WO2007068017A2 - Medizinisches navigationssystem - Google Patents

Medizinisches navigationssystem Download PDF

Info

Publication number
WO2007068017A2
WO2007068017A2 PCT/AT2006/000507 AT2006000507W WO2007068017A2 WO 2007068017 A2 WO2007068017 A2 WO 2007068017A2 AT 2006000507 W AT2006000507 W AT 2006000507W WO 2007068017 A2 WO2007068017 A2 WO 2007068017A2
Authority
WO
WIPO (PCT)
Prior art keywords
navigation system
medical
medical navigation
handle
optical
Prior art date
Application number
PCT/AT2006/000507
Other languages
English (en)
French (fr)
Other versions
WO2007068017A3 (de
Inventor
Florian Kral
Wolfgang Freysinger
Original Assignee
Medizinische Universität Innsbruck
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medizinische Universität Innsbruck filed Critical Medizinische Universität Innsbruck
Publication of WO2007068017A2 publication Critical patent/WO2007068017A2/de
Publication of WO2007068017A3 publication Critical patent/WO2007068017A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/064Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1072Measuring physical dimensions, e.g. size of the entire body or parts thereof measuring distances on the body, e.g. measuring length, height or thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the invention relates to a medical navigation system with a detection device for the contactless detection of the position of a provided with at least one reference mark, to be treated body part of a patient and for non-contact detection of the position of a medical instrument, in particular endoscope, which is associated with at least one reference mark.
  • Such medical navigation systems are already known. Usually, with a probe or its tip a certain point of the patient to be treated approached, for example, through the nose of the same. The location of the tip is then plotted on previously prepared radiographic images of the patient. Subsequently, the surgeon can then approach the same place with a surgical instrument. It may be difficult to find the same job again.
  • the object of the invention is to provide an improved medical navigation system of the type mentioned, with which it is possible, the location of certain
  • the medical navigation system according to the invention is characterized by an additional distance measuring device for non-contact measurement of the distance of an object, in particular a body site of the patient to be treated from an excellent location of the medical instrument.
  • the basic idea of the invention is to ascertain the exact position of a body site, starting from the position of an excellent point of the medical instrument (for example the tip of an endoscope) that is known to the medical navigation system by reference marks Endoscope) is measured. One then knows the location of this site, for example, a human tissue to be removed exactly. The surgeon can remove this under view, taking the location of that point with the distance detected by the distance measuring device from the actual tip of the endoscope, can be drawn as a "virtual probe tip" in the previously recorded radiological data (sectional images or 3D images) of the patient.
  • an optical method for determining the distance, in particular, an optical method is suitable in which an oblique, optical beam, colored light beam is directed at the object in the patient.
  • the lateral position of the point of light produced by the incident colored light beam is a direct measure of the distance of the same from the actual useful point of the medical instrument, for example from the tip of an endoscope.
  • the distance along the optical axis can be easily calculated, as will be explained in more detail with reference to the following description of the figures.
  • Fig. 1 shows a schematic representation of an embodiment of a medical navigation system according to the invention.
  • Figs. 2a and 2b show an embodiment of a handle according to the invention and an endoscope, wherein the endoscope is not yet inserted into the handle.
  • Fig. 3 shows the same view with inserted into the handle endoscope.
  • FIG. 4a shows a schematic side view of an endoscope which is equipped with a distance measuring device according to the invention.
  • Figures 4b to 4d show images at different distances of the object from the tip of the endoscope.
  • FIG. 4e shows the trigonometric ratios of the distance determination in a simple sketch.
  • FIG. 5a shows a longitudinal section through the front region of an endoscope equipped according to the invention.
  • Fig. 5b shows a view in the direction of arrow X of Fig. 5a.
  • FIG. 6 shows the front section of a medical endoscope with an optical axis inclined at the angle .beta.
  • the medical navigation system shown in Fig. 1 comprises a detection device 2 with three spaced optical detectors.
  • This detection device 2 is connected to a display and evaluation device 3, which has a screen device 4.
  • a display and evaluation device 3 which has a screen device 4.
  • optical reference marks 7 of a handle 8 which will be described in detail below, can also be detected.
  • the screen device 4 previously prepared for example by means of a computed tomography sectional images and / or three-dimensional images of the patient are shown.
  • the position of an excellent point of the handle here, for example, the tip 9a can be represented in these sectional images, for example with a cross.
  • the attending physician knows where the tip 7a of the handle and thus also of the surgical instrument, for example an endoscope 9 , located exactly in the surgical field of the patient.
  • the screen device 4 can additionally also display the image of the endoscope.
  • the reference marks 7 for example light, in particular infrared light, emitting light-emitting diodes
  • the reference marks 7 are directly attached to the handle 8 itself and are thus an integral part of it. If one wants to know by means of optical reference marks in the detection of the position of the handle or the surgical instrument used therein also its orientation, it is necessary to use at least one reference mark.
