WO2007072563A1 - Rfid system and rfid reading apparatus - Google Patents

Rfid system and rfid reading apparatus Download PDF

Info

Publication number
WO2007072563A1
WO2007072563A1 PCT/JP2005/023629 JP2005023629W WO2007072563A1 WO 2007072563 A1 WO2007072563 A1 WO 2007072563A1 JP 2005023629 W JP2005023629 W JP 2005023629W WO 2007072563 A1 WO2007072563 A1 WO 2007072563A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfid
wave
reader
transmission
response
Prior art date
Application number
PCT/JP2005/023629
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tanae
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2005/023629 priority Critical patent/WO2007072563A1/en
Publication of WO2007072563A1 publication Critical patent/WO2007072563A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/77Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for interrogation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to an RFID system and an RFID reading apparatus to which a spread spectrum method is applied as a reading method of a wireless IC tag.
  • an RFID (Radio Frequency Identification) system is known as an information reading system for identifying and managing a person or an object with a small wireless chip.
  • the RFID system has been studied as a product identification 'management technology to replace barcodes in the distribution industry, but is gaining attention as a fundamental technology for promoting the use of IT in society.
  • a reader which is an RFID reader for reading RFID data, stores data in a wireless IC tag (RFID) with a size of several centimeters, and communicates with the RFID by radio waves and electromagnetic waves.
  • RFID wireless IC tag
  • RFID includes a label type, a card type, a coin type, a stick type, and the like having a communication distance of about several millimeters to several tens of meters, and is used depending on the application.
  • this type of RFID has RFID power S of active type, passive type, semi-passive type and the like.
  • An active RFID has a built-in battery and can communicate with a reader over a long distance of about several tens of meters.
  • Passive type RFID is a type that does not incorporate a battery and obtains an electromotive force by a transmission wave from a reader by a non-contact power transmission technique from the antenna side.
  • Semi-passive RFID uses a power regeneration circuit that is provided by another means that is not a received wave from a reader.
  • the reader sends a transmission wave to the surrounding RFID.
  • the RFID receiving the transmission wave rectifies the transmission wave from the built-in battery or the reader.
  • the internal circuit is driven by the electromotive force obtained in the above.
  • the RFID reads a command placed on a transmission wave, and returns (reflects) a response wave carrying information such as an ID number to the reader in accordance with the read command.
  • a general passive RFID can be used semi-permanently because it does not have a battery, but it normally communicates with a reader at a short distance of several millimeters or less using a frequency band of 13 MHz. There are a lot of types to do.
  • this type of RFID responds by contacting the reader at a short distance, it can generate a fairly powerful electromotive force by magnetic induction such as an electromagnetic coil, and incorporates a relatively complex microcomputer. Can be operated without using a battery.
  • an RFID system for example, when a truck loaded with a load passes through a gate, the RFID attached to the truck load is read by a reader to manage the shipment and arrival of the load.
  • the introduction to is considered.
  • this type of RFID is required to be able to communicate within a range of several tens of meters, and to have a built-in chip that is as small as possible and inexpensive. It has also been studied to form by printing with a printer.
  • the conventional RFID system as a method of extending the communication distance between the reader and the RFID, it is effective to perform spread spectrum modulation on the transmission wave of the reader by multiplying the transmission wave of the reader by the spread code generator and the spread code. It is.
  • spread code modulation is applied to an interrogator (reader) interrogator (reader) that communicates with a responder (RFID) attached to a mobile body in a contactless manner.
  • RFID responder
  • a mobile unit identification device that is provided with means and a spreading code demodulation means in the response signal receiving unit of the interrogator (see, for example, Patent Document 1).
  • the mobile object identification device described in Patent Document 1 generates a carrier wave from the carrier wave oscillator 11 of the interrogator Q and spreads it using the spreading code generated by the spreading code generator 12.
  • the modulator 13 performs spread spectrum modulation on the carrier wave and radiates a broadband signal through the antenna 14.
  • the transponder A receives the spectrum-spread signal radiated from the interrogator Q by the antenna 15, thereby modulating the signal received using the code modulator 17 with the data in the memory 16, This modulated signal (broadband signal) is radiated (reflected) by the antenna 15.
  • the interrogator Q receives the wideband signal radiated from the responder A by the antenna 18, so that the interpolator 20 uses the same spreading code sequence as that produced by the spreading code generator 19 to perform the spreading / demodulation 20 Performs spread spectrum demodulation using, and narrows the spectrum spread broadband signal
  • the interrogator Q reads the data held by the responder A by demodulating the signal that has been spread demodulated using the spread demodulator 20 with the code demodulator 21.
  • the noise of the other device power received by the interrogator Q is a diffusion demodulator.
  • this mobile object identification device is provided with the spread code generator 12 and the spread modulator 13 in the interrogator Q, the responder A can be reduced in size and weight.
  • the responder A of the mobile object identification device requires less current consumption, the built-in battery can have a longer life when configured to operate with a battery.
  • the responder A of the mobile object identification device requires less current consumption, the built-in battery can have a longer life when configured to operate with a battery.
  • a mobile identification communication system that can obtain a range is known (for example, see Patent Document 2).
  • the interrogator Q in the mobile unit identification communication system described in Patent Document 2 reads the information from the responder A, and the interrogator signal generation means 22 converts the carrier signal into, for example, spread spectrum modulation.
  • the transmitted carrier spread signal 23 is radiated from the transmitting antenna 25 as the interrogation signal 26 via the switching means 24.
  • the interrogator Q changes the operation mode of the responder A, and the data storage means of the responder A
  • the carrier wave spread signal 23 is amplitude-shift modulated by the amplitude shift modulation means 28 of the interrogation signal generating means 22, and this amplitude shift modulated signal is passed through the switching means 24. Radiated as interrogation signal 26 from transmitting antenna 25.
  • the interrogator Q receives the interrogator signal 26 output from the interrogator Q and detects it.
  • the transponder A changes the reflection condition by, for example, reflecting or terminating the interrogation signal 26 by the detection / data modulation means 30 according to the data held in the data storage means 27, and shifts the amplitude.
  • a spread modulation signal that has been modulated in the form of modulation or the like is obtained, and this signal is reflected from the response antenna 29 as a response signal 31.
  • the interrogator Q can share the signal from the interrogation signal generating means 22 for transmission and reception, and has a receiving antenna.
  • the response signal 31 received at 32 is demodulated from the demodulation signal 34 obtained by frequency conversion by the reception demodulation means 33.
  • the interrogator Q switches the switching means 24 by the switching signal 36 from the communication state determination means 35 and changes the inquiry signal 26 depending on whether the communication is information reading or writing. .
  • the interrogator Q in the mobile identification communication system emits different carrier spread signals 23 obtained by performing spread spectrum modulation on the carrier signal, so that even if there are a plurality of interrogators Q, the interrogator Q does not correspond.
  • These uncorrelated in the demodulation process only correlated signals Are demodulated, so that they can be operated without mutual influence.
  • the interrogator Q in this mobile unit identification communication system can share the spread modulation signal for transmission and reception, and does not need to take complicated synchronization, so that the configuration can be simplified.
  • the interrogator Q in this mobile unit identification communication system can read the data of the responder A even in a state where the spread modulation is performed, and the responder A can receive data including control data. You can also send and write.
  • intersymbol interference is reduced by assigning codes having the same spreading code and different periods to each of a plurality of responders.
  • a transbonder is known in which the number of responders that can be simultaneously received is increased (see, for example, Patent Document 3).
  • the transbonder described in Patent Document 3 includes an interrogator Q interrogator generator as shown in FIG.
  • the interrogation wave generated at 37 is transmitted by the antenna 38.
  • the transponders A and B receive the interrogation wave from the interrogator Q by the antennas 39 and 40, and transmit the response signal to the interrogator Q.
  • the response signal to which the spreading code having the period tl is assigned by the spreading code generator 41 is transmitted by the antenna 42.
  • the response signal to which the spreading code of the period t2 is assigned by the spreading code generator 43 is transmitted by the antenna 44.
  • the response signals transmitted from the responders A and B are received by the antenna 45 of the interrogator Q.
  • the interrogator Q multiplies the received signal by the interrogator wave from the interrogator generator 37 by the multiplier 46 to remove the interrogation wave component, and extracts the spread code from each response signal.
  • the extracted spreading code is input to the correlator 48 of the correlator 47, correlated with the spreading code of the spreading code generator 49, and a correlation value is obtained.
  • the correlation value obtained by correlator 47 is assigned a spreading code with period tl to the response signal from responder A, and a spreading code with period t2 is assigned to the response signal from responder B. Et Therefore, the autocorrelation peak of the responder A with the period tl and the autocorrelation peak of the responder B with the period t2 appear.
  • the correlation value obtained by the correlation unit 47 is input to the decoding unit 50.
  • period determination circuit 51 determines the period of the spreading code, and identifies and separates the spreading code of responder A and the spreading code of responder B.
  • the period determination circuit 51 detects how many response signals are received from the number of responders by examining the number of periods in which the autocorrelation peak appears.
  • the cycle determination circuit 51 detects which responder force response signal is received by checking whether the cycle in which the autocorrelation peak appears is the same as the preset cycle.
  • the correlation value from each of the responders A and B identified and separated in this way is a reception presence / absence determination circuit.
  • the period of the spreading code assigned to the plurality of responders A and B is determined in advance, and the period of the spreading code for which the interrogator Q obtains the correlation value with the spreading code of the plurality of responders A and B is determined. By determining, the number of responders simultaneously receiving can be specified.
  • Patent Document 1 JP-A-5-297131
  • Patent Document 2 JP-A-7-84040
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-78445
  • the passive RFID does not have a built-in battery, it is difficult to secure an electromotive force sufficient to stably drive the RFID even if it is provided with a despreading demodulation circuit.
  • the RFID system using the spread spectrum modulation method is less feasible than the conventional RFID system using the general RFID using the ASK (Amplitude Shift Keying) modulation method.
  • An object of the present invention is to provide an RFID system and an RFID reader capable of extending a communication distance by directly applying a spread spectrum modulation method to an existing RFID that is low in power consumption, small and inexpensive. .
  • An RFID system of the present invention includes an RFID having storage means storing data, and an RFID reader that reads the data stored in the storage means by wireless communication with the RF ID.
  • the RFID reader transmits the command by an ASK modulation method that varies the amplitude of a transmission wave, and receives a response wave reflected by the RFID In some cases, it communicates with the RFID by a spread spectrum method in which a spread code is applied to the transmission wave.
  • the spread spectrum modulation method can be applied as it is to an existing RFID that is low in power consumption, small and inexpensive, so that a complex circuit is newly provided in the RFID or the power consumption of the RFID
  • the communication distance between the RFID reader and RFID can be increased without increasing the communication.
  • FIG.1 Diagram showing the state of the transmitted wave and the response wave (reflected wave) that can be considered when the interrogator reader reads the RFID responder
  • FIG.3 Diagram showing reader transmission and reception, RFID reception and response operations
  • FIG. 9 is a configuration diagram showing a configuration of a reader in the RFID system according to one embodiment of the present invention.
  • Fig. 10A is a waveform diagram showing the RF transmission waveform of the ASK modulated wave used in the bandwidth of 1 MHz
  • Fig. 10B shows the empirical curve of the RF transmission wave of the ASK modulated wave used in the bandwidth of 1 MHz
  • Fig. 10C is a waveform diagram showing how a 100kbps ASK modulated wave is used in the 1MHz band.
  • Fig. 11A is a waveform diagram showing the RF transmission waveform of the ASK modulation wave used in the band of 0.7 MHz
  • Fig. 11B is the RF transmission wave of the ASK modulation wave used in the band of 0.7 MHz.
  • Fig. 11C is a waveform diagram showing the use of a 100kbps ASK modulated wave in the band 0.7MHz
  • FIG.12 Waveform diagram showing the use of 800kbps ASK modulated wave at 1MHz band
  • Fig.13A shows that Reader A, Reader B, and Reader C use different bands.
  • Fig. 13B shows a communication method in which Reader A, Reader B, and Reader C perform spread spectrum in the transmission and response reception periods across three bands, and increase the spreading factor by combining multiple bands into one. Illustration of
  • FIG. 14 is a block diagram showing the configuration of the mobile object identification device described in Patent Document 1.
  • FIG. 15 is a block diagram showing a configuration of a mobile unit identification communication system described in Patent Document 2.
  • FIG. 16 is a block diagram showing the configuration of the transbonder described in Patent Document 3.
  • FIG. 1 is a diagram showing a situation of a transmission wave and a response wave (reflected wave) that can be considered when a reader that is an interrogator reads RFID that is a responder.
  • the path of the transmission wave transmitted from the reader 100 to the RFID 200 is as follows:
  • a response wave 201 of RFID 200 is returned directly to the reader 100.
  • the RFID 200 reflects the transmission wave 101 from the reader 100 and responds to the reader 100.
  • the data (tag data) in the built-in memory is modulated.
  • the reader 100 responds to the response wave 201 from the RFID 200, which is the environment reflected wave 301 returned from the reflected signal on the wall (or obstacle) 300 depending on the presence or absence of modulation of the returned signal. Or it distinguishes whether it is the environmental reflection response wave 202.
  • the response wave 201 from the RFID 200 which is the environment reflected wave 301 returned from the reflected signal on the wall (or obstacle) 300 depending on the presence or absence of modulation of the returned signal. Or it distinguishes whether it is the environmental reflection response wave 202.
  • the reader 100 determines that the reflected wave 301 is reflected from the wall (or obstacle) 300 and returns to the RFI D200 if modulated.
  • the reader 100 reads the response wave 201 or the environment reflection response wave 202 from the RFID 200.
  • FIG. 2 is a diagram showing an RFID reading sequence in the RFID system.
  • the reading operation of the RFID 200 by the reader 100 is divided into three periods on the vertical time axis: a CW transmission period, a command transmission period, a transmission and a response reception period.
  • the reader 100 transmits a carrier wave CW (Carrier Wave).
  • RFID200 receives the carrier wave CW and receives the received carrier wave CW. Starts operation as an electromotive force and transitions to a command reception state.
  • the reader 100 modulates the transmission wave and transmits the command.
  • RFID 200 identifies the received command and determines whether it should respond and what data it should respond to.
  • the reader 100 transmits the carrier wave CW.
  • the RFID 200 that has received the carrier wave CW determines that it should respond in the command transmission period, it modulates the carrier wave CW transmitted from the reader 100 and reflects the response wave carrying data (response information).
  • the reader 100 receives the response wave reflected from the RFID 200 and recognizes (identifies) the presence of the RFID 200.
  • FIG. 3 is a diagram showing operations of reader transmission and reception and RFID reception and response.
  • the operations of the transmission and reception of the reader 100 and the reception and response of the RFID 200 are as follows. It is divided into three periods.
  • the RFID 200 in the CW transmission period, the RFID 200 always receives the carrier wave CW transmitted by the reader 100 only by the reader 100 transmitting the carrier wave CW.
  • the reader 100 emits a transmission wave, and the RFID 200
  • the reader 100 transmits a carrier wave CW during the transmission period, and if the response wave modulated by the RFID 200 is reflected, the reader 100 reception circuit can read the response reception period. Read the response wave (reflected wave) of RFID200.
  • the RFID 200 reflects the response wave by changing the phase (1, 0) of the transmission wave received from the reader 100 that is not a radio device.
  • the RFID 200 converts a part of the received wave received from the reader 100 into an electromotive force in all the three periods described above.
  • a modulation circuit that modulates a reflected response wave operates only during transmission and response reception periods.
  • the demodulation circuit of the response wave reflected from the RFID 200 is in the command reception period. Operate.
  • the CW transmission period and the command transmission period are one-way communication distances from the reader 100 to the RFID 200. However, the transmission and response reception periods require a communication distance between the reader 100 and the RFID 200. It is.
  • FIG. 4 is a configuration diagram showing a basic configuration of a reader used in the RFID system.
  • the RFID 200 used in this RFID system may be either an active type or a passive type, but here, a passive wave that operates by receiving an electromotive force from a received wave by receiving a transmitted wave transmitted from the reader 100 is used.
  • Type IC tag is used.
  • the reader 100 can perform ASK modulation so that the transmission wave transmitted by the reader 100 can be demodulated by the RFID 200 performing envelope detection, and a local oscillator is not required for the RFID 200.
  • the command is transmitted using (a modulation mode for modulating the amplitude).
  • the response wave (modulated wave) reflected by the RFID 200 toward the reader 100 is subjected to PSK (Phase Shift Keying) modulation, in which the phase of the received wave is inverted by an impedance switching switch, or
  • PSK Phase Shift Keying
  • the ASK modulation that can change the amplitude with the signal ON / OFF switch makes the RFID200 modulation circuit smaller and simpler.
  • the reader 100 switches between carrier wave CW and ASK modulation in time.
  • the reader 100 first selects one of transmission data and a fixed value by switching the switch SW.
  • the carrier wave CW is output because the amplitude modulation shows the same value “1”.
  • the (1, 0) value of the command is ASK modulated by the ASK modulation unit 401 and output.
  • the reader 100 transmits the transmission data or fixed data ASK modulated by the ASK modulation section 401.
  • a band-off is performed on the data by the roll-off filter 402 to suppress unnecessary frequencies.
  • the reader 100 uses the carrier wave (carrier wave CW) output from the oscillator 403 as the AS.
  • the K-modulated transmission data or fixed data is orthogonally modulated by the quadrature modulator 404 into the RF frequency band and output (RF output).
  • the transmission data input to the ASK modulation unit 401 of the reader 100 is configured with a value of (1, 0), and when a fixed value is input to the ASK modulation unit 401, an unmodulated carrier It becomes Cave CW.
  • a fixed value is selected by the switch SW and a fixed value “1” is input to the ASK modulation unit 401.
  • transmission data is selected by the switch SW, and transmission data that is a command to the RFID 200 is input to the ASK modulation unit 401.
  • the demodulation unit of the reader 100 performs quadrature demodulation on the same frequency so that the RFID 200 Data (tag data) is extracted from the reflected response wave.
  • the RF input which is a response wave reflected from the RFID 200
  • the quadrature demodulator 406 is quadrature demodulated by the quadrature demodulator 406 with the carrier wave output from the oscillator 403 and reflected from the RFID 200 through the roll-off filter 407.
  • the tag data is recovered from the response wave 201.
  • FIG. 5 is a configuration diagram showing a basic configuration of RFID used in the RFID system.
  • the RFID 200 includes a power regeneration circuit 510, an MPU (Micro Processing Unit) 520, a modulation SW unit 530, an oscillator 540, a memory 550, and the like.
  • MPU Micro Processing Unit
  • the MPU 520 includes a modulation / demodulation LSI, and includes a demodulation unit 521, a determination unit 522, and a modulation unit 523.
  • RFID 200 first receives a transmission wave transmitted from reader 100 shown in FIG.
  • the received wave received by the antenna 560 includes the power regeneration circuit 510, the MPU 520, and the modulation SW.
  • Each is distributed to 530.
  • the power regeneration circuit 510 rectifies the distributed received wave with a rectifier circuit (not shown) to generate RFID2
  • the electromotive force generated by the power regeneration circuit 510 includes the MPU 520, the oscillator 540, and the memory 5
  • the oscillator 540 serves as an operation clock of the MPU 520, and is used to demodulate a command placed on the received wave and create a modulation rate of the response wave reflected by the RFID 200.
