WO2007069310A1 - Polymer actuator element drivable in air - Google Patents

Polymer actuator element drivable in air Download PDF

Info

Publication number
WO2007069310A1
WO2007069310A1 PCT/JP2005/022946 JP2005022946W WO2007069310A1 WO 2007069310 A1 WO2007069310 A1 WO 2007069310A1 JP 2005022946 W JP2005022946 W JP 2005022946W WO 2007069310 A1 WO2007069310 A1 WO 2007069310A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator element
polymer actuator
electrolyte
exchange resin
polymer
Prior art date
Application number
PCT/JP2005/022946
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Onishi
Shingo Sewa
Minoru Sugiyama
Original Assignee
Eamex Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eamex Corporation filed Critical Eamex Corporation
Priority to PCT/JP2005/022946 priority Critical patent/WO2007069310A1/en
Publication of WO2007069310A1 publication Critical patent/WO2007069310A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution

Definitions

  • the present invention relates to a polymer actuator element that functions as an actuator element by applying a voltage to a pair of metal electrodes formed so as to be in contact with an electrolyte containing an ion exchange resin, and thereby functioning as an actuator element.
  • the present invention relates to an air-driven polymer actuator element that can be driven for one day or more even in the environment in air at atmospheric pressure without a cover. Background art
  • this polymer actuator element is lightweight and flexible, it can be suitably used as an introduction part of a medical device such as a force tensioner. Furthermore, since the high molecular weight actuator element is light and simple in configuration, it is expected to be applied as various driving devices or pressing devices.
  • Patent Document 1 Japanese Patent No. 2961125
  • the polymer actuator element can drive a large displacement or a displacement for a long time by applying a voltage to a pair of metal electrodes. It is.
  • water evaporates and ions serving as charge carriers do not move. For this reason, the polymer actuator element is water-steamed when exposed to air without coating. As a result, the initial drive (displacement) cannot be maintained for an hour.
  • the polymer actuator element can be used for a driving device in various devices in order to bend or displace.
  • the polymer actuator element cannot maintain the initial driving for 1 hour, it is substantially difficult to drive in an environment other than in an aqueous solution due to evaporation of water. is there. Therefore, there is a limit to the use in the case where the high-molecular-weight actuator element is used for a driving device of various devices.
  • An object of the present invention is to provide an air-driven polymer actuator element that can be driven for one day or more in an environment in air at atmospheric pressure without a cover. Furthermore, an object of the present invention is also to provide a polymer actuator element that can exhibit almost the same amount of initial bending or displacement even after being left in the atmosphere for 1 hour. Means for solving the problem
  • the present invention is a polymer actuator element including a metal electrode and an electrolyte including a polymer electrolyte, wherein the metal electrode is formed so as to form a pair, and the metal electrode is in contact with the electrolyte.
  • the electrolyte has a boiling point or decomposition temperature of 180 ° C or higher and contains a liquid organic compound at normal temperature and pressure. In other words, it is a polymer activator element in which the electrolyte is swollen with the organic compound.
  • the polymer actuator element of the present invention uses a specific polar solvent, and therefore has a high boiling point, and therefore uses a drive that bends or deforms in an environment other than in an aqueous solution such as air. Therefore, it can be easily used for a wide variety of practical applications.
  • the polymer actuator element is suitable for applications that require long-term driving. In the polymer actuator element, even when a specific voltage higher than 3.0 V is applied to the metal electrode for driving, no electrolysis of the solvent occurs, so that no bubbles are generated.
  • the present invention provides a polymer activator element including a metal electrode and an electrolyte including a polymer electrolyte, wherein the metal electrode is formed so as to form a pair, and the metal electrode Is a polymer actuator element that is in contact with the electrolyte, has a boiling point or decomposition temperature of 180 ° C or higher in the electrolyte, contains a liquid organic compound at normal temperature and pressure, and the electrolyte is swollen with the organic compound. is there.
  • the polymer actuator element contains a specific liquid organic compound, the bending amount or the displacement amount of the actuator element is hardly changed. For this reason, the polymer actuator element can be driven outside the solution, that is, in the air, and is suitable for long-term driving because there is almost no evaporation of the solution.
  • the organic compound that has a boiling point or a decomposition temperature of 180 ° C or higher and is liquid at normal temperature and pressure is contained in the electrolyte.
  • the actuator element can keep the change in the S-humidity state small even after 1 hour without coating at normal temperature and pressure, and the bending amount or displacement amount. Less is.
  • the electrolyte is swollen, and the polymer actuator element can be easily bent or displaced.
  • the boiling point of the present application is, as a matter of course, a boiling point measured under normal pressure.
  • the organic compound has a boiling point of 180 ° C or higher or a decomposition temperature, and is liquid at room temperature and normal pressure. If it is a shape, it will not specifically limit.
  • the organic compound preferably has a function as a solvent.
  • the organic compound may be an organic compound that can serve as a salt solvent containing ions that serve as charge carriers, or an organic compound that can serve as charge carriers.
  • the organic compound is preferably a polar organic solvent and / or an ionic liquid.
  • the polar organic solvent is not particularly limited as long as it is a polar organic solvent having a boiling point or decomposition temperature of 180 ° C or higher, but a polar organic solvent having a boiling point of 245 ° C or higher. It is more preferable that The polar solvent is particularly preferably diethylene glycol, glycerin, sulfolane or a mixture thereof, more preferably diethylene glycol, glycerin, sulfolane, propylene carbonate, butyrolatatatone or a mixture thereof. Since the solvent component of the solution contained in the polymer actuator element is the polar solvent, bending of 50 ° or more can be performed after one day without sealing the polymer actuator element.
  • a conventional polymer actuator element has a relatively low voltage of 1.2 V.
  • an interface with an ion exchange resin is used.
  • the polymer actuator element of the present invention even when a specific voltage higher than 3.0 V is applied, there is a case where gas generation due to water electrolysis hardly occurs for a certain period of time. When used under such conditions, the polymer actuator element of the present invention can be easily manufactured because an electrode can be formed more easily.
  • the angle (°) representing the degree of bending or displacement is the angle (displacement angle) formed by the tangential direction of the bent or displaced convex surface at the tip of the polymer actuator element and the gravity direction. Is required.
  • An ionic liquid can be used as the organic compound that is liquid at room temperature and normal pressure and has a boiling point or decomposition temperature of 180 ° C. or higher, which is used in the present invention.
  • the ionic liquid is also called a room temperature molten salt and has almost no vapor pressure at room temperature. Therefore, the polymer actuator element of the present invention, which includes the electrolyte power W on-exchange resin and the ion exchange resin is swollen with an ionic liquid, has a bending resistance substantially equal to the initial value even for a long period of one month. Can be tuned or displaced.
  • the ionic liquid is composed of tetraalkyl ammonium ion, dialkyl imidazolium ion, trialkyl imidazolium ion, virazolium ion, pyrrolium ion, pyrrolium ion, pyrrolidinium ion, and piberidinium ion. And at least one selected cation from the group consisting of
  • the polymer actuator element according to claim 2 which is a salt comprising a combination of
  • the tetraalkylammonium ion is not particularly limited, and trimethylpropylammonium, trimethylhexylammonium, and tetrapentylammonium ions can be used.
  • the imidazolium cation may be a dialkyl imidazolium ion and / or a trialkyl imidazolium ion.
  • the imidazolium cation is not particularly limited, but includes 1-ethyl-3-methyl imidazolium ion, 1 hexyl 3 methyl imidazolium ion, 1-butyl 3-methyl imidazolium ion, 1, 3— Dimethyl imidazolium ion, 1-methyl-3-ethyl imidazolium ion, 1, 2, 3 Trimethyl imidazolium ion, 1, 2 Dimethyl -3-ethyl imidazolium ion, 1, 2 Dimethyl -3 propyl imidazolium ion, 1-butyl 2 , 3 Dimethyl imidazolium ion.
  • the alkylpyridinium ion is not particularly limited, but N-butylpyridinium ion, N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion Mion, 1_ethyl_2_methylpyridinium, 1_butyl_4-methylpyridinium, 1_butyl-1,4-dimethylpyridinium can be used.
  • the pyrrolium cation is not particularly limited, but 1, 1-dimethylpyrrolium ion, 1_ethyl_1_methylpyrrolium ion, 1_methyl_1_propylpyrrolium ion, 1-Butyl 1-methylpyrrolium ion can be used.
  • the pyrazolium cation is not particularly limited, however, 1,2-dimethylpyrazolium ion, 1-ethyl-2-methylvirazolium ion, 1-propyl 2-methylvirazolium ion, 1-butyl 2 —Methyl virazolium ion can be used.
  • the pyrrolium cation is not particularly limited, but 1,2-dimethylpyrrolium ion, 1_ethyl_2_methylpyrrolonium ion, 1_propyl_2-methylbiphenyl ion, 1 _Butyl _ 2_methylpyrrolium ion can be used.
  • the pyrrolidinium cation is not particularly limited, but 1,1-dimethylpyrrolidinium ion, 1_ethyl_1_methylpyrrolidinium ion, 1_methyl_1_propylpyrrolidine 1-butyl-1- 1-methylpyrrolidinium ion can be used.
  • the piperidinium cation is not particularly limited, but 1, 1_dimethylbiperidinium ion, 1_ethyl_1-methylbiperidinium ion, 1_methyl_1_propyl The ability to use piperidinium ions and 1-butyl-1-methylbiperidinium ions.
  • the ionic liquid is not particularly limited to the combination of the anion and the cation.
  • EMITFSI 1-methyl 3-ethylimidazolium trifluoromethane sulfoimide
  • EM IBF 1-methyl-3 —Imidazolium tetrafluoroborate
  • EMIPF 1-methyl-3-imidazolium hexafluorophosphate
  • the electrolyte when the electrolyte includes the ion exchange resin and the ionic liquid, the ion exchange resin becomes a gel electrolyte in a state of being swollen with the ionic liquid. be able to.
  • the electrolyte contains an ion exchange resin and an ionic liquid, the polymer actuator element can be driven even when left at atmospheric pressure for one month.
  • gel electrolytes containing ion exchange resins and ionic liquids are flexible and can hold a high concentration of electrolyte.
  • it is suitable as an electrolyte for an actuator element and a capacitor.
  • the production method of the electrolyte containing the ion exchange resin and the ionic liquid is not particularly limited, but the ionic liquid is contained in a known polar solvent having a boiling point of 100 ° C or lower. It can be easily obtained by immersing the ion exchange resin in a mixed solution containing 1 to 90% by weight and leaving it at room temperature until there is no change in size or weight, or leaving it for more than an hour.
  • the polymer actuator element of the present invention includes a metal electrode and an ion exchange resin as an electrolyte, and is formed so that the metal electrode can form a pair.
  • the metal electrode is in contact with the electrolyte and has a high height.
  • a molecular actuator element having a structure including a plurality of the metal electrodes.
  • the actuator element may include one electrode layer on both sides of the ion exchange resin layer, or may include a plurality of electrode layers on both sides or one side.
  • an actuator element in which a pair of electrode layers form an electrode pair with an ion exchange resin layer sandwiched between them can be used, and an outer surface of a tubular ion exchange resin and / or A plurality of metal electrodes may be provided on the inner surface.
  • the polymer actuator element in which the electrode layer forms an electrode pair with an ion exchange resin interposed therebetween can be obtained by a known method. For example, an electroless plating is applied to an ion exchange resin tangent having a membrane shape, a plate shape, or a tubular shape, thereby forming a metal layer on the surface of the ionic exchange resin tangible material or the inner surface of the ion exchange resin tangible surface. Then, by using the metal layer metal as an electrode layer, a metal ion exchange resin joined body which is the polymer actuator element can be obtained.
  • the following electroless plating method can be preferably used.
  • an adsorption step is performed in which the ion exchange resin is immersed in water and swollen to adsorb a metal complex such as a platinum complex or a gold complex to the ion exchange resin.
  • a reduction process is performed in which the adsorbed metal complex is reduced with a reducing agent to deposit a metal, and a cleaning process is performed after the reduction process to remove the reducing agent as desired.
  • the adsorption process, the reduction process and the cleaning process can be repeated as one cycle in order to make the metal layer as an electrode thick enough to bend or displace when energized. it can.
  • an electrode layer grows in the internal direction of the ion exchange resin to form an electrode, and the electrode layer has a fractal cross section at the interface between the ion exchange resin and the electrode layer. Therefore, a large electric double layer can be provided at the interface between the electrode layer and the ion exchange resin layer.
  • the electrode layer forms a fractal structure in the inner direction of the ion exchange resin layer, the ion exchange resin joined body is durable even when it is repeatedly bent in order to have an anchor effect. .
  • the ion exchange resin contained in the electrolyte of the polymer actuator element of the present invention is not particularly limited.
  • the ion exchange resin is not particularly limited, and a known ion exchange resin can be used.
  • a cation exchange resin a sulfonic acid group, a carboxyl group, or the like is added to polyethylene, polystyrene, fluororesin, or the like. Those having a hydrophilic functional group introduced therein can be used.
  • Examples of such resins include perfluorosulfonic acid resin (trade name “Nafion”, manufactured by DuPont), perfluorocarbonic resin (trade name “Flemion”, manufactured by Asahi Glass), ACIPLEX (manufactured by Asahi Kasei Kogyo Co., Ltd.). N EOSEPTA (manufactured by Tokuyama Corporation) can be used.
  • the metal complex solution used in the electroless plating adsorption process is particularly limited as long as the metal layer formed by reduction contains a metal complex that can function as an electrode layer. It is not a thing.
  • the metal complex is preferably a deposited metal, preferably a metal complex such as a gold complex, a platinum complex, a palladium complex, a rhodium complex, or a ruthenium complex because a metal with a low ionization tendency is electrochemically stable.
  • a metal complex made of a noble metal with good electrical conductivity and high electrochemical stability is preferred, and a gold complex with relatively low electrolysis is preferred.
  • the metal salt solution is not particularly limited, but the metal salt solution preferably contains water as a main component because the metal salt can be easily dissolved and handled easily. Is preferably an aqueous metal salt solution. Therefore, the metal complex solution is preferably an aqueous metal complex solution, particularly preferably an aqueous gold complex solution or an aqueous platinum complex solution, and more preferably an aqueous gold complex solution.
  • the reducing agent used in the electroless plating reduction step is appropriately selected according to the type of metal complex used in the metal complex solution adsorbed on the ion exchange resin.
  • sodium sulfite, hydrazine, sodium borohydride, phosphorous acid, sodium hypophosphite and the like can be used.
  • the reducing agent may be appropriately selected depending on the metal species to be deposited.
  • the metal to be precipitated by reduction is Nikkenole or Cobalt
  • sodium phosphinate, dimethylenoborane, hydrazine, or potassium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is palladium
  • sodium phosphinate, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent.
  • formalin, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is silver or gold
  • dimethylaminoborane or potassium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is platinum
  • hydrazine or sodium tetrahydroborate can be used as the reducing agent.
  • the metal deposited by reduction is tin
  • trisalt-titanium can be used as the reducing agent.
  • the reducing agent is not limited to the above types, but is used with catalysts such as platinum black, non-metallic acids or ions such as Hg S, HI and I—, Na (H 3 PO 4) and Na 2 SO Lower acid
  • the reducing agent can be appropriately selected according to the metal species to be reduced.
  • the growth rate of the metal, the particle size of the deposited metal, the contact area between the metal electrode having a fractal structure and the ion exchange resin, In order to change the electrode structure and the flexibility of the resin after plating, it is possible to select and use the optimum type of reducing agent.
  • the kind of the reducing agent can be appropriately selected so that the reducing bath in the reduction step has a desired pH.
  • an acid or an alkali may be added as necessary.
  • the concentration of the reducing agent solution is not particularly limited as long as it contains a sufficient amount of reducing agent to obtain the amount of metal to be precipitated by reduction of the metal complex. It is also possible to use a concentration equivalent to that of the metal salt solution used when the electrode is formed by ordinary electroless plating. Further, the reducing agent solution can contain a good solvent for the ion exchange resin.
  • the polymer actuator element of the present invention includes a solvent and a salt inside an electrolyte in contact with a metal electrode formed so as to be able to form a pair.
  • the polymer actuator element is preferably flexible so that the polymer actuator element can be bent or displaced.
  • the ion exchange resin is swollen with a liquid organic compound at normal temperature and pressure.
  • the degree of swelling is not particularly limited, but the degree of swelling of the polymer actuator element, that is, the thickness of the polymer electrolyte element with respect to the thickness of the polymer electrolyte in a dry state is swollen. Thickness increase rate power in state 3 ⁇ 200. / o is preferred.
  • the force electrode layer contained in the electrolyte is a porous electrode, a part of the solvent may be contained in the pre-metal electrode layer together with the salt.
  • the degree of swelling of the electrolyte when the organic compound is a polar organic solvent is larger than that when an ionic liquid is used. Therefore, it can be suitably used for applications that require large bending or displacement.
  • an ionic liquid is used as the organic compound
  • the degree of swelling is small compared with the case where a polar organic solvent is used, but it is left as an open system at a room temperature and normal pressure for a period of about one month.
  • the polymer actuator element can be driven without a large change in the amount of bending or displacement during a period of about one month without the need for a cover.
  • the electrolyte it can be obtained by immersing the ion exchange resin layer in a liquid of the organic compound.
  • the high molecular weight element element is placed in a liquid in the organic compound.
  • the ion exchange resin is made of the organic compound. An element in a swollen state can be obtained.
  • the electrolyte of the polymer actuator element of the present invention may be in a state in which the ion exchange resin is swollen by the ionic liquid.
  • the ion exchange resin When the ion exchange resin is swollen by the ionic liquid, the ion exchange resin does not swell even if the ion exchange resin is immersed in the ionic liquid.
  • An electrolyte in which an ion exchange resin is swollen with an ionic liquid can be easily obtained by evaporating the swelling solvent after the ion exchange resin is swollen with the mixed solution.
  • a high boiling polar organic solvent can be used as the swelling solvent and left in the device.
  • the swelling solvent is a solvent that can swell the ion exchange resin and dissolve the ionic liquid. The above-mentioned swelling does not include infinite swelling in the present application.
  • the salt contained in the electrolyte in contact with the metal electrode formed so as to form a pair is converted into a liquid organic compound at room temperature and normal pressure.
  • a salt of !! to trivalent cation can be used, and Na +
  • Use of monovalent cations such as K +, Li +, etc. allows for large bending or displacement, so using an alkylammonium ion with a large ionic radius is preferable for bending or displacement. It ’s even better because it ’s possible.
  • the alkylammonium ions include CH N + H, CHN + H, (CH) N + H, (CH
  • H C CHCH N + HCH, H N + (CH) N + H (CH) N + H, HC ⁇ C
  • the concentration of the salt is 0.01 to 10 mol / l in order to obtain sufficient bending or displacement as long as it is contained in a concentration equal to or higher than the functional group of the ion exchange resin.
  • the polymer actuator element of the present invention contains the above-mentioned polar solvent, it can be driven for one day or more without being coated with a resin, but is further coated with a flexible resin.
  • the resin is not particularly limited, but polyurethane resin and / or silicon resin can be used.
  • the polyurethane resin is not particularly limited, but a flexible thermoplastic polyurethane is particularly preferable because of its high flexibility and good adhesion.
  • the product name “Asaflex 825” (flexibility 200%, manufactured by Asahi Kasei), product name “Pelesen 2363—80A” (flexibility 550%), “Pelecene 2363—80AE” (flexibility) 650%), “Pelecene 2 363-90A” (flexibility: 500%), “Pelecene 2363-90AE” (flexibility: 550%), (manufactured by Dow Chemical Co., Ltd.).
  • the silicon resin is not particularly limited, but a resin having a flexibility of 50% or more is particularly preferable because of its high flexibility and good adhesion.
  • silicone resin for example, “SilaSeal 3 FW”, “SilaSeal DC738RTV”, “DC3145”, and “DC3140” (above, manufactured by Dow Corning) can be used.
  • the flexibility refers to the tensile elongation at break (Ultimate Elongation%) in accordance with ASTM D412.
  • the present invention is also a method for driving a polymer actuator element.
  • the polymer actuator element is a polymer actuator element having a pair of metal electrodes formed so as to face each other with an ion exchange resin interposed therebetween, and the polymer actuator element having a pair of metal electrodes Since the polymer actuator element includes a polar solvent having a boiling point of 180 ° C. or higher in the ion exchange resin, a voltage higher than 3.0 V is required to cause bending or displacement of 160 ° or higher. Even in the case of applying, it is possible to drive for more than one day without coating with resin since the rusting force that generates bubbles and the evaporation of the solvent hardly occur.
  • a polar solvent having a boiling point of 180 ° C or higher is used for the polymer actuator element as a solvent that swells the element and dissolves ions as charge carriers. If so, it will not be particularly limited. In particular, when the polar solvent is diethylene glycol and / or glycerin, the bend is 160 ° or more. It is preferable because it can be done.
  • Ion exchange resin membrane with a thickness of 0.2 mm when dried (Fluorine resin ion exchange resin: perfluorocarboxylic acid resin, trade name “Flemion”, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.4 meq / g)
  • Steps (3) to (3) were repeated 6 cycles to obtain an ion exchange resin membrane provided with a pair of metal electrodes formed with an ion exchange resin sandwiched therebetween.
  • the ion exchange resin membrane is dipped in an aqueous solution of 0.5 mol / l tetraethylammonium chloride and dried, and after that, 0.5 mol / l of chloride is added so that the degree of swelling is about 15%.
  • the polymer actuator element of Example 1 was obtained by immersion in a diethylene glycol solution of tetraethylene ammonium for 24 hours.
  • Example 2 The solvent for immersing the cut ion exchange resin membrane is changed to 0.5 mol / l of tetraethylene ammonium chloride in diethylene glycol solution, and 0.5 mol / l of tetraethylene ammonium chloride in propylene carbonate solution is used.
  • a polymer actuator element of Example 2 was obtained in the same manner as in Example 1 except that it was used.
  • Example 3 instead of 0.5 mol / l of tetraethylene ammonium chloride in diethylene glycol solution, the solvent for immersing the cut ion exchange resin membrane is replaced with 0.5 mol / l of tetraethylene ammonium chloride in glycerin solution. The same method as in Example 1 except that Thus, the polymer actuator element of Example 3 was obtained.
  • Example 4 A polymer actuator element of Example 4 was obtained in the same manner as in Example 1 except that the above was obtained.
  • Example 3 A polymer actuator element of Example 3 was obtained in the same manner as in Example 1 except that was used.
  • Ion exchange resin membrane with a thickness of 0.2 mm when dried (Fluorine resin ion exchange resin: perfluorocarboxylic acid resin, trade name “Flemion”, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.4 meq / g)
  • Steps (3) to (3) were repeated 6 cycles to obtain an ion exchange resin membrane provided with a pair of metal electrodes formed with an ion exchange resin sandwiched therebetween.
  • Example 7 the ion exchange resin membrane was immersed in an aqueous solution of 0.5 mol / l tetraethylammonium chloride and dried, and then 0.2 mol / l ethylmethylimidazolium trifluoromethanesulfonimide salt.
  • a polymer actuator element of Example 6 was obtained by immersing in an aqueous solution of (EMITFSI) at room temperature and air-drying it at room temperature for 2 hours or more to evaporate water.
  • EMITFSI aqueous solution of (EMITFSI)
  • Example 7 instead of an aqueous solution of 0.2 mol / l ethylmethylimidazolium trifluoromethanesulfonimide salt, an aqueous solution of 0.2 mol / l ethylmethylimidazolium hexafluorophosphate (EMI PF) was used. Except that, the polymer activity of Example 7 was the same as Example 6.
  • Example 8 0.2 mol / l ethylmethylimidazole tetrafluoroborate (EM IBF) was used. Except that, the polymer activity of Example 8 was the same as Example 6.
  • Example 9 A polymer actuator element of Example 9 was obtained in the same manner as Example 6, except that an aqueous solution of TMPATFSI was used.
  • Example 10 0.2 mol / l 1-butyl 3-methylimidazolium tetrafluoroborate (BMIBF) aqueous solution was used.
  • BMIBF 0.2 mol / l 1-butyl 3-methylimidazolium tetrafluoroborate
  • Example 11 0.2 molZl aqueous solution of ethylmethylimidazolium trifluoromethanesulfonimide salt, 0.2 mol / l 1_hexyl 3-methylimidazolium hexaoxalate (H MIPF) was used. Except for the polymer polymer of Example 11 in the same manner as Example 6.
  • a solvent for immersing the cut ion exchange resin membrane was changed to 0.5 mol / l tetrachloride chloride.
  • the polymer activator element of the comparative example was prepared in the same manner as in Example 1 except that a 0.5 mol / l aqueous solution of tetraethylene ammonium chloride was used instead of the diethylene glycol solution of tylene ammonium. Obtained.
  • a polymer terminal is used at the platinum terminal so that each of the pair of metal electrodes can be energized at a position 2 mm inside from one end.
  • the film was sandwiched in the thickness direction of the actuator element so that the film surface was parallel to the gravity direction.
  • a potentiostat DC mode, trade name “Potentio Galvanostat HA-501”, manufactured by Hokuto Denko Co., Ltd.
  • one of the pair of metal electrodes is a positive electrode and the other is a negative electrode.
  • diethylene glycol which is a polar solvent having a boiling point of 245 ° C.
  • the element as a solvent. Therefore, even after 24 hours, that is, after 1 day, an applied voltage of 1.2 V is 100 A displacement angle of more than ° was shown.
  • the high molecular weight actuator element of the comparative example contained water as a polar solvent having a boiling point of 100 ° C., no displacement occurred after 24 hours.
  • the polymer actuator elements of Examples 2 to 5 contain polar solvents having a boiling point of 204 to 290 ° C as the solvents, the applied voltage 1.
  • the displacement angle was more than 50 ° at 2V.
  • the displacement angle after 24 hours was 80% of the displacement angle after 1 minute, which was good with little decrease in displacement.
  • Examples 6 to 11 The polymer actuator elements of 11 had a swelling degree of 14.0-22.1% and a large displacement angle, but there was almost no decrease in displacement. In addition, the polymer actuator elements of Examples 6 to 11 were good with little decrease in displacement even when left for one month in an open system at room temperature without covering.
  • a polymer actuator element using an ionic liquid is not very suitable for applications requiring a large amount of displacement, but is preferably used for applications requiring a small amount of displacement, such as a switching device.
  • a polar organic solvent can be suitably used as the organic compound that is liquid at normal pressure and room temperature with a boiling point of 180 ° C. or higher.
  • the boiling point is 180% for applications that can be displaced even after one month in a room temperature release system where the amount of displacement is negligible even if left for one day.
  • An ionic liquid can be suitably used as the organic compound that is liquid at normal temperature and room temperature, which is not lower than ° C.
  • the polar organic solvent and the ionic liquid may be mixed at an arbitrary ratio.
  • Examples 1 to 11 Even when the polymer actuator elements of 11 were coated and scratched, they were damaged by scratches compared to the polymer actuator elements using an aqueous solvent as in Comparative Example 1. Even in a released state, it can be driven for a long time. Further, when the polymer actuator elements of Examples:! To 11 are not coated, the coating layer does not hinder the bending, and therefore the bending inherent in the element can be performed.
  • the polymer actuator element of the present invention can be used as an actuator element that generates displacement or bending displacement.
  • the laminate is combined with a device that converts the bending motion into a linear motion, thereby forming an actuator that produces a linear displacement.
  • An actuator that generates a linear displacement or a bending displacement can be used as a driving unit that generates a linear driving force or a driving unit that generates a driving force for moving a track-type track composed of an arcuate portion.
  • the actuator can also be used as a pressing portion that performs a linear operation.
  • the actuator is an office equipment, an antenna, a device such as a bed or a chair, a medical device, an engine, an optical device, a fixture, a side trimmer, a vehicle, a lifting device, a food processing device, a cleaning device, a measurement device.
  • a drive unit that generates a linear drive force or a drive unit that generates a drive force for moving a track-type orbit made of a circular arc, or a linear or curved operation It can use suitably as a press part to do.
  • the actuator is, for example, a track-type track including a drive unit or a circular arc unit that generates a linear drive force in a valve, a brake, and a lock device used in all machines including the above-described devices such as OA devices and measurement devices. It can be used as a driving unit that generates a driving force for moving the oscillating member or a pressing unit that performs a linear operation.
  • a positioning device drive unit in general mechanical equipment, a positioning device drive unit, a posture control device drive unit, a lifting device drive unit, a transport device drive unit, and a movement device drive unit.
  • a drive unit for an adjustment device such as an amount and a direction
  • a drive unit for an adjustment device such as a shaft
  • a drive unit for a guidance device such as a shaft
  • a drive unit for a guidance device such as a shaft
  • a pressing unit for a pressing device since the actuator can make a rotational movement, the drive unit of the switching device, the drive unit of the reversing device such as a transported object, the drive unit of the scraping device such as a wire, and the drive of the traction device It can also be used as a drive unit for a right and left swiveling device such as a swinging part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)

Abstract

A polymer actuator element having metal electrodes and an electrolyte containing a polymer electrolyte, wherein the metal electrodes are formed in a manner that they can form a pair, the metal electrodes contact with the electrolyte, an organic compound having a boiling point of 180˚C or higher and being liquid under an ordinary pressure and at an ordinary temperature is contained in the electrolyte, and the electrolyte comprises an ion exchange resin being swollen with the organic compound.