  • two spaced reference marks are preferably used. That from The light emitted by these reference marks 7 is detected by the three detectors of the detection device 2.
  • the two reference marks 7 can be designed so that they can be distinguished from the navigation system. In the case of light-emitting diodes, this is possible, for example, by a different coloration or a different modulation.
  • the handle in a conventional manner have two finger openings 11 which are formed on a base body 8b of the handle 8. With this main body 8b, a tubular receptacle 8c is firmly connected, in which the medical instrument can be inserted and fixed releasably fixable.
  • a medical instrument namely an endoscope 9 shown in FIG. 2 b
  • the tube-like receptacle 8 c FIG. 2 a
  • Positive locking and retaining lugs which are not shown in detail, can set a simple mechanical way an exact relative orientation of the handle 8 to the inserted medical instrument 9.
  • the reference marks 7 are attached to the top of the main body 8 b, because they are then not obscured during the operation and thus can always be detected by the detection device 2 in their position.
  • the handle 8 may also be provided with an integrated suction and / or flushing device, which can be activated via a button 14 on the handle.
  • the connection of the suction / purge line is designated 15.
  • the suction / purge line leads through the interior of the main body 8b and the tubular receptacle 8c to the tip 8a of the handle - ie directly into the surgical field.
  • the liquid can flow in an annular gap between the inserted medical instrument 9 and the inner wall of the tubular receptacle 8 c.
  • a preferred embodiment of the invention provides a set of at least two different medical instruments, which are selectively fixable in or on the handle 8. These are then also interchangeable during surgery, without having to recalibrate the system, since the handle itself remains the same.
  • two different endoscopes can be used, the different ones Have observation optics. It is nevertheless favorable to verify the calibration after the change.
  • a non-contact distance measurement from the tip 9a of the endoscope can be made up to an object.
  • the optical distance measuring device is indicated generally at 27.
  • an oblique, colored light beam 17 is directed to the object at an angle ⁇ to the optical axis 16 of the endoscope 9. After the operating environment is mostly red due to the existing blood, it is favorable to emit this light beam as a green light beam.
  • FIG. 4a different vertical to the optical axis 16 levels A1, A2, A3 are shown, which represent different spaced object positions.
  • the point of impact of the light beam on the object marks the "virtual probe tip" 28 located at the distance Di from the tip 9a of the endoscope.
  • the different distance Di is reflected at a different lateral distance from the center of the optical axis in the endoscope images.
  • These endoscopic images can either be viewed directly or taken with a camera 10 and displayed on a screen.
  • FIG. 4e shows how the distance Dj (here D 3 ) can be calculated by means of simple trigonometric relationships from the measured lateral offset (here h 3 ).
  • the "virtual probe tip" 28 that is to say the position of the actual tip 9a of the endoscope 9 plus the determined vectorial distance Dj, can be drawn in the radiological images of the display and evaluation device, for example with a cross, but it is also possible to additionally or alternatively use a separate display 29 of the display and Evaluation device 3 a numerical value for the distance (for example, in millimeters or a graph) indicate.
  • Fig. 5 shows a possible constructive solution for the provision of an oblique, colored light beam.
  • the front part of the endoscope 9 has a tubular, for example metallic sleeve 18.
  • a non-illustrated illumination optics is performed, such as radially distributed optical fibers.
  • the actual observation optics of the endoscope is denoted by 20. It is not the subject of the invention and need not be explained in detail here.
  • the oblique, colored light beam 17 is generated by a light emitting diode or by a laser diode 21 and coupled via a coupling optics 22 in a bundle of flexible optical fibers 23.
  • This bundle of optical fibers runs, as also shown in FIG. 5b, in the radial annular gap 19 at an excellent location (in FIG. 5b at the bottom center in the annular gap).
  • the optical fibers 23 are bent upwards in the end region (point 24).
  • An outcoupling optics (collimation optics) 25 then generates the desired parallel light beam, which runs at the angle ⁇ to the optical axis 16 of the endoscope.
  • Fig. 6 shows an embodiment of an endoscope 9, wherein the optical axis 16 at an angle ß to the longitudinal direction 26 of the endoscope tube.
  • the measuring light beam 17 includes an angle ⁇ with the optical axis.
  • optical reference marks in particular passive as retroreflective markers are suitable.
  • other reference marks are also suitable as optical reference marks, in particular magnetic coils or the like.
  • the distance measurement need not necessarily be optically (visible or infrared), although the optical solution occupies only a small footprint and provides accurate results. But there are certainly other distance measurements, for example, with ultrasound conceivable and possible.
  • medical instrument to be no endoscope.
  • surgical instruments and other medical optical instruments are also suitable.
  • the markers can also be attached directly to the medical instrument (not just the handle of the same).
  • a non-contact detection of the reference marks on the one hand and a non-contact measurement of the distance of the object from the tip of the medical instrument is preferred, a non-contact measurement is also conceivable and possible.
  • this can be done for example via an arm with multiple joints, the joint angle, for example, via potentiometer is detected.
  • the distance measurement can be done for example by moving a probe when measuring the displacement.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