  • the demodulation unit 521 of the MPU 520 performs envelope detection of the received wave during the command transmission period (see FIG. 3), and demodulates the command that is placed on the received wave.
  • the semi-IJ fixed unit 522 of the MPU 520 determines whether to respond to the transmission and response reception period (see FIG. 3) according to the command demodulated by the demodulation unit 521, and whether to reflect the response wave. Is determined.
  • the tag data stored in the memory 550 is stored in the MPU 510. Read by modulation section 523.
  • the modulation unit 523 of the MPU 510 controls the modulation SW unit 530 according to the tag data read from the memory 550, and thereby modulates the response wave reflected by the RFID 200.
  • the response wave modulated in this way is radiated toward the reader 100 by the antenna 560. It is.
  • the demodulation circuit of the demodulator 521 operates. Therefore, when a command comes from the reader 100, the demodulator 521 Demodulation is performed.
  • the modulation switch of the modulation SW (switch) unit 530 is turned ON / OFF according to the memory 550 held inside the modulation unit 523.
  • the RFID 200 reflects the received radio wave (transmitted wave from the reader 100) as a response wave by turning on the modulation switch of the modulation SW unit 530 as described above.
  • the RFID 200 ignores the instruction of the demodulated command and stands by.
  • FIG. 6 is a configuration diagram showing a basic configuration of a clock recovery type RFID used in the RFID system.
  • the clock recovery type RFID 200 includes a clock extraction unit 610 that extracts the received wave clock received by the antenna 560.
  • the carrier frequency is the same regardless of the modulation.
  • clock extraction and clock recovery can be performed from the received wave received by the antenna 560.
  • the modulation rate can be operated with the clock accuracy of the reader 100.
  • the RFID 200 shown in Fig. 5 demodulates the incoming radio wave with the clock that it has inside.
  • the RFID 200 shown in FIG. 6 extracts the clock from the strong electric wave that the clock has, and regenerates the extracted clock to perform modulation and demodulation.
  • RFID200 shown in Fig. 5 responds with the internal clock.
  • the RFID 200 shown in Fig. 6 reproduces the frequency of the incoming radio wave, so it can be modulated ON / OFF in synchronization with the clock on the reader 100 side, and the modulated wave that responds to the frequency. Can be synchronized.
  • FIG. 7 is an explanatory diagram of the operation of the modulation SW unit when the amplitude of the carrier wave entering the RFID is varied.
  • FIG. 8 is an explanatory diagram of the operation of the modulation SW unit when the phase of the carrier wave entering the RFID is changed.
  • the received wave is PSK (or ASK) modulated based on the clock
  • the amplitude of the received wave is modulated by the binary value of lZO and the response wave is reflected.
  • modulation switch 701 When modulation switch 701 is turned ON and shorted to ground, the amplitude of the carrier wave becomes 0, and the amplitude of the reflected response wave momentarily shrinks.
  • modulation switch 701 When modulation switch 701 is turned OFF, the short circuit does not occur and the incoming carrier is snored as it is.
  • the RFID 200 used in the present example outputs (reflects) a response wave carrying the tag data held in the memory 550 by modulating the carrier wave by turning ON / OFF the modulation switch 701. To do.
  • the phase of the received wave is inverted / non-inverted based on the internal clock and transmission data as shown in Fig. 8. Modulates with a binary value and reflects the response wave.
  • the modulation switch 801 is turned ON / OFF, and the phase of the carrier wave is inverted by 180 degrees depending on whether the incoming radio wave is terminated or opened. Is output (reflected). [0151]
  • modulation switch 801 is ON, the phase of the carrier wave is inverted by 180 degrees, and the response wave is reflected in the opposite phase.
  • the RFID 200 used in this example turns ON / OF the modulation switch 701 or 801).
  • the carrier wave can be easily modulated and the response wave carrying the tag data held in the memory 550 can be output (reflected), which can be realized with a simple and inexpensive configuration.
  • the reader 100 and the RFID 200 are arranged to communicate with each other over a long distance, when the reader 100 reads the RFID 2000, the reader 100 Even if the command transmission wave transmitted from the RFID 200 reaches the RFID 200, the response wave from the RFID 200 may not reach the reader 100 because the response wave reflected by the RFID 200 is weak.
  • a despreading demodulation circuit for recognizing a command of 100 readers and determining whether to respond according to the command instruction is provided inside the RFID 200, and the RFID 200 is spread spectrum.
  • the passive RFID 200 does not include a battery, it is difficult to secure an electromotive force that can stably drive the passive RFID 200 even if it is provided with a despreading demodulation circuit.
  • a modulation response can be made only by turning ON / OFF the modulation switch 701 or 801).
  • RFID200 is less feasible.
  • the communication distance with the reader 100 does not increase due to insufficient electromotive force of the RFID 200. Therefore, it is generally better to increase the strength of the response wave of the RFID 200 than to the R FID 200. Studies are underway on how strong transmission waves can be transmitted.
  • the semi-passive RFID uses the power regeneration circuit 510 shown in FIGS. 5 and 6 with another power source that is not a received wave from the reader 100.
  • this power source for example, a lithium battery can be used.
  • a self-power generation type battery such as a small battery or a solar battery is conceivable.
  • the command to the RFID 200 is sent by the ASK method that can be realized on a small circuit scale, and only when the reader 100 reads the reflected response wave having a long communication distance. Control the modulation method to obtain the effect of spread spectrum.
  • the RFID 200 force is shown in Figs. While maintaining such a compact and low power consumption configuration, the same command control as before can be performed and the communication distance between the reader 100 and the RFID 200 can be extended.
  • the reader 100 is provided with CW addition means.
  • the reader 100 can output a stable transmission wave for power supply to the RFID 200 during the communication period, and can output a transmission wave from which the clock can be extracted.
  • the above-described problem can be solved only by the transmission wave of the reader 100, and the RFID 200 has the ASK reception, P shown in FIG. 5 and FIG.
  • It can be configured to communicate with a SK reflection type circuit.
  • FIG. 9 is a configuration diagram showing the configuration of the reader in the RFID system according to the embodiment of the present invention.
  • the reader 900 of this example is similar to the reader 100 shown in FIG. 4.
  • a control unit 405 and an orthogonal demodulation unit 406 are provided.
  • the reader 900 of this example includes a spectrum spreader 901, a despreader 902, and a CW adder 903.
  • ASK modulation section 401 ASK modulates transmission data or fixed data selected by switching SW 1 and sends a control command of RFID 200 as a transmission wave
  • Spectrum spreader 901 is a long-period spread code selected by switching switch SW2.
  • the roll-off filter 402 is ASK-modulated by the ASK modulator 401, and is transmitted data or a fixed data obtained by multiplying the spectrum spreader 901 by a long-period spread code (scramble code).
  • the band is limited to suppress unnecessary frequencies.
  • Quadrature modulator 404 orthogonally modulates transmission data or fixed data ASK-modulated with the carrier wave output from oscillator 403 into the RF frequency band and outputs the result.
  • the CW adder 903 adds the carrier wave (carrier wave CW) output from the oscillator 403 to the transmission wave (RF output) at an arbitrary power ratio attenuated by the attenuator (ATT) 904.
  • the quadrature demodulator 406 performs quadrature demodulation on the RF input, which is the response wave 201 reflected from the RFID 200, with the carrier wave output from the oscillator 403.
  • Ronolev Finnoletter 407 performs band limitation for suppressing unnecessary frequency with respect to the reception data demodulated by quadrature demodulator 406.
  • the despreader 902 despreads the reception data demodulated by the quadrature demodulator 406 and reads the tag data of the RFID 200.
  • the reader 900 of this example extends the receivable distance of the reflected response wave of the RFID 200 by transmitting the transmission wave to the RFID 200 by changing the modulation method adaptively in the command transmission period, transmission and response reception period. .
  • the ASK modulation data is always a fixed value
  • the spreading code is always a fixed value
  • the addition of the carrier wave (carrier wave CW) is turned off. Therefore, it is possible to transmit the same carrier wave CW as the reader 100 shown in FIG. In other words, in the CW transmission period, spreading is not performed by setting the spreading code to a fixed value.
  • ASK modulation data is always transmitted data (command data), spreading code is always fixed, and carrier wave (carrier wave CW) addition is turned off.
  • ASK modulation is performed in the same way as the reader 100 shown.
  • the command reaches the RFID 200 placed at the same distance as the RFID system of the reader 100 shown in FIG. 4, and the RFID of the reader 100 shown in FIG. As with the system, the RFID 200 can recognize commands.
  • the operation during the transmission and response reception period in the reader 900 of this example will be described.
  • the reader 900 when obtaining a response wave, the reader 900 spreads the spectrum by applying a spreading code to the transmission wave, and the addition of the carrier wave CW is turned off.
  • the RFID 200 modulates the information data of the reader 900 with the PSK (or ASK) information based on the internal clock and reflects it as a response wave.
  • the transmission wave of the reader 900 reaches the RFID 200 and reaches the reader 900 as a reflection response wave from the RFID 200, the reader 900 reciprocates between the reader 900 and the RFID 200. Therefore, the transmission wave of the reader 900 causes a round-trip propagation loss between transmission and reception.
  • the SIR (signal-to-interference amount ratio) value at which this demodulation cannot be performed is smaller in the spectrum spread ASK modulation than in the case of only the ASK modulation. This is because interference and noise uncorrelated with the spreading code can be reduced by the spreading gain by despreading.
  • the communication distance of the reflected response wave is extended by using spread spectrum for modulation and demodulation.
  • FIG. 10A is a waveform diagram showing an RF transmission waveform of an ASK modulated wave used in a band of 1 MHz.
  • FIG. 10B is a waveform diagram showing a detection waveform obtained by detecting the envelope of the RF transmission wave of the ASK modulation wave used in the band of 1 MHz.
  • the RFID 200 detects the ASK modulated wave and takes out the envelope as shown in FIG. 10B.
  • the determination unit 522 of the RFID 200 may erroneously determine (1, 0).
  • FIG. 10C is a waveform diagram showing a state where a 100 kbps ASK modulated wave is used in a band of 1 MHz.
  • the ASK modulation wave for the RFID 200 that performs envelope detection must use about 10 times the bandwidth of the modulation rate.
  • the transmission wave does not need to be ASK modulated during the transmission and response reception period, and the RFID 200 need not even perform envelope detection.
  • RFID 200 modulates the reflected response wave based on the internal clock frequency-synchronized with the transmission wave of reader 900, but the clock may not be synchronized with the spread spectrum transmission wave.
  • the reader 900 adds the carrier wave CW to the transmission wave at a constant ratio by the CW adder 903, so that the RFID 200 transmits a signal that facilitates clock synchronization.
  • the carrier wave CW added to the transmission wave by the CW power calculator 903 becomes an interference component when demodulating the spectrum-spread signal, but it is inversely expanded in the receiving circuit of the reader 900. It is removed according to the spreading factor of the despreader 902 which is a spreading circuit.
  • an arithmetic circuit that cancels out the carrier wave CW that becomes an interference component at the reception unit is provided. It can also be provided and removed.
  • the existing RFID 200 with low power consumption and small size can be used as they are, and the communication distance with the reader 900 can be extended.
  • the CW adder 903 adds the carrier wave CW to the transmission wave of the reader 900, so that the clock reproduction type RFID 200 that performs clock extraction as shown in Fig. 6 also receives it. The clock can be correctly extracted from the signal.
  • the CDMA Code Division Multiple Access
  • the CDMA method is used between multiple readers as a method of utilizing transmission capability of other readers as an interference wave and taking advantage of the anti-interference capability.
  • An RFID system using the above will be described.
  • the frequency is divided into several bands so that the readers do not interfere with each other, and separate bands are used between the readers.
  • the frequency division method is used.
  • the command transmission period uses a conventional frequency division method that switches the carrier frequency
  • the reflection response period uses a CD that uses the entire band.
  • FIG. 13A is a diagram showing a state in which reader A, reader B, and reader C use different bands.
  • Fig. 13B shows a communication method in which reader A, reader B, and reader C perform spread spectrum spreading over three bands during transmission and response reception periods, and increase the spreading factor by combining multiple bands into one. It is explanatory drawing of.
  • the communication distance between the reader 900 and the RFID 200 can be increased by further increasing the spreading factor of the transmission wave.
  • the command transmission period during which the reader 900 is transmitting commands uses different frequencies, and uses the spreading factor three times at the middle frequency only during the period when the RFID 200 reception response is being viewed. .
  • the spreading factor of the transmission wave of the reader 900 can be increased and used.
  • a long-term scramble code (spreading code) is orthogonalized by reader A, reader B, and reader C (if the code system ⁇ is used, the signals A, B, and C are multiplexed on the same frequency. Even if they are multiplexed, they can be separated at the demodulation part, so the spreading factor can be increased by applying the CDMA method.
  • the RFID system of this example is similar to a system that reads a QR code (two-dimensional barcode) with a camera-equipped mobile phone and displays a homepage at a predetermined address from the read code information.
  • the RFID200 reader 900 is installed in the product, and RFID tags such as RFID tags attached to retail store products are read by the mobile phone reader 900, so that the manufacturer's list and price of the product can be read from the tag data information. Is considered.
  • the RFID (tag) 200 attached to the product or the like can be read with the mobile phone reader 900 and enjoyed using the RFID 200 tag data information in various ways. Become.
  • a new CDMA communication can be achieved by installing the reader 900 in a CDMA mobile phone.
  • An RFID system can be constructed without adding means.
  • the RFID 900 receives a command by ASK modulation in the command transmission period in which the reader 900 transmits a command.
  • the spectrum spread is performed only when the reader 900 reads the response wave of the RFID 200, that is, during the transmission and reception response periods in which the communication distance is a reciprocal distance. Let's go.
  • the RFID 200 when the reader 900 sends a command, the RFID 200 receives the command by ASK modulation, and the spread spectrum modulation is performed only when the reader 900 reads the response wave of the RFID 200.
  • the communication distance between the reader 900 and the RFID 200 is increased.
  • the reader 900 can transmit the carrier wave CW and the command without performing the spread spectrum, similarly to the case of the reader 100 shown in FIG.
  • the reader 900 sets the switch SW2 to the side where the long-term spreading code (scramble code) is 0N when the carrier wave CW is transmitted only during the transmission and response reception period for reading the response wave of the RFID200. Switch. [0245] This allows the reader 900 to emit a spread spectrum signal.
  • the RFID 200 responds to the received radio wave (transmitted wave from the reader 900) by turning on and off the modulation switch of the modulation SW unit 530. Reflects as a wave.
  • the RFID 200 in the RFID system of the present example is spread spectrum by turning on / off the modulation switch of the modulation SW unit 530 according to the data of the memory 550 with an internal timer. Since only the reflected signal is reflected, the transmission and response reception period can reflect and respond to any signal, especially without the need for carrier wave CW.
  • the RFID 200 needs a despreader, but it does not need to read the command. During the period, even if the reader 900 spreads the spectrum, the RFI D200 responds as it is.
  • the reader 900 in the RFID system of this example switches the switch SW2 to the spectrum spreading side only during the transmission and response reception periods that are the last section, and performs ASK modulation with the modulation switch of the modulation SW section 530 of the RFID200.
  • the signal turned ON / OFF is despread by the despreader 902, and demodulated.
  • the communication distance between the reader 900 and the RFID 200 is extended by performing spectrum spread only during the reflection response period in which the RFID 200 reflects the response wave.
  • a wide range of RFID 200 can be read without changing the circuit configuration of RFID 200.
  • the RFID 200 can easily take a stable power source as a detection circuit when the electromotive force is generated when the transmission wave of the reader 900 is a carrier wave CW component.
  • the RFID 200 regenerates the power by the power regeneration circuit 510 because the instantaneous power increases and decreases.
  • the reader 900 in the RFID system of this example adds the carrier wave CW to the transmission wave at a constant ratio by the CW adder 903 so as to output RF.
  • the carrier wave is transmitted to the transmission wave by the CW power calculator 903.
  • the wave CW By adding the wave CW, it is possible to stabilize fluctuations in the detection circuit of RFID200.
  • An RFID system includes an RFID having a storage unit storing data, and reading the data stored in the storage unit by wireless communication with the RFID
  • An RFID system comprising: a device, wherein the RFID reader transmits the command by an ASK modulation method that varies an amplitude of a transmission wave when transmitting a command to the RFID; When the response wave reflected by the RFID is received, a configuration is adopted in which the RFID communicates with the RFID by a spread spectrum method in which a spread code is applied to the transmission wave.
  • the RFID reader when the RFID reader transmits a command to the RFID, the command is transmitted without spectrum spread by the ASK modulation method that varies the amplitude of the transmission wave.
  • the command can be recognized with the conventional configuration.
  • the RFID reader When receiving the reflected response wave of the R FID, the RFID reader communicates with the RFID using a spread spectrum system that applies a spread code to the transmitted wave, so the communication distance between the RFID reader and the RFID can be extended. .
  • the RFID reader according to the second aspect of the present invention is an RFID reader used in the RFID system of the first aspect, and the amplitude of the transmission wave when transmitting a command to the RFID ASK modulation means for varying the frequency and a spread spectrum means for applying a spread code to the transmission wave when receiving the response wave reflected by the RFID are employed.
  • the amplitude of the transmission wave varies when a command is transmitted to the RFID by the ASK modulation means. This makes it possible for RFID to recognize commands with the conventional configuration. Then, the spread spectrum is applied to the transmission wave when the RFID reflection response wave is received by the spread spectrum means. As a result, the communication distance between the RFID reader and the RFID can be increased only when the reflected response wave of the RFID is received.
  • the RFID reader according to the third aspect of the present invention employs a configuration comprising, in the second aspect, a carrier addition means for adding a carrier wave to the transmission wave spectrum spread by the spectrum spreading means. .
  • a carrier addition means for adding a carrier wave to the transmission wave spectrum spread by the spectrum spreading means.
  • the RFID reader according to the fourth aspect of the present invention is the RFID reader according to the third aspect, wherein the communication period with the RFID is three periods of a carrier transmission period, a command transmission period, a transmission and a response reception period.
  • the carrier transmission period a carrier wave is transmitted to the RFID.
  • the transmission wave is ASK modulated to the RFID to transmit a command, and in the transmission and response reception period.
  • the operations of the ASK modulation means, the spread spectrum means, and the carrier wave adding means are adaptively controlled so that the transmission wave is spread spectrum by the spread spectrum means when the response wave reflected by the RFID is received.
  • the structure which comprises the modulation system control means to take is taken.
  • the modulation scheme control means adaptively controls the operations of the ASK modulation means, the spread spectrum means, and the carrier wave addition means, so the ASK modulation means transmits a command to the RF ID.
  • the amplitude of the transmitted wave is changed.
  • a spread code is applied to the transmission wave by the spectrum spreading means.
  • the RFID reader according to the fifth aspect of the present invention is the RFID reader according to the second aspect, wherein the spread spectrum means spreads a transmission wave using a spread code orthogonal to a plurality of RFID readers.
  • the transmission frequency used in the transmission and response reception period is the same for the plurality of RFID readers.
  • each RFID reader uses a code (code sequence) in which long-term scramble codes (spreading codes) are orthogonal to each other, each RFID reader is multiplexed on the same frequency. Even if they are multiplexed, they can be separated at the demodulation part, and the spreading factor can be increased by applying the CDMA system.
  • the RFID access method and reading apparatus can extend the communication distance between the RFID reading apparatus and the RFID by directly applying the spread spectrum modulation method to the existing RFID that is low in power consumption and small and inexpensive. It is useful as an RFID system and RFID reader using a spectrum diffusion method as an IC tag reading method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

