WO2007069693A1 - Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin - Google Patents

Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin Download PDF

Info

Publication number
WO2007069693A1
WO2007069693A1 PCT/JP2006/324961 JP2006324961W WO2007069693A1 WO 2007069693 A1 WO2007069693 A1 WO 2007069693A1 JP 2006324961 W JP2006324961 W JP 2006324961W WO 2007069693 A1 WO2007069693 A1 WO 2007069693A1
Authority
WO
WIPO (PCT)
Prior art keywords
chondroitin
udp
sugar chain
production method
enzyme
Prior art date
Application number
PCT/JP2006/324961
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Sugiura
Satoshi Shimokata
Koji Kimata
Original Assignee
Seikagaku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikagaku Corporation filed Critical Seikagaku Corporation
Priority to EP06834715.2A priority Critical patent/EP1964924B1/en
Priority to US12/097,725 priority patent/US8067204B2/en
Priority to JP2007550226A priority patent/JP5081629B2/en
Publication of WO2007069693A1 publication Critical patent/WO2007069693A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof

Definitions

  • the present invention relates to a long-chain chondroitin sugar chain, a method for producing the same, and a method for promoting chondroitin synthesis.
  • K4CP Chondroitin polymerase from Escherichia coli K4
  • MALDI -TOF- MS Matrix Assisted Laser
  • CH is a type of glycosaminodarlican in which GlcUA and GalNAc are alternately bonded on a straight line by / 3 1 ⁇ 3 bonds and ⁇ 1 4 bonds, respectively.
  • CH is present as CS proteodalycan in soft bones and many connective tissues in the body of animals, and plays an important role in cell adhesion, development, differentiation, nerve cell extension, cartilage 'bone formation, tissue regeneration, etc. Is responsible.
  • CS is a medicine and health food such as tissue adhesion prevention, arthritis treatment, back pain joint pain treatment, neuralgia remedy, shoulder arthritis treatment, eye drops, chronic nephritis treatment, nutrition tonic It is commercially available as a useful substance in the form of cosmetics (humectants).
  • CS is naturally present as a sugar chain having a weight average molecular weight of 20000 to 50,000, and it is known that CS having a weight average molecular weight of 100,000 or more exists. Since these CSs are long-chain structures, they have structural characteristics such as moisture retention and ion retention characteristics, and specific physiological functions such as cell adhesion and signal transduction as an extracellular matrix component. It is also known to have
  • CH can also be produced by desulfating CS, but even if the chain length of the raw material CS is long, the side chain causes the sugar chain to be cleaved and is commercially available. Currently, the weight average molecular weight is 10,000 or less.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-199583
  • Non-Patent Document 1 Ninomiya, T. et al., 2002, Journal of Biological Chemistry, 277, 24, p. 21567-21575
  • An object of the present invention is to provide a long-chain polymer CH sugar chain and a method for producing the same.
  • the inventors of the present invention have intensively studied to solve the above problems, and as a result, in a method of synthesizing CH using a G synthetase, a GlcUA donor, a GalNAc donor, and a sugar acceptor.
  • a G synthetase a GlcUA donor
  • a GalNAc donor a sugar acceptor.
  • the chain length is much longer than that of the purified free enzyme!
  • the present invention has been completed.
  • the present invention provides a method for producing a CH sugar chain (hereinafter referred to as "method 1 of the present invention” t ⁇ ⁇ ), which comprises at least the following steps.
  • the "bacterial enzyme that synthesizes CH” is a bacterial cell enzyme expressing CH polymerase derived from E. coli. I really like K4CP!
  • the host used for the cell enzyme is Escherichia coli, and it is very particularly preferable that the host strain is E. coli TOP10.
  • the surfactant power used is Nimin, MEGA-10, sodium cholate, n-octyl-13-D-thiodarcopyranoside, n-nolulu 13-D- Thymaltopyranoside, sucrose monocholic acid, sucrose monocaproic acid, and sucrose monolauryl acid. It is preferable that the group power of caproic acid and sucrose monolauric acid is selected. It is very preferable that the group power of n-noel- ⁇ -D-thiomaltopyranoside, sucrose monocaproic acid and sucrose monolauric acid is selected.
  • the method 1 of the present invention is preferably performed for 1 hour to 10 days under the condition of "coexistence" force of 10 to 50 ° C, and is performed for 10 to 30 hours under the condition of 20 to 40 ° C. More preferably, it is carried out for 15 to 24 hours under the condition of 20 to 40 ° C. It is particularly preferred that the reaction is carried out for 15 to 24 hours under the condition of 25 to 37 ° C.
  • the GlcUA donor is preferably UDP-GlcUA
  • the GalNAc donor is preferably UDP-GalNAc! /.
  • UDP-Glc4-epimerase and UDP-GlcNAc, UDP-Glc dehydrogenase and UDP-Glc coexist in the reaction system, and U as a “GalNAc donor” is obtained.
  • DP—GalNAc and UDP—GlcUA as “GlcUA donor” can be supplied.
  • the method 1 of the present invention preferably further comprises one or two or more organic solvents selected from the group power consisting of xylene, black mouth form, paraffin and formaldehyde, particularly in particular. It is preferable to coexist with black mouth form and xylene.
  • the concentration of the organic solvent in the coexistence state is preferably more than 0% and less than 5%, more preferably more than 0.5% and less than 3%, and even more preferably 1%.
  • the produced CH sugar chain has all the following properties 1) to 3).
  • Weight average molecular weight 50,000 or more when measured by gel filtration chromatography
  • the molecular weight of the CH sugar chain produced by the method 1 of the present invention is preferably 75,000 or more, more preferably 200,000 or more in terms of weight average molecular weight.
  • the preferred molecular weight range is 50,000 or more. ⁇ 200,000, 50,000 to 500,000, 50,000 to 1,000,000, 75,000 to 200,000, 75,000 to 500,000, 75,000 to 1,000,000, 200,000 to 500,000, 200,000 to 100
  • a range of 500,000 to 1 million can be exemplified.
  • the present invention provides a method for promoting CH synthesis (hereinafter referred to as "Method 2 of the present invention”), characterized in that a surfactant is allowed to coexist during an enzymatic reaction with "a cell enzyme that synthesizes CH”. )I will provide a.
  • the present invention also provides a CH sugar chain (hereinafter referred to as "the sugar chain of the present invention") having all the following properties 1) to 3).
  • Weight average molecular weight 50,000 or more when measured by gel filtration chromatography
  • the molecular weight of the sugar chain of the present invention is preferably a weight average molecular weight of 75,000 or more, more preferably 200,000 or more.
  • the preferred molecular weight ranges are 50,000 to 200,000, 50,000 to 5 0,000, 50,000 to 1 million, 75,000 to 200,000, 75,000 to 500,000, 75,000 to 1 million, 200,000 to 500,000, 200,000 to 1 million, 500,000 to 100
  • a range of tens of thousands can be exemplified.
  • the method 1 of the present invention is capable of producing a polymer CH sugar chain having a weight average molecular weight comparable to or higher than that of a polymer CS that exists in nature and is known to have a specific physiological activity. Very useful.
  • the method 2 of the present invention is very useful because it can produce a CH sugar chain very efficiently.
  • the sugar chain of the present invention is a high molecular weight CH that is not usually found in CH extracted from animal tissues, and is expected to have unique physical properties and physiological activities. It can be a material for pharmaceuticals, health foods, cosmetics, etc. Useful.
  • the method 1 of the present invention is a method for producing a CH sugar chain, comprising at least the following steps.
  • GlcUA donor “GalNAc donor”, “sugar acceptor” and “bacterial enzyme that synthesizes CH” coexist in the reaction system in the presence of a surfactant.
  • a GlcUA residue from a GlcUA donor and a GalNAc residue from a GalNAc donor are alternately transferred to a sugar acceptor to form a CH sugar chain. It is.
  • GlcUA donor is a molecule having an ability to donate a GlcUA residue to a certain sugar chain molecule
  • a GlcUA nucleotide is preferred.
  • examples of the GlcUA nucleotide include UDP-GlcUA and dTDP (deoxythymidine 5′-diphosphate) GlcUA, and UDP-GlcUA is preferred.
  • GalNAc donor donates a GalNAc residue to a certain sugar chain molecule.
  • GalNAc nucleotides are preferred as long as the molecule has the ability to:
  • As the GalNAc nucleotide a force UDP-GalNAc exemplified by UDP-GalNAc and dTDP (deoxythymidine 5, monolysine acid) GalNAc sugar is preferable.
  • examples of the “sugar receptor” used in the method 1 of the present invention include sugar chains represented by the following general formulas (1) and (2).
  • Examples of “1 ⁇ ” and “R 2 ” include sugar chain residues having a CH skeleton and sugar chain residues having an HA skeleton.
  • “residues of sugar chains having a CH skeleton” include CH residues and CS residues. Such sugar chain residues may be bonded with other chemical substances.
  • the size of the sugar chain of the sugar receptor is not particularly limited !, but for example, about 1 to 50 sugars, preferably about 1 to 40 sugars, more preferably about 1 to 30 sugars, still more preferably An oligosaccharide having about 1 to 20 sugars can be exemplified. More specifically, CH disaccharide, 3 sugar, 4 sugar, 5 sugar, 6 sugar, 7 sugar, 8 sugar, 9 sugar, 10 sugar and the like are exemplified. In addition, as “” and “R 2 ” in the general formulas (1) and (2), CS oligosaccharides, HA oligosaccharides and the like having such sizes can also be used.
  • the non-reducing terminal sugar residue GlcUA of the general formula (1) has a structure of
  • the glycosidic bond is preferably a j81-3 structure.
  • the non-reducing terminal sugar residue GalNAc of the general formula (2) also has a j8 structure.
  • the GalNAc residue is bound to GlcUA of the R 2 group, the glycosidic bond is j8 1— A 4-structure is preferred.
  • Such a sugar receptor can be produced by a known method, or a commercially available one can be used.
  • the “bacterial enzyme that synthesizes CH” used in the method 1 of the present invention synthesizes CH.
  • it is a microbial enzyme having the activity to do so, it is not particularly limited.
  • / cell enzyme means a cell itself that can exhibit a specific enzyme activity while maintaining the form of the cell. That is, “a cell enzyme that synthesizes CH” means a cell that can exhibit the enzymatic activity to synthesize CH while maintaining the form of the bacterium.
  • the "bacterial enzyme that synthesizes CH” is preferably a bacterial enzyme that incorporates an E. coli-derived CH polymerase gene (a bacterial enzyme that expresses E. coli-derived CH polymerase).
  • E. coli-derived CH polymerase gene a bacterial enzyme that expresses E. coli-derived CH polymerase.
  • those incorporating a gene obtained from Escherichia coli having a gene involved in the production of capsular polysaccharides are preferred, and those expressing K4CP are particularly preferred.
  • As the host it is preferable to use Escherichia coli, and Escherichia coli TOP10 strain is very preferable.
  • K4CP means that when CH is used as an acceptor substrate and GalNAc nucleotides (UDP—GalNAc etc.) and GlcUA nucleotides (UDP-GlcUA etc.) are reacted as donor substrates, the acceptor substrate is used.
  • GlcUA is a GlcUA residue
  • GalNAc is bonded to the corresponding end
  • GalN Ac residue GalNAc and GlcUA are bound alternately by binding GlcUA to the end
  • K4CP was originally obtained from E. coli having the K4 antigen, but it may be obtained from other transformed species, or DNA produced by chemical synthesis or the like.
  • K4 antigen-specific synthesis-related gene cluster Region 2 (R- ⁇ ) of Escherichia coli K4 strain has a useful gene involved in CH synthesis in addition to K4CP, and the first ORF, Kfo A, is , Identified as a UDP-Glc4-epimerase gene that has the activity of converting UDP-GlcNAc to UDP-GalNAc, and the seventh ORF, KfoF, has the activity of converting UDP—Glc to UDP—GlcUA, UDP— It was identified as the gene for Glc dehydrogenase.
  • the epimerase activity encoded by KfoA and the dehydrogenase encoded by KfoF By utilizing this activity, CH polymers can be synthesized using UDP-GlcNAc and UDP-Glc, which are cheaper materials than UDP GalNAc and UDP-GlcUA, as substrates. That is, in Method 1 of the present invention, UDP-Glc4 epimerase and UDP-GlcN Ac, and UDP-Glc dehydrogenase and UDP-Glc are allowed to coexist in the reaction system, and UDP-GalNAc and “GlcUA donation” as “GalNAc donor” are present. By supplying UDP-GlcUA as a “body”, a CH sugar chain can be produced (see Examples 7 to 9 below).
  • UDP-GlcNAc and UDP-Glc are known to be able to synthesize monosaccharides such as Glc by known bacterial cell reactions, and it is possible to industrially produce CH sugar chains with less expensive materials. Be expected.
  • the form of the UDP-Glc4 epimerase and UDP-Glc dehydrogenase is not particularly limited, but it is preferable to use a cell enzyme similar to K4CP. Therefore, in addition to the K4CP expression system, KfoA and KfoF E. coli It is possible to synthesize long-chain CH from UDP-GlcNAc and UDP-Glc using the bacterial reactor of the recombinant enzyme prepared by the expression system. An industrially very advantageous method for mass synthesis of long-chain CH that can save labor and cost required for enzyme purification is provided.
  • an appropriate vector capable of expressing the introduced DNA
  • the vector of the present invention is incorporated. It can select suitably according to a host cell.
  • host vector systems include mammalian cells such as COS cells and 3LL-HK46 cells, p GIR201 (Kitagawa, H "and Paulson, JC (1994) J. Biol. Chem. 269, 1394-1401), pE F-BOS (mizushima, S., and Nagata, S. (1990) Nucleic Acid Res.
  • pCXN2 Niwa, H., Yamamura, K. and Miyazaki, J. (1991) Gene 108, 193— 200
  • Mammals such as pCMV-2 (made by Eastman Kodak), pCEV18, pME18S (Maruyama et al., Med. Immun ol., 20, 27 (1990)) or pSVL (manufactured by Pharmacia Biotech) Combination of expression vectors for cells, E.
  • coli coli
  • pTrcHis Invitrogen
  • pGEX p Trc99
  • pKK233-3 pEZZZ18
  • pCH110 Falmacia Biotech
  • pET pET
  • examples of host cells include insect cells, yeast, Bacillus subtilis, and various vectors corresponding thereto. Of the host vector systems described above, the combination of E. coli and pTrcHis is particularly preferred.
  • DNAs and expression vectors exist in secretory and intracellular retention types, but intracellular retention types in which enzyme molecules expressed in the cells remain are preferred.
  • the promoter of the expression vector can be appropriately selected, but the lac promoter capable of inducing expression with j8-isopropylthiogalatatoside is preferred.
  • the trc promoter is also preferred.
  • the bacterial cell enzyme used in the method 1 of the present invention can be prepared by appropriately selecting a known method by those skilled in the art. For specific methods, see Example 1 below.
  • the method 1 of the present invention is based on the surfactant power used, Naimine, MEGA-10, sodium cholate, n-octyl-1- ⁇ -D-thiodarcopyranoside, ⁇ -Noel-13-D- Thymaltopyranoside, sucrose monocholic acid, sucrose monocaproic acid, and sucrose monolauryl acid.
  • Acid and sucrose monolauric acid power are preferably selected and more preferably selected from the group consisting of ⁇ -Noel ⁇ -D-thiomaltoviranoside, sucrose monocaproic acid and sucrose monolauric acid.
  • the term "coexistence" used in the method 1 of the present invention refers to a state in which these donor molecule, sugar acceptor molecule and bacterial enzyme come into contact with each other and an enzymatic reaction by the bacterial enzyme is induced.