Medizinisches Navigationssystem mit einer Erfassungseinrichtung zur vorzugsweise berührungslosen Erfassung der Lage eines mit mindestens einer Referenzmarke versehenen, zu behandelnden Körperteils eines Patienten sowie zur vorzugsweise berührungslosen Erfassung der Lage eines medizinischen Instrumentes, insbesondere Endoskops, dem mindestens eine Referenzmarke zugeordnet ist. Es ist eine zusätzliche Abstandsmesseinrichtung (27) zur vorzugsweise berührungslosen Messung des Abstandes (D<SUB>i</SUB>) eines Objektes (A<SUB>i</SUB>), insbesondere einer Körperstelle des zu behandelnden Patienten von einer ausgezeichneten Stelle (9a) des medizinischen Instrumentes (9) vorgesehen.

Description

Medizinisches Navigationssystem
Die Erfindung betrifft ein medizinisches Navigationssystem mit einer Erfassungseinrichtung zur berührungslosen Erfassung der Lage eines mit mindestens einer Referenzmarke versehenen, zu behandelnden Körperteils eines Patienten sowie zur berührungslosen Erfassung der Lage eines medizinischen Instrumentes, insbesondere Endoskops, dem mindestens eine Referenzmarke zugeordnet ist.
Derartige medizinische Navigationssysteme sind bereits bekannt. Üblicherweise wird mit einer Sonde bzw. dessen Spitze eine bestimmte Stelle des zu behandelnden Patienten beispielsweise durch die Nase desselben angefahren. Die Lage der Spitze wird dann auf vorher angefertigten radiologischen Bildern des Patienten eingezeichnet. Anschließend kann der Operateur dann dieselbe Stelle mit einem chirurgischen Instrument anfahren. Dabei ist es unter Umständen schwierig, dieselbe Stelle wieder zu finden.
Es ist zum Beispiel aus der US 6,466,815 B1 bereits auch bekannt, ein Endoskop in ein medizinisches Navigationssystem einzufügen. Damit ist es möglich, die Spitze des Endoskops beispielsweise auf Schnittbildern oder dreidimensionalen Bildern in den radiologischen Daten des Patienten auf einer Bildschirmeinrichtung des medizinischen Navigationssystems darzustellen.
Aufgabe der Erfindung ist es, ein verbessertes medizinisches Navigationssystem der eingangs genannten Gattung zu schaffen, mit dem es möglich ist, die Lage bestimmter
Stellen im Patienten während eines Eingriffs genau und berührungslos festzustellen.
Das erfindungsgemäße medizinische Navigationssystem ist gekennzeichnet durch eine zusätzliche Abstandsmesseinrichtung zur berührungslosen Messung des Abstandes eines Objektes, insbesondere einer Körperstelle des zu behandelnden Patienten von einer ausgezeichneten Stelle des medizinischen Instrumentes.
Die Grundidee der Erfindung besteht darin, ausgehend von der dem medizinischen Navigationssystem über Referenzmarken bekannten Lage eines ausgezeichneten Punktes des medizinischen Instrumentes (beispielsweise der Spitze eines Endoskops) die exakte Lage einer Körperstelle dadurch festzustellen, dass zusätzlich der Abstand von dieser ausgezeichneten Stelle (beispielsweise Spitze des Endoskops) gemessen wird. Man kennt dann die Lage dieser Stelle, beispielsweise eines zu entfernenden menschlichen Gewebes genau. Der Operateur kann dieses unter Sicht entfernen, wobei die Lage jener Stelle, die mit dem von der Abstandsmesseinrichtung erfassten Abstand von der tatsächlichen Spitze des Endoskops entfernt liegt, als „virtuelle Sondenspitze" in den vorher aufgenommenen radiologischen Daten (Schnittbildern oder 3D-Darstellungen) des Patienten eingezeichnet werden kann.
Für die Abstandsbestimmung eignet sich insbesondere eine optische Methode, bei der ein zur optischen Achse schräger, farbiger Lichtstrahl auf das Objekt im Patienten gerichtet wird. Die laterale Lage des durch den auftreffenden farbigen Lichtstrahl erzeugten Lichtpunktes ist ein direktes Maß für den Abstand desselben von der tatsächlichen ausgezeichneten Stelle des medizinischen Instrumentes, beispielsweise von der Spitze eines Endoskops. Über einfache trigonometrische Beziehungen lässt sich der Abstand entlang der optischen Achse leicht errechnen, wie dies anhand der folgenden Figurenbeschreibung noch näher erläutert wird.
Weitere Vorteile und Einzelheiten der Erfindung werden anhand der nachfolgenden Figurenbeschreibung näher erläutert.
Die Fig. 1 zeigt in einer schematischen Darstellung ein Ausführungsbeispiel eines medizinischen Navigationssystems gemäß der Erfindung.
Die Fig. 2a und 2b zeigen ein Ausführungsbeispiel eines erfindungsgemäßen Handgriffs und eines Endoskops, wobei das Endoskop noch nicht in den Handgriff eingesetzt ist.
Die Fig. 3 zeigt dieselbe Darstellung mit in den Handgriff eingesetztem Endoskop.
Die Fig. 4a zeigt eine schematische Seitenansicht auf ein Endoskop, das mit einer erfindungsgemäßen Abstandsmesseinrichtung ausgestattet ist.
Die Fig. 4b bis 4d zeigen Bilder bei verschiedenen Abständen des Objektes von der Spitze des Endoskops.
Die Fig. 4e zeigt die trigonometrischen Verhältnisse der Abstandsbestimmung in einer einfachen Skizze. Die Fig. 5a zeigt einen Längsschnitt durch den vorderen Bereich eines erfindungsgemäß ausgerüsteten Endoskops.