A RFID system and an RFID reading apparatus wherein a spectrum spread modulation scheme can be directly applied to an existing RFID, which exhibits a low power consumption and which is small-sized and low at cost, to increase the communication distance. In this RFID system and RFID reading apparatus, during a CW transmission, an ASK modulation data and a spread code are always set to fixed values, the addition of carrier (carrier wave CW) is rendered off, and the spread process is not performed. During a command transmission, the ASK modulation data is set to a transport data (command data), the spread code is always set to the fixed value, and the addition of carrier is rendered off. In this way, the existing RFID (200) can be used to recognize a command from a reader (900). During a transmission and a response reception, if a response wave is to be obtained, the transport wave is multiplied by the spread code for a spectrum spreading and the addition of carrier is rendered off. This can increase the communication distance of a reflected response wave that is PSK-modulated (or ASK-modulated) and reflected by the RFID (200).

Description

明 細 書  Specification
RFIDシステム及び RFID読み取り装置  RFID system and RFID reader
技術分野  Technical field
[0001] 本発明は、無線 ICタグの読み取り方式としてスペクトル拡散方式を適用した RFID システム及び RFID読み取り装置に関する。  [0001] The present invention relates to an RFID system and an RFID reading apparatus to which a spread spectrum method is applied as a reading method of a wireless IC tag.
背景技術  Background art
[0002] 従来、微小な無線チップにより人や物を識別'管理する情報読み取りシステムとして 、 RFID (Radio Frequency Identification)システムが知られている。  Conventionally, an RFID (Radio Frequency Identification) system is known as an information reading system for identifying and managing a person or an object with a small wireless chip.
[0003] RFIDシステムは、流通業界でバーコードに代わる商品識別'管理技術として研究 が進められてきたが、社会の IT化'自動化を推進する上での基盤技術として注目が 高まっている。  [0003] The RFID system has been studied as a product identification 'management technology to replace barcodes in the distribution industry, but is gaining attention as a fundamental technology for promoting the use of IT in society.
[0004] RFIDシステムでは、数 cm程度の大きさの無線 ICタグ (RFID)にデータを記憶し、 RFIDのデータを読み取るための RFID読み取り装置であるリーダが RFIDと電波や 電磁波で交信する。  [0004] In an RFID system, a reader, which is an RFID reader for reading RFID data, stores data in a wireless IC tag (RFID) with a size of several centimeters, and communicates with the RFID by radio waves and electromagnetic waves.
[0005] RFIDには、ラベル型、カード型、コイン型、スティック型などの通信距離が数 mmか ら十数 m程度のものなどがあり、用途に応じて使い分けられている。  [0005] RFID includes a label type, a card type, a coin type, a stick type, and the like having a communication distance of about several millimeters to several tens of meters, and is used depending on the application.
[0006] また、この種の RFIDには、アクティブ型、パッシブ型、セミパッシブ型などの RFID 力 Sある。  [0006] Further, this type of RFID has RFID power S of active type, passive type, semi-passive type and the like.
[0007] アクティブ型の RFIDは、電池を内蔵しており、リーダと数十 m程度の長距離での交 信が可能なタイプのものである。  [0007] An active RFID has a built-in battery and can communicate with a reader over a long distance of about several tens of meters.
[0008] パッシブ型の RFIDは、電池を内蔵せず、アンテナ側からの非接触電力伝送技術 によりリーダからの送信波により起電力を得るタイプのものである。 [0008] Passive type RFID is a type that does not incorporate a battery and obtains an electromotive force by a transmission wave from a reader by a non-contact power transmission technique from the antenna side.
[0009] セミパッシブ型の RFIDは、電源再生回路をリーダからの受信波ではない別の手段 でまかなうものである。 [0009] Semi-passive RFID uses a power regeneration circuit that is provided by another means that is not a received wave from a reader.
[0010] このような RFIDシステムにおける RFIDの読み取り動作としては、まず、リーダが周 囲の RFIDに対し送信波を送る。  In the RFID reading operation in such an RFID system, first, the reader sends a transmission wave to the surrounding RFID.
[0011] 送信波を受け取った RFIDは、内蔵電池あるいはリーダからの送信波を整流するこ とで得た起電力で内部の回路を駆動させている。 [0011] The RFID receiving the transmission wave rectifies the transmission wave from the built-in battery or the reader. The internal circuit is driven by the electromotive force obtained in the above.
[0012] RFIDは、回路が動作すると送信波に乗せられているコマンドを読み取り、読み取 つたコマンドに応じて ID番号などの情報を載せた応答波をリーダに向けて返信 (反射 )する。 [0012] When the circuit operates, the RFID reads a command placed on a transmission wave, and returns (reflects) a response wave carrying information such as an ID number to the reader in accordance with the read command.
[0013] ところで、一般的なパッシブ型 RFIDとしては、電池を持たないので半永久的に利 用可能であるが、通常 13MHzの周波数帯域を使用して数 mm以下の近距離でリ一 ダと交信するタイプのものが多レ、。  [0013] By the way, a general passive RFID can be used semi-permanently because it does not have a battery, but it normally communicates with a reader at a short distance of several millimeters or less using a frequency band of 13 MHz. There are a lot of types to do.
[0014] このタイプの RFIDは、リーダに対して近距離で接して応答するので、電磁コイルな どの磁気誘導でかなり強力な起電力を生成することができ、比較的複雑なマイコンを 内蔵したものも電池を用いずに動作させることができる。 [0014] Since this type of RFID responds by contacting the reader at a short distance, it can generate a fairly powerful electromotive force by magnetic induction such as an electromagnetic coil, and incorporates a relatively complex microcomputer. Can be operated without using a battery.
[0015] このように、この種の一般的な RFIDは、これまで比較的近距離で使用されているが[0015] Thus, this type of general RFID has been used at a relatively short distance until now.
、近年、 900MHzまたは 2. 4GHzといった高い周波数帯域を使用して、リーダから 数十 m程度離間した通信距離でもリーダとの交信が可能な RFIDシステムでの使用 が検討されている。 In recent years, the use of a high frequency band such as 900 MHz or 2.4 GHz has been studied for use in an RFID system that can communicate with a reader even at a communication distance of several tens of meters from the reader.
[0016] このような RFIDシステムとしては、例えば、積み荷を積載したトラックがゲートを通 過した際に、トラックの積み荷に付帯されている RFIDをリーダで読み取って積み荷 の出荷や入荷を管理するシステムへの導入などが検討されている。  As such an RFID system, for example, when a truck loaded with a load passes through a gate, the RFID attached to the truck load is read by a reader to manage the shipment and arrival of the load. The introduction to is considered.
[0017] 一方、この種の RFIDとしては、数十 mの範囲での通信ができるとともに、内蔵チッ プも極力小さなものであること、及び安価なものであることが求められており、例えば アンテナをプリンタにより印刷して形成することも検討されている。  [0017] On the other hand, this type of RFID is required to be able to communicate within a range of several tens of meters, and to have a built-in chip that is as small as possible and inexpensive. It has also been studied to form by printing with a printer.
[0018] し力 ながら、このような RFIDシステムにおいては、リーダが RFIDを読み込む場合 に、リーダの電波はリーダと RFIDとの間を往復できるだけの通信電力強度を有して レ、る必要がある。  [0018] However, in such an RFID system, when the reader reads the RFID, it is necessary that the radio wave of the reader has a communication power intensity enough to reciprocate between the reader and the RFID. .
[0019] このため、長距離での交信が必要となる RFIDシステムにおいて、上述のような従来 の小型で安価な構成の RFIDを使用した場合には、リーダから送信されるコマンド送 信波が RFIDへ届いても、 RFIDが反射する応答波の通信電力強度が弱いために、 RFIDからの応答波がリーダへ届かなくなるという問題が生じる。  [0019] For this reason, in the RFID system that requires long-distance communication, when the conventional RFID having a small and inexpensive configuration as described above is used, the command transmission wave transmitted from the reader is Even if it reaches the receiver, the communication power intensity of the response wave reflected by the RFID is weak, so that the response wave from the RFID does not reach the reader.
[0020] このような問題を解決するためには、 RFIDからの応答波がリーダへ届くように、リー ダと RFIDとの通信距離、特に RFIDの応答波の通信距離を伸ばす必要がある。 [0020] In order to solve such a problem, it is necessary to make a response wave from RFID reach the reader. It is necessary to increase the communication distance between the RFID and the RFID, especially the communication distance of the RFID response wave.
[0021] 従来の RFIDシステムにおいて、リーダと RFIDとの通信距離を伸ばす方法としては 、拡散符号発生器によりリーダの送信波に拡散符号を掛け算してリーダの送信波を スペクトル拡散変調することが有効である。  [0021] In the conventional RFID system, as a method of extending the communication distance between the reader and the RFID, it is effective to perform spread spectrum modulation on the transmission wave of the reader by multiplying the transmission wave of the reader by the spread code generator and the spread code. It is.
[0022] 従来、このようなスペクトル拡散変調方式を用いた RFIDシステムとして、移動体に 付帯される応答器 (RFID)と非接触で交信する質問器 (リーダ)の質問信号送信部 に拡散符号変調手段を設けると共に、質問器の応答信号受信部に拡散符号復調手 段を設けた移動体識別装置が知られている(例えば、特許文献 1参照)。  Conventionally, as an RFID system using such a spread spectrum modulation method, spread code modulation is applied to an interrogator (reader) interrogator (reader) that communicates with a responder (RFID) attached to a mobile body in a contactless manner. There is known a mobile unit identification device that is provided with means and a spreading code demodulation means in the response signal receiving unit of the interrogator (see, for example, Patent Document 1).
[0023] 特許文献 1記載の移動体識別装置は、図 14に示すように、質問器 Qの搬送波発振 器 11より搬送波を発生し、拡散符号発生器 12によって作られた拡散符号を用いて 拡散変調器 13により搬送波をスぺ外ル拡散変調し、広帯域信号をアンテナ 14によ つて放射するようにしている。  As shown in FIG. 14, the mobile object identification device described in Patent Document 1 generates a carrier wave from the carrier wave oscillator 11 of the interrogator Q and spreads it using the spreading code generated by the spreading code generator 12. The modulator 13 performs spread spectrum modulation on the carrier wave and radiates a broadband signal through the antenna 14.
[0024] 応答器 Aは、質問器 Qから放射されるスペクトル拡散された信号をアンテナ 15で受 信することにより、メモリ 16内のデータにより符号変調器 17を用いて受信した信号を 変調し、この変調信号 (広帯域信号)をアンテナ 15によって放射 (反射)する。  [0024] The transponder A receives the spectrum-spread signal radiated from the interrogator Q by the antenna 15, thereby modulating the signal received using the code modulator 17 with the data in the memory 16, This modulated signal (broadband signal) is radiated (reflected) by the antenna 15.
[0025] 質問器 Qは、応答器 Aから放射される広帯域信号をアンテナ 18で受信することによ り、拡散符号発生器 19によって作られた変調時と同じ拡散符号系列によって拡散復 調器 20を用いて拡散復調を行い、スペクトル拡散された広帯域信号を狭帯域化する  The interrogator Q receives the wideband signal radiated from the responder A by the antenna 18, so that the interpolator 20 uses the same spreading code sequence as that produced by the spreading code generator 19 to perform the spreading / demodulation 20 Performs spread spectrum demodulation using, and narrows the spectrum spread broadband signal
[0026] そして、質問器 Qは、拡散復調器 20を用いて拡散復調した信号を符号復調器 21 により復調することによって、応答器 Aが保持しているデータを読み取る。 Then, the interrogator Q reads the data held by the responder A by demodulating the signal that has been spread demodulated using the spread demodulator 20 with the code demodulator 21.
[0027] この移動体識別装置は、質問器 Qが受信した他の機器力 のノイズが拡散復調器 [0027] In this mobile unit identification device, the noise of the other device power received by the interrogator Q is a diffusion demodulator.
20によって広帯域の信号に拡散されるので、符号復調器 21に対するノイズの影響を 著しく低減させることができる。  20 spreads to a wideband signal, so that the influence of noise on the code demodulator 21 can be significantly reduced.
[0028] また、この移動体識別装置は、拡散符号発生器 12や拡散変調器 13を質問器 Qに 設けているので、応答器 Aの小型 ·軽量ィ匕を図ることができる。 [0028] In addition, since this mobile object identification device is provided with the spread code generator 12 and the spread modulator 13 in the interrogator Q, the responder A can be reduced in size and weight.
[0029] さらに、この移動体識別装置の応答器 Aは、消費電流が少なくて済むので、電池で 動作させる構成とした場合に内蔵電池の長寿命化を図ることができる。 [0030] 他のスペクトル拡散変調方式を用いた RFIDシステムとして、応答器の周辺に複数 個の質問器や、電波の反射物体が存在する中でも、データの読み出し及び書き込 みが可能で、広い通信範囲が得られる移動体識別通信システムが知られている(例 えば、特許文献 2参照)。 [0029] Further, since the responder A of the mobile object identification device requires less current consumption, the built-in battery can have a longer life when configured to operate with a battery. [0030] As an RFID system using another spread spectrum modulation method, data can be read and written even in the presence of multiple interrogators and radio wave reflecting objects around the responder. A mobile identification communication system that can obtain a range is known (for example, see Patent Document 2).
[0031] 特許文献 2記載の移動体識別通信システムにおける質問器 Qは、図 15に示すよう に、応答器 Aから情報を読み出す場合に、質問信号発生手段 22により、搬送波信号 を例えばスペクトル拡散変調した搬送波拡散信号 23を、切換手段 24を経て送信ァ ンテナ 25から質問信号 26として放射する。  [0031] As shown in FIG. 15, the interrogator Q in the mobile unit identification communication system described in Patent Document 2 reads the information from the responder A, and the interrogator signal generation means 22 converts the carrier signal into, for example, spread spectrum modulation. The transmitted carrier spread signal 23 is radiated from the transmitting antenna 25 as the interrogation signal 26 via the switching means 24.
[0032] また、質問器 Qは、応答器 Aの動作モードを変えたり、応答器 Aのデータ記憶手段  [0032] The interrogator Q changes the operation mode of the responder A, and the data storage means of the responder A
27にデータの書き込みを行ったりする情報を送る場合に、質問信号発生手段 22の 振幅シフト変調手段 28により搬送波拡散信号 23を振幅シフト変調し、この振幅シフト 変調した信号を、切換手段 24を経て送信アンテナ 25から質問信号 26として放射す る。  When sending information to write data to 27, the carrier wave spread signal 23 is amplitude-shift modulated by the amplitude shift modulation means 28 of the interrogation signal generating means 22, and this amplitude shift modulated signal is passed through the switching means 24. Radiated as interrogation signal 26 from transmitting antenna 25.
[0033] 応答器 Aは、質問器 Qの交信エリア内に入ると、質問器 Qが出力する質問信号 26 を応答器用アンテナ 29で受信して検波する。  When the transponder A enters the communication area of the interrogator Q, the interrogator Q receives the interrogator signal 26 output from the interrogator Q and detects it.
[0034] あるいは応答器 Aは、データ記憶手段 27に保持しているデータに応じて、検波 *デ ータ変調手段 30によって質問信号 26を例えば反射または終端する等で反射条件を 変え、振幅シフト変調等の形式で変調を行ってデータ変調された拡散変調信号を得 、この信号を応答信号 31として応答用アンテナ 29から反射する。  Alternatively, the transponder A changes the reflection condition by, for example, reflecting or terminating the interrogation signal 26 by the detection / data modulation means 30 according to the data held in the data storage means 27, and shifts the amplitude. A spread modulation signal that has been modulated in the form of modulation or the like is obtained, and this signal is reflected from the response antenna 29 as a response signal 31.
[0035] 質問器 Qは、質問信号発生手段 22からの信号が送受信で共用でき、受信アンテナ  [0035] The interrogator Q can share the signal from the interrogation signal generating means 22 for transmission and reception, and has a receiving antenna.
32で受信した応答信号 31を、受信復調手段 33で周波数変換して得られた復調用 信号 34から復調する。  The response signal 31 received at 32 is demodulated from the demodulation signal 34 obtained by frequency conversion by the reception demodulation means 33.
[0036] なお、質問器 Qは、通信状態判定手段 35からの切換信号 36により、切換手段 24 の切換を行って、交信が情報の読み出しであるのか書き込みであるのかにより質問 信号 26を変化させる。  It should be noted that the interrogator Q switches the switching means 24 by the switching signal 36 from the communication state determination means 35 and changes the inquiry signal 26 depending on whether the communication is information reading or writing. .
[0037] この移動体識別通信システムにおける質問器 Qは、搬送波信号をスペクトル拡散 変調した異なる搬送波拡散信号 23を放射することで、複数の質問器 Qが存在しても 、対応しない質問器 Qからの信号が復調過程で無相関となり、相関のある信号のみ が復調されるので、互いに影響なく動作させることができる。 [0037] The interrogator Q in the mobile identification communication system emits different carrier spread signals 23 obtained by performing spread spectrum modulation on the carrier signal, so that even if there are a plurality of interrogators Q, the interrogator Q does not correspond. Are uncorrelated in the demodulation process, only correlated signals Are demodulated, so that they can be operated without mutual influence.
[0038] また、この移動体識別通信システムにおける質問器 Qは、拡散変調信号を送受信 で共用することができ、かつ複雑な同期を取る必要がないので、構成を簡素化するこ とができる。  [0038] Further, the interrogator Q in this mobile unit identification communication system can share the spread modulation signal for transmission and reception, and does not need to take complicated synchronization, so that the configuration can be simplified.
[0039] さらに、この移動体識別通信システムにおける質問器 Qは、拡散変調を行った状態 でも、応答器 Aのデータを読み出すことがで、また、応答器 Aに制御データを含むデ ータを送って書き込むこともできる。  [0039] Furthermore, the interrogator Q in this mobile unit identification communication system can read the data of the responder A even in a state where the spread modulation is performed, and the responder A can receive data including control data. You can also send and write.
[0040] さらに他のスペクトル拡散変調方式を用いた RFIDシステムとして、複数の応答器の それぞれに対して同一の拡散符号であって周期の異なる符号を割り当てることによつ て、符号間干渉を低減して同時に受信可能な応答器の数を増やすようにしたトランス ボンダが知られている(例えば、特許文献 3参照)。 [0040] Further, as an RFID system using another spread spectrum modulation scheme, intersymbol interference is reduced by assigning codes having the same spreading code and different periods to each of a plurality of responders. A transbonder is known in which the number of responders that can be simultaneously received is increased (see, for example, Patent Document 3).
[0041] 特許文献 3記載のトランスボンダは、図 16に示すように、質問器 Qの質問波発生器 [0041] The transbonder described in Patent Document 3 includes an interrogator Q interrogator generator as shown in FIG.
37で発生させた質問波をアンテナ 38により送信する。  The interrogation wave generated at 37 is transmitted by the antenna 38.
[0042] 応答器 A, Bは、アンテナ 39, 40で質問器 Qからの質問波を受信して、応答信号を 質問器 Qへ送信する。 [0042] The transponders A and B receive the interrogation wave from the interrogator Q by the antennas 39 and 40, and transmit the response signal to the interrogator Q.
[0043] このとき、応答器 Aからは、拡散符号発生器 41により、周期 tlの拡散符号を割り当 てられた応答信号がアンテナ 42で送信される。  At this time, from the responder A, the response signal to which the spreading code having the period tl is assigned by the spreading code generator 41 is transmitted by the antenna 42.
[0044] また、応答器 Bからは、拡散符号発生器 43により、周期 t2の拡散符号を割り当てら れた応答信号がアンテナ 44で送信される。 [0044] Further, from the responder B, the response signal to which the spreading code of the period t2 is assigned by the spreading code generator 43 is transmitted by the antenna 44.
[0045] 次に、応答器 A, Bから送信された応答信号は、質問器 Qのアンテナ 45で受信され る。 Next, the response signals transmitted from the responders A and B are received by the antenna 45 of the interrogator Q.
[0046] このとき、質問器 Qは、受信信号に対して乗算器 46で質問波発生器 37からの質問 波を掛け算して質問波成分を除去し、それぞれの応答信号から拡散符号を抽出する  [0046] At this time, the interrogator Q multiplies the received signal by the interrogator wave from the interrogator generator 37 by the multiplier 46 to remove the interrogation wave component, and extracts the spread code from each response signal.
[0047] 抽出された拡散符号は、相関部 47の相関器 48へ入力され、拡散符号発生器 49 の拡散符号と相関が取られ、相関値が求められる。 [0047] The extracted spreading code is input to the correlator 48 of the correlator 47, correlated with the spreading code of the spreading code generator 49, and a correlation value is obtained.
[0048] ここで、相関部 47で求めた相関値は、応答器 Aからの応答信号には周期 tlの拡散 符号が割り当てられ、応答器 Bからの応答信号には周期 t2の拡散符号が割り当てら れているので、周期 tlの応答器 Aの自己相関ピークと、周期 t2の応答器 Bの自己相 関ピークとが現れる。 Here, the correlation value obtained by correlator 47 is assigned a spreading code with period tl to the response signal from responder A, and a spreading code with period t2 is assigned to the response signal from responder B. Et Therefore, the autocorrelation peak of the responder A with the period tl and the autocorrelation peak of the responder B with the period t2 appear.
[0049] 次に、相関部 47で求められた相関値は、復号部 50に入力される。 Next, the correlation value obtained by the correlation unit 47 is input to the decoding unit 50.
[0050] 復号部 50では、周期判定回路 51で拡散符号の周期を判定し、応答器 Aの拡散符 号と応答器 Bの拡散符号とを識別して分離する。 [0050] In decoding section 50, period determination circuit 51 determines the period of the spreading code, and identifies and separates the spreading code of responder A and the spreading code of responder B.
[0051] ここで、周期判定回路 51は、 自己相関ピークの現れる周期が何種類あるかを調べ ることにより、何台の応答器から応答信号を受信しているかを検出する。 [0051] Here, the period determination circuit 51 detects how many response signals are received from the number of responders by examining the number of periods in which the autocorrelation peak appears.
[0052] また、周期判定回路 51は、 自己相関ピークの現れる周期が予め設定した周期と同 じであるかを調べることにより、どの応答器力 応答信号を受信しているかを検出する [0052] In addition, the cycle determination circuit 51 detects which responder force response signal is received by checking whether the cycle in which the autocorrelation peak appears is the same as the preset cycle.
[0053] このようにして識別分離された各応答器 A, Bからの相関値は、受信有無判定回路 [0053] The correlation value from each of the responders A and B identified and separated in this way is a reception presence / absence determination circuit.
52, 53に入力されて受信信号の有無が判定される。  It is input to 52 and 53 to determine the presence or absence of a received signal.
[0054] そして、応答器 Aからの受信信号がある場合には、受信有無判定回路 52から応答 器 A用データが出力され、応答器 Bからの受信信号がある場合には、受信有無判定 回路 53から応答器 B用データが出力される。 [0054] When there is a reception signal from the responder A, data for the response device A is output from the reception presence / absence determination circuit 52, and when there is a reception signal from the response device B, a reception presence / absence determination circuit 53 responder B data is output.