Description

明 細 書  Specification
空中駆動高分子ァクチユエータ素子  Air-driven polymer actuator element
技術分野  Technical field
[0001] 本発明は、イオン交換樹脂を含む電解質と接するように形成された対の金属電極 に電圧を印加することにより変位乃至変形させることによりァクチユエータ素子として 機能する高分子ァクチユエータ素子に関し、特に、大気圧下の空気中での環境下に おいて、覆い無しであっても、 1日以上駆動することができる空中駆動の高分子ァク チユエータ素子に関する。 背景技術  [0001] The present invention relates to a polymer actuator element that functions as an actuator element by applying a voltage to a pair of metal electrodes formed so as to be in contact with an electrolyte containing an ion exchange resin, and thereby functioning as an actuator element. The present invention relates to an air-driven polymer actuator element that can be driven for one day or more even in the environment in air at atmospheric pressure without a cover. Background art
[0002] 従来、高分子ァクチユエータ素子として、イオン交換樹脂成形品と、該イオン交換 樹脂成形品の表面に相互に絶縁状態で形成された金属電極とを備え、前記イオン 交換樹脂成形品の含水状態において、前記金属電極間に電位差をかけて、イオン 交換樹脂成形品に変位および変形を生じさせることによりァクチユエータ素子として 機能する高分子ァクチユエータ素子が提供されている (例えば、特許文献 1)。  Conventionally, as a polymer actuator element, an ion exchange resin molded article and a metal electrode formed in an insulated state on the surface of the ion exchange resin molded article are provided, and the water content state of the ion exchange resin molded article In US Pat. No. 6,053,086, there is provided a polymer actuator element that functions as an actuator element by applying a potential difference between the metal electrodes to cause displacement and deformation of the ion exchange resin molded product (for example, Patent Document 1).
[0003] この高分子ァクチユエータ素子は、軽量であって、柔軟であることから、力テーテノレ 等の医療用デバイスの導入部等として、好適に用いることができる。さらには、前記高 分子ァクチユエータ素子は、軽量で構成が簡単であることから、種々の駆動装置また は押圧装置としての応用が期待される。  [0003] Since this polymer actuator element is lightweight and flexible, it can be suitably used as an introduction part of a medical device such as a force tensioner. Furthermore, since the high molecular weight actuator element is light and simple in configuration, it is expected to be applied as various driving devices or pressing devices.
[0004] 特許文献 1 :特許第 2961125号公報  [0004] Patent Document 1: Japanese Patent No. 2961125
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 前記高分子ァクチユエータ素子は、ナトリウムイオンや 4級アンモニゥムイオンなど のイオンを含む水溶液中では、一対の金属電極に電圧を印加して、大きな変位乃至 変位を長時間駆動することが可能である。しかし、水溶液中から前記高分子ァクチュ エータ素子を取り出して、空気中に前記高分子ァクチユエータ素子を設置した状態 では、水が蒸発してしまって、電荷のキャリアであるイオンの移動を生じなくなる。その ため、前記高分子ァクチユエータ素子は、被覆無しに空気に曝した状態では水が蒸 発するために、初期の駆動 (変位量)を 1時間も維持することができない。 [0005] In the aqueous solution containing ions such as sodium ions and quaternary ammonium ions, the polymer actuator element can drive a large displacement or a displacement for a long time by applying a voltage to a pair of metal electrodes. It is. However, in a state where the polymer actuator element is taken out from the aqueous solution and the polymer actuator element is installed in the air, water evaporates and ions serving as charge carriers do not move. For this reason, the polymer actuator element is water-steamed when exposed to air without coating. As a result, the initial drive (displacement) cannot be maintained for an hour.
[0006] 前記高分子ァクチユエータ素子は、屈曲乃至変位をするために、各種機器におけ る駆動装置に用いることが可能である。しかし、前記高分子ァクチユエータ素子は、 初期の駆動を 1時間も維持することができないために、実質的には、水の蒸発による 水溶液中以外での環境下での駆動は、実質的に困難である。したがって、前記高分 子ァクチユエータ素子を各種機器の駆動装置に用レ、る場合においては、用途に制 限がある。 [0006] The polymer actuator element can be used for a driving device in various devices in order to bend or displace. However, since the polymer actuator element cannot maintain the initial driving for 1 hour, it is substantially difficult to drive in an environment other than in an aqueous solution due to evaporation of water. is there. Therefore, there is a limit to the use in the case where the high-molecular-weight actuator element is used for a driving device of various devices.
[0007] また、前記高分子ァクチユエータ素子を、可撓性を有する高分子で被覆して、素子 力 の水の蒸発を防止した場合であっても、前記高分子ァクチユエータ素子の駆動 により被覆層にヮレなどが生じると、水が前記高分子ァクチユエータ素子から蒸発す る。そのため、前記高分子ァクチユエータ素子は、被覆層を設けない場合には大気 中では 20分程度しか初期の変位量を維持することができなレ、ので、被覆層を設けた 場合であっても被覆層のヮレの発生により数時間程度で初期の変位量から大きく低 下をする。つまり、前記高分子ァクチユエータ素子を被覆した場合であっても、駆動 に際しては、被覆樹脂のヮレが無レ、ことを確認しながら駆動させなければならなレ、。 そのために、前記高分子ァクチユエータ素子を用いた駆動装置は、可撓性を有する 樹脂で被覆された場合であっても、監視負担のために、長期間用いる用途には不向 きであり、用途が制限される。  [0007] Even when the polymer actuator element is coated with a flexible polymer to prevent evaporation of water due to the element force, the polymer actuator element is driven to the coating layer. When dripping or the like occurs, water evaporates from the polymer actuator element. For this reason, the polymer actuator element can maintain the initial displacement only for about 20 minutes in the atmosphere when the coating layer is not provided. Therefore, even when the coating layer is provided, the polymer actuator element can be coated. Due to the occurrence of wrinkling of the layer, the initial displacement is greatly reduced within a few hours. In other words, even when the polymer actuator element is coated, it is necessary to drive it while confirming that there is no coating resin cracking. For this reason, the driving device using the polymer actuator element is not suitable for long-term use because of the monitoring burden even when it is coated with a flexible resin. Is limited.
[0008] 本発明の目的は、大気圧下の空気中での環境下において、覆い無しであっても、 1 日以上駆動することができる空中駆動の高分子ァクチユエータ素子を提供することで ある。さらに、本発明の目的は、大気中に 1時間放置しても初期の屈曲量または変位 量とほぼ同等を示すことができる高分子ァクチユエータ素子を提供することでもある。 課題を解決するための手段  [0008] An object of the present invention is to provide an air-driven polymer actuator element that can be driven for one day or more in an environment in air at atmospheric pressure without a cover. Furthermore, an object of the present invention is also to provide a polymer actuator element that can exhibit almost the same amount of initial bending or displacement even after being left in the atmosphere for 1 hour. Means for solving the problem
[0009] 本発明者らは、鋭意検討の結果、本発明の高分子ァクチユエータ素子を用いること により、上記課題を解決することを見出した。本発明は、金属電極と、高分子電解質 を含む電解質とを含む高分子ァクチユエータ素子であって、前記金属電極が対を形 成することができるように形成され、前記金属電極が前記電解質と接し、前記電解質 中に沸点または分解温度が 180°C以上であり、常温常圧で液状の有機化合物を含 み、前記電解質が前記有機化合物で膨潤した状態である高分子ァクチユエータ素 子である。 As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by using the polymer actuator element of the present invention. The present invention is a polymer actuator element including a metal electrode and an electrolyte including a polymer electrolyte, wherein the metal electrode is formed so as to form a pair, and the metal electrode is in contact with the electrolyte. The electrolyte has a boiling point or decomposition temperature of 180 ° C or higher and contains a liquid organic compound at normal temperature and pressure. In other words, it is a polymer activator element in which the electrolyte is swollen with the organic compound.
発明の効果  The invention's effect
[0010] 本発明の高分子ァクチユエータ素子は、特定の極性溶媒を用いているので、高沸 点であるために、屈曲若しくは変位の変形をする駆動を、空気中など水溶液中以外 の環境で用いることができるので、多種多様の実用的用途に容易に用いることができ る。特に、前記高分子ァクチユエータ素子は長期間の駆動を必要とする用途に好適 である。前記高分子ァクチユエータ素子は、駆動させるために電圧を 3. 0Vより高い 特定の電圧を金属電極に印加しても、溶媒の電気分解が生じることがないために気 泡も発生しない。  [0010] The polymer actuator element of the present invention uses a specific polar solvent, and therefore has a high boiling point, and therefore uses a drive that bends or deforms in an environment other than in an aqueous solution such as air. Therefore, it can be easily used for a wide variety of practical applications. In particular, the polymer actuator element is suitable for applications that require long-term driving. In the polymer actuator element, even when a specific voltage higher than 3.0 V is applied to the metal electrode for driving, no electrolysis of the solvent occurs, so that no bubbles are generated.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明は、金属電極と、高分子電解質を含む電解質とを含む高分子ァクチユエ一 タ素子であって、前記金属電極が対を形成することができるように形成され、前記金 属電極が前記電解質と接し、前記電解質中に沸点または分解温度が 180°C以上で あり、常温常圧で液状の有機化合物を含み、前記電解質が前記有機化合物で膨潤 した状態である高分子ァクチユエータ素子である。前記高分子ァクチユエータ素子は 、特定の液状有機化合物を含むことによって、ァクチユエータ素子の屈曲量または変 位量の変化が生じにくい。そのため、前記高分子ァクチユエータ素子は、溶液中の 外、即ち空気中での駆動も可能であり、し力も溶液の蒸発がほとんど無いので長期 間の駆動に好適である。 [0011] The present invention provides a polymer activator element including a metal electrode and an electrolyte including a polymer electrolyte, wherein the metal electrode is formed so as to form a pair, and the metal electrode Is a polymer actuator element that is in contact with the electrolyte, has a boiling point or decomposition temperature of 180 ° C or higher in the electrolyte, contains a liquid organic compound at normal temperature and pressure, and the electrolyte is swollen with the organic compound. is there. When the polymer actuator element contains a specific liquid organic compound, the bending amount or the displacement amount of the actuator element is hardly changed. For this reason, the polymer actuator element can be driven outside the solution, that is, in the air, and is suitable for long-term driving because there is almost no evaporation of the solution.
[0012] 本発明の高分子ァクチユエータ素子に含まれる沸点または分解温度が 180°C以上 であって常温常圧で液状の有機化合物は、電解質中に含まれる。電解質中に前記 有機化合物が含まれることにより、前記ァクチユエータ素子は、常温常圧下で被覆無 しでの 1時間後においても、 S彭潤状態の変化を少なく保つことができ、屈曲量または 変位量が少ない。前記有機溶媒を含む事により電解質が膨潤した状態となり、前記 高分子ァクチユエータ素子の屈曲若しくは変位を容易に行うことができる。また、なお 、本願の沸点とは、当然の事ながら、常圧下での測定される沸点である。  [0012] The organic compound that has a boiling point or a decomposition temperature of 180 ° C or higher and is liquid at normal temperature and pressure is contained in the electrolyte. By including the organic compound in the electrolyte, the actuator element can keep the change in the S-humidity state small even after 1 hour without coating at normal temperature and pressure, and the bending amount or displacement amount. Less is. By containing the organic solvent, the electrolyte is swollen, and the polymer actuator element can be easily bent or displaced. In addition, the boiling point of the present application is, as a matter of course, a boiling point measured under normal pressure.
[0013] 前記有機化合物は、 180°C以上の沸点または分解温度を有し、常温常圧下で液 状であれば、特に限定されるものでない。前記有機化合物は、溶媒としての機能も有 することが好ましい。前記有機化合物としては、電荷のキャリアとなるイオンを含む塩 の溶媒となることができる有機化合物、または電荷のキャリアとなることができる有機 化合物であればよい。前記有機化合物は、極性有機溶媒及び/またはイオン性液 体が好ましい。 [0013] The organic compound has a boiling point of 180 ° C or higher or a decomposition temperature, and is liquid at room temperature and normal pressure. If it is a shape, it will not specifically limit. The organic compound preferably has a function as a solvent. The organic compound may be an organic compound that can serve as a salt solvent containing ions that serve as charge carriers, or an organic compound that can serve as charge carriers. The organic compound is preferably a polar organic solvent and / or an ionic liquid.
[0014] 前記極性有機溶媒は、 180°C以上の沸点または分解温度を有する極性有機溶媒 であれば、特に限定されるものではなレ、が、 245°C以上の沸点を有する極性有機溶 媒であることがより好ましい。前記極性溶媒としては、ジエチレングリコール、グリセリ ン、スルホラン、プロピレンカーボネート、ブチロラタトン又はこれらの混合物であること が更に好ましぐジエチレングリコール、グリセリン、スルホラン又はこれらの混合物で あることが特に好ましレ、。前記高分子ァクチユエータ素子に含まれる溶液の溶媒成分 が前記極性溶媒であることにより、前記高分子ァクチユエータ素子を密閉しない状態 でも 1日後に 50° 以上の屈曲を行うことができる。  [0014] The polar organic solvent is not particularly limited as long as it is a polar organic solvent having a boiling point or decomposition temperature of 180 ° C or higher, but a polar organic solvent having a boiling point of 245 ° C or higher. It is more preferable that The polar solvent is particularly preferably diethylene glycol, glycerin, sulfolane or a mixture thereof, more preferably diethylene glycol, glycerin, sulfolane, propylene carbonate, butyrolatatatone or a mixture thereof. Since the solvent component of the solution contained in the polymer actuator element is the polar solvent, bending of 50 ° or more can be performed after one day without sealing the polymer actuator element.
[0015] また、従来の高分子ァクチユエータ素子は、比較的低い電圧である 1. 2Vの印加電 圧では、例えば角度が 270° 以上の屈曲を生じさせるためには、イオン交換樹脂と の界面における金属電極の表面積を大きくするため、製造時に複雑な前処理を施す 必要がある。しかし、本発明の高分子ァクチユエータ素子は、 3. 0Vより大きい特定の 電圧を印加しても水の電気分解による気体の発生が一定時間ほとんど無い場合があ る。このような条件において用いる場合には、本発明の高分子ァクチユエータ素子は 、より簡単に電極を形成することができるので、製造が容易である。なお、本願におい て、屈曲乃至変位の程度を表す角度 (° )は、高分子ァクチユエータ素子の先端に おける屈曲乃至変位凸面の接線方向と重力方向とのなす角(変位角)を測定するこ とにより求められるものである。  [0015] In addition, a conventional polymer actuator element has a relatively low voltage of 1.2 V. For example, in order to cause bending at an angle of 270 ° or more, an interface with an ion exchange resin is used. In order to increase the surface area of the metal electrode, it is necessary to perform complicated pretreatments during manufacturing. However, in the polymer actuator element of the present invention, even when a specific voltage higher than 3.0 V is applied, there is a case where gas generation due to water electrolysis hardly occurs for a certain period of time. When used under such conditions, the polymer actuator element of the present invention can be easily manufactured because an electrode can be formed more easily. In the present application, the angle (°) representing the degree of bending or displacement is the angle (displacement angle) formed by the tangential direction of the bent or displaced convex surface at the tip of the polymer actuator element and the gravity direction. Is required.