Die Fig. 5b zeigt eine Ansicht in Richtung des Pfeiles X der Fig. 5a.
Die Fig. 6 zeigt den vorderen Abschnitt eines medizinischen Endoskops mit einer unter dem Winkel ß geneigten optischen Achse.
Das in Fig. 1 dargestellte medizinische Navigationssystem weist eine Erfassungseinrichtung 2 mit drei beabstandeten optischen Detektoren auf. Diese Erfassungseinrichtung 2 ist mit einer Anzeige- und Auswerteinrichtung 3 verbunden, die eine Bildschirmeinrichtung 4 aufweist. Über die Erfassungseinrichtung 2 ist es möglich, einerseits die Lage von optischen
Referenzmarken 5 an einem Körperteil des Patienten 6 zu erfassen. Andererseits können auch optische Referenzmarken 7 eines Handgriffs 8, der unten noch im Detail beschrieben werden wird, erfassen.
Auf der Bildschirmeinrichtung 4 sind vorher beispielsweise mittels eines Computertomographen angefertigte Schnittbilder und/oder dreidimensionale Bilder des Patienten dargestellt. Die Lage eines ausgezeichneten Punktes des Handgriffs (hier beispielsweise der Spitze 9a kann in diesen Schnittbildern, beispielsweise mit einem Kreuz, dargestellt werden. Damit weiß der behandelnde Arzt, wo sich die Spitze 7a des Handgriffs und damit auch des chirurgischen Instrumentes, beispielsweise eines Endoskops 9, im Operationsfeld des Patienten genau befindet.
Wenn das chirurgische Instrument ein Endoskop 9 ist, das mit einer Kamera 10 ausgestattet ist, kann die Bildschirmeinrichtung 4 zusätzlich auch noch das Bild des Endoskops darstellen.
Wie die Fig. 2a. 2b und 3 zeigen, sind erfindungsgemäß die Referenzmarken 7 (beispielsweise Licht, insbesondere Infrarotlicht, aussendende Leuchtdioden) am Handgriff 8 selbst direkt angebracht und damit integraler Bestandteil desselben. Wenn man mittels optischer Referenzmarken bei der Erfassung der Lage des Handgriffs bzw. des darin eingesetzten chirurgischen Instrumentes auch dessen Ausrichtung kennen will, ist es notwendig mindestens eine Referenzmarke zu verwenden. Wie in Fig. 2a, 2b und 3 dargestellt, werden vorzugsweise zwei beabstandete Referenzmarken verwendet. Das von diesen Referenzmarken 7 ausgesandte Licht wird von den drei Detektoren der Erfassungseinrichtung 2 erfasst. Die beiden Referenzmarken 7 können dabei so ausgebildet sein, dass sie vom Navigationssystem unterschieden werden können. Bei Leuchtdioden ist dies beispielsweise durch eine unterschiedliche Farbgebung oder eine unterschiedliche Modulation möglich.
Ansonsten kann der Handgriff in an sich bekannter Weise zwei Fingerdurchtrittsöffnungen 11 aufweisen, die an einem Grundkörper 8b des Handgriffs 8 ausgebildet sind. Mit diesem Grundkörper 8b ist eine rohrartige Aufnahme 8c fest verbunden, in die das medizinische Instrument einschiebbar und lagesicher lösbar fixierbar ist. Im vorliegenden Fall (Fig. 2a und b) wird ein medizinisches Instrument, nämlich ein in Fig. 2b gezeigtes Endoskop 9, in Pfeilrichtung 12 in die rohrartige Aufnahme 8c (Fig. 2a) eingeschoben und anschließend mit der Befestigungsvorrichtung 13 fixiert. Formschlüssige Rast- und Haltenasen, die im Einzelnen nicht dargestellt sind, können auf einfache mechanische Weise eine exakte relative Ausrichtung des Handgriffs 8 zum eingeschobenen medizinischen Instrument 9 festlegen.
Vor allem bei optischen Navigationssystemen ist es günstig, wenn die Referenzmarken 7 an der Oberseite des Grundkörpers 8b angebracht sind, weil sie dann während der Operation nicht verdeckt werden und damit immer von der Erfassungseinrichtung 2 in ihrer Lage erfasst werden können.
Der Handgriff 8 kann auch mit einer integrierten Saug- und/oder Spüleinrichtung versehen sein, die über einen Taster 14 am Handgriff aktivierbar ist. Der Anschluss der Saug- /Spülleitung ist mit 15 bezeichnet. Die Saug- /Spülleitung führt durch das Innere des Grundkörpers 8b und die rohrartige Aufnahme 8c bis zur Spitze 8a des Handgriffs - also direkt in das Operationsfeld. Die Flüssigkeit kann dabei in einem Ringspalt zwischen dem eingesetzten medizinischen Instrument 9 und der Innenwand der rohrartigen Aufnahme 8c fließen.
Ein bevorzugtes Ausführungsbeispiel der Erfindung sieht einen Satz von mindestens zwei verschiedenen medizinischen Instrumenten vor, die wahlweise im bzw. am Handgriff 8 fixierbar sind. Diese sind dann auch während der Operation austauschbar, ohne das System neu kalibrieren zu müssen, da ja der Handgriff selbst derselbe bleibt. Insbesondere können dabei zwei verschiedene Endoskope zum Einsatz kommen, die unterschiedliche Beobachtungsoptiken aufweisen. Es ist trotzdem günstig, nach dem Wechsel die Kalibration zu verifizieren.
In Fig. 4a ist nun ein Endoskop 9 schematisch dargestellt, mit dem erfindungsgemäß eine berührungslose Abstandsmessung von der Spitze 9a des Endoskops aus bis zu einem Objekt vorgenommen werden kann. Die optische Abstandsmesseinrichtung ist allgemein mit 27 bezeichnet.