[0055] これにより、このトランスボンダにおいては、複数の応答器 A, Bに対し各応答器 A,[0055] Thereby, in this transbonder, each of the responders A, B with respect to the plurality of responders A, B
B毎に同一の拡散符号であって周期の異なる符号を割り当てることで、符号間干渉 が低減されて自己相関ピークの識別能力が向上するので、受信可能な応答器の数 を増やすことができる。 By assigning the same spreading code for each B and having a different period, intersymbol interference is reduced and the autocorrelation peak identification capability is improved, so that the number of receivable responders can be increased.
[0056] また、複数の応答器 A, Bに割り当てる拡散符号の周期を予め決めておき、質問器 Qにおいて複数の応答器 A, Bの拡散符号との相関値を求めた拡散符号の周期を判 定することにより、同時に受信している応答器の数を特定することができる。  [0056] In addition, the period of the spreading code assigned to the plurality of responders A and B is determined in advance, and the period of the spreading code for which the interrogator Q obtains the correlation value with the spreading code of the plurality of responders A and B is determined. By determining, the number of responders simultaneously receiving can be specified.
特許文献 1 :特開平 5— 297131号公報  Patent Document 1: JP-A-5-297131
特許文献 2:特開平 7— 84040号公報  Patent Document 2: JP-A-7-84040
特許文献 3:特開 2003— 78445号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-78445
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0057] し力、しながら、前記従来の RFIDシステムにおレ、ては、リーダ(質問器)から送信され る送信波がスペクトル拡散変調されてレ、る場合、前述した従来の構成の RFID (応答 器)ではリーダから送信されるコマンドを認識することができない。 [0057] However, in the conventional RFID system, it is transmitted from a reader (interrogator). When the transmission wave to be transmitted is spread spectrum modulated, the RFID (responder) having the conventional configuration described above cannot recognize the command transmitted from the reader.
[0058] すなわち、スペクトル拡散変調されている送信波のコマンドを RFIDが認識するため には、 RFIDをスペクトル拡散変調方式に対応したものに変更する必要がある。 That is, in order for RFID to recognize a command of a transmission wave that has been subjected to spread spectrum modulation, it is necessary to change the RFID to one that corresponds to the spread spectrum modulation method.
[0059] 具体的には、リーダからのコマンド指示に従って応答するかどうかを判断するため の逆拡散復調回路を RFIDの内部に設けてコマンドを認識できるように RFIDを構成 し直す必要がある。 [0059] Specifically, it is necessary to reconfigure the RFID so that a command can be recognized by providing a despreading demodulation circuit for determining whether or not to respond according to a command instruction from the reader inside the RFID.
[0060] ところ力 このようなスペクトル拡散信号の復調回路を RFIDの内部に設けた場合に は、拡散コードの検出も必要であるため RFIDの回路規模が大きく複雑になり、消費 電力も多くなつてしまう。  However, when such a spread spectrum signal demodulating circuit is provided inside the RFID, it is necessary to detect the spreading code, so the RFID circuit scale becomes large and complicated, and the power consumption increases. End up.
[0061] また、近年の RFIDシステムにおいては、 RFIDをできるだけ小型で安価なチップで 構成することが求められており、電池を内蔵しなレ、パッシブ型の RFIDの使用が主流 となりつつある。  [0061] Further, in recent RFID systems, it is required to configure the RFID with a chip that is as small and inexpensive as possible, and the use of passive RFID that does not incorporate a battery is becoming mainstream.
[0062] このような状況下で RFIDに逆拡散復調回路を設けることは、 RFIDの小型化及び 低コストィ匕に逆行することになつてしまう。  [0062] Under such circumstances, providing a despreading demodulation circuit in RFID leads to downsizing of RFID and low cost.
[0063] また、パッシブ型の RFIDは、電池を内蔵していないため、これに逆拡散復調回路 を設けても、これを安定して駆動できるだけの起電力を確保することが難しい。 [0063] Further, since the passive RFID does not have a built-in battery, it is difficult to secure an electromotive force sufficient to stably drive the RFID even if it is provided with a despreading demodulation circuit.
[0064] このため、スぺクトノレ拡散変調方式を用いた RFIDシステムにおいては、従来の RF[0064] Therefore, in the RFID system using the spectrum spread modulation method, the conventional RF
ID (特にパッシブ型の RFID)をスペクトル拡散変調方式にそのまま適応させることが 困難であった。 It was difficult to adapt ID (especially passive RFID) to spread spectrum modulation as it is.
[0065] このように、スペクトル拡散変調方式を用いた RFIDシステムは、 ASK (Amplitude S hift Keying)変調方式による一般的な RFIDを用いた従来の RFIDシステムに比べて 実現性に乏しい。  As described above, the RFID system using the spread spectrum modulation method is less feasible than the conventional RFID system using the general RFID using the ASK (Amplitude Shift Keying) modulation method.
[0066] また、クロック抽出を行う RFIDの場合には、スペクトル拡散した信号から正しくクロッ ク抽出することが困難となる。  [0066] In addition, in the case of RFID that performs clock extraction, it is difficult to correctly extract the clock from the spread spectrum signal.
[0067] さらに、スぺクトノレ拡散変調方式を用いた RFIDシステムにおいては、スペクトル拡 散した信号では時間軸に対して安定した検波電位を得られなレ、ため、 RFIDの電源 再生回路の起電力の変換効率が悪くなる。 [0068] このようなこと力ら、この種の RFIDシステムにおいては、従来の低消費電力で小型 かつ安価な既存の RFIDに、スペクトル拡散変調方式をそのまま適用できないという 問題があった。 [0067] Furthermore, in the RFID system using the spectrum spread spectrum modulation system, the spectrum spread signal cannot obtain a stable detection potential with respect to the time axis. The conversion efficiency is worse. [0068] For this reason, this type of RFID system has a problem that the spread spectrum modulation method cannot be applied as it is to a conventional low power consumption, small and inexpensive existing RFID.
[0069] 本発明の目的は、低消費電力で小型かつ安価な既存の RFIDにスペクトル拡散変 調方式をそのまま適用して通信距離を伸ばすことができる RFIDシステム及び RFID 読み取り装置を提供することである。  An object of the present invention is to provide an RFID system and an RFID reader capable of extending a communication distance by directly applying a spread spectrum modulation method to an existing RFID that is low in power consumption, small and inexpensive. .
課題を解決するための手段  Means for solving the problem
[0070] 本発明の RFIDシステムは、データを記憶した記憶手段を有する RFIDと、前記 RF IDとの無線交信により前記記憶手段に記憶されている前記データを読み取る RFID 読み取り装置と、を備えた RFIDシステムであって、前記 RFID読み取り装置は、前記 RFIDに対してコマンドを送信する際には送信波の振幅を変動させる ASK変調方式 で前記コマンドを送信し、前記 RFIDが反射する応答波を受信する際には前記送信 波に拡散コードをかけるスペクトル拡散方式で前記 RFIDと交信する。 [0070] An RFID system of the present invention includes an RFID having storage means storing data, and an RFID reader that reads the data stored in the storage means by wireless communication with the RF ID. When transmitting a command to the RFID, the RFID reader transmits the command by an ASK modulation method that varies the amplitude of a transmission wave, and receives a response wave reflected by the RFID In some cases, it communicates with the RFID by a spread spectrum method in which a spread code is applied to the transmission wave.
発明の効果  The invention's effect
[0071] 本発明によれば、低消費電力で小型かつ安価な既存の RFIDに、スペクトル拡散 変調方式をそのまま適用することができるので、 RFIDに複雑な回路を新たに設けた り RFIDの消費電力を増大させたりせずに、 RFID読み取り装置と RFIDとの通信距 離を伸ばすことができる。  [0071] According to the present invention, the spread spectrum modulation method can be applied as it is to an existing RFID that is low in power consumption, small and inexpensive, so that a complex circuit is newly provided in the RFID or the power consumption of the RFID The communication distance between the RFID reader and RFID can be increased without increasing the communication.
図面の簡単な説明  Brief Description of Drawings
[0072] [図 1]質問器であるリーダが応答器である RFIDを読み込むときに考えられる送信波と 応答波(反射波)の状況を表した図  [0072] [Fig.1] Diagram showing the state of the transmitted wave and the response wave (reflected wave) that can be considered when the interrogator reader reads the RFID responder
[図 2]RFIDシステムにおける RFIDの読み取りシーケンスを示す図  [Figure 2] Diagram showing RFID reading sequence in the RFID system
[図 3]リーダの送信及び受信、 RFIDの受信及び応答の動作を示す図  [Fig.3] Diagram showing reader transmission and reception, RFID reception and response operations
[図 4]RFIDシステムで用いるリーダの基本的な構成を示す構成図  [Figure 4] Configuration diagram showing the basic configuration of the reader used in the RFID system
[図 5]RFIDシステムで用いる RFIDの基本的な構成を示す構成図  [Figure 5] Configuration diagram showing the basic configuration of RFID used in the RFID system
[図 6]RFIDシステムで用いるクロック再生型の RFIDの基本的な構成を示す構成図 [Figure 6] Configuration diagram showing the basic configuration of a clock recovery type RFID used in an RFID system
[図 7]RFIDに入ってきた搬送波の振幅を変動させる場合の変調 SW部の動作説明 図 [図 8]RFIDに入ってきた搬送波の位相を変動させる場合の変調 SW部の動作説明 図 [Figure 7] Explanation of operation of the modulation SW unit when the amplitude of the carrier wave entering the RFID is varied [Figure 8] Explanation of operation of the modulation SW unit when the phase of the carrier wave entering the RFID is changed
[図 9]本発明の一実施の形態に係る RFIDシステムにおけるリーダの構成を示す構成 図  FIG. 9 is a configuration diagram showing a configuration of a reader in the RFID system according to one embodiment of the present invention.
[図 10]図 10Aは、帯域 1MHzで使用している ASK変調波の RF送信波形を示す波 形図、図 10Bは、帯域 1MHzで使用している ASK変調波の RF送信波のェンペロー プを検波して得られた検波波形を示す波形図、図 10Cは、 100kbpsの ASK変調波 を帯域 1MHzで使用している様子をあらわす波形図  [Fig. 10] Fig. 10A is a waveform diagram showing the RF transmission waveform of the ASK modulated wave used in the bandwidth of 1 MHz, and Fig. 10B shows the empirical curve of the RF transmission wave of the ASK modulated wave used in the bandwidth of 1 MHz. Fig. 10C is a waveform diagram showing how a 100kbps ASK modulated wave is used in the 1MHz band.
[図 11]図 11Aは、帯域 0. 7MHzで使用している ASK変調波の RF送信波形を示す 波形図、図 11Bは、帯域 0. 7MHzで使用している ASK変調波の RF送信波のェン ぺロープを検波して得られた検波波形を示す波形図、図 11Cは、 100kbpsの ASK 変調波を帯域 0. 7MHzで使用している様子をあらわす波形図  [Fig. 11] Fig. 11A is a waveform diagram showing the RF transmission waveform of the ASK modulation wave used in the band of 0.7 MHz, and Fig. 11B is the RF transmission wave of the ASK modulation wave used in the band of 0.7 MHz. Waveform diagram showing the detection waveform obtained by detecting the envelope, Fig. 11C is a waveform diagram showing the use of a 100kbps ASK modulated wave in the band 0.7MHz
[図 12]800kbpsの ASK変調波を帯域 1MHzで使用している様子をあらわす波形図 [図 13]図 13Aは、リーダ A,リーダ B、リーダ Cが、各々異なるバンドを使用している様 子をあらわす図、図 13Bは、リーダ A,リーダ B、リーダ Cが、送信及び応答受信期間 のスペクトル拡散を 3つのバンドにまたがるように行なって、複数のバンドを 1つとして 拡散率を上げる通信方式の説明図  [Fig.12] Waveform diagram showing the use of 800kbps ASK modulated wave at 1MHz band [Fig.13] Fig.13A shows that Reader A, Reader B, and Reader C use different bands. Fig. 13B shows a communication method in which Reader A, Reader B, and Reader C perform spread spectrum in the transmission and response reception periods across three bands, and increase the spreading factor by combining multiple bands into one. Illustration of
[図 14]特許文献 1記載の移動体識別装置の構成を示すブロック図  FIG. 14 is a block diagram showing the configuration of the mobile object identification device described in Patent Document 1.
[図 15]特許文献 2記載の移動体識別通信システムの構成を示すブロック図  FIG. 15 is a block diagram showing a configuration of a mobile unit identification communication system described in Patent Document 2.
[図 16]特許文献 3記載のトランスボンダの構成を示すブロック図  FIG. 16 is a block diagram showing the configuration of the transbonder described in Patent Document 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0073] 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、各 図において同一の構成または機能を有する構成要素及び相当部分には、同一の符 号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same reference numerals are given to components having the same configuration or function and corresponding parts, and the description thereof will not be repeated.
[0074] まず、本発明の一実施の形態に係る RFIDシステムにおける RFIDの読み取り方法 について説明する。 First, an RFID reading method in the RFID system according to an embodiment of the present invention will be described.
[0075] 図 1は、質問器であるリーダが応答器である RFIDを読み込むときに考えられる送信 波と応答波 (反射波)の状況を表した図である。 [0076] 図 1に示すように、リーダ 100が RFID200に対して送信した送信波の経路としては[0075] FIG. 1 is a diagram showing a situation of a transmission wave and a response wave (reflected wave) that can be considered when a reader that is an interrogator reads RFID that is a responder. As shown in FIG. 1, the path of the transmission wave transmitted from the reader 100 to the RFID 200 is as follows:
、大きく分けて次の 3つのケースがある。 There are three main cases:
[0077] (1)リーダ 100の送信波 101が、壁 (あるいは障害物) 300に垂直に反射した場合 には、何も情報が含まれていない環境反射波 301がそのままリーダ 100に返ってくる (1) When the transmission wave 101 of the reader 100 is reflected perpendicularly to the wall (or obstacle) 300, the environment reflected wave 301 containing no information returns to the reader 100 as it is.
[0078] (2)リーダ 100から送信される送信波 101が直接 RFID200へ到達した場合には、(2) When the transmission wave 101 transmitted from the reader 100 reaches the RFID 200 directly,
RFID200力もの応答波 201が直接リーダ 100に返ってくる。 A response wave 201 of RFID 200 is returned directly to the reader 100.
[0079] (3)リーダ 100から送信される送信波 101が壁 (あるいは障害物) 300に反射して環 境反射送信波 302となって RFID200に到達した場合には、 RFID200からの応答 波 201が壁 (あるいは障害物) 300に反射して環境反射応答波 202となってリーダ 10[0079] (3) When the transmission wave 101 transmitted from the reader 100 is reflected on the wall (or obstacle) 300 and reaches the RFID 200 as the environment reflection transmission wave 302, the response wave 201 from the RFID 200 Is reflected on the wall (or obstacle) 300 and becomes the environment reflection response wave 202. 10
0に返ってくる。 Return to 0.
[0080] ここで、 RFID200は、リーダ 100からの送信波 101を反射してリーダ 100に応答波  Here, the RFID 200 reflects the transmission wave 101 from the reader 100 and responds to the reader 100.
201あるいは環境反射応答波 202として返す際に、内蔵メモリのデータ(タグデータ) を変調する。  When returning as 201 or the environment reflection response wave 202, the data (tag data) in the built-in memory is modulated.
[0081] リーダ 100は、返ってきた信号の変調の有無により、受け取った信号が壁(あるいは 障害物) 300に反射して返ってきた環境反射波 301であるのカ RFID200からの応 答波 201あるいは環境反射応答波 202であるのかを区別する。  [0081] The reader 100 responds to the response wave 201 from the RFID 200, which is the environment reflected wave 301 returned from the reflected signal on the wall (or obstacle) 300 depending on the presence or absence of modulation of the returned signal. Or it distinguishes whether it is the environmental reflection response wave 202. FIG.
[0082] つまり、リーダ 100は、受け取った信号が変調されていなければ壁(あるいは障害物 ) 300に反射して返ってきた環境反射波 301であると判断し、変調されていれば RFI D200からの応答波 201あるいは環境反射応答波 202であると判断する。  That is, if the received signal is not modulated, the reader 100 determines that the reflected wave 301 is reflected from the wall (or obstacle) 300 and returns to the RFI D200 if modulated. Response wave 201 or environment reflection response wave 202.
[0083] このようにして、リーダ 100は、 RFID200からの応答波 201あるいは環境反射応答 波 202を読み取る。  In this manner, the reader 100 reads the response wave 201 or the environment reflection response wave 202 from the RFID 200.
[0084] 図 2は、 RFIDシステムにおける RFIDの読み取りシーケンスを示す図である。図 2 において、リーダ 100による RFID200の読み取りの動作は、縦方向の時間軸に対し て、 CW送信期間、コマンド送信期間、送信及び応答受信期間の 3つの期間に分け られる。  FIG. 2 is a diagram showing an RFID reading sequence in the RFID system. In FIG. 2, the reading operation of the RFID 200 by the reader 100 is divided into three periods on the vertical time axis: a CW transmission period, a command transmission period, a transmission and a response reception period.
[0085] まず、 CW送信期間では、リーダ 100がキャリアウェーブ CW (Carrier Wave)を送信 する。 RFID200は、キャリアウェーブ CWを受信し、受信したキャリアウェーブ CWを 起電力として動作を開始してコマンド受付状態に遷移する。 [0085] First, in the CW transmission period, the reader 100 transmits a carrier wave CW (Carrier Wave). RFID200 receives the carrier wave CW and receives the received carrier wave CW. Starts operation as an electromotive force and transitions to a command reception state.
[0086] 次いで、コマンド送信期間では、リーダ 100が送信波を変調してコマンドを送信する 。リーダ 100がコマンドを送信すると、 RFID200は、受信したコマンドを識別して、 自 分が応答すべきか否か、またどんなデータを応答すべきかを判断する。  [0086] Next, in the command transmission period, the reader 100 modulates the transmission wave and transmits the command. When reader 100 sends a command, RFID 200 identifies the received command and determines whether it should respond and what data it should respond to.
[0087] 最後に、送信及び応答受信期間では、リーダ 100がキャリアウェーブ CWを送信す る。キャリアウェーブ CWを受信した RFID200は、コマンド送信期間で応答すべきと 判断したら、リーダ 100から送信されてくるキャリアウェーブ CWに変調をかけてデー タ (応答情報)を載せた応答波を反射する。そして、リーダ 100は、 RFID200から反 射された応答波を受信して RFID200の存在を認識 (識別)する。  [0087] Finally, in the transmission and response reception period, the reader 100 transmits the carrier wave CW. When the RFID 200 that has received the carrier wave CW determines that it should respond in the command transmission period, it modulates the carrier wave CW transmitted from the reader 100 and reflects the response wave carrying data (response information). The reader 100 receives the response wave reflected from the RFID 200 and recognizes (identifies) the presence of the RFID 200.
[0088] 図 3は、リーダの送信及び受信、 RFIDの受信及び応答の動作を示す図である。図  [0088] FIG. 3 is a diagram showing operations of reader transmission and reception and RFID reception and response. Figure
3に示すように、リーダ 100の送信及び受信、 RFID200の受信及び応答の動作は、 横方向の時間軸に対して、図 2で説明した CW送信期間、コマンド送信期間、送信及 び応答受信期間の 3つの期間に分けられる。  As shown in Fig. 3, the operations of the transmission and reception of the reader 100 and the reception and response of the RFID 200 are as follows. It is divided into three periods.
[0089] 図 3において、 CW送信期間では、リーダ 100がキャリアウェーブ CWを送信してい るだけで、 RFID200はリーダ 100が送信するキャリアウェーブ CWを常に受信してい る。  In FIG. 3, in the CW transmission period, the RFID 200 always receives the carrier wave CW transmitted by the reader 100 only by the reader 100 transmitting the carrier wave CW.
[0090] コマンド送信期間では、リーダ 100が送信波を出しており、 RFID200は、リーダ 10 [0090] In the command transmission period, the reader 100 emits a transmission wave, and the RFID 200
0の送信波を受信してコマンドを解析してレ、る。 Receiving 0 transmission wave and analyzing the command.
[0091] 送信及び応答受信期間では、リーダ 100は、送信期間でキャリアウェーブ CWを送 信し、 RFID200が変調した応答波を反射してくれば、リーダ 100の受信回路が応答 受信期間の読み取りで RFID200の応答波(反射波)の読み取りを行う。 [0091] In the transmission and response reception period, the reader 100 transmits a carrier wave CW during the transmission period, and if the response wave modulated by the RFID 200 is reflected, the reader 100 reception circuit can read the response reception period. Read the response wave (reflected wave) of RFID200.
[0092] ここで、 RFID200は、無線機としてではなぐリーダ 100からの受信した送信波の 位相(1 , 0)を変えて応答波を反射する。 Here, the RFID 200 reflects the response wave by changing the phase (1, 0) of the transmission wave received from the reader 100 that is not a radio device.
[0093] また、 RFID200は、上述した 3つの期間の全てにおいて、リーダ 100から受信した 受信波の一部を起電力に変換する。 In addition, the RFID 200 converts a part of the received wave received from the reader 100 into an electromotive force in all the three periods described above.
[0094] また、 RFID200は、反射する応答波を変調する変調回路が送信及び応答受信期 間にのみ動作する。 In addition, in RFID 200, a modulation circuit that modulates a reflected response wave operates only during transmission and response reception periods.
[0095] リーダ 100は、 RFID200から反射される応答波の復調回路がコマンド受信期間に 動作する。 [0095] In the reader 100, the demodulation circuit of the response wave reflected from the RFID 200 is in the command reception period. Operate.
[0096] なお、 CW送信期間とコマンド送信期間は、リーダ 100から RFID200までの片道の 通信距離であるが、送信及び応答受信期間は、リーダ 100と RFID200との間の往 復の通信距離が必要である。  [0096] The CW transmission period and the command transmission period are one-way communication distances from the reader 100 to the RFID 200. However, the transmission and response reception periods require a communication distance between the reader 100 and the RFID 200. It is.
[0097] 次に、本例の RFIDシステムで適用可能なリーダ 100の基本的な構成について説 明する。図 4は、 RFIDシステムで用いるリーダの基本的な構成を示す構成図である 。この RFIDシステムで用いる RFID200は、アクティブ型またはパッシブ型の何れで あっても良いが、ここでは、リーダ 100から送信される送信波を受信することで、受信 波から起電力を得て動作するパッシブ型 ICタグとする。  Next, a basic configuration of the reader 100 that can be applied to the RFID system of this example will be described. FIG. 4 is a configuration diagram showing a basic configuration of a reader used in the RFID system. The RFID 200 used in this RFID system may be either an active type or a passive type, but here, a passive wave that operates by receiving an electromotive force from a received wave by receiving a transmitted wave transmitted from the reader 100 is used. Type IC tag.
[0098] このようなパッシブ型の RFID200は、前述したように、その回路をできるだけ低消 費電力な簡素な構成とすることが求められている。  [0098] As described above, such a passive RFID 200 is required to have a simple configuration with as low power consumption as possible.
[0099] そこで、この RFIDシステムにおいては、リーダ 100が送信する送信波を、 RFID20 0が包絡線検波を行うことで復調でき、かつ RFID200に局部発振器が不要となるよう に、リーダ 100が ASK変調 (振幅を変調させる変調モード)を用いてコマンドを送信 するようにしている。  [0099] Therefore, in this RFID system, the reader 100 can perform ASK modulation so that the transmission wave transmitted by the reader 100 can be demodulated by the RFID 200 performing envelope detection, and a local oscillator is not required for the RFID 200. The command is transmitted using (a modulation mode for modulating the amplitude).
[0100] また、この RFIDシステムにおいては、 RFID200がリーダ 100に向けて反射する応 答波(変調波)を、インピーダンス切替えスィッチで受信波の位相反転を行う PSK (Ph ase Shift Keying)変調、または信号の ON/OFFスィッチで振幅変動を行える ASK 変調することで、 RFID200の変調回路を小型化及び簡素化するようにしている。  [0100] In this RFID system, the response wave (modulated wave) reflected by the RFID 200 toward the reader 100 is subjected to PSK (Phase Shift Keying) modulation, in which the phase of the received wave is inverted by an impedance switching switch, or The ASK modulation that can change the amplitude with the signal ON / OFF switch makes the RFID200 modulation circuit smaller and simpler.
