WO2007069509A1 - Novel hydantoinase and process for producing n-carbamoyl d-amino acid - Google Patents

Novel hydantoinase and process for producing n-carbamoyl d-amino acid Download PDF

Info

Publication number
WO2007069509A1
WO2007069509A1 PCT/JP2006/324337 JP2006324337W WO2007069509A1 WO 2007069509 A1 WO2007069509 A1 WO 2007069509A1 JP 2006324337 W JP2006324337 W JP 2006324337W WO 2007069509 A1 WO2007069509 A1 WO 2007069509A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydantoinase
polypeptide
amino acid
dna
seq
Prior art date
Application number
PCT/JP2006/324337
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Ueda
Masakatsu Nishihachijo
Hirokazu Nanba
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007550142A priority Critical patent/JP5159319B2/en
Publication of WO2007069509A1 publication Critical patent/WO2007069509A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to an enzyme (hereinafter referred to as hydantoinase) which hydrolyzes a novel 5-substituted hydantoin produced by microorganisms into D-selective hydrolyzate and converts it into the corresponding N-strength rubamoyl D-amino acid.
  • hydantoinase an enzyme which hydrolyzes a novel 5-substituted hydantoin produced by microorganisms into D-selective hydrolyzate and converts it into the corresponding N-strength rubamoyl D-amino acid.
  • An optically active N-strength D-amino acid is a compound that can be easily converted into the corresponding optically active D-amino acid, and the optically active D-amino acid is useful as a synthetic intermediate for pharmaceuticals and the like.
  • As a method for producing N-strength rubamoyl-D-amino acid the enzyme produced by microorganisms is allowed to act on 5-substituted hydantoin to be selectively hydrolyzed to the corresponding N-strength rubamoyl-D-amino acid.
  • a method of converting to is generally known (Patent Documents 1, 2, and 3).
  • Patent Document 1 JP-A-53-91189
  • Patent Document 2 JP-A 53-44690
  • Patent Document 3 JP-A 53-133688
  • Patent Document 4 Japanese Patent Laid-Open No. 62-87089
  • Patent Document 5 International Publication No. WO94Z00577
  • Patent Document 6 International Publication No. WOWO96Z20275 Disclosure of the invention
  • the hydantoinase produced by the above-mentioned microorganisms or transformants described as the background art generally has a higher degree of substitution at the 5-position of the substrate hydantoin (or is bulky and has a side chain).
  • the stereoselectivity is not strict and the optical purity is high. —It may be difficult to obtain strong rubermoyl-D-amino acids.
  • One of the objects of the present invention is to provide a novel hydantoinase exhibiting high stereoselectivity regardless of the size of the substituent of the 5-substituted hydantoin substrate.
  • Another object of the present invention is to clarify the amino acid sequence of the hydantoinase, the DNA sequence of the gene, a microorganism or transformant having the ability to produce the enzyme, and a method for producing the hydantoinase using them Is to provide.
  • one of the objects of the present invention is to provide an efficient method for producing N-strength rubamoyl-D-amino acid using the hydantoinase.
  • KNK491C strain (FERM BP-10735) Strength While active against various 5-substituted hydantoins, it is highly stereocable to substrates such as hydantoins with a very small 5-position substituent such as 5-methylhydantoin. It was found to produce hydantoinase that exhibits selectivity.
  • the hydantoinase gene was isolated and expressed in a host microorganism, and a highly active transformant was bred.
  • a highly active transformant was bred.
  • the present invention has one or more of the following features.
  • polypeptide (a), (b) or (c): (a) a polypeptide having the amino acid sequence ability shown in SEQ ID NO: 1 in the Sequence Listing;
  • polypeptide comprising an amino acid sequence having 73% or more homology with the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing and having hydantoinase activity.
  • One feature of the present invention is the following DNA (d), (e), (f) or (g):
  • One feature of the present invention is a recombinant plasmid containing the DNA.
  • One feature of the present invention is a transformant obtained by transforming a host microorganism with the recombinant plasmid.
  • One feature of the present invention is a microorganism having the ability to produce the polypeptide and belonging to the genus Aneurinibacillus.
  • One feature of the present invention is a method for producing hydantoinase, comprising culturing a microorganism capable of producing the polypeptide, accumulating the polypeptide in the culture, and collecting the polypeptide. is there.
  • One feature of the present invention is that the above-mentioned hydantoinase (polypeptide having hydantoinase activity), a transformant, or a microorganism is allowed to act on 5-substituted hydantoin to produce N-carbamoyl D-amino acids (for example, N-strength rubamoyl). D—a—amino acid).
  • the present invention has the above-mentioned constitutional power and can efficiently produce a novel hydantoinase.
  • N-force rubermoyl-D-amino acids with high optical purity can be efficiently produced from various hydantoins including those with a small substituent at the 5-position. can do.
  • the measurement of hydantoinase activity of a polypeptide is generated in a reaction.
  • N-strength rubamoyl amino acid can be quantified by the color development method using p-dimethylaminobenzaldehyde shown below.
  • Substrate solution 4mL consisting of 500mL DL-5-methylhydantoin, 0.1M M manganese sulfate, 0.1M sodium carbonate Z sodium bicarbonate buffer (PH8.7) After mixing at 45 ° C for 10 minutes, stop the reaction by adding 2 mL of 2N hydrochloric acid. After adding lmL of 10% (wZv) p-dimethylaminobenzaldehyde Z35% hydrochloric acid solution to this reaction solution and mixing, the absorbance at 440 nm was measured, and the N-- produced in the reaction solution was measured based on a calibration curve prepared in advance. Quantify the amount of force rubyamolanin.
  • the polypeptide of the embodiment can acquire microbial power having hydantoinase activity.
  • the microorganism is not particularly limited as long as it is a microorganism that produces the same polypeptide, but examples include microorganisms belonging to the genus Aneurinibacillus, and among them, Aneurinibacillus sp. Is preferable. More preferred is the Aneurinibacillus sp. K NK491C strain newly isolated from soil by the present inventors. The Aneurini bacillus sp. KNK491C strain obtained in the present invention was assigned the accession number FERM BP-1073 5 on November 20, 2006.
  • N-Acetyldarcosamine One Amygdalin: One
  • the 16SrDNA base sequence of the Aneurinibacillus sp. KNK491C strain was determined, and homology search was performed against the international base sequence database (GeneBank, DDBJ, EMBL) using BLAST as search software. As a result, the bacterium having the highest homology was the Aneurinibacillus migulanus strain DSM2895, and the homology rate was 99.9%.
  • the microorganism that produces the polypeptide of the embodiment may be a wild strain of the above-described microorganism, or may be a mutant strain with improved mutation. Mutant strains are obtained by methods well known to those skilled in the art, such as UV irradiation, treatment with drugs such as N-methyl ⁇ 'Nitro-N N-trosoguanidine (NTG), ethyl methanesulfonate (E MS), etc. be able to.
  • NTG N-methyl ⁇ 'Nitro-N N-trosoguanidine
  • E MS ethyl methanesulfonate
  • the medium for culturing the microorganism producing the polypeptide of the present invention is not particularly limited as long as the microorganism can grow.
  • a carbon source carbohydrates such as glucose and sucrose, alcohols such as ethanol and glycerol, fatty acids such as oleic acid and stearic acid, and esters thereof, oils such as rapeseed oil and soybean oil, and nitrogen sources Ammonium sulfate, sodium nitrate, peptone, casamino acid, corn steep liquor, Ingredients such as sesame, yeast extract, inorganic salts such as magnesium sulfate, sodium salt sodium, calcium carbonate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, etc. Ordinary liquid media can be used.
  • substances that enhance the production of hydantoinase for example, pyrimidine metabolites such as uracil, metal salts such as manganese salt of manganese salt and manganese sulfate, etc. may be added in a small amount.
  • concentration of these hydantoinase production-enhancing substances in the medium is preferably 0.001 to 10% by weight, more preferably 0.01 to 1% by weight.
  • the culture is usually carried out aerobically, and the culture temperature is preferably 10 ° C or higher and 60 ° C or lower, more preferably 20 ° C or higher and 50 ° C or lower.
  • the culture pH is preferably 3 or more and 11 or less, more preferably PH 5 or more and 9 or less, and the culture time can be 1 day or more and 5 days or less.
  • either a batch or continuous culture method may be used.
  • the culture fluid force is clarified by centrifugation or the like, and the microbial cells are disrupted by means such as ultrasonic disruption to obtain a crude enzyme solution.
  • the polypeptide of the present invention can be obtained by purifying the crude enzyme solution by a salting-out method, a column chromatography method or the like.
  • the polypeptide of the present invention may be a natural enzyme obtained from a microorganism as described above, or a recombinant enzyme produced using a gene recombination technique.
  • Examples of the natural enzyme include the polypeptide represented by SEQ ID NO: 1 in the sequence listing.
  • the polypeptide according to the embodiment of the present invention is an amino acid in which one or several amino acids are substituted, inserted, deleted and Z or added in the amino acid sequence shown in SEQ ID NO: 1 in Sequence Listing. It may be a polypeptide comprising a sequence and having hydantoinase activity, or 73% or more, preferably 75% or more, 80% or more, 85% or more, 90% or more, 95% with the amino acid sequence shown in SEQ ID NO: 1. It may be a polypeptide having an amino acid sequence having homology of at least%, more preferably at least 99%, and having hydantoinase activity.
  • amino acids '' is not limited as long as hydantoinase activity is not lost, but is preferably 20 amino acids or less, more preferably 15 amino acids or less, even more preferably 10 amino acids or less, most preferably No more than 5, 4, 3, or 2.
  • the “homology” in the embodiment uses a method well known to those skilled in the art, sequence analysis software, and the like. Can be obtained. Here, as an example, homology search of genetic information processing software GENETY X Ver. 7Z network version (manufactured by Genetics) was used.
  • the "polypeptide having hydantoinase activity” means that the activity can be detected under the activity measurement conditions described in the above item "1. Measurement of hydantoinase activity”. It is preferable to have an activity of 10% or more when the polypeptide having the amino acid sequence ability shown in No. 1 is used, more preferably 40% or more, 60% or more, more preferably 80% or more. It refers to a polypeptide that exhibits activity.
  • DNA as an embodiment of the present invention will be described.
  • the DNA of the present invention may be DNA encoding the above polypeptide! It may be DNA represented by SEQ ID NO: 2 in the Sequence Listing, and 1 or several bases are substituted, inserted, deleted and Z or added in the base sequence represented by SEQ ID NO: 2 in the Sequence Listing. It may be a DNA encoding a polypeptide having a unique base sequence and having a hydantoinase activity! /.
  • severeal bases means that the number is not limited as long as the polypeptide encoded by DNA does not lose hydantoinase activity, but it is preferably 50 bases or less, more preferably 30 bases or less, and even more. Preferably no more than 20 amino acids, most preferably no more than 10, 9, 8, 7, 6, 5, 4, 3, or 2.
  • DNA as an embodiment of the present invention is hybridized under stringent conditions with DNA having a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing, and has a hydantoinase activity. It can be DNA encoding a polypeptide! /. DNA that also has a base sequence ability complementary to the base sequence shown in SEQ ID NO: 2 and DNA that hybridizes under stringent conditions are defined as the “combination-one” hybridization method, the plaque “hybridization method”, or the Southern detection method. When the hybridization method is performed, a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 2 specifically forms a hybrid. Say DNA.
  • the stringent conditions include, for example, 75 mM trisodium citrate, 750 mM sodium chloride, 0.5% sodium dodecyl sulfate, 0.1% ushi serum albumin, 0.1% polyvinyl pyrrolidone, and 0.1% trisodium citrate, 150 mM sodium chloride, and 0.1% after performing a noble hybridization at 65 ° C in an aqueous solution that also has compositional power of l% Ficoll 400 (Amersham Biosciences) This refers to the conditions under which cleaning is performed at 60 ° C. using an aqueous solution composed of 1% sodium dodecyl sulfate.
  • an aqueous solution having a composition of 15 mM trisodium citrate, 150 mM sodium chloride, and 0.1% sodium dodecyl sulfate is used at 65 ° C. More preferably, after hybridization is performed under the above conditions, 1.5 mM trisodium citrate, 15 mM sodium chloride salt, and 0.1% sodium dodecyl sulfate are added. Cleaning is performed at 65 ° C using an aqueous solution that also has compositional power.
  • the DNA (hydantoinase gene) of the present invention can be obtained from a microorganism having hydantoinase activity as described above.
  • the following method can be used.
  • chromosomal DNA is isolated from a microorganism having hydantoinase activity.
  • Chromosomal DNA is obtained from cultured cells using a method such as Marmur method (see J. Mol. Biol., 3,208 (1961)).
  • an appropriate restriction enzyme such as Sau3AI
  • various chromosomal DNA fragments are ligated with pUCl 8 cleaved with an appropriate vector plasmid such as the restriction enzyme BamHI using T4 DNA ligase.
  • an appropriate vector plasmid such as the restriction enzyme BamHI using T4 DNA ligase.
  • the nucleotide sequence of the chromosomal DNA fragment inserted into the selected plasmid is analyzed to determine the open reading frame (ORF) present in the fragment.
  • ORF open reading frame
  • a host microorganism By using the DNA obtained by the above method or a recombinant plasmid obtained by incorporating the DNA into a vector, a host microorganism can be transformed to obtain a transformant.
  • the host and vector the host-vector system described in "Recombinant DNA Experiment Guidelines" (Science and Technology Agency, Research and Development Bureau, Life Science Division, revised on March 22, 1996) can be used.
  • the hosts include the genus Escherichia, the genus Pseudomonas, the genus Flavobacterium, the genus Bacillus, the Serratia, the genus Corynebacterium, the Brevi The genus Brevibacterium, the genus Agrobacterium, the genus Acetobacter, the genus Gluconobacter, the genus Lactobacillus, the genus Streptococcus or the Streptococcus It is possible to use microorganisms belonging to the genus (Streptomyces).
  • a plasmid, phage or derivative thereof derived from a microorganism capable of autonomous replication in the above host can be used.
  • a host microorganism for example, Escherichia coli i whose bacteriological properties are well known to those skilled in the art and provided for transformation, and a vector that can autonomously replicate in the microorganism as a vector. It is preferable to use it.
  • examples of such vectors include pUC18 (Takara Bio Inc.), pUC19 (Takara Bio Inc.), pBR322 (Takara Bio Inc.), PACYC184 (stock Based on the description in the specification of International Publication No.
  • pUCNT that can be produced by those skilled in the art, or derivatives thereof can be mentioned.
  • These derivatives are modified promoters, terminators, enhancers, SD sequences, replication start sites (or i), and other regulatory genes for the purpose of increasing enzyme production and plasmid stability. Stuff, drug resistance, clawing This refers to a modified site of the restriction enzyme site.
  • a recombinant plasmid pALHIOl in which DNA obtained as described above from Aneurinibacillus sp. KN K491C strain is incorporated into pUCNT is used.