Bei diesem Ausführungsbeispiel wird unter einem Winkel α zur optischen Achse 16 des Endoskops 9 ein schräger, farbiger Lichtstrahl 17 auf das Objekt gerichtet. Nachdem die Operationsumgebung aufgrund des vorhandenen Blutes meist rot ist, ist es günstig, diesen Lichtstrahl als grünen Lichtstrahl auszusenden.
In Fig. 4a sind verschiedene zur optischen Achse 16 senkrechte Ebenen A1 , A2, A3 eingezeichnet, die unterschiedlich beabstandete Objektlagen darstellen. Der Auftreffpunkt des Lichtstrahles auf das Objekt markiert die „virtuelle Sondenspitze" 28, die sich im abstand Di von der Spitze 9a des Endoskops befindet.
Wie die Fig. 4b bis 4d zeigen, spiegelt sich der unterschiedliche Abstand Di in einem unterschiedlichen lateralen Abstand vom Zentrum der optischen Achse in den Endoskopbildern wider. Diese Endoskopbilder können entweder direkt betrachtet werden oder mit einer Kamera 10 aufgenommen und auf einem Bildschirm dargestellt sein.
Die Fig. 4e zeigt wie man mittels einfacher trigonometrischer Beziehungen aus dem gemessenen seitlichen Versatz (hier h3) den Abstand Dj (hier D3) errechnen kann. Der
Winkel α, unter dem der Lichtstrahl zur optischen Achse ausgesandt wird, ist eine bekannte
Größe, ebenso der anfängliche Versatz e nach unten. Man braucht also nur die Größe h3 zu messen (beispielsweise durch digitale Bildauswertung) und kann dann anhand der in Fig. 4e gezeigten Formel sofort den Abstand D3 ausrechnen. Die Auswertung kann in einer Anzeige- und Auswerteinrichtung 3 erfolgen.
Die „virtuelle Sondenspitze" 28, also die Lage der tatsächlichen Spitze 9a des Endoskops 9 plus dem ermittelten vektoriellen Abstand Dj kann in den radiologischen Bildern der Anzeige- und Auswerteinrichtung beispielsweise mit einem Kreuz eingezeichnet werden. Es ist aber auch möglich, zusätzlich oder alternativ über eine gesonderte Anzeige 29 der Anzeige- und Auswerteinrichtung 3 einen numerischen Wert für den Abstand (beispielsweise in Millimetern oder eine graphische Darstellung) anzugeben.
Die Fig. 5 zeigt eine mögliche konstruktive Lösung für die Bereitstellung eines schrägen, farbigen Lichtstrahls.
Der vordere Teils des Endoskops 9 weist eine rohrförmige, beispielsweise metallische Hülse 18 auf. Im Ringspalt 19 ist eine nicht näher dargestellte Beleuchtungsoptik geführt, beispielsweise radial verteilte Lichtleitfasern. Die eigentliche Beobachtungsoptik des Endoskops ist mit 20 bezeichnet. Sie ist nicht Gegenstand der Erfindung und braucht hier nicht näher erläutert zu werden.
Der schräge, farbige Lichtstrahl 17 wird von einer Leuchtdiode oder von einer Laserdiode 21 erzeugt und über eine Einkopplungsoptik 22 in ein Bündel von flexiblen Lichtleitfasern 23 eingekoppelt. Dieses Bündel von Lichtleitfasern verläuft, wie auch die Fig. 5b zeigt, im radialen Ringspalt 19 an einer ausgezeichneten Stelle (in Fig. 5b unten in der Mitte im Ringspalt). Die Lichtleitfasern 23 sind im Endbereich nach oben abgeknickt (Stelle 24). Eine Auskopplungsoptik (Kollimationsoptik) 25 erzeugt dann den gewünschten Parallellichtstrahl, der mit dem Winkel α zur optischen Achse 16 des Endoskops verläuft.
Die Fig. 6 zeigt ein Ausführungsbeispiel eines Endoskops 9, bei dem die optische Achse 16 unter einem Winkel ß zur Längsrichtung 26 des Endoskoprohres verläuft. Der Messlichtstrahl 17 schließt einen Winkel α mit der optischen Achse ein. Man kann auch bei einer solchen Anordnung den Abstand eines Objektes entlang der optischen Achse messen.
Die Erfindung ist selbstverständlich nicht auf die dargestellten Ausführungsbeispiele beschränkt. Beispielsweise eignen sich auch andere optische Referenzmarken, insbesondere passive wie retroreflektierende Marker. Darüber hinaus eignen sich auch andere Referenzmarken als optische Referenzmarken, insbesondere Magnetspulen oder Ähnliches.
Auch die Abstandsmessung muss nicht notwendigerweise optisch (sichtbar oder Infrarot) erfolgen, wenngleich die optische Lösung nur einen geringen Platzbedarf einnimmt und präzise Ergebnisse liefert. Es sind aber durchaus auch andere Abstandsmessungen, beispielsweise mit Ultraschall durchaus denkbar und möglich. Ebenso muss das medizinische Instrument kein Endoskop sein. Es sind beispielsweise auch chirurgische Instrumente und andere medizinische optische Instrumente geeignet. Die Marker können auch direkt am medizinischen Instrument (also nicht nur am Griff desselben) angebracht sein.
Wenngleich eine berührungslose Erfassung der Referenzmarken einerseits und eine berührungslose Messung des Abstandes des Objektes von der Spitze des medizinischen Instrumentes bevorzugt ist, ist grundsätzlich auch eine nicht berührungslose Messung denkbar und möglich. Beim medizinischen Navigationssystem kann dies beispielsweise über einen Arm mit mehreren Gelenken erfolgen, wobei der Gelenkwinkel, beispielsweise über Potentiometer erfasst wird. Die Abstandsmessung kann beispielsweise durch verschieben einer Messsonde bei Messung des Verschiebeweges erfolgen.

Claims

Patentansprüche:
1. Medizinisches Navigationssystem mit einer Erfassungseinrichtung zur vorzugsweise berührungslosen Erfassung der Lage eines mit mindestens einer Referenzmarke versehenen, zu behandelnden Körperteils eines Patienten sowie zur vorzugsweise berührungslosen Erfassung der Lage eines medizinischen Instrumentes, insbesondere Endoskops, dem mindestens eine Referenzmarke zugeordnet ist, gekennzeichnet durch eine zusätzliche Abstandsmesseinrichtung (27) zur vorzugsweise berührungslosen Messung des Abstandes (D1) eines Objektes (A1), insbesondere einer Körperstelle des zu behandelnden Patienten, von einer ausgezeichneten Stelle (9a) des medizinischen
Instrumentes (9).
2. Medizinisches Navigationssystem nach Anspruch 1, dadurch gekennzeichnet, dass auf einer Bildschirmeinrichtung (4) eine ausgezeichnete Stelle (9a), vorzugsweise Spitze, des medizinischen Instruments und/oder eine in einem von der Abstandsmesseinrichtung
(27) erfassten Abstand (Dj) davon angeordnete Stelle (28) in vorher angefertigten und gespeicherten Schnittbildern und/oder dreidimensionalen Bildern des Patienten darstellbar sind (ist).
3. Medizinisches Navigationssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das medizinische Instrument ein Endoskop (9) mit einer durch eine optische Achse (16) definierten Beobachtungsrichtung ist, und dass die Abstandsmesseinrichtung (27) den Abstand (D1) in Beobachtungsrichtung bestimmt.
4. Medizinisches Navigationssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erfasste Abstandswert (Di) zusätzlich zur Darstellung in den Patienten-Bildern oder alternativ dazu als Zahlenwert (29) oder symbolhaft graphisch anzeig bar ist.
5. Medizinisches Navigationssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Abstandsmesseinrichtung eine optische Abstandsmesseinrichtung (27) ist.
6. Medizinisches Navigationssystem nach Anspruch 5, dadurch gekennzeichnet, dass die Abstandsmesseinrichtung (27) eine Einrichtung (21-25) zur Erzeugung eines optischen Messstrahls (17) aufweist, der unter einem Winkel (α) zur optischen Achse (16) des medizinischen Instruments (9) auf das Objekt gerichtet ist, und dass die Abstandsmesseinrichtung (27) weiters eine Auswerteinrichtung (3) aufweist, die aus der Lage des Auftreffpunktes dieses Messstrahles (17) auf dem Objekt den Abstand (DO rechnerisch ermittelt.
7. Medizinisches Navigationssystem nach Anspruch 6, dadurch gekennzeichnet, dass der optische Messstrahl (17) sichtbar farbig, vorzugsweise grün, ist.
8. Medizinisches Navigationssystem nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der optische Messstrahl (17) ein von einer Laserlichtquelle (21) erzeugter Laserlichtstrahl ist.
9. Medizinisches Navigationssystem nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass das Licht des optischen Messstrahles (17) zunächst in mindestens einem Lichtwellenleiter (23), vorzugsweise einer flexiblen Lichtleitfaser, geführt ist und über eine Kollimationsoptik (25) im Wesentlichen als Parallellichtstrahl (17) aus der bzw. den Lichtwellenleiter(n) ausgekoppelt und auf das Objekt gerichtet wird.
10. Medizinisches Navigationssystem nach Anspruch 9, dadurch gekennzeichnet, dass der bzw. die Lichtwellenleiter in einem radial äußeren Randbereich (19) eines rohrförmigen Abschnitts (18) des medizinischen Instruments (9) bis in den Bereich von dessen Spitze geführt ist (sind).
11. Medizinisches Navigationssystem nach einem der Ansprüche 1 bis 10, gekennzeichnet durch einen Handgriff (8) zur lösbaren Aufnahme des medizinischen Instruments (9), vorzugsweise Endoskops, wobei der Handgriff (8) mit mindestens einer Referenzmarke (7) versehen ist, deren Lage im Raum von einem medizinischen Navigationssystem (1) berührungslos erfassbar ist.
12. Medizinisches Navigationssystem nach einem der Ansprüche 1 bis 12, gekennzeichnet durch einen integral am medizinischen Instrument ausgebildeten Handgriff.
13. Medizinisches Navigationssystem nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der Handgriff (8) bzw. das medizinische Instrument mindestens zwei, voneinander beabstandet angeordnete Referenzmarken (7) aufweist.
14. Medizinisches Navigationssystem nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass zumindest eine Referenzmarke (5, 7) Licht aussendet, das von Detektoren (2) des medizinischen Navigationssystems (1) erfasst wird.
15. Medizinisches Navigationssystem nach Anspruch 14, dadurch gekennzeichnet, dass zumindest eine Referenzmarke (5, 7) eine Leuchtdiode (LED) umfasst.
16. Medizinisches Navigationssystem nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass der Handgriff einen vorzugsweise mit mindestens einer Fingerdurchtrittsöffnung (11) versehenen Grundkörper (8b) und eine vorzugsweise rohrartige Aufnahme (8c) aufweist, in die das medizinische Instrument (9) einschiebbar und lagesicher lösbar fixierbar ist.
17. Medizinisches Navigationssystem nach Anspruch 16, dadurch gekennzeichnet, dass die mindestens eine Referenzmarke am Grundkörper (8b), vorzugsweise an dessen Oberseite, angebracht ist.
18. Medizinisches Navigationssystem nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass im Handgriff eine Saug- und/oder Spüleinrichtung integriert ist, die über mindestens einen Taster am Handgriff aktivierbar ist.
19. Medizinisches Navigationssystem nach einem der Ansprüche 11 bis 18, gekennzeichnet durch einen Satz von mindestens zwei verschiedenen medizinischen Instrumenten (9), die wahlweise lösbar im oder am Handgriff (8) fixierbar sind.
20. Medizinisches Navigationssystem nach Anspruch 19, dadurch gekennzeichnet, dass der Satz von medizinischen Instrumenten (9) mindestens zwei verschiedene Endoskope, vorzugsweise solche mit unterschiedlichen Beobachtungsoptiken mit unterschiedlich ausgerichteten optischen Achsen aufweist.
21. Medizinisches Navigationssystem nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass das Endoskop mit einer Kamera (10) versehen ist, und deren Bilder auf einer Bildschirmeinrichtung (4) des medizinischen Navigationssystems (1) darstellbar sind.
22. Medizinisches Navigationssystem nach einem der Ansprüche 1 bis 21 , dadurch gekennzeichnet, dass die zusätzliche Abstandsmesseinrichtung (27) am medizinischen Instrument (9), vorzugsweise an dessen in Betriebsstellung zum Objekt (A1) gewandter Spitze, angeordnet ist.
PCT/AT2006/000507 2005-12-14 2006-12-07 Medizinisches navigationssystem WO2007068017A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1993/2005 2005-12-14
AT0199305A AT502919B1 (de) 2005-12-14 2005-12-14 Medizinisches navigationssystem