[0101] リーダ 100は、 RFID200力 の応答を読み込むときには、キャリアウェーブ CWと A SK変調とを時間的に切り替える。  [0101] When reading the response of RFID200 force, the reader 100 switches between carrier wave CW and ASK modulation in time.
[0102] そのために、リーダ 100は、図 4に示すように、まず、スィッチ SWの切り替えにより送 信データと固定値とのいずれ力を選択する。  [0102] For this purpose, as shown in FIG. 4, the reader 100 first selects one of transmission data and a fixed value by switching the switch SW.
[0103] ここで、スィッチ SWが固定値を選択するように切り替えられている場合には、振幅 変調が同じ値「1」を示すのでキャリアウェーブ CWが出力される。  Here, when the switch SW is switched to select a fixed value, the carrier wave CW is output because the amplitude modulation shows the same value “1”.
[0104] 一方、スィッチ SWが送信データ(コマンド)を選択するように切り替えられている場 合には、コマンドの(1 , 0)値が ASK変調部 401で ASK変調されて出力される。  On the other hand, when the switch SW is switched to select transmission data (command), the (1, 0) value of the command is ASK modulated by the ASK modulation unit 401 and output.
[0105] 次いで、リーダ 100は、 ASK変調部 401で ASK変調した送信データまたは固定デ ータに対して、ロールオフフィルタ 402で不要な周波数を抑制するための帯域制限を 行う。 [0105] Next, the reader 100 transmits the transmission data or fixed data ASK modulated by the ASK modulation section 401. A band-off is performed on the data by the roll-off filter 402 to suppress unnecessary frequencies.
[0106] そして、リーダ 100は、発振器 403が出力する搬送波(キャリアウェーブ CW)で AS [0106] Then, the reader 100 uses the carrier wave (carrier wave CW) output from the oscillator 403 as the AS.
K変調した送信データまたは固定データを直交変調器 404により RF周波数帯に直 交変調して出力(RF出力)する。 The K-modulated transmission data or fixed data is orthogonally modulated by the quadrature modulator 404 into the RF frequency band and output (RF output).
[0107] このように、リーダ 100の ASK変調部 401に入力する送信データは(1 , 0)の値で 構成され、また、 ASK変調部 401に固定値を入力する場合は、無変調のキャリアゥ エーブ CWとなる。 [0107] As described above, the transmission data input to the ASK modulation unit 401 of the reader 100 is configured with a value of (1, 0), and when a fixed value is input to the ASK modulation unit 401, an unmodulated carrier It becomes Cave CW.
[0108] そこで、 CW送信期間と送信及び応答受信期間では、スィッチ SWで固定値を選択 して、固定値「1」を ASK変調部 401へ入力する。  Therefore, in the CW transmission period and the transmission and response reception period, a fixed value is selected by the switch SW and a fixed value “1” is input to the ASK modulation unit 401.
[0109] また、コマンド送信期間では、スィッチ SWで送信データを選択して、 RFID200へ のコマンドである送信データを ASK変調部 401へ入力する。 In the command transmission period, transmission data is selected by the switch SW, and transmission data that is a command to the RFID 200 is input to the ASK modulation unit 401.
[0110] 図 2及び図 3に示した 3つの期間におけるスィッチ SWの制御は、変調方式制御部 4[0110] The control of the switch SW in the three periods shown in FIG. 2 and FIG.
05力 S行う。 05 Force S.
[0111] また、リーダ 100が送信する電波の周波数を変えたときには、発振器 403が出力す る搬送波の周波数を変える。  [0111] When the frequency of the radio wave transmitted by the reader 100 is changed, the frequency of the carrier wave output by the oscillator 403 is changed.
[0112] ここで、リーダ 100が出力する周波数と、 RFID200からリーダ 100に返ってくる周波 数とは、全く同じ周波数であるので、リーダ 100の復調部は同じ周波数を直交復調し て、 RFID200が反射する応答波からデータ(タグデータ)を取り出す。  [0112] Here, since the frequency output from the reader 100 and the frequency returned from the RFID 200 to the reader 100 are exactly the same frequency, the demodulation unit of the reader 100 performs quadrature demodulation on the same frequency so that the RFID 200 Data (tag data) is extracted from the reflected response wave.
[0113] つまり、送信及び応答受信期間では、 RFID200から反射される応答波である RF 入力を、発振器 403が出力する搬送波で直交復調器 406により直交復調し、ロール オフフィルタ 407を通して RFID200から反射された応答波 201からタグデータを復 調する。  That is, in the transmission and response reception period, the RF input, which is a response wave reflected from the RFID 200, is quadrature demodulated by the quadrature demodulator 406 with the carrier wave output from the oscillator 403 and reflected from the RFID 200 through the roll-off filter 407. The tag data is recovered from the response wave 201.
[0114] ところで、リーダ 100の送信波 101の届く範囲内に複数台の他のリーダが存在し、 各リーダが同時に使用されている場合には、お互いのリーダの送信波が干渉を起こ してリーダ 100の受信性能が劣化してしまう場合がある。  [0114] By the way, when a plurality of other readers exist within the reach of the transmission wave 101 of the reader 100 and each reader is used at the same time, the transmission waves of the readers interfere with each other. The reception performance of the reader 100 may deteriorate.
[0115] そこで、本例のリーダ 100は、この対策として、変調方式制御部 405が発振器 403 力 出力される搬送波の周波数を変える制御を行う。 [0116] 次に、上述した RFIDシステムで適用可能な RFID100の構成について説明する。 図 5は、 RFIDシステムで用レ、る RFIDの基本的な構成を示す構成図である。 Therefore, as a countermeasure against this, the reader 100 of this example performs control to change the frequency of the carrier wave to which the modulation scheme control unit 405 outputs the oscillator 403. Next, the configuration of RFID 100 that can be applied in the RFID system described above will be described. FIG. 5 is a configuration diagram showing a basic configuration of RFID used in the RFID system.
[0117] 図 5に示すように、 RFID200は、電源再生回路 510、 MPU(Micro Processing Unit )520、変調 SW部 530、発振器 540、メモリ 550などで構成されている。  As shown in FIG. 5, the RFID 200 includes a power regeneration circuit 510, an MPU (Micro Processing Unit) 520, a modulation SW unit 530, an oscillator 540, a memory 550, and the like.
[0118] MPU520は、変調 ·復調 LSIからなり、復調部 521、判定部 522、変調部 523で構 成されている。  [0118] The MPU 520 includes a modulation / demodulation LSI, and includes a demodulation unit 521, a determination unit 522, and a modulation unit 523.
[0119] 図 5において、 RFID200は、まず、図 4に示したリーダ 100から送信される送信波 をアンテナ 560で受信する。  In FIG. 5, RFID 200 first receives a transmission wave transmitted from reader 100 shown in FIG.
[0120] アンテナ 560が受信した受信波は、電源再生回路 510、 MPU520,及び変調 SW[0120] The received wave received by the antenna 560 includes the power regeneration circuit 510, the MPU 520, and the modulation SW.
530にそれぞれ分配される。 Each is distributed to 530.
[0121] 電源再生回路 510は、分配された受信波を整流回路(不図示)で整流して RFID2[0121] The power regeneration circuit 510 rectifies the distributed received wave with a rectifier circuit (not shown) to generate RFID2
00を動作させるための起電力を生成する。 Generate electromotive force to operate 00.
[0122] 電源再生回路 510により生成された起電力は、 MPU520、発振器 540及びメモリ 5[0122] The electromotive force generated by the power regeneration circuit 510 includes the MPU 520, the oscillator 540, and the memory 5
50などに電源として供給される。 50 is supplied as a power source.
[0123] 発振器 540は、 MPU520の動作クロックの役割を持ち、受信波に載せられている コマンドの復調、及び RFID200が反射する応答波の変調レートを作成するために使 用される。 [0123] The oscillator 540 serves as an operation clock of the MPU 520, and is used to demodulate a command placed on the received wave and create a modulation rate of the response wave reflected by the RFID 200.
[0124] MPU520の復調部 521は、コマンド送信期間(図 3参照)において受信波の包絡 線検波を行い、受信波に載せられてレ、るコマンドを復調する。  [0124] The demodulation unit 521 of the MPU 520 performs envelope detection of the received wave during the command transmission period (see FIG. 3), and demodulates the command that is placed on the received wave.
[0125] MPU520の半 IJ定部 522は、復調部 521で復調されたコマンドに応じて、送信及び 応答受信期間(図 3参照)に応答する内容を判断し、応答波を反射するか否かを判 定する。 [0125] The semi-IJ fixed unit 522 of the MPU 520 determines whether to respond to the transmission and response reception period (see FIG. 3) according to the command demodulated by the demodulation unit 521, and whether to reflect the response wave. Is determined.
[0126] ここで、復調部 521で復調されたコマンドにより、リーダ 100から本 RFID200に対し てタグデータの応答が指定されている場合には、メモリ 550に格納されているタグデ ータを MPU510の変調部 523で読み出す。  Here, when a response of tag data is specified from the reader 100 to the RFID 200 by the command demodulated by the demodulator 521, the tag data stored in the memory 550 is stored in the MPU 510. Read by modulation section 523.
[0127] MPU510の変調部 523は、メモリ 550から読み出したタグデータに応じて、変調 S W部 530を制御することで本 RFID200が反射する応答波に変調をカ卩える。  [0127] The modulation unit 523 of the MPU 510 controls the modulation SW unit 530 according to the tag data read from the memory 550, and thereby modulates the response wave reflected by the RFID 200.
[0128] このようにして変調された応答波は、アンテナ 560によりリーダ 100に向けて放射さ れる。 [0128] The response wave modulated in this way is radiated toward the reader 100 by the antenna 560. It is.
[0129] このように、 RFID200は、リーダ 100力 のキャリアウェーブ CWを受信して電源が 入れば、復調部 521の復調回路が動くので、リーダ 100からコマンドが来たときには 復調部 521でコマンドの復調が行われる。  [0129] In this way, when the RFID 200 receives the carrier wave CW of the reader 100 power and the power is turned on, the demodulation circuit of the demodulator 521 operates. Therefore, when a command comes from the reader 100, the demodulator 521 Demodulation is performed.
[0130] 次いで、判定部 522で応答すべきかが判断できると、変調部 523で内部に保持し ているメモリ 550に応じて変調 SW (スィッチ)部 530の変調スィッチを ONZOFFする  [0130] Next, when the determination unit 522 can determine whether or not to respond, the modulation switch of the modulation SW (switch) unit 530 is turned ON / OFF according to the memory 550 held inside the modulation unit 523.
[0131] RFID200は、上述のように変調 SW部 530の変調スィッチを ONZ〇FFすることで 、受信した電波(リーダ 100からの送信波)を応答波として反射する。 The RFID 200 reflects the received radio wave (transmitted wave from the reader 100) as a response wave by turning on the modulation switch of the modulation SW unit 530 as described above.
[0132] なお、 RFID200は、復調部 521で復調したコマンド力 判定部 522で自分宛のコ マンドでないと判定した場合には、復調したコマンドの指示を無視して待機する。  [0132] If the command power determination unit 522 demodulated by the demodulation unit 521 determines that the command is not a command addressed to itself, the RFID 200 ignores the instruction of the demodulated command and stands by.
[0133] 図 6は、 RFIDシステムで用いるクロック再生型の RFIDの基本的な構成を示す構成 図である。  FIG. 6 is a configuration diagram showing a basic configuration of a clock recovery type RFID used in the RFID system.
[0134] 図 6に示すように、クロック再生型の RFID200は、アンテナ 560が受信した受信波 力 クロックを抽出するクロック抽出部 610を備えている。  As shown in FIG. 6, the clock recovery type RFID 200 includes a clock extraction unit 610 that extracts the received wave clock received by the antenna 560.
[0135] 本 RFID200の受信波は、 ASK変調であるので、変調に関わらず搬送波周波数が 同じである。 [0135] Since the received wave of the RFID 200 is ASK modulated, the carrier frequency is the same regardless of the modulation.
[0136] つまり、本 RFID200においては、図 3に示した 3つの期間共に同じ周波数であるの で、アンテナ 560が受信した受信波からクロック抽出及びクロック再生することが可能 である。  That is, in the RFID 200, since the three frequencies shown in FIG. 3 have the same frequency, clock extraction and clock recovery can be performed from the received wave received by the antenna 560.
[0137] 従って、このクロック再生型の RFID200では、変調レートをリーダ 100のクロック精 度で操作させることが可能となる。  Therefore, in this clock regeneration type RFID 200, the modulation rate can be operated with the clock accuracy of the reader 100.
[0138] 上述のように、図 5に示した RFID200では、来た電波を内部で持っているクロック で復調するようにしている。 [0138] As described above, the RFID 200 shown in Fig. 5 demodulates the incoming radio wave with the clock that it has inside.
[0139] 一方、図 6に示した RFID200は、内部でクロックは持っている力 来た電波からクロ ックを抽出して、抽出したクロックを内部で再生して変調及び復調を行っている。 On the other hand, the RFID 200 shown in FIG. 6 extracts the clock from the strong electric wave that the clock has, and regenerates the extracted clock to perform modulation and demodulation.
[0140] ここで、図 5に示した RFID200では、内部で持っているクロックで応答の〇NZ〇F[0140] Here, RFID200 shown in Fig. 5 responds with the internal clock.
Fをしているので、 RFID200が持っているクロック精度での変調精度になる。 [0141] これに対し、図 6に示した RFID200では、来た電波の周波数を再生しているので、 リーダ 100側のクロックに同期した ON/OFFの変調ができ、応答する変調波も周波 数同期することができる。 Since it is F, it becomes the modulation accuracy with the clock accuracy that RFID200 has. [0141] On the other hand, the RFID 200 shown in Fig. 6 reproduces the frequency of the incoming radio wave, so it can be modulated ON / OFF in synchronization with the clock on the reader 100 side, and the modulated wave that responds to the frequency. Can be synchronized.
[0142] 次に、 RFID200の変調 SW部 530の動作について説明する。図 7は、 RFIDに入 つてきた搬送波の振幅を変動させる場合の変調 SW部の動作説明図である。図 8は、 RFIDに入ってきた搬送波の位相を変動させる場合の変調 SW部の動作説明図であ る。  Next, the operation of the modulation SW unit 530 of the RFID 200 will be described. FIG. 7 is an explanatory diagram of the operation of the modulation SW unit when the amplitude of the carrier wave entering the RFID is varied. FIG. 8 is an explanatory diagram of the operation of the modulation SW unit when the phase of the carrier wave entering the RFID is changed.
[0143] RFID200の応答期間は、クロックを基準に受信波を PSK (または ASK)変調する  [0143] During the response period of RFID200, the received wave is PSK (or ASK) modulated based on the clock
[0144] ここで、 RFID200に入ってきた搬送波を ASK変調して変調送信する場合には、図 [0144] Here, when the carrier wave that has entered RFID 200 is ASK-modulated and transmitted,
7に示すように、内部クロックと送信データをもとに、受信波の振幅を lZOの 2値で変 調して応答波を反射する。  As shown in Fig. 7, based on the internal clock and transmission data, the amplitude of the received wave is modulated by the binary value of lZO and the response wave is reflected.
[0145] つまり、この場合には、図 7において、入ってきた搬送波に対して、メモリ 550の内部 で持っている(1 , 0, 1, · · · )パルスからなるデータ(タグデータ)に応じて、変調スイツ チ 701を ON/OFFする。 That is, in this case, in FIG. 7, the data (tag data) composed of (1, 0, 1,...) Pulses held in the memory 550 with respect to the incoming carrier wave in FIG. In response, the modulation switch 701 is turned ON / OFF.
[0146] 変調スィッチ 701が ONしてグランドにショートすると、搬送波の振幅が 0になり、反 射する応答波の振幅が一瞬縮む。 [0146] When modulation switch 701 is turned ON and shorted to ground, the amplitude of the carrier wave becomes 0, and the amplitude of the reflected response wave momentarily shrinks.
[0147] また、変調スィッチ 701が OFFすると、ショートしなくなり、入ってきた搬送波がその ままスノレーする。 [0147] When modulation switch 701 is turned OFF, the short circuit does not occur and the incoming carrier is snored as it is.
[0148] このように、本例で用いる RFID200は、変調スィッチ 701を ON/OFFすることで、 搬送波を変調してメモリ 550の内部で持っているタグデータを載せた応答波を出力( 反射)する。  [0148] As described above, the RFID 200 used in the present example outputs (reflects) a response wave carrying the tag data held in the memory 550 by modulating the carrier wave by turning ON / OFF the modulation switch 701. To do.
[0149] 一方、 RFID200に入ってきた搬送波を PSK変調して変調送信する場合には、図 8 に示すように、内部クロックと送信データをもとに、受信波の位相を反転/非反転の 2 値で変調して応答波を反射する。  [0149] On the other hand, when the carrier wave that has entered RFID 200 is modulated and transmitted by PSK modulation, the phase of the received wave is inverted / non-inverted based on the internal clock and transmission data as shown in Fig. 8. Modulates with a binary value and reflects the response wave.
[0150] つまり、この場合には、図 8において、変調スィッチ 801を ON/OFFして、入ってき た電波を終端にするか開放端にするかで搬送波の位相を 180度反転させて応答波 を出力(反射)する。 [0151] ここで、変調スィッチ 801が ONのときは、搬送波の位相が 180度反転し、応答波が 逆位相となって反射される。 In other words, in this case, in FIG. 8, the modulation switch 801 is turned ON / OFF, and the phase of the carrier wave is inverted by 180 degrees depending on whether the incoming radio wave is terminated or opened. Is output (reflected). [0151] Here, when modulation switch 801 is ON, the phase of the carrier wave is inverted by 180 degrees, and the response wave is reflected in the opposite phase.
[0152] このように、本例で用いる RFID200は、変調スィッチ 701ほたは 801)を ON/OF[0152] As described above, the RFID 200 used in this example turns ON / OF the modulation switch 701 or 801).
Fするだけで、搬送波を簡単に変調してメモリ 550の内部で持っているタグデータを 載せた応答波を出力(反射)することができるので、簡素かつ安価な構成で実現でき る。 By simply F, the carrier wave can be easily modulated and the response wave carrying the tag data held in the memory 550 can be output (reflected), which can be realized with a simple and inexpensive configuration.
[0153] ところで、上述のようなリーダ 100及び RFID200を用いた RFIDシステムでは、リー ダ 100と RFID200とを長距離で交信するように配置した場合、リーダ 100が RFID2 00を読み込む場合に、リーダ 100から送信されるコマンド送信波が RFID200へ届 レ、ても、 RFID200が反射する応答波が弱いため、 RFID200からの応答波がリーダ 100へ届かないことがある。  By the way, in the RFID system using the reader 100 and the RFID 200 as described above, when the reader 100 and the RFID 200 are arranged to communicate with each other over a long distance, when the reader 100 reads the RFID 2000, the reader 100 Even if the command transmission wave transmitted from the RFID 200 reaches the RFID 200, the response wave from the RFID 200 may not reach the reader 100 because the response wave reflected by the RFID 200 is weak.
[0154] このリーダ 100と RFID200との通信距離を伸ばす通信方法としては、前述したよう に、リーダ 100の送信波に拡散符号を掛け算して送信波をスペクトル拡散変調するこ とが有効である。  [0154] As a communication method for extending the communication distance between the reader 100 and the RFID 200, as described above, it is effective to multiply the transmission wave of the reader 100 by the spread code and perform spread spectrum modulation on the transmission wave.
[0155] し力 ながら、このような通信方法では、リーダ 100から送信される送信波がスぺタト ル拡散変調されているため、 RFID200がリーダ 100から送信されるコマンドを認識 することができない。  However, in such a communication method, since the transmission wave transmitted from the reader 100 is subjected to spectral spread modulation, the RFID 200 cannot recognize the command transmitted from the reader 100.
[0156] このため、この通信方法においては、リーダ 100力ものコマンドを認識してコマンド 指示に従って応答するかどうかを判断するための逆拡散復調回路を RFID200の内 部に設けて、 RFID200をスペクトル拡散変調方式に対応したものにする必要がある  [0156] For this reason, in this communication method, a despreading demodulation circuit for recognizing a command of 100 readers and determining whether to respond according to the command instruction is provided inside the RFID 200, and the RFID 200 is spread spectrum. Must be compatible with the modulation method
[0157] ところ力 逆拡散復調回路を内部に設けた RFID200は、拡散コードの検出も必要 であるためスぺ外ル拡散信号の復調回路の回路規模が大きく複雑になり、消費電 力も多くなる。 [0157] However, since the RFID 200 having a despreading demodulation circuit in the interior also requires detection of a spreading code, the circuit scale of the extra-spread spreading signal demodulation circuit becomes large and complicated, and power consumption also increases.
[0158] また、パッシブ型の RFID200は、電池を内蔵していないため、これに逆拡散復調 回路を設けても、これを安定して駆動できるだけの起電力を確保することが難しい。  [0158] Further, since the passive RFID 200 does not include a battery, it is difficult to secure an electromotive force that can stably drive the passive RFID 200 even if it is provided with a despreading demodulation circuit.
[0159] 従って、スぺクトノレ拡散変調方式を用いた RFIDシステムにおいては、図 7及び図 8 に示したように、変調スィッチ 701ほたは 801)の ON/OFFだけで変調応答できる ASK (または PSK)変調方式の簡単な構成の RFID200と比較して、 RFID200の実 現性に乏しい。 Therefore, in the RFID system using the spectrum spread modulation method, as shown in FIGS. 7 and 8, a modulation response can be made only by turning ON / OFF the modulation switch 701 or 801). Compared with RFID200 with a simple configuration using ASK (or PSK) modulation, RFID200 is less feasible.
[0160] また、クロック抽出を行う RFID200では、スペクトル拡散した信号力 正しくクロック 抽出することが困難となる。  [0160] In addition, with RFID 200 that performs clock extraction, it is difficult to correctly extract the clock with a spread spectrum signal power.
[0161] さらに、スペクトル拡散した信号では、時間軸に対して安定した検波電位を得られ ないため、 RFID200の電源再生回路 510の起電力の変換効率が悪くなる。 [0161] Further, since the spectrum-spread signal cannot obtain a stable detection potential with respect to the time axis, the conversion efficiency of the electromotive force of the power regeneration circuit 510 of the RFID 200 is deteriorated.
[0162] このため、スぺクトノレ拡散変調方式を用いた RFIDシステムにおいては、図 5及び図 [0162] For this reason, in the RFID system using the spectrum spread spectrum modulation method, Figs.
6に示したような簡素で安価な構成の RFID200にそのまま適用できないという問題 があった。  There is a problem that it cannot be directly applied to the RFID 200 having a simple and inexpensive configuration as shown in FIG.
[0163] ところで、現状の RFIDシステムでは、 RFID200の起電力不足でリーダ 100との通 信距離が伸びないため、 RFID200の応答波の強さを強くすることよりかは、一般に R FID200に対して送信波を如何に強く送れるかが検討されている。  [0163] By the way, in the current RFID system, the communication distance with the reader 100 does not increase due to insufficient electromotive force of the RFID 200. Therefore, it is generally better to increase the strength of the response wave of the RFID 200 than to the R FID 200. Studies are underway on how strong transmission waves can be transmitted.
[0164] しかし、将来に視点を置くと、 RFIDデバイス技術の進歩により低電位で動作する M PU520のチップが開発された場合には、リーダ 100と RFIDとの通信距離の問題より も、スぺ外ル拡散変調方式を採ることによる RFID200の回路の複雑化及び消費電 力の増大という問題が支配的になる。  [0164] However, from the perspective of the future, when the chip of the MPU520 that operates at a low potential is developed due to the advancement of RFID device technology, the problem is not the problem of the communication distance between the reader 100 and the RFID. The problem of the complexity of the RFID200 circuit and the increase in power consumption due to the use of the external spread modulation system becomes dominant.
[0165] 例えば、アクティブ型の RFIDの場合には、その応答波を増幅すると無線機になつ てしまう。また、 MPU520を内蔵電池で動作させるセミパッシブ型の RFIDの場合に は、その回路の複雑化及び消費電力の増大が重要な問題となる。  [0165] For example, in the case of an active RFID, when the response wave is amplified, it becomes a radio device. In addition, in the case of a semi-passive RFID that operates the MPU520 with a built-in battery, the complexity of the circuit and the increase in power consumption are important issues.