  • Escherichia coli) HB101 can be transformed to obtain a transformant Escherichia coli HB101 (pALHIOl).
  • the bacteriological properties of Escherichia coli HBlOl are described in “BIOCHEMICAL S FOR LIFE SCIENCE” (Toyobo Co., Ltd., 1993, pages 116-119) and various other known literatures. Is well known.
  • Escherichia coli HB101 (pALHIOl) has the same mycological properties as Escherichia coli HB101, except that it can produce specific enzymes by genetic recombination.
  • the transformant Escherichia coli HB101 (pALHIOl) obtained as an embodiment of the present invention was incorporated as an independent administrative agency, National Institute of Advanced Industrial Science and Technology, under the accession number FERM P-20712 on November 15, 2005. It has been deposited at the Research Center for Patent Biological Deposits (Dai 305-8566, 1-1-1 Tsukuba Satohi, Ibaraki Prefecture).
  • the enzyme By culturing the above-mentioned transformant capable of producing the hydantoinase of the present invention, the enzyme can be produced in large quantities, and can be used for the production of N-strength Lubamoyl D-amino acid.
  • Culture of microorganisms may be performed using a normal medium.
  • the medium used for the culture may be a normal medium containing nutrients such as a carbon source, a nitrogen source and inorganic salts. Addition of organic micronutrients such as vitamins and amino acids to this often gives favorable results.
  • a carbon source carbohydrates such as glucose or sucrose, organic acids such as acetic acid, alcohols and the like are appropriately used.
  • Nitrogen sources include ammonium salt, a Water, ammonia gas, urea, yeast extract, peptone, corn steep liquor, etc. are used.
  • inorganic salts include phosphates, manganese salts, magnesium salts, potassium salts, sodium salts, calcium salts, iron salts, sulfates, and chlorine.
  • the culture temperature is preferably 25 ° C or higher and 40 ° C or lower, more preferably 25 ° C or higher and 37 ° C or lower.
  • the culture pH is preferably pH 4 or more and 9 or less, more preferably pH 5 or more and 8 or less. In addition, either a batch or continuous culture method may be used.
  • IPTG isopropyl 1- 1 13-D-galatatoside
  • N-force rubermoyl-D-amino acids can be obtained by allowing hydantoinase to act on 5-substituted hydantoins and hydrolyzing them stereoselectively.
  • 5-Substituted hydantoins may be racemic or optically active, such as L or D.
  • the stereoselective hydrolysis reaction with hydantoinase and the chemical racemization of the substrate proceed at the same time, so that any force when using a 5-substituted hydantoin of racemic, L-, or D-form as a substrate can be used. It can be converted to the corresponding N-strength rubermoyl D-amino acid.
  • the 5-substituted hydantoin represented by the formula is not particularly limited as long as it is hydrolyzed by the present enzyme.
  • substituent represented by R include the number of carbons optionally having a substituent. Examples include an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms which may have a substituent, or an aryl group having 6 to 20 carbon atoms which may have a substituent. Can do.
  • the alkyl group having 1 to 20 carbon atoms which may have a substituent in R is not particularly limited, and examples thereof include a methyl group, an isopropyl group, an isobutyl group, a 1 methylpropyl group, a strong rubamoylmethyl group, 2-force rubamoylethyl, hydroxymethyl, 1-hydroxysityl, mercaptomethyl, 2-methylthioethyl, (1 mercapto-1-methyl) ethyl, 4-aminobutyl, 3-gua-dinopropyl, 4 (5) -Imidazolemethyl group, ethyl group, n-propyl group, nbutyl group, chloromethyl group, methoxymethyl group, 2 hydroxyethyl group, 3 aminopropyl group, 2 cyanoethyl group, 3 cyanopropyl group, 4 ( Examples thereof include a benzoylamino) butyl group and a 2-methoxycarbo-ru
  • the aralkyl group having 7 to 20 carbon atoms which may have a substituent is not particularly limited, and examples thereof include a benzyl group, an indolylmethyl group, a 4-hydroxybenzyl group, a 2 fluorobenzyl group, 3 Examples thereof include a fluorinated benzyl group, a 4 fluorinated benzyl group, and a 3, 4-methylenedibenzyl group. It may have a substituent!
  • Examples of the reel group include a phenol group and a 4-hydroxyphenol group.
  • substituents examples include an amino group, a hydroxyl group, an alkyl group, an aralkyl group, an aryl group, an alkanol group, an alkyl group, an alkyl group, an alkoxyl group, or a halogen atom.
  • examples of the hydantoin having a small substituent at the 5-position include a 5-substituted hydantoin represented by the above formula (1), and the substituent represented by R has a substituent.
  • substituent represented by R has a substituent.
  • the alkyl group having 1 to 3 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a rubamoylmethyl group.
  • 2-force rubermoylethyl hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, mercaptomethyl, 2-methylthioethyl, (1 mercapto-1-methyl) ethyl, chloromethyl, methyl
  • Examples thereof include a toximethyl group, a 3-aminopropyl group, a 2-cyanoethyl group, a 3-cyanopropyl group, and a 3-guano-propyl group.
  • the above-mentioned hydantoinase is allowed to act on the substrate, and the reaction is carried out in an aqueous solvent.
  • the substrate charge concentration in this reaction is preferably 0.1% (WZV) or more and 90% (wZv) or less, more preferably 1% (WZV) or more and 60% (wZv) or less.
  • the substrate is reacted in a dissolved or suspended state, and the reaction temperature is preferably adjusted to an appropriate temperature of 10 ° C or higher and 80 ° C or lower, more preferably 20 ° C or higher and 60 ° C or lower.
  • the pH is preferably kept at a pH of 4 or more and 12 or less, more preferably at a pH of 6 or more and 10 or less, and may be allowed to stand for a while or stirred. Further, the substrate may be added all at once, dividedly or continuously. In addition, this reaction can be performed by a batch method or a continuous method.
  • This reaction can also be performed using an immobilized enzyme, a membrane reactor, or the like.
  • the aqueous medium include water, a buffer solution, an aqueous medium containing a water-soluble organic solvent such as ethanol, or an organic solvent that is difficult to dissolve in water, for example, ethyl acetate, butyl acetate, toluene, chloro, and the like.
  • a suitable solvent such as a two-phase system with an aqueous medium containing an organic solvent such as oral form or n-hexane can be used.
  • antioxidants, surfactants, coenzymes, metals, etc. can be added as necessary.
  • the metal is not particularly limited, but manga , Nickel, zinc, iron, magnesium, calcium, copper, etc., or a salt thereof, preferably, a metal of manganese or conoret or a salt thereof. These metals may be used alone, or two or more metals may be used in combination.
  • the produced N-strength D-amino acid can be isolated and purified by a conventional separation method, for example, a separation method such as extraction, concentration, crystallization or column chromatography, or a combination thereof.
  • a separation method such as extraction, concentration, crystallization or column chromatography, or a combination thereof.
  • the N-strength rubamoyl D-amino acid obtained by the method described above can be easily converted to the corresponding D-amino acid by the action of an enzyme having chemical or weak rubamoyl activity.
  • This plasmid mixture was transformed with a combination cell of Escherichia coli JM109 to perform transformation, and agar medium B (trypton 10 g, yeast extract 5 g, sodium chloride sodium 10 g, manganese chloride 20 mg, isopropyl 1 1-Cho 1 j8-D-Galatatoside (IPTG) 24m g, agar 15 g, ampicillin 100 mg, made up to 1 L with deionized water, pH 7.0 before sterilization, but ampicillin and IPTG were added after sterilization. And transformants containing various chromosomal DNA fragments were obtained as colonies.
  • agar medium B trypton 10 g, yeast extract 5 g, sodium chloride sodium 10 g, manganese chloride 20 mg, isopropyl 1 1-Cho 1 j8-D-Galatatoside (IPTG) 24m g
  • agar 15 g ampicillin 100 mg, made up to 1 L with deionized water, pH 7.0 before sterilization, but
  • a colony of the obtained transformant was replicated on a filter paper, and the reaction solution (0.1 M potassium phosphate buffer (PH 7.0), 5-methylhydantoin 1.0%, phenol 0.1%, D —Amino acid oxidase (manufactured by SIGMA) 1. 4 UZmL, decarbamoylase crude enzyme solution (see Reference Example 1 below) 50% (vZv), Peroxidase (manufactured by TOYOBO) 0. 07 U / mL, 0 (5 mM 4-aminoaminopyrine) and left at 37 ° C. for 5 hours.
  • the reaction solution 0.1 M potassium phosphate buffer (PH 7.0), 5-methylhydantoin 1.0%, phenol 0.1%, D —Amino acid oxidase (manufactured by SIGMA) 1. 4 UZmL, decarbamoylase crude enzyme solution (see Reference Example 1 below) 50% (vZv), Peroxidase (manufactured by
  • the cells of the above transformant are suspended in 0.1M Tris-HCl buffer (PH8.5), and the cells are crushed by ultrasonic waves. Then, insoluble matters derived from the cells are removed by centrifugation, and the cells are transformed. A crude enzyme solution of the converted product was obtained. When the hydantoinase activity was measured using the obtained crude enzyme solution, the activity was confirmed and it was confirmed that this ORF is the target hydantoinase gene.
  • the activity of hydantoinase was measured according to the following method. Mix 0.1 mL of enzyme solution diluted appropriately with 4 mL of substrate solution consisting of 500 mM DL-5-methylhydantoin, 0.
  • a primer that binds the cleavage site of the restriction enzyme Ndel to the N-terminus of the toinase gene (Primer-1: SEQ ID NO: 3 in the sequence listing) and the Ndel cleavage site at base 1228 of the hydantoinase gene are amino acid substituted.
  • DNA primers were amplified by PCR using a primer (Primer-2: SEQ ID NO: 4 in the sequence listing) changed as described above to obtain an N-terminal DNA fragment of about 1.2 Kbp.
  • a primer having a sequence in which the cleavage site of the restriction enzyme Hindi II is bound to the C-terminal part of hydantoinase (Primer-3: SEQ ID NO: 5 in the sequence listing) and the cleavage site of Ndel present at the 1228th base of the hydantoinase gene
  • the DNA was amplified by PCR using a primer (Primer-4: SEQ ID NO: 6 in the Sequence Listing) that was changed so that amino acid substitution did not occur, and a C-terminal DNA fragment of about 0.2 Kbp was obtained.
  • DNA amplification by PCR using Primer-1 and Primer-3 is performed using a mixture of the N-terminal DNA fragment and the C-terminal DNA fragment as a saddle type as shown above! /, SEQ ID NO: 7 in the Sequence Listing.
  • the DNA fragment shown in 1 was obtained.
  • the obtained DNA fragment was cleaved with restriction enzymes Ndel and Hindlll, and vector plasmid pUCNT (which can be produced by those skilled in the art based on the description in the International Publication No. WO94Z03613) and T4 DNA ligase was used.
  • the plasmid pALHIOl which is represented by the restriction enzyme map of Fig. 1 and designed to express a large amount of the hydantoinase gene, was obtained.
  • Example 3 Including hydantoinase transmission 3 ⁇ 4 ⁇ Production of deformed body using ⁇ body DNA
  • Transformation was performed by mixing the plasmid pALHIOl obtained in Example 2 with a competent cell of Escherichia coli HBl 01, and agar medium C (trypton 10 g, yeast extract 5 g, salted sodium 10 g, Agar 15 g, ampicillin 100 mg, made up to 1 L with deionized water, pH 7.0 before sterilization, but ampicillin was added after sterilization.) Plated to contain recombinant DNA containing hydantoinase gene Transformant Escherichia coli HB101 (pALHIOl) (FERM P-20712) was obtained as a colony.
  • pALHIOl hydantoinase gene Transformant Escherichia coli HB101
  • the colony of the obtained transformant was sterilized in a test tube in 6 mL of medium D (tryptone 16 g, yeast extract 10 g, salted sodium 5 g, salted sodium 400 mg, ampicillin 100 mg, deionized water. Up to 1L, pH 7.0 before sterilization, but ampicillin after sterilization After inoculation, the cells were cultured under aerobic shaking at 37 ° C for 22 hours. The bacterial cells are collected from the obtained culture broth by centrifugation, suspended in 0.1 M Tris-HCl buffer (pH 8.5), disrupted by ultrasonic waves, and centrifuged to obtain the cells derived from the bacterial cells. Insoluble matter was removed, and a crude enzyme solution of transformant was obtained. Using the obtained crude enzyme solution, hydantoinase activity was measured in the same manner as in Example 1, and the activity was confirmed.
  • medium D tryptone 16 g, yeast extract 10 g, salted sodium 5 g, salted sodium 400 mg, ampicillin 100 mg, deion
  • Aneurinibacillus sp. KNK491C strain sterilized in 500 mL Sakaguchi Flasco E (meat extract 2.0%, yeast extract 1.0%, sodium chloride 0.3%, uracil 0 5%, manganese chloride tetrahydrate 0.002%, pH 7.5 before sterilization was inoculated and cultured at 37 ° C for 20 hours under aerobic shaking.
  • To the obtained culture broth 10.0 g of 5-methylhydantoin was added, and the mixture was stirred at 55 ° C. for 20 hours while maintaining the pH at 8.7 with a 6M aqueous sodium hydroxide solution.
  • the conversion rate of the produced N-force rubermoyl-D-alanine was analyzed by HPLC, and it was 96.3%.
  • the N-type ruberamoyl D-alanine was weakened by reacting sodium nitrite with sulfuric acid in the presence of sulfuric acid, and the optical purity of the resulting D-alalanine was analyzed using HPLC. It was% ee. HP LC analysis was performed under the following conditions.
  • Transformant Escherichia coli HB101 (pALH 101) having hydantoinase activity obtained in Example 3 was inoculated into 1 OOmL of medium D sterilized in a Sakaguchi flask and incubated at 37 ° C. The culture was shaken aerobically for a time. Centrifuge the 10 ml culture broth The cells are collected, suspended in 10 mL of 0. ImM manganese sulfate, 0.1 M Tris-hydrochloric acid buffer (pH 8.5), disrupted by sonication, centrifuged, and the supernatant is crude enzyme. It was collected as a liquid.
  • Example 5 Using the crude enzyme solution of Escherichia coli HB101 (pALHIOl) obtained in Example 5, the activity against various hydantoins was measured. The activity of hydantoinase was measured as follows. Substrate solution 4 mL (30 mM various hydantoins (but 15 benzylhydantoin only 15 mM), 0.ImM manganese chloride, 50 mM sodium carbonate Z sodium bicarbonate buffer (PH8.7)), and crude enzyme solution diluted appropriately. ImL was mixed and reacted at 40 ° C for 15 minutes. Then, 2mL of 5N HC1 was added to stop the reaction.
  • Substrate solution 4 mL (30 mM various hydantoins (but 15 benzylhydantoin only 15 mM), 0.ImM manganese chloride, 50 mM sodium carbonate Z sodium bicarbonate buffer (PH8.7)
  • ImL was mixed and reacted at 40
  • Transformant Escherichia coli HB101 (p TH104) (FERM BP-4864) with a hydantoinase gene derived from Bacillus sp. KNK245 (FERM BP-4863) in a Sakaguchi flask Sterile lOOmL medium D was inoculated and cultured with shaking at 37 ° C for 24 hours. The culture fluid force was also collected by centrifugation, suspended in 10 mL of 0. ImM manganese sulfate, 0.1 M Tris-HCl buffer (pH 8.5), disrupted by ultrasonic waves, centrifuged, and centrifuged. Kiyoshi was recovered as a crude enzyme solution.
  • N-stralbumoyl-D-alanine was decarbamoylated by the action of sodium nitrite in the presence of sulfuric acid, and the optical purity of the resulting D-alanine was analyzed in the same manner as in Example 4. It was 7% ee.
  • the crude decarbamoylase solution used in the selection of colonies described in Example 1 was prepared by the following method.
  • E. coli HB101 (pNT4553) (FERM BP-4368) containing the weak ruvalamylase gene derived from Agrobacterium sp. Sterilized with 10 mL of medium F (tryptone 16 g, yeast extract 10 g, sodium chloride 5g, ampicillin 100mg, make up to 1L with deionized water, inoculate pH 7.0 before sterilization, but add ampicillin after sterilization), at 37 ° C for 12 hours, The culture was shaken vigorously.
  • medium F tryptone 16 g, yeast extract 10 g, sodium chloride 5g, ampicillin 100mg, make up to 1L with deionized water, inoculate pH 7.0 before sterilization, but add ampicillin after sterilization
  • FIG. 1 is a diagram showing the structure of a recombinant plasmid pALHIOl containing a hydantoinase gene as an embodiment of the present invention.
  • IP0D National Institute of Advanced Industrial Science and Technology Patent Biological Depositary Center

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A novel hydantoinase is provided. Further, processes for producing the hydantoinase and N-carbamoyl D-amino acid using the same are provided. The invention provides hydantoinase derived from an Aneurinibacillus sp. strain, KNK491C, a gene encoding the hydantoinase, a recombinant plasmid containing the gene, and a transformant into which the hydantoinase gene has been introduced. Further, the process for producing hydantoinase in which the Aneurinibacillus sp. strain, KNK491C or the transformant is cultured and the hydantoinase is collected is provided. Further, the process for producing N-carbamoyl D-amino acid by allowing the enzyme to act on racemic 5-substituted hydantoin is provided.

Description

明 細 書  Specification
新規ヒダントイナーゼ及び N -力ルバモイル _ D _アミノ酸の製造方法 技術分野  Novel Hydantoinase and N-Strength Lumamoyl _ D _ Method for Producing Amino Acid Technical Field
[0001] 本発明は、微生物の生産する新規な 5—置換ヒダントインを D体選択的に加水分解 して対応する N—力ルバモイルー D—アミノ酸に変換する酵素(以下、ヒダントイナー ゼと称する)、これをコードする DNA、及びヒダントイナーゼを生産する能力を有する 微生物ある!/、は形質転換体を用いた N—力ルバモイル -D-アミノ酸の製造方法に 関するものである。  [0001] The present invention relates to an enzyme (hereinafter referred to as hydantoinase) which hydrolyzes a novel 5-substituted hydantoin produced by microorganisms into D-selective hydrolyzate and converts it into the corresponding N-strength rubamoyl D-amino acid. Is a microorganism having an ability to produce hydantoinase! /, And relates to a method for producing N-strength rubamoyl-D-amino acid using a transformant.
背景技術  Background art
[0002] 光学活性な N—力ルバモイルー D—アミノ酸は、対応する光学活性な D—アミノ酸 に容易に変換できる化合物であり、また、光学活性な D—アミノ酸は医薬品等の合成 中間体として有用な化合物である。 N—力ルバモイル -D-アミノ酸の製造方法とし ては、微生物が生産する酵素を 5—置換ヒダントインに作用させることにより、立体選 択的に加水分解して対応する N—力ルバモイル -D-アミノ酸に変換する方法が一 般に知られている(特許文献 1、 2、 3)。  [0002] An optically active N-strength D-amino acid is a compound that can be easily converted into the corresponding optically active D-amino acid, and the optically active D-amino acid is useful as a synthetic intermediate for pharmaceuticals and the like. A compound. As a method for producing N-strength rubamoyl-D-amino acid, the enzyme produced by microorganisms is allowed to act on 5-substituted hydantoin to be selectively hydrolyzed to the corresponding N-strength rubamoyl-D-amino acid. A method of converting to is generally known (Patent Documents 1, 2, and 3).
[0003] また、ヒダントイナーゼをコードする遺伝子を導入することにより、ヒダントイナーゼ活 性を有する形質転換体を製造する技術としては、高温菌由来のヒダントイナーゼ遺 伝子を用いた例(特許文献 4)、ァグロパクテリゥム属に属する微生物由来のヒダントイ ナーゼ遺伝子を用いた例(特許文献 5)、バチルス属、ァグロバクテリウム属、及びシ ユードモナス属に属する微生物由来のヒダントイナーゼ遺伝子を用いた例(特許文献 6)等が知られている。  [0003] Further, as a technique for producing a transformant having hydantoinase activity by introducing a gene encoding hydantoinase, an example using a hydantoinase gene derived from a thermophilic bacterium (Patent Document 4), Examples using hydantoinase genes derived from microorganisms belonging to the genus Gropacteria (Patent Document 5), examples using hydantoinase genes derived from microorganisms belonging to the genus Bacillus, Agrobacterium, and Pseudomonas (patent documents) 6) etc. are known.
特許文献 1:特開昭 53— 91189号  Patent Document 1: JP-A-53-91189
特許文献 2:特開昭 53—44690号  Patent Document 2: JP-A 53-44690
特許文献 3:特開昭 53— 133688号  Patent Document 3: JP-A 53-133688
特許文献 4:特開昭 62— 87089号  Patent Document 4: Japanese Patent Laid-Open No. 62-87089
特許文献 5:国際公開第 WO94Z00577号公報  Patent Document 5: International Publication No. WO94Z00577
特許文献 6 :国際公開第 WOWO96Z20275号公報 発明の開示 Patent Document 6: International Publication No. WOWO96Z20275 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 背景技術として記載した上記の微生物または形質転換体等によって生産されるヒ ダントイナーゼは、一般に、基質であるヒダントインの 5位の置換基が大きい (または 嵩高 、側鎖を有する)ほど立体選択性が厳密になる傾向にあることが知られて 、るが 、例えば 5—メチルヒダントインのように 5位の置換基が小さなヒダントインに対しては 立体選択性が厳密ではなぐ光学純度の高 ヽ N—力ルバモイル -D-アミノ酸を得 ることが困難である場合がある。  [0004] The hydantoinase produced by the above-mentioned microorganisms or transformants described as the background art generally has a higher degree of substitution at the 5-position of the substrate hydantoin (or is bulky and has a side chain). However, for example, for a hydantoin with a small substituent at the 5-position such as 5-methylhydantoin, the stereoselectivity is not strict and the optical purity is high. —It may be difficult to obtain strong rubermoyl-D-amino acids.
[0005] 本発明の目的の一つは、基質である 5—置換ヒダントインの置換基の大きさにかか わらず、高い立体選択性を示す新規なヒダントイナーゼを提供することにある。また、 本発明の目的の一つは、当該ヒダントイナーゼのアミノ酸配列、その遺伝子の DNA 配列を明らかにし、当該酵素を生産する能力を有する微生物あるいは形質転換体、 及びそれらを用いた当該ヒダントイナーゼの製造方法を提供することにある。さらに本 発明の目的の一つは、当該ヒダントイナーゼを利用した効率的な N—力ルバモイル -D-アミノ酸の製造方法を提供することにある。  [0005] One of the objects of the present invention is to provide a novel hydantoinase exhibiting high stereoselectivity regardless of the size of the substituent of the 5-substituted hydantoin substrate. Another object of the present invention is to clarify the amino acid sequence of the hydantoinase, the DNA sequence of the gene, a microorganism or transformant having the ability to produce the enzyme, and a method for producing the hydantoinase using them Is to provide. Furthermore, one of the objects of the present invention is to provide an efficient method for producing N-strength rubamoyl-D-amino acid using the hydantoinase.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは上記課題に鑑み、ァネゥリニバチルス ·エスピー(Aneurinibacillus sp. [0006] In view of the above-mentioned problems, the present inventors have made an Aneurinibacillus sp.
)KNK491C株(FERM BP— 10735)力 各種 5-置換ヒダントインに対して活性を 示す一方で、 5位の置換基が非常に小さなヒダントイン、例えば 5—メチルヒダントイン のような基質に対しても高い立体選択性を示すヒダントイナーゼを生産することを見 出した。  ) KNK491C strain (FERM BP-10735) Strength While active against various 5-substituted hydantoins, it is highly stereocable to substrates such as hydantoins with a very small 5-position substituent such as 5-methylhydantoin. It was found to produce hydantoinase that exhibits selectivity.
[0007] さらに、当該ヒダントイナーゼ遺伝子の単離、ならびに宿主微生物での発現を達成 し、高活性な形質転換体を育種した。本発明で得られたヒダントイナーゼを生産する 微生物、または形質転換体を 5—置換ヒダントインに作用させることにより、 N—カル バモイル一 D—アミノ酸を効率的に製造することが可能となり、本発明を完成するに 至った。  [0007] Furthermore, the hydantoinase gene was isolated and expressed in a host microorganism, and a highly active transformant was bred. By allowing the microorganism or transformant producing hydantoinase obtained in the present invention to act on 5-substituted hydantoin, it becomes possible to efficiently produce N-carbamoyl-D-amino acid, thereby completing the present invention. It came to do.
[0008] 本発明は、以下の 1または複数の特徴を有する。  [0008] The present invention has one or more of the following features.
1)本発明の一つの特徴は、以下の(a)、(b)又は(c)のポリペプチドである: (a)配列表配列番号 1に示されるアミノ酸配列力 なるポリペプチド; 1) One feature of the present invention is the following polypeptide (a), (b) or (c): (a) a polypeptide having the amino acid sequence ability shown in SEQ ID NO: 1 in the Sequence Listing;
(b)配列表配列番号 1に示されるアミノ酸配列にぉ 、て 1若しくは数個のアミノ酸が置 換、挿入、欠失および Z又は付加されたアミノ酸配列力もなり、かつヒダントイナーゼ 活性を有するポリペプチド;  (b) a polypeptide having one or several amino acid substitutions, insertions, deletions and Zs or additions to the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing and having hydantoinase activity;
(c)配列表配列番号 1に示されるアミノ酸配列と 73%以上の相同性を有するアミノ酸 配列からなり、かつヒダントイナーゼ活性を有するポリペプチド。  (c) A polypeptide comprising an amino acid sequence having 73% or more homology with the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing and having hydantoinase activity.
5)本発明の一つの特徴は、以下の(d)、(e)、(f)または (g)の DNAである: 5) One feature of the present invention is the following DNA (d), (e), (f) or (g):
(d)配列表配列番号 2に示される塩基配列力 なる DNA、 (d) DNA having the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing,
(e)配列表配列番号 2に示される塩基配列において 1若しくは数個の塩基が置換、 挿入、欠失および Zまたは付加された塩基配列を有し、かつヒダントイナーゼ活性を 有するポリペプチドをコードする DNA、  (e) DNA encoding a polypeptide having a base sequence in which one or several bases are substituted, inserted, deleted and Z or added in the base sequence shown in SEQ ID NO: 2 in the sequence listing and having hydantoinase activity ,
(f)配列表配列番号 2に示される塩基配列と 69%以上の相同性を有する塩基配列 からなり、かつヒダントイナーゼ活性を有するポリペプチドをコードする DNA、 (f) a DNA encoding a polypeptide comprising a base sequence having 69% or more homology with the base sequence shown in SEQ ID NO: 2 in the sequence listing, and having a hydantoinase activity;
(g)配列表配列番号 2に示す塩基配列と相補的な塩基配列力 なる DNAとストリン ジェントな条件下でハイブリダィズし、かつヒダントイナーゼ活性を有するポリペプチド をコードする DNA。 (g) A DNA that hybridizes under stringent conditions with a DNA complementary to the base sequence shown in SEQ ID NO: 2 in the sequence listing and encodes a polypeptide having hydantoinase activity.
6)本発明の一つの特徴は、前記 DNAを含む組換えプラスミドである。  6) One feature of the present invention is a recombinant plasmid containing the DNA.
7)本発明の一つの特徴は、前記組換えプラスミドで宿主微生物を形質転換して得ら れる形質転換体である。  7) One feature of the present invention is a transformant obtained by transforming a host microorganism with the recombinant plasmid.
8)本発明の一つの特徴は、前記ポリペプチドを生産する能力を有し、かつ、ァネゥリ 二バチルス(Aneurinibacillus)属に属する微生物である。  8) One feature of the present invention is a microorganism having the ability to produce the polypeptide and belonging to the genus Aneurinibacillus.
9)本発明の一つの特徴は、前記ポリペプチドを生産する能力を有する微生物を培養 し、培養物中に当該ポリペプチドを蓄積させ、これを採取することを特徴とするヒダン トイナーゼの製造方法である。  9) One feature of the present invention is a method for producing hydantoinase, comprising culturing a microorganism capable of producing the polypeptide, accumulating the polypeptide in the culture, and collecting the polypeptide. is there.
11)本発明の一つの特徴は、前記ヒダントイナーゼ (ヒダントイナーゼ活性を有するポ リペプチド)、形質転換体、または微生物を、 5—置換ヒダントインに作用させ N—カル バモイルー D—アミノ酸(例えば、 N—力ルバモイルー D— a—アミノ酸)を製造する 方法である。 発明の効果 11) One feature of the present invention is that the above-mentioned hydantoinase (polypeptide having hydantoinase activity), a transformant, or a microorganism is allowed to act on 5-substituted hydantoin to produce N-carbamoyl D-amino acids (for example, N-strength rubamoyl). D—a—amino acid). The invention's effect
[0009] 本発明は上述の構成力 なり、新規なヒダントイナーゼを効率よく製造することがで きる。また、当該ヒダントイナーゼを生産する微生物、または形質転換体を利用するこ とで、 5位の置換基が小さいものを含む各種ヒダントインから、光学純度の高い N—力 ルバモイル -D-アミノ酸を効率良く製造することができる。  [0009] The present invention has the above-mentioned constitutional power and can efficiently produce a novel hydantoinase. In addition, by using the microorganism or transformant that produces the hydantoinase, N-force rubermoyl-D-amino acids with high optical purity can be efficiently produced from various hydantoins including those with a small substituent at the 5-position. can do.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、実施形態に基づいて本発明を詳細に説明する。本発明の範囲は、実施形 態および実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail based on embodiments. The scope of the present invention is not limited by the embodiments and examples.
1.ヒダントイナーゼ活¾測定  1.Measurement of hydantoinase activity
実施形態において、ポリペプチドのヒダントイナーゼ活性測定は、反応で生成する In embodiments, the measurement of hydantoinase activity of a polypeptide is generated in a reaction.
N—力ルバモイルアミノ酸を、以下に示す p—ジメチルァミノべンズアルデヒドを用 ヽ た発色法で定量することができる。 N-strength rubamoyl amino acid can be quantified by the color development method using p-dimethylaminobenzaldehyde shown below.
[0011] 適宜希釈した酵素溶液 0. lmLを、 500mM DL— 5—メチルヒダントイン、 0. lm M 硫酸マンガン、 0. 1M 炭酸ナトリウム Z炭酸水素ナトリウム緩衝液 (PH8. 7)か らなる基質液 4mLと混合し、 45°Cで 10分間反応させた後、 2N 塩酸 2mLをカ卩えて 反応を停止する。この反応液に 10%(wZv)p -ジメチルァミノべンズアルデヒド Z35 %塩酸溶液 lmLを添加して混合後、 440nmの吸光度を測定し、予め作成した検量 線に基づき、反応液中に生成した N—力ルバモイルァラニンの量を定量する。 [0011] Substrate solution 4mL consisting of 500mL DL-5-methylhydantoin, 0.1M M manganese sulfate, 0.1M sodium carbonate Z sodium bicarbonate buffer (PH8.7) After mixing at 45 ° C for 10 minutes, stop the reaction by adding 2 mL of 2N hydrochloric acid. After adding lmL of 10% (wZv) p-dimethylaminobenzaldehyde Z35% hydrochloric acid solution to this reaction solution and mixing, the absorbance at 440 nm was measured, and the N-- produced in the reaction solution was measured based on a calibration curve prepared in advance. Quantify the amount of force rubyamolanin.
2.微生物  2.Microorganism
実施形態のポリペプチドは、ヒダントイナーゼ活性を有する微生物力 取得できる。 同ポリペプチドを生産する微生物であれば特に限定されないが、例として、好ましく はァネゥリニバチルス (Aneurinibacillus)属に属する微生物が挙げられ、なかでもァネ ゥリニバチルス.エスピー(Aneurinibacillus sp.)が好ましい。さらに好ましくは、本発明 者らが土壌より新たに分離したァネゥリニバチルス 'エスピー(Aneurinibacillus sp.)K NK491C株である。なお、本発明で得られたァネゥリニバチルス.エスピー(Aneurini bacillus sp.)KNK491C株は平成 18年 11月 20日に受託番号 FERM BP— 1073 5として、独立行政法人産業技術総合研究所 特許生物寄託センター(干 305— 85 66 茨城県つくば巿東 1丁目 1番 1号)に寄託されて 、る。 以下に、ァネゥリニバチルス 'エスピー(Aneurinibacillus sp.)KNK491C株の菌学 的性質を示す。 The polypeptide of the embodiment can acquire microbial power having hydantoinase activity. The microorganism is not particularly limited as long as it is a microorganism that produces the same polypeptide, but examples include microorganisms belonging to the genus Aneurinibacillus, and among them, Aneurinibacillus sp. Is preferable. More preferred is the Aneurinibacillus sp. K NK491C strain newly isolated from soil by the present inventors. The Aneurini bacillus sp. KNK491C strain obtained in the present invention was assigned the accession number FERM BP-1073 5 on November 20, 2006. Deposited at the Deposit Center (Dai 305-85 66 Tsukuba Sakaihigashi 1-1-1 Tsukuba, Ibaraki Prefecture). The following shows the mycological properties of the Aneurinibacillus sp. KNK491C strain.
2- 1.形態 2- 1. Form
1)直径 0. 8 /ζ πι、長さ 2. 0〜3. O /z m程度の桿菌  1) Aspergillus having a diameter of 0.8 / ζ πι, length of 2.0 to 3. O / z m
2)グラム染色:不定  2) Gram staining: indefinite
3)運動性:あり  3) Mobility: Yes
4)胞子形成:あり  4) Sporulation: yes
2- 2.培養的性質 2- 2. Culture characteristics
1)ニュートリエントァガー (ォキソイド製)培地でのコロニー形態:淡黄色、不規則形、 中央隆起、周縁波状、表面スムーズ、不透明  1) Colony morphology in Nutrientagar (Oxoid) medium: pale yellow, irregular, central ridge, fringe, smooth surface, opaque
2)生育温度: 20°C生育性有り、 30°C生育性あり、 45°C生育性あり、 55°C生育性なし 2) Growth temperature: 20 ° C viable, 30 ° C viable, 45 ° C viable, 55 ° C viable
3)嫌気条件下での生育性:なし 3) Growth under anaerobic conditions: None
2- 3.生理学的試験 2- 3. Physiological tests
1)カタラーゼ活性: +  1) Catalase activity: +
2)ォキシダーゼ活性: +  2) Oxidase activity: +
3)グルコースからの酸/ガス産生: Z—  3) Acid / gas production from glucose: Z—
4) OZFテスト (酸化 Z発酵)  4) OZF test (oxidation Z fermentation)
5)酸化試験  5) Oxidation test
グリセローノレ: + エリスリトール: Glicero Norre: + Erythritol:
D ァラビノース: D arabinose:
Lーァラビノース: Larabinose:
リボース: + Ribose: +
D キシロース: D Xylose:
Lーキシロース: L-xylose:
アド二トール: Adonitor:
β—メチノレ一 D キシロース:一 β-methylolone D xylose: one
ガラクトース: フラクトース: + Galactose: Fructose: +
マンノース:一 Mannose: one
ソノレボース:一 Sonorebose: One
ラムノース:一 Rhamnose: One
ズノレシト一ノレ:一 Zunoreshito Nore: One
イノシトール:一 Inositol: One
マンェトール:一 Manetor: One
ソルビトール:一 Sorbitol: One
a—メチルー D—マンノース:一 a—メチルー D—グノレコース:一 a-Methyl-D-Mannose: One a-Methyl-D-Gnore Course: One
N一ァセチルダルコサミン:一 アミグダリン:一 N-Acetyldarcosamine: One Amygdalin: One
アルブミン:一 Albumin: one
エスクリン:一 Esclin: One
サリシン:一 Salicin: one
セロビオース:一 Cellobiose: One
マルトース:一 Maltose: one
乳糖:一 Lactose: one
メリビ才ース:一 Meribi talent: One
白糖:—  White sugar: —
トレ/ヽロース:一 Tore / Rose Loose: One
ィヌリン:一 Inulin: One
メレチトース:一 Meletitose: One
ラフイノース:一 Rafuinos: One
澱粉:— Starch: —
グリコーゲン:一  Glycogen: One
キシリトール:一  Xylitol: One
ゲンチオビオース:一 D ッラノース: Gentiobiose: One D Alla North:
D リキソース: D lyxose:
D タガトース: D Tagatose:
D フコース: D Fucos:
Lーフコース: L course:
D ァラビトーノレ: D arabitonore:
L ァラビトール: L arabitol:
ダルコネート: Darconate:
2—ケトグルコン酸:  2—Ketogluconic acid:
5—ケトグルコン酸:— 5—Ketogluconic acid: —
6) β ガラクトシダーゼ活性:  6) β-galactosidase activity:
7)アルギニンジヒドロラーゼ活性: 7) Arginine dihydrolase activity:
8)リシンデカルボキシラーゼ活性:8) Lysine decarboxylase activity:
9)オルチニンデカルボキシラーゼ活性:9) Ortinin decarboxylase activity:
10)クェン酸の利用性: 10) Usability of citrate:
11) H S産生:  11) H 2 S production:
2  2
12)ゥレアーゼ活性:  12) urease activity:
13)トリブトファンデァミナーゼ活性: 13) Tributophane deaminase activity:
14)インドール産生: 14) Indole production:
15)ァセトイン産生 (VP) : +  15) Casein production (VP): +
16)ゼラチナーゼ活性:  16) Gelatinase activity:
17)硝酸塩還元: +  17) Nitrate reduction: +
18)カゼインの加水分解:  18) Casein hydrolysis:
19)資化性  19) Utilization
L ァスパラギン酸ナトリウム: +  L sodium aspartate: +
D フラクトース: +  D Fructose: +
フマル酸ナトリウム: + Sodium fumarate: +
D—ダルコン酸ナトリウム: + D—ダルコサミン:一 D—Sodium Dalconate: + D—Darcosamine: One
グルタミン酸ナトリウム: +  Sodium glutamate: +
DL グリセリン酸ナトリウム:—  DL Sodium glycerate: —
グリセローノレ: +  Glicero Norre: +
DL 乳酸ナトリウム: + DL Sodium lactate: +
ラタトース:  Ratatoose:
D リンゴ酸ナトリウム: +  D Sodium malate: +
マノレトース:  Manoletos:
プトレスシン: +  Putrescine: +
L ソルボース:一  L Sorbose: One
サッカロース:  Sucrose:
L 酒石酸ナトリウム:—  L Sodium tartrate: —
D トレノヽロース:  D Trueno Sucrose:
2-4. 16SrDNA塩基配列解析  2-4. 16S rDNA nucleotide sequence analysis
ァネゥリニバチルス.エスピー(Aneurinibacillus sp.)KNK491C株の 16SrDNA塩 基配列を決定し、国際塩基配列データベース(GeneBank,DDBJ,EMBL)に対し、検 索ソフトとして BLASTを使用して相同性検索を行なった結果、最も高い相同性を示 した菌はァネゥリニバチルス ·ミグランス (Aneurinibacillus migulanus) DSM2895株で あり、相同率は 99. 9%であった。  The 16SrDNA base sequence of the Aneurinibacillus sp. KNK491C strain was determined, and homology search was performed against the international base sequence database (GeneBank, DDBJ, EMBL) using BLAST as search software. As a result, the bacterium having the highest homology was the Aneurinibacillus migulanus strain DSM2895, and the homology rate was 99.9%.
[0013] なお、実施形態のポリペプチドを生産する微生物は、上述した微生物の野生株で あっても良いし、変異改良された変異株であってもよい。変異株は、 UV照射や、 N— メチル Ν' 二トロ一 N 二トロソグァ-ジン(NTG)、ェチルメタンスルフォネート(E MS)等の薬剤による処理といった当業者に周知の方法で取得することができる。  [0013] Note that the microorganism that produces the polypeptide of the embodiment may be a wild strain of the above-described microorganism, or may be a mutant strain with improved mutation. Mutant strains are obtained by methods well known to those skilled in the art, such as UV irradiation, treatment with drugs such as N-methyl Ν 'Nitro-N N-trosoguanidine (NTG), ethyl methanesulfonate (E MS), etc. be able to.
[0014] 本発明のポリペプチドを生産する微生物を培養する培地としては、その微生物が増 殖し得るものである限り特に限定されない。例えば、炭素源として、グルコース、シュ 一クロース等の糖質、エタノール、グリセロール等のアルコール類、ォレイン酸、ステ アリン酸等の脂肪酸及びそのエステル類、菜種油、大豆油等の油類、窒素源として、 硫酸アンモ-ゥム、硝酸ナトリウム、ペプトン、カザミノ酸、コーンスティープリカ一、ふ すま、酵母エキスなど、無機塩類として、硫酸マグネシウム、塩ィ匕ナトリウム、炭酸カル シゥム、リン酸水素二カリウム、リン酸二水素カリウムなど、他の栄養源として、麦芽ェ キス、肉エキス等を含有する通常の液体培地が使用され得る。 [0014] The medium for culturing the microorganism producing the polypeptide of the present invention is not particularly limited as long as the microorganism can grow. For example, as a carbon source, carbohydrates such as glucose and sucrose, alcohols such as ethanol and glycerol, fatty acids such as oleic acid and stearic acid, and esters thereof, oils such as rapeseed oil and soybean oil, and nitrogen sources Ammonium sulfate, sodium nitrate, peptone, casamino acid, corn steep liquor, Ingredients such as sesame, yeast extract, inorganic salts such as magnesium sulfate, sodium salt sodium, calcium carbonate, dipotassium hydrogen phosphate, potassium dihydrogen phosphate, etc. Ordinary liquid media can be used.
[0015] 更に、ヒダントイナーゼの生産を増強させるような物質、例えば、ゥラシル等のピリミ ジン系代謝産物、塩ィ匕マンガン、硫酸マンガン等の金属塩等を少量添加することも できる。これらヒダントイナーゼ生産増強物質の培地中濃度は、 0. 001重量%以上、 10重量%以下が好ましぐさらに好ましくは 0. 01重量%以上、 1重量%以下である。  [0015] Furthermore, substances that enhance the production of hydantoinase, for example, pyrimidine metabolites such as uracil, metal salts such as manganese salt of manganese salt and manganese sulfate, etc. may be added in a small amount. The concentration of these hydantoinase production-enhancing substances in the medium is preferably 0.001 to 10% by weight, more preferably 0.01 to 1% by weight.
[0016] 培養は通常好気的に行い、培養温度としては 10°C以上、 60°C以下が好ましぐさ らに好ましくは 20°C以上、 50°C以下である。培養 pHは、 pH3以上、 11以下が好まし ぐさらに好ましくは PH5以上、 9以下であり、培養時間は 1日以上、 5日間以下程度 で行い得る。また、回分式、連続式のいずれの培養方法でもよい。  [0016] The culture is usually carried out aerobically, and the culture temperature is preferably 10 ° C or higher and 60 ° C or lower, more preferably 20 ° C or higher and 50 ° C or lower. The culture pH is preferably 3 or more and 11 or less, more preferably PH 5 or more and 9 or less, and the culture time can be 1 day or more and 5 days or less. In addition, either a batch or continuous culture method may be used.
[0017] 培養終了後に培養液力 遠心分離などにより菌体^^め、超音波破砕などの手段 により菌体を破砕して粗酵素液を得る。この粗酵素液を、塩析法、カラムクロマトダラ フィ一法などにより精製することで、本発明のポリペプチドを得ることができる。  [0017] After completion of the culture, the culture fluid force is clarified by centrifugation or the like, and the microbial cells are disrupted by means such as ultrasonic disruption to obtain a crude enzyme solution. The polypeptide of the present invention can be obtained by purifying the crude enzyme solution by a salting-out method, a column chromatography method or the like.
3.アミノ酸配列  3.Amino acid sequence
本発明のポリペプチドは、上記のように微生物から取得される天然酵素であっても よいし、遺伝子組換え技術を利用して生産される組換え酵素であってもよい。天然酵 素としては、配列表の配列番号 1に示されるポリペプチドをあげることができる。  The polypeptide of the present invention may be a natural enzyme obtained from a microorganism as described above, or a recombinant enzyme produced using a gene recombination technique. Examples of the natural enzyme include the polypeptide represented by SEQ ID NO: 1 in the sequence listing.
[0018] また、本発明の実施形態としてのポリペプチドは、配列表配列番号 1に示されるアミ ノ酸配列において 1若しくは数個のアミノ酸が置換、挿入、欠失および Z又は付加さ れたアミノ酸配列からなり、かつヒダントイナーゼ活性を有するポリペプチドであっても よいし、配列番号 1に示されるアミノ酸配列と 73%以上、好ましくは 75%以上、 80% 以上、 85%以上、 90%以上、 95%以上、より好ましくは 99%以上の相同性を有する アミノ酸配列からなり、かつ、ヒダントイナーゼ活性を有するポリペプチドであってもよ い。「数個のアミノ酸」とは、ヒダントイナーゼ活性が失われない限り、その個数は制限 されないが、好ましくは 20アミノ酸以下であり、より好ましくは 15アミノ酸以下、さらに 好ましくは 10アミノ酸以下、最も好ましくは、 5、 4、 3、または 2個以下である。なお、 実施形態における「相同性」は、当業者に周知の方法、配列解析ソフトウエア等を使 用して求めることができる。ここでは、例示として遺伝情報処理ソフトウェア GENETY X Ver. 7Zネットワーク版 (ゼネティックス社製)のホモロジ一検索を使用した。 [0018] Further, the polypeptide according to the embodiment of the present invention is an amino acid in which one or several amino acids are substituted, inserted, deleted and Z or added in the amino acid sequence shown in SEQ ID NO: 1 in Sequence Listing. It may be a polypeptide comprising a sequence and having hydantoinase activity, or 73% or more, preferably 75% or more, 80% or more, 85% or more, 90% or more, 95% with the amino acid sequence shown in SEQ ID NO: 1. It may be a polypeptide having an amino acid sequence having homology of at least%, more preferably at least 99%, and having hydantoinase activity. `` Several amino acids '' is not limited as long as hydantoinase activity is not lost, but is preferably 20 amino acids or less, more preferably 15 amino acids or less, even more preferably 10 amino acids or less, most preferably No more than 5, 4, 3, or 2. The “homology” in the embodiment uses a method well known to those skilled in the art, sequence analysis software, and the like. Can be obtained. Here, as an example, homology search of genetic information processing software GENETY X Ver. 7Z network version (manufactured by Genetics) was used.
[0019] また、「ヒダントイナーゼ活性を有するポリペプチド」とは、上記「1.ヒダントイナーゼ 活性測定」の項目で説明した活性測定条件にぉ ヽて活性が検出可能なものであれ ばよ 、が、配列番号 1に示されるアミノ酸配列力 なるポリペプチドを用いた場合の 1 0%以上の活性を有していることが好ましぐさらに好ましくは 40%以上、 60%以上、 より好ましくは 80%以上の活性を示すポリペプチドのことをいう。 [0019] The "polypeptide having hydantoinase activity" means that the activity can be detected under the activity measurement conditions described in the above item "1. Measurement of hydantoinase activity". It is preferable to have an activity of 10% or more when the polypeptide having the amino acid sequence ability shown in No. 1 is used, more preferably 40% or more, 60% or more, more preferably 80% or more. It refers to a polypeptide that exhibits activity.
4. DNA  4. DNA
本発明の実施形態としての「DNA」について説明する。本発明の DNAは、上記の ようなポリペプチドをコードする DNAであればよ!、。配列表の配列番号 2で示される DNAであってもよ 、し、配列表配列番号 2に示される塩基配列にお ヽて 1若しくは数 個の塩基が置換、挿入、欠失および Zまたは付加された塩基配列を有し、かつヒダ ントイナーゼ活性を有するポリペプチドをコードする DNAであってもよ!/、。「数個の塩 基」とは、 DNAによってコードされるポリペプチドがヒダントイナーゼ活性を失われな い限り、その個数は制限されないが、好ましくは 50塩基以下であり、より好ましくは 30 塩基以下、さらに好ましくは 20アミノ酸以下、最も好ましくは、 10、 9、 8、 7、 6、 5、 4、 3、または 2個以下である。  “DNA” as an embodiment of the present invention will be described. The DNA of the present invention may be DNA encoding the above polypeptide! It may be DNA represented by SEQ ID NO: 2 in the Sequence Listing, and 1 or several bases are substituted, inserted, deleted and Z or added in the base sequence represented by SEQ ID NO: 2 in the Sequence Listing. It may be a DNA encoding a polypeptide having a unique base sequence and having a hydantoinase activity! /. The term “several bases” means that the number is not limited as long as the polypeptide encoded by DNA does not lose hydantoinase activity, but it is preferably 50 bases or less, more preferably 30 bases or less, and even more. Preferably no more than 20 amino acids, most preferably no more than 10, 9, 8, 7, 6, 5, 4, 3, or 2.
[0020] また、配列番号 2で示される塩基配列と 69%以上、好ましくは 70%以上、 75%以 上、 80%以上、 85%以上、 90%以上、 95%以上、より好ましくは 99%以上の相同 性を有する塩基配列力 なり、かつヒダントイナーゼ活性を有するポリペプチドをコー ドする DNAであってもよ!/ヽ。  [0020] Further, 69% or more, preferably 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, more preferably 99% with the base sequence represented by SEQ ID NO: 2. It may be DNA that encodes a polypeptide having the above-mentioned homology and having hydantoinase activity! / ヽ.
[0021] 本発明の実施形態としての「DNA」は、配列表配列番号 2に示す塩基配列と相補 的な塩基配列力もなる DNAとストリンジェントな条件下でノヽイブリダィズし、かつヒダ ントイナーゼ活性を有するポリペプチドをコードする DNAであってもよ!/、。配列番号 2 に示す塩基配列と相補的な塩基配列力もなる DNAとストリンジヱントな条件下でハイ ブリダィズする DNAとは、コ口-一'ハイブリダィゼーシヨン法、プラーク 'ハイブリダィ ゼーシヨン法、あるいはサザンノヽイブリダィゼーシヨン法等を実施した際、配列番号 2 に示す塩基配列と相補的な塩基配列を有する DNAが、特異的にハイブリッドを形成 する DNAを言う。前記ストリンジェントな条件とは、例えば、 75mMクェン酸三ナトリウ ム、 750mM塩化ナトリウム、 0. 5%ドデシル硫酸ナトリウム、 0. 1%ゥシ血清アルブミ ン、 0. 1%ポリビ-ノレピロリドン、および、 0. l%Ficoll 400 (アマシャムバイオサイ エンス株式会社製)の組成力もなる水溶液中、 65°Cでノヽイブリダィゼーシヨンを実施 した後に、 15mMクェン酸三ナトリウム、 150mM塩化ナトリウム、および 0. 1%ドデ シル硫酸ナトリウムの組成カゝらなる水溶液を用いて、 60°Cで洗浄が行われる条件を 言う。好ましくは、上記条件でノ、イブリダィゼーシヨンを実施した後に、 15mMクェン 酸三ナトリウム、 150mM塩ィ匕ナトリウム、および 0. 1%ドデシル硫酸ナトリウムの組成 力もなる水溶液を用いて、 65°Cで洗浄が行われる条件であり、より好ましくは、上記 条件でハイブリダィゼーシヨンを実施した後に、 1. 5mMクェン酸三ナトリウム、 15m M塩ィ匕ナトリウム、および 0. 1%ドデシル硫酸ナトリウムの組成力もなる水溶液を用い て、 65°Cで洗浄が行われる条件である。 [0021] "DNA" as an embodiment of the present invention is hybridized under stringent conditions with DNA having a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing, and has a hydantoinase activity. It can be DNA encoding a polypeptide! /. DNA that also has a base sequence ability complementary to the base sequence shown in SEQ ID NO: 2 and DNA that hybridizes under stringent conditions are defined as the “combination-one” hybridization method, the plaque “hybridization method”, or the Southern detection method. When the hybridization method is performed, a DNA having a base sequence complementary to the base sequence shown in SEQ ID NO: 2 specifically forms a hybrid. Say DNA. The stringent conditions include, for example, 75 mM trisodium citrate, 750 mM sodium chloride, 0.5% sodium dodecyl sulfate, 0.1% ushi serum albumin, 0.1% polyvinyl pyrrolidone, and 0.1% trisodium citrate, 150 mM sodium chloride, and 0.1% after performing a noble hybridization at 65 ° C in an aqueous solution that also has compositional power of l% Ficoll 400 (Amersham Biosciences) This refers to the conditions under which cleaning is performed at 60 ° C. using an aqueous solution composed of 1% sodium dodecyl sulfate. Preferably, after carrying out the hybridization under the above conditions, an aqueous solution having a composition of 15 mM trisodium citrate, 150 mM sodium chloride, and 0.1% sodium dodecyl sulfate is used at 65 ° C. More preferably, after hybridization is performed under the above conditions, 1.5 mM trisodium citrate, 15 mM sodium chloride salt, and 0.1% sodium dodecyl sulfate are added. Cleaning is performed at 65 ° C using an aqueous solution that also has compositional power.
[0022] 本発明の DNA (ヒダントイナーゼ遺伝子)は、前述したようなヒダントイナーゼ活性 をもつ微生物から取得することができる。 目的の DNAを取得するには、例えば以下 の方法〖こよることができる。  [0022] The DNA (hydantoinase gene) of the present invention can be obtained from a microorganism having hydantoinase activity as described above. In order to obtain the target DNA, for example, the following method can be used.
[0023] まず、ヒダントイナーゼ活性を有する微生物より、染色体 DNAを単離する。染色体 DNAは、培養された細胞から、 Marmur法 (J.Mol.Biol., 3,208(1961)参照)等の方法 を用いて得られる。次に染色体 DNAを適当な制限酵素、例えば Sau3AI等で部分 分解した後に、適当なベクタープラスミド、例えば制限酵素 BamHIで切断した pUCl 8と T4DNAリガーゼを用いて結合することにより、種々の染色体 DNAの断片を持つ 遺伝子ライブラリ一として得ることができる。そして、この遺伝子ライブラリーから目的と するヒダントイナーゼ遺伝子を含むプラスミドを選択するには、形質転換体が生産す るタンパク質を酵素活性等の指標として検出する方法 (後述の実施例 1参照)、ある いは目的ヒダントイナーゼを精製し、その N末端又は内部アミノ酸配列を解析し、そ れに対応する DNAプライマーを合成し、コ口-一'ハイブリダィゼーシヨンや PCR法 によって遺伝子の存在を検出する方法等が挙げられる。  [0023] First, chromosomal DNA is isolated from a microorganism having hydantoinase activity. Chromosomal DNA is obtained from cultured cells using a method such as Marmur method (see J. Mol. Biol., 3,208 (1961)). Next, after partially digesting the chromosomal DNA with an appropriate restriction enzyme such as Sau3AI, various chromosomal DNA fragments are ligated with pUCl 8 cleaved with an appropriate vector plasmid such as the restriction enzyme BamHI using T4 DNA ligase. Can be obtained as a single gene library. In order to select the plasmid containing the target hydantoinase gene from this gene library, there is a method of detecting the protein produced by the transformant as an indicator of enzyme activity or the like (see Example 1 described later), or Is a method for purifying the target hydantoinase, analyzing its N-terminal or internal amino acid sequence, synthesizing the corresponding DNA primer, and detecting the presence of the gene by using a hybrid or PCR method. Etc.
[0024] 選択されたプラスミドに挿入された染色体 DNA断片の塩基配列を解析し、断片中 に存在するオープンリーディングフレーム(ORF)を決定する。この ORFの中より既知 ヒダントイナーゼの塩基配列と相同性の高いものを選ぶことにより、 目的とするヒダント イナーゼ遺伝子の全長塩基配列を得ることができる。 [0024] The nucleotide sequence of the chromosomal DNA fragment inserted into the selected plasmid is analyzed to determine the open reading frame (ORF) present in the fragment. Known from within this ORF By selecting one having a high homology with the base sequence of hydantoinase, the full-length base sequence of the target hydantoinase gene can be obtained.
5.形質転換体'ベクター  5.Transformant 'vector
上記方法によって取得した DNA、または該 DN Aをベクターに組み込んで得られる 組換えプラスミドを用いることにより、宿主微生物を形質転換し形質転換体を得ること ができる。  By using the DNA obtained by the above method or a recombinant plasmid obtained by incorporating the DNA into a vector, a host microorganism can be transformed to obtain a transformant.
[0025] 宿主、ベクターとしては、「組換え DNA実験指針」(科学技術庁研究開発局ライフ サイエンス課編:平成 8年 3月 22日改定)に記載の宿主一ベクター系を用いることが できる。例えば、宿主としては、ェシエリヒア(Escherichia)属、シユードモナス(Pseudo monas)属、フラボバタテリゥム(Flavobacterium)属、バチノレス(Bacillus)属、セラチア( Serratia)属、コリネバタテリゥム(Corynebacterium)属、ブレビバタテリゥム(Brevibacte rium)属、ァグロノくクテリゥム (Agrobacterium)属、ァセトノ クタ一 (Acetobacter)属、グ ルコノバクタ一(Gluconobacter)属、ラクトバチルス (Lactobacillus)属、ストレプトコッカ ス(Streptococcus)属またはストレプトマイセス(Streptomyces)属に属する微生物を用 いることがでさる。  [0025] As the host and vector, the host-vector system described in "Recombinant DNA Experiment Guidelines" (Science and Technology Agency, Research and Development Bureau, Life Science Division, revised on March 22, 1996) can be used. For example, the hosts include the genus Escherichia, the genus Pseudomonas, the genus Flavobacterium, the genus Bacillus, the Serratia, the genus Corynebacterium, the Brevi The genus Brevibacterium, the genus Agrobacterium, the genus Acetobacter, the genus Gluconobacter, the genus Lactobacillus, the genus Streptococcus or the Streptococcus It is possible to use microorganisms belonging to the genus (Streptomyces).
[0026] ベクターは上記の宿主内で自律複製できる微生物由来のプラスミド、ファージまた はその誘導体が使用できる。なかでも、宿主微生物として、例えば、菌学的性質が当 業者に周知であって、形質転換用に提供されているェシエリヒア'コリ(Escherichia col i)、ベクターとして当該微生物中で自律複製できるベクターを用いるのが好ましい。こ のようなベクターとしては、例えば、当業者が容易に入手可能、あるいは市販されて いる pUC18 (タカラバイオ株式会社)、 pUC19 (タカラバイオ株式会社)、 pBR322 ( タカラバイオ株式会社)、 PACYC184 (株式会社二ツボンジーン)、 pSTV28 (タカラ ノィォ株式会社)、 PSTV29 (タカラバイオ株式会社)、 pSClOl (フナコシ株式会社 )、 pT7Blue (タカラバイオ株式会社)、又は国際公開第 WO94Z03613号公報の 明細書の記載に基づ 、て当業者が製造しうる pUCNT、若しくはそれらの誘導体を 挙げることができる。それらの誘導体とは、酵素の生産量上昇、プラスミド安定ィ匕を目 的として、プロモーター、ターミネータ一、ェンハンサー、 SD配列、複製開始部位(or i)、その他の調節などに関わる遺伝子を改質したもの、また、薬剤耐性、クローユング 部位の制限酵素サイトを改質したものなどを指す。 [0026] As the vector, a plasmid, phage or derivative thereof derived from a microorganism capable of autonomous replication in the above host can be used. Among them, as a host microorganism, for example, Escherichia coli i whose bacteriological properties are well known to those skilled in the art and provided for transformation, and a vector that can autonomously replicate in the microorganism as a vector. It is preferable to use it. Examples of such vectors include pUC18 (Takara Bio Inc.), pUC19 (Takara Bio Inc.), pBR322 (Takara Bio Inc.), PACYC184 (stock Based on the description in the specification of International Publication No. WO94Z03613, pSTV28 (Takara Bio Inc.), PSTV29 (Takara Bio Inc.), pSClOl (Funakoshi Inc.), pT7Blue (Takara Bio Inc.) Therefore, pUCNT that can be produced by those skilled in the art, or derivatives thereof can be mentioned. These derivatives are modified promoters, terminators, enhancers, SD sequences, replication start sites (or i), and other regulatory genes for the purpose of increasing enzyme production and plasmid stability. Stuff, drug resistance, clawing This refers to a modified site of the restriction enzyme site.
[0027] 形質転換体の一例として、ァネゥリニバチルス ·エスピー(Aneurinibacillus sp.) KN K491C株から上記のようにして取得した DNAを pUCNTに組み込んだ組換えプラ スミド pALHIOlを用いてェシエリヒア'コリ(Escherichia coli) HB101を形質転換し、 形質転換体ェシエリヒア'コリ (Escherichia coli) HB101 (pALHIOl)を得ることがで きる。ェシエリヒア'コリ(Escherichia coli) HBlOlの菌学的性質は、「BIOCHEMICAL S FOR LIFE SCIENCE」(東洋紡績株式会社、 1993年、 116— 119頁)およびその 他種々の公知文献に記載されており当業者に周知である。ェシエリヒア 'コリ(Escheri chia coli) HB101 (pALHIOl)は、遺伝子組換えによって特定の酵素を産生し得る 性質以外は、ェシエリヒア'コリ(Escherichia coli) HB101と同様の菌学的性質を有す る。  [0027] As an example of a transformant, a recombinant plasmid pALHIOl in which DNA obtained as described above from Aneurinibacillus sp. KN K491C strain is incorporated into pUCNT is used. Escherichia coli) HB101 can be transformed to obtain a transformant Escherichia coli HB101 (pALHIOl). The bacteriological properties of Escherichia coli HBlOl are described in “BIOCHEMICAL S FOR LIFE SCIENCE” (Toyobo Co., Ltd., 1993, pages 116-119) and various other known literatures. Is well known. Escherichia coli HB101 (pALHIOl) has the same mycological properties as Escherichia coli HB101, except that it can produce specific enzymes by genetic recombination.
[0028] 本発明の実施形態として得られた形質転換体ェシエリヒア 'コリ(Escherichia coli) H B101 (pALHIOl)は平成 17年 11月 15日に受託番号 FERM P— 20712として独 立行政法人産業技術総合研究所 特許生物寄託センター(干 305— 8566 茨城県 つくば巿東 1丁目 1番 1号)に寄託されている。  [0028] The transformant Escherichia coli HB101 (pALHIOl) obtained as an embodiment of the present invention was incorporated as an independent administrative agency, National Institute of Advanced Industrial Science and Technology, under the accession number FERM P-20712 on November 15, 2005. It has been deposited at the Research Center for Patent Biological Deposits (Dai 305-8566, 1-1-1 Tsukuba Satohi, Ibaraki Prefecture).
[0029] なお、本発明で用いた組換え DNA技術は当該分野にぉ 、て周知であり、例えば、 [0029] It should be noted that the recombinant DNA technology used in the present invention is well known in the art, for example,
Molecularし loning 2nd Edition (Cold bpnng Harbor Laboratory Press, 1989)、 Curren t Protocols in Molecular Biology (Greene Publishing Associates and Wiley- Interscie nce)に記載されている。 Molecular loning 2nd Edition (Cold bpnng Harbor Laboratory Press, 1989), Current Protocols in Molecular Biology (Greene Publishing Associates and Wiley-Interscience).
6.形質転換体等の培養  6. Culture of transformants
本発明のヒダントイナーゼを生産しうる上記形質転換体等を培養することにより当該 酵素を大量に生産することができ、 N—力ルバモイルー D—アミノ酸の製造に利用す ることがでさる。  By culturing the above-mentioned transformant capable of producing the hydantoinase of the present invention, the enzyme can be produced in large quantities, and can be used for the production of N-strength Lubamoyl D-amino acid.
[0030] 微生物の培養は、通常の培地を用いて行えば良い。培養に使用する培地としては 、炭素源、窒素源および無機塩類などの栄養素を含む通常の培地で良い。これに、 ビタミン、アミノ酸などの有機微量栄養素を添加すると、好ましい結果が得られる場合 が多い。炭素源としては、グルコースゃシユークロースのような炭水化物、酢酸のよう な有機酸、アルコール類などが適宜使用される。窒素源としては、アンモニゥム塩、ァ ンモ-ァ水、アンモニアガス、尿素、酵母エキス、ペプトン、コーンスティープリカ一な どが用いられる。無機塩類としてはリン酸塩、マンガン塩、マグネシウム塩、カリウム塩 、ナトリウム塩、カルシウム塩、鉄塩、硫酸塩、塩素などが用いられる。 [0030] Culture of microorganisms may be performed using a normal medium. The medium used for the culture may be a normal medium containing nutrients such as a carbon source, a nitrogen source and inorganic salts. Addition of organic micronutrients such as vitamins and amino acids to this often gives favorable results. As the carbon source, carbohydrates such as glucose or sucrose, organic acids such as acetic acid, alcohols and the like are appropriately used. Nitrogen sources include ammonium salt, a Water, ammonia gas, urea, yeast extract, peptone, corn steep liquor, etc. are used. Examples of inorganic salts include phosphates, manganese salts, magnesium salts, potassium salts, sodium salts, calcium salts, iron salts, sulfates, and chlorine.
[0031] 培養温度は 25°C以上、 40°C以下が好ましぐ 25°C以上、 37°C以下がさらに好まし い。また、培養 pHは pH4以上、 9以下が好ましぐ pH5以上、 8以下がさらに好ましい 。また、回分式、連続式のいずれの培養方法でもよい。  [0031] The culture temperature is preferably 25 ° C or higher and 40 ° C or lower, more preferably 25 ° C or higher and 37 ° C or lower. The culture pH is preferably pH 4 or more and 9 or less, more preferably pH 5 or more and 8 or less. In addition, either a batch or continuous culture method may be used.
[0032] 必要に応じてイソプロピル一 1 チォ一 13 D—ガラタトサイド(IPTG)、ラタトース 等の添加等の酵素誘導のための処理を行なうこともできる。  [0032] If necessary, a treatment for inducing an enzyme such as addition of isopropyl 1- 1 13-D-galatatoside (IPTG), ratatose or the like can be performed.
7. N—力ルバモイルー D アミノ酸の製造方法  7. N—Strengthening Rubamoyl D Amino Acid Production Method
実施形態で得られるヒダントイナーゼを使用することによる、効率的な N カルバモ ィル— D アミノ酸の製造方法につ!、て説明する。 N -力ルバモイル -D-アミノ酸 は 5—置換ヒダントインにヒダントイナーゼを作用させ、立体選択的に加水分解するこ とにより得ることができる。 5—置換ヒダントインはラセミ体であってもよぐまた、 L体あ るいは D体のような光学活性体であってもよ 、。ヒダントイナーゼによる立体選択的加 水分解反応と、基質の化学的なラセミ化が同時に進行することにより、ラセミ体、 L体 、または D体のいずれの 5—置換ヒダントインを基質とした場合力 でも、すべて対応 する N 力ルバモイル D アミノ酸に変換されうる。  An efficient method for producing N-carbamoyl-D amino acids by using the hydantoinase obtained in the embodiment will be described. N-force rubermoyl-D-amino acids can be obtained by allowing hydantoinase to act on 5-substituted hydantoins and hydrolyzing them stereoselectively. 5-Substituted hydantoins may be racemic or optically active, such as L or D. The stereoselective hydrolysis reaction with hydantoinase and the chemical racemization of the substrate proceed at the same time, so that any force when using a 5-substituted hydantoin of racemic, L-, or D-form as a substrate can be used. It can be converted to the corresponding N-strength rubermoyl D-amino acid.
[0033] 本反応の基質である下記の一般式(1)  [0033] The following general formula (1) which is a substrate of this reaction
[0034] [化 1] [0034] [Chemical 1]
Figure imgf000016_0001
Figure imgf000016_0001
[0035] で表される 5 置換ヒダントインは本酵素により加水分解されるものであれば特に限 定されないが、 Rで示される置換基としては、例えば、置換基を有していてもよい炭素 数 1〜20のアルキル基、置換基を有していてもよい炭素数 7〜20のァラルキル基、も しくは置換基を有して 、てもよ 、炭素数 6〜20のァリール基を挙げることができる。上 記 Rにおける置換基を有していてもよい炭素数 1〜20のアルキル基としては、特に限 定されず、例えば、メチル基、イソプロピル基、イソブチル基、 1 メチルプロピル基、 力ルバモイルメチル基、 2—力ルバモイルェチル基、ヒドロキシメチル基、 1ーヒドロキ シェチル基、メルカプトメチル基、 2—メチルチオェチル基、(1 メルカプト 1ーメチ ル)ェチル基、 4—アミノブチル基、 3—グァ -ジノプロピル基、 4 (5)—イミダゾールメ チル基、ェチル基、 n—プロピル基、 n ブチル基、クロロメチル基、メトキシメチル基 、 2 ヒドロキシェチル基、 3 ァミノプロピル基、 2 シァノエチル基、 3 シァノプロ ピル基、 4 (ベンゾィルァミノ)ブチル基、又は、 2—メトキシカルボ-ルェチル基、な どが挙げられる。 [0035] The 5-substituted hydantoin represented by the formula is not particularly limited as long as it is hydrolyzed by the present enzyme. Examples of the substituent represented by R include the number of carbons optionally having a substituent. Examples include an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms which may have a substituent, or an aryl group having 6 to 20 carbon atoms which may have a substituent. Can do. The alkyl group having 1 to 20 carbon atoms which may have a substituent in R is not particularly limited, and examples thereof include a methyl group, an isopropyl group, an isobutyl group, a 1 methylpropyl group, a strong rubamoylmethyl group, 2-force rubamoylethyl, hydroxymethyl, 1-hydroxysityl, mercaptomethyl, 2-methylthioethyl, (1 mercapto-1-methyl) ethyl, 4-aminobutyl, 3-gua-dinopropyl, 4 (5) -Imidazolemethyl group, ethyl group, n-propyl group, nbutyl group, chloromethyl group, methoxymethyl group, 2 hydroxyethyl group, 3 aminopropyl group, 2 cyanoethyl group, 3 cyanopropyl group, 4 ( Examples thereof include a benzoylamino) butyl group and a 2-methoxycarbo-ruethyl group.
[0036] 置換基を有していてもよい炭素数 7〜20のァラルキル基としては、特に限定されず 、例えば、ベンジル基、インドリルメチル基、 4ーヒドロキシベンジル基、 2 フルォロ ベンジル基、 3—フルォ口べンジル基、 4 フルォ口べンジル基、又は、 3, 4—メチレ ンジォキシベンジル基等が挙げられる。置換基を有して!/ヽてもよ ヽ炭素数 6〜20のァ リール基としては、フエ-ル基、または 4—ヒドロキシフエ-ル基などが挙げられる。置 換基としては、アミノ基、ヒドロキシル基、アルキル基、ァラルキル基、ァリール基、ァ ルカノィル基、ァルケ-ル基、アルキ-ル基、アルコキシル基、又はハロゲン原子等 が挙げられる。 [0036] The aralkyl group having 7 to 20 carbon atoms which may have a substituent is not particularly limited, and examples thereof include a benzyl group, an indolylmethyl group, a 4-hydroxybenzyl group, a 2 fluorobenzyl group, 3 Examples thereof include a fluorinated benzyl group, a 4 fluorinated benzyl group, and a 3, 4-methylenedibenzyl group. It may have a substituent! Examples of the reel group include a phenol group and a 4-hydroxyphenol group. Examples of the substituent include an amino group, a hydroxyl group, an alkyl group, an aralkyl group, an aryl group, an alkanol group, an alkyl group, an alkyl group, an alkoxyl group, or a halogen atom.
[0037] また、 5位の置換基が小さいヒダントインとしては、例えば前記式(1)で表される 5— 置換ヒダントインにぉ 、て、 Rで示される置換基が置換基を有して 、てもよ 、炭素数 1 〜3のアルキル基であるものを挙げることができる。置換基を有して!/、てもよ 、炭素数 1〜3のアルキル基としては、特に限定されず、例えば、メチル基、ェチル基、 n—プ 口ピル基、イソプロピル基、力ルバモイルメチル基、 2—力ルバモイルェチル基、ヒドロ キシメチル基、 1ーヒドロキシェチル基、 2—ヒドロキシェチル基、メルカプトメチル基、 2—メチルチオェチル基、(1 メルカプト 1ーメチル)ェチル基、クロロメチル基、メ トキシメチル基、 3 ァミノプロピル基、 2 シァノエチル基、 3 シァノプロピル基、 3 ーグァ -ジノプロピル基等が挙げられる。  [0037] In addition, examples of the hydantoin having a small substituent at the 5-position include a 5-substituted hydantoin represented by the above formula (1), and the substituent represented by R has a substituent. There can also be mentioned those having an alkyl group of 1 to 3 carbon atoms. Although it has a substituent! /, The alkyl group having 1 to 3 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and a rubamoylmethyl group. , 2-force rubermoylethyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, mercaptomethyl, 2-methylthioethyl, (1 mercapto-1-methyl) ethyl, chloromethyl, methyl Examples thereof include a toximethyl group, a 3-aminopropyl group, a 2-cyanoethyl group, a 3-cyanopropyl group, and a 3-guano-propyl group.
[0038] 実施形態としての本反応は、上記基質に前述のヒダントイナーゼを作用させ、水性 溶媒中で反応を行なう。本反応の基質仕込み濃度は好ましくは 0. 1% (WZV)以上 、 90% (wZv)以下、さらに好ましくは 1% (WZV)以上、 60% (wZv)以下である。 基質は溶解または懸濁した状態で反応を行い、反応温度は好ましくは 10°C以上、 8 0°C以下、さらに好ましくは 20°C以上、 60°C以下の適当な温度で調節し、反応 PHは 好ましくは pH4以上、 12以下、さらに好ましくは pH6以上、 10以下に保ちつつ暫時 静置または攪拌すればよい。また、基質は一括添加してもよいし、分割添加してもよ いし、連続的に添加してもよい。また本反応は、バッチ法または連続方式で行い得る [0038] In this reaction as an embodiment, the above-mentioned hydantoinase is allowed to act on the substrate, and the reaction is carried out in an aqueous solvent. The substrate charge concentration in this reaction is preferably 0.1% (WZV) or more and 90% (wZv) or less, more preferably 1% (WZV) or more and 60% (wZv) or less. The substrate is reacted in a dissolved or suspended state, and the reaction temperature is preferably adjusted to an appropriate temperature of 10 ° C or higher and 80 ° C or lower, more preferably 20 ° C or higher and 60 ° C or lower. The pH is preferably kept at a pH of 4 or more and 12 or less, more preferably at a pH of 6 or more and 10 or less, and may be allowed to stand for a while or stirred. Further, the substrate may be added all at once, dividedly or continuously. In addition, this reaction can be performed by a batch method or a continuous method.
[0039] 本反応は、固定化酵素、膜リアクターなどを利用して行うことも可能である。水性媒 体としては、水、緩衝液、これらにエタノールのような水溶性有機溶媒を含む水性媒 体、あるいは、水に溶解しにくい有機溶媒、たとえば、酢酸ェチル、酢酸プチル、トル ェン、クロ口ホルム、 n—へキサンなどの有機溶媒を含む水性媒体との 2相系などの 適当な溶媒を用いることができる。さらに必要に応じて、抗酸化剤、界面活性剤、補 酵素、金属などを添加することもできる。金属としては、特に限定されないが、マンガ ン、コノ レト、ニッケル、亜鉛、鉄、マグネシウム、カルシウム、または、銅等、あるいは それらの塩が挙げられ、好ましくは、マンガン、またはコノ レトの金属あるいはそれら の塩が挙げられる。これらの金属は単独で用いてもよいし、 2種類以上の金属を組み 合わせて用いてもよい。 [0039] This reaction can also be performed using an immobilized enzyme, a membrane reactor, or the like. Examples of the aqueous medium include water, a buffer solution, an aqueous medium containing a water-soluble organic solvent such as ethanol, or an organic solvent that is difficult to dissolve in water, for example, ethyl acetate, butyl acetate, toluene, chloro, and the like. A suitable solvent such as a two-phase system with an aqueous medium containing an organic solvent such as oral form or n-hexane can be used. Furthermore, antioxidants, surfactants, coenzymes, metals, etc. can be added as necessary. The metal is not particularly limited, but manga , Nickel, zinc, iron, magnesium, calcium, copper, etc., or a salt thereof, preferably, a metal of manganese or conoret or a salt thereof. These metals may be used alone, or two or more metals may be used in combination.
8.生成物の単離  8. Product isolation
生成した N—力ルバモイルー D—アミノ酸の単離は、常套分離方法、例えば、抽出 、濃縮、晶析、またはカラムクロマトグラフィーなどの分離方法や、それらの組み合わ せにより分離、精製することができる。また、上記記載の方法にて得られた N—力ルバ モイルー D—アミノ酸は、化学的、または脱力ルバモイル活性を有する酵素の作用に より、容易に対応する D—アミノ酸に変換することができる。  The produced N-strength D-amino acid can be isolated and purified by a conventional separation method, for example, a separation method such as extraction, concentration, crystallization or column chromatography, or a combination thereof. In addition, the N-strength rubamoyl D-amino acid obtained by the method described above can be easily converted to the corresponding D-amino acid by the action of an enzyme having chemical or weak rubamoyl activity.
実施例  Example
[0040] 以下に本発明の具体的な実施例を示す。しかし、本発明はこれらの実施例により限 定されるものではない。  [0040] Specific examples of the present invention are shown below. However, the present invention is not limited to these examples.
[0041] (実施例 1)ヒダントイナーゼ遣伝子の単離  [0041] (Example 1) Isolation of hydantoinase gene
ァネゥリニバチルス.エスピー(Aneurinibacillus sp.)KNK491C¾ (FERM BP— 10735)を 500mL坂口フラスコ内で滅菌した lOOmLの培地 A (肉エキス 1. 0%、ぺ プトン 1. 0%、酵母エキス 0. 5%、滅菌前 pH7. 5)に植菌して 37°Cで 30時間、好気 的に振とう培養した。培養終了後、遠心分離により菌体を集菌し、 Marnmr法を用い て染色体 DNAを調製した。  Sterilized Aneurinibacillus sp. KNK491C¾ (FERM BP—10735) in a 500 mL Sakaguchi flask. LOOmL medium A (meat extract 1.0%, peptone 1.0%, yeast extract 0.5 Inoculated to pH 7.5) before sterilization, and cultured with shaking at 37 ° C for 30 hours. After completion of the culture, the cells were collected by centrifugation, and chromosomal DNA was prepared using the Marnmr method.
[0042] 得られた染色体 DNA100 μ gに制限酵素 Sau3AIを 10U添カ卩し、 37°Cにて 30分 間作用させて、部分分解を行なった。次いで、部分分解した染色体 DNAをァガロー スゲル上で電気泳動し、約 4〜9Kbpと推定される大きさの DNA断片をァガロースゲ ルから回収した。一方、別にプラスミド PUC18を制限酵素 BamHIを用いて完全分解 したものと、先にァガロースゲルから回収した DNA断片を T4DNAリガーゼによって 連結し、多種の染色体 DNA断片をもつプラスミドの混合液を得た。このプラスミド混 合液をェシエリヒア'コリ(Escherichia coli)JM109のコンビテントセルと混合することで 形質転換を行い、寒天培地 B (トリプトン 10g、イーストエキス 5g、塩ィ匕ナトリウム 10g、 塩化マンガン 20mg、イソプロピル一 1—チォ一 j8— D—ガラタトサイド(IPTG) 24m g、寒天 15g、アンピシリン 100mg、脱イオン水にて 1Lにメスアップ、滅菌前 pH7. 0、 ただしアンピシリン及び IPTGは滅菌後に添加した。)にプレーティングして、種々の 染色体 DNA断片を含有する形質転換体をコロニーとして取得した。 [0042] To 100 μg of the chromosomal DNA thus obtained, 10 U of restriction enzyme Sau3AI was added and allowed to act at 37 ° C for 30 minutes for partial degradation. Subsequently, the partially decomposed chromosomal DNA was electrophoresed on a garose gel, and a DNA fragment having a size estimated to be about 4 to 9 Kbp was recovered from the garose gel. On the other hand, as it was completely digested with restriction enzymes BamHI separately plasmid P UC18, previously linked by T4DNA ligase The recovered DNA fragment from Agarosugeru to give a mixture of plasmids with a variety of chromosomal DNA fragments. This plasmid mixture was transformed with a combination cell of Escherichia coli JM109 to perform transformation, and agar medium B (trypton 10 g, yeast extract 5 g, sodium chloride sodium 10 g, manganese chloride 20 mg, isopropyl 1 1-Cho 1 j8-D-Galatatoside (IPTG) 24m g, agar 15 g, ampicillin 100 mg, made up to 1 L with deionized water, pH 7.0 before sterilization, but ampicillin and IPTG were added after sterilization. And transformants containing various chromosomal DNA fragments were obtained as colonies.
[0043] 得られた形質転換体のコロニーをろ紙にレプリカし、反応液 (0. 1M リン酸カリウム 緩衝液 (PH7. 0)、 5—メチルヒダントイン 1. 0%、フエノール 0. 1%、 D—アミノ酸ォ キシダーゼ(SIGMA社製) 1. 4UZmL、デカルバモイラーゼ粗酵素液 (後述の参 考例 1参照) 50% (vZv)、パーォキシダーゼ (TOYOBO社製) 0. 07U/mL, 0. 5 mM 4—ァミノアンチピリン)に浸して、 37°Cで 5時間静置した。赤色を呈したコ口- 一を選択し、試験管内にて滅菌した培地 C (トリプトン 10g、イーストエキス 5g、塩ィ匕ナ トリウム 10g、アンピシリン 100mg、脱イオン水にて 1Lにメスアップ、滅菌前 pH7. 0、 ただしアンピシリンは滅菌後に添加する)に植菌して、 37°Cにて 24時間、好気的に 振とう培養した。培養終了後、遠心分離により菌体を集菌し、プラスミドを取得した後 、 pUC18の BamHIサイトに挿入された約 4. 4Kbpの染色体 DNA断片の塩基配列 を決定した。この染色体 DNA断片に含まれて ヽたヒダントイナーゼ遺伝子の ORFの 塩基配列を配列表の配列番号 2に示す。上記形質転換体の菌体を 0. 1M Tris— 塩酸緩衝液 (PH8. 5)に懸濁して超音波により菌体を破砕した後、遠心分離により菌 体由来の不溶物を除去して、形質転換体の粗酵素液を取得した。得られた粗酵素液 を用いてヒダントイナーゼ活性を測定したところ、活性が確認され、本 ORFが目的と するヒダントイナーゼ遺伝子であることを確認した。なお、ヒダントイナーゼの活性は、 以下の方法に従って測定した。適宜希釈した酵素溶液 0. lmLを、 500mM DL— 5—メチルヒダントイン、 0. ImM 硫酸マンガン、 0. 1M 炭酸ナトリウム Z炭酸水素 ナトリウム緩衝液 (PH8. 7)からなる基質液 4mLと混合し、 45°Cで 10分間反応させ た後、 2N 塩酸 2mLを加えて反応を停止した。この反応液に 10%(wZv)p—ジメチ ルァミノべンズアルデヒド Z35%塩酸溶液 lmLを添カ卩して混合後、 440nmの吸光 度を測定し、予め作成した検量線に基づき、反応液中に生成した N—力ルバモイル ァラニンの量を定量した。 [0043] A colony of the obtained transformant was replicated on a filter paper, and the reaction solution (0.1 M potassium phosphate buffer (PH 7.0), 5-methylhydantoin 1.0%, phenol 0.1%, D —Amino acid oxidase (manufactured by SIGMA) 1. 4 UZmL, decarbamoylase crude enzyme solution (see Reference Example 1 below) 50% (vZv), Peroxidase (manufactured by TOYOBO) 0. 07 U / mL, 0 (5 mM 4-aminoaminopyrine) and left at 37 ° C. for 5 hours. Select red mouthpiece and sterilize medium C in a test tube (trypton 10g, yeast extract 5g, sodium chloride sodium 10g, ampicillin 100mg, deionized water up to 1L, before sterilization pH 7.0, but ampicillin should be added after sterilization) and cultured under aerobic shaking at 37 ° C for 24 hours. After completion of the culture, the cells were collected by centrifugation to obtain a plasmid, and then the base sequence of an about 4.4 Kbp chromosomal DNA fragment inserted into the BamHI site of pUC18 was determined. The nucleotide sequence of the ORF of the hydantoinase gene contained in this chromosomal DNA fragment is shown in SEQ ID NO: 2 in the sequence listing. The cells of the above transformant are suspended in 0.1M Tris-HCl buffer (PH8.5), and the cells are crushed by ultrasonic waves. Then, insoluble matters derived from the cells are removed by centrifugation, and the cells are transformed. A crude enzyme solution of the converted product was obtained. When the hydantoinase activity was measured using the obtained crude enzyme solution, the activity was confirmed and it was confirmed that this ORF is the target hydantoinase gene. The activity of hydantoinase was measured according to the following method. Mix 0.1 mL of enzyme solution diluted appropriately with 4 mL of substrate solution consisting of 500 mM DL-5-methylhydantoin, 0. ImM manganese sulfate, 0.1 M sodium carbonate Z sodium bicarbonate buffer (PH8.7) After 10 minutes of reaction at ° C, 2 mL of 2N hydrochloric acid was added to stop the reaction. After adding 10 mL (wZv) p-dimethylaminobenzaldehyde Z35% hydrochloric acid solution (1 mL) to this reaction solution and mixing, the absorbance at 440 nm was measured, and based on a calibration curve prepared in advance, The amount of N-power ruberamolylanin produced was quantified.
[0044] (実施例 2)ヒダントイナーゼ遣伝子を発現する組換えプラスミドの作成  [Example 2] Preparation of recombinant plasmid expressing hydantoinase gene
実施例 1で得られたヒダントイナーゼ遺伝子を有するプラスミドを铸型として、ヒダン トイナーゼ遺伝子の N末端に制限酵素 Ndelの切断部位を結合させたプライマー(Pr imer— 1 :配列表の配列番号 3)及び、ヒダントイナーゼ遺伝子の 1228塩基目に存 在する Ndelの切断部位をアミノ酸置換が起こらな 、ように変更したプライマー(Prim er— 2 :配列表の配列番号 4)を用いて PCRによる DNA増幅を行ない、約 1. 2Kbp の N末側 DNA断片を得た。同様にヒダントイナーゼの C末端部分に制限酵素 Hindi IIの切断部位を結合させた配列を持つプライマー(Primer— 3:配列表の配列番号 5 )及び、ヒダントイナーゼ遺伝子の 1228塩基目に存在する Ndelの切断部位をァミノ 酸置換が起こらな 、ように変更したプライマー(Primer—4:配列表の配列番号 6)を 用いて、 PCRによる DNA増幅を行ない、約 0. 2Kbpの C末側 DNA断片を得た。上 記 N末側 DNA断片と C末側 DNA断片を混合したものを铸型として、 Primer— 1及 び Primer— 3を用いた PCRによる DNA増幅を行な!/、、配列表の配列番号 7に示さ れる DNA断片を取得した。得られた DNA断片を制限酵素 Ndelと Hindlllで切断し 、同酵素で切断したベクタープラスミド pUCNT (国際公開第 WO94Z03613号公 報の明細書の記載に基づいて当業者が製造可能)と T4DNAリガーゼを用いて結合 することで、図 1の制限酵素地図で表され、ヒダントイナーゼ遺伝子を大量に発現で きるように設計されたプラスミド pALHIOlを取得した。 Using the plasmid having the hydantoinase gene obtained in Example 1 as a saddle, A primer that binds the cleavage site of the restriction enzyme Ndel to the N-terminus of the toinase gene (Primer-1: SEQ ID NO: 3 in the sequence listing) and the Ndel cleavage site at base 1228 of the hydantoinase gene are amino acid substituted. DNA primers were amplified by PCR using a primer (Primer-2: SEQ ID NO: 4 in the sequence listing) changed as described above to obtain an N-terminal DNA fragment of about 1.2 Kbp. Similarly, a primer having a sequence in which the cleavage site of the restriction enzyme Hindi II is bound to the C-terminal part of hydantoinase (Primer-3: SEQ ID NO: 5 in the sequence listing) and the cleavage site of Ndel present at the 1228th base of the hydantoinase gene The DNA was amplified by PCR using a primer (Primer-4: SEQ ID NO: 6 in the Sequence Listing) that was changed so that amino acid substitution did not occur, and a C-terminal DNA fragment of about 0.2 Kbp was obtained. DNA amplification by PCR using Primer-1 and Primer-3 is performed using a mixture of the N-terminal DNA fragment and the C-terminal DNA fragment as a saddle type as shown above! /, SEQ ID NO: 7 in the Sequence Listing. The DNA fragment shown in 1 was obtained. The obtained DNA fragment was cleaved with restriction enzymes Ndel and Hindlll, and vector plasmid pUCNT (which can be produced by those skilled in the art based on the description in the International Publication No. WO94Z03613) and T4 DNA ligase was used. Thus, the plasmid pALHIOl, which is represented by the restriction enzyme map of Fig. 1 and designed to express a large amount of the hydantoinase gene, was obtained.
[0045] 施例 3)ヒダントイナーゼ遣伝早 含む ¾ ^体 DNA 用いた形皙転橼体の作 成 [0045] Example 3) Including hydantoinase transmission ¾ ^ Production of deformed body using ^ body DNA
実施例 2で得られたプラスミド pALHIOlをェシエリヒア'コリ(Escherichia coli) HBl 01のコンビテントセルと混合することで形質転換を行い、寒天培地 C (トリプトン 10g、 イーストエキス 5g、塩ィ匕ナトリウム 10g、寒天 15g、アンピシリン 100mg、脱イオン水に て 1Lにメスアップ、滅菌前 pH7. 0、ただしアンピシリンは滅菌後に添カ卩した。 )にプ レーティングして、ヒダントイナーゼ遺伝子を含む組換え体 DNAを含有する形質転 換体ェシエリヒア'コリ(Escherichia coli) HB101 (pALHIOl) (FERM P— 20712) をコロニーとして取得した。  Transformation was performed by mixing the plasmid pALHIOl obtained in Example 2 with a competent cell of Escherichia coli HBl 01, and agar medium C (trypton 10 g, yeast extract 5 g, salted sodium 10 g, Agar 15 g, ampicillin 100 mg, made up to 1 L with deionized water, pH 7.0 before sterilization, but ampicillin was added after sterilization.) Plated to contain recombinant DNA containing hydantoinase gene Transformant Escherichia coli HB101 (pALHIOl) (FERM P-20712) was obtained as a colony.
[0046] 得られた形質転換体のコロニーを、試験管内にて滅菌した 6mLの培地 D (トリプトン 16g、イーストエキス 10g、塩ィ匕ナトリウム 5g、塩ィ匕マンガン 400mg、アンピシリン 100 mg、脱イオン水にて 1Lにメスアップ、滅菌前 pH7. 0、ただしアンピシリンは滅菌後 に添加する)に植菌後、 37°Cで 22時間、好気的に振とう培養した。得られた培養液 から遠心分離により菌体を集菌し、 0. 1M Tris—塩酸緩衝液 (pH8. 5)に懸濁して 超音波により菌体を破砕した後、遠心分離により菌体由来の不溶物を除去して、形 質転換体の粗酵素液を取得した。得られた粗酵素液を用いて、実施例 1と同様の方 法に従ってヒダントイナーゼ活性を測定したところ、活性が確認された。 [0046] The colony of the obtained transformant was sterilized in a test tube in 6 mL of medium D (tryptone 16 g, yeast extract 10 g, salted sodium 5 g, salted sodium 400 mg, ampicillin 100 mg, deionized water. Up to 1L, pH 7.0 before sterilization, but ampicillin after sterilization After inoculation, the cells were cultured under aerobic shaking at 37 ° C for 22 hours. The bacterial cells are collected from the obtained culture broth by centrifugation, suspended in 0.1 M Tris-HCl buffer (pH 8.5), disrupted by ultrasonic waves, and centrifuged to obtain the cells derived from the bacterial cells. Insoluble matter was removed, and a crude enzyme solution of transformant was obtained. Using the obtained crude enzyme solution, hydantoinase activity was measured in the same manner as in Example 1, and the activity was confirmed.
(実施例 4)ァネゥリニバチルス属細菌を利用した N 力ルバモイル D ァラニン の合成  (Example 4) Synthesis of N-strength rubamoyl D-alanine using Aneurinibacillus bacteria
ァネゥリニバチルス ·エスピー(Aneurinibacillus sp.) KNK491C株を 500mL坂口フ ラスコ内で滅菌した培地 E (肉エキス 2. 0%、イーストエキス 1. 0%、塩ィ匕ナトリウム 0. 3%、ゥラシル 0. 5%、塩化マンガン 4水和物 0. 002%、滅菌前 pH7. 5)に植菌して 37°Cで 20時間、好気的に振とう培養した。得られた培養液に 5—メチルヒダントイン 1 0. 0gを添加し、 6M水酸化ナトリウム水溶液にて pHを 8. 7に保ちつつ、 55°Cにて 2 0時間攪拌した。生成した N -力ルバモイル -D-ァラニンの変換率を HPLCを用 ヽ て分析したところ、 96. 3%であった。また、得られた N 力ルバモイルー D ァラ- ンに硫酸存在下、亜硝酸ナトリウムを作用させて脱力ルバモイルイ匕し、生成した D— ァラニンの光学純度を HPLCを用いて分析したところ、 96. l%e. e.であった。 HP LC分析は次に示す条件で実施した。  Aneurinibacillus sp. KNK491C strain sterilized in 500 mL Sakaguchi Flasco E (meat extract 2.0%, yeast extract 1.0%, sodium chloride 0.3%, uracil 0 5%, manganese chloride tetrahydrate 0.002%, pH 7.5 before sterilization was inoculated and cultured at 37 ° C for 20 hours under aerobic shaking. To the obtained culture broth, 10.0 g of 5-methylhydantoin was added, and the mixture was stirred at 55 ° C. for 20 hours while maintaining the pH at 8.7 with a 6M aqueous sodium hydroxide solution. The conversion rate of the produced N-force rubermoyl-D-alanine was analyzed by HPLC, and it was 96.3%. In addition, the N-type ruberamoyl D-alanine was weakened by reacting sodium nitrite with sulfuric acid in the presence of sulfuric acid, and the optical purity of the resulting D-alalanine was analyzed using HPLC. It was% ee. HP LC analysis was performed under the following conditions.
(変換率分析)カラム: COSMOSIL 5C18ARII (4. 6mm X 250mm、ナカライテス ク社製)、移動相: 10mMリン酸カリウム緩衝液 (pH2. 0)、流速: 1. OmL/min.、 カラム温度: 20°C、検出: 210nm  (Conversion rate analysis) Column: COSMOSIL 5C18ARII (4.6 mm x 250 mm, manufactured by Nacalai Tesque), mobile phase: 10 mM potassium phosphate buffer (pH 2.0), flow rate: 1. OmL / min., Column temperature: 20 ° C, detection: 210nm
(光学純度分析)カラム: SUMICHIRAL OA— 5000 (4. 6mm X 250mm,住化 分析センター社製)、移動相: 0. 5mM硫酸銅水溶液、流速: 0. 5mL/min.、カラ ム温度: 10°C、検出: 254nm  (Optical purity analysis) Column: SUMICHIRAL OA—5000 (4.6 mm X 250 mm, manufactured by Sumika Chemical Analysis Co., Ltd.), mobile phase: 0.5 mM copper sulfate aqueous solution, flow rate: 0.5 mL / min., Column temperature: 10 ° C, detection: 254nm
(実施例 5)ヒダントイナーゼ遺伝子形皙転椽体を禾 11用した N 力ルバモイル D— ァラニンの合成  (Example 5) Synthesis of N-force rubermoyl D-alalanine using hydantoinase genotype
実施例 3で得たヒダントイナーゼ活性を有する形質転換体ェシエリヒア 'コリ(Escheri chia coli) HB101 (pALH 101)を坂口フラスコ内にて滅菌した 1 OOmLの培地 Dに植 菌し、 37°Cにて 24時間、好気的に振とう培養した。培養液 10mLカゝら遠心分離により 菌体を集菌し、 0. ImM 硫酸マンガン、 0. 1M Tris—塩酸緩衝液(pH8. 5) 10m Lに懸濁して超音波により菌体を破砕後、遠心分離し、上清を粗酵素液として回収し た。得られた粗酵素液 40 Lに、 0. 1M Tris—塩酸緩衝液 (pH8. 7) 1. 96mL、 5 —メチルヒダントイン 400mgを添カ卩して、 10M 水酸化ナトリウム水溶液にて pHを 8. 7に保ちつつ、 50°Cにて 29時間攪拌した。生成した N—力ルバモイル一 D ァラ- ンの変換率を実施例 4と同様の方法で分析したところ、 97. 0%であった。また、得ら れた N 力ルバモイル D—ァラニンに硫酸存在下、亜硝酸ナトリゥムを作用させて 脱力ルバモイル化し、生成した D ァラニンの光学純度を実施例 4と同様の方法で分 祈したところ、 89. 9%e. e.であり、後述の比較例 1に記述したバチルス 'エスピー(B acillus sp.)KNK245株(FERM BP— 4863)由来ヒダントイナーゼ遺伝子形質転 換体を利用した場合の反応と比較して、高 ヽ光学純度の N 力ルバモイル D ァ ラニンが得られた。 Transformant Escherichia coli HB101 (pALH 101) having hydantoinase activity obtained in Example 3 was inoculated into 1 OOmL of medium D sterilized in a Sakaguchi flask and incubated at 37 ° C. The culture was shaken aerobically for a time. Centrifuge the 10 ml culture broth The cells are collected, suspended in 10 mL of 0. ImM manganese sulfate, 0.1 M Tris-hydrochloric acid buffer (pH 8.5), disrupted by sonication, centrifuged, and the supernatant is crude enzyme. It was collected as a liquid. To 40 L of the resulting crude enzyme solution, add 0.1 M Tris-hydrochloric acid buffer (pH 8.7) 1. 96 mL, 5-methylhydantoin 400 mg, and adjust the pH to 8 with 10 M aqueous sodium hydroxide. While maintaining at 7, the mixture was stirred at 50 ° C for 29 hours. When the conversion rate of the produced N-force rubymoyl D-alan was analyzed in the same manner as in Example 4, it was 97.0%. In addition, the obtained N-strength D-alanine was weakened by reacting sodium nitrite with sodium nitrite in the presence of sulfuric acid, and the resulting D-alanine was optically purified in the same manner as in Example 4. Compared with the reaction using the hydantoinase gene transformant derived from Bacillus sp. KNK245 strain (FERM BP-4863) described in Comparative Example 1 described later. An optically pure N-strength rubermoyl D-alanine was obtained.
[0048] ( 施例 6)遣伝早形皙転橼体の牛 するヒダントイナーゼの 特虽件  [0048] (Example 6) A special case of hydantoinase cattle in early transmission
実施例 5で得たェシエリヒア'コリ(Escherichia coli) HB101 (pALHIOl)の粗酵素 液を用いて、各種ヒダントインに対する活性を測定した。ヒダントイナーゼの活性測定 は、次のように実施した。基質溶液 4mL (30mM 各種ヒダントイン (ただし 5 べンジ ルヒダントインのみ 15mM)、 0. ImM 塩化マンガン、 50mM 炭酸ナトリウム Z炭 酸水素ナトリウム緩衝液 (PH8. 7) )と、適宜希釈した粗酵素液 0. ImLを混合し、 40 °Cで 15分間反応させた後、 5N HC1を 2mL添カ卩して反応を停止した。次いで、 10 % (wZv) p ジメチルァミノべンズアルデヒド Z35%塩酸溶液 ImLを混合し、遠心 分離して得られた上清の 440nmにおける吸光度を測定した。予め作成した検量線 に基づき、反応液中に生成した N—力ルバモイルアミノ酸を定量した。表 1は、 5—メ チルヒダントインを基質とした場合の活性を 100%としたときの相対活性値を示す。  Using the crude enzyme solution of Escherichia coli HB101 (pALHIOl) obtained in Example 5, the activity against various hydantoins was measured. The activity of hydantoinase was measured as follows. Substrate solution 4 mL (30 mM various hydantoins (but 15 benzylhydantoin only 15 mM), 0.ImM manganese chloride, 50 mM sodium carbonate Z sodium bicarbonate buffer (PH8.7)), and crude enzyme solution diluted appropriately. ImL was mixed and reacted at 40 ° C for 15 minutes. Then, 2mL of 5N HC1 was added to stop the reaction. Subsequently, 10% (wZv) p dimethylaminobenzaldehyde Z35% hydrochloric acid solution ImL was mixed, and the absorbance at 440 nm of the supernatant obtained by centrifugation was measured. Based on a calibration curve prepared in advance, N-force rubamoyl amino acid produced in the reaction solution was quantified. Table 1 shows the relative activity values when the activity when 5-methylhydantoin is used as a substrate is 100%.
[0049] [表 1] 相対活性値 [0049] [Table 1] Relative activity value
基質 相対活性値(%)  Substrate Relative activity (%)
5 メチルヒダントイン 100.0  5 Methylhydantoin 100.0
5— (2 —メチルチオェチル)ヒダントイン 31.1  5— (2 —Methylthioethyl) hydantoin 31.1
5—ベンジルヒダントイン 8.6  5-Benzylhydantoin 8.6
5—(4 - -ヒドロキシフエニル)ヒダントイン 31 .0  5- (4-Hydroxyphenyl) hydantoin 31.0
(比較例 1)バチルス ·エスピー KNK245株由来ヒダントイナーゼ遣伝子形質転換 体を利用した N 力ルバモイル D ァラニンの合成 (Comparative Example 1) Synthesis of N-strength rubermoyl D-alanine using hydantoinase gene transformant derived from Bacillus sp. KNK245
バチルス 'エスピー(Bacillus sp.) KNK245株(FERM BP— 4863)由来のヒダン トイナーゼ遺伝子を有する形質転換体ェシエリヒア'コリ (Escherichia coli) HB101 (p TH104) (FERM BP— 4864)を坂口フラスコ内にて滅菌した lOOmLの培地 Dに 植菌し、 37°Cにて 24時間、好気的に振とう培養した。培養液力も遠心分離により集 菌し、 0. ImM 硫酸マンガン、 0. 1M Tris—塩酸緩衝液(pH8. 5) 10mLに懸濁 して超音波により菌体を破砕後、遠心分離し、上清を粗酵素液として回収した。得ら れた粗酵素液 160 Lに、 0. 1M Tris—塩酸緩衝液 (pH8. 7) 1. 84mL、 5—メチ ルヒダントイン 400mgを添カ卩して、 10M 水酸化ナトリウム水溶液にて pHを 8. 7に保 ちつつ、 50°Cにて 29時間攪拌した。生成した N—力ルバモイル— D—ァラニンの変 換率を実施例 4と同様の方法で分析したところ、 97. 5%であった。また、得られた N 力ルバモイル - D -ァラニンに硫酸存在下、亜硝酸ナトリゥムを作用させて脱カル バモイル化し、生成した D ァラニンの光学純度を実施例 4と同様の方法で分析した ところ、 69. 7%e. e.であった。  Transformant Escherichia coli HB101 (p TH104) (FERM BP-4864) with a hydantoinase gene derived from Bacillus sp. KNK245 (FERM BP-4863) in a Sakaguchi flask Sterile lOOmL medium D was inoculated and cultured with shaking at 37 ° C for 24 hours. The culture fluid force was also collected by centrifugation, suspended in 10 mL of 0. ImM manganese sulfate, 0.1 M Tris-HCl buffer (pH 8.5), disrupted by ultrasonic waves, centrifuged, and centrifuged. Kiyoshi was recovered as a crude enzyme solution. To 160 L of the obtained crude enzyme solution, add 0.1 M Tris-hydrochloric acid buffer (pH 8.7) 1. 84 mL, 5-methylhydantoin 400 mg, and adjust the pH with 10 M aqueous sodium hydroxide solution. 8. While maintaining at 7, the mixture was stirred at 50 ° C for 29 hours. The conversion rate of the produced N-force rubermoyl-D-alanine was analyzed in the same manner as in Example 4. As a result, it was 97.5%. Further, the obtained N-stralbumoyl-D-alanine was decarbamoylated by the action of sodium nitrite in the presence of sulfuric acid, and the optical purity of the resulting D-alanine was analyzed in the same manner as in Example 4. It was 7% ee.
(参考例 1)形質転換微生物ェシエリヒア'コリ ΗΒ101 (ΌΝΤ4553)を用いたデカルバ モイラーゼ ffi酵素液の調製  (Reference Example 1) Preparation of decarbamoylase ffi enzyme solution using transformed microorganism Escherichia coli ΗΒ101 (ΌΝΤ4553)
実施例 1で説明したコロニーの選択において使用するデカルバモイラーゼ粗酵素 液の調製は、以下の方法で行った。遺伝子改変により耐熱性の向上したァグロバタ テリゥム.エスピー(Agrobacterium sp.) KNK712株(FERM BP— 1900)由来のデ 力ルバミラーゼ遺伝子を含有するェシエリヒア'コリ HB101 (pNT4553) (FERM BP— 4368)を試験管内で滅菌した 10mLの培地 F (トリプトン 16g、イーストエキス 10 g、塩ィ匕ナトリウム 5g、アンピシリン 100mg、脱イオン水にて 1Lにメスアップ、滅菌前 p H7. 0、ただしアンピシリンは滅菌後に添加する)に植菌し、 37°Cにて 12時間、好気 的に振とう培養した。この培養液 3. 5mLを、坂口フラスコ内で滅菌した 350mLの培 地 Cに植菌し、 37°Cにて 30時間、好気的に振とう培養した。得られた培養液を超音 波処理にかけて菌体を破砕し、 50°Cにて 30分間保温後、遠心分離し、上清を粗酵 素液として回収した。 The crude decarbamoylase solution used in the selection of colonies described in Example 1 was prepared by the following method. E. coli HB101 (pNT4553) (FERM BP-4368) containing the weak ruvalamylase gene derived from Agrobacterium sp. Sterilized with 10 mL of medium F (tryptone 16 g, yeast extract 10 g, sodium chloride 5g, ampicillin 100mg, make up to 1L with deionized water, inoculate pH 7.0 before sterilization, but add ampicillin after sterilization), at 37 ° C for 12 hours, The culture was shaken vigorously. 3.5 mL of this culture solution was inoculated into 350 mL of medium C sterilized in a Sakaguchi flask, and cultured with shaking at 37 ° C for 30 hours. The obtained culture solution was subjected to ultrasonic treatment to disrupt the cells, kept at 50 ° C for 30 minutes, and then centrifuged, and the supernatant was recovered as a crude enzyme solution.
図面の簡単な説明 Brief Description of Drawings
[図 1]図 1は、本発明の実施形態としてのヒダントイナーゼ遺伝子を含む組換えプラス ミド pALHIOlの構成を示す図である。 FIG. 1 is a diagram showing the structure of a recombinant plasmid pALHIOl containing a hydantoinase gene as an embodiment of the present invention.
紙面による写し(注意 電子データが原本となります) Copy on paper (Caution Electronic data is the original)
[この用紙は、国際出願の一部を構成せず、国際出願の用紙の枚数に算入しない]  [This form does not form part of the international application and is not included in the number of international application forms]
Figure imgf000025_0001
Figure imgf000025_0001
下記の表示は発明の詳細な説明中に記載  The following indications appear in the detailed description of the invention
された微生物又は生物材料に関連してレ、る In relation to microbial or biological material
-1 段落番号 0011 -1 paragraph number 0011
-3 寄託の表示 -3 Display of deposit
-3-1 寄託機関の名称 IP0D (独)産業技術総合研究所 特許生物寄託センタ 一 (IP0D) -3-1 Name of Depositary Institution IP0D National Institute of Advanced Industrial Science and Technology Patent Biological Depositary Center (IP0D)
-3-2 寄託機関のあて名 日本国 〒305- 8566 茨城県つくば市東 1丁目 1番地 1  -3-2 Name of depositary institution Japan 1 1-chome East, Tsukuba, Ibaraki 305-8566, Japan 1
中央第 6 Central 6th
-3-3 寄託の日付 2006年 11月 20日 (20.11.2006) -3-3 Date of deposit November 20, 2006 (20.11.2006)
-3-4 受託番号 IPOD FERM BP- 10735 -3-4 Accession number IPOD FERM BP-10735
-5 この表示を行うための指定国 すべての指定国 受理官庁記入欄 -5 Designated countries for making this indication All designated countries
-4 この用紙は国際出願とともに受理した  -4 This form was accepted along with the international application
(はい/いいえ) (Yes, No)
-4-1 権限のある職員 国際事務局記入欄 -5 この用紙が国際事務局に受理された日 -5-1 権限のある職員  -4-1 Authorized staff Entry field of the International Bureau -5 Date when this form was received by the International Bureau -5-1 Authorized staff
差替え用紙 (規則 ) Replacement paper (Rules)

Claims

請求の範囲 The scope of the claims
[1] 以下の(a)、(b)又は(c)のポリペプチド: [1] The following polypeptide (a), (b) or (c):
(a)配列表配列番号 1に示されるアミノ酸配列からなるポリペプチド;  (a) a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing;
(b)配列表配列番号 1に示されるアミノ酸配列にぉレ、て 1若しくは数個のアミノ酸が置 換、挿入、欠失および Z又は付加されたアミノ酸配列からなり、かつヒダントイナ一ゼ 活性を有するポリペプチド;  (b) It consists of an amino acid sequence in which one or several amino acids are substituted, inserted, deleted and Z or added to the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing, and has hydantoinase activity. A polypeptide;
(c)配列表配列番号 1に示されるアミノ酸配列と 73%以上の相同性を有するアミノ酸 配列からなり、かつヒダントイナーゼ活性を有するポリペプチド。  (c) A polypeptide comprising an amino acid sequence having 73% or more homology with the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing and having hydantoinase activity.
[2] ァネゥリニバチルス(Aneurinibacillus)属に属する微生物に由来する請求項 1に記 载のポリペプチド。  [2] The polypeptide according to claim 1, which is derived from a microorganism belonging to the genus Aneurinibacillus.
[3] ァネゥリニバチルス 'エスピー(Aneurinibacillus sp.) KNK491C (FERM BP— 10 [3] Aneurinibacillus sp. KNK491C (FERM BP— 10
735)に由来する請求項 1に記載のポリペプチド。 735).
[4] 請求項 1に記載のポリペプチドをコードする DNA。 [4] DNA encoding the polypeptide of claim 1.
[5] 以下の(d)、 (e)、 (f)、又は(g)の DNA: [5] DNA of (d), (e), (f), or (g) below:
(d)配列表配列番号 2に示される塩基配列からなる DNA、  (d) DNA consisting of the base sequence shown in SEQ ID NO: 2 in the sequence listing,
(e)配列表配列番号 2に示される塩基配列において 1若しくは数個の塩基が置換、 挿入、欠失および Zまたは付加された塩基配列を有し、かつヒダントイナーゼ活性を 有するポリペプチドをコードする DNA、  (e) DNA encoding a polypeptide having a base sequence in which one or several bases are substituted, inserted, deleted and Z or added in the base sequence shown in SEQ ID NO: 2 in the sequence listing and having hydantoinase activity ,
(f)配列表配列番号 2に示される塩基配列と 69%以上の相同性を有する塩基配列 からなり、かつヒダントイナーゼ活性を有するポリペプチドをコードする DNA、 (f) a DNA encoding a polypeptide comprising a base sequence having 69% or more homology with the base sequence shown in SEQ ID NO: 2 in the sequence listing, and having a hydantoinase activity;
(g)配列表配列番号 2に示す塩基配列と相補的な塩基配列からなる DNAとストリン ジェントな条件下でハイブリダィズし、かつヒダントイナ一ゼ活性を有するポリペプチド をコードする DNA。 (g) A DNA that hybridizes under stringent conditions with a DNA comprising a base sequence complementary to the base sequence shown in SEQ ID NO: 2 in the sequence listing and encodes a polypeptide having hydantoinase activity.
[6] 請求項 4又は 5のいずれかに記載の DNAをベクターに挿入して得られる組換えプ ラスミド。  [6] A recombinant plasmid obtained by inserting the DNA according to claim 4 or 5 into a vector.
[7] 請求項 6に記載の組換えプラスミドで宿主微生物を形質転換して得られる形質転換 体。  [7] A transformant obtained by transforming a host microorganism with the recombinant plasmid according to claim 6.
[8] 請求項 1に記載のポリペプチドを生産する能力を有し、かつ、ァネゥリニバチルス (A 差替え用紙(規則 26) neurinibacillus)属に属する微生物。 [8] has the ability to produce a polypeptide according to claim 1, and § Neu linear Bacillus (A replacement sheet (Rule 2 6) A microorganism belonging to the genus (neurinibacillus).
[9] 請求項 1に記載されてレ、るポリペプチドを生産する能力を有する微生物を培養し、 培養物中に当該ポリペプチドを蓄積させ、これを採取することを特徴とするヒダントイ ナーゼの製造方法。 [9] A hydantoinase produced by culturing a microorganism capable of producing a polypeptide as described in claim 1, accumulating the polypeptide in the culture, and collecting the polypeptide. Method.
[10] 前記微生物が、請求項 7に記載の形質転換体、または請求項 8に記載の微生物で ある、請求項 9に記載のヒダントイナーゼの製造方法。  [10] The method for producing hydantoinase according to claim 9, wherein the microorganism is the transformant according to claim 7 or the microorganism according to claim 8.
[11] 請求項 1に記載のポリペプチド、請求項 7に記載の形質転換体、または請求項 8に 記載の微生物を、 5—置換ヒダントインに作用させ、 N_力ルバモイルー D—アミノ酸 を製造する方法。 [11] An N_strengthening D-amino acid is produced by reacting the polypeptide according to claim 1, the transformant according to claim 7, or the microorganism according to claim 8 with a 5-substituted hydantoin. Method.
差替え用紙 (規則 26) Replacement paper (Rule 26)
PCT/JP2006/324337 2005-12-12 2006-12-06 Novel hydantoinase and process for producing n-carbamoyl d-amino acid WO2007069509A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007550142A JP5159319B2 (en) 2005-12-12 2006-12-06 Method for producing novel hydantoinase and N-carbamoyl-D-amino acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005357341 2005-12-12
JP2005-357341 2005-12-12

Publications (1)

Publication Number Publication Date
WO2007069509A1 true WO2007069509A1 (en) 2007-06-21

Family

ID=38162817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324337 WO2007069509A1 (en) 2005-12-12 2006-12-06 Novel hydantoinase and process for producing n-carbamoyl d-amino acid

Country Status (2)

Country Link
JP (1) JP5159319B2 (en)
WO (1) WO2007069509A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325093A (en) * 1991-04-23 1992-11-13 Nippon Soda Co Ltd Thermostable hydantoinase and gene encoding the same hydantoinase
JPH07163347A (en) * 1993-08-27 1995-06-27 Boehringer Mannheim Gmbh Recombination d-hydantoinase, its production method and use thereof
US20020045238A1 (en) * 2000-08-24 2002-04-18 Wen-Hwei Hsu Thermostable D-hydantoinase and the application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325093A (en) * 1991-04-23 1992-11-13 Nippon Soda Co Ltd Thermostable hydantoinase and gene encoding the same hydantoinase
JPH07163347A (en) * 1993-08-27 1995-06-27 Boehringer Mannheim Gmbh Recombination d-hydantoinase, its production method and use thereof
US20020045238A1 (en) * 2000-08-24 2002-04-18 Wen-Hwei Hsu Thermostable D-hydantoinase and the application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEON Y.H. ET AL.: "Manipulation of the active site loops of D-hydantoinase, a (beta/alpha) 8-barrel protein, for modulation of the substrate specificity", BIOCHEMISTRY, vol. 43, no. 23, 2004, pages 7413 - 7420, XP003014469 *
PARK J.H. ET AL.: "Purification and characterization of thermostable D-hydantoinase from Bacillus thermocatenulatus GH-2", APPL. BIOCHEM. BIOTECHNOL., vol. 81, no. 1, 1999, pages 53 - 65, XP003014471 *
SHIDA O. ET AL.: "Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov.", INT. J. SYST. BACTERIOL., vol. 46, no. 4, 1997, pages 939 - 946, XP003014470 *

Also Published As

Publication number Publication date
JP5159319B2 (en) 2013-03-06
JPWO2007069509A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
CA2256758C (en) Method of producing l-serine by fermentation
US7316916B2 (en) DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids
EP0943687B1 (en) Method of producing L-serine by fermentation
JP6027173B2 (en) Novel amino acid dehydrogenase and method for producing L-amino acid, 2-oxoacid, or D-amino acid
WO2007015511A1 (en) D-amino acid oxidase, and method for production of l-amino acid, 2-oxo acid or cyclic imine
US7314738B2 (en) DNA for encoding D-hydantoin hydrolases, DNA for encoding N-carbamyl-D-amino acid hydrolases, recombinant DNA containing the genes, cells transformed with the recombinant DNA, methods for producing proteins utilizing the transformed cells and methods for producing D-amino acids
JP6044675B2 (en) D-succinylase and method for producing D-amino acid using the same
Wegman et al. Hydrolysis of D, L-phenylglycine nitrile by new bacterial cultures
KR100244066B1 (en) Process for producing d-n-carbamoyl-alpha-amino acid
JP5005293B2 (en) A method for producing D-amino acid oxidase and L-amino acid, 2-oxoacid, or cyclic imine.
WO2007069509A1 (en) Novel hydantoinase and process for producing n-carbamoyl d-amino acid
JP5096911B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active N-carbamyl amino acid or optically active amino acid
WO2006109632A1 (en) NOVEL α-KETO ACID TRANSFERASE, GENE FOR THE SAME, AND USE OF THE SAME
JP4627039B2 (en) Polypeptide having amidase activity and gene thereof
JP2007189949A (en) New hydantoinase and method for producing optically active amino acid derivative
JP4081124B2 (en) Method for producing DN-carbamoyl-α-amino acid
US8993291B2 (en) Thermococcus mutant having improved hydrogen production from formate and methods of hydrogen production by using thereof
JP2005304498A (en) NEW MICROORGANISM AND ENZYME FOR PRODUCING alpha-AMINOADIPIC ACID SEMIALDEHYDE DERIVATIVE AND alpha-AMINOADIPIC ACID DERIVATIVE AND METHOD FOR PRODUCING alpha-AMINOADIPIC ACID SEMIALDEHYDE DERIVATIVE AND alpha-AMINOADIPIC ACID DERIVATIVE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007550142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834092

Country of ref document: EP

Kind code of ref document: A1