  • bacterial enzymes that can coexist in a solution are fixed to an appropriate solid phase (beads, ultrafiltration membrane, dialysis membrane, etc.), and contain the donor and acceptor described above.
  • the solutions may be allowed to coexist by contacting them continuously. Therefore, for example, a column type reactor or a membrane type reactor can be employed.
  • the receptor can be immobilized on a solid phase and subjected to an enzymatic reaction.
  • bioreactors that regenerate (synthesize) donors may be combined.
  • the "coexistence" in the method 1 of the present invention is preferably performed for 1 hour to 10 days under the condition of 10 to 50 ° C, and for 10 to 30 hours under the condition of 20 to 40 ° C. More preferably, it is more preferably performed for 15 to 24 hours under the condition of 20 to 40 ° C, and particularly preferably for 15 to 24 hours under the condition of 25 to 37 ° C.
  • This coexistence is preferably carried out while maintaining the temperature and pH constant.
  • this reaction is preferably performed in a buffer solution having a buffering action over the pH range.
  • the pH range suitable for “coexistence” in the method 1 of the present invention is 5-9, preferably pH 6-8, and very close to neutrality.
  • GlcUA and GalNAc in Method 1 of the present invention are preferably D-GlcUA and D-GalNAc, respectively.
  • the glycosidic bond (GlcUA—GalNAc) between GlcUA and GalNAc represented by the general formula of the method 1 of the present invention is a j8 1-3 bond.
  • the glycosidic bond between GalNAc and GlcUA ( GalNAc—GlcUA) is preferably a ⁇ 1-4 bond.
  • an organic solvent when coexisting, can be further coexisted, and it is particularly preferable to coexist with one or more organic solvents selected from the group power of xylene, chloroform, paraffin and formaldehyde power. It is preferable that black mouth form or “black mouth form and xylene” coexist.
  • the concentration of the organic solvent in the coexistence state is preferably more than 0% and less than 5%, more preferably more than 0.5% and less than 3%, and even more preferably 1%.
  • a CH derivative having a polymer chain length according to the method 1 of the present invention is used.
  • the sugar chain derivatives mentioned here are, for example, sugar receptors of the formulas (1) and (2), and R 1 and R 2 have a sugar chain other than CH, an arbitrary organic group that is not a sugar chain, etc.
  • the term “CH derivative having a polymer chain length” refers to a CH derivative in which an organic group other than a sugar chain or sugar chain other than CH is bonded to CH having a polymer chain length.
  • the CH sugar chain to be produced preferably has all the following properties 1) to 3).
  • the sugar receptor to be used must be a sugar chain in which "" and "R2J" have only a CH skeleton in the following general formula (1) or (2).
  • Chodroitinase ABC is a kind of glycosaminodarlican-degrading enzyme that acts on CH and HA, and is completely unsaturated disaccharide having hexosamine at the reducing end. It is an enzyme that degrades.
  • substantially all used in the present invention means that when the degradation product is subjected to disaccharide analysis, peaks other than CH unsaturated disaccharide cannot be detected by ordinary HPLC! /. means
  • the molecular weight of the CH sugar chain produced by the method 1 of the present invention is not particularly limited, but the method 1 of the present invention can be used for the production of a CH sugar chain having a weight average molecular weight of 50,000 or more. It is preferred to be used when producing CH sugar chains having an average molecular weight of 75,000 or more. It is particularly preferred to be used when producing CH sugar chains having a weight average molecular weight of 200,000 or more.
  • the upper limit of the molecular weight is not particularly limited. For example, CH sugar chains having a weight average molecular weight of about 500,000 or 1 million can be produced.
  • the molecular weight ranges are 50,000 to 200,000, 50,000 to 500,000, 50,000 to 1,000,000, 75,000 to 200,000, 75,000 to 500,000, 70,000.
  • Examples include 5,000 to 1,000,000, 200,000 to 500,000, 200,000 to 1,000,000, and 500,000 to 1,000,000.
  • a surfactant is added at the time of an enzymatic reaction by “a cell enzyme that synthesizes CH” It is a method for promoting CH synthesis, characterized by coexistence.
  • the method 2 of the present invention is a method for synthesizing CH, for example, by performing an enzymatic reaction with a “bacterial enzyme that synthesizes CH” in the presence of a surfactant in the “method for producing a CH sugar chain” like the method 1 of the present invention
  • bacterial enzyme that synthesizes CH in the presence of a surfactant in the “method for producing a CH sugar chain” like the method 1 of the present invention
  • the meanings of the terms “bacterial enzyme that synthesizes CH”, “surfactant”, and “coexistence” in method 2 of the present invention are all in the method 1 of the present invention. It is the same as described above.
  • the sugar chain of the present invention is a CH sugar chain having all the following properties 1) to 3).
  • Weight average molecular weight 50,000 or more when measured by gel filtration chromatography. For the conditions of gel filtration chromatography, see the examples.
  • the molecular weight of the sugar chain of the present invention is not particularly limited, but is usually 50,000 or more in terms of weight average molecular weight, preferably 75,000 or more, more preferably 200,000 or more. .
  • the upper limit of the molecular weight of the sugar chain of the present invention is not particularly limited, and may have a molecular weight of about 500,000 or 1 million in terms of weight average molecular weight. Therefore, the molecular weight ranges of the sugar chains of the present invention are specifically shown as follows: 50,000 to 200,000, 50,000 to 500,000, 50,000 to 1,000,000, 75,000 to 200,000, 75,000 to 50 10,000, 75,000 to 1,000,000, 200,000 to 500,000, 200,000 to 1,000,000, 500,000 to 1,000,000 range power S.
  • the state of the sugar chain of the present invention is not particularly limited, and may be in a solution state or in a solid state (powder or the like, a state in which the solution is frozen, or the like).
  • chondroitinase ABC used in the sugar chain of the present invention is the same as that described in Method 1 of the present invention.
  • the sugar chain of the present invention can be produced, for example, by using the method 1 of the present invention.
  • a gene and an expression vector of an E. coli-derived CH polymerase (K4CP) enzyme were produced.
  • PTrcHis plasmid (Invitrogen) was used as an expression vector.
  • Escherichia coli into which the expression vector obtained by this method was introduced was cultured at 37 ° C in an LB medium containing ampicillin at a wavelength of 600 nm until the absorbance of the culture solution reached about 0.6, and the expression-inducing molecule, j8-isopropyl.
  • Thiogalactoside (IPTG) was added to a final concentration of ImM, and further cultured at 37 ° C. for 3 hours to induce enzyme expression.
  • the cell precipitate can maintain enzyme activity for at least one year by storing at -80 ° C.
  • the resulting fraction was analyzed for uronic acid content (force rubazole method), HPLC (GPC), MALDI-TOF-MS, chondroitinase-treated disaccharide analysis, etc. It was confirmed that the non-reducing end was a hexasaccharide with a G1 cUA residue.
  • the fungal enzyme obtained in Example 1 was added to the surfactant Nimin S-215 (Nyme en S-215) at a final concentration of 0, 0.1, 0.2, 0.4, 1.0 or 2.0%. ; 50 mM Tris—HCl (pH 7.2) buffer solution (20 mM MnCl, 150 mM NaCl, 0.1 nmole CH)
  • Fig. 2 shows the elution state of the obtained polymer fraction on the Superdex peptide HR10 / 30 column.
  • the peak of the obtained polymer fraction was eluted at the void volume position of the Superdex Peptide HR10 / 30 column (black circle in FIG. 2).
  • the exclusion limit of this column was a weight average molecular weight of 20,000 when measured using a HA standard product, so the obtained polymer fraction (CH polymer) was estimated to have a weight average molecular weight of 20,000 or more.
  • the CH polymer obtained using the bacterial cell enzyme in the same manner as in Example 4 and the same conditions as in Example 4 were synthesized by changing the UDP-GlcUA and UDP-GalNAc concentrations to 30 nmol.
  • the former When attached to a Sephacryl S500 HR 10/30 column and Superose 6 HR 10/30 column with CH polymers connected in series, the former was positioned at a weight average molecular weight of 75,000 using the HA standard as a guideline (Fig. The latter was eluted at the position where the weight average molecular weight was 200,000 (black square in Fig. 3).
  • Nymeen S-215 polyoxyethylene octadecylamine, manufactured by NOF Corporation
  • Triton X-100 Polyethylene glycol mono-p-isooctyl phenol ether, manufactured by Naoki Light Tester Co., Ltd.
  • Tween 20 Polyoxyethylene sorbitan monolaurate, manufactured by Nacalai Testa Co., Ltd.
  • Tween 80 Polyoxyethylene sorbitan monooleate, manufactured by Nacalai Testa Co., Ltd.
  • Nonidet P-40 No-Det P-40, manufactured by Nakarai Tester Co., Ltd.
  • Tergitol NP-40 (Tajitol NP-40, manufactured by Nacalai Testa Co., Ltd.)
  • Octyl-thioglucoside n-octyloo-D-thiodarcopyranoside, manufactured by Kishida Chemical
  • Dodecyl-maltoside (n-dodecinole — ⁇ — ⁇ —maltopyranoside, manufactured by Kishida Chemical)
  • LDS lithium lauryl sulfate, manufactured by Kishida Chemical
  • Octyl-glucoside (n—octylol / 3 1 D—darcopyranoside, manufactured by Kishida Chemical)
  • Heptyl-thioglucoside (n—Heptylu ⁇ -D-thiodarcopyranoside, manufactured by Kishida Chemical)
  • Nonyl-thiomaltoside n-nonyl- ⁇ -D-thiomaltopyranoside, manufactured by Kishida Chemical
  • Sucrose monocholate sucrose cholic acid monoester, manufactured by Kishida Chemical
  • Sucrose monocaprate (Sucrose monocapric acid monoester, manufactured by Kishida Chemical)
  • Sucrose monolaurate sucrose lauric acid monoester, manufactured by Kishida Chemical
  • sucrose monocaproic acid sucrose monocaproic acid
  • GalNAc was incorporated particularly efficiently when ⁇ -D-thiomaltoviranoside or sucrose monolauric acid was used.
  • FIG. 5 it is shown that, when a cell enzyme is used, the use of black mouth form or “mixture of black mouth form and xylene” promotes the uptake of [] GalNAc. It was.
  • the concentration of Kuroguchi Form in the enzyme reaction solution is used.
  • the amount of [ 3 H] GalNAc incorporated into the polymer fraction was examined by conducting the same test as in Example 3 at 0.5, 1.0, 2.0, 5.0, or 10.0%. It was. The result is shown in FIG.
  • the incorporation of [ 3 H] GalNAc may be promoted when the concentration of chloroform in the enzyme reaction solution is more than 0% and less than 5%. Indicated.
  • a cDNA for the Glc dehydrogenase gene (kfoF) was obtained. The obtained DNA was used as a saddle type, and PCR was performed as follows using the following primers.
  • kfoA-SP CGGGATCCCGATGAATATATTAGTTACAGG (underlined part is BamHI site, (SEQ ID NO: 5)
  • kfoA-AS CCCAAGCTTGGGTAGAAGTTATCGTAAAAT (underlined part is Hindlll site, SEQ ID NO: 6)
  • kfoF-SP CGGGATCCCGATGAAAATTGCAGTTGCTGG (underlined part is BamHI site, SEQ ID NO: 7)
  • kfoF-AS CCCMGCIIGGGTCTTTAATAGCCATAAAA (underlined part is Hindlll site, SEQ ID NO: 8)
  • the target fragment was gel-extracted from the reaction solution with QIA quick (Qiagen) and subjected to limited digestion overnight with BamH I and Hindlll. Then, the target fragment was purified by gel extraction again. About 100 ng of pTric-HisC vector (manufactured by Invitrogen) that has been restricted with the same restriction enzyme, about 300 ng of purified cDNA fragment, T4 ligase (manufactured by NEB) 0.5 ⁇ 1, 10 X T4 ligase Buffer 1 1 was added, and the total amount was adjusted to 101 with milli-Q water, and ligation was performed in a 16 ° C water bath for 1 hour. Subsequently, TOP10 competent cell 1001 was transformed with reaction mixture 51, and applied to LB agar medium (LB / Amp plate) containing ampicillin, and allowed to stand overnight at 37 ° C.
  • LB agar medium LB agar medium
  • Enzymatic reaction of KfoA was performed by heating a solution of enzyme 2.5 1, 1 mM UDP—GlcNAc51, 1 M Tris—HC1 5 ⁇ 1 and water 37.5 1 in a 30 ° C. bath for 1 hour. It was. Thereafter, UDP-GlcNAc and UDP-GalNAc were separated using a Hydrosphere C18 column (manufactured by YMC), and the enzyme activity (amount of UDP-GalNAc produced per unit time) was estimated from the area ratio.
  • the reaction of KfoF is a mixture of enzyme 51, 1 mM UDP-Glc 51, 1 M Tris—HC1 or Glycine—NaOH 51, 5 mM ⁇ -NAD + 10 ⁇ 1, and water 25 ⁇ 1. It was heated in a 30 ° C bath for 1 hour. Subsequently, UDP-Glc and UDP-GlcU were separated on a Hydrosphere C18 column, and the enzyme activity (the amount of UDP-GlcUA produced per unit time) was also estimated.
  • Recombinant enzymes of KfoA and KfoF produced by the E. coli expression system were purified with a Ni-NTA Agarose column, and the collected fractions were separated by SDS PAGE. Expression of the recombinant enzyme was confirmed by Western blotting using mouse Tetra His tag antibody (Qiagen) as the primary antibody and Goat Anti Mouse HRP antibody (Gibco) as the secondary antibody. As a result, specific staining was detected as the main band for KfoA at a position of 42 kDa including the molecular weight of His tag, and for KfoF at a position of 48 kDa. In addition, when the gel after SDS PAGE was stained with CBB, bands that were strongly stained in addition to these bands were strong. The collected enzyme was dialyzed 3 times with PBS solution containing 20% Glycerol and stored at -80 ° C.
  • KfoF 51 UDP—Glc 5 nmol, ⁇ —NAD + 50 nmol, 0.1 M
  • the reaction solution (501) prepared to be Tris-HCl (pH 7.0 to 10.0) or 0.1 M Glycine-NaOH (pH 9.0 to 10.0) was heated in a 30 ° C water bath for 1 hour. Thereafter, the absorbance at 340 nm was measured with an absorptiometer, and the enzyme activities at each pH were relatively compared. This absorbance at 340 nm is derived from the jS-NADH 2 molecule produced when one UDP-Glc molecule is oxidized, and is proportional to the enzyme activity of KfoF. As a result, the absorbance at the time of reaction with Glycine-NaOH pH 9.4 was the maximum, so this was determined to be the optimum buffer for KfoF.
  • FIG. 7 shows an elution curve of the obtained product on a Superdex Peptide column (C-ABC (+)). The polymer peak disappeared by treatment of the product with chondroitinase ABC, which revealed that the resulting polymer was a CH polysaccharide chain ( Figure 7).
  • the synthesis system using these three enzyme reactors showed that the acceptor substrate CH6 was elongated and the ultra-high molecular weight CH polymer was synthesized using UDP-Glc and UDP-GlcNAc as donor substrates. confirmed.
  • the method of the present invention can be used for the production of polymer CH sugar chains, and the produced polymer CH is useful as a functional molecule for pharmaceuticals, foods, cosmetics and the like.
  • FIG. 1 is a graph showing the surfactant concentration dependence of CH synthesis.
  • FIG. 2 is a graph showing a SuperdexPeptide column elution curve of the reaction supernatant obtained in Example 4.
  • FIG. 3 is a diagram showing an elution curve of a reaction supernatant using a serial column of Sephacryl S500 and Superose 6;
  • FIG. 4 is a graph showing the influence of various surfactants having a final concentration of 0.4% on CH synthesis.
  • FIG. 5 is a diagram showing the influence of an organic solvent on CH synthesis.
  • FIG. 6 is a graph showing the dependence of organic solvent concentration on CH synthesis.
  • FIG. 7 is a diagram showing elution curves of the product obtained in Example 10 and the same product treated with chondroitinase ABC in a Superdex Peptide column.
  • FIG. 8 shows elution curves of a product obtained by adding CH6 in the CH synthesis of Example 10 and a product obtained without addition in a Superose column.