[0166] セミパッシブ型の RFIDは、図 5及び図 6に示した電源再生回路 510を、リーダ 100 からの受信波ではない別の電源でまかなうもので、この電源としては、例えば、リチウ ム電池のような小型電池、あるいは太陽電池などのような自己発電型の電池が考えら れる。  [0166] The semi-passive RFID uses the power regeneration circuit 510 shown in FIGS. 5 and 6 with another power source that is not a received wave from the reader 100. As this power source, for example, a lithium battery can be used. A self-power generation type battery such as a small battery or a solar battery is conceivable.
[0167] そこで、本発明の一実施の形態に係る RFIDシステムにおいては、 RFID200への コマンドは小回路規模で実現可能な ASK方式で送り、通信距離の長い反射応答波 をリーダ 100が読み込むときのみスペクトル拡散の効果を得るように変調方式を制御 する。  [0167] Therefore, in the RFID system according to the embodiment of the present invention, the command to the RFID 200 is sent by the ASK method that can be realized on a small circuit scale, and only when the reader 100 reads the reflected response wave having a long communication distance. Control the modulation method to obtain the effect of spread spectrum.
[0168] これにより、本例の RFIDシステムにおいては、 RFID200力 図 5及び図 6に示した ような小型で低消費電力の構成を維持したままで、従来と同じコマンド制御ができると 共に、リーダ 100と RFID200との通信距離を伸ばすことが可能となる。 [0168] Thus, in the RFID system of this example, the RFID 200 force is shown in Figs. While maintaining such a compact and low power consumption configuration, the same command control as before can be performed and the communication distance between the reader 100 and the RFID 200 can be extended.
[0169] また、本例の RFIDシステムにおいては、リーダ 100に CW加算手段を設けることで[0169] Further, in the RFID system of this example, the reader 100 is provided with CW addition means.
、スペクトル拡散しても、通信期間においてリーダ 100が RFID200に対して安定した 電源供給用の送信波を出力することができ、またリーダ 100からクロック抽出が可能 な送信波を出力することができる。 Even if the spectrum is spread, the reader 100 can output a stable transmission wave for power supply to the RFID 200 during the communication period, and can output a transmission wave from which the clock can be extracted.
[0170] また、本例の RFIDシステムにおいては、リーダ 100の送信波の拡散率を大きく得る ために、 RFID200の反射応答波を読み込む場合のみ、使用可能な複数の搬送波 周波数帯域全体に拡散するようにしている。 [0170] Also, in the RFID system of this example, in order to obtain a high spreading factor of the transmission wave of the reader 100, only when the reflected response wave of the RFID 200 is read, it is spread over the plurality of usable carrier frequency bands. I have to.
[0171] このように、本例の RFIDシステムにおいては、リーダ 100の送信波のみで上述の 問題を解決することができ、 RFID200としては、図 5及び図 6に示した ASK受信、 PAs described above, in the RFID system of this example, the above-described problem can be solved only by the transmission wave of the reader 100, and the RFID 200 has the ASK reception, P shown in FIG. 5 and FIG.
SK反射型の回路で通信するように構成することができる。 It can be configured to communicate with a SK reflection type circuit.
[0172] 次に、本例の RFIDシステムで用いるリーダの構成について説明する。図 9は、本 発明の一実施の形態に係る RFIDシステムにおけるリーダの構成を示す構成図であ る。 Next, the configuration of the reader used in the RFID system of this example will be described. FIG. 9 is a configuration diagram showing the configuration of the reader in the RFID system according to the embodiment of the present invention.
[0173] 図 9に示すように、本例のリーダ 900は、図 4に示したリーダ 100と同様、 ASK変調 部 401、ロールオフフィルタ 402, 407、発振器 403、直交変調器 404、変調方式制 御部 405、直交復調部 406を備えている。  As shown in FIG. 9, the reader 900 of this example is similar to the reader 100 shown in FIG. 4. The ASK modulation unit 401, the roll-off filters 402 and 407, the oscillator 403, the quadrature modulator 404, the modulation scheme control, and the like. A control unit 405 and an orthogonal demodulation unit 406 are provided.
[0174] また、本例のリーダ 900は、スペクトル拡散器 901、逆拡散器 902、 CW加算器 903[0174] Also, the reader 900 of this example includes a spectrum spreader 901, a despreader 902, and a CW adder 903.
、アッテネーター(ATT) 904などを備えている。 , And attenuator (ATT) 904.
[0175] 図 9において、 ASK変調部 401は、スィッチ SW1の切り替えにより選択した送信デ ータまたは固定データを ASK変調し、送信波として RFID200の制御コマンドを送る In FIG. 9, ASK modulation section 401 ASK modulates transmission data or fixed data selected by switching SW 1 and sends a control command of RFID 200 as a transmission wave
[0176] スペクトル拡散器 901は、スィッチ SW2の切り替えにより選択した長周期拡散コード [0176] Spectrum spreader 901 is a long-period spread code selected by switching switch SW2.
(スクランブルコード)を、 ASK変調部 401で変調した送信データまたは固定データ に掛け合わせる。  (Scramble code) is multiplied by the transmission data or fixed data modulated by ASK modulation section 401.
[0177] ロールオフフィルタ 402は、 ASK変調部 401で ASK変調し、スペクトル拡散器 901 で長周期拡散コード (スクランブルコード)を掛け合わせた送信データまたは固定デ ータに対して不要な周波数を抑制するための帯域制限を行う。 [0177] The roll-off filter 402 is ASK-modulated by the ASK modulator 401, and is transmitted data or a fixed data obtained by multiplying the spectrum spreader 901 by a long-period spread code (scramble code). The band is limited to suppress unnecessary frequencies.
[0178] 直交変調器 404は、発振器 403が出力する搬送波で ASK変調した送信データま たは固定データを RF周波数帯に直交変調して出力する。  [0178] Quadrature modulator 404 orthogonally modulates transmission data or fixed data ASK-modulated with the carrier wave output from oscillator 403 into the RF frequency band and outputs the result.
[0179] CW加算器 903は、発振器 403が出力する搬送波(キャリアウェーブ CW)をアツテ ネーター (ATT) 904により減衰させた任意の電力比率で送信波(RF出力)に加算 する。 [0179] The CW adder 903 adds the carrier wave (carrier wave CW) output from the oscillator 403 to the transmission wave (RF output) at an arbitrary power ratio attenuated by the attenuator (ATT) 904.
[0180] 直交復調器 406は、 RFID200から反射される応答波 201である RF入力を、発振 器 403が出力する搬送波で直交復調する。  [0180] The quadrature demodulator 406 performs quadrature demodulation on the RF input, which is the response wave 201 reflected from the RFID 200, with the carrier wave output from the oscillator 403.
[0181] ローノレォフフイノレタ 407は、直交復調器 406復調した受信データに対して不要な周 波数を抑制するための帯域制限を行う。 Ronolev Finnoletter 407 performs band limitation for suppressing unnecessary frequency with respect to the reception data demodulated by quadrature demodulator 406.
[0182] 逆拡散器 902は、直交復調器 406復調した受信データを逆拡散して RFID200の タグデータを読み出す。 [0182] The despreader 902 despreads the reception data demodulated by the quadrature demodulator 406 and reads the tag data of the RFID 200.
[0183] 本例のリーダ 900は、 RFID200に対する送信波を、コマンド送信期間、送信及び 応答受信期間に適応的に変調方式を変えて送ることで、 RFID200の反射応答波の 受信可能な距離を伸ばす。 [0183] The reader 900 of this example extends the receivable distance of the reflected response wave of the RFID 200 by transmitting the transmission wave to the RFID 200 by changing the modulation method adaptively in the command transmission period, transmission and response reception period. .
[0184] 本例のリーダ 900においては、まず、前述した CW送信期間では、 ASK変調デー タを常に固定値、拡散コードも常に固定値にし、搬送波(キャリアウェーブ CW)の加 算をオフすることで、図 4に示したリーダ 100と同じキャリアウェーブ CWの送信を行う こと力 Sできる。つまり、 CW送信期間では、拡散コードを固定値にすることで拡散を行 わない。 [0184] In the reader 900 of this example, first, in the CW transmission period described above, the ASK modulation data is always a fixed value, the spreading code is always a fixed value, and the addition of the carrier wave (carrier wave CW) is turned off. Therefore, it is possible to transmit the same carrier wave CW as the reader 100 shown in FIG. In other words, in the CW transmission period, spreading is not performed by setting the spreading code to a fixed value.
[0185] 次に、コマンド送信期間の動作では、 ASK変調データは送信データ(コマンドデー タ)、拡散コードは常に固定値にし、搬送波(キャリアウェーブ CW)の加算はオフする ことで、図 4に示したリーダ 100と同様に ASK変調を行う。  [0185] Next, in the operation of the command transmission period, ASK modulation data is always transmitted data (command data), spreading code is always fixed, and carrier wave (carrier wave CW) addition is turned off. ASK modulation is performed in the same way as the reader 100 shown.
[0186] これにより、本例のリーダ 900においては、図 4に示したリーダ 100の RFIDシステム と同じ距離に置かれた RFID200までコマンドが届くことになり、図 4に示したリーダ 1 00の RFIDシステムと同じように、 RFID200がコマンドを認識することができる。  Thus, in the reader 900 of this example, the command reaches the RFID 200 placed at the same distance as the RFID system of the reader 100 shown in FIG. 4, and the RFID of the reader 100 shown in FIG. As with the system, the RFID 200 can recognize commands.
[0187] 次に、本例のリーダ 900における送信及び応答受信期間の動作について説明する 。ここで、まず図 5に示した自走クロック型の RFID200の場合を考える。 [0188] 本例のリーダ 900における送信及び応答受信期間においては、応答波を得る場合 、リーダ 900では送信波に拡散コードをかけることでスペクトル拡散を行いキャリアゥ エーブ CWの加算はオフする。 Next, the operation during the transmission and response reception period in the reader 900 of this example will be described. First, consider the case of the self-running clock type RFID 200 shown in FIG. In the transmission and response reception periods in the reader 900 of this example, when obtaining a response wave, the reader 900 spreads the spectrum by applying a spreading code to the transmission wave, and the addition of the carrier wave CW is turned off.
[0189] RFID200は、リーダ 900力、らの電波を、内部クロックを基準に情報データを PSK ( または ASK)変調し、応答波として反射する。  [0189] The RFID 200 modulates the information data of the reader 900 with the PSK (or ASK) information based on the internal clock and reflects it as a response wave.
[0190] ここで、リーダ 900の送信波は、 RFID200へ到達し、 RFID200から反射応答波と してリーダ 900へ到達するので、リーダ 900と RFID200間を往復することになる。従 つて、リーダ 900の送信波は、送信から受信までの間に往復の伝播ロスを生じる。  Here, since the transmission wave of the reader 900 reaches the RFID 200 and reaches the reader 900 as a reflection response wave from the RFID 200, the reader 900 reciprocates between the reader 900 and the RFID 200. Therefore, the transmission wave of the reader 900 causes a round-trip propagation loss between transmission and reception.
[0191] リーダ 900の送信波に伝播ロスが生じた場合には、信号対干渉雑音比(SIR)がー 定の値以下になると正しい情報データに対する誤り率が大きくなり復調できなる。  [0191] When a propagation loss occurs in the transmission wave of the reader 900, if the signal-to-interference and noise ratio (SIR) falls below a certain value, the error rate for correct information data increases and demodulation is impossible.
[0192] この復調ができなくなる SIR (信号対干渉量比率)値は、 ASK変調のみの場合より もスペクトル拡散された ASK変調のほうが小さくなる。これは、拡散符号と相関の無 い干渉や雑音を逆拡散により拡散利得分だけ小さくできるからである。  [0192] The SIR (signal-to-interference amount ratio) value at which this demodulation cannot be performed is smaller in the spectrum spread ASK modulation than in the case of only the ASK modulation. This is because interference and noise uncorrelated with the spreading code can be reduced by the spreading gain by despreading.
[0193] 従って、本例の RFIDシステムにおいては、スペクトル拡散を変調及び復調に用い ることで、反射応答波の通信距離が伸びることになる。  Therefore, in the RFID system of this example, the communication distance of the reflected response wave is extended by using spread spectrum for modulation and demodulation.
[0194] ところで、上述のようなスぺ外ル拡散を行う場合には、一般的に使用する帯域幅よ りも広い帯域幅が必要になる力 本例の RFIDシステムにおいては、以下に説明する ように、使用する帯域幅が同じでも拡散利得を得ることができる。  [0194] By the way, when performing extra-spread spreading as described above, a force that requires a wider bandwidth than the generally used bandwidth is described below in the RFID system of this example. As described above, the spreading gain can be obtained even when the bandwidth used is the same.
[0195] 図 10Aは、帯域 1MHzで使用している ASK変調波の RF送信波形を示す波形図 である。また、図 10Bは、帯域 1MHzで使用している ASK変調波の RF送信波のェ ンぺロープを検波して得られた検波波形を示す波形図である。  [0195] FIG. 10A is a waveform diagram showing an RF transmission waveform of an ASK modulated wave used in a band of 1 MHz. FIG. 10B is a waveform diagram showing a detection waveform obtained by detecting the envelope of the RF transmission wave of the ASK modulation wave used in the band of 1 MHz.
[0196] リーダ 900が図 10Aに示すようなコマンドを送ると、 RFID200側では、 ASK変調波 を検波して図 10Bに示すようなエンベロープを取り出す。  When the reader 900 sends a command as shown in FIG. 10A, the RFID 200 detects the ASK modulated wave and takes out the envelope as shown in FIG. 10B.
[0197] このとき、振幅変調における(1 , 0)の立ち上がりが十分に速くないと、 RFID200の 判定部 522が(1, 0)の判定を誤ることがある。 [0197] At this time, if the rise of (1, 0) in amplitude modulation is not fast enough, the determination unit 522 of the RFID 200 may erroneously determine (1, 0).
[0198] つまり、 RFIDシステムにおいては、リーダ 900が RFID200にコマンドを送るとき、 振幅変調における(1, 0)のエッジを急峻にしないといけないという決まりがある。 That is, in the RFID system, when the reader 900 sends a command to the RFID 200, there is a rule that the edge of (1, 0) in amplitude modulation must be sharp.
[0199] このように振幅変調における(1, 0)のエッジを急峻にすると、図 10Cに示すスぺタト ル波形のように、 100kbps (100Kのチップレート)で動かしているにもかかわらず、 帯域幅を 1MHzとかの 10倍位の帯域幅を占有してしまう。これは、図 10Bに示すよう に、振幅変調における(1, 0)の立ち上がりエッジを速くせざる得ないことによる。 [0199] When the edge of (1, 0) in the amplitude modulation is sharpened in this way, the spectrum shown in Fig. 10C is obtained. As shown in the waveform, even though it is moving at 100kbps (100K chip rate), it occupies about 10 times the bandwidth of 1MHz. This is because the rising edge of (1, 0) in amplitude modulation must be accelerated as shown in FIG. 10B.
[0200] このように、振幅変調における(1, 0)のデータの切り替わりエッジを急峻にすること で、 RFID200の判定部 522力 ΐ, 0)のデータ判定を誤る確率が減る。  [0200] In this way, by making the switching edge of the (1, 0) data in the amplitude modulation steep, the probability of erroneous data determination by the determination unit 522 force ΐ, 0) of the RFID 200 is reduced.
[0201] また、振幅変調における(1, 0)のデータの切り替わりエッジを急峻にすると、周波 数利用帯域幅が広がる。  [0201] In addition, if the switching edge of the (1, 0) data in the amplitude modulation is sharpened, the frequency use bandwidth is widened.
[0202] 図 10Cは、 100kbpsの ASK変調波を帯域 1MHzで使用している様子をあらわす 波形図である。  [0202] FIG. 10C is a waveform diagram showing a state where a 100 kbps ASK modulated wave is used in a band of 1 MHz.
[0203] ここで、図 11Aに示すように、 ASK変調波の RF送信波の(1, 0)のエッジを鈍らせ て送信すれば、図 11Cに示すように、 100kbpsに対して 0. 7MHzのように帯域幅を 狭めることができ、スペクトルを持たせた帯域幅を 70%に押えることができる。  [0203] Here, as shown in FIG. 11A, if the (1, 0) edge of the RF transmission wave of the ASK modulated wave is dulled and transmitted, as shown in FIG. Thus, the bandwidth can be narrowed, and the bandwidth with the spectrum can be suppressed to 70%.
[0204] ところが、 100kbpsの ASK変調波を帯域 0. 7MHzで使用して周波数帯域幅を狭 くすると、 ASK変調した波形の立ち上がりが遅くなるため、図 11Bに示すように、検波 波形が(1, 0)を判断するに十分なエッジを得られなくなり、 RFID200が十分に動か なくなって判定部 522で(1, 0)を判定しにくくなる。 [0204] However, if a 100 kbps ASK modulated wave is used with a bandwidth of 0.7 MHz and the frequency bandwidth is narrowed, the rise of the ASK modulated waveform is delayed, so the detected waveform is (1 , 0) cannot be obtained, and the RFID 200 does not move sufficiently, making it difficult for the determination unit 522 to determine (1, 0).
[0205] このため、実際には、リーダ 900が 100kbpsの ASK変調波を送信する場合でも、 約 1MHzの帯域を必要とする。 [0205] Therefore, actually, even when the reader 900 transmits an ASK modulated wave of 100 kbps, a band of about 1 MHz is required.
[0206] このように、エンベロープ検波を行う RFID200に対する ASK変調波は、変調レート に対して約 10倍もの帯域幅を使用しなければならない。 [0206] As described above, the ASK modulation wave for the RFID 200 that performs envelope detection must use about 10 times the bandwidth of the modulation rate.
[0207] 一方で、スペクトル拡散を行う場合、送信及び応答受信期間では、送信波は ASK 変調の必要性がなく RFID200もエンベロープ検波すら行う必要がない。 [0207] On the other hand, when performing spread spectrum, the transmission wave does not need to be ASK modulated during the transmission and response reception period, and the RFID 200 need not even perform envelope detection.
[0208] このとき、図 12に示すように、拡散コードを用いて 8倍のスペクトル拡散を行い 800k bpsのレートに上げてロールオフフィルタ 402にて帯域制限を行えば、 1MHzの帯域 で送信することが可能である。 [0208] At this time, as shown in FIG. 12, if the spread code is used to spread the spectrum 8 times, the rate is increased to 800 kbps, and the band is limited by the roll-off filter 402, the transmission is performed in the 1 MHz band. It is possible.
[0209] つまり、本例の RFIDシステムにおいてスペクトル拡散を適用する場合には、 100k bpsの ASKに対して 8倍の 800Kまで 8倍のスペクトル拡散を行うことが必要になると 思われる。 [0210] し力し、このときに 800K分の帯域を使っても、実際には ASKの時に 100kbpsで 1 MHzを使っているのとほぼ同じ位の周波数帯域を持っていれば、十分に 8倍のスぺ タトル拡散を行える。 [0209] In other words, when applying spread spectrum in the RFID system of this example, it seems necessary to perform spread of 8 times to 800K, which is 8 times of ASK of 100k bps. [0210] However, even if the band for 800K is used at this time, if it has a frequency band almost the same as that used for 1 MHz at 100kbps in ASK, it is 8 Double spectral diffusion.
[0211] 従って、本例の RFIDシステムでは、上述のように 8倍スペクトル拡散を適用して 18 db分の受信感度を上げるようにしても同じ帯域で送信することができ、帯域を余分に 使うという問題もない。  [0211] Therefore, in the RFID system of this example, even if the reception sensitivity of 18 db is increased by applying 8 times spread spectrum as described above, transmission can be performed in the same band, and an extra band is used. There is no problem.
[0212] このように、本例の RFIDシステムにおいては、上述のようなスペクトル拡散変調方 式を用いることで、使用する周波数帯域幅を広げずにスペクトル拡散通信を行レ、、リ ーダ 900と RFID200との通信距離を伸ばすことができる。  [0212] In this way, in the RFID system of this example, by using the spread spectrum modulation method as described above, spread spectrum communication can be performed without widening the frequency bandwidth to be used. Can extend the communication distance between RFID and RFID200.
[0213] また、図 6に示したクロック再生(同期クロック)型の RFID200の場合の送信及び応 答受信期間では、図 5に示した RFID200の場合と同様に、リーダ 900の送信時にお いて、干渉や雑音に強いスペクトル拡散を行うことで、リーダ 900と RFID200との通 信距離を伸ばすことができる。 [0213] In the transmission and response reception period in the case of the clock recovery (synchronous clock) type RFID 200 shown in FIG. 6, as in the case of the RFID 200 shown in FIG. By performing spectrum spread that is resistant to interference and noise, the communication distance between the reader 900 and the RFID 200 can be extended.
[0214] ここで、 RFID200は、リーダ 900の送信波に対して周波数同期した内部クロックを 基準に反射応答波として変調するが、スペクトル拡散した送信波でクロックを同期で きない場合がある。 [0214] Here, RFID 200 modulates the reflected response wave based on the internal clock frequency-synchronized with the transmission wave of reader 900, but the clock may not be synchronized with the spread spectrum transmission wave.
[0215] このような場合には、リーダ 900は、 CW加算器 903により送信波にキャリアゥエー ブ CWを一定比率で加算することで、 RFID200がクロック同期を取り易い信号で送 信する。  [0215] In such a case, the reader 900 adds the carrier wave CW to the transmission wave at a constant ratio by the CW adder 903, so that the RFID 200 transmits a signal that facilitates clock synchronization.
[0216] このように、 CW加算器 903により送信波にキャリアウェーブ CWを一定比率で加算 することは、単にスペクトル拡散する場合に対して、総合出力電力を一定に換算した 送信波の PAPR (ピーク電力に対するアベレージング電力の比率)を低下させる効果 力 Sあり RFID200の電力供給回路への安定した電力供給が可能となる。  [0216] In this way, adding the carrier wave CW to the transmission wave at a constant ratio by the CW adder 903 is equivalent to simply transmitting the PAPR (peak The effect of reducing the ratio of the averaged power to the power is S. Stable power supply to the power supply circuit of the RFID 200 is possible.
[0217] なお、 CW力卩算器 903により送信波に加算されたキャリアウェーブ CWは、スぺタト ル拡散された信号を復調する際の妨害成分になるが、リーダ 900の受信回路の逆拡 散回路である逆拡散器 902の拡散率に応じて除去される。  Note that the carrier wave CW added to the transmission wave by the CW power calculator 903 becomes an interference component when demodulating the spectrum-spread signal, but it is inversely expanded in the receiving circuit of the reader 900. It is removed according to the spreading factor of the despreader 902 which is a spreading circuit.
[0218] また、本例の RFIDシステムにおいては、送信と受信が同じリーダ 900で行なわれる ので、妨害成分になるキャリアウェーブ CWを、受信部で相殺するような演算回路を 設けて除去することも可能である。 [0218] Further, in the RFID system of this example, since transmission and reception are performed by the same reader 900, an arithmetic circuit that cancels out the carrier wave CW that becomes an interference component at the reception unit is provided. It can also be provided and removed.
[0219] このように、本例の RFIDシステムにおいては、図 9に示したリーダ 900と図 5または 図 6に示した RFID200を使用することで、 ASK変調したコマンドを受信し、反射応 答期間に情報を PSK (または ASK)変調して反射する RFID200において、 RFID2 00の受信部及び送信部にスペクトル拡散の変調方式を意識することなく適応できる  [0219] In this way, in the RFID system of this example, by using the reader 900 shown in FIG. 9 and the RFID 200 shown in FIG. 5 or FIG. 6, an ASK-modulated command is received, and the reflection response period. In RFID200 that reflects and modulates PSK (or ASK) information, it can be applied to RFID200 receiver and transmitter without being aware of the spread spectrum modulation method.
[0220] 従って、本例の RFIDシステムにおいては、低消費電力で小型な既存の RFID200 を、そのまま使用してリーダ 900との通信距離を伸ばすことができる。 Therefore, in the RFID system of this example, the existing RFID 200 with low power consumption and small size can be used as they are, and the communication distance with the reader 900 can be extended.
[0221] さらに、本例の RFIDシステムにおいては、 CW加算器 903によりリーダ 900の送信 波にキャリアウェーブ CWを加算することで、図 6のようなクロック抽出を行うクロック再 生型の RFID200でも受信信号から正しくクロック抽出が可能であり、電源再生回路 5[0221] Furthermore, in the RFID system of this example, the CW adder 903 adds the carrier wave CW to the transmission wave of the reader 900, so that the clock reproduction type RFID 200 that performs clock extraction as shown in Fig. 6 also receives it. The clock can be correctly extracted from the signal.
10においても時間軸に対して安定した検波電位を得ることができるようになる。 Even at 10, a stable detection potential can be obtained with respect to the time axis.
[0222] 次に、前述のスペクトル拡散を行った場合に、他のリーダの送信信号を干渉波とみ なして対干渉能力を活かす方法として、複数のリーダ間で CDMA(Code Division Mu ltiple Access)方式を用いる RFIDシステムについて説明する。 [0222] Next, in the case of the above-described spread spectrum, the CDMA (Code Division Multiple Access) method is used between multiple readers as a method of utilizing transmission capability of other readers as an interference wave and taking advantage of the anti-interference capability. An RFID system using the above will be described.
