A)として取得し;
4)前記情報 (A)にかかる物質の定量値を計算して定量値情報(3)を取得し;
5)前記定量値情報 (3)を含むものを情報 (B)として取得し、
6)情報 (A)および情報 (B)をデータベース(1)に登録する。
試料中に含有可能性のある物質の解析システムにおいて、少なくとも LCと MS分析を 含み、以下の手順からなるアルゴリズムを含むことを特徴とする質量分析システム:
1) LCにより得られたピーク物質の時間情報(1)を取得し;
2)前記 LCにより得られたピーク物質をさらに MS分析したものについて、ピーク物質 中の物質の質量数 Z電荷比 (m/z)情報(2)を取得し;
3)前記 1)により得られた時間情報(1)と、前記 2)により得られた m/z情報 (2)を情報 (A)として取得し;
4)情報 (A)に力かる物質をシステム内部で分解し、それを再度 MS分析し;
5)情報 (A)にかかる物質の定量値を、上記再度の MS分析により定量値を計算して 定量値情報 (3)を取得し;
6)前記定量値情報(3)を含むものを情報 (B)として取得し、
7)情報 (A)および情報 (B)をデータベース(1)に登録する。
情報 (A)および情報 (B)に加えて、解析対象物の構造に力かる情報 (C)をさらにデ ータベース(1)に登録する請求の範囲第 1項または第 2項に記載の質量分析システ ム。
請求の範囲第 1項に記載の手順 1)〜4)または請求の範囲第 2項に記載の手順 1) 〜5)を繰り返して行った後、解析対象物が、前記データベース(1 )に登録された物 質と同じと判断された場合に、既に解析した物質であると判断し、前記データベース ( 1)に登録された物質と異なると判断された場合に、未解析物質と判断する、請求の 範囲第 1項〜第 3項のいずれ力 1に記載の質量分析システム。
[5] 前記未解析物質と判断された物質について、取得した情報 (A)および (B)、または、 取得した情報 (A)、 (B)および (C)をさらにデータベース(1)に登録する請求の範囲 第 4項に記載の質量分析システム。
[6] 既に解析した物質若しくは未解析物質を、データベース(1)に基づいて作成した回 避リスト(1)から判断する請求の範囲第 4項または第 5項に記載の質量分析システム
[7] 物質 Mについての定量値の判定基準定数をひとしたときに、情報 (A、 A )および(
0 1
B 、 B )を各々取得し、比較したい物質(M M )について、各々請求の範囲第 1項
0 1 0、 1
に記載の手順 4)および 5)による定量値情報(3)を得、一方の物質 (M )の定量値情
0
報 (B )を 1. 0と換算し、他方の物質 (M )の定量値情報 (B )の定量値情報 (B )に
0 1 1 0 対する定量比(B /B )を α と換算し、 α 値が 1/ α≤ α ≤ αの範囲にある場合
1 0 1 1 1
は、 Μと Μの定量値は実質的に同一と判断し、 値が 1/ひ〉ひ あるいはひ >
0 1 1 1 1 αの場合には Mと Μの定量値が異なると判断する、請求の範囲第 1項〜第 6項の
0 1
レ、ずれか 1に記載の質量分析システム。
[8] 前記 MS分析が、同位体標識法を用いた比較定量法により行われる請求の範囲第 1 項〜第 7項のいずれ力 4に記載の質量分析システム。
[9] 同位体標識法を用いた比較定量法が、 ICAT法である請求の範囲第 8項に記載の質 量分析システム。
[10] 物質 Mについての定量値の判定基準定数をひとしたときに、定量値情報(3)から得 られる相対定量値ひ の値が 1Zひ≤ ≤ひの範囲にある場合は、定量値に変動が
1 1
ないと判断し、 a 値が 1 /ひ〉ひ あるいはひ >ひの場合には定量値が変動すると 判断する、請求の範囲第 8項または第 9項に記載の質量分析システム。
[11] 定数(ひ) 、正の実数から選択される値である請求の範囲第 7項または第 10項に記 載の質量分析システム。
[12] 請求の範囲第 1項または第 2項に記載の手順 1)の時間情報(1)の取得と実質的に 同時に、同手順 2)の m/z情報(2)を、時間情報(1)に沿って継続的に取得することを 特徴とする請求の範囲第 1項〜第 11項のいずれ力 1に記載の質量分析システム。
[13] 請求の範囲第 1項または第 2項に記載の手順 1)で得られたピーク物質を、時間情報
(1)に応じてデバイス上に保存し、該デバイス上に保存した物質について、同手順 2 )の m/z情報(2)を各々取得することを特徴とする請求の範囲第 1項〜第 11項のレ、ず れカ 4に記載の質量分析システム。
[14] 請求の範囲第 1項〜第 13項のいずれ力 1に記載の質量分析システムを含む質量分 析装置。
[15] 請求の範囲 1項〜第 13項のいずれ力 1に記載の質量分析システムを用いて行う質 量分析方法。
[16] 測定試料が、タンパク質および/またはペプチド断片を含む試料である請求の範囲 第 15項に記載の質量分析方法。
[17] LCの前に、異なる種類の LCによる分析を行う、請求の範囲第 15項または第 16項に 記載の質量分析方法。
PCT/JP2006/323291 2005-12-21 2006-11-22 質量分析システムおよび質量分析方法 WO2007072648A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007551017A JPWO2007072648A1 (ja) 2005-12-21 2006-11-22 質量分析システムおよび質量分析方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005368472 2005-12-21
JP2005-368472 2005-12-21

Publications (1)

Publication Number Publication Date
WO2007072648A1 true WO2007072648A1 (ja) 2007-06-28

Family

ID=38188431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323291 WO2007072648A1 (ja) 2005-12-21 2006-11-22 質量分析システムおよび質量分析方法

Country Status (2)

Country Link
JP (1) JPWO2007072648A1 (ja)
WO (1) WO2007072648A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201104225D0 (en) * 2011-03-14 2011-04-27 Micromass Ltd Pre scan for mass to charge ratio range

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194837A (ja) * 1997-09-18 1999-04-09 Japan Science & Technology Corp タンパク質同定方法
JP2000266737A (ja) * 1999-03-19 2000-09-29 Ube Kagaku Bunseki Center:Kk 未知物質の構造解析装置
JP2004516486A (ja) * 2000-12-22 2004-06-03 ノバルティス アクチエンゲゼルシャフト マーカー/標的タンパク質を迅速に同定するための逆標識方法
JP2004184149A (ja) * 2002-12-02 2004-07-02 Shimadzu Corp Maldi−tofms用試料調製装置
JP2004191077A (ja) * 2002-12-09 2004-07-08 Hitachi Ltd 化合物構造解析システム,質量分析データ解析方法,質量分析データ解析装置及び質量分析データ解析プログラム
JP2005513481A (ja) * 2001-12-08 2005-05-12 マイクロマス ユーケー リミテッド マススペクトル測定方法
JP2005536743A (ja) * 2002-08-23 2005-12-02 パーセプティブ バイオシステムズ,インコーポレイテッド 疎水性maldiプレートおよびmaldiプレートを疎水性にするためのプロセス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194837A (ja) * 1997-09-18 1999-04-09 Japan Science & Technology Corp タンパク質同定方法
JP2000266737A (ja) * 1999-03-19 2000-09-29 Ube Kagaku Bunseki Center:Kk 未知物質の構造解析装置
JP2004516486A (ja) * 2000-12-22 2004-06-03 ノバルティス アクチエンゲゼルシャフト マーカー/標的タンパク質を迅速に同定するための逆標識方法
JP2005513481A (ja) * 2001-12-08 2005-05-12 マイクロマス ユーケー リミテッド マススペクトル測定方法
JP2005536743A (ja) * 2002-08-23 2005-12-02 パーセプティブ バイオシステムズ,インコーポレイテッド 疎水性maldiプレートおよびmaldiプレートを疎水性にするためのプロセス
JP2004184149A (ja) * 2002-12-02 2004-07-02 Shimadzu Corp Maldi−tofms用試料調製装置
JP2004191077A (ja) * 2002-12-09 2004-07-08 Hitachi Ltd 化合物構造解析システム,質量分析データ解析方法,質量分析データ解析装置及び質量分析データ解析プログラム

Also Published As

Publication number Publication date
JPWO2007072648A1 (ja) 2009-05-28

Similar Documents

Publication Publication Date Title
US7498568B2 (en) Real-time analysis of mass spectrometry data for identifying peptidic data of interest
Shevchenko et al. De novo peptide sequencing by nanoelectrospray tandem mass spectrometry using triple quadrupole and quadrupole/time-of-flight instruments
Peng et al. Proteomics: the move to mixtures
Tuli et al. LC–MS based detection of differential protein expression
JP5199101B2 (ja) 生体分子の検定を開発するための方法
Chakraborty et al. Use of an integrated MS–multiplexed MS/MS data acquisition strategy for high‐coverage peptide mapping studies
EP2035829A2 (en) Mass spectrometry biomarker assay
US7626162B2 (en) Mass spectrometry system and mass spectrometry method
JP2004347604A (ja) 生物学的状態の情報を同定するための生体液および他の流体の複合混合物を分析するシステム
WO2008151207A2 (en) Expression quantification using mass spectrometry
O’Neill An overview of mass spectrometry-based methods for functional proteomics
CN111198226B (zh) 对肽进行复用ms-3分析的方法
Goodlett et al. Proteomics without polyacrylamide: qualitative and quantitative uses of tandem mass spectrometry in proteome analysis
Hale et al. Application of proteomics for discovery of protein biomarkers
Wenner et al. Factors that affect ion trap data-dependent MS/MS in proteomics
Merkley et al. A proteomics tutorial
Palmblad et al. A novel mass spectrometry cluster for high-throughput quantitative proteomics
CN108427002B (zh) 生成用于靶向质谱分析的包含列表的方法
WO2007072648A1 (ja) 質量分析システムおよび質量分析方法
EP1406091A1 (en) Method of analyzing protein occurring in cell or substance interacting with the protein
JP4584767B2 (ja) タンパク質のプロテオーム定量分析方法及び装置
Del Boccio et al. Homo sapiens proteomics: clinical perspectives
US20190227076A1 (en) Method of generating an inclusion list for targeted mass spectrometric analysis
WO2008022266A2 (en) Methods and systems for quantifying isobaric labels and peptides
Meyers et al. Protein identification and profiling with mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551017

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833113

Country of ref document: EP

Kind code of ref document: A1