Abstract

A method for producing a chondroitin sugar chain comprises at least the following step: a step of allowing “a glucuronic acid donor”, “an N-acetyl galactosamine donor”, “a sugar receptor” and “a bacterial enzyme synthesizing chondroitin” to coexist in a reaction system in the presence of a surfactant. Here, the surfactant is preferably selected from n-nonyl-β-D-thiomaltopyranoside, sucrose monocaproate and sucrose monolaurate. The chondroitin sugar chain has all the following 1) to 3) properties: 1) a weight average molecular weight: 50,000 or more when it is measured by gel filtration chromatography, 2) it is completely degraded to disaccharides with chondroitinase ABC, 3) when the product obtained by degrading the sugar chain with chondroitinase ABC is subjected to a disaccharide analysis, substantially all of them are in agreement with an unsaturated disaccharide unit of chondroitin.

Description

長鎖コンドロイチン糖鎖及びその製造方法並びにコンドロイチン合成の促 進方法  Long chain chondroitin sugar chain, method for producing the same, and method for promoting chondroitin synthesis
技術分野  Technical field
[0001] 本発明は、長鎖コンドロイチン糖鎖及びその製造方法並びにコンドロイチン合成の 促進方法に関する。  [0001] The present invention relates to a long-chain chondroitin sugar chain, a method for producing the same, and a method for promoting chondroitin synthesis.
背景技術  Background art
[0002] まず、本出願書類において用いる略号を説明する。  [0002] First, abbreviations used in the present application documents will be described.
CH :コンドロイチン  CH: Chondroitin
CS :コンドロイチン硫酸  CS: Chondroitin sulfate
HA :ヒアノレロン酸  HA: Hyanoleronic acid
Glc :グルコース  Glc: Glucose
GlcUA :グルクロン酸  GlcUA: Glucuronic acid
GlcNAc: N -ァセチルダルコサミン  GlcNAc: N-Acetyldarcosamine
GalNAc: N ァセチルガラタトサミン  GalNAc: N Acetylgalatatosamine
GPC:ゲル浸透クロマトグラフィー  GPC: Gel permeation chromatography
HPLC:高速液体クロマトグラフィー  HPLC: High performance liquid chromatography
K4CP:大腸菌 K4株由来コンドロイチンポリメラーゼ  K4CP: Chondroitin polymerase from Escherichia coli K4
MALDI -TOF- MS: Matrix Assisted Laser  MALDI -TOF- MS: Matrix Assisted Laser
Desorption/Ionization 飛行時間型 質量分析  Desorption / Ionization Time-of-flight mass spectrometry
UDP :ゥリジン 5,ージリン酸  UDP: Uridine 5, diphosphoric acid
[0003] CHは、 GlcUA及び GalNAcがそれぞれ /3 1— 3結合及び β 1 4結合で交互に 直線上に結合したグリコサミノダリカンの一種である。 CHは、動物生体内において軟 骨や多くの結合組織に CSプロテオダリカンとして存在しており、細胞接着、発生、分 ィ匕、神経細胞伸展、軟骨'骨形成、組織再生などに重要な役割を担っている。 [0003] CH is a type of glycosaminodarlican in which GlcUA and GalNAc are alternately bonded on a straight line by / 3 1−3 bonds and β 1 4 bonds, respectively. CH is present as CS proteodalycan in soft bones and many connective tissues in the body of animals, and plays an important role in cell adhesion, development, differentiation, nerve cell extension, cartilage 'bone formation, tissue regeneration, etc. Is responsible.
[0004] また CSは、組織癒着防止、関節炎治療薬、腰痛関節痛治療薬、神経痛改善薬、 肩関節炎治療薬、点眼薬、慢性腎炎治療薬、滋養強壮、などの医薬品や健康食品 、化粧品 (保湿剤)等の形で有用な物質として市販されている。 CSは天然では通常、 重量平均分子量 20000から 50000の糖鎖として存在しており、重量平均分子量 10 万以上の CSも存在していることが知られている。これらの CSは、長鎖構造であること から、保湿性やイオン保持特性などの構造特性をもち、また、細胞外マトリックス成分 として細胞接着や発生分ィ匕のシグナル伝達などの特異的な生理機能を持つことも知 られている。 [0004] In addition, CS is a medicine and health food such as tissue adhesion prevention, arthritis treatment, back pain joint pain treatment, neuralgia remedy, shoulder arthritis treatment, eye drops, chronic nephritis treatment, nutrition tonic It is commercially available as a useful substance in the form of cosmetics (humectants). CS is naturally present as a sugar chain having a weight average molecular weight of 20000 to 50,000, and it is known that CS having a weight average molecular weight of 100,000 or more exists. Since these CSs are long-chain structures, they have structural characteristics such as moisture retention and ion retention characteristics, and specific physiological functions such as cell adhesion and signal transduction as an extracellular matrix component. It is also known to have
[0005] 動物由来の CH合成酵素が複数クローユングされている力 それらの発現酵素のみ では CHポリメラーゼ活性を持たず、また有して 、たとしてもその酵素活性が弱 、ため 、工業的に CH糖鎖を効率よく製造するには十分とはいえない。一方、 K4CPもクロ 一ユングされており、この酵素は単独で CHポリメラーゼ活性を有しており、効率よく C Hが製造できることも知られている(特許文献 1、非特許文献 1)。しかしながら、その 組換え精製酵素を使用して CH合成反応を長時間行っても、約 2万程度の CH糖鎖 ができるにとどまる。  [0005] The ability of animal-derived CH synthases to be crawled multiple times. Those expressed enzymes alone do not have CH polymerase activity, and if any, their enzyme activity is weak. It is not sufficient to produce chains efficiently. On the other hand, K4CP is also cloned, and this enzyme alone has CH polymerase activity, and it is also known that CH can be produced efficiently (Patent Document 1, Non-Patent Document 1). However, even if the CH synthesis reaction is carried out for a long time using the recombinant purified enzyme, only about 20,000 CH sugar chains are produced.
[0006] また、 CHは CSを脱硫酸ィ匕することでも製造することができるが、原料の CSの鎖長 がたとえ長力つたとしても副反応により糖鎖が切断されてしまい、市販されているもの の重量平均分子量は 1万以下であるというのが現状である。  [0006] CH can also be produced by desulfating CS, but even if the chain length of the raw material CS is long, the side chain causes the sugar chain to be cleaved and is commercially available. Currently, the weight average molecular weight is 10,000 or less.
長鎖 CH糖鎖を合成する技術は今まで知られて 、な 、が、産業上の有用性からも 長鎖高分子 CH糖鎖やその製造方法の開発が望まれている。  The technology for synthesizing long-chain CH sugar chains has been known so far. However, the development of long-chain polymer CH sugar chains and production methods thereof are desired from the viewpoint of industrial utility.
[0007] 特許文献 1 :特開 2003— 199583号公報  [0007] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-199583
非特許文献 1 :ニノミヤ、 T(Ninomiya, T.)ら、 2002年、ジャーナル ォブ ノ ィォロジ カル ケミストリー(Journal of Biological Chemistry)、第 277卷、第 24号、 p. 21567 - 21575  Non-Patent Document 1: Ninomiya, T. et al., 2002, Journal of Biological Chemistry, 277, 24, p. 21567-21575
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、長鎖高分子 CH糖鎖及びその製造方法を提供することを課題とする。 [0008] An object of the present invention is to provide a long-chain polymer CH sugar chain and a method for producing the same.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の発明者らは上記課題を解決すべく鋭意検討した結果、 CH合成酵素によ り GlcUA供与体、 GalNAc供与体、及び糖受容体力ゝら CHを合成する方法において 、CH合成酵素として CH合成酵素を強制発現させた大腸菌の発現菌株を使用し、 界面活性剤の存在下に合成反応を行うことにより、精製遊離酵素よりも極めて鎖長の 長!、CH多糖体を製造できることを見 、だし、本発明を完成するに至った。 [0009] The inventors of the present invention have intensively studied to solve the above problems, and as a result, in a method of synthesizing CH using a G synthetase, a GlcUA donor, a GalNAc donor, and a sugar acceptor. By using an expression strain of E. coli in which CH synthase is forcibly expressed as the CH synthase and performing the synthesis reaction in the presence of a surfactant, the chain length is much longer than that of the purified free enzyme! However, the present invention has been completed.
[0010] 本発明は下記工程を少なくとも含むことを特徴とする、 CH糖鎖の製造方法 (以下、 「本発明方法 1」 t ヽぅ)を提供する。 [0010] The present invention provides a method for producing a CH sugar chain (hereinafter referred to as "method 1 of the present invention" t ヽ ぅ), which comprises at least the following steps.
工程:「GlcUA供与体」、「GalNAc供与体」、「糖受容体」及び「CHを合成する菌体 酵素」を界面活性剤存在下にお ヽて反応系中に共存させる。  Process: “GlcUA donor”, “GalNAc donor”, “sugar acceptor” and “bacterial enzyme that synthesizes CH” coexist in the reaction system in the presence of a surfactant.
[0011] また本発明方法 1においては、「CHを合成する菌体酵素」が大腸菌由来の CHポリ メラーゼを発現させた菌体酵素であることが好ましぐこの大腸菌由来の CHポリメラ ーゼは K4CPであることが極めて好まし!/、。  [0011] Further, in the method 1 of the present invention, it is preferable that the "bacterial enzyme that synthesizes CH" is a bacterial cell enzyme expressing CH polymerase derived from E. coli. I really like K4CP!
[0012] また本発明方法 1においては、菌体酵素に用いる宿主が大腸菌であることが好まし く、中でも大腸菌 TOP10株であることが極めて好ましい。  [0012] In the method 1 of the present invention, it is preferable that the host used for the cell enzyme is Escherichia coli, and it is very particularly preferable that the host strain is E. coli TOP10.
[0013] また本発明方法 1においては、用いる界面活性剤力 ナイミーン、 MEGA— 10、コ ール酸ナトリウム、 n—ォクチルー 13—D—チォダルコピラノシド、 n—ノ-ルー 13— D ーチォマルトピラノシド、スクロースモノコール酸、スクロースモノカプロン酸及びスクロ ースモノラウリル酸力もなる群力も選ばれることが好ましぐ中でもナイミーン、 n—ノ- ルー 13—D—チォマルトピラノシド、スクロースモノカプロン酸及びスクロースモノラウ リル酸力もなる群力 選ばれることが好ましぐ n—ノエル一 β—D—チォマルトピラノ シド、スクロースモノカプロン酸及びスクロースモノラウリル酸力 なる群力 選ばれる ことが極めて好ましい。  [0013] In the method 1 of the present invention, the surfactant power used is Nimin, MEGA-10, sodium cholate, n-octyl-13-D-thiodarcopyranoside, n-nolulu 13-D- Thymaltopyranoside, sucrose monocholic acid, sucrose monocaproic acid, and sucrose monolauryl acid. It is preferable that the group power of caproic acid and sucrose monolauric acid is selected. It is very preferable that the group power of n-noel-β-D-thiomaltopyranoside, sucrose monocaproic acid and sucrose monolauric acid is selected.
[0014] また、本発明方法 1は「共存」力 10〜50°Cの条件下で 1時間〜 10日間行われる ことが好ましぐ 20〜40°Cの条件下で 10〜30時間行われることがより好ましぐ 20〜 40°Cの条件下で 15〜24時間行われることがさらに好ましぐ 25〜37°Cの条件下で 15〜24時間行われることが特に好ましい。  [0014] The method 1 of the present invention is preferably performed for 1 hour to 10 days under the condition of "coexistence" force of 10 to 50 ° C, and is performed for 10 to 30 hours under the condition of 20 to 40 ° C. More preferably, it is carried out for 15 to 24 hours under the condition of 20 to 40 ° C. It is particularly preferred that the reaction is carried out for 15 to 24 hours under the condition of 25 to 37 ° C.
[0015] また、本発明方法 1は GlcUA供与体が UDP— GlcUAであり、かつ、 GalNAc供 与体が UDP - GalNAcであることが好まし!/、。  [0015] In the method 1 of the present invention, the GlcUA donor is preferably UDP-GlcUA, and the GalNAc donor is preferably UDP-GalNAc! /.
[0016] この場合、 UDP- Glc4—ェピメラーゼ及び UDP— GlcNAc、並びに UDP- Glcデ ヒドロゲナーゼ及び UDP- Glcを反応系中に共存させ、「GalNAc供与体」としての U DP— GalNAc、及び「GlcUA供与体」としての UDP— GlcUAを供給することがで きる。 In this case, UDP-Glc4-epimerase and UDP-GlcNAc, UDP-Glc dehydrogenase and UDP-Glc coexist in the reaction system, and U as a “GalNAc donor” is obtained. DP—GalNAc and UDP—GlcUA as “GlcUA donor” can be supplied.
[0017] また本発明方法 1は、さらに、キシレン、クロ口ホルム、パラフィン及びホルムアルデ ヒドからなる群力 選ばれる 1又は 2以上の有機溶媒を共存させることが好ましぐ特 にクロ口ホルム又は「クロ口ホルム及びキシレン」を共存させることが好まし 、。また共 存状態における有機溶媒の濃度は 0%超 5%未満であることが好ましぐ 0. 5%超 3 %未満であることがさらに好ましぐ 1%であることが極めて好ましい。  [0017] Further, the method 1 of the present invention preferably further comprises one or two or more organic solvents selected from the group power consisting of xylene, black mouth form, paraffin and formaldehyde, particularly in particular. It is preferable to coexist with black mouth form and xylene. In addition, the concentration of the organic solvent in the coexistence state is preferably more than 0% and less than 5%, more preferably more than 0.5% and less than 3%, and even more preferably 1%.
[0018] また、本発明方法 1は、製造される CH糖鎖が下記 1)〜3)の全ての性質を有するも のであることが好ましい。  [0018] In the method 1 of the present invention, it is preferable that the produced CH sugar chain has all the following properties 1) to 3).
1)重量平均分子量:ゲル濾過クロマトグラフィーにより測定した場合、 5万以上である  1) Weight average molecular weight: 50,000 or more when measured by gel filtration chromatography
2)コンドロイチナーゼ ABCで完全に二糖に分解される。 2) It is completely broken down into disaccharides by chondroitinase ABC.
3)当該糖鎖をコンドロイチナーゼ ABCで分解して得られる産物を二糖分析すると、 実質的に全てが CH不飽和二糖に一致する。  3) When the product obtained by degrading the sugar chain with chondroitinase ABC is subjected to disaccharide analysis, substantially all of them match the CH unsaturated disaccharide.
本発明方法 1により製造される CH糖鎖の分子量は、重量平均分子量で、好ましく は 7万 5千以上、より好ましくは 20万以上であり、好ましい分子量の範囲として具体的 に ίま、 5万〜 20万、 5万〜 50万、 5万〜 100万、 7万 5千〜 20万、 7万 5千〜 50万、 7 万 5千〜 100万、 20万〜 50万、 20万〜 100万、 50万〜 100万等の範囲を例示する ことができる。  The molecular weight of the CH sugar chain produced by the method 1 of the present invention is preferably 75,000 or more, more preferably 200,000 or more in terms of weight average molecular weight. Specifically, the preferred molecular weight range is 50,000 or more. ~ 200,000, 50,000 to 500,000, 50,000 to 1,000,000, 75,000 to 200,000, 75,000 to 500,000, 75,000 to 1,000,000, 200,000 to 500,000, 200,000 to 100 For example, a range of 500,000 to 1 million can be exemplified.
[0019] また、本発明は「CHを合成する菌体酵素」による酵素反応時に、界面活性剤を共 存させることを特徴とする、 CH合成の促進方法 (以下、「本発明方法 2」という)を提 供する。  [0019] Further, the present invention provides a method for promoting CH synthesis (hereinafter referred to as "Method 2 of the present invention"), characterized in that a surfactant is allowed to coexist during an enzymatic reaction with "a cell enzyme that synthesizes CH". )I will provide a.
[0020] また本発明は、下記 1)〜3)の全ての性質を有する CH糖鎖 (以下、「本発明糖鎖」 という)を提供する。  [0020] The present invention also provides a CH sugar chain (hereinafter referred to as "the sugar chain of the present invention") having all the following properties 1) to 3).
1)重量平均分子量:ゲル濾過クロマトグラフィーにより測定した場合、 5万以上である  1) Weight average molecular weight: 50,000 or more when measured by gel filtration chromatography
2)コンドロイチナーゼ ABCで完全に二糖に分解される。 2) It is completely broken down into disaccharides by chondroitinase ABC.
3)当該糖鎖をコンドロイチナーゼ ABCで分解して得られる産物を二糖分析すると、 実質的に全てが CH不飽和二糖に一致する。 3) When disaccharide analysis of the product obtained by degrading the sugar chain with chondroitinase ABC, Virtually all are consistent with CH unsaturated disaccharides.
本発明糖鎖の分子量は、重量平均分子量で、好ましくは 7万 5千以上、より好ましく は 20万以上であり、好ましい分子量の範囲として具体的には、 5万〜 20万、 5万〜 5 0万、 5万〜 100万、 7万 5千〜 20万、 7万 5千〜 50万、 7万 5千〜 100万、 20万〜 5 0万、 20万〜 100万、 50万〜 100万等の範囲を例示することができる。  The molecular weight of the sugar chain of the present invention is preferably a weight average molecular weight of 75,000 or more, more preferably 200,000 or more. Specifically, the preferred molecular weight ranges are 50,000 to 200,000, 50,000 to 5 0,000, 50,000 to 1 million, 75,000 to 200,000, 75,000 to 500,000, 75,000 to 1 million, 200,000 to 500,000, 200,000 to 1 million, 500,000 to 100 A range of tens of thousands can be exemplified.
発明の効果  The invention's effect
[0021] 本発明方法 1は、天然に存在し特異な生理活性があることが知られている高分子 C Sと同程度あるいはそれ以上の重量平均分子量をもつ高分子 CH糖鎖を製造できる ことから極めて有用である。本発明方法 2は、極めて効率的に CH糖鎖を製造できる ことから極めて有用である。また本発明糖鎖は、通常動物組織から抽出した CHでは みられない高分子の CHであり、特異な物性及び生理活性も期待され、医薬品、健 康食品、化粧品等の素材となりうることから極めて有用である。  [0021] The method 1 of the present invention is capable of producing a polymer CH sugar chain having a weight average molecular weight comparable to or higher than that of a polymer CS that exists in nature and is known to have a specific physiological activity. Very useful. The method 2 of the present invention is very useful because it can produce a CH sugar chain very efficiently. The sugar chain of the present invention is a high molecular weight CH that is not usually found in CH extracted from animal tissues, and is expected to have unique physical properties and physiological activities. It can be a material for pharmaceuticals, health foods, cosmetics, etc. Useful.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明を本発明方法 1、本発明方法 2及び本発明糖鎖の順に、実施するた めの最良の形態により詳説する。 [0022] Hereinafter, the present invention will be described in detail in the order of the method 1, the method 2, and the sugar chain of the present invention in the order of the best mode for carrying out the invention.