[0223] RFIDシステムにおける RFID200の読み取り方式としては、複数のリーダ間で互い に干渉しあうことがないように、周波数をいくつかのバンドに分割して各リーダ間で別 々のバンドを使用する周波数分割方式を使用している。 [0223] As a reading method of RFID200 in the RFID system, the frequency is divided into several bands so that the readers do not interfere with each other, and separate bands are used between the readers. The frequency division method is used.
[0224] 一方、 RFIDシステムでは、前述のスペクトル拡散により拡散利得を大きくとることで[0224] On the other hand, in the RFID system, the spread gain is increased by the above-described spread spectrum.
、干渉に対する符号復元能力が大きくなる。 The code recovery capability against interference increases.
[0225] そこで、本例の RFIDシステムにおいては、コマンド送信期間は、搬送波周波数を 切替える従来の周波数分割方式を使用し、反射応答期間は、全帯域を使用した CD[0225] Therefore, in the RFID system of this example, the command transmission period uses a conventional frequency division method that switches the carrier frequency, and the reflection response period uses a CD that uses the entire band.
MA方式を用いる。 Use the MA method.
[0226] 図 13Aは、リーダ A,リーダ B、リーダ Cが、各々異なるバンドを使用している様子を あらわす図である。図 13Bは、リーダ A,リーダ B、リーダ Cが、送信及び応答受信期 間のスぺクトノレ拡散を 3つのバンドにまたがるように行なって、複数のバンドを 1つとし て拡散率を上げる通信方式の説明図である。  [0226] FIG. 13A is a diagram showing a state in which reader A, reader B, and reader C use different bands. Fig. 13B shows a communication method in which reader A, reader B, and reader C perform spread spectrum spreading over three bands during transmission and response reception periods, and increase the spreading factor by combining multiple bands into one. It is explanatory drawing of.
[0227] 図 13Bに示すスペクトル拡散方式においては、送信波の拡散率を 3倍大きくするこ とができるので、リーダ 900と RFID200との通信距離をより伸ばすことができる。 [0227] In the spread spectrum method shown in Fig. 13B, the spreading factor of the transmitted wave is increased three times. Therefore, the communication distance between the reader 900 and the RFID 200 can be further extended.
[0228] また、送信及び応答受信期間の送信波をスペクトル拡散するスペクトル拡散方式で は、 3つのリーダ A, B, C間で直交する拡散コードを使用する。  [0228] Also, in the spread spectrum system that spreads the transmission wave in the transmission and response reception periods, spread codes that are orthogonal between the three readers A, B, and C are used.
[0229] このような CDMA方式を採用した RFIDシステムにおいては、 3つのリーダ A, B, C が同時に通信を行っていても互いの送信波を復調時に分離することが可能である。  [0229] In an RFID system employing such a CDMA system, even when three readers A, B, and C are communicating simultaneously, it is possible to separate the transmission waves from each other during demodulation.
[0230] 従って、このような CDMA方式を用いる RFIDシステムにおいては、送信波の拡散 率をより上げることで、リーダ 900と RFID200との通信距離を伸ばすことができる。  Therefore, in such an RFID system using the CDMA system, the communication distance between the reader 900 and the RFID 200 can be increased by further increasing the spreading factor of the transmission wave.
[0231] つまり、リーダ A、リーダ B、リーダ Cで別々の周波数(バンド)を使って通信を行う場 合には、そのままスペクトル拡散を適用すると図 13Aに示すようになるが、実際には 3 つのバンド分の帯域を全て使って、図 13Bに示すような 3倍分拡散率を上げたような 形で使うことで、より通信距離を伸ばすことが可能となる。  [0231] In other words, when communication is performed using different frequencies (bands) for Reader A, Reader B, and Reader C, applying spread spectrum as is is shown in Fig. 13A. It is possible to further extend the communication distance by using all the bands for one band and increasing the spreading factor by 3 times as shown in Fig. 13B.
[0232] このように、リーダ 900がコマンドを送信しているコマンド送信期間は、別々の周波 数を使い、 RFID200の受信の応答を見ている期間のみ、真ん中の周波数で拡散率 を 3倍使う。これにより、リーダ 900の送信波の拡散率をより上げて使うことができる。  [0232] In this way, the command transmission period during which the reader 900 is transmitting commands uses different frequencies, and uses the spreading factor three times at the middle frequency only during the period when the RFID 200 reception response is being viewed. . Thereby, the spreading factor of the transmission wave of the reader 900 can be increased and used.
[0233] ここで、リーダ A,リーダ B,リーダ Cで、長期スクランブルコード(拡散コード)を各々 直交したコード (符号系歹 を使えば、各リーダ A, B, Cを多重した同じ周波数上に 多重しても、復調部分で分離することができるので、 CDMA方式を適用してより拡散 率を上げることができる。  [0233] Here, a long-term scramble code (spreading code) is orthogonalized by reader A, reader B, and reader C (if the code system 歹 is used, the signals A, B, and C are multiplexed on the same frequency. Even if they are multiplexed, they can be separated at the demodulation part, so the spreading factor can be increased by applying the CDMA method.
[0234] なお、本例の RFIDシステムは、例えば、カメラ付き携帯電話で QRコード(二次元 バーコード)を読み取り、読み取ったコード情報から所定のアドレスのホームページを 表示するシステムと同様に、携帯電話に RFID200のリーダ 900を搭載し、小売店の 商品に付けた無線タグなどの RFID200を携帯電話のリーダ 900で読み取ることによ り、タグデータ情報から商品の製造者リストや価格などを読み出すといった用途が考 られる。  [0234] The RFID system of this example is similar to a system that reads a QR code (two-dimensional barcode) with a camera-equipped mobile phone and displays a homepage at a predetermined address from the read code information. The RFID200 reader 900 is installed in the product, and RFID tags such as RFID tags attached to retail store products are read by the mobile phone reader 900, so that the manufacturer's list and price of the product can be read from the tag data information. Is considered.
[0235] これにより、本例の RFIDシステムでは、商品などに付けられた RFID (タグ) 200を 携帯電話のリーダ 900で読み取って RFID200のタグデータ情報を様々に利用して 楽しむことができるようになる。  [0235] As a result, in the RFID system of this example, the RFID (tag) 200 attached to the product or the like can be read with the mobile phone reader 900 and enjoyed using the RFID 200 tag data information in various ways. Become.
[0236] このような用途を想定した場合、携帯電話の中にリーダ 900をどのように搭載するか が課題となるが、本例の RFIDシステムにおけるリーダ 900は、 RFID200へのコマン ドを ASK方式で送信する小回路規模で実現できるので、携帯電話の中にリーダ 900 を容易に搭載することができる。 [0236] How to install the reader 900 in a mobile phone, assuming such applications However, since the reader 900 in the RFID system of this example can be realized on a small circuit scale that transmits the command to the RFID 200 by the ASK method, the reader 900 can be easily installed in the mobile phone. .
[0237] また、複数のリーダ間で CDMA(Code Division Multiple Access)方式を用いる RFI Dシステムの場合には、 CDMA方式の携帯電話の中にリーダ 900を搭載することで 、新たな CDMA方式の通信手段を追加することなく RFIDシステムを構築することが できる。 [0237] In the case of an RFI D system that uses CDMA (Code Division Multiple Access) between multiple readers, a new CDMA communication can be achieved by installing the reader 900 in a CDMA mobile phone. An RFID system can be constructed without adding means.
[0238] 上述のように、本例の RFIDシステムにおいては、リーダ 900がコマンドを送信する コマンド送信期間では、 RFID200が ASK変調でコマンドを受信する。  [0238] As described above, in the RFID system of this example, the RFID 900 receives a command by ASK modulation in the command transmission period in which the reader 900 transmits a command.
[0239] 従って、本例の RFIDシステムにおいては、図 5または図 6に示したような簡素かつ 安価な小規模の回路からなる RFID200で、リーダ 900が送信するコマンドを受信す ること力 Sできる。  [0239] Therefore, in the RFID system of this example, it is possible to receive the command transmitted by the reader 900 with the RFID 200 formed of a simple and inexpensive small circuit as shown in FIG. 5 or FIG. .
[0240] また、本例の RFIDシステムにおいては、リーダ 900が RFID200の応答波を読み 取るときのみ、つまり通信距離が往復の距離となる送信及び受信応答期間のみスぺ タトル拡散を行うようにしてレヽる。  [0240] Further, in the RFID system of this example, the spectrum spread is performed only when the reader 900 reads the response wave of the RFID 200, that is, during the transmission and reception response periods in which the communication distance is a reciprocal distance. Let's go.
[0241] このように、本例の RFIDシステムでは、リーダ 900がコマンドを送るときは、 RFID2 00が ASK変調でコマンドを受信し、リーダ 900が RFID200の応答波を読み取るとき のみスペクトル拡散変調して、リーダ 900と RFID200との通信距離を伸ばすようにし ている。  [0241] As described above, in the RFID system of this example, when the reader 900 sends a command, the RFID 200 receives the command by ASK modulation, and the spread spectrum modulation is performed only when the reader 900 reads the response wave of the RFID 200. The communication distance between the reader 900 and the RFID 200 is increased.
[0242] すなわち、本例の RFIDシステムにおいては、 CW送信期間とコマンド送信期間で は、リーダ 900のスィッチ SW1を ON/OFFする際に、リーダ 900のスィッチ SW2を 固定値 (拡散 OFF)が〇Nとなる側に切り替えておく。  [0242] That is, in the RFID system of this example, when the switch SW1 of the reader 900 is turned ON / OFF during the CW transmission period and the command transmission period, the switch SW2 of the reader 900 is set to a fixed value (diffusion OFF). Switch to N side.
[0243] これにより、リーダ 900は、図 4に示したリーダ 100の場合と同様、スペクトル拡散を せずに、キャリアウェーブ CWを送信したり、コマンドを送信したりすることが可能にな る。 [0243] Thus, the reader 900 can transmit the carrier wave CW and the command without performing the spread spectrum, similarly to the case of the reader 100 shown in FIG.
[0244] そして、リーダ 900は、 RFID200の応答波を読み取る送信及び応答受信期間のみ 、キャリアウェーブ CWが送信されているときに、長期拡散コード (スクランブルコード) 力〇Nとなる側にスィッチ SW2を切り替える。 [0245] これにより、リーダ 900は、スペクトル拡散した信号を放射することができるようになる [0244] Then, the reader 900 sets the switch SW2 to the side where the long-term spreading code (scramble code) is 0N when the carrier wave CW is transmitted only during the transmission and response reception period for reading the response wave of the RFID200. Switch. [0245] This allows the reader 900 to emit a spread spectrum signal.
[0246] このようにしてリーダ 900がスぺクトノレ拡散した信号を放射すると、 RFID200は、変 調 SW部 530の変調スィッチを ONZOFFすることで、受信した電波(リーダ 900から の送信波)を応答波として反射する。 [0246] When the reader 900 radiates a spectrum spread signal in this way, the RFID 200 responds to the received radio wave (transmitted wave from the reader 900) by turning on and off the modulation switch of the modulation SW unit 530. Reflects as a wave.
[0247] ここで、本例の RFIDシステムにおける RFID200は、内部で持っているタイマでメ モリ 550のデータに応じて変調 SW部 530の変調スィッチを ON/OFFして、スぺタト ル拡散された信号が反射されるだけなので、送信及び応答受信期間は特にキャリア ウェーブ CWである必要性はなぐどのような信号でも反射応答することができる。  [0247] Here, the RFID 200 in the RFID system of the present example is spread spectrum by turning on / off the modulation switch of the modulation SW unit 530 according to the data of the memory 550 with an internal timer. Since only the reflected signal is reflected, the transmission and response reception period can reflect and respond to any signal, especially without the need for carrier wave CW.
[0248] つまり、本例の RFIDシステムにおいては、リーダ 900がコマンドまでスペクトル拡散 してしまうと、 RFID200に逆拡散器が必要になってしまうが、コマンドの読み取りを必 要としない送信及び応答受信期間では、リーダ 900がスペクトル拡散を行っても RFI D200がそのまま反射応答してくれる。  [0248] In other words, in the RFID system of this example, if the reader 900 spreads the spectrum to the command, the RFID 200 needs a despreader, but it does not need to read the command. During the period, even if the reader 900 spreads the spectrum, the RFI D200 responds as it is.
[0249] そこで、本例の RFIDシステムにおけるリーダ 900は、最後の区間である送信及び 応答受信期間のみスィッチ SW2をスペクトル拡散する側に切り替え、 RFID200の変 調 SW部 530の変調スィッチで ASK変調して ON/OFFされた信号を、逆拡散器 9 02により逆拡散して復調するようにしている。  [0249] Therefore, the reader 900 in the RFID system of this example switches the switch SW2 to the spectrum spreading side only during the transmission and response reception periods that are the last section, and performs ASK modulation with the modulation switch of the modulation SW section 530 of the RFID200. The signal turned ON / OFF is despread by the despreader 902, and demodulated.
[0250] このように、本例の RFIDシステムでは、 RFID200が応答波を反射する反射応答 期間のみ、スペクトル拡散を行うようにしてリーダ 900と RFID200との通信距離を伸 ばすようにしているので、 RFID200の回路構成を変えることなぐ広い範囲の RFID 200を読み取ることができるようになる。  [0250] As described above, in the RFID system of this example, the communication distance between the reader 900 and the RFID 200 is extended by performing spectrum spread only during the reflection response period in which the RFID 200 reflects the response wave. A wide range of RFID 200 can be read without changing the circuit configuration of RFID 200.
[0251] ところで、 RFID200は、リーダ 900の送信波がキャリアウェーブ CW成分であった ほうが起電力を作る際に検波回路として安定した電源を取りやすい。言い換えると、 RFID200は、リーダ 900の送信波がスペクトル拡散された信号であると、瞬時電力 が上下するため、電源再生回路 510で電源を再生しに《なる。  [0251] By the way, the RFID 200 can easily take a stable power source as a detection circuit when the electromotive force is generated when the transmission wave of the reader 900 is a carrier wave CW component. In other words, when the transmission wave of the reader 900 is a spectrum-spread signal, the RFID 200 regenerates the power by the power regeneration circuit 510 because the instantaneous power increases and decreases.
[0252] そこで、本例の RFIDシステムにおけるリーダ 900は、 CW加算器 903により送信波 にキャリアウェーブ CWを一定比率で加算して RF出力するようにしている。  [0252] Therefore, the reader 900 in the RFID system of this example adds the carrier wave CW to the transmission wave at a constant ratio by the CW adder 903 so as to output RF.
[0253] このように、本例のリーダ 900においては、 CW力卩算器 903により送信波にキャリア ウェーブ CWを加算することにより、 RFID200の検波回路に対する変動を安定させ ることが可能になる。 [0253] In this way, in the reader 900 of this example, the carrier wave is transmitted to the transmission wave by the CW power calculator 903. By adding the wave CW, it is possible to stabilize fluctuations in the detection circuit of RFID200.
[0254] 本発明の第 1の態様に係る RFIDシステムは、データを記憶した記憶手段を有する RFIDと、前記 RFIDとの無線交信により前記記憶手段に記憶されてレ、る前記データ を読み取る RFID読み取り装置と、を備えた RFIDシステムであって、前記 RFID読み 取り装置は、前記 RFIDに対してコマンドを送信する際には送信波の振幅を変動させ る ASK変調方式で前記コマンドを送信し、前記 RFIDが反射する応答波を受信する 際には前記送信波に拡散コードをかけるスペクトル拡散方式で前記 RFIDと交信す る構成を採る。  [0254] An RFID system according to the first aspect of the present invention includes an RFID having a storage unit storing data, and reading the data stored in the storage unit by wireless communication with the RFID An RFID system comprising: a device, wherein the RFID reader transmits the command by an ASK modulation method that varies an amplitude of a transmission wave when transmitting a command to the RFID; When the response wave reflected by the RFID is received, a configuration is adopted in which the RFID communicates with the RFID by a spread spectrum method in which a spread code is applied to the transmission wave.
[0255] この構成によれば、 RFID読み取り装置が RFIDに対してコマンドを送信する際に は、送信波の振幅を変動させる ASK変調方式でスペクトル拡散せずにコマンドを送 信するので、 RFIDが従来の構成のままでコマンドを認識することができる。そして、 R FIDの反射応答波を受信する際には、 RFID読み取り装置が送信波に拡散コードを かけるスペクトル拡散方式で RFIDと交信するので、 RFID読み取り装置と RFIDとの 通信距離を伸ばすことができる。  [0255] According to this configuration, when the RFID reader transmits a command to the RFID, the command is transmitted without spectrum spread by the ASK modulation method that varies the amplitude of the transmission wave. The command can be recognized with the conventional configuration. When receiving the reflected response wave of the R FID, the RFID reader communicates with the RFID using a spread spectrum system that applies a spread code to the transmitted wave, so the communication distance between the RFID reader and the RFID can be extended. .
[0256] 本発明の第 2の態様に係る RFID読み取り装置は、前記第 1の態様の RFIDシステ ムで用いる RFID読み取り装置であって、前記 RFIDに対してコマンドを送信する際 に送信波の振幅を変動させる ASK変調手段と、前記 RFIDが反射する応答波を受 信する際に前記送信波に拡散コードをかけるスペクトル拡散手段と、を具備する構成 を採る。  [0256] The RFID reader according to the second aspect of the present invention is an RFID reader used in the RFID system of the first aspect, and the amplitude of the transmission wave when transmitting a command to the RFID ASK modulation means for varying the frequency and a spread spectrum means for applying a spread code to the transmission wave when receiving the response wave reflected by the RFID are employed.
[0257] この構成によれば、 ASK変調手段により RFIDに対してコマンドを送信する際に送 信波の振幅が変動される。これにより、 RFIDが従来の構成のままでコマンドを認識 すること力 Sできる。そして、スペクトル拡散手段により、 RFIDの反射応答波を受信す る際に送信波に拡散コードをかける。これにより、 RFIDの反射応答波を受信するとき にのみ、 RFID読み取り装置と RFIDとの通信距離を伸ばすことができる。  [0257] According to this configuration, the amplitude of the transmission wave varies when a command is transmitted to the RFID by the ASK modulation means. This makes it possible for RFID to recognize commands with the conventional configuration. Then, the spread spectrum is applied to the transmission wave when the RFID reflection response wave is received by the spread spectrum means. As a result, the communication distance between the RFID reader and the RFID can be increased only when the reflected response wave of the RFID is received.
[0258] 本発明の第 3の態様に係る RFID読み取り装置は、前記第 2の態様において、前記 スペクトル拡散手段によりスペクトル拡散された送信波に搬送波を加算する搬送波加 算手段を具備する構成を採る。 [0259] この構成によれば、スペクトル拡散手段によりスペクトル拡散された送信波に、搬送 波加算手段により搬送波を加算するので、総合出力電力を一定に換算した送信波 の PAPR (ピーク電力に対するアベレージング電力の比率)を低下させる効果があり R FIDの電力供給回路への安定した電力供給が可能となる。 [0258] The RFID reader according to the third aspect of the present invention employs a configuration comprising, in the second aspect, a carrier addition means for adding a carrier wave to the transmission wave spectrum spread by the spectrum spreading means. . [0259] According to this configuration, since the carrier wave is added by the carrier wave addition means to the transmission wave that has been spread spectrum by the spread spectrum means, the PAPR (averaged with respect to the peak power) of the transmission wave obtained by converting the total output power to a constant value. This has the effect of reducing the power ratio) and enables stable power supply to the R FID power supply circuit.
[0260] 本発明の第 4の態様に係る RFID読み取り装置は、前記第 3の態様において、前記 RFIDとの交信期間が、搬送波送信期間、コマンド送信期間、送信及び応答受信期 間の 3つの期間に分けられ、前記搬送波送信期間では前記 RFIDに対して搬送波を 送信し、前記コマンド送信期間では、前記 RFIDに対して前記送信波を ASK変調し てコマンドを送信し、前記送信及び応答受信期間では前記 RFIDが反射する応答波 を受信する際に前記スペクトル拡散手段により前記送信波をスペクトル拡散するよう に、前記 ASK変調手段、前記スペクトル拡散手段、及び前記搬送波加算手段の動 作を適応的に制御する変調方式制御手段を具備する構成を採る。  [0260] The RFID reader according to the fourth aspect of the present invention is the RFID reader according to the third aspect, wherein the communication period with the RFID is three periods of a carrier transmission period, a command transmission period, a transmission and a response reception period. In the carrier transmission period, a carrier wave is transmitted to the RFID. In the command transmission period, the transmission wave is ASK modulated to the RFID to transmit a command, and in the transmission and response reception period. The operations of the ASK modulation means, the spread spectrum means, and the carrier wave adding means are adaptively controlled so that the transmission wave is spread spectrum by the spread spectrum means when the response wave reflected by the RFID is received. The structure which comprises the modulation system control means to take is taken.
[0261] この構成によれば、変調方式制御手段により、 ASK変調手段、スペクトル拡散手段 、及び搬送波加算手段の動作が適応的に制御されるので、 ASK変調手段により RF IDに対してコマンドを送信する際に送信波の振幅が変動される。また、スペクトル拡 散手段により、 RFIDの反射応答波を受信する際に送信波に拡散コードがかけられ る。これにより、 RFIDが従来の構成のままでコマンドを認識することができ、かつ RFI Dの反射応答波を受信するときにのみ、 RFID読み取り装置と RFIDとの通信距離を 伸ばすことができる。  [0261] With this configuration, the modulation scheme control means adaptively controls the operations of the ASK modulation means, the spread spectrum means, and the carrier wave addition means, so the ASK modulation means transmits a command to the RF ID. The amplitude of the transmitted wave is changed. In addition, when the RFID reflection response wave is received, a spread code is applied to the transmission wave by the spectrum spreading means. As a result, the RFID can recognize the command with the conventional configuration, and the communication distance between the RFID reader and the RFID can be increased only when the reflected response wave of RFI D is received.
[0262] 本発明の第 5の態様に係る RFID読み取り装置は、前記第 2の態様において、前記 スペクトル拡散手段は、複数の RFID読み取り装置の間で直交する拡散コードを用い て送信波をスペクトル拡散するスペクトル拡散方式を使用し、前記送信及び応答受 信期間において使用する送信波の周波数を、前記複数の RFID読み取り装置で同 一とした構成を採る。  [0262] The RFID reader according to the fifth aspect of the present invention is the RFID reader according to the second aspect, wherein the spread spectrum means spreads a transmission wave using a spread code orthogonal to a plurality of RFID readers. The transmission frequency used in the transmission and response reception period is the same for the plurality of RFID readers.
[0263] この構成によれば、複数の RFID読み取り装置の各々で、長期スクランブルコード( 拡散コード)を各々直交したコード (符号系列)を使えば、各 RFID読み取り装置を多 重した同じ周波数上に多重しても、復調部分で分離することができ、 CDMA方式を 適用してより拡散率を上げることができる。 産業上の利用可能性 [0263] According to this configuration, if each RFID reader uses a code (code sequence) in which long-term scramble codes (spreading codes) are orthogonal to each other, each RFID reader is multiplexed on the same frequency. Even if they are multiplexed, they can be separated at the demodulation part, and the spreading factor can be increased by applying the CDMA system. Industrial applicability
本発明に係る RFIDアクセス方法及び読み取り装置は、スペクトル拡散変調方式を 低消費電力で小型かつ安価な既存の RFIDにそのまま適用して RFID読み取り装置 と RFIDとの通信距離を伸ばすことができるので、無線 ICタグの読み取り方式としてス ぺクトル拡散方式を適用した RFIDシステム及び RFID読み取り装置として有用であ る。  The RFID access method and reading apparatus according to the present invention can extend the communication distance between the RFID reading apparatus and the RFID by directly applying the spread spectrum modulation method to the existing RFID that is low in power consumption and small and inexpensive. It is useful as an RFID system and RFID reader using a spectrum diffusion method as an IC tag reading method.