[0016] 本発明で用いられる沸点または分解温度が 180°C以上である常温常圧で液状の 有機化合物は、イオン性液体を用いることができる。前記イオン性液体は、常温溶融 塩とも呼ばれるものであり、室温での蒸気圧がほとんどない。そのため、前記電解質 力 Wオン交換樹脂を含み、該イオン交換樹脂がイオン性液体で膨潤した状態である 本発明の高分子ァクチユエータ素子は、 1ヶ月の長期間でも、初期とほぼ同等の屈 曲または変位をすることができる。 An ionic liquid can be used as the organic compound that is liquid at room temperature and normal pressure and has a boiling point or decomposition temperature of 180 ° C. or higher, which is used in the present invention. The ionic liquid is also called a room temperature molten salt and has almost no vapor pressure at room temperature. Therefore, the polymer actuator element of the present invention, which includes the electrolyte power W on-exchange resin and the ion exchange resin is swollen with an ionic liquid, has a bending resistance substantially equal to the initial value even for a long period of one month. Can be tuned or displaced.
[0017] 前記イオン性液体は、テトラアルキルアンモニゥムイオン、ジアルキルイミダゾリゥム イオン、トリアルキルイミダゾリゥムイオン、ビラゾリゥムイオン、ピロリウムイオン、ピロリ ニゥムイオン、ピロリジニゥムイオン、及びピベリジニゥムイオンからなる群より少なくと も一種選ばれたカチオンと、  [0017] The ionic liquid is composed of tetraalkyl ammonium ion, dialkyl imidazolium ion, trialkyl imidazolium ion, virazolium ion, pyrrolium ion, pyrrolium ion, pyrrolidinium ion, and piberidinium ion. And at least one selected cation from the group consisting of
PF _、 BF _、 A1C1 _、 CIO _、及び下式(1)で表されるスルホニゥムイミドア二オン  PF_, BF_, A1C1_, CIO_, and sulfonimide anion represented by the following formula (1)
6 4 4 4  6 4 4 4
力 なる群より少なくとも一種選ばれたァニオン  Anion selected from at least one group
との組み合わせからなる塩である請求項 2に記載の高分子ァクチユエータ素子。  The polymer actuator element according to claim 2, which is a salt comprising a combination of
(C F SO ) (C F SO ) N— (1)  (C F SO) (C F SO) N— (1)
n (2n+ l) 2 m (2m+ l) 2  n (2n + l) 2 m (2m + l) 2
(ここで、 n及び mは任意の整数。 )  (Where n and m are arbitrary integers.)
[0018] 前記テトラアルキルアンモニゥムイオンとしては、特に限定されるものではないが、ト リメチルプロピルアンモニゥム、トリメチルへキシルアンモニゥム、テトラペンチルアン モニゥムを用いることができる。 [0018] The tetraalkylammonium ion is not particularly limited, and trimethylpropylammonium, trimethylhexylammonium, and tetrapentylammonium ions can be used.
[0019] 前記イミダゾリウムカチオンは、ジアルキルイミダゾリゥムイオン及び/またはトリアル キルイミダゾリゥムイオンを用いることができる。例えば、前記イミダゾリウムカチオンは 、特に限定されるものではなレ、が、 1ーェチルー 3—メチルイミダゾリゥムイオン、 1 へキシルー 3メチルイミダゾリゥムイオン、 1ーブチルー 3—メチルイミダゾリゥムイオン 、 1 , 3—ジメチルイミダゾリゥムイオン、 1ーメチルー 3—ェチルイミダゾリゥムイオン、 1 , 2, 3 トリメチルイミダゾリゥムイオン、 1, 2 ジメチルー 3 ェチルイミダゾリゥムィ オン、 1, 2 ジメチルー 3 プロピルイミダゾリゥムイオン、 1ーブチルー 2, 3 ジメチ ルイミダゾリゥムイオンを例示することができる。  [0019] The imidazolium cation may be a dialkyl imidazolium ion and / or a trialkyl imidazolium ion. For example, the imidazolium cation is not particularly limited, but includes 1-ethyl-3-methyl imidazolium ion, 1 hexyl 3 methyl imidazolium ion, 1-butyl 3-methyl imidazolium ion, 1, 3— Dimethyl imidazolium ion, 1-methyl-3-ethyl imidazolium ion, 1, 2, 3 Trimethyl imidazolium ion, 1, 2 Dimethyl -3-ethyl imidazolium ion, 1, 2 Dimethyl -3 propyl imidazolium ion, 1-butyl 2 , 3 Dimethyl imidazolium ion.
[0020] 前記アルキルピリジニゥムイオンは、特に限定されるものではなレ、が、 N—ブチルピ リジユウムイオン、 N—メチルピリジニゥムイオン、 N—ェチルピリジニゥムイオン、 N— プロピルピリジニゥムイオン、 1 _ェチル _ 2 _メチルピリジニゥム、 1 _ブチル _4—メ チルピリジニゥム、 1 _ブチル一2, 4—ジメチルピリジニゥム、を用いることができる。  [0020] The alkylpyridinium ion is not particularly limited, but N-butylpyridinium ion, N-methylpyridinium ion, N-ethylpyridinium ion, N-propylpyridinium ion Mion, 1_ethyl_2_methylpyridinium, 1_butyl_4-methylpyridinium, 1_butyl-1,4-dimethylpyridinium can be used.
[0021] 前記ピロリウムカチオンは、特に限定されるものではなレ、が、 1 , 1—ジメチルピロリウ ムイオン、 1 _ェチル _ 1 _メチルピロリウムイオン、 1 _メチル_ 1 _プロピルピロリゥ ムイオン、 1—ブチル一 1—メチルピロリウムイオンを用いることができる。 [0022] 前記ピラゾリウムカチオンは、特に限定されるものではないが、 1 , 2—ジメチルピラ ゾリゥムイオン、 1ーェチルー 2—メチルビラゾリゥムイオン、 1 プロピル 2—メチル ビラゾリゥムイオン、 1—ブチル 2—メチルビラゾリゥムイオンを用いることができる。 [0021] The pyrrolium cation is not particularly limited, but 1, 1-dimethylpyrrolium ion, 1_ethyl_1_methylpyrrolium ion, 1_methyl_1_propylpyrrolium ion, 1-Butyl 1-methylpyrrolium ion can be used. [0022] The pyrazolium cation is not particularly limited, however, 1,2-dimethylpyrazolium ion, 1-ethyl-2-methylvirazolium ion, 1-propyl 2-methylvirazolium ion, 1-butyl 2 —Methyl virazolium ion can be used.
[0023] 前記ピロリュウムカチオンは、特に限定されるものではなレ、が、 1, 2—ジメチルピロリ ニゥムイオン、 1 _ェチル _ 2 _メチルピロリニゥムイオン、 1 _プロピル _ 2—メチルビ 口リニゥムイオン、 1 _ブチル _ 2_メチルピロリニゥムイオンを用いることができる。  [0023] The pyrrolium cation is not particularly limited, but 1,2-dimethylpyrrolium ion, 1_ethyl_2_methylpyrrolonium ion, 1_propyl_2-methylbiphenyl ion, 1 _Butyl _ 2_methylpyrrolium ion can be used.
[0024] 前記ピロリジユウムカチオンは、特に限定されるものではなレ、が、 1, 1—ジメチルピロ リジユウムイオン、 1 _ェチル _ 1 _メチルピロリジニゥムイオン、 1 _メチル_ 1 _プロ ピルピロリジニゥムイオン、 1—ブチル一 1—メチルピロリジニゥムイオンを用いることが できる。  [0024] The pyrrolidinium cation is not particularly limited, but 1,1-dimethylpyrrolidinium ion, 1_ethyl_1_methylpyrrolidinium ion, 1_methyl_1_propylpyrrolidine 1-butyl-1- 1-methylpyrrolidinium ion can be used.
[0025] 前記ピペリジニゥムカチオンは、特に限定されるものではなレ、が、 1 , 1 _ジメチルビ ペリジニゥムイオン、 1 _ェチル _ 1—メチルビペリジニゥムイオン、 1 _メチル_ 1 _ プロピルピペリジニゥムイオン、 1ーブチルー 1ーメチルビペリジニゥムイオンを用いる こと力 Sできる。  The piperidinium cation is not particularly limited, but 1, 1_dimethylbiperidinium ion, 1_ethyl_1-methylbiperidinium ion, 1_methyl_1_propyl The ability to use piperidinium ions and 1-butyl-1-methylbiperidinium ions.
[0026] 前記イオン性液体は、上記ァニオンと上記カチオンとの組み合わせが特に限定さ れるものではないが、例えば、 1—メチル 3—ェチルイミダゾリゥムトリフルォロメタン スルホイミド(EMITFSI)、 1ーメチルー 3—イミダゾリゥムテトラフルォロボレート(EM IBF )、 1ーメチルー 3—イミダゾリゥムへキサフルォロリン酸(EMIPF )、トリメチルプ [0026] The ionic liquid is not particularly limited to the combination of the anion and the cation. For example, 1-methyl 3-ethylimidazolium trifluoromethane sulfoimide (EMITFSI), 1-methyl-3 —Imidazolium tetrafluoroborate (EM IBF), 1-methyl-3-imidazolium hexafluorophosphate (EMIPF), trimethyl
4 6 口ピルアンモニゥムトリフルォロメタンスルホイミド、 1一へキシルー 3—メチルイミダゾリ ゥムテトラフルォロボレート、 1一へキシルー 3—メチルイミダゾリゥムへキサフルォロリ ン酸、 1一へキシルー 3—メチルイミダゾリゥムトリフルォロメタンスルホイミドを用いるこ とができる。 4 6-neck pyrammonium trifluoromethanesulfoimide, 1 mono-hexyl 3-methyl imidazole tetrafluoroborate, 1 mono-hexyl 3-methyl imidazole hexafluoro fluoro acid, 1 mono-hexyl 3 —Methylimidazolium trifluoromethanesulfonimide can be used.
[0027] 本発明の高分子ァクチユエータ素子において、前記電解質が前記イオン交換樹脂 と前記イオン性液体を含むことにより、前記イオン交換樹脂が前記イオン性液体で膨 潤した状態となったゲル電解質となることができる。前記電解質がイオン交換樹脂と イオン性液体とを含むことにより、大気圧下で 1ヶ月放置しても、前記高分子ァクチュ エータ素子は駆動することができる。更に、イオン交換樹脂とイオン性液体とを含ん だゲル電解質は、可撓性があり、高濃度の電解質を保持することが可能であるため に、ァクチユエータ素子及びキャパシタの電解質として好適である。 In the polymer actuator element of the present invention, when the electrolyte includes the ion exchange resin and the ionic liquid, the ion exchange resin becomes a gel electrolyte in a state of being swollen with the ionic liquid. be able to. When the electrolyte contains an ion exchange resin and an ionic liquid, the polymer actuator element can be driven even when left at atmospheric pressure for one month. Furthermore, gel electrolytes containing ion exchange resins and ionic liquids are flexible and can hold a high concentration of electrolyte. Moreover, it is suitable as an electrolyte for an actuator element and a capacitor.
[0028] 前記イオン交換樹脂と前記イオン性液体とを含む電解質は、その製造方法は特に 限定されるものではなレ、が、沸点が 100°C以下の公知の極性溶媒中にイオン性液体 を 1〜90重量%の割合含む混合溶液にイオン交換樹脂を浸漬し、室温にて、寸法 若しくは重量の変化がなくなるまで放置、または時間以上放置することにより、容易に 得ること力 Sできる。  [0028] The production method of the electrolyte containing the ion exchange resin and the ionic liquid is not particularly limited, but the ionic liquid is contained in a known polar solvent having a boiling point of 100 ° C or lower. It can be easily obtained by immersing the ion exchange resin in a mixed solution containing 1 to 90% by weight and leaving it at room temperature until there is no change in size or weight, or leaving it for more than an hour.
[0029] 本発明の高分子ァクチユエータ素子は、金属電極とイオン交換樹脂を電解質とを 含み、前記金属電極が対を形成することができるように形成され、前記金属電極が電 解質と接し高分子ァクチユエータ素子であって、前記金属電極を複数備えた構造を 有している。また、前記ァクチユエータ素子は、イオン交換樹脂層を挟んで両側に電 極層を 1つずつ備えても良ぐ両側若しくは片側に電極層を複数備えていても良い。 前記ァクチユエータ素子の具体的な構造としては、例えば、一対の電極層がイオン 交換樹脂層を挟んで電極対を形成したァクチユエータ素子を用いることもできるし、 管状のイオン交換樹脂の外側面及び/又は内側面の表面上に複数の金属電極を 備えていても良い。  [0029] The polymer actuator element of the present invention includes a metal electrode and an ion exchange resin as an electrolyte, and is formed so that the metal electrode can form a pair. The metal electrode is in contact with the electrolyte and has a high height. A molecular actuator element having a structure including a plurality of the metal electrodes. In addition, the actuator element may include one electrode layer on both sides of the ion exchange resin layer, or may include a plurality of electrode layers on both sides or one side. As a specific structure of the actuator element, for example, an actuator element in which a pair of electrode layers form an electrode pair with an ion exchange resin layer sandwiched between them can be used, and an outer surface of a tubular ion exchange resin and / or A plurality of metal electrodes may be provided on the inner surface.
[0030] 前記の電極層がイオン交換樹脂を挟んで電極対を形成した高分子ァクチユエータ 素子としては、公知の方法により得ることができる。例えば、膜状、板状、若しくは管 状の形状を有するイオン交換樹脂有体物に無電解メツキをすることにより、イオン交 換樹脂有体物表面又はイオン交換樹脂有体物表面から内側の範囲に金属層を形 成させて、該金属層金属を電極層として用いることにより、前記高分子ァクチユエータ 素子である金属 イオン交換樹脂接合体を得ることもできる。  [0030] The polymer actuator element in which the electrode layer forms an electrode pair with an ion exchange resin interposed therebetween can be obtained by a known method. For example, an electroless plating is applied to an ion exchange resin tangent having a membrane shape, a plate shape, or a tubular shape, thereby forming a metal layer on the surface of the ionic exchange resin tangible material or the inner surface of the ion exchange resin tangible surface. Then, by using the metal layer metal as an electrode layer, a metal ion exchange resin joined body which is the polymer actuator element can be obtained.
[0031] 前記無電解メツキとしては、例えば、次の様な無電解メツキ方法を好適に用いること ができる。粗面化処理を行った後に、イオン交換樹脂を、水中に浸漬して膨潤させた 状態で、イオン交換樹脂に白金錯体ゃ金錯体等の金属錯体を吸着させる吸着工程 を行う。次いで吸着された金属錯体を還元剤により還元させて金属を析出させる還元 工程を行い、還元工程後に所望により還元剤を洗浄除去する洗浄工程を行う。  [0031] As the electroless plating, for example, the following electroless plating method can be preferably used. After the roughening treatment, an adsorption step is performed in which the ion exchange resin is immersed in water and swollen to adsorb a metal complex such as a platinum complex or a gold complex to the ion exchange resin. Next, a reduction process is performed in which the adsorbed metal complex is reduced with a reducing agent to deposit a metal, and a cleaning process is performed after the reduction process to remove the reducing agent as desired.
[0032] この無電解メツキでは、電極である金属層を通電ゃ屈曲乃至変位に充分な厚さと するために、吸着工程、還元工程及び洗浄工程を 1サイクルとして繰り返し行うことが できる。このようにして得られたァクチユエータ素子は、イオン交換樹脂の内部方向に 電極層が成長して電極が形成され、イオン交換樹脂と電極層との界面において、電 極層の断面がフラクタル状の構造を形成しているので、前記電極層と前記イオン交 換樹脂層との界面で大きな電気二重層を持つことができる。更に、前記電極層がィ オン交換樹脂層の内部方向にフラクタル状の構造を形成しているので、アンカー効 果が働くために、前記イオン交換樹脂接合体は、繰り返し曲げても耐久性を有する。 In this electroless plating, the adsorption process, the reduction process and the cleaning process can be repeated as one cycle in order to make the metal layer as an electrode thick enough to bend or displace when energized. it can. In the thus obtained actuator element, an electrode layer grows in the internal direction of the ion exchange resin to form an electrode, and the electrode layer has a fractal cross section at the interface between the ion exchange resin and the electrode layer. Therefore, a large electric double layer can be provided at the interface between the electrode layer and the ion exchange resin layer. Furthermore, since the electrode layer forms a fractal structure in the inner direction of the ion exchange resin layer, the ion exchange resin joined body is durable even when it is repeatedly bent in order to have an anchor effect. .
[0033] 本発明の高分子ァクチユエータ素子の電解質に含まれるイオン交換樹脂は、特に 限定されるものではない。前記イオン交換樹脂としては、特に限定されるものではなく 、公知のイオン交換樹脂を用いることができ、陽イオン交換樹脂を用いる場合には、 ポリエチレン、ポリスチレン、フッ素樹脂などにスルホン酸基、カルボキシル基などの 親水性官能基を導入したものを用いることができる。このような樹脂としては、例えば パーフルォロスルホン酸樹脂(商品名「Nafion」、 DuPont社製)、パーフルォロカル ボン酸樹脂(商品名「フレミオン」、旭硝子社製)、 ACIPLEX (旭化成工業社製)、 N EOSEPTA (トクャマ社製)を用いることができる。  [0033] The ion exchange resin contained in the electrolyte of the polymer actuator element of the present invention is not particularly limited. The ion exchange resin is not particularly limited, and a known ion exchange resin can be used. When a cation exchange resin is used, a sulfonic acid group, a carboxyl group, or the like is added to polyethylene, polystyrene, fluororesin, or the like. Those having a hydrophilic functional group introduced therein can be used. Examples of such resins include perfluorosulfonic acid resin (trade name “Nafion”, manufactured by DuPont), perfluorocarbonic resin (trade name “Flemion”, manufactured by Asahi Glass), ACIPLEX (manufactured by Asahi Kasei Kogyo Co., Ltd.). N EOSEPTA (manufactured by Tokuyama Corporation) can be used.