[0023] < 1 > 本発明方法 1 [0023] <1> Method 1 of the present invention
本発明方法 1は下記工程を少なくとも含むことを特徴とする、 CH糖鎖の製造方法 である。  The method 1 of the present invention is a method for producing a CH sugar chain, comprising at least the following steps.
工程:「GlcUA供与体」、「GalNAc供与体」、「糖受容体」及び「CHを合成する菌体 酵素」を界面活性剤存在下において反応系中に共存させる。すなわち、 CHを合成 する菌体酵素を反応触媒として、 GlcUA供与体からの GlcUA残基と、 GalNAc供 与体からの GalNAc残基と交互に糖受容体に転移させ、 CH糖鎖を生成させる工程 である。  Process: “GlcUA donor”, “GalNAc donor”, “sugar acceptor” and “bacterial enzyme that synthesizes CH” coexist in the reaction system in the presence of a surfactant. In other words, using a cell enzyme that synthesizes CH as a reaction catalyst, a GlcUA residue from a GlcUA donor and a GalNAc residue from a GalNAc donor are alternately transferred to a sugar acceptor to form a CH sugar chain. It is.
[0024] ここに ヽぅ「GlcUA供与体」は、ある糖鎖分子に対して GlcUA残基を供与する能力 を有する分子である限りにお 、て限定されな 、が、 GlcUAヌクレオチドが好まし!/、。 GlcUAヌクレオチドとしては、 UDP-GlcUAや、 dTDP (デォキシチミジン 5'—ジリン 酸) GlcUA等が例示されるが、 UDP— GlcUAが好ましい。  [0024] Here, as long as the “GlcUA donor” is a molecule having an ability to donate a GlcUA residue to a certain sugar chain molecule, a GlcUA nucleotide is preferred. /. Examples of the GlcUA nucleotide include UDP-GlcUA and dTDP (deoxythymidine 5′-diphosphate) GlcUA, and UDP-GlcUA is preferred.
[0025] また、ここに 、う「GalNAc供与体」は、ある糖鎖分子に対して GalNAc残基を供与 する能力を有する分子である限りにお 、て限定されな 、が、 GalNAcヌクレオチドが 好ましい。 GalNAcヌクレオチドとしては、 UDP— GalNAcや dTDP (デォキシチミジ ン 5,一リジン酸) GalNAc糖が例示される力 UDP— GalNAcが好ましい。 [0025] Here, "GalNAc donor" donates a GalNAc residue to a certain sugar chain molecule. GalNAc nucleotides are preferred as long as the molecule has the ability to: As the GalNAc nucleotide, a force UDP-GalNAc exemplified by UDP-GalNAc and dTDP (deoxythymidine 5, monolysine acid) GalNAc sugar is preferable.
これらの糖ヌクレオチドは、公知の方法で製造しても良ぐ市販のものを用いても良 い。  As these sugar nucleotides, commercially available products that may be produced by known methods may be used.
[0026] また、本発明方法 1において用いる「糖受容体」は、例えば下記一般式(1)及び(2 )で示される糖鎖を例示することができる。  In addition, examples of the “sugar receptor” used in the method 1 of the present invention include sugar chains represented by the following general formulas (1) and (2).
GlcUA-R1 · · · · (1) GlcUA-R 1 (1)
GalNAc -R2 · · · · (2) GalNAc -R 2 (2)
(各式中、—はグリコシド結合を、 R1及び R2は、同一でも異なっていてもよい任意の 基をそれぞれ示す。 ) (In each formula, - the glycosidic bond, R 1 and R 2 are also respectively good any group be different in the same.)
[0027] 「1^」や「R2」としては、例えば、 CH骨格を有する糖鎖の残基や、 HA骨格を有する 糖鎖の残基等が例示される。例えばここに ヽぅ「CH骨格を有する糖鎖の残基」として は CH残基や CS残基等が例示される。このような糖鎖残基には、さらに他の化学物 質などが結合して 、ても良 、。 Examples of “1 ^” and “R 2 ” include sugar chain residues having a CH skeleton and sugar chain residues having an HA skeleton. For example, here, “residues of sugar chains having a CH skeleton” include CH residues and CS residues. Such sugar chain residues may be bonded with other chemical substances.
[0028] また、糖受容体の糖鎖のサイズも特に限定されな!、が、例えば 1〜50糖程度、好ま しくは 1〜40糖程度、より好ましくは 1〜30糖程度、さらに好ましくは 1〜20糖程度の オリゴ糖を例示することができる。より具体的には CHの 2糖、 3糖、 4糖、 5糖、 6糖、 7 糖、 8糖、 9糖、 10糖などが例示される。また、一般式(1)及び (2)の「 」や「R2」とし ては、このようなサイズの CSオリゴ糖、 HAオリゴ糖なども用いることができる。 [0028] In addition, the size of the sugar chain of the sugar receptor is not particularly limited !, but for example, about 1 to 50 sugars, preferably about 1 to 40 sugars, more preferably about 1 to 30 sugars, still more preferably An oligosaccharide having about 1 to 20 sugars can be exemplified. More specifically, CH disaccharide, 3 sugar, 4 sugar, 5 sugar, 6 sugar, 7 sugar, 8 sugar, 9 sugar, 10 sugar and the like are exemplified. In addition, as “” and “R 2 ” in the general formulas (1) and (2), CS oligosaccharides, HA oligosaccharides and the like having such sizes can also be used.
また、一般式(1)の非還元末端糖残基 GlcUAは |8構造であることが好ましぐその GlcUA残基が R1基の GlcNAcや GalNAcと結合して!/、る場合には、そのグリコシド 結合は j8 1— 3構造であることが好ましい。一般式(2)の非還元末端糖残基 GalNAc も j8構造であることが好ましぐその GalNAc残基が R2基の GlcUAと結合している場 合には、そのグリコシド結合は j8 1—4構造であることが好ましい。 In addition, it is preferable that the non-reducing terminal sugar residue GlcUA of the general formula (1) has a structure of | 8. When the GlcUA residue binds to the R 1 group GlcNAc or GalNAc, The glycosidic bond is preferably a j81-3 structure. It is preferable that the non-reducing terminal sugar residue GalNAc of the general formula (2) also has a j8 structure. When the GalNAc residue is bound to GlcUA of the R 2 group, the glycosidic bond is j8 1— A 4-structure is preferred.
[0029] このような糖受容体は、公知の方法で製造することもでき、また市販のものなどを用 いることちでさる。  [0029] Such a sugar receptor can be produced by a known method, or a commercially available one can be used.
また、本発明方法 1において用いられる「CHを合成する菌体酵素」は、 CHを合成 する活性を有する菌体酵素である限りにお ヽて特に限定されな ヽ。 In addition, the “bacterial enzyme that synthesizes CH” used in the method 1 of the present invention synthesizes CH. As long as it is a microbial enzyme having the activity to do so, it is not particularly limited.
[0030] なお、本出願書類にお!/、て「菌体酵素」とは、菌の形態を保ったままで特定の酵素 活性を発揮することができる菌体自体を意味する。すなわち「CHを合成する菌体酵 素」とは、菌の形態を保ったままで CHを合成する酵素活性を発揮することができる菌 体を意味するものである。 [0030] In this application document, "/ cell enzyme" means a cell itself that can exhibit a specific enzyme activity while maintaining the form of the cell. That is, “a cell enzyme that synthesizes CH” means a cell that can exhibit the enzymatic activity to synthesize CH while maintaining the form of the bacterium.
[0031] この「CHを合成する菌体酵素」は、大腸菌由来の CHポリメラーゼ遺伝子を組み込 んだ菌体酵素(大腸菌由来の CHポリメラーゼを発現させた菌体酵素)であることが好 ましい。特に莢膜多糖体の生産に関与する遺伝子を持つ大腸菌カゝら得られる遺伝 子を組み込んだものが好ましぐ特に K4CPを発現させたものを用いることが極めて 好ましい。宿主としては、大腸菌を用いることが好ましぐその中でも大腸菌 TOP10 株が極めて好ましい。 [0031] The "bacterial enzyme that synthesizes CH" is preferably a bacterial enzyme that incorporates an E. coli-derived CH polymerase gene (a bacterial enzyme that expresses E. coli-derived CH polymerase). . In particular, those incorporating a gene obtained from Escherichia coli having a gene involved in the production of capsular polysaccharides are preferred, and those expressing K4CP are particularly preferred. As the host, it is preferable to use Escherichia coli, and Escherichia coli TOP10 strain is very preferable.
[0032] ここにいう「K4CP」とは、 CHを受容体基質とし、 GalNAcヌクレオチド(UDP— Gal NAc等)及び GlcUAヌクレオチド (UDP - GlcUA等)を供与体基質として反応させ ると、受容体基質の非還元末端が GlcUA残基の場合には当該末端に GalNAcを、 非還元末端が GalN Ac残基の場合には当該末端に GlcUAを結合させることにより G alNAcと GlcUAを交互に結合させて、 CHを伸長させるポリメラーゼである(非特許 文献 1、特許文献 1)。  [0032] As used herein, "K4CP" means that when CH is used as an acceptor substrate and GalNAc nucleotides (UDP—GalNAc etc.) and GlcUA nucleotides (UDP-GlcUA etc.) are reacted as donor substrates, the acceptor substrate is used. When the non-reducing end of GlcUA is a GlcUA residue, GalNAc is bonded to the corresponding end, and when the non-reducing end is a GalN Ac residue, GalNAc and GlcUA are bound alternately by binding GlcUA to the end, It is a polymerase that extends CH (Non-patent Document 1, Patent Document 1).
[0033] 本発明方法 1において大腸菌に CHポリメラーゼ活性を発現させるため導入される DNAの製造方法や由来も特に制限されない。例えば K4CPは元々 K4抗原を有す る大腸菌力 取得されたものであるが、形質転換された他の生物種から取得されたも のや、化学合成等によって製造された DNAでもよい。  [0033] The method and origin of the DNA introduced for expressing CH polymerase activity in Escherichia coli in the method 1 of the present invention are not particularly limited. For example, K4CP was originally obtained from E. coli having the K4 antigen, but it may be obtained from other transformed species, or DNA produced by chemical synthesis or the like.
[0034] また、大腸菌 K4株の K4抗原特異的合成関連遺伝子クラスター Region 2 (R-Π)に は K4CP以外にも CH合成に関与する有用な遺伝子があり、 1番目の ORFである Kfo Aは、 UDP - GlcNAcを UDP - GalNAcに変換する活性を有する UDP - Glc4 - ェピメラーゼの遺伝子と同定され、 7番目の ORFである KfoFは、 UDP— Glcを UDP — GlcUAに変換する活性を有する、 UDP— Glcデヒドロゲナーゼの遺伝子と同定さ れた。  [0034] In addition, K4 antigen-specific synthesis-related gene cluster Region 2 (R-Π) of Escherichia coli K4 strain has a useful gene involved in CH synthesis in addition to K4CP, and the first ORF, Kfo A, is , Identified as a UDP-Glc4-epimerase gene that has the activity of converting UDP-GlcNAc to UDP-GalNAc, and the seventh ORF, KfoF, has the activity of converting UDP—Glc to UDP—GlcUA, UDP— It was identified as the gene for Glc dehydrogenase.
[0035] したがって、 KfoAのコードするェピメラーゼ活性と KfoFのコードするデヒドロゲナー ゼ活性を利用することにより、 UDP GalNAcや UDP— GlcUAより安価な材料で ある UDP - GlcNAcと UDP - Glcを基質として CHポリマーを合成することができる 。すなわち、本発明方法 1において、 UDP— Glc4 ェピメラーゼ及び UDP— GlcN Ac、並びに UDP— Glcデヒドロゲナーゼ及び UDP— Glcを反応系中に共存させ、「 GalNAc供与体」としての UDP— GalNAc、及び「GlcUA供与体」としての UDP— GlcUAを供給することにより、 CH糖鎖を製造することができる(後記実施例 7〜9参 照)。 [0035] Therefore, the epimerase activity encoded by KfoA and the dehydrogenase encoded by KfoF By utilizing this activity, CH polymers can be synthesized using UDP-GlcNAc and UDP-Glc, which are cheaper materials than UDP GalNAc and UDP-GlcUA, as substrates. That is, in Method 1 of the present invention, UDP-Glc4 epimerase and UDP-GlcN Ac, and UDP-Glc dehydrogenase and UDP-Glc are allowed to coexist in the reaction system, and UDP-GalNAc and “GlcUA donation” as “GalNAc donor” are present. By supplying UDP-GlcUA as a “body”, a CH sugar chain can be produced (see Examples 7 to 9 below).
[0036] UDP— GlcNAc及び UDP— Glcは既知の酵素ゃ菌体反応により Glcなどの単糖 力も合成できることが知られており、より安価な材料力も CH糖鎖を工業的に生産でき ることが期待される。  [0036] UDP-GlcNAc and UDP-Glc are known to be able to synthesize monosaccharides such as Glc by known bacterial cell reactions, and it is possible to industrially produce CH sugar chains with less expensive materials. Be expected.
[0037] また、上記 UDP— Glc4 ェピメラーゼ及び UDP— Glcデヒドロゲナーゼの形態は 特に限定されないが、 K4CPと同様に菌体酵素とすることが好ましぐしたがって、 K4 CP発現系に加えて KfoAや KfoF大腸菌発現系により作製した組換え酵素の菌体リア クタ一を用 、て、 UDP— GlcNAc及び UDP— Glcから長鎖 CHを合成することが可 能となり、安価な材料力も長鎖 CHを合成でき、酵素の精製に必要な手間とコストを省 くことができる、工業的に非常に有利な長鎖 CHの大量合成手法が提供される。  [0037] The form of the UDP-Glc4 epimerase and UDP-Glc dehydrogenase is not particularly limited, but it is preferable to use a cell enzyme similar to K4CP. Therefore, in addition to the K4CP expression system, KfoA and KfoF E. coli It is possible to synthesize long-chain CH from UDP-GlcNAc and UDP-Glc using the bacterial reactor of the recombinant enzyme prepared by the expression system. An industrially very advantageous method for mass synthesis of long-chain CH that can save labor and cost required for enzyme purification is provided.
[0038] これらの DNAを導入するためのベクターとしては、例えば、導入した DNAを発現 することができる適当なベクター(ファージベクター或いはプラスミドベクター等)を使 用することができ、本発明ベクターを組み込む宿主細胞に応じて適宜選択できる。こ のような宿主 ベクター系として、 COS細胞、 3LL-HK46細胞などの哺乳類細胞と、 p GIR201(Kitagawa, H" and Paulson, J.C. (1994) J. Biol. Chem. 269, 1394-1401)、 pE F-BOS (mizushima, S., and Nagata, S. (1990) Nucleic Acid Res. 18, 5322)、 pCXN2 (Niwa, H., Yamamura, K. and Miyazaki, J. (1991) Gene 108, 193—200) pCMV— 2 (ィ 一ストマン コダック(Eastman Kodak)製)、 pCEV18、 pME18S (丸山ら, Med. Immun ol., 20, 27(1990))又は pSVL (フアルマシアバイオテク社製)等の哺乳類細胞用発現 ベクターの組み合わせ、大腸菌 . coli)と、 pTrcHis (インビトロゲン社製)、 pGEX、 p Trc99、 pKK233— 3、 pEZZZ18、 pCH110、 (フアルマシア バイオテック社製)、 pET (ス トラタジ一社製)、 pBAD、 pRSET、及び pSE420 (インビトロゲン社製)等の原核細胞用 の発現ベクターの他、宿主細胞として、昆虫細胞、酵母、枯草菌などが例示され、こ れらに対応する各種ベクターが例示される。上述の宿主 ベクター系の中でも特に 大腸菌と pTrcHisとの組み合わせが好まし 、。 [0038] As a vector for introducing these DNAs, for example, an appropriate vector (such as a phage vector or a plasmid vector) capable of expressing the introduced DNA can be used, and the vector of the present invention is incorporated. It can select suitably according to a host cell. Such host vector systems include mammalian cells such as COS cells and 3LL-HK46 cells, p GIR201 (Kitagawa, H "and Paulson, JC (1994) J. Biol. Chem. 269, 1394-1401), pE F-BOS (mizushima, S., and Nagata, S. (1990) Nucleic Acid Res. 18, 5322), pCXN2 (Niwa, H., Yamamura, K. and Miyazaki, J. (1991) Gene 108, 193— 200) Mammals such as pCMV-2 (made by Eastman Kodak), pCEV18, pME18S (Maruyama et al., Med. Immun ol., 20, 27 (1990)) or pSVL (manufactured by Pharmacia Biotech) Combination of expression vectors for cells, E. coli), pTrcHis (Invitrogen), pGEX, p Trc99, pKK233-3, pEZZZ18, pCH110, (Falmacia Biotech), pET (Strataji) For prokaryotic cells such as pBAD, pRSET, and pSE420 (Invitrogen) In addition to these expression vectors, examples of host cells include insect cells, yeast, Bacillus subtilis, and various vectors corresponding thereto. Of the host vector systems described above, the combination of E. coli and pTrcHis is particularly preferred.
[0039] また、これらの DNA及び発現ベクターは分泌型や細胞内滞留型などが存在するが 、細胞内に発現した酵素分子がとどまる細胞内滞留型が好ましい。  [0039] Furthermore, these DNAs and expression vectors exist in secretory and intracellular retention types, but intracellular retention types in which enzyme molecules expressed in the cells remain are preferred.
[0040] また、発現ベクターのプロモーターは、適宜選択できるが、 j8—イソプロピルチォガ ラタトシドで発現誘導できる lacプロモーターが好ましい。また、細胞内で酵素活性構 造を維持するため、変性沈殿形態のインクルージョンボディーを作りにくぐ比較的発 現効率が低 、trcプロモーターも好まし!/、。  [0040] The promoter of the expression vector can be appropriately selected, but the lac promoter capable of inducing expression with j8-isopropylthiogalatatoside is preferred. In addition, in order to maintain the enzyme activity structure in the cell, it is difficult to produce inclusion bodies in the form of denaturing precipitates, and the expression efficiency is relatively low, and the trc promoter is also preferred!
本発明方法 1に用いられる菌体酵素は、公知の方法を当業者が適宜選択し調製で きる。具体的方法にっ 、ては後述の実施例 1を参照された 、。  The bacterial cell enzyme used in the method 1 of the present invention can be prepared by appropriately selecting a known method by those skilled in the art. For specific methods, see Example 1 below.
[0041] また、本発明方法 1は、用いられる界面活性剤力 ナイミーン、 MEGA— 10、コー ル酸ナトリウム、 n—ォクチル一 β—D—チォダルコピラノシド、 η—ノエル一 13— D— チォマルトピラノシド、スクロースモノコール酸、スクロースモノカプロン酸及びスクロー スモノラウリル酸力もなる群力も選ばれることが好ましぐ中でもナイミーン、 η—ノ-ル β—D チォマルトピラノシド、スクロースモノカプロン酸及びスクロースモノラウリ ル酸力 なる群力 選ばれることが好ましぐさらに η—ノエル一 β—D—チオマルトビ ラノシド、スクロースモノカプロン酸及びスクロースモノラウリル酸からなる群から選ば れることが極めて好ましい。  [0041] In addition, the method 1 of the present invention is based on the surfactant power used, Naimine, MEGA-10, sodium cholate, n-octyl-1-β-D-thiodarcopyranoside, η-Noel-13-D- Thymaltopyranoside, sucrose monocholic acid, sucrose monocaproic acid, and sucrose monolauryl acid. Acid and sucrose monolauric acid power are preferably selected and more preferably selected from the group consisting of η-Noel β-D-thiomaltoviranoside, sucrose monocaproic acid and sucrose monolauric acid.