Publications (2)

Publication Number Publication Date
WO2007068017A2 true WO2007068017A2 (de) 2007-06-21
WO2007068017A3 WO2007068017A3 (de) 2008-05-08

Family

ID=38117097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2006/000507 WO2007068017A2 (de) 2005-12-14 2006-12-07 Medizinisches navigationssystem

Country Status (2)

Country Link
AT (1) AT502919B1 (de)
WO (1) WO2007068017A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049326A3 (de) * 2010-10-15 2012-08-16 Scopis Gmbh Verfahren und vorrichtung zum kalibrieren eines optischen systems, abstandsbestimmungsvorrichtung sowie optisches system
CN103181822A (zh) * 2011-12-30 2013-07-03 上海爱立峰医疗科技有限公司 用于磁共振引导穿刺手术系统的定位器
CN103828360A (zh) * 2011-03-23 2014-05-28 联合科学有限责任公司 光学扫描设备
CN110248585A (zh) * 2016-10-07 2019-09-17 博迪维仁医疗有限公司 在介入和外科手术中使用的装置及其使用方法
CN111511281A (zh) * 2017-12-22 2020-08-07 阿克拉伦特公司 用于外科导航系统的配准面部标志的设备和方法
US11490785B2 (en) 2017-03-28 2022-11-08 Fujifilm Corporation Measurement support device, endoscope system, and processor measuring size of subject using measurement auxiliary light

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014210619A1 (de) * 2014-06-04 2015-12-17 Olympus Winter & Ibe Gmbh Endoskop mit berührungsloser Abstandsmessung
CN110418596B (zh) * 2017-03-28 2021-12-24 富士胶片株式会社 测量辅助装置、内窥镜系统及处理器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466815B1 (en) 1999-03-30 2002-10-15 Olympus Optical Co., Ltd. Navigation apparatus and surgical operation image acquisition/display apparatus using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970908A (ja) * 1982-10-15 1984-04-21 Olympus Optical Co Ltd 内視鏡測距装置
US5669871A (en) * 1994-02-21 1997-09-23 Olympus Optical Co., Ltd. Endoscope measurement apparatus for calculating approximate expression of line projected onto object to measure depth of recess or the like
FR2801185A1 (fr) * 1999-11-18 2001-05-25 Francois Fassi Allouche Video endoscope securise a profilometre laser integre pour la chirurgie assistee par ordinateur
US20040092958A1 (en) * 2001-11-15 2004-05-13 Limonadi Farhad M. Stereotactic wands, endoscopes and methods using such wands and endoscopes
US7912532B2 (en) * 2002-06-13 2011-03-22 Moeller-Wedel Gmbh Method and instrument for surgical navigation
DE20213709U1 (de) * 2002-09-05 2002-12-19 Aesculap Ag & Co Kg Vorrichtung zur Erfassung der Kontur einer Oberfläche

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466815B1 (en) 1999-03-30 2002-10-15 Olympus Optical Co., Ltd. Navigation apparatus and surgical operation image acquisition/display apparatus using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012049326A3 (de) * 2010-10-15 2012-08-16 Scopis Gmbh Verfahren und vorrichtung zum kalibrieren eines optischen systems, abstandsbestimmungsvorrichtung sowie optisches system
US9068820B2 (en) 2010-10-15 2015-06-30 Scopis Gmbh Method and device for calibrating an optical system, distance determining device, and optical system
CN103828360A (zh) * 2011-03-23 2014-05-28 联合科学有限责任公司 光学扫描设备
JP2014524751A (ja) * 2011-03-23 2014-09-25 ユナイテッド サイエンス, エルエルシー 光学走査装置
EP2710805A4 (de) * 2011-03-23 2015-05-13 United Sciences Llc Optische abtastvorrichtung
CN103181822A (zh) * 2011-12-30 2013-07-03 上海爱立峰医疗科技有限公司 用于磁共振引导穿刺手术系统的定位器
CN110248585A (zh) * 2016-10-07 2019-09-17 博迪维仁医疗有限公司 在介入和外科手术中使用的装置及其使用方法
US11490785B2 (en) 2017-03-28 2022-11-08 Fujifilm Corporation Measurement support device, endoscope system, and processor measuring size of subject using measurement auxiliary light
CN111511281A (zh) * 2017-12-22 2020-08-07 阿克拉伦特公司 用于外科导航系统的配准面部标志的设备和方法
CN111511281B (zh) * 2017-12-22 2024-04-26 阿克拉伦特公司 用于外科导航系统的配准面部标志的设备和方法

Also Published As

Publication number Publication date
AT502919B1 (de) 2010-11-15
WO2007068017A3 (de) 2008-05-08
AT502919A1 (de) 2007-06-15

Similar Documents

Publication Publication Date Title
AT502919B1 (de) Medizinisches navigationssystem
EP2205176B1 (de) Verfahren zur positionsbestimmung eines intraoral messenden messgerätes
DE60302347T2 (de) Cas-bohrführung und bohrverfolgungssystem
DE102005042751B4 (de) System, Einrichtung und Verfahren zum Ad-hoc-Nachverfolgen eines Objektes
DE69829161T2 (de) Stereotaktische Zieleinrichtung
DE102004008164B3 (de) Verfahren und Vorrichtung zum Erstellen zumindest eines Ausschnitts eines virtuellen 3D-Modells eines Körperinnenraums
EP2632382B1 (de) Navigationsaufsatz für optische geräte in der medizin und verfahren
US20040019280A1 (en) Infrared assisted monitoring of a catheter
DE19813383A1 (de) Vorrichtung, mit einer Sendereinheit, über die die Position eines medizinischen Instruments im Rahmen eines CAS-Systems erfaßbar ist
EP2377484A1 (de) Vorrichtung und Verfahren zum berührungslosen Ermitteln und Vermessen einer Raumposition und/oder einer Raumorientierung von Körpern, Verfahren zum Kalibrieren und zum Prüfen von insbesondere medizinischen Werkzeugen sowie Muster auf oder Strukturen an insbesondere medizinischen Werkzeugen
EP0950380A1 (de) Anordnung für die bildgeführte Chirurgie
DE10009166A1 (de) Verfahren zur Lokalisierung von Objekten in der interventionellen Radiologie
CZ259099A3 (cs) Invazní nástroj a způsob monitorování vyrovnání nástroje s paprskem viditelného světla
DE102009060522A1 (de) Simulationssystem für das Training endoskopischer Operationen
DE102004044285A1 (de) System und Verfahren zum Bestimmen der Position eines in einem Positionsverfolgungssystems verwendeten elastischen Instruments
DE10029737B4 (de) Navigation eines medizinischen Instrumentes
CN106061349A (zh) 用于测量组织区域的装置和方法
DE102019211870A1 (de) Projektionsvorrichtung zur Erzeugung einer Lichtverteilung auf einer Oberfläche eines Untersuchungsobjekts zur Ausrichtung eines medizinischen Objekts und Verfahren zur Projektion einer Lichtverteilung auf eine Oberfläche eines Untersuchungsobjekts
DE102011102204B4 (de) Anästhesiesystem mit abnehmbarer Anästesiemittel-Dosiervorrichtung
DE19731935C2 (de) Dentalsonde zum Messen und Untersuchen der Tiefe einer Blindtasche, die um einen Zahn herum gebildet ist
WO2014128301A1 (de) Optisch erfasste ultraschallnavigierte punktion
DE102006050886B4 (de) Medizinisches Instrument und Einrichtung zur Erzeugung von Gewebeschnittbildern
EP1255487B1 (de) Laserindikator
WO2005077295A1 (de) Zahnärztliches handinstrument, zahnärztliche behandlungs-einheit und verfahren zur anzeige von informationen mit einem zahnärztlichen handinstrument
DE102014210619A1 (de) Endoskop mit berührungsloser Abstandsmessung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06817482

Country of ref document: EP

Kind code of ref document: A2