[0034] 無電解メツキの吸着工程に用いられる金属錯体溶液は、還元されることにより形成 される金属層が電極層として機能することができる金属の錯体を含むものであれば、 特に限定されるものではない。前記金属錯体は、イオン化傾向の小さい金属が電気 化学的に安定であるために金錯体、白金錯体、パラジウム錯体、ロジウム錯体、又は ルテニウム錯体等の金属錯体を使用することが好ましぐ析出した金属が電極として 使用されるため、通電性が良好で電気化学的な安定性に富んだ貴金属からなる金 属錯体が好ましぐさらに電気分解が比較的起こり難い金力 なる金錯体が好ましい 。前記金属塩溶液は、溶媒が特に限定されるものではないが、金属塩の溶解が容易 であって取り扱いが容易であることから溶媒が水を主成分とすることが好ましぐ前記 金属塩溶液が金属塩水溶液であることが好ましい。したがって、前記金属錯体溶液と しては、金属錯体水溶液であることが好ましぐ特に金錯体水溶液または白金錯体水 溶液であることが好ましぐさらに金錯体水溶液が好ましい。  [0034] The metal complex solution used in the electroless plating adsorption process is particularly limited as long as the metal layer formed by reduction contains a metal complex that can function as an electrode layer. It is not a thing. The metal complex is preferably a deposited metal, preferably a metal complex such as a gold complex, a platinum complex, a palladium complex, a rhodium complex, or a ruthenium complex because a metal with a low ionization tendency is electrochemically stable. Is used as an electrode, a metal complex made of a noble metal with good electrical conductivity and high electrochemical stability is preferred, and a gold complex with relatively low electrolysis is preferred. The metal salt solution is not particularly limited, but the metal salt solution preferably contains water as a main component because the metal salt can be easily dissolved and handled easily. Is preferably an aqueous metal salt solution. Therefore, the metal complex solution is preferably an aqueous metal complex solution, particularly preferably an aqueous gold complex solution or an aqueous platinum complex solution, and more preferably an aqueous gold complex solution.
[0035] 無電解メツキの還元工程に用いられる還元剤としては、イオン交換樹脂に吸着され る金属錯体溶液に使用される金属錯体の種類に応じて、種類を適宜選択して使用 することができ、例えば亜硫酸ナトリウム、ヒドラジン、水素化ホウ素ナトリウム、亜リン 酸、次亜リン酸ナトリウム等を用いることができる。 [0035] The reducing agent used in the electroless plating reduction step is appropriately selected according to the type of metal complex used in the metal complex solution adsorbed on the ion exchange resin. For example, sodium sulfite, hydrazine, sodium borohydride, phosphorous acid, sodium hypophosphite and the like can be used.
[0036] 前記還元剤は析出させる金属種によって、適宜選択することもできる。還元により析 出させる金属がニッケノレまたはコバルトの場合には、還元剤として、ホスフィン酸ナトリ ゥム、ジメチノレアミノボラン、ヒドラジン、テトラヒドロホウ酸カリウムを用いることができる 。還元により析出させる金属がパラジウムの場合には、還元剤として、ホスフィン酸ナ トリウム、ホスホン酸ナトリウム、テトラヒドロホウ酸カリウムを用いることができる。還元に より析出させる金属が銅の場合には、還元剤として、ホルマリン、ホスホン酸ナトリウム 、テトラヒドロホウ酸カリウムを用いることができる。還元により析出させる金属が銀また は金の場合には、還元剤として、ジメチルァミノボラン、テトラヒドロホウ酸カリウムを用 レ、ることができる。還元により析出させる金属が白金の場合には、還元剤として、ヒドラ ジン、テトラヒドロホウ酸ナトリウムを用いることができる。還元により析出させる金属が 錫の場合には、還元剤として、三塩ィ匕チタンを用いることができる。さらに、還元剤は 、上記の種類に限られるものではなぐ白金黒などの触媒と共に用いられる水素、 Hg S、 HIや I—などの非金属の酸またはイオン、 Na (H PO )や Na S Oなどの低級酸  [0036] The reducing agent may be appropriately selected depending on the metal species to be deposited. When the metal to be precipitated by reduction is Nikkenole or Cobalt, sodium phosphinate, dimethylenoborane, hydrazine, or potassium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is palladium, sodium phosphinate, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent. When the metal to be deposited by reduction is copper, formalin, sodium phosphonate, or potassium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is silver or gold, dimethylaminoborane or potassium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is platinum, hydrazine or sodium tetrahydroborate can be used as the reducing agent. When the metal deposited by reduction is tin, trisalt-titanium can be used as the reducing agent. Further, the reducing agent is not limited to the above types, but is used with catalysts such as platinum black, non-metallic acids or ions such as Hg S, HI and I—, Na (H 3 PO 4) and Na 2 SO Lower acid
2 2 2 2 3  2 2 2 2 3
素酸塩、 COや SOなどの低級酸化物、 Li、 Na, Cu、 Mg、 Zn、 Fe、 Fe (II)、 Sn (II)  Borate, lower oxides such as CO and SO, Li, Na, Cu, Mg, Zn, Fe, Fe (II), Sn (II)
2  2
、 Ti (III)、 Cr (II)などのイオン化傾向の大きい金属またはそれらのアマルガム及び 低原子価金属塩、 A1H〔(CH ) CHCH〕 や水素化リチウムアルミニウムなどの水素  , Ti (III), Cr (II) and other highly ionizable metals or their amalgams and low valent metal salts, hydrogen such as A1H [(CH) CHCH] and lithium aluminum hydride
3 2 2 2  3 2 2 2
化物、ジイミド、ギ酸、アルデヒド、糖類及び Lーァスコルビン酸などを、適宜用いるこ とちできる。  Compound, diimide, formic acid, aldehyde, saccharide, L-ascorbic acid and the like can be used as appropriate.
[0037] 前記還元剤は、還元される金属種に応じて、適宜選択することもできるが、メツキの 成長速度、析出した金属の粒子サイズ、フラクタル構造の金属電極とイオン交換樹脂 の接触面積、電極構造並びにメツキ後の樹脂の可撓性を変えるために、最適な還元 剤の種類を選択して用いることができる。また、還元工程における還元浴を所望の p Hとするために、前記還元剤の種類を適宜選択することもできる。  [0037] The reducing agent can be appropriately selected according to the metal species to be reduced. The growth rate of the metal, the particle size of the deposited metal, the contact area between the metal electrode having a fractal structure and the ion exchange resin, In order to change the electrode structure and the flexibility of the resin after plating, it is possible to select and use the optimum type of reducing agent. In addition, the kind of the reducing agent can be appropriately selected so that the reducing bath in the reduction step has a desired pH.
[0038] なお、金属錯体を還元する際に、必要に応じて、酸またはアルカリを添加してもよい。  [0038] When reducing the metal complex, an acid or an alkali may be added as necessary.
前記還元剤溶液の濃度は、金属錯体の還元により析出させる金属量を得ることがで きるのに十分な量の還元剤を含んでいればよぐ特に限定されるものではなレ、が、通 常の無電解メツキにより電極を形成する場合に用いられる金属塩溶液と同等の濃度 を用いることも可能である。また、還元剤溶液中には、イオン交換樹脂の良溶媒を含 むことができる。 The concentration of the reducing agent solution is not particularly limited as long as it contains a sufficient amount of reducing agent to obtain the amount of metal to be precipitated by reduction of the metal complex. It is also possible to use a concentration equivalent to that of the metal salt solution used when the electrode is formed by ordinary electroless plating. Further, the reducing agent solution can contain a good solvent for the ion exchange resin.
[0039] 本発明の高分子ァクチユエータ素子は、対を形成することができるように形成された 金属電極と接する電解質の内部に溶媒と塩とを含む。前記高分子ァクチユエータ素 子が屈曲乃至変位をすることができるように、前記高分子ァクチユエータ素子は、柔 軟性が有ることが好ましい。当該柔軟性を得るために、前記高分子ァクチユエータ素 子は、イオン交換樹脂が常温常圧で液状の有機化合物により膨潤している。前記膨 潤の度合いは、特に限定されるものではないが、前記高分子ァクチユエータ素子の 膨潤度、つまり、前記高分子電解質が乾燥した状態での厚さに対して高分子ァクチ ユエータ素子の膨潤した状態での厚さの増加率力 3〜200。/oであることが好ましぐ 5〜60%であることがより好ましい。前記膨潤度が 3%未満である場合には、変位屈 曲性能が劣り、前記膨潤度が 200%よりも大きい場合にも、変位屈曲性能が劣り、さ らに大きく引張り強度が低下することとなってしまう。なお、前記有機化合物は、電解 質中に含まれる力 電極層が多孔性の電極である場合には、前記溶媒の一部が塩と ともに、前金属電極層に含まれても良い。  [0039] The polymer actuator element of the present invention includes a solvent and a salt inside an electrolyte in contact with a metal electrode formed so as to be able to form a pair. The polymer actuator element is preferably flexible so that the polymer actuator element can be bent or displaced. In order to obtain the flexibility, in the polymer activator element, the ion exchange resin is swollen with a liquid organic compound at normal temperature and pressure. The degree of swelling is not particularly limited, but the degree of swelling of the polymer actuator element, that is, the thickness of the polymer electrolyte element with respect to the thickness of the polymer electrolyte in a dry state is swollen. Thickness increase rate power in state 3 ~ 200. / o is preferred. 5 to 60% is more preferred. When the degree of swelling is less than 3%, the displacement bending performance is inferior. When the degree of swelling is greater than 200%, the displacement bending performance is also inferior, and the tensile strength is greatly reduced. turn into. When the force electrode layer contained in the electrolyte is a porous electrode, a part of the solvent may be contained in the pre-metal electrode layer together with the salt.
[0040] また、本発明の高分子ァクチユエータ素子は、前記電解質が前記有機化合物が極 性有機溶媒である場合には、イオン性液体を用いた場合に比べて膨潤の度合レ、を 大きくすることから、大きな屈曲または変位が必要な用途に好適に用いることができる 。一方、前記有機化合物としてイオン性液体を用いた場合には、極性有機溶媒を用 レ、た場合に比べて膨潤度合いは小さいが、常温常圧で 1ヶ月程度の期間で開放系と して放置しても膨潤による体積変化が少ないので、前記高分子ァクチユエータ素子 は、覆いを設ける必要なしに、 1ヶ月程度の期間中に屈曲量若しくは変位量の大きな 変化をせずに駆動することができる。前記電解質を得るためには、イオン交換樹脂層 を前記有機化合物の液中に浸漬することにより得ることができる。例えば、前記高分 子ァクチユエータ素子力 Sイオン交換樹脂に無電解メツキを施すことにより金属電極が 形成された素子である場合には、前記高分子ァクチユエータ素子を、前記有機化合 物中の液中に一晩程度浸漬することにより、イオン交換樹脂が前記有機化合物によ り膨潤した状態の素子を得ることができる。 [0040] Further, in the polymer actuator element of the present invention, the degree of swelling of the electrolyte when the organic compound is a polar organic solvent is larger than that when an ionic liquid is used. Therefore, it can be suitably used for applications that require large bending or displacement. On the other hand, when an ionic liquid is used as the organic compound, the degree of swelling is small compared with the case where a polar organic solvent is used, but it is left as an open system at a room temperature and normal pressure for a period of about one month. However, since the volume change due to swelling is small, the polymer actuator element can be driven without a large change in the amount of bending or displacement during a period of about one month without the need for a cover. In order to obtain the electrolyte, it can be obtained by immersing the ion exchange resin layer in a liquid of the organic compound. For example, in the case of an element in which a metal electrode is formed by applying an electroless plating to the high molecular weight element power S ion exchange resin, the high molecular weight element element is placed in a liquid in the organic compound. By immersing for about one night, the ion exchange resin is made of the organic compound. An element in a swollen state can be obtained.
[0041] 本発明の高分子ァクチユエータ素子の電解質は、イオン交換樹脂が上記のイオン 性液体により膨潤した状態としてもよい。イオン性液体によりイオン交換樹脂が膨潤 状態とする場合において、イオン性液体にイオン交換樹脂を浸漬してもイオン交換樹 脂が膨潤しなレ、場合には、膨潤用溶媒とイオン性液体との混合溶液でイオン交換樹 脂を膨潤させた後に、膨潤用溶媒を蒸発させることで、イオン交換樹脂がイオン性液 体で膨潤した電解質を容易に得ることができる。また、前記膨潤用溶媒として高沸点 極性有機溶媒を使用し、素子内に残すこともできる。前記膨潤用溶媒は、イオン交換 樹脂を膨潤させることが可能であり、イオン性液体を溶解することができる溶媒である 。なお、上述の膨潤は、本願においては、無限膨潤を含まない。  [0041] The electrolyte of the polymer actuator element of the present invention may be in a state in which the ion exchange resin is swollen by the ionic liquid. When the ion exchange resin is swollen by the ionic liquid, the ion exchange resin does not swell even if the ion exchange resin is immersed in the ionic liquid. An electrolyte in which an ion exchange resin is swollen with an ionic liquid can be easily obtained by evaporating the swelling solvent after the ion exchange resin is swollen with the mixed solution. Further, a high boiling polar organic solvent can be used as the swelling solvent and left in the device. The swelling solvent is a solvent that can swell the ion exchange resin and dissolve the ionic liquid. The above-mentioned swelling does not include infinite swelling in the present application.
[0042] 本発明の高分子ァクチユエータ素子は、対を形成することができるように形成された 金属電極と接する電解質の内部に含まれる塩は、上記の常温常圧で液状の有機化 合物に溶解できるものであれば特に限定されるものではないが、前記高分子電解質 力 Sカチオンと対イオンを形成する場合には、:!〜 3価のカチオンの塩を用いることがで き、 Na +、 K +、 Li +等の 1価のカチオンを用いることが大きな屈曲若しくは変位を することができるために好ましぐイオン半径の大きなアルキルアンモニゥムイオンを 用いることがより大きな屈曲若しくは変位をすることができるために更に好ましレ、。前 記アルキルアンモニゥムイオンとしては、 CH N+H、 C H N+H、 (CH ) N+H、 (C H[0042] In the polymer actuator element of the present invention, the salt contained in the electrolyte in contact with the metal electrode formed so as to form a pair is converted into a liquid organic compound at room temperature and normal pressure. Although it is not particularly limited as long as it can be dissolved, in the case of forming a counter ion with the polyelectrolyte force S cation, a salt of !! to trivalent cation can be used, and Na + Use of monovalent cations such as K +, Li +, etc. allows for large bending or displacement, so using an alkylammonium ion with a large ionic radius is preferable for bending or displacement. It ’s even better because it ’s possible. The alkylammonium ions include CH N + H, CHN + H, (CH) N + H, (CH
) N+H、 (CH ) N+H、 (C H ) N+H、 (CH ) N+、 (C H ) N+、(C H ) N+、 (C H ) N+、 H) N + H, (CH) N + H, (CH) N + H, (CH) N + , (CH) N + , (CH) N + , (CH) N + , H
N+(CH ) N+H、 H C = CHCH N+HCH、 H N+(CH ) N+H (CH ) N+H、 HC≡CN + (CH) N + H, H C = CHCH N + HCH, H N + (CH) N + H (CH) N + H, HC≡C
CH N+H、 CH CH(OH)CH N+H、 H N+(CH ) OH、 H N+CH(CH OH)、 (HOCCH N + H, CH CH (OH) CH N + H, H N + (CH) OH, H N + CH (CH OH), (HOC
H ) C(CH N+H )、 C H OCH CH N+Hや脂肪族炭化水素を置換基として備える アンモニゥムイオン、または官能基として炭化水素の他に脂環式の環状炭化水素を も有するアンモニゥムイオンを用いることができる。このとき、前記の塩の濃度としては 、イオン交換樹脂の官能基と等量以上の濃度として含まれていればよぐ十分な屈曲 乃至変位を得るために 0.01〜: 10mol/lであることが好ましぐ 0.1〜: 1.0mol/lであ ることがより好ましい。なお、常温常圧での液状の有機化合物として、イオン性液体を 用いる場合には、上記の塩を用いなくても良い。 [0043] 本発明の高分子ァクチユエータ素子は、上記の極性溶媒を含むために、樹脂によ る被覆なしに、 1日以上駆動することができるが、更に、可撓性を有する樹脂で被覆 されてもよレ、。前記樹脂としては、特に限定されるものではなレ、が、ポリウレタン樹脂 及び/又はシリコン樹脂を用いることができる。前記ポリウレタン樹脂は、特に限定さ れるものではないが、柔軟な熱可塑性ポリウレタンを用いることが、柔軟度が大きく密 着性が良好であるために特に好ましい。柔軟な熱可塑性ポリウレタンとしては、商品 名「アサフレックス 825」(柔軟度 200%、旭化成社製)、商品名「ペレセン 2363— 80A」(柔軟度 550%)、 「ペレセン 2363— 80AE」(柔軟度 650%)、 「ペレセン 2 363— 90A」(柔軟度 500%)、 「ペレセン 2363— 90AE」(柔軟度 550%)、(以上 、ダウ'ケミカル社製)を用いることができる。また、前記シリコン樹脂は、特に限定され るものではないが、柔軟度が 50%以上である樹脂が、柔軟度が大きいので密着性が 良好であるために、特に好ましい。前記シリコン樹脂としては、例えば、「シラシール 3 FW」、「シラシール DC738RTV」、「DC3145」、及び「DC3140」(以上、ダウコー ニング社製)を用いることができる。なお、本願において、柔軟度とは、 ASTM D41 2に準拠する引張破断伸び(Ultimate Elongation%)をレ、うものである。 H) C (CH N + H), CH OCH CH N + H, ammonium ions with aliphatic hydrocarbons as substituents, or ammonia with alicyclic cyclic hydrocarbons in addition to hydrocarbons as functional groups Um ion can be used. At this time, the concentration of the salt is 0.01 to 10 mol / l in order to obtain sufficient bending or displacement as long as it is contained in a concentration equal to or higher than the functional group of the ion exchange resin. Preferred 0.1 to: More preferably 1.0 mol / l. When an ionic liquid is used as the liquid organic compound at room temperature and normal pressure, the above-described salt may not be used. [0043] Since the polymer actuator element of the present invention contains the above-mentioned polar solvent, it can be driven for one day or more without being coated with a resin, but is further coated with a flexible resin. Anyway. The resin is not particularly limited, but polyurethane resin and / or silicon resin can be used. The polyurethane resin is not particularly limited, but a flexible thermoplastic polyurethane is particularly preferable because of its high flexibility and good adhesion. As flexible thermoplastic polyurethanes, the product name “Asaflex 825” (flexibility 200%, manufactured by Asahi Kasei), product name “Pelesen 2363—80A” (flexibility 550%), “Pelecene 2363—80AE” (flexibility) 650%), “Pelecene 2 363-90A” (flexibility: 500%), “Pelecene 2363-90AE” (flexibility: 550%), (manufactured by Dow Chemical Co., Ltd.). Further, the silicon resin is not particularly limited, but a resin having a flexibility of 50% or more is particularly preferable because of its high flexibility and good adhesion. As the silicone resin, for example, “SilaSeal 3 FW”, “SilaSeal DC738RTV”, “DC3145”, and “DC3140” (above, manufactured by Dow Corning) can be used. In the present application, the flexibility refers to the tensile elongation at break (Ultimate Elongation%) in accordance with ASTM D412.
[0044] (駆動方法)  [0044] (Driving method)
また、本発明は、高分子ァクチユエータ素子の駆動方法でもある。前記高分子ァク チユエータ素子は、イオン交換樹脂を挟んで対向する様に形成された一対の金属電 極を備えた高分子ァクチユエータ素子であって、一対の金属電極を備えた高分子ァ クチユエータ素子であって、イオン交換樹脂中に、 180°C以上の沸点を有する極性 溶媒を含む高分子ァクチユエータ素子であるので、 160° 以上の屈曲乃至変位を生 じさせるために、 3. 0Vより高い電圧を印加した場合であっても、気泡を発生すること なぐし力、も溶媒の蒸発が生じにくいので、樹脂による被覆なしに 1日以上駆動するこ とが可能である。  The present invention is also a method for driving a polymer actuator element. The polymer actuator element is a polymer actuator element having a pair of metal electrodes formed so as to face each other with an ion exchange resin interposed therebetween, and the polymer actuator element having a pair of metal electrodes Since the polymer actuator element includes a polar solvent having a boiling point of 180 ° C. or higher in the ion exchange resin, a voltage higher than 3.0 V is required to cause bending or displacement of 160 ° or higher. Even in the case of applying, it is possible to drive for more than one day without coating with resin since the rusting force that generates bubbles and the evaporation of the solvent hardly occur.
[0045] 前記駆動方法は、上述のように、前記高分子ァクチユエータ素子に、該素子を膨潤 し、電荷のキャリアとしてのイオンを溶解する溶媒として、 180°C以上の沸点を有する 極性溶媒を用いていれば、特に限定されるものではなレ、。前記極性溶媒は、特に、 ジエチレングリコール及び/またはグリセリンである場合には、 160° 以上の屈曲を することができるために好ましい。 [0045] In the driving method, as described above, a polar solvent having a boiling point of 180 ° C or higher is used for the polymer actuator element as a solvent that swells the element and dissolves ions as charge carriers. If so, it will not be particularly limited. In particular, when the polar solvent is diethylene glycol and / or glycerin, the bend is 160 ° or more. It is preferable because it can be done.
[0046] 以下、本発明の実施例及び比較例を記載するが、本願発明は、これらに限定され るものではない。  [0046] Examples and comparative examples of the present invention will be described below, but the present invention is not limited thereto.
[0047] (実施例 1) [Example 1]
乾燥時の膜厚 0. 2mmのイオン交換樹脂膜 (フッ素樹脂系イオン交換樹脂:パーフ ルォロカルボン酸樹脂、商品名「フレミオン」、旭硝子社製、イオン交換容量 1.4meq /g)を、下記(1)〜(3)の工程を 6サイクル繰り返して実施しイオン交換樹脂を挟んで 形成された一対の金属電極を備えたイオン交換樹脂膜を得た。 (1)吸着工程:ジクロ 口フエナント口リン金塩ィ匕物水溶液に 12時間浸漬し、成形品内にジクロロフヱナント口 リン金錯体を吸着させた。 (2)還元工程:亜硫酸ナトリウムを含む水溶液中で、吸着し たジクロロフヱナント口リン金錯体を還元して、前記膜状高分子電解質に金電極を形 成させた。このとき、水溶液の温度を 60〜80°Cとし、亜硫酸ナトリウムを徐々に添カロ しながら、 6時間ジクロロフヱナントリン金錯体の還元を行った。次いで、(3)洗浄工程 :表面に金電極が形成した膜状高分子電解質を取り出し、 70°Cの水で 1時間洗浄し た。上記無電解メツキにより一対の金属電極が形成されたイオン交換樹脂膜を長さ 2 2mm、幅 1. 5mmに切断した。ついで、前記イオン交換樹脂膜を 0. 5mol/lの塩化 テトラェチルアンモニゥム塩の水溶液に浸漬し、乾燥させた後に、膨潤度が約 15%と なるように 0. 5mol/lの塩化テトラエチレンアンモニゥムのジエチレングリコール溶液 に 24時間浸漬して実施例 1の高分子ァクチユエータ素子を得た。  Ion exchange resin membrane with a thickness of 0.2 mm when dried (Fluorine resin ion exchange resin: perfluorocarboxylic acid resin, trade name “Flemion”, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.4 meq / g) Steps (3) to (3) were repeated 6 cycles to obtain an ion exchange resin membrane provided with a pair of metal electrodes formed with an ion exchange resin sandwiched therebetween. (1) Adsorption step: The dichlorophenant phosphine complex was adsorbed in the molded article by immersing it in a dilute phenant phosphonate salt aqueous solution for 12 hours. (2) Reduction step: The adsorbed dichlorophenantine-phosphorus gold complex was reduced in an aqueous solution containing sodium sulfite to form a gold electrode on the membrane polymer electrolyte. At this time, the temperature of the aqueous solution was set to 60 to 80 ° C., and the dichlorophenanthrine gold complex was reduced for 6 hours while gradually adding sodium sulfite. Next, (3) washing step: The membrane-shaped polymer electrolyte with the gold electrode formed on the surface was taken out and washed with 70 ° C. water for 1 hour. The ion exchange resin membrane on which a pair of metal electrodes was formed by the electroless plating was cut into a length of 22 mm and a width of 1.5 mm. Next, the ion exchange resin membrane is dipped in an aqueous solution of 0.5 mol / l tetraethylammonium chloride and dried, and after that, 0.5 mol / l of chloride is added so that the degree of swelling is about 15%. The polymer actuator element of Example 1 was obtained by immersion in a diethylene glycol solution of tetraethylene ammonium for 24 hours.
[0048] (実施例 2) [0048] (Example 2)
切断された前記イオン交換樹脂膜を浸漬する溶媒を、 0. 5mol/lの塩化テトラエ チレンアンモニゥムのジエチレングリコール溶液に替えて、 0. 5mol/lの塩化テトラ エチレンアンモニゥムのプロピレンカーボネート溶液を用いたこと以外は、実施例 1と 同様の方法により、実施例 2の高分子ァクチユエータ素子を得た。  The solvent for immersing the cut ion exchange resin membrane is changed to 0.5 mol / l of tetraethylene ammonium chloride in diethylene glycol solution, and 0.5 mol / l of tetraethylene ammonium chloride in propylene carbonate solution is used. A polymer actuator element of Example 2 was obtained in the same manner as in Example 1 except that it was used.
[0049] (実施例 3) [0049] (Example 3)
切断された前記イオン交換樹脂膜を浸漬する溶媒を、 0. 5mol/lの塩化テトラエ チレンアンモニゥムのジエチレングリコール溶液に替えて、 0. 5mol/lの塩化テトラ エチレンアンモニゥムのグリセリン溶液を用いたこと以外は、実施例 1と同様の方法に より、実施例 3の高分子ァクチユエータ素子を得た。 Instead of 0.5 mol / l of tetraethylene ammonium chloride in diethylene glycol solution, the solvent for immersing the cut ion exchange resin membrane is replaced with 0.5 mol / l of tetraethylene ammonium chloride in glycerin solution. The same method as in Example 1 except that Thus, the polymer actuator element of Example 3 was obtained.
[0050] (実施例 4) [0050] (Example 4)
切断された前記イオン交換樹脂膜を浸漬する溶媒を、 0. 5mol/lの塩化テトラエ チレンアンモニゥムのジエチレングリコール溶液に替えて、 0. 5mol/lの塩化テトラ エチレンアンモニゥムのスルホラン溶液を用いたこと以外は、実施例 1と同様の方法 により、実施例 4の高分子ァクチユエータ素子を得た。  The solvent for immersing the cut ion exchange resin membrane is changed to 0.5 mol / l tetraethylene ammonium chloride in diethylene glycol solution, and 0.5 mol / l tetraethylene ammonium chloride in sulfolane solution is used. A polymer actuator element of Example 4 was obtained in the same manner as in Example 1 except that the above was obtained.
[0051] (実施例 5) [0051] (Example 5)
切断された前記イオン交換樹脂膜を浸漬する溶媒を、 0. 5mol/lの塩化テトラエ チレンアンモニゥムのジエチレングリコール溶液に替えて、 0. 5mol/lの塩化テトラ エチレンアンモニゥムのプチ口ラタトン溶液を用いたこと以外は、実施例 1と同様の方 法により、実施例 3の高分子ァクチユエータ素子を得た。  The solvent for immersing the cut ion exchange resin membrane was changed to 0.5 mol / l of tetraethylene ammonium chloride in diethylene glycol solution, and 0.5 mol / l of tetraethylene ammonium chloride in a petit-mouth rataton solution. A polymer actuator element of Example 3 was obtained in the same manner as in Example 1 except that was used.
[0052] (実施例 6) [0052] (Example 6)
乾燥時の膜厚 0. 2mmのイオン交換樹脂膜 (フッ素樹脂系イオン交換樹脂:パーフ ルォロカルボン酸樹脂、商品名「フレミオン」、旭硝子社製、イオン交換容量 1.4meq /g)を、下記(1)〜(3)の工程を 6サイクル繰り返して実施しイオン交換樹脂を挟んで 形成された一対の金属電極を備えたイオン交換樹脂膜を得た。 (1)吸着工程:ジクロ 口フエナント口リン金塩ィ匕物水溶液に 12時間浸漬し、成形品内にジクロロフエナント口 リン金錯体を吸着させた。 (2)還元工程:亜硫酸ナトリウムを含む水溶液中で、吸着し たジクロロフヱナント口リン金錯体を還元して、前記膜状高分子電解質に金電極を形 成させた。このとき、水溶液の温度を 60〜80°Cとし、亜硫酸ナトリウムを徐々に添カロ しながら、 6時間ジクロロフヱナントリン金錯体の還元を行った。次いで、(3)洗浄工程 :表面に金電極が形成した膜状高分子電解質を取り出し、 70°Cの水で 1時間洗浄し た。上記無電解メツキにより一対の金属電極が形成されたイオン交換樹脂膜を長さ 2 2mm、幅 1. 5mmに切断した。ついで、前記イオン交換樹脂膜を 0. 5mol/lの塩化 テトラエチルアンモニゥム塩の水溶液に浸漬し、乾燥させた後に、 0. 2mol/lのェチ ルメチルイミダゾリゥムトリフルォロメタンスルホンイミド塩(EMITFSI)の水溶液に室 温にて一晚浸漬して、 2時間以上室温で風乾させて水を蒸発させることにより実施例 6の高分子ァクチユエータ素子を得た。 [0053] (実施例 7) Ion exchange resin membrane with a thickness of 0.2 mm when dried (Fluorine resin ion exchange resin: perfluorocarboxylic acid resin, trade name “Flemion”, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.4 meq / g) Steps (3) to (3) were repeated 6 cycles to obtain an ion exchange resin membrane provided with a pair of metal electrodes formed with an ion exchange resin sandwiched therebetween. (1) Adsorption process: The dichlorophenant phosphine complex was adsorbed in the molded article by immersing in a dilute phenant phosphonate salt aqueous solution for 12 hours. (2) Reduction step: The adsorbed dichlorophenantine-phosphorus gold complex was reduced in an aqueous solution containing sodium sulfite to form a gold electrode on the membrane polymer electrolyte. At this time, the temperature of the aqueous solution was set to 60 to 80 ° C., and the dichlorophenanthrine gold complex was reduced for 6 hours while gradually adding sodium sulfite. Next, (3) washing step: The membrane-shaped polymer electrolyte with the gold electrode formed on the surface was taken out and washed with 70 ° C. water for 1 hour. The ion exchange resin membrane on which a pair of metal electrodes was formed by the electroless plating was cut into a length of 22 mm and a width of 1.5 mm. Next, the ion exchange resin membrane was immersed in an aqueous solution of 0.5 mol / l tetraethylammonium chloride and dried, and then 0.2 mol / l ethylmethylimidazolium trifluoromethanesulfonimide salt. A polymer actuator element of Example 6 was obtained by immersing in an aqueous solution of (EMITFSI) at room temperature and air-drying it at room temperature for 2 hours or more to evaporate water. [0053] (Example 7)
0. 2mol/lのェチルメチルイミダゾリゥムトリフルォロメタンスルホンイミド塩の水溶 液に替えて、 0· 2mol/lのェチルメチルイミダゾリゥムへキサフルォロリン酸塩(EMI PF )の水溶液を用いたこと以外は、実施例 6と同様にして、実施例 7の高分子ァクチ Instead of an aqueous solution of 0.2 mol / l ethylmethylimidazolium trifluoromethanesulfonimide salt, an aqueous solution of 0.2 mol / l ethylmethylimidazolium hexafluorophosphate (EMI PF) was used. Except that, the polymer activity of Example 7 was the same as Example 6.
6 6
ユエータ素子を得た。  A ueta element was obtained.
[0054] (実施例 8) [Example 8]
0. 2molZlのェチルメチルイミダゾリゥムトリフルォロメタンスルホンイミドイミド塩水 溶液に替えて、 0. 2mol/lのェチルメチルイミダゾリゥムテトラフルォロホウ酸塩 (EM IBF )の水溶液を用いたこと以外は、実施例 6と同様にして実施例 8の高分子ァクチ Instead of 0.2 molZl ethylmethylimidazoletrifluoromethanesulfonimideimide salt solution, 0.2 mol / l ethylmethylimidazole tetrafluoroborate (EM IBF) was used. Except that, the polymer activity of Example 8 was the same as Example 6.
4 Four
ユエータ素子を得た。  A ueta element was obtained.
[0055] (実施例 9) [Example 9]
0. 2molZlのェチルメチルイミダゾリゥムトリフルォロメタンスルホンイミド塩水溶液 に替えて、 0. 2mol/lのトリメチルプロピルアンモニゥムトリフルォロメタンスルホンイミ ド塩 TMPATFSITMPATFSI (TMPATFSI)の TMPATFSI  0. Instead of 2 molZl aqueous solution of ethylmethylimidazolium trifluoromethanesulfonimide, 0.2 mol / l trimethylpropylammonium trifluoromethanesulfonimide salt TMPATFSITMPATFSI (TMPATFSI) TMPATFSI
TMPATFSI TMPATFSI TMPATFSI TMPATFSI TMPATFSI水溶液を用いたこと以外 は、実施例 6と同様にして実施例 9の高分子ァクチユエータ素子を得た。  TMPATFSI TMPATFSI TMPATFSI TMPATFSI TMPATFSI A polymer actuator element of Example 9 was obtained in the same manner as Example 6, except that an aqueous solution of TMPATFSI was used.
[0056] (実施例 10) [Example 10]
0. 2mol/lのェチルメチルイミダゾリゥムトリフルォロメタンスルホンイミド塩水溶液 に替えて、 0. 2mol/lの 1 ブチル 3—メチルイミダゾリゥムテトラフルォロホウ酸塩( BMIBF )の水溶液を用いたこと以外は、実施例 6と同様にして実施例 10の高分子 Instead of 0.2 mol / l ethylmethylimidazolium trifluoromethanesulfonimide salt aqueous solution, 0.2 mol / l 1-butyl 3-methylimidazolium tetrafluoroborate (BMIBF) aqueous solution was used. The polymer of Example 10 was the same as Example 6 except that it was used.
4 Four
ァクチユエータ素子を得た。  An actuator element was obtained.
[0057] (実施例 11) [0057] (Example 11)
0. 2molZlのェチルメチルイミダゾリゥムトリフルォロメタンスルホンイミド塩水溶液 に替えて、 0. 2mol/lの 1 _へキシル 3—メチルイミダゾリウムへキサォロリン酸塩(H MIPF )の水溶液を用いたこと以外は、実施例 6と同様にして実施例 11の高分子ァ Instead of 0.2 molZl aqueous solution of ethylmethylimidazolium trifluoromethanesulfonimide salt, 0.2 mol / l 1_hexyl 3-methylimidazolium hexaoxalate (H MIPF) was used. Except for the polymer polymer of Example 11 in the same manner as Example 6.
6 6
クチユエータ素子を得た。  A cutout element was obtained.
[0058] (比較例) [0058] (Comparative example)
切断された前記イオン交換樹脂膜を浸漬する溶媒を、 0. 5mol/lの塩化テトラエ チレンアンモニゥムのジエチレングリコール溶液に替えて、 0. 5mol/lの塩化テトラ エチレンアンモニゥムの水溶液を用いたこと以外は、実施例 1と同様の方法により、比 較例の高分子ァクチユエータ素子を得た。 A solvent for immersing the cut ion exchange resin membrane was changed to 0.5 mol / l tetrachloride chloride. The polymer activator element of the comparative example was prepared in the same manner as in Example 1 except that a 0.5 mol / l aqueous solution of tetraethylene ammonium chloride was used instead of the diethylene glycol solution of tylene ammonium. Obtained.
[0059] 〔評価〕 [0059] [Evaluation]
実施例 1〜5及び比較例の高分子ァクチユエータ素子について、空気中での変位 角、及び 3. 0V電圧印加での素子性状を、下記の方法により評価した。結果を表 1に 示す。  For the polymer actuator elements of Examples 1 to 5 and Comparative Example, the displacement angle in air and the element properties when a 3.0 V voltage was applied were evaluated by the following methods. The results are shown in Table 1.
[0060] (空気中での変位角)  [0060] (Displacement angle in air)
実施例 1〜5及び比較例の高分子ァクチユエータ素子のそれぞれについて、一方 の端部から 2mm内側の位置にぉレ、て、一対の金属電極のそれぞれに通電できるよ うに、白金端子にて高分子ァクチユエータ素子の厚さ方向に挟んで、膜面が重力方 向と平行になるように握持した。一対の金属電極の一方が正極となり、他方が負極と なるようにポテンシヨスタツタト(DCモード、商品名「ポテンショ'ガルバノースタツト H A— 501」、北斗電工 (株)社製)を用いて 1 · 5Vの電圧を印加し、 0· 1Hz周期で各 金属電極に反対電圧が印加されるように電圧を印加して、左右に往復する変位運動 をさせた。この往復変位運動の 3往復目で屈曲乃至変位した状態における、高分子 ァクチユエータ素子の先端における変位凸面の接線方向と重力方向とのなす角を、 右側変位と左側変位とにおいて測定し、平均して変位角を求めた。この測定を各高 分子ァクチユエータ素子について、白金端子による握持したときから、 1分後、 1時間 後、及び 24時間後のそれぞれにおレ、て測定を実施した。  For each of the polymer actuator elements of Examples 1 to 5 and the comparative example, a polymer terminal is used at the platinum terminal so that each of the pair of metal electrodes can be energized at a position 2 mm inside from one end. The film was sandwiched in the thickness direction of the actuator element so that the film surface was parallel to the gravity direction. Using a potentiostat (DC mode, trade name “Potentio Galvanostat HA-501”, manufactured by Hokuto Denko Co., Ltd.) so that one of the pair of metal electrodes is a positive electrode and the other is a negative electrode. · A voltage of 5 V was applied, and a voltage was applied so that the opposite voltage was applied to each metal electrode at a period of 0.1 Hz, causing displacement movement to reciprocate left and right. The angle formed by the tangential direction of the displacement convex surface at the tip of the polymer actuator element and the gravity direction in the bent or displaced state at the third reciprocation of the reciprocating displacement movement is measured for the right displacement and the left displacement, and averaged. The displacement angle was determined. This measurement was carried out for each high molecular weight actuator element at 1 minute, 1 hour, and 24 hours after being held by the platinum terminal.
[0061] [表 1] [0061] [Table 1]
実施例 Example
比較例 Comparative example
1 2 3 4 5 1 2 3 4 5
液体種 棰性溶媒 極性溶媒 極性溶媒 極性溶媒 極性溶媒 榛性溶媒 ァ ク チュ  Liquid Species Inert Solvent Polar Solvent Polar Solvent Polar Solvent Polar Solvent Inert Solvent
タ素 ジエチレン プロピレンカ ブチ口ラク ト  Titanium Diethylene Propylene coupling
物 «名 グリセリ ン スルホラン 水 子中に含 グリ コール ーポネー ト ン  «Name Glycerin Sulfolane Contained in molecule Glycol-ponton
まれる液  Liquid
 Body
 Boiling
245 242 290 287 204 100  245 242 290 287 204 100
170 90 150 1 10 160 180 空気中 1分後 170 90 150 1 10 160 180 After 1 minute in air
での変  Strange in
位角 1時間後 170 80 150 1 10 150 10 )  (Position 1 hour later 170 80 150 1 10 150 10)
24時間後 100 50 100 90 80 変位せず  24 hours later 100 50 100 90 80 No displacement
[表 2][Table 2]
Figure imgf000018_0001
Figure imgf000018_0001
(結果) (Result)
実施例 1の高分子ァクチユエータ素子は、沸点 245°Cの極性溶媒であるジエチレン グリコールが溶媒として素子に含まれるために、 24時間後、つまり 1日後であっても、 印加電圧 1. 2Vにおいて 100° 以上の変位角を示した。これに対して、比較例の高 分子ァクチユエータ素子は、沸点が 100°Cである極性溶媒の水を溶媒として含むた めに、 24時間後の変位を生じなかった。 [0064] 実施例 2〜5の高分子ァクチユエータ素子は、沸点 204〜290°Cの極性溶媒をそ れぞれ溶媒として素子に含まれるために、 24時間後であっても、印加電圧 1. 2Vに おいて 50° 以上の変位角を示した。特に、実施例 4においては、 24時間後の変位 角が 1分後の変位角の 80%であり、変位の減少が少なぐ良好であった。 In the polymer actuator element of Example 1, diethylene glycol, which is a polar solvent having a boiling point of 245 ° C., is contained in the element as a solvent. Therefore, even after 24 hours, that is, after 1 day, an applied voltage of 1.2 V is 100 A displacement angle of more than ° was shown. On the other hand, since the high molecular weight actuator element of the comparative example contained water as a polar solvent having a boiling point of 100 ° C., no displacement occurred after 24 hours. [0064] Since the polymer actuator elements of Examples 2 to 5 contain polar solvents having a boiling point of 204 to 290 ° C as the solvents, the applied voltage 1. The displacement angle was more than 50 ° at 2V. In particular, in Example 4, the displacement angle after 24 hours was 80% of the displacement angle after 1 minute, which was good with little decrease in displacement.
[0065] 実施例 6〜: 11の高分子ァクチユエータ素子は、膨潤度が 14. 0-22. 1%で、変位 角が大きくないが、変位の減少がほとんど無かった。また、実施例 6〜: 11の高分子ァ クチユエータ素子は、覆いをすること無しに、室温の開放系において 1ヶ月間放置し ても、変位の減少が少なぐ良好であった。イオン性液体を用いた高分子ァクチユエ ータ素子は、大きな変位量が要求される用途にはあまり適していないが、スィッチン グデバイスなどの小さな変位量が要求される用途に好適に用いられる。  Examples 6 to 11: The polymer actuator elements of 11 had a swelling degree of 14.0-22.1% and a large displacement angle, but there was almost no decrease in displacement. In addition, the polymer actuator elements of Examples 6 to 11 were good with little decrease in displacement even when left for one month in an open system at room temperature without covering. A polymer actuator element using an ionic liquid is not very suitable for applications requiring a large amount of displacement, but is preferably used for applications requiring a small amount of displacement, such as a switching device.
[0066] 実施例:!〜 11の高分子ァクチユエータ素子が示すように、室温解放系において 1 日の駆動が可能であって、 1時間後の変位量の低下がほとんど無い経時的性能で十 分であり、大きな変位量が要求される用途には、沸点が 180°C以上である常圧室温 で液状の有機化合物としては、極性有機溶媒を好適に用いることができる。一方、大 きな変位量は必要ないが、室温解放系において 1日放置しても変位量の変化がほと んどなぐ 1ヶ月後においても変位をすることができる用途には、沸点が 180°C以上で ある常圧室温で液状の有機化合物としては、イオン性液体を好適に用いることができ る。なお、変位量と経時的な変位量の変化を制御するために、任意の割合で前記極 性有機溶媒とイオン性液体とを混合しても良レ、。  [0066] Examples: As shown in the polymer actuator elements of! To 11, sufficient performance with time is possible with one-day driving in a room temperature release system and almost no decrease in displacement after 1 hour. For applications requiring a large amount of displacement, a polar organic solvent can be suitably used as the organic compound that is liquid at normal pressure and room temperature with a boiling point of 180 ° C. or higher. On the other hand, although a large amount of displacement is not required, the boiling point is 180% for applications that can be displaced even after one month in a room temperature release system where the amount of displacement is negligible even if left for one day. An ionic liquid can be suitably used as the organic compound that is liquid at normal temperature and room temperature, which is not lower than ° C. In addition, in order to control the displacement amount and the change of the displacement amount over time, the polar organic solvent and the ionic liquid may be mixed at an arbitrary ratio.
[0067] 実施例 1〜: 11の高分子ァクチユエータ素子は、被覆されることにより、傷が付いた 場合でも、比較例 1のような水溶媒を用いた高分子ァクチユエータ素子に比べて、傷 により解放系となった状態であっても長時間駆動することができる。また、実施例:!〜 11の高分子ァクチユエータ素子被覆しない場合には、被覆層が屈曲を阻害すること がないので、素子本来が有する屈曲をすることもできる。  [0067] Examples 1 to 11: Even when the polymer actuator elements of 11 were coated and scratched, they were damaged by scratches compared to the polymer actuator elements using an aqueous solvent as in Comparative Example 1. Even in a released state, it can be driven for a long time. Further, when the polymer actuator elements of Examples:! To 11 are not coated, the coating layer does not hinder the bending, and therefore the bending inherent in the element can be performed.
産業上の利用可能性  Industrial applicability
[0068] 本発明の高分子ァクチユエータ素子は、変位若しくは屈曲の変位を生じるァクチュ エータ素子として用いることができる。また、前記積層体を、屈曲運動を直線的な運 動に変換する装置と組合わせることにより、直線的が変位を生じるァクチユエータとす ることもできる。直線的な変位若しくは屈曲の変位を生じるァクチユエータは、直線的 な駆動力を発生する駆動部、または円弧部からなるトラック型の軌道を移動するため の駆動力を発生する駆動部として用いることができる。さらに、前記ァクチユエータは 、直線的な動作をする押圧部として用いることもできる。 The polymer actuator element of the present invention can be used as an actuator element that generates displacement or bending displacement. In addition, the laminate is combined with a device that converts the bending motion into a linear motion, thereby forming an actuator that produces a linear displacement. You can also. An actuator that generates a linear displacement or a bending displacement can be used as a driving unit that generates a linear driving force or a driving unit that generates a driving force for moving a track-type track composed of an arcuate portion. . Furthermore, the actuator can also be used as a pressing portion that performs a linear operation.
即ち、前記ァクチユエータは、 OA機器、アンテナ、ベッドや椅子等の人を乗せる装 置、医療機器、エンジン、光学機器、固定具、サイドトリマ、車両、昇降器械、食品加 ェ装置、清掃装置、測定機器、検査機器、制御機器、工作機械、加工機械、電子機 器、電子顕微鏡、電気かみそり、電動歯ブラシ、マニピュレータ、マスト、遊戯装置、 アミューズメント機器、乗車用シミュレーション装置、車両乗員の押さえ装置及び航空 機用付属装備展張装置において、直線的な駆動力を発生する駆動部若しくは円弧 部からなるトラック型の軌道を移動するための駆動力を発生する駆動部、または直線 的な動作若しくは曲線的な動作をする押圧部として好適に用いることができる。前記 ァクチユエータは、例えば、 OA機器や測定機器等の上記機器等を含む機械全般に 用いられる弁、ブレーキ及びロック装置において、直線的な駆動力を発生する駆動 部もしくは円弧部からなるトラック型の軌道を移動するための駆動力を発生する駆動 部、または直線的な動作をする押圧部として用いることができる。また、前記の装置、 機器、器械等以外においても、機械機器類全般において、位置決め装置の駆動部、 姿勢制御装置の駆動部、昇降装置の駆動部、搬送装置の駆動部、移動装置の駆動 部、量や方向等の調節装置の駆動部、軸等の調整装置の駆動部、誘導装置の駆動 部、及び押圧装置の押圧部として好適に用いることができる。また、前記ァクチユエ ータは、回転的な運動をすることができるので、切替え装置の駆動部、搬送物等の反 転装置の駆動部、ワイヤー等の卷取り装置の駆動部、牽引装置の駆動部、及び首振 り等の左右方向への旋回装置の駆動部としても用いることができる。  That is, the actuator is an office equipment, an antenna, a device such as a bed or a chair, a medical device, an engine, an optical device, a fixture, a side trimmer, a vehicle, a lifting device, a food processing device, a cleaning device, a measurement device. Equipment, inspection equipment, control equipment, machine tools, processing machines, electronic equipment, electron microscopes, electric razors, electric toothbrushes, manipulators, masts, amusement equipment, amusement equipment, riding simulation equipment, vehicular occupant restraints, and aircraft In the accessory equipment extension device, a drive unit that generates a linear drive force or a drive unit that generates a drive force for moving a track-type orbit made of a circular arc, or a linear or curved operation It can use suitably as a press part to do. The actuator is, for example, a track-type track including a drive unit or a circular arc unit that generates a linear drive force in a valve, a brake, and a lock device used in all machines including the above-described devices such as OA devices and measurement devices. It can be used as a driving unit that generates a driving force for moving the oscillating member or a pressing unit that performs a linear operation. In addition to the above-described devices, equipment, instruments, etc., in general mechanical equipment, a positioning device drive unit, a posture control device drive unit, a lifting device drive unit, a transport device drive unit, and a movement device drive unit. It can be suitably used as a drive unit for an adjustment device such as an amount and a direction, a drive unit for an adjustment device such as a shaft, a drive unit for a guidance device, and a pressing unit for a pressing device. Further, since the actuator can make a rotational movement, the drive unit of the switching device, the drive unit of the reversing device such as a transported object, the drive unit of the scraping device such as a wire, and the drive of the traction device It can also be used as a drive unit for a right and left swiveling device such as a swinging part.

Claims

請求の範囲 The scope of the claims
[1] 金属電極と、高分子電解質を含む電解質とを含む高分子ァクチユエータ素子であつ て、  [1] A polymer actuator element comprising a metal electrode and an electrolyte containing a polymer electrolyte,
前記金属電極が対を形成することができるように形成され、  The metal electrodes are formed to form a pair;
前記金属電極が前記電解質と接し、  The metal electrode is in contact with the electrolyte;
前記電解質中に沸点または分解温度が 180°C以上であり、常温常圧で液状の有 機化合物を含み  The electrolyte has a boiling point or decomposition temperature of 180 ° C or higher and contains an organic compound that is liquid at normal temperature and pressure.
前記電解質が前記有機化合物によりイオン交換樹脂が膨潤した状態である 高分子ァクチユエータ素子。  A polymer actuator element, wherein the electrolyte is in a state where an ion exchange resin is swollen by the organic compound.
[2] 前記有機化合物が極性有機溶媒及び/またはイオン性液体である請求の範囲 1に 記載の高分子ァクチユエータ素子。 [2] The polymer actuator element according to claim 1, wherein the organic compound is a polar organic solvent and / or an ionic liquid.
[3] 前記イオン性液体が、 [3] The ionic liquid is
テトラアルキルアンモニゥムイオン、ジアルキルイミダゾリゥムイオン、トリアノレキノレイミ ダゾリゥムィ才ン、ビラゾリゥムィ才ン、ピロリウムィ才ン、ピロリニゥムイオン、ピロリジニ ゥムイオン、及びピベリジニゥムイオンからなる群より少なくとも一種選ばれたカチオン と、  A cation selected from the group consisting of tetraalkylammonium ion, dialkylimidazolium ion, trianorequinoleum ion, dazolyumin, virazolium, pyrrolium, pyrrolinium, pyrrolidin, and piberidinium ions. When,
PF _、 BF _、 A1C1 _、 CIO _、及び下式(1)で表されるスルホニゥムイミドア二オン  PF_, BF_, A1C1_, CIO_, and sulfonimide anion represented by the following formula (1)
6 4 4 4  6 4 4 4
力 なる群より少なくとも一種選ばれたァニオン  Anion selected from at least one group
との組み合わせからなる塩である請求の範囲 2に記載の高分子ァクチユエータ素子。  The polymer actuator element according to claim 2, wherein the polymer actuator element is a salt comprising a combination thereof.
(C F SO ) (C F SO ) N— (1)  (C F SO) (C F SO) N— (1)
n (2n+ l) 2 m (2m+ l) 2  n (2n + l) 2 m (2m + l) 2
(ここで、 n及び mは任意の整数。 )  (Where n and m are arbitrary integers.)
[4] 前記電解質がイオン交換樹脂とイオン性液体とを含む高分子ゲル電解質である請求 の範囲 1記載の高分子ァクチユエータ素子。 4. The polymer actuator element according to claim 1, wherein the electrolyte is a polymer gel electrolyte containing an ion exchange resin and an ionic liquid.
[5] 前記高分子ァクチユエータ素子が前記有機化合物により膨潤した状態であり、膨潤 度が 3〜200%である請求の範囲 1記載の高分子ァクチユエータ素子。 5. The polymer actuator element according to claim 1, wherein the polymer actuator element is in a state swollen by the organic compound and has a swelling degree of 3 to 200%.
[6] 前記高分子ァクチユエータ素子を、可撓性を有する樹脂で被覆された請求の範囲 1 記載の高分子ァクチユエータ素子。 6. The polymer actuator element according to claim 1, wherein the polymer actuator element is coated with a flexible resin.
[7] イオン交換樹脂とイオン性液体とを含む高分子ゲル電解質。 大気圧下の空気中の環境下で、前記請求の範囲 1記載の高分子ァクチユエータ素 子を駆動させる、高分子ァクチユエータ素子の駆動方法。 [7] A polymer gel electrolyte containing an ion exchange resin and an ionic liquid. The method for driving a polymer actuator element according to claim 1, wherein the polymer actuator element according to claim 1 is driven under an atmospheric environment under atmospheric pressure.
PCT/JP2005/022946 2005-12-14 2005-12-14 Polymer actuator element drivable in air WO2007069310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/022946 WO2007069310A1 (en) 2005-12-14 2005-12-14 Polymer actuator element drivable in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/022946 WO2007069310A1 (en) 2005-12-14 2005-12-14 Polymer actuator element drivable in air

Publications (1)

Publication Number Publication Date
WO2007069310A1 true WO2007069310A1 (en) 2007-06-21

Family

ID=38162633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022946 WO2007069310A1 (en) 2005-12-14 2005-12-14 Polymer actuator element drivable in air

Country Status (1)

Country Link
WO (1) WO2007069310A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083389A (en) * 1998-06-25 2000-03-21 Matsushita Electric Works Ltd Actuator
JP2004260995A (en) * 2003-02-07 2004-09-16 Eamex Co Driving method of actuator and tank
JP2005187926A (en) * 2002-12-27 2005-07-14 Eamex Co Electroless plating method, method of producing laminate, laminate and device using the laminate
JP2005223967A (en) * 2004-02-03 2005-08-18 Matsushita Electric Ind Co Ltd Flexible actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083389A (en) * 1998-06-25 2000-03-21 Matsushita Electric Works Ltd Actuator
JP2005187926A (en) * 2002-12-27 2005-07-14 Eamex Co Electroless plating method, method of producing laminate, laminate and device using the laminate
JP2004260995A (en) * 2003-02-07 2004-09-16 Eamex Co Driving method of actuator and tank
JP2005223967A (en) * 2004-02-03 2005-08-18 Matsushita Electric Ind Co Ltd Flexible actuator

Similar Documents

Publication Publication Date Title
JP6616479B2 (en) Gelled ionic liquid film coated surface and use thereof
Wu et al. Biodegradable gel electrolyte suppressing water-induced issues for long-life zinc metal anodes
US7879475B2 (en) Solid polymer electrolyte, solid polymer fuel cell and method for manufacturing the fuel cell
EP0943402B1 (en) Polymeric actuators and process for producing the same
JPS6356316B2 (en)
JP4711765B2 (en) Linear motion type polymer actuator device
HUT75023A (en) A modified cation exchange membrane for electrochemical cells and method for the preparation of such membrane
JP4717400B2 (en) Air-driven polymer actuator element
Braglia et al. Electrochemical synthesis of thin, dense, and conformal anion exchange membranes with quaternary ammonium groups
JP3646166B2 (en) Method for manufacturing actuator element
JP5310972B2 (en) Polymer actuator element and driving method thereof
JP4931521B2 (en) Method for filling polymer actuator element with electrolyte, method for controlling elastic modulus of polymer actuator element, and method for manufacturing polymer actuator element
Rasouli et al. Electrochemical and electromechanical study of carbon-electrode-based ionic soft actuators
JP2008259381A (en) Actuator body and aperture mechanism
JP5584896B2 (en) Polymer actuator element and polymer sensor using the same
WO2007069310A1 (en) Polymer actuator element drivable in air
Guo et al. Guiding principles for the design of artificial interface layer for zinc metal anode
Yu et al. Organic solvent-resistant and robust Kevlar nanofiber-based cation-exchange membranes for improved Electrodialysis performance
JP5604737B2 (en) Polymer actuator element and driving method thereof
JP5463482B2 (en) Polymer actuator element and driving method thereof
JP5250761B2 (en) Voltage application method for ion-conducting composite
Yan et al. Designing Superhydrophilic Hydrogels as Binder-Free Catalysts for Enhanced Oxygen Evolution Performance
JPH0979129A (en) Actuator element
Zimmermann et al. Ionic Polymer-Metal Composite Coated with Polyaniline Film by Electrodeposition: A Promising IPMC/PANI Junction for Applications in Robotics and Bioengineering
JP2006158797A (en) Polymer actuator element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816837

Country of ref document: EP

Kind code of ref document: A1