[0042] また、本発明方法 1で用いられる「共存」とは、これらの供与体分子、糖受容体分子 及び菌体酵素が相互に接触し、菌体酵素による酵素反応が惹起される状態である反 応系が形成される限りにおいて特に限定されない。例えば、これらを溶液中で共存さ せてもよぐ菌体酵素を適当な固相 (ビーズ、限外濾過膜、透析膜等)に固着させこ れに前記の供与体及び受容体を含有する溶液を連続的に接触させることにより共存 させてもよい。したがって、例えばカラム型のリアクターや、膜型リアクター等を採用す ることもできる。また、 PCT国際公開パンフレット WO00Z27437号に記載された方 法と同様に、受容体を固相に固着させて酵素反応させることもできる。さらに、供与体 を再生 (合成)するバイオリアクター等を組み合わせてもよ 、。 [0043] また、本発明方法 1における「共存」は、 10〜50°Cの条件下で 1時間〜 10日間行 われることが好ましぐ 20〜40°Cの条件下で 10〜30時間行われることがより好ましく 、 20〜40°Cの条件下で 15〜24時間行われることがさらに好ましぐ 25〜37°Cの条 件下で 15〜24時間行われることが特に好ましい。 [0042] The term "coexistence" used in the method 1 of the present invention refers to a state in which these donor molecule, sugar acceptor molecule and bacterial enzyme come into contact with each other and an enzymatic reaction by the bacterial enzyme is induced. There is no particular limitation as long as a reaction system is formed. For example, bacterial enzymes that can coexist in a solution are fixed to an appropriate solid phase (beads, ultrafiltration membrane, dialysis membrane, etc.), and contain the donor and acceptor described above. The solutions may be allowed to coexist by contacting them continuously. Therefore, for example, a column type reactor or a membrane type reactor can be employed. In addition, as in the method described in PCT International Publication Pamphlet WO00Z27437, the receptor can be immobilized on a solid phase and subjected to an enzymatic reaction. In addition, bioreactors that regenerate (synthesize) donors may be combined. [0043] In addition, the "coexistence" in the method 1 of the present invention is preferably performed for 1 hour to 10 days under the condition of 10 to 50 ° C, and for 10 to 30 hours under the condition of 20 to 40 ° C. More preferably, it is more preferably performed for 15 to 24 hours under the condition of 20 to 40 ° C, and particularly preferably for 15 to 24 hours under the condition of 25 to 37 ° C.
[0044] この共存は、温度及び pHを一定に保持して行うことが好ま 、。 pHを一定に保持 するために、この反応は当該 pH領域にぉ ヽて緩衝作用を有する緩衝溶液中で行う ことが好ましい。本発明方法 1における「共存」に適する pHの範囲は 5〜9であり、好 ましくは pH6〜8であり、中性付近が極めて好ましい。  [0044] This coexistence is preferably carried out while maintaining the temperature and pH constant. In order to keep the pH constant, this reaction is preferably performed in a buffer solution having a buffering action over the pH range. The pH range suitable for “coexistence” in the method 1 of the present invention is 5-9, preferably pH 6-8, and very close to neutrality.
[0045] なお本発明方法 1における「GlcUA」及び「GalNAc」は、それぞれ D— GlcUA及 び D— GalNAcであることが好ましい。また、本発明方法 1の一般式において示され る GlcUAと GalNAcとの間のグリコシド結合(GlcUA— GalNAc)は j8 1—3結合で あることが好ましぐ GalNAcと GlcUAとの間のグリコシド結合(GalNAc— GlcUA) は β 1—4結合であることが好ましい。  Note that “GlcUA” and “GalNAc” in Method 1 of the present invention are preferably D-GlcUA and D-GalNAc, respectively. In addition, it is preferable that the glycosidic bond (GlcUA—GalNAc) between GlcUA and GalNAc represented by the general formula of the method 1 of the present invention is a j8 1-3 bond. The glycosidic bond between GalNAc and GlcUA ( GalNAc—GlcUA) is preferably a β 1-4 bond.
[0046] また、共存させる時にさらに有機溶媒を共存させることができ、キシレン、クロ口ホル ム、パラフィン及びホルムアルデヒド力 なる群力 選ばれる 1又は 2以上の有機溶媒 を共存させることが好ましぐ特にクロ口ホルム又は「クロ口ホルム及びキシレン」を共 存させることが好ましい。また共存状態における有機溶媒の濃度は 0%超 5%未満で あることが好ましぐ 0. 5%超 3%未満であることがさらに好ましぐ 1%であることが極 めて好ましい。  [0046] Further, when coexisting, an organic solvent can be further coexisted, and it is particularly preferable to coexist with one or more organic solvents selected from the group power of xylene, chloroform, paraffin and formaldehyde power. It is preferable that black mouth form or “black mouth form and xylene” coexist. In addition, the concentration of the organic solvent in the coexistence state is preferably more than 0% and less than 5%, more preferably more than 0.5% and less than 3%, and even more preferably 1%.
[0047] また、糖受容体として、非還元末端に GlcUA β ΐ— 3構造又は GalNAc j8 1— 4構 造を有する糖鎖誘導体を用いることにより、本発明方法 1によって高分子鎖長の CH 誘導体を製造することもできる。ここにいう糖鎖誘導体とは、例えば、式(1)及び (2) の糖受容体であって R1および R2として CH以外の糖鎖、糖鎖ではな ヽ任意の有機基 などを有するものを意味し、高分子鎖長の CH誘導体とは、高分子鎖長の CHに CH 以外の糖鎖、糖鎖ではな 、任意の有機基などが結合した CH誘導体を意味するもの である。 [0047] Further, by using a sugar chain derivative having a GlcUA β β-3 structure or a GalNAc j8 1-4 structure at the non-reducing end as a sugar acceptor, a CH derivative having a polymer chain length according to the method 1 of the present invention is used. Can also be manufactured. The sugar chain derivatives mentioned here are, for example, sugar receptors of the formulas (1) and (2), and R 1 and R 2 have a sugar chain other than CH, an arbitrary organic group that is not a sugar chain, etc. The term “CH derivative having a polymer chain length” refers to a CH derivative in which an organic group other than a sugar chain or sugar chain other than CH is bonded to CH having a polymer chain length.
[0048] また、本発明方法 1は、製造される CH糖鎖が下記 1)〜3)の全ての性質を有するこ とが好ましい。 1)重量平均分子量:ゲル濾過クロマトグラフィーにより測定した場合、 5万以上である 。なお、ゲル濾過クロマトグラフィーの諸条件は、実施例を参照されたい。 [0048] In the method 1 of the present invention, the CH sugar chain to be produced preferably has all the following properties 1) to 3). 1) Weight average molecular weight: 50,000 or more when measured by gel filtration chromatography. For the conditions for gel filtration chromatography, see the Examples.
2)コンドロイチナーゼ ABCで完全に二糖に分解される。  2) It is completely broken down into disaccharides by chondroitinase ABC.
3)当該糖鎖をコンドロイチナーゼ ABCで分解して得られる産物を二糖分析すると、 実質的に全てが CH不飽和二糖に一致する。  3) When the product obtained by degrading the sugar chain with chondroitinase ABC is subjected to disaccharide analysis, substantially all of them match the CH unsaturated disaccharide.
[0049] この場合には、用いる糖受容体は、下記一般式(1)又は(2)において「 」及び「R 2Jが CH骨格のみをもつ糖鎖である必要がある。  [0049] In this case, the sugar receptor to be used must be a sugar chain in which "" and "R2J" have only a CH skeleton in the following general formula (1) or (2).
GlcUA-R1 · · · · (1) GlcUA-R 1 (1)
GalNAc-R2 · · · · (2) GalNAc-R 2 (2)
(各式中、—はグリコシド結合を、 R1及び R2は、同一でも異なっていてもよい任意の 基をそれぞれ示す。 ) (In each formula, - the glycosidic bond, R 1 and R 2 are also respectively good any group be different in the same.)
[0050] ここに!/、う「コンドロイチナーゼ ABC」とは、グリコサミノダリカン分解酵素の一種で、 CH、 HAに作用し、へキソサミンを還元末端に持つ不飽和二糖にまで完全に分解す る酵素である。  [0050] Here! /, “Chondroitinase ABC” is a kind of glycosaminodarlican-degrading enzyme that acts on CH and HA, and is completely unsaturated disaccharide having hexosamine at the reducing end. It is an enzyme that degrades.
また、本発明で用いる「実質的に全て」とは、上記分解産物を二糖分析したときに、 CH不飽和二糖以外のピークが通常の HPLCにお 、て検出できな!/、ことを意味する  In addition, “substantially all” used in the present invention means that when the degradation product is subjected to disaccharide analysis, peaks other than CH unsaturated disaccharide cannot be detected by ordinary HPLC! /. means
[0051] 本発明方法 1により製造される CH糖鎖の分子量は特に限定されないが、本発明方 法 1は重量平均分子量が 5万以上である CH糖鎖の製造に用いることができ、重量平 均分子量が 7万 5千以上である CH糖鎖を製造するときに用いられることが好ましぐ 重量平均分子量 20万以上の CH糖鎖を製造するときに用いられることが特に好まし い。分子量の上限としては特に限定されるものではなぐ例えば、重量平均分子量で 50万や 100万程度の CH糖鎖も製造可能である。従って好ま 、分子量の範囲とし て具体的に【ま、 5万〜 20万、 5万〜 50万、 5万〜 100万、 7万 5千〜 20万、 7万 5千 〜50万、 7万 5千〜 100万、 20万〜 50万、 20万〜 100万、 50万〜 100万等の範囲 が挙げられる。 [0051] The molecular weight of the CH sugar chain produced by the method 1 of the present invention is not particularly limited, but the method 1 of the present invention can be used for the production of a CH sugar chain having a weight average molecular weight of 50,000 or more. It is preferred to be used when producing CH sugar chains having an average molecular weight of 75,000 or more. It is particularly preferred to be used when producing CH sugar chains having a weight average molecular weight of 200,000 or more. The upper limit of the molecular weight is not particularly limited. For example, CH sugar chains having a weight average molecular weight of about 500,000 or 1 million can be produced. Therefore, it is preferable that the molecular weight ranges are 50,000 to 200,000, 50,000 to 500,000, 50,000 to 1,000,000, 75,000 to 200,000, 75,000 to 500,000, 70,000. Examples include 5,000 to 1,000,000, 200,000 to 500,000, 200,000 to 1,000,000, and 500,000 to 1,000,000.
[0052] < 2> 本発明方法 2  [0052] <2> Method 2 of the present invention
本発明方法 2は、「CHを合成する菌体酵素」による酵素反応時に、界面活性剤を 共存させることを特徴とする、 CH合成の促進方法である。 In the method 2 of the present invention, a surfactant is added at the time of an enzymatic reaction by “a cell enzyme that synthesizes CH” It is a method for promoting CH synthesis, characterized by coexistence.
本発明方法 2は、例えば、本発明方法 1のような「CH糖鎖の製造方法」において、「 CHを合成する菌体酵素」による酵素反応を界面活性剤の存在下に行うことにより C H合成が促進されるという知見に基づくものであり、本発明方法 2にいう「CHを合成 する菌体酵素」、「界面活性剤」、「共存」の語の意味は、いずれも本発明方法 1につ いて説明したものと同じである。  The method 2 of the present invention is a method for synthesizing CH, for example, by performing an enzymatic reaction with a “bacterial enzyme that synthesizes CH” in the presence of a surfactant in the “method for producing a CH sugar chain” like the method 1 of the present invention The meanings of the terms “bacterial enzyme that synthesizes CH”, “surfactant”, and “coexistence” in method 2 of the present invention are all in the method 1 of the present invention. It is the same as described above.
[0053] また、本発明方法 2を本発明方法 1と同様の工程で行う場合、用いられる「GlcUA 供与体」、「GalNAc供与体」、「糖受容体」についての説明や、合成されるべき CH 糖鎖の説明、その他諸条件等についての説明は、いずれも本発明方法 1と同じであ る。 [0053] Further, when the method 2 of the present invention is carried out in the same steps as the method 1 of the present invention, explanations on "GlcUA donor", "GalNAc donor", and "sugar acceptor" to be used are to be made. The explanation of the CH sugar chain and other explanations are the same as in Method 1 of the present invention.
[0054] < 3 > 本発明糖鎖  [0054] <3> Sugar chain of the present invention
本発明糖鎖は、下記 1)〜3)の全ての性質を有する CH糖鎖である。  The sugar chain of the present invention is a CH sugar chain having all the following properties 1) to 3).
1)重量平均分子量:ゲル濾過クロマトグラフィーにより測定した場合、 5万以上である 。なお、ゲル濾過クロマトグラフィーの諸条件については、実施例を参照されたい。 1) Weight average molecular weight: 50,000 or more when measured by gel filtration chromatography. For the conditions of gel filtration chromatography, see the examples.
2)コンドロイチナーゼ ABCで完全に二糖に分解される。 2) It is completely broken down into disaccharides by chondroitinase ABC.
3)当該糖鎖をコンドロイチナーゼ ABCで分解して得られる産物を二糖分析すると、 実質的に全てが CH不飽和二糖に一致する。  3) When the product obtained by degrading the sugar chain with chondroitinase ABC is subjected to disaccharide analysis, substantially all of them match the CH unsaturated disaccharide.
[0055] また、本発明糖鎖の分子量は特に限定されないが、通常重量平均分子量で 5万以 上であり、 7万 5千以上であることが好ましぐ 20万以上であることがより好ましい。本 発明糖鎖における分子量の上限は特に限定されるものではなぐ重量平均分子量で 50万や 100万程度分子量を有し得る。従って本発明糖鎖の分子量の範囲を具体的 に ί列示すると、 5万〜 20万、 5万〜 50万、 5万〜 100万、 7万 5千〜 20万、 7万 5千〜 50万、 7万 5千〜 100万、 20万〜 50万、 20万〜 100万、 50万〜 100万等の範囲力 S 挙げられる。  [0055] The molecular weight of the sugar chain of the present invention is not particularly limited, but is usually 50,000 or more in terms of weight average molecular weight, preferably 75,000 or more, more preferably 200,000 or more. . The upper limit of the molecular weight of the sugar chain of the present invention is not particularly limited, and may have a molecular weight of about 500,000 or 1 million in terms of weight average molecular weight. Therefore, the molecular weight ranges of the sugar chains of the present invention are specifically shown as follows: 50,000 to 200,000, 50,000 to 500,000, 50,000 to 1,000,000, 75,000 to 200,000, 75,000 to 50 10,000, 75,000 to 1,000,000, 200,000 to 500,000, 200,000 to 1,000,000, 500,000 to 1,000,000 range power S.
[0056] 本発明糖鎖は、その状態も特に限定されず、溶液状態であっても、固体の状態 (粉 末等や、溶液が凍結した状態等)等であってもよい。  [0056] The state of the sugar chain of the present invention is not particularly limited, and may be in a solution state or in a solid state (powder or the like, a state in which the solution is frozen, or the like).
また、本発明糖鎖で用いられる「コンドロイチナーゼ ABC」の用語の意義は本発明 方法 1で述べたものと同じである。 なお、本発明糖鎖は例えば本発明方法 1を用いることにより製造することができる。 実施例 Further, the meaning of the term “chondroitinase ABC” used in the sugar chain of the present invention is the same as that described in Method 1 of the present invention. The sugar chain of the present invention can be produced, for example, by using the method 1 of the present invention. Example
[0057] 以下、本発明を実施例により具体的に詳説する。し力しながら、これらによって本発 明の技術的範囲が限定されるものではない。  [0057] The present invention will be specifically described below with reference to examples. However, these do not limit the technical scope of the present invention.
[0058] 実施例 1 菌体酵素の調製  Example 1 Preparation of Cell Enzyme
特願 2003-199583に示された方法に従い、大腸菌由来の CHポリメラーゼ (K4CP) 酵素の遺伝子及び発現ベクターを製造した。発現ベクターとしては pTrcHisプラスミド (インビトロゲン社製)を用いた。この方法で得られた発現ベクターを導入した大腸菌 をアンピシリン含有 LB培地にて波長 600nmにおける培養液の吸光度が約 0. 6とな るまで 37°Cで培養し、発現誘導分子である j8—イソプロピルチオガラクトシド (IPTG) を終濃度 ImMとなるように添加し、さらに 37°Cで 3時間培養し、酵素発現を誘導した 。その培養液 lmlをとり、遠心チューブに移して 10,000 rpmで 1分間遠心した。上清 を捨て、残った細胞沈殿物を菌体酵素とした。また、この細胞沈殿物は— 80°Cで保 存することにより少なくとも 1年間酵素活性を維持できる。  According to the method disclosed in Japanese Patent Application No. 2003-199583, a gene and an expression vector of an E. coli-derived CH polymerase (K4CP) enzyme were produced. PTrcHis plasmid (Invitrogen) was used as an expression vector. Escherichia coli into which the expression vector obtained by this method was introduced was cultured at 37 ° C in an LB medium containing ampicillin at a wavelength of 600 nm until the absorbance of the culture solution reached about 0.6, and the expression-inducing molecule, j8-isopropyl. Thiogalactoside (IPTG) was added to a final concentration of ImM, and further cultured at 37 ° C. for 3 hours to induce enzyme expression. 1 ml of the culture solution was taken, transferred to a centrifuge tube, and centrifuged at 10,000 rpm for 1 minute. The supernatant was discarded, and the remaining cell precipitate was used as a cell enzyme. In addition, the cell precipitate can maintain enzyme activity for at least one year by storing at -80 ° C.
[0059] 実施例 2 CH6糖 (CH6)の調製  Example 2 Preparation of CH6 sugar (CH6)
CSをィ匕学的に脱硫酸ィ匕した CH (生化学工業株式会社製)に、ヒッジ睾丸由来のヒ アル口-ダーゼ (シグマ社製)を添加し、 NaClを含有する酢酸ナトリウム緩衝液中で 限定分解することによって、非還元末端力 SGlcUA残基である偶数糖の CHオリゴ糖 を得た。得られたオリゴ糖をゲル濾過及びイオン交換カラムにより精製して、 CH6に 相当する画分を集めて、凍結乾燥した。この得られた画分についてゥロン酸含有量 分析(力ルバゾール法)、 HPLC (GPC)、 MALDI—TOF— MS、コンドロイチナー ゼ処理後の二糖分析等を行った結果、還元末端が GalNAc残基で非還元末端が G1 cUA残基である 6糖であることを確認した。  Hydrate testase-derived hyaluronan-dase (Sigma) was added to CH (Seikagaku Corporation), which was chemically desulfurized with CS, in a sodium acetate buffer containing NaCl. By subjecting to limited digestion, an even-numbered CH oligosaccharide having a non-reducing end-strength SGlcUA residue was obtained. The resulting oligosaccharide was purified by gel filtration and an ion exchange column, and fractions corresponding to CH6 were collected and lyophilized. The resulting fraction was analyzed for uronic acid content (force rubazole method), HPLC (GPC), MALDI-TOF-MS, chondroitinase-treated disaccharide analysis, etc. It was confirmed that the non-reducing end was a hexasaccharide with a G1 cUA residue.
[0060] 実施例 3 界面活性剤の濃度の検討  [0060] Example 3 Examination of Surfactant Concentration
実施例 1で得られた菌体酵素に、終濃度 0、 0. 1、 0. 2、 0. 4、 1. 0又は 2. 0%の 界面活性剤ナイミーン S— 215 (Nymeen S- 215 ;日本油脂株式会社製)を含有する 5 0 mM Tris— HCl(pH7.2)緩衝液(20 mM MnCl、 150 mM NaCl、 0. 1 nmole CH The fungal enzyme obtained in Example 1 was added to the surfactant Nimin S-215 (Nyme en S-215) at a final concentration of 0, 0.1, 0.2, 0.4, 1.0 or 2.0%. ; 50 mM Tris—HCl (pH 7.2) buffer solution (20 mM MnCl, 150 mM NaCl, 0.1 nmole CH)
2  2
6、 3 nmol UDP— GalNAc、 0. 2 ^ Ci UDP— [3H]GalNAc及び 3nmol UDP— G lcUAを含有するもの)を添加して懸濁し、 30°Cで 15時間振盪した。反応後、沸騰水 中で 10分間加熱処理した後、 15,000 rpmで 5分間遠心して沈殿を除去し、上清を Su perdex peptide HR10/30カラム(アマシャム社製)を用いたゲル濾過に付した。溶出 液中の糖鎖は 225nmの吸収により検出した。 6, 3 nmol UDP— GalNAc, 0.2 ^ Ci UDP— [ 3 H] GalNAc and 3 nmol UDP— G (containing lcUA) was added and suspended, and the mixture was shaken at 30 ° C for 15 hours. After the reaction, the mixture was heat-treated in boiling water for 10 minutes, centrifuged at 15,000 rpm for 5 minutes to remove the precipitate, and the supernatant was subjected to gel filtration using a Superdex peptide HR10 / 30 column (Amersham). The sugar chain in the eluate was detected by absorption at 225 nm.
[0061] 高分子領域に存在する吸収ピークに相当する溶出画分を採取し、 [ ]GalNAcの 取り込みを検出した。取り込みは、使用した [ ]GalNAcのトータルの放射活性を 10 0%とした場合における取り込まれた放射活性の比(%)で示した。結果を図 1に示す [0061] The elution fraction corresponding to the absorption peak present in the polymer region was collected, and [] GalNAc uptake was detected. Uptake was expressed as a ratio (%) of the incorporated radioactivity when the total radioactivity of [] GalNAc used was 100%. The results are shown in Figure 1
[0062] その結果、酵素反応時における界面活性剤の濃度を 0. 4%以上にすることによつ て、 [3H]GalNAcの約 37%が高分子画分に取り込まれることが示された。一方、界面 活性剤ナイミーン S— 215を添加せずに菌体酵素を使用すると、 [3H]GalNAcの取り 込みはほとんど観察されな力つた(図 1)。 [0062] As a result, it was shown that about 37% of [ 3 H] GalNAc was incorporated into the polymer fraction when the concentration of the surfactant during the enzyme reaction was 0.4% or more. It was. On the other hand, the use of bacterial cell enzyme without adding a surfactant Nymeen S- 215, such observed little incorporation of [3 H] GalNAc ChikaraTsuta (Figure 1).
[0063] 実施例 4 菌体酵素を用いた長鎖の CH糖鎖の合成と分子量の分析  Example 4 Synthesis of Long-chain CH Sugar Chain Using Cell Enzyme and Analysis of Molecular Weight
界面活性剤ナイミーン S— 215の終濃度を 0. 4%として実施例 3と同様に CH糖鎖 の合成を行った結果、使用した [ ]GalNAcの約 37%が高分子画分に取り込まれる ことが再確認された。この高分子画分を実施例 3と同様に処理した後、上清を Superd ex peptide HR10/30カラム(アマシャム社製)を用いたゲル濾過に付し、実施例 3と同 様に検出した。さらに、この画分をコンドロイチナーゼ ABC (生化学工業株式会社製 )で処理した結果、完全に低分子化された。またこれにより生じた分解産物を二糖分 祈した結果、全ての分解産物が CH不飽和二糖と一致することを確認した。したがつ て、前記の高分子画分は CHであることが確認され、酵素反応時における界面活性 剤の濃度を 0. 4%以上とすることによって非常に効率よく高分子の CHを製造するこ とが示された。  As a result of synthesizing CH sugar chains in the same manner as in Example 3 with the final concentration of the surfactant Naimine S-215 being 0.4%, about 37% of the [] GalNAc used was incorporated into the polymer fraction. Was reconfirmed. This polymer fraction was treated in the same manner as in Example 3, and then the supernatant was subjected to gel filtration using a Superdex peptide HR10 / 30 column (Amersham) and detected in the same manner as in Example 3. Further, as a result of treating this fraction with chondroitinase ABC (manufactured by Seikagaku Corporation), the molecular weight was completely reduced. In addition, as a result of disaccharide digestion of the degradation products produced by this, it was confirmed that all degradation products were consistent with CH unsaturated disaccharides. Therefore, it was confirmed that the polymer fraction was CH, and the polymer CH was very efficiently produced by setting the concentration of the surfactant during the enzyme reaction to 0.4% or more. This was shown.
[0064] また得られた高分子画分の Superdex peptide HR10/30カラムにおける溶出の様子 を図 2に示す。得られた高分子画分のピークは、 Superdex Peptide HR10/30カラムの ボイド容積位置に溶出された(図 2中の黒丸)。このカラムの排除限界は、 HA標準品 を用いて測定すると重量平均分子量 20,000であることから、得られた高分子画分 (C Hポリマー)は重量平均分子量 20,000以上であると推定された。 [0065] 一方、精製された遊離の組換え K4CP (特許文献 1及び非特許文献 1に記載の方 法で製造したもの)を用いて同様に反応させると、重量平均分子量 5,000の CHが合 成された(図 2中の白丸)。 [0064] Fig. 2 shows the elution state of the obtained polymer fraction on the Superdex peptide HR10 / 30 column. The peak of the obtained polymer fraction was eluted at the void volume position of the Superdex Peptide HR10 / 30 column (black circle in FIG. 2). The exclusion limit of this column was a weight average molecular weight of 20,000 when measured using a HA standard product, so the obtained polymer fraction (CH polymer) was estimated to have a weight average molecular weight of 20,000 or more. [0065] On the other hand, when purified free recombinant K4CP (manufactured by the method described in Patent Document 1 and Non-Patent Document 1) is reacted in the same manner, CH having a weight average molecular weight of 5,000 is synthesized. (White circle in Fig. 2).
[0066] 実施例 5 菌体酵素を用いた長鎖の CH糖鎖の合成と分子量の分析  Example 5 Synthesis of Long-chain CH Sugar Chain Using Cell Enzymes and Analysis of Molecular Weight
本発明方法により合成される CHポリマーの分子量をさらに詳細に検討するため、 以下のように合成と分子量の分析を行った。  In order to examine the molecular weight of the CH polymer synthesized by the method of the present invention in more detail, synthesis and molecular weight analysis were performed as follows.
すなわち、実施例 4と同様に菌体酵素を用いて得られた CHポリマー、及び実施例 4と同様の条件にお!/、て UDP - GlcUAと UDP - GalNAc濃度を 30nmolに変更し て合成した CHポリマーのそれぞれを直列につないだ Sephacryl S500 HR 10/30カラ ムと Superose 6 HR 10/30カラムに付したところ、 HA標準品を指針として前者は重量 平均分子量 7万 5千の位置に(図 3中の黒丸)、後者は重量平均分子量 20万の位置 に溶出した(図 3中の黒四角)。  That is, the CH polymer obtained using the bacterial cell enzyme in the same manner as in Example 4 and the same conditions as in Example 4 were synthesized by changing the UDP-GlcUA and UDP-GalNAc concentrations to 30 nmol. When attached to a Sephacryl S500 HR 10/30 column and Superose 6 HR 10/30 column with CH polymers connected in series, the former was positioned at a weight average molecular weight of 75,000 using the HA standard as a guideline (Fig. The latter was eluted at the position where the weight average molecular weight was 200,000 (black square in Fig. 3).
[0067] 実施例 6 酵素反応時における界面活性剤の種類の検討  [0067] Example 6 Examination of type of surfactant during enzyme reaction
終濃度 0. 4%の各種界面活性剤を用い、実施例 3と同様に試験することによって、 界面活性剤の種類による [3H]GalNAcの取り込みに対する影響を調べた。酵素とし ては、実施例 1で製造した菌体酵素を用いた。また用いた界面活性剤は以下の通り である。 Using various surfactants with a final concentration of 0.4%, the effect on the uptake of [ 3 H] GalNAc by the type of surfactant was examined by performing the same test as in Example 3. As the enzyme, the cell enzyme produced in Example 1 was used. The surfactants used are as follows.
[0068] Nymeen S-215 (ポリオキシエチレンォクタデシルァミン、 日本油脂株式会社製)  [0068] Nymeen S-215 (polyoxyethylene octadecylamine, manufactured by NOF Corporation)
Triton X-100 (ポリエチレングリコールモノー p—イソオタチルフエ-ルエーテル、ナ 力ライテスタ株式会社製)  Triton X-100 (Polyethylene glycol mono-p-isooctyl phenol ether, manufactured by Naoki Light Tester Co., Ltd.)
Tween 20 (ポリオキシエチレンソルビタンモノラウレート、ナカライテスタ株式会社製) Tween 80 (ポリオキシエチレンソルビタンモノォレエート、ナカライテスタ株式会社製 )  Tween 20 (Polyoxyethylene sorbitan monolaurate, manufactured by Nacalai Testa Co., Ltd.) Tween 80 (Polyoxyethylene sorbitan monooleate, manufactured by Nacalai Testa Co., Ltd.)
Brij 35 (ポリオキシエチレンラウリルエーテル、ナカライテスタ株式会社製)  Brij 35 (Polyoxyethylene lauryl ether, manufactured by Nacalai Testa Co., Ltd.)
Brij 58 (ポリオキシエチレンへキサデシルエーテル、ナカライテスタ株式会社製) Brij 58 (Polyoxyethylene hexadecyl ether, manufactured by Nacalai Testa Co., Ltd.)
Nonidet P-40 (ノ-デット P— 40、ナカライテスタ株式会社製) Nonidet P-40 (No-Det P-40, manufactured by Nakarai Tester Co., Ltd.)
Tergitol NP-40 (タージトール NP— 40、ナカライテスタ株式会社製)  Tergitol NP-40 (Tajitol NP-40, manufactured by Nacalai Testa Co., Ltd.)
CHAPS (3-〔(3 コールアミドプロピル)ジメチルアンモ -ォ〕 1 プロパンスル ホネート、 Dojindo製) CHAPS (3-[(3 Choleamidopropyl) dimethylammo] 1 propanesulfur Honate, made by Dojindo)
Octyl-thioglucoside (n—ォクチルー —D—チォダルコピラノシド、キシダ化学製) Octyl-thioglucoside (n-octyloo-D-thiodarcopyranoside, manufactured by Kishida Chemical)
Dodecyl-maltoside (n -ドデシノレ— β — Ό—マルトピラノシド、キシダ化学製)Dodecyl-maltoside (n-dodecinole — β — Ό—maltopyranoside, manufactured by Kishida Chemical)
MEGA-9 (η—ノナノィル一 Ν—メチルダルカミド、キシダ化学製) MEGA-9 (η—Nonanoyl-Methyldarcamide, manufactured by Kishida Chemical)
MEGA- 10 (n—デカノィル— N—メチルダルカミド、キシダ化学製)  MEGA-10 (n—decanol—N-methyldarcamide, manufactured by Kishida Chemical)
CHAPSO (3—〔(3—コールアミドプロピル)ジメチルアンモ -ォ〕一2—ヒドロキシ一 CHAPSO (3-[(3-Choleamidopropyl) dimethylammo-]] 2-hydroxy-1-
1—プロパンスルホネート、キシダ化学製) 1-Propanesulfonate, manufactured by Kishida Chemical)
[0069] Sodium cholate (コール酸ナトリウム、キシダ化学製)  [0069] Sodium cholate (Sodium cholate, manufactured by Kishida Chemical)
LDS (ラウリル硫酸リチウム、キシダ化学製)  LDS (lithium lauryl sulfate, manufactured by Kishida Chemical)
SDS (ドデシル硫酸ナトリウム、キシダ化学製)  SDS (Sodium dodecyl sulfate, manufactured by Kishida Chemical)
Octyl-glucoside (n—ォクチルー /3 一 D—ダルコピラノシド、キシダ化学製)  Octyl-glucoside (n—octylol / 3 1 D—darcopyranoside, manufactured by Kishida Chemical)
Heptyl-thioglucoside (n—へプチルー β—D—チォダルコピラノシド、キシダ化学 製)  Heptyl-thioglucoside (n—Heptylu β-D-thiodarcopyranoside, manufactured by Kishida Chemical)
Nonyl-thiomaltoside (n—ノニルー β—D—チォマルトピラノシド、キシダ化学製) Sucrose monocholate (ショ糖コール酸モノエステル、キシダ化学製)  Nonyl-thiomaltoside (n-nonyl-β-D-thiomaltopyranoside, manufactured by Kishida Chemical) Sucrose monocholate (sucrose cholic acid monoester, manufactured by Kishida Chemical)
Sucrose monocaprate (ショ糖力プリン酸モノエステル、キシダ化学製)  Sucrose monocaprate (Sucrose monocapric acid monoester, manufactured by Kishida Chemical)
Sucrose monolaurate (ショ糖ラウリン酸モノエステル、キシダ化学製)  Sucrose monolaurate (sucrose lauric acid monoester, manufactured by Kishida Chemical)
[0070] 取り込みは、使用した [ ]GalNAcのトータルの放射活性を 100%とした場合にお ける取り込まれた放射活性の比(%)で示した。結果を図 4に示す。なお図 4中の「精 製酵素」は、菌体酵素に代えて実施例 4で用いた「精製された遊離の組換え K4CPJ を界面活性剤の非存在下で反応させたものを、「界面活性剤なし」は、菌体酵素を界 面活性剤の非存在下で反応させたものをそれぞれ意味する。  [0070] Uptake was expressed as a ratio (%) of the radioactivity incorporated when the total radioactivity of [] GalNAc used was defined as 100%. The results are shown in Fig. 4. Note that the “purified enzyme” in FIG. 4 represents “reacted free recombinant K4CPJ reacted in the absence of a surfactant used in Example 4 instead of the bacterial enzyme,” “No activator” means a product obtained by reacting bacterial enzymes in the absence of a surfactant.
[0071] 図 4に示すように、菌体酵素を用いた場合、スクロースモノカプロン酸、 n—ノニルー  [0071] As shown in FIG. 4, when the cell enzyme is used, sucrose monocaproic acid, n-nonyl-
β—D—チォマルトビラノシド又はスクロースモノラウリル酸を用いると、特に効率よく [ 3H] GalNAcが取り込まれることが示された。  It was shown that [3H] GalNAc was incorporated particularly efficiently when β-D-thiomaltoviranoside or sucrose monolauric acid was used.
[0072] 実施例 7 酵素反応時における有機溶媒の影響の検討  Example 7 Examination of influence of organic solvent during enzyme reaction
終濃度 1 %の種々の有機溶媒を用い、実施例 3と同様に試験することによって、有 機溶媒の種類による [3H]GalNAcの取り込みに対する影響を調べた。酵素としては、 実施例 1で製造した菌体酵素を用いた。また用いた有機溶媒は以下の通りである。 The effect on the uptake of [ 3 H] GalNAc by the type of the organic solvent was examined by conducting tests in the same manner as in Example 3 using various organic solvents having a final concentration of 1%. As an enzyme, The cell enzyme produced in Example 1 was used. The organic solvents used are as follows.
[0073] キシレン [0073] Xylene
パラホルムアルデヒド  Paraformaldehyde
ホノレマリン  Honoramarine
グルタールアルデヒド  Glutaraldehyde
クロ口ホルム  Black mouth Holm
パラフィン  Paraffin
クロロホノレム ·エタノーノレ混液  Chlorohonole / ethanolanol mixture
クロロホノレム ·キシレン混液  Chlorophorome xylene mixture
パラフィン'キシレン混液  Paraffin xylene mixture
[0074] 取り込みは、使用した [3H]GalNAcのトータルの放射活性を 100%とした場合にお ける取り込まれた放射活性の比(%)で示した。結果を図 5に示す。なお図 5中の「有 機溶媒なし」は、菌体酵素を有機溶媒の非存在下で反応させたものを意味する。 [0074] Uptake was expressed as the ratio (%) of the incorporated radioactivity when the total radioactivity of [ 3 H] GalNAc used was defined as 100%. The results are shown in FIG. “No organic solvent” in FIG. 5 means a product obtained by reacting bacterial enzymes in the absence of an organic solvent.
[0075] 図 5に示すように、菌体酵素を用いた場合、クロ口ホルム又は「クロ口ホルムとキシレ ンとの混合物」を用いると、 [ ]GalNAcの取り込みが促進されることが示された。 また、有機溶媒としてクロ口ホルムを用いる場合の濃度の依存性を調べるために、 酵素反応液中のクロ口ホルム濃度を。、 0. 5、 1. 0、 2. 0、 5. 0又は 10. 0%として実 施例 3と同様に試験することによって、高分子画分中の [3H]GalNAcの取り込み量 を調べた。結果を図 6に示す。 [0075] As shown in FIG. 5, it is shown that, when a cell enzyme is used, the use of black mouth form or “mixture of black mouth form and xylene” promotes the uptake of [] GalNAc. It was. In addition, in order to examine the dependence of concentration when using Kuroguchi Form as an organic solvent, the concentration of Kuroguchi Form in the enzyme reaction solution is used. The amount of [ 3 H] GalNAc incorporated into the polymer fraction was examined by conducting the same test as in Example 3 at 0.5, 1.0, 2.0, 5.0, or 10.0%. It was. The result is shown in FIG.
[0076] 図 6に示す通り、菌体酵素を用いた場合、酵素反応液中のクロ口ホルムの濃度が 0 %超 5%未満とすると、 [3H]GalNAcの取り込みが促進されることが示された。 [0076] As shown in FIG. 6, in the case of using bacterial enzymes, the incorporation of [ 3 H] GalNAc may be promoted when the concentration of chloroform in the enzyme reaction solution is more than 0% and less than 5%. Indicated.
[0077] 実施例 8 kfoA及び kfoFのサブクローユングと発現ベクターの構築  Example 8 Construction of kfoA and kfoF subcloning and expression vector
特開 2003-199583で示された大腸菌 K4株の遺伝子クラスター Region 2(R- II)の DN A配列をテンプレートとして、 PCR法により大腸菌由来 UDP— Glc4 ェピメラーゼ遺 伝子(kfoA)及び大腸菌由来 UDP— Glcデヒドロゲナーゼ遺伝子(kfoF)の cDNAを 得た。得られた DNAを铸型とし、以下のプライマーを用いて、以下の通り PCRを行つ た。  E. coli-derived UDP—Glc4 epimerase gene (kfoA) and E. coli-derived UDP—using the DNA sequence region 2 (R-II) DNA sequence of E. coli K4 strain shown in JP-A-2003-199583 as a template. A cDNA for the Glc dehydrogenase gene (kfoF) was obtained. The obtained DNA was used as a saddle type, and PCR was performed as follows using the following primers.
[0078] kfoA-SP: CGGGATCCCGATGAATATATTAGTTACAGG (下線部は BamHIサイト、 配列番号 5) [0078] kfoA-SP: CGGGATCCCGATGAATATATTAGTTACAGG (underlined part is BamHI site, (SEQ ID NO: 5)
kfoA-AS: CCCAAGCTTGGGTAGAAGTTATCGTAAAAT (下線部は Hindlllサイト、 配列番号 6)  kfoA-AS: CCCAAGCTTGGGTAGAAGTTATCGTAAAAT (underlined part is Hindlll site, SEQ ID NO: 6)
kfoF-SP: CGGGATCCCGATGAAAATTGCAGTTGCTGG (下線部は BamHIサイト、 配列番号 7)  kfoF-SP: CGGGATCCCGATGAAAATTGCAGTTGCTGG (underlined part is BamHI site, SEQ ID NO: 7)
kfoF-AS: CCCMGCIIGGGTCTTTAATAGCCATAAAA (下線部は Hindlllサイト、 配列番号 8)  kfoF-AS: CCCMGCIIGGGTCTTTAATAGCCATAAAA (underlined part is Hindlll site, SEQ ID NO: 8)
[0079] テンプレート 100 ngに対し、 TakaRa Ex Taq 2.5 Unit (タカラバイオ社製)、 10 X Ex T aq Buffer 10 2.5 mM dNTP Mixture 8 1、センスプライマーとアンチセンスプラ イマ一をそれぞれ 100 pmolずつ加え、 milli-Q水で全量 100 μ 1となるよう調節した。 Ρ CRの条件は、 94°C、 5分で反応を行った後、「94°Cで 30秒間、 55°Cで 1分間、 72 °Cで 90分間」のサイクルを 30サイクル繰り返し、その後 72°Cで 7分間反応させて行つ た。  [0079] To 100 ng of template, TakaRa Ex Taq 2.5 Unit (manufactured by Takara Bio Inc.), 10 X Ex Taq Buffer 10 2.5 mM dNTP Mixture 8 1, 100 pmol each of sense primer and antisense primer, The total amount was adjusted to 100 μ1 with milli-Q water. Ρ CR condition is 94 ° C for 5 minutes, then repeats 30 cycles of 94 ° C for 30 seconds, 55 ° C for 1 minute, 72 ° C for 90 minutes, and then 72 The reaction was carried out at ° C for 7 minutes.
[0080] 反応液から目的のフラグメントを QIA quick (キアゲン社製)によりゲル抽出し、 BamH Iと Hindlllで終夜限定分解を行った。その後、再度ゲル抽出して目的のフラグメントを 精製した。同じ制限酵素で限定分ィ匕した pTric-HisCベクター (インビトロゲン社製)約 100 ngに対し、精製した cDNA断片を約 300 ng、 T4 ligase (NEB社製) 0.5 μ 1、 10 X T4 ligase Buffer 1 1を加え、 milli- Q水で全量 10 1となるよう調節し、 16°Cの水浴中で 1時間ライゲーシヨンを行った。その後、反応液 5 1を用いて TOP10のコンビテントセ ル 100 1を形質転換し、アンピシリンを含む LB寒天培地(LB/Ampプレート)に塗布 した状態で 37°Cで終夜静置した。  [0080] The target fragment was gel-extracted from the reaction solution with QIA quick (Qiagen) and subjected to limited digestion overnight with BamH I and Hindlll. Then, the target fragment was purified by gel extraction again. About 100 ng of pTric-HisC vector (manufactured by Invitrogen) that has been restricted with the same restriction enzyme, about 300 ng of purified cDNA fragment, T4 ligase (manufactured by NEB) 0.5 μ1, 10 X T4 ligase Buffer 1 1 was added, and the total amount was adjusted to 101 with milli-Q water, and ligation was performed in a 16 ° C water bath for 1 hour. Subsequently, TOP10 competent cell 1001 was transformed with reaction mixture 51, and applied to LB agar medium (LB / Amp plate) containing ampicillin, and allowed to stand overnight at 37 ° C.
[0081] プレート上のコロニーからそれぞれ任意の 5つを選択し、アルカリプレップ法でプラ スミドを抽出して、 BamHIと Hindlllによりインサートチェックを行った。正しくインサート が組み込まれて 、たプラスミドにつ 、てシークェンスを確認し、データベースの遺伝 子配列(GeneBank accession No. AB079602)と相違がないことを確認した。確認され た大腸菌 K4株由来 UDP - Glc4 -ェピメラーゼ遺伝子 (kfoA)及び UDP - Glcデヒ ドロゲナーゼ遺伝子(kfoF)の DNA配列をコードアミノ酸とともに配列表の配列番号 1 及び 3に、これらの遺伝子によりコードされる UDP - Glc4 -ェピメラーゼ及び UDP Glcデヒドロゲナーゼのアミノ酸配列を配列番号 2及び 4に、それぞれ示す。 [0081] Any five colonies were selected from the colonies on the plate, the plasmid was extracted by the alkali prep method, and insert check was performed using BamHI and Hindlll. The sequence was confirmed for the plasmid in which the insert was correctly incorporated, and it was confirmed that there was no difference from the gene sequence in the database (GeneBank accession No. AB079602). The confirmed DNA sequences of the UDP-Glc4-epimerase gene (kfoA) and UDP-Glc dehydrogenase gene (kfoF) derived from Escherichia coli K4 strain are encoded by these genes together with coding amino acids in SEQ ID NOs: 1 and 3. UDP-Glc4-epimelase and UDP The amino acid sequences of Glc dehydrogenase are shown in SEQ ID NOs: 2 and 4, respectively.
[0082] 実施例 9 KfoA及び KfoFの組換え体作製と活性確認  Example 9 Production of KfoA and KfoF recombinants and confirmation of activity
KfoA及び KfoFの発現ベクターをそれぞれ大腸菌 TOP10に形質転換し、アンピシリ ン含有 LB液体培地 100 ml中で O.D.600 = 0.5となるまで 37°Cで培養し、終濃度 ImM となるよう IPTGを添加して 3時間発現誘導を行った。その後、超音波処理して得られ た可溶性画分を Nト NTA Agarose (キアゲン社製)カラムに通し、 KfoA及び KfoFの精 製酵素を得た。得られた酵素画分を 1 Lの 20 % Glycerol含有 PBS溶液中で終夜透析 した後、溶液を入れ替えて 6時間の透析を 2回繰り返した。  Transform KfoA and KfoF expression vectors into E. coli TOP10, respectively, in 100 ml of ampicillin-containing LB liquid medium, culture at 37 ° C until OD600 = 0.5, and add IPTG to a final concentration of ImM. Expression induction was performed for 3 hours. Thereafter, the soluble fraction obtained by sonication was passed through an N-to-NTA Agarose (Qiagen) column to obtain purified enzymes of KfoA and KfoF. The obtained enzyme fraction was dialyzed overnight in 1 L of 20% Glycerol-containing PBS solution, and the solution was exchanged, and dialysis for 6 hours was repeated twice.
[0083] KfoAの酵素反応は酵素 2.5 1、 1 mM UDP— GlcNAc5 1、 1 M Tris— HC1 5 μ 1 、水 37.5 1を混合した溶液を 30°Cの浴槽中で 1時間加温して行った。その後、 Hydr osphere C18カラム(YMC社製)で UDP— GlcNAcと UDP— GalNAcを分離し、その 面積比から酵素活性 (単位時間当たりに UDP— GalNAcを産生する量)を見積もつ た。  [0083] Enzymatic reaction of KfoA was performed by heating a solution of enzyme 2.5 1, 1 mM UDP—GlcNAc51, 1 M Tris—HC1 5 μ 1 and water 37.5 1 in a 30 ° C. bath for 1 hour. It was. Thereafter, UDP-GlcNAc and UDP-GalNAc were separated using a Hydrosphere C18 column (manufactured by YMC), and the enzyme activity (amount of UDP-GalNAc produced per unit time) was estimated from the area ratio.
[0084] KfoFの反応は酵素 5 1、 1 mM UDP -Glc 5 1、 1 M Tris— HC1 or Glycine— NaO H 5 1、 5 mM β - NAD+ 10 μ 1、水 25 μ 1を混合した溶液を 30°Cの浴槽中で 1時間 加温して行った。その後、 Hydrosphere C18カラムで UDP— Glcと UDP— GlcUを分 離し、その面積比力も酵素活性 (単位時間当たりに UDP - GlcUAを産生する量)を 見積もった。  [0084] The reaction of KfoF is a mixture of enzyme 51, 1 mM UDP-Glc 51, 1 M Tris—HC1 or Glycine—NaOH 51, 5 mM β-NAD + 10 μ1, and water 25 μ1. It was heated in a 30 ° C bath for 1 hour. Subsequently, UDP-Glc and UDP-GlcU were separated on a Hydrosphere C18 column, and the enzyme activity (the amount of UDP-GlcUA produced per unit time) was also estimated.
[0085] 大腸菌発現系により作製した KfoA及び KfoFの組換え酵素を Ni-NTA Agaroseカラ ムで精製し、回収した画分を SDS PAGEで分離した。マウス Tetra His tag抗体(キアゲ ン社製)を一次抗体に、 Goat Anti Mouse HRP抗体 (ギブコ社製)を二次抗体に用い た Western Blottingで組換え酵素の発現を確認した。その結果、 KfoAは His tagの分 子量を含めた 42 kDaの位置に、 KfoFは 48 kDaの位置に特異的な染色が主バンドとし て検出された。また、 SDS PAGE後のゲルを CBB染色したところ、これらのバンド以外 に強く染まったバンドは見られな力つた。回収した酵素は 20 % Glycerol含有 PBS溶 液で 3回透析し、 -80°Cで保存した。  [0085] Recombinant enzymes of KfoA and KfoF produced by the E. coli expression system were purified with a Ni-NTA Agarose column, and the collected fractions were separated by SDS PAGE. Expression of the recombinant enzyme was confirmed by Western blotting using mouse Tetra His tag antibody (Qiagen) as the primary antibody and Goat Anti Mouse HRP antibody (Gibco) as the secondary antibody. As a result, specific staining was detected as the main band for KfoA at a position of 42 kDa including the molecular weight of His tag, and for KfoF at a position of 48 kDa. In addition, when the gel after SDS PAGE was stained with CBB, bands that were strongly stained in addition to these bands were strong. The collected enzyme was dialyzed 3 times with PBS solution containing 20% Glycerol and stored at -80 ° C.
[0086] 作製した KfoA及び KfoFの組換え酵素を用いて、至適反応条件の検討を行った。 Kf oA 2.5 1、 UDP— GlcNAc5 nmol、終濃度 1 M Tris- HCl (pH 7.0 - 10.0)となるよ うに調製した反応液 (50 1)を 30°Cの水浴中で 1時間加温した。その後、 Hydrospher e C18逆相カラムを用いて、作製された UDP— GalNAcと未反応の UDP— GlcNAc を分離し、 2つのピークの面積比力も UDP— GalNAcが全糖ヌクレオチド量に対して 占める割合を定量した。この結果、 pH 8.5で最も UDP— GalNAcが多く作製されて いた為、 Tris-HCl pH8.5を KfoAの至適緩衝液と決定した。 [0086] Optimal reaction conditions were examined using the prepared KfoA and KfoF recombinant enzymes. Kf oA 2.5 1, UDP— GlcNAc 5 nmol, final concentration 1 M Tris-HCl (pH 7.0-10.0) The reaction solution (50 1) thus prepared was heated in a 30 ° C water bath for 1 hour. Subsequently, the prepared UDP-GalNAc and unreacted UDP-GlcNAc were separated using a Hydrosphere C18 reversed-phase column, and the area ratio of the two peaks also represented the ratio of UDP-GalNAc to the total amount of sugar nucleotides. Quantified. As a result, since UDP-GalNAc was most produced at pH 8.5, Tris-HCl pH 8.5 was determined as the optimum buffer for KfoA.
[0087] また、 KfoFについては、 KfoF 5 1、 UDP— Glc 5 nmol、 β— NAD+ 50 nmol、 0.1 M  [0087] For KfoF, KfoF 51, UDP—Glc 5 nmol, β—NAD + 50 nmol, 0.1 M
Tris-HCl (pH 7.0 - 10.0)もしくは 0.1 M Glycine- NaOH (pH 9.0 - 10.0)となるよう に調製した反応液 (50 1)を 30°Cの水浴中で 1時間加温した。その後、吸光光度計 で 340 nmの吸光度を測定し、各 pHでの酵素活性を相対的に比較した。この 340 nm の吸光度は UDP— Glc 1分子が酸ィ匕された際に生じる jS -NADH 2分子に由来する ものであり、 KfoFの酵素活性に比例した値となる。この結果、 Glycine-NaOH pH 9.4 で反応した時の吸光度が最大であった為、これを KfoFの至適緩衝液と決定した。  The reaction solution (501) prepared to be Tris-HCl (pH 7.0 to 10.0) or 0.1 M Glycine-NaOH (pH 9.0 to 10.0) was heated in a 30 ° C water bath for 1 hour. Thereafter, the absorbance at 340 nm was measured with an absorptiometer, and the enzyme activities at each pH were relatively compared. This absorbance at 340 nm is derived from the jS-NADH 2 molecule produced when one UDP-Glc molecule is oxidized, and is proportional to the enzyme activity of KfoF. As a result, the absorbance at the time of reaction with Glycine-NaOH pH 9.4 was the maximum, so this was determined to be the optimum buffer for KfoF.
[0088] 実施例 10 3種の菌体酵素リアクターによる CHポリマー合成  Example 10 CH Polymer Synthesis Using Three Kinds of Cell Enzyme Reactors
実施例 1と同様にして、 KfoA及び KfoFの発現ベクターをそれぞれ大腸菌 TOP10に 形質転換し、アンピシリン含有 LB液体培地 100 ml中で O.D.600 = 0.5となるまで 37°C で培養し、終濃度 1 mMとなるよう IPTGを添加した後、発現誘導を 3時間行なった。培 養液をそれぞれ 1 mlずつに分注して、 15,000 X gで 1分間遠心して上清を取り除き、 - 80°Cで保存して、 KfoAと KfoFの菌体酵素とした。この 2種の菌体リアクターと実施例 1 で得た K4CP菌体を混ぜ、 CH6 0.1 nmol, UDP- [3H]GlcNAc 3 nmol (0.1 μ Ci), UD P-Glc 3 nmol, β - NAD+ 30 nmolを加え、 150 mM NaCl, 0.2 mM MnCl , 50 mM Tris In the same manner as in Example 1, the KfoA and KfoF expression vectors were each transformed into E. coli TOP10, cultured in 37 ml of ampicillin-containing LB liquid medium until OD600 = 0.5, and the final concentration was 1 mM. After adding IPTG, expression induction was performed for 3 hours. The culture solution was dispensed into 1 ml each, centrifuged at 15,000 X g for 1 minute, the supernatant was removed, and stored at -80 ° C to obtain KfoA and KfoF cell enzymes. These two cell reactors and the K4CP cells obtained in Example 1 were mixed together, and CH6 0.1 nmol, UDP- [ 3 H] GlcNAc 3 nmol (0.1 μ Ci), UD P-Glc 3 nmol, β-NAD + 30 Add nmol, 150 mM NaCl, 0.2 mM MnCl, 50 mM Tris
2  2
-HC1 (pH 8.5), 0.4 % Nymeen S- 215 (界面活性剤)となるよう全量 100 μ 1に調製し、 3 0°Cで激しく攪拌しながら終夜合成反応を行った。反応液は 10分間煮沸した後に 15,0 00 X gで 1分間遠心し、上清を 0.45 μ m孔径のフィルター(ミリポア社製)を通して濾過 した。各サンプルを Superdex Peptide 10/300 GL (アマシャム社製)でサイズ分画した 後に、各画分の3 H含量をシンチレーシヨンカウンターで計測し、 CHポリマーの合成を 確認した。生成物の Superdex Peptideカラムにおける溶出曲線を図 7に示す(C-ABC (-))。さらにその生成物をコンドロイチナーゼ ABC処理した後、上記と同様にして各画 分の3 H含量をシンチレーシヨンカウンターで計測した。コンドロイチナーゼ ABC処理し た生成物の Superdex Peptideカラムにおける溶出曲線を図 7に示す(C-ABC(+))。生 成物のコンドロイチナーゼ ABC処理により高分子ピークが消失したことから、得られた 高分子は CH多糖鎖であることが明確となった(図 7)。 -HC1 (pH 8.5), 0.4% Nymeen S-215 (surfactant) was prepared to a total volume of 100 μ1, and the synthesis reaction was carried out overnight at 30 ° C with vigorous stirring. The reaction solution was boiled for 10 minutes, centrifuged at 15,00 00 g for 1 minute, and the supernatant was filtered through a 0.45 μm pore size filter (Millipore). After each sample was size fractionated with Superdex Peptide 10/300 GL (Amersham), the 3 H content of each fraction was measured with a scintillation counter to confirm the synthesis of the CH polymer. The elution curve of the product on the Superdex Peptide column is shown in FIG. 7 (C-ABC (−)). Further, the product was treated with chondroitinase ABC, and the 3 H content of each fraction was measured with a scintillation counter in the same manner as described above. Chondroitinase ABC treatment FIG. 7 shows an elution curve of the obtained product on a Superdex Peptide column (C-ABC (+)). The polymer peak disappeared by treatment of the product with chondroitinase ABC, which revealed that the resulting polymer was a CH polysaccharide chain (Figure 7).
[0089] また、 CH6を添カ卩しないで上記と同様の CH合成を行った。 CH6を添カ卩した場合と しなかった場合の生成物の Superose 6 10/300 GLカラムにおける溶出曲線を図 8に 示す (CH6(+)及び CH6(-))。 CH6を添カ卩しな 、と同様な操作をしてもコンドロイチナ ーゼ分解性の高分子は得られないことから CH6が、 CH糖鎖伸長に必須であること が明らかとなった(図 8)。 [0089] Further, the same CH synthesis as described above was carried out without adding CH6. The elution curves of the product with and without CH6 added on the Superose 6 10/300 GL column are shown in FIG. 8 (CH6 (+) and CH6 (-)). Even if the same procedure was followed without adding CH6, a chondroitinase-degradable polymer could not be obtained. Thus, it was revealed that CH6 is essential for CH sugar chain elongation (Fig. 8). ).
以上より、これら 3つの酵素リアクターを用いた合成系により、 UDP— Glcと UDP— GlcNAcを供与体基質として、受容体基質の CH6が伸長されて超高分子の CHポリ マーが合成されたことが確認された。  Based on the above, the synthesis system using these three enzyme reactors showed that the acceptor substrate CH6 was elongated and the ultra-high molecular weight CH polymer was synthesized using UDP-Glc and UDP-GlcNAc as donor substrates. confirmed.
産業上の利用可能性  Industrial applicability
[0090] 本発明方法は、高分子 CH糖鎖の製造に利用することができ、製造された高分子 C Hは医薬品、食品、化粧品などの機能性分子として有用である。 [0090] The method of the present invention can be used for the production of polymer CH sugar chains, and the produced polymer CH is useful as a functional molecule for pharmaceuticals, foods, cosmetics and the like.
図面の簡単な説明  Brief Description of Drawings
[0091] [図 1]CH合成の界面活性剤濃度依存性を示す図である。 [0091] FIG. 1 is a graph showing the surfactant concentration dependence of CH synthesis.
[図 2]実施例 4で得られた反応上清の SuperdexPeptideカラム溶出曲線を示す図であ る。  FIG. 2 is a graph showing a SuperdexPeptide column elution curve of the reaction supernatant obtained in Example 4.
[図 3]反応上清の SephacrylS500と Superose 6の直列カラムによる溶出曲線を示す図 である。  FIG. 3 is a diagram showing an elution curve of a reaction supernatant using a serial column of Sephacryl S500 and Superose 6;
[図 4]終濃度 0. 4%の種々の界面活性剤の CH合成に対する影響を示す図である。  FIG. 4 is a graph showing the influence of various surfactants having a final concentration of 0.4% on CH synthesis.
[図 5]CH合成に対する有機溶媒の影響を示す図である。  FIG. 5 is a diagram showing the influence of an organic solvent on CH synthesis.
[図 6]CH合成に対する有機溶媒濃度依存性を示す図である。  FIG. 6 is a graph showing the dependence of organic solvent concentration on CH synthesis.
[図 7]実施例 10で得られた生成物の及びコンドロイチナーゼ ABC処理した同生成物 の Superdex Peptideカラムにおける溶出曲線を示す図である。  FIG. 7 is a diagram showing elution curves of the product obtained in Example 10 and the same product treated with chondroitinase ABC in a Superdex Peptide column.
[図 8]実施例 10の CH合成において CH6を添カ卩して得られた生成物および添加せ ずに得られた生成物の Superoseカラムにおける溶出曲線を示す図である。  FIG. 8 shows elution curves of a product obtained by adding CH6 in the CH synthesis of Example 10 and a product obtained without addition in a Superose column.

Claims

請求の範囲  The scope of the claims
[I] 下記工程を少なくとも含むことを特徴とする、コンドロイチン糖鎖の製造方法。  [I] A method for producing a chondroitin sugar chain, comprising at least the following steps.
工程:「ダルクロン酸供与体」、「N—ァセチルガラタトサミン供与体」、「糖受容体」及 び「コンドロイチンを合成する菌体酵素」を界面活性剤存在下にお ヽて反応系中に 共存させる。  Process: In the reaction system, "Dalcronate Donor", "N-acetylylgalatatosamine donor", "Sugar acceptor" and "Bacterial enzyme that synthesizes chondroitin" in the presence of surfactant. To coexist.
[2] 「コンドロイチンを合成する菌体酵素」が、大腸菌由来のコンドロイチンポリメラーゼを 発現させた菌体酵素である、請求項 1に記載の製造方法。  [2] The production method according to claim 1, wherein the “bacterial enzyme that synthesizes chondroitin” is a cell enzyme that expresses chondroitin polymerase derived from E. coli.
[3] 大腸菌由来のコンドロイチンポリメラーゼが、 K4CPである、請求項 2に記載の製造方 法。 [3] The production method according to claim 2, wherein the chondroitin polymerase derived from E. coli is K4CP.
[4] 菌体酵素として用いる宿主が、大腸菌である、請求項 1〜3のいずれか 1項に記載の 製造方法。  [4] The production method according to any one of claims 1 to 3, wherein the host used as the cell enzyme is Escherichia coli.
[5] 大腸菌が、大腸菌 TOP10株である、請求項 4に記載の製造方法。  [5] The production method according to claim 4, wherein the E. coli is E. coli TOP10 strain.
[6] 界面活性剤力 ナイミーン、 MEGA— 10、コール酸ナトリウム、 n—ォクチル— 13 - [6] Surfactant power Naimine, MEGA-10, sodium cholate, n-octyl-13-
D—チォダルコピラノシド、 n—ノ-ルー 13—D—チォマルトピラノシド、スクロースモノ コール酸、スクロースモノカプロン酸及びスクロースモノラウリル酸からなる群から選ば れることを特徴とする、請求項 1〜5のいずれか 1項に記載の製造方法。 Claims selected from the group consisting of D-thiodarcopyranoside, n-norulu 13-D-thiomaltopyranoside, sucrose monocholic acid, sucrose monocaproic acid and sucrose monolauric acid Item 6. The production method according to any one of Items 1 to 5.
[7] 界面活性剤力 ナイミーン、 n—ノエル一 β—D—チォマルトピラノシド、スクロースモ ノカプロン酸及びスクロースモノラウリル酸力 なる群力も選ばれることを特徴とする、 請求項 1〜6のいずれか 1項に記載の製造方法。 [7] Surfactant power Naimine, n-Noel 1 β-D-thiomaltopyranoside, sucrose monocaproic acid and sucrose monolauryl acid power are also selected. 2. The manufacturing method according to item 1.
[8] 界面活性剤力 η—ノエル一 β—D—チォマルトピラノシド、スクロースモノカプロン酸 及びスクロースモノラウリル酸力もなる群力も選ばれることを特徴とする、請求項 1〜7 の!、ずれか 1項に記載の製造方法。 [8] Surfactant power η-Noel 1 β-D-thiomaltopyranoside, sucrose monocaproic acid and sucrose monolauryl acid group power is also selected. The manufacturing method according to claim 1.
[9] 「共存」力 10〜50°Cの条件下で 1時間〜 10日間行われることを特徴とする、請求 項 1〜8のいずれか 1項に記載の製造方法。 [9] The production method according to any one of claims 1 to 8, wherein the "coexistence" force is carried out under conditions of 10 to 50 ° C for 1 hour to 10 days.
[10] 「共存」力 20〜40°Cの条件下で 10〜30時間行われることを特徴とする、請求項 1[10] The "coexistence" force is carried out under conditions of 20 to 40 ° C for 10 to 30 hours.
〜9の 、ずれか 1項に記載の製造方法。 The manufacturing method according to claim 1, wherein the deviation is from 1 to 9.
[II] 「共存」力 20〜40°Cの条件下で 15〜24時間行われることを特徴とする、請求項 1 〜: LOのいずれか 1項記載の製造方法。 [II] “Coexistence” force The method according to any one of claims 1 to: LO, which is carried out under conditions of 20 to 40 ° C. for 15 to 24 hours.
[12] 「共存」力 25〜37°Cの条件下で 15〜24時間行われることを特徴とする、請求項 1[12] “Coexistence” force is performed for 15 to 24 hours under a condition of 25 to 37 ° C. 1
〜: L 1のいずれか 1項に記載の製造方法。 ~: The production method according to any one of L 1.
[13] 「グルクロン酸供与体」が UDP グルクロン酸であり、かつ、「N ァセチルガラタトサ ミン供与体」が UDP— N ァセチルガラタトサミンである、請求項 1〜 12の!、ずれか 1 項に記載の製造方法。 13. The glucuronic acid donor is UDP glucuronic acid, and the “N-acetylethyl latatosamine donor” is UDP-N-acetyl galatatosamine! The manufacturing method according to item 1.
[14] UDP グルコース 4ーェピメラーゼ及び UDP— N ァセチルダルコサミン、並びに UDP ダルコ一スデヒドロゲナーゼ及び UDP ダルコースを反応系中に共存させ、 「N ァセチルガラタトサミン供与体」としての UDP— N ァセチルガラタトサミン、及 び「グルクロン酸供与体」としての UDP グルクロン酸を供給する、請求項 13に記載 の製造方法。  [14] UDP glucose 4-epimerase and UDP-N-acetyltilcosamine, and UDP-Dalcoose dehydrogenase and UDP darcose coexist in the reaction system, and UDP-N-acetylyl as an “N-acetylylgalatatosamine donor” 14. The production method according to claim 13, wherein galatatosamine and UDP glucuronic acid as “glucuronic acid donor” are supplied.
[15] さらに、キシレン、クロ口ホルム、パラフィン及びホルムアルデヒド力 なる群力 選ば れる 1又は 2以上の有機溶媒を共存させることを特徴とする、請求項 1〜14のいずれ 力 1項に記載の製造方法。  [15] The production according to any one of claims 1 to 14, further comprising the coexistence of one or two or more organic solvents selected from the group force of xylene, black mouth form, paraffin and formaldehyde force Method.
[16] 共存させる有機溶媒が、クロ口ホルム又は「クロ口ホルム及びキシレン」であることを特 徴とする、請求項 15に記載の製造方法。 16. The production method according to claim 15, wherein the coexisting organic solvent is black mouth form or “black mouth form and xylene”.
[17] 共存状態における有機溶媒の濃度が、 0%超 5%未満であることを特徴とする、請求 項 15又は 16に記載の製造方法。 17. The production method according to claim 15 or 16, wherein the concentration of the organic solvent in the coexistence state is more than 0% and less than 5%.
[18] 製造されるコンドロイチン糖鎖が、下記 1)〜3)の全ての性質を有することを特徴とす る、請求項 1〜17のいずれか 1項に記載の製造方法。 [18] The production method according to any one of [1] to [17], wherein the produced chondroitin sugar chain has all of the following properties 1) to 3):
1)重量平均分子量:ゲル濾過クロマトグラフィーにより測定した場合、 5万以上である  1) Weight average molecular weight: 50,000 or more when measured by gel filtration chromatography
2)コンドロイチナーゼ ABCで完全に二糖に分解される。 2) It is completely broken down into disaccharides by chondroitinase ABC.
3)当該糖鎖をコンドロイチナーゼ ABCで分解して得られる産物を二糖分析すると、 実質的に全てがコンドロイチン不飽和二糖に一致する。  3) When the product obtained by degrading the sugar chain with chondroitinase ABC is subjected to disaccharide analysis, substantially all of them match the chondroitin unsaturated disaccharide.
[19] 重量平均分子量が 7万 5千以上である請求項 18に記載の製造方法。  19. The production method according to claim 18, wherein the weight average molecular weight is 75,000 or more.
[20] 重量平均分子量が 20万以上である請求項 19に記載の製造方法。 20. The production method according to claim 19, wherein the weight average molecular weight is 200,000 or more.
[21] 「コンドロイチンを合成する菌体酵素」による酵素反応時に、界面活性剤を共存させる ことを特徴とする、コンドロイチン合成の促進方法。 [21] A method for promoting chondroitin synthesis, comprising causing a surfactant to coexist during an enzyme reaction by a “bacterial enzyme that synthesizes chondroitin”.
[22] 下記 1)〜3)の全ての性質を有するコンドロイチン糖鎖。 [22] A chondroitin sugar chain having all the following properties 1) to 3).
1)重量平均分子量:ゲル濾過クロマトグラフィーにより測定した場合、 5万以上である  1) Weight average molecular weight: 50,000 or more when measured by gel filtration chromatography
2)コンドロイチナーゼ ABCで完全に二糖に分解される。 2) It is completely broken down into disaccharides by chondroitinase ABC.
3)当該糖鎖をコンドロイチナーゼ ABCで分解して得られる産物を二糖分析すると、 実質的に全てがコンドロイチン不飽和二糖に一致する。  3) When the product obtained by degrading the sugar chain with chondroitinase ABC is subjected to disaccharide analysis, substantially all of them match the chondroitin unsaturated disaccharide.
[23] 重量平均分子量が 5万〜 50万である請求項 22に記載のコンドロイチン糖鎖。  23. The chondroitin sugar chain according to claim 22, having a weight average molecular weight of 50,000 to 500,000.
[24] 重量平均分子量が 7万 5千〜 20万である請求項 23に記載のコンドロイチン糖鎖。 24. The chondroitin sugar chain according to claim 23, having a weight average molecular weight of 75,000 to 200,000.
PCT/JP2006/324961 2005-12-15 2006-12-14 Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin WO2007069693A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06834715.2A EP1964924B1 (en) 2005-12-15 2006-12-14 Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin
US12/097,725 US8067204B2 (en) 2005-12-15 2006-12-14 Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin
JP2007550226A JP5081629B2 (en) 2005-12-15 2006-12-14 Long-chain chondroitin sugar chain, method for producing the same, and method for promoting chondroitin synthesis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005362526 2005-12-15
JP2005-362526 2005-12-15

Publications (1)

Publication Number Publication Date
WO2007069693A1 true WO2007069693A1 (en) 2007-06-21

Family

ID=38162995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324961 WO2007069693A1 (en) 2005-12-15 2006-12-14 Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin

Country Status (4)

Country Link
US (1) US8067204B2 (en)
EP (1) EP1964924B1 (en)
JP (1) JP5081629B2 (en)
WO (1) WO2007069693A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133350A1 (en) * 2007-04-24 2008-11-06 Seikagaku Corporation Chondroitin-producing bacterium and method of producing chondroitin
US20110244520A1 (en) * 2010-03-01 2011-10-06 Doherty Daniel H Compositions and Methods for Bacterial Production of Chondroitin
WO2013174863A1 (en) 2012-05-23 2013-11-28 Altergon S.A. Chondroitin for use in medicine
WO2014016380A1 (en) 2012-07-27 2014-01-30 Altergon S.A. Chondroitin complexes for transcutaneous absorption

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2591127T3 (en) 2010-07-09 2018-01-31 Gnosis Spa Biotechnological production of chondroitin
US8664196B2 (en) 2011-05-20 2014-03-04 Gnosis S.P.A. Shark-like chondroitin sulphate and process for the preparation thereof
CA2835691C (en) 2011-05-20 2018-08-21 Gnosis S.P.A. Shark-like chondroitin sulphate and process for the preparation thereof
JP6478115B2 (en) 2013-09-30 2019-03-06 生化学工業株式会社 Method of enhancing retention of protein in blood
EP4067487A1 (en) 2021-04-01 2022-10-05 Givaudan SA Chondroitin-producing recombinant cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236788A (en) * 1990-02-14 1991-10-22 Pola Chem Ind Inc Production of glycoside by enzymatic method
WO2000027437A2 (en) 1998-11-11 2000-05-18 The Board Of Regents Of The University Of Oklahoma Polymer grafting by polysaccharide synthases
JP2003199583A (en) 2001-08-10 2003-07-15 Seikagaku Kogyo Co Ltd Chondroitin synthetase and dna encoding the same
WO2003070960A1 (en) * 2002-02-20 2003-08-28 Denki Kagaku Kogyo Kabushiki Kaisha Processes for producing chondroitin or chondroitin derivative

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE261435T1 (en) 1998-12-04 2004-03-15 Takeda Chemical Industries Ltd BENZOFURAN DERIVATIVES, METHOD FOR THE PRODUCTION THEREOF AND USES THEREOF
US20030086899A1 (en) * 2000-03-14 2003-05-08 Jafari Masoud R. Chondroitin sulfate containing viscoelastics for use in treating joints
JP4480131B2 (en) * 2001-12-21 2010-06-16 アルコン,インコーポレイテッド Viscoelastic combination for use during surgery
JP2003292433A (en) * 2002-02-01 2003-10-15 Masayoshi Kachi Cosmetic
DE60319529T2 (en) * 2002-05-31 2008-10-23 Seikagaku Corp. CHONDROITINE SYNTHETASE AND ENZYME-CODING NUCLEIC ACID
JP2004250592A (en) * 2003-02-20 2004-09-09 Seikagaku Kogyo Co Ltd Method for producing glycosaminoglycan with molecular weight reduced by ultraviolet irradiation
WO2007058252A1 (en) * 2005-11-17 2007-05-24 Seikagaku Corporation Process for producing chondroitin
GB0709811D0 (en) * 2007-05-22 2007-07-04 Vectura Group Plc Pharmaceutical compositions
EP2036983A1 (en) * 2007-09-12 2009-03-18 Bayer CropScience AG Plants synthesizing increased amounts of glucosaminglycans

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236788A (en) * 1990-02-14 1991-10-22 Pola Chem Ind Inc Production of glycoside by enzymatic method
WO2000027437A2 (en) 1998-11-11 2000-05-18 The Board Of Regents Of The University Of Oklahoma Polymer grafting by polysaccharide synthases
JP2003199583A (en) 2001-08-10 2003-07-15 Seikagaku Kogyo Co Ltd Chondroitin synthetase and dna encoding the same
WO2003070960A1 (en) * 2002-02-20 2003-08-28 Denki Kagaku Kogyo Kabushiki Kaisha Processes for producing chondroitin or chondroitin derivative

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KITAGAWA, H.; PAULSON, J.C., J. BIOL. CHEM., vol. 269, 1994, pages 1394 - 1401
MARUYAMA ET AL., MED. IMMUNOL., vol. 20, 1990, pages 27
MIZUSHIMA, S.; NAGATA, S., NUCLEIC ACID RES., vol. 18, 1990, pages 5322
NINOMIYA T. ET AL.: "Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 24, 2002, pages 21567 - 21575, XP002224169 *
NINOMIYA, T. ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, no. 24, 2002, pages 21567 - 21575
NIWA, H.; YAMAMURA, K.; MIYAZAKI, J., GENE, vol. 108, 1991, pages 193 - 200
See also references of EP1964924A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133350A1 (en) * 2007-04-24 2008-11-06 Seikagaku Corporation Chondroitin-producing bacterium and method of producing chondroitin
US8283145B2 (en) 2007-04-24 2012-10-09 Seikagaku Corporation Chondroitin-producing bacterium and method of producing chondroitin
US20110244520A1 (en) * 2010-03-01 2011-10-06 Doherty Daniel H Compositions and Methods for Bacterial Production of Chondroitin
US8697398B2 (en) * 2010-03-01 2014-04-15 Dsm Ip Assets B.V. Compositions and methods for bacterial production of chondroitin
US9175293B2 (en) 2010-03-01 2015-11-03 Seikagaku Corporation Compositions and methods for bacterial and genetically modified microorganism production of chondroitin
WO2013174863A1 (en) 2012-05-23 2013-11-28 Altergon S.A. Chondroitin for use in medicine
WO2014016380A1 (en) 2012-07-27 2014-01-30 Altergon S.A. Chondroitin complexes for transcutaneous absorption

Also Published As

Publication number Publication date
EP1964924A1 (en) 2008-09-03
EP1964924B1 (en) 2015-09-30
US20090263867A1 (en) 2009-10-22
EP1964924A4 (en) 2012-02-01
US8067204B2 (en) 2011-11-29
JPWO2007069693A1 (en) 2009-05-28
JP5081629B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
WO2007069693A1 (en) Long-chain chondroitin sugar chain and method for producing the same and method for promoting synthesis of chondroitin
DK2831237T3 (en) HIGH-MOLECULAR HEPAROSAN POLYMERS AND METHODS OF PRODUCING AND USING THEREOF
Otto et al. Structure/function analysis of Pasteurella multocida heparosan synthases: toward defining enzyme specificity and engineering novel catalysts
US7569386B2 (en) Chondroitin synthase gene and methods of making and using same
AU2001253805B2 (en) Chondroitin synthase gene and methods of making and using same
Li et al. Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA
Engle et al. Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor‐dependent or de novo synthesis
Leroux et al. Chaperone-assisted expression of KfiC glucuronyltransferase from Escherichia coli K5 leads to heparosan production in Escherichia coli BL21 in absence of the stabilisator KfiB
AU2001253805A1 (en) Chondroitin synthase gene and methods of making and using same
US7642071B2 (en) Methods of expressing gram-negative glycosaminoglycan synthase genes in gram-positive hosts
US20060211104A1 (en) Hyaluronan synthases and methods of making and using same
CA3127668A1 (en) Modular platform for producing glycoproteins and identifying glycosylation pathways
Chavaroche et al. In vitro synthesis of heparosan using recombinant Pasteurella multocida heparosan synthase PmHS2
Xue et al. Impact of donor binding on polymerization catalyzed by KfoC by regulating the affinity of enzyme for acceptor
Wang et al. The second member of the bacterial UDP-N-acetyl-d-glucosamine: heparosan alpha-1, 4-N-acetyl-d-glucosaminyltransferase superfamily: GaKfiA from Gallibacterium anatis
US20240026411A1 (en) METHODS FOR CO-ACTIVATING IN VITRO NON-STANDARD AMINO ACID (nsAA) INCORPORATION AND GLYCOSYLATION IN CRUDE CELL LYSATES
Kooy et al. Structural and functional evidence for two separate oligosaccharide binding sites of Pasteurella multocida hyaluronan synthase
JPWO2007058252A1 (en) Method for producing chondroitin
Otto et al. Comamonas testosteronan synthase, a bifunctional glycosyltransferase that produces a unique heparosan polysaccharide analog
Su et al. Production of a low molecular weight heparin production using recombinant glycuronidase
JP5885136B2 (en) Method for synthesizing highly sulfated chondroitin sulfates, highly sulfated chondroitin sulfates, and analytical reagents
AU2002359581B2 (en) Hyaluronan synthases and methods of making and using same
Sun et al. Novel β1, 4 N-acetylglucosaminyltransferase in de novo enzymatic synthesis of hyaluronic acid oligosaccharides
Kooy Enzymatic production of hyaluronan oligo-and polysaccharides
Mandawe Engineering of hyaluronic acid synthases from Streptococcus equi subsp. zooepidemicus and Pasteurella multocida towards improved HA chain length and titer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007550226

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12097725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834715

Country of ref document: EP