Claims

請求の範囲 The scope of the claims
[1] データを記憶した記憶手段を有する RFIDと、前記 RFIDとの無線交信により前記 記憶手段に記憶されてレ、る前記データを読み取る RFID読み取り装置と、を備えた R FIDシステムであって、  [1] An R FID system comprising: an RFID having storage means for storing data; and an RFID reader for reading the data stored in the storage means by wireless communication with the RFID,
前記 RFID読み取り装置は、前記 RFIDに対してコマンドを送信する際には送信波 の振幅を変動させる ASK変調方式で前記コマンドを送信し、前記 RFIDが反射する 応答波を受信する際には前記送信波に拡散コードをかけるスペクトル拡散方式で前 記 RFIDと交信する RFIDシステム。  The RFID reader transmits the command by an ASK modulation method that varies the amplitude of a transmission wave when transmitting a command to the RFID, and transmits the response wave when the response wave reflected by the RFID is received. An RFID system that communicates with the RFID using a spread spectrum method that applies a spreading code to waves.
[2] 請求項 1記載の RFIDシステムで用いる RFID読み取り装置であって、  [2] An RFID reader used in the RFID system according to claim 1,
前記 RFIDに対してコマンドを送信する際に送信波の振幅を変動させる ASK変調 手段と、  ASK modulation means for changing the amplitude of a transmission wave when transmitting a command to the RFID,
前記 RFIDが反射する応答波を受信する際に前記送信波に拡散コードをかけるス ベクトル拡散手段と、を具備する RFID読み取り装置。  An RFID reader comprising: a vector spreading means for applying a spreading code to the transmission wave when receiving a response wave reflected by the RFID.
[3] 前記スペクトル拡散手段によりスペクトル拡散された送信波に搬送波を加算する搬 送波加算手段を具備する請求項 2記載の RFID読み取り装置。  3. The RFID reading apparatus according to claim 2, further comprising a carrier wave adding unit that adds a carrier wave to the transmission wave that has been spread spectrum by the spectrum spreading unit.
[4] 前記 RFIDとの交信期間が、搬送波送信期間、コマンド送信期間、送信及び応答 受信期間の 3つの期間に分けられ、  [4] The communication period with the RFID is divided into three periods: a carrier transmission period, a command transmission period, a transmission and response reception period,
前記搬送波送信期間では前記 RFIDに対して搬送波を送信し、前記コマンド送信 期間では、前記 RFIDに対して前記送信波を ASK変調してコマンドを送信し、前記 送信及び応答受信期間では前記 RFIDが反射する応答波を受信する際に前記スぺ 外ル拡散手段により前記送信波をスぺ外ル拡散するように、前記 ASK変調手段、 前記スペクトル拡散手段、及び前記搬送波加算手段の動作を適応的に制御する変 調方式制御手段を具備する請求項 3記載の RFID読み取り装置。  In the carrier wave transmission period, a carrier wave is transmitted to the RFID. In the command transmission period, the transmission wave is ASK-modulated to the RFID and a command is transmitted. In the transmission and response reception period, the RFID is reflected. When the response wave to be received is received, the operations of the ASK modulation means, the spread spectrum means, and the carrier wave addition means are adaptively performed so that the transmission wave is spread by the spread spectrum means. 4. The RFID reader according to claim 3, further comprising a modulation method control means for controlling.
[5] 前記スペクトル拡散手段は、複数の RFID読み取り装置の間で直交する拡散コード を用いて送信波をスペクトル拡散するスペクトル拡散方式を使用し、  [5] The spread spectrum means uses a spread spectrum system that spreads a transmission wave using spread codes orthogonal to each other between a plurality of RFID readers,
前記送信及び応答受信期間において使用する送信波の周波数を、前記複数の R FID読み取り装置で同一とした請求項 2記載の RFID読み取り装置。  3. The RFID reader according to claim 2, wherein a frequency of a transmission wave used in the transmission and response reception period is the same in the plurality of R FID readers.
PCT/JP2005/023629 2005-12-22 2005-12-22 Rfid system and rfid reading apparatus WO2007072563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/023629 WO2007072563A1 (en) 2005-12-22 2005-12-22 Rfid system and rfid reading apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/023629 WO2007072563A1 (en) 2005-12-22 2005-12-22 Rfid system and rfid reading apparatus

Publications (1)

Publication Number Publication Date
WO2007072563A1 true WO2007072563A1 (en) 2007-06-28

Family

ID=38188354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023629 WO2007072563A1 (en) 2005-12-22 2005-12-22 Rfid system and rfid reading apparatus

Country Status (1)

Country Link
WO (1) WO2007072563A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232372A (en) * 2008-03-25 2009-10-08 Sony Corp Communication system and communication apparatus
WO2010041463A1 (en) * 2008-10-09 2010-04-15 パナソニック株式会社 Base station device and distance measuring method
JP2023510396A (en) * 2020-01-17 2023-03-13 華為技術有限公司 SIGNAL PROCESSING METHOD AND RELATED APPARATUS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784040A (en) * 1993-09-13 1995-03-31 Matsushita Electric Ind Co Ltd Mobile identifying system and modulation system thereof
JP2003218736A (en) * 2002-01-23 2003-07-31 Hitachi Kokusai Electric Inc Non-contact id tag system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784040A (en) * 1993-09-13 1995-03-31 Matsushita Electric Ind Co Ltd Mobile identifying system and modulation system thereof
JP2003218736A (en) * 2002-01-23 2003-07-31 Hitachi Kokusai Electric Inc Non-contact id tag system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232372A (en) * 2008-03-25 2009-10-08 Sony Corp Communication system and communication apparatus
WO2010041463A1 (en) * 2008-10-09 2010-04-15 パナソニック株式会社 Base station device and distance measuring method
JP5422564B2 (en) * 2008-10-09 2014-02-19 パナソニック株式会社 Base station apparatus and ranging method
US8659477B2 (en) 2008-10-09 2014-02-25 Panasonic Corporation Base station device and distance measuring method
JP2023510396A (en) * 2020-01-17 2023-03-13 華為技術有限公司 SIGNAL PROCESSING METHOD AND RELATED APPARATUS
US11943084B2 (en) 2020-01-17 2024-03-26 Huawei Technologies Co., Ltd. Signal processing method and related apparatus

Similar Documents

Publication Publication Date Title
US7009495B2 (en) System and method to identify multiple RFID tags
US7385511B2 (en) Carrierless RFID system
US7844221B2 (en) Reflective communication using radio-frequency devices
KR101114066B1 (en) Radio communication system, radio communicaion device, and radio communication method
US7009515B2 (en) Frequency-hopping RFID system
US8774329B2 (en) Variable length correlator
CN101561891B (en) Dual-interface SIM card and radio frequency identification system thereof
CN101911092A (en) Interrogation of RFID communication units
US20080266103A1 (en) Radio frequency identification devices
WO2004032027A1 (en) System and method to identify multiple rf tags
EP1290619A2 (en) Multi-frequency communication system and method
CN102187348A (en) Rfid repeater for range extension in modulated backscatter systems
CN105469016B (en) Method for managing the operation of an object capable of contactless communication with a reader, corresponding device and object
KR100769982B1 (en) Frequency Allocation Method between Reader and Tag at Mobile RFID environment, RFID Reader therefor and RFID Tag thereof
KR20070056818A (en) Rfid system
US9514336B2 (en) Method and system for adaptive operation of a power amplifier of a radio frequency identification (RFID) reader device
KR100768100B1 (en) Appratus and Method for Receiving Tag Signal in Mobile RFID Reader
US8400272B2 (en) Method and device for improving the signal to noise ratio (SNR) of a backscatter signal received from a radio frequency identification (RFID) tag
KR100886631B1 (en) RFID reader supporting dense mode
WO2007072563A1 (en) Rfid system and rfid reading apparatus
JP4650053B2 (en) Interrogator, transponder, position detection method, and position detection program
CN103942513A (en) Mobile reader
WO2009082619A1 (en) Voice over rfid
JP4657657B2 (en) Reader / writer and wireless tag system
KR100676769B1 (en) Rfid system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05819509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP