WO2007066585A1 - Refrigerant heater - Google Patents

Refrigerant heater Download PDF

Info

Publication number
WO2007066585A1
WO2007066585A1 PCT/JP2006/324053 JP2006324053W WO2007066585A1 WO 2007066585 A1 WO2007066585 A1 WO 2007066585A1 JP 2006324053 W JP2006324053 W JP 2006324053W WO 2007066585 A1 WO2007066585 A1 WO 2007066585A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pipe
liquid pipe
gas pipe
liquid
Prior art date
Application number
PCT/JP2006/324053
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Yabu
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007066585A1 publication Critical patent/WO2007066585A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters

Definitions

  • a refrigerator of this kind has been disclosed conventionally, for example, as shown below. This is installed in the compression pipe and is used as a heater for heating.
  • a heater for this device for example, one in which a is wound around a tube containing a magnetic material, and a high-frequency current is supplied to this a, so that the magnetic material is electromagnetically conducted, is used.
  • This formula has the advantage that it can be heated quickly because the body can be heated in a non-contact manner by the lines of force generated by the high-frequency current being supplied to b. It has been done.
  • the applicant proposes a device that can be retrofitted (in addition to the internal unit that constitutes the air conditioner).
  • a gas heater is provided, and the pipe is configured so that it can be connected to both the outdoor unit and the indoor unit. According to this installed unit, even if the heat function is retrofitted, the body of the air conditioner can be easily retrofitted without the need to replace the body of the air conditioner, and the quick heating effect can be obtained as desired. can get.
  • It is a device for cooling and heating according to 005 Ming, and is equipped with, gas, heating, and keng. , To be distributed.
  • the gas pipe is configured to flow gas.
  • the keng holds the gas and heating so that each part of the gas pipe communicates with the outside. Part of the heating is located close to the gas pipe.
  • the arrangement in contact with the gas here includes the case in which it is arranged in contact with the heating gas.
  • the container for storing the gas for example, whether the container is formed by winding a container around the gas or is formed,
  • the material to be used is not particularly limited, whether it is a hard material or a soft material.
  • the keng functions as an integral unit for heating and gas pipes.
  • the kung that functions as heat insulation integrates the heating and gas pipes.
  • the heat generated from the heating section can be prevented from leaking to the outside, the heat can be effectively used, and it is not necessary to provide it separately from the heat insulating ken.
  • the keng has both the function of heating and the function of integrating the gas pipe and the heat insulating function, so that it is possible to suppress the increase in the number of parts and improve the rate.
  • the gas pipe is gas.
  • Is installed on the pipe.
  • the keng functions as a heating and uniting the Is tube.
  • the knot that functions as heat insulation is a set of heating and issu pipes.
  • the heat generated from the heating section can be prevented from leaking to the outside, the heat can be effectively used, and it is not necessary to provide the heat separately from the heat insulating section.
  • the gas pipe is shunting gas and is divided. It is possible to control the amount of medium to be split by controlling the opening / closing mechanism.
  • the keng serves both as a heating and a function of integrating the is pipe and a heat insulating function, thereby suppressing the increase in the number of parts and improving the rate even when flowing through the is pipe for adjusting the flow rate. Will be possible.
  • It also has a heating unit and a gas pipe.
  • the heat insulation and the gas pipe are integrated by the heat insulation, so that the heat from the heating section can be prevented from leaking to the outside. Furthermore, since it is provided with heat insulation and canning, the heat insulation effect can be improved.
  • the device further includes an issu, an opening / closing mechanism, and heat insulation.
  • the pipe is for gas and gas. , Is installed on the pipe. , Heating, and the is tube are integrated.
  • heat insulation, heating, and an is tube are integrated.
  • the heat generated from the heating section can be prevented from leaking to the outside, and the heat can be effectively used.
  • the gas issuant to the gas can be branched and the opening / closing mechanism can be used to regulate the amount of the branched medium.
  • the orientation of the gas pipe and the orientation of the gas pipe are opposite to each other.
  • the direction of flowing through and the direction of flowing through the gas pipe are opposite to each other. Therefore, the temperature rises slightly due to the collection of the medium that flows through the gas pipe or the liquid that has not been heated, and the end of the medium that has been heated by the heating. The temperature can be further increased by collecting.
  • the orientation of the gas pipe is the same as that of the gas pipe.
  • a magnetic material part which is wound around the heating part. It is located close to the gas pipe.
  • the body part described here may be provided on the wall of, or may be provided on the part of.
  • a high-frequency current is passed through the wire wound around the magnetic part, and the heat generated by electromagnetic conduction can be used for rapid heating.
  • the keng has the function of heating, and having the function of a gas pipe as a unit and the function of heat insulation, thus suppressing the increase in the number of parts.
  • the keng heats and combines the function of embodying the is pipe and the heat insulating function, thereby suppressing the addition of the number of parts and flowing through the is pipe for the flow rate adjustment. It is also possible to improve the rate.
  • the air conditioner 4 has a cot 4 connected by 43 and a gas 44, and an indoor cot 42, as shown in.
  • the option hitter is retrofitted in the equipment 5 composed of 43 gas 44 etc., and is used as an auxiliary hitter to partially heat the gas flowing through 5.
  • the option hitt is enclosed by a rectangular shaped tray, as shown in Fig. 2, which contains 2, gas 3, hitter 9, tray 3 and a. It is.
  • the 003 12 is placed flat near the inside of the keg pan and penetrates around 5 and 26 of the kang pan.
  • 2a of 2 protrudes to the left in the figure 5 to the outside of the canning dish.
  • 2b of 2 protrudes from the number 26 of the canb dish to the right of the figure to the outside of the canb dish.
  • 2's 2a and 2b are turned on 7, as shown in 2.
  • the heater 9 has iga, a body part gb containing a magnetic material, and a high frequency gc (in 2).
  • This hit 9 is 2 As shown in, heat from 2 to 5 in sequence. Physically, the body part gb of the human 9 is provided on the surface 2. Hita 9's Iga is wound further outside the body part gb that covers the 2nd surface. Further, the high frequency gc is connected to the amount of iga, and receives a high frequency flow to the amount of iga upon receiving an order from TRANA3 and others mentioned later. As shown in Fig.
  • the heating by the heater 9 supplies a high-frequency current to the high-frequency gc to the high-frequency ga, and the high-frequency current flows to the high-current ga.
  • a high frequency field is generated. Due to this electromagnetic induction, an induced current is induced in the magnetic body. For this reason, an infinite number of currents are induced in the body part 9b containing the magnetic material. As a result, heat is generated due to the air resistance innumerable current of the magnetic body part gb, and the magnetic body part gb instantly generates heat (
  • the heat of the generated sexual part gb flows through 2 and. As a result, not only the magnetic part gb is heated, but also 2 is heated, and 2 is heated. Here, the part of the heat generated from the body part gb due to the electromagnetic heat is diffused in the surroundings of the heater 9 without being transmitted through the flow in 2.
  • Gas 3 is laid flat on the bottom of the keg tray, 2 if it abuts the surrounding hitter 9 and penetrates near the 5 and 26 parts of the kent tray. . Physically, the gas 3 is arranged so as to be in contact with the ga of the heater 9 as shown in 2, so that the heat dissipated from the magnetic part gb is recovered and the gas flowing inside is heated. can do. Also mentioned above
  • the direction of flow in gas 3 and the direction of flow in gas 2 are arranged so as to be mutually opposite. Therefore, the gas 3 can be flowed more efficiently.
  • 3a of gas 3 is projected to the outside of the canning dish toward the left in Fig. 5 to the left of the canning dish.
  • 3b of gas 3 protrudes from the number 26 of the saucepan to the right in the figure to the outside of the saucepan.
  • Gas 3 3a 3b is turned on 8 as shown in 2. It is.
  • Gas 4 of 5 and gas 3 are followed by screwing an nut 54 () encased in gas 44 into gas 3 on 8.
  • this controller 3 is configured to control the frequency gc of the heater 9 by receiving the control signal from the controller 6 of the road.
  • the heater 9 is driven when the control signal that the air conditioning controller 6 receives when the cyclone operation is performed is received.
  • the heater 9 is driven.
  • the control signal is received from the air conditioning controller 6 when it is judged that the power is insufficient for the heating load during heating operation, the heater 9 is driven.
  • the 003a is wound around the gas 2, the gas 3 and the heater 9 described above.
  • the heat generated by the heater 9 can be efficiently transmitted to 2 and 2 without leaking to the outside.
  • the heat not transmitted to the 2 can be efficiently recovered in the gas 3.
  • Fig. 2 it is a rectangular shape, and by combining the above-mentioned 2, gas 3, hitter 9, heat insulation a and transformer 3 together.
  • the air conditioner 4 is connected to the indoor units 4 2 and 4 by installing the optional unit later.
  • the 003 4 has a compression 45, a compression 46, an expansion 48 that is formed by an electric motor at a flow rate, and a exchanger 47 and a fan 57 that are heat exchangers for exchanging outdoor air and cold. Be prepared.
  • the outdoor exchanger 47 is equipped with an outdoor air temperature sensor that detects the outdoor and outputs a control signal.
  • the switch 4 7 is equipped with a sensor S2 that detects 2 and outputs a control signal.
  • the 2a of 2 is connected to the end of 5 which is connected to the outdoor exchanger 47. This is done by inserting 53, which is inserted in 5, into ON 7, which is set in 2a of 2.
  • 2 b of 2 is connected to the end of 2 52 which is connected to the indoor exchanger 49. This is done by inserting the nut 53 in 2 52 into the ON 7 in 2b of 2.
  • It is configured to flow 2 from 2a to 2b at the time of 003 and Cyclodest, and flow from 2b to 2a at the time of Cyclodest.
  • the gas 44 is composed of a gas 55 connected to the outdoor exchanger 47 and two gases 56 connected to the indoor exchanger 49.
  • the gas 55, 4645 is installed, and one end is connected to the outdoor exchanger 47.
  • Gas 55 2 Gas 56 Optional followsed via gas 3 It
  • 3a of gas 3 is connected to the end of gas 55 that connects to the outdoor exchanger 47. This is done by inserting the annat 54, which is contained in the gas 55, into the ON 8 which is contained in the gas 3a.
  • Gas 3 3b is connected to the end of 2 gas 56 which connects to the indoor exchanger 49. This 54, which is contained in 2 gas 56, is
  • the trap 6 receives the signals of 2 3 output from the sensors such as the outside air temperature sensor, the heat exchange sensor S2 and the sensor S3 described above. This Trader 6 receives the degree 2 and sends the control signal to the Trader 3, which is installed in the option hit, both for heating and for switching.
  • Tra 6 performs cyclist control, positive cyclist control, and heating control.
  • the heating mode is switched to the reverse cyclode mode.
  • the Cyclodest which is a control signal, is output to the Tora3.
  • the state indicated by 46 switches to that shown in Fig. 2.
  • the gas 3 of the ozone filter flows and flows to the indoor exchanger 49.
  • the gas that has flowed into the exchanger 49 exchanges heat with the indoor air, condenses while it is indoors.
  • the gas emanating and exiting the exchanger 47 passes through the gas 46, returns to compression 45 and so on.
  • the air conditioning controller 6 performs cyclade control when it is detected by the outside air temperature sensor but is C full, and when it is detected by 2 detected by the heat exchange sensor S2.
  • the hot gas discharged from the compressor 45 flows to the outdoor exchanger 47. Then, the frost adhering to the outdoor exchanger 47 is thawed by the hot gas. After passing through the exchanger 47, 43 of 5 will flow, but in the course of flowing through this 43, 2 of option hits will flow. As it flows through this 2, it is cooled by a cold heater 9. After passing through the indoor exchanger 49, the optional gas 3 flows. When the gas 3 flows, it is heated by recovering the heat from the heater 9 and returns to compression 45. By repeating this operation, the exchange 47 is cycled. In this way, when the cyclode is turned on, the heater 9 of the opita heater heats up, so the power can be improved. In addition, when the gas 3 flows, the degree of superheat can be sufficiently added, so that the rotation of the compression 45 can be stabilized.
  • the air conditioning controller 6 performs cyclade control when it is detected by the outside air temperature sensor but is above C but is detected by 2 detected by the heat exchange sensor S2. In this cyclode operation, the air conditioning controller 6 outputs the cyclode signal to the controller 3 installed in the option heater.
  • the cold does not reverse. It is heated by recovering heat from the heater 9 when passing through the gas 3 of the gas option heater discharged from the compression 45 at the time of rotation. Therefore, the amount of water flowing into the indoor exchanger 49 can be raised. Then, in the indoor exchanger 49, the gas whose temperature has risen in this way exchanges heat with the indoor air to cool and condense the indoor cells together. Therefore, the power of heating can be improved without increasing the power of compression 45 in particular. Flowed to the outdoor exchanger 47 after being hit by the hitch 9 of the op- hit. , Defrost the frost on the exchanger 47 and return to 45. The defrosting is performed while continuing the heating.
  • the heating 63 issues No. Iwa to Tora 3.
  • Tora 3 receives the Iwah, it controls the capacity, controls to increase the power of the frequency gc of the heater 9, and heats the water flowing out from the indoor exchanger 49.
  • the exchange of the outdoor exchanger 47 can be reduced. Therefore, in the outdoor exchanger 47, even if the temperature difference between the outdoor air temperature and the outdoor air temperature is small, it is possible to ensure the exchange necessary for the occurrence of be able to. As a result, the degree of suction to the compression 45 rises and the degree of discharge rises to flow into the indoor exchanger 49.
  • the heat discharged from the heater 9 is further recovered by recovering the heat from the heater 9 when passing through the gas 3 of the option heater discharged from the compression unit 45, so that the refrigerant flowing into the indoor exchanger 49 is discharged.
  • the cooling of the indoor exchanger 49 can be increased without decreasing the amount of water flowing into the outdoor exchanger 47. Therefore, the water flowing out from the indoor exchanger 49 can be discharged.
  • the amount of the inflow to the indoor exchanger 49 becomes large and the amount of the outflow from the indoor exchanger 49 becomes small, so that the amount of the indoor exchanger 49 increases and the power of the indoor exchanger 49 increases.
  • the power of the indoor exchanger 49 can be improved and the heating power can be eliminated without adopting the less powerful exchanger 47 as the component of the air conditioner 4.
  • 46 changes to.
  • the gas discharged from 45 passes through 46, flows to the outdoor exchanger 47, and Replace and shrink.
  • the liquid is cooled and expanded 48 to reduce the pressure, and then passes through 2 and flows into the exchanger 49.
  • heat is exchanged with the indoor air, and the air is cooled and emitted.
  • the emitted gas passes through gas 3, passes through 46 and returns to compression 45, and so on.
  • the installed air conditioner is equipped with a cooling / heating function, the amount of green onions required for heating will increase, but in the conventional equipment, since no particular consideration is given to the large amount of this green onion, the rate is It is planned to be on top of.
  • the gas 3 is arranged so as to contact the hit 9 that heats the gas 2. Therefore, even if the heat from the heater 9 used as the heater of 2 is used for the heat of 2 and flows out, it is collected in the gas 3 that is in close proximity. be able to. Therefore, the recovered heat can heat the gas 3 flowing through it. As a result, even if the option heater is retrofitted to the air conditioner 4, it is possible to suppress the strain and improve the efficiency.
  • the hitt 9 can be made small, and as a result, an optional post hitter body can be installed later. It needs to be designed properly and requires a lot of installation space required for retrofitting.
  • the insulation a covers 2, 2, gas 3 and heat 9. Therefore, the heat generated from the heater 9 can be suppressed from leaking to the outside, and the heat generated from the heater 9 can be effectively used as the cooling heat.
  • the heat insulation a is further provided by a keg dish. As a result, 2, gas 3 and heater 9 are double-covered, and the heat insulation effect can be further improved.
  • the option in the embodiment is arranged so that the direction of flow of 2 and the direction of flow of gas 3 are opposite to each other. For this reason, the temperature slightly increased due to the collection of the medium flowing through the liquid 2 before flowing through the gas 3 or the liquid flowing through the liquid 2, and the end was heated to a minute by the heater 9. The temperature can be further increased by collecting the medium flowing through 2. As a result, the rate in gas 3 is further improved.
  • the two components, 222 are installed between the second and third gas sections of Iss 4. 0051, and according to the instructions of the air conditioning controller 6 and others, the controller 3 controls 2 and 222. With this control, when the control output from the air conditioning controller 6 is received when switching to cyclodesic operation, 2 installed in 2 is closed and 2 22 installed in 4 is opened. To do. Thus, by providing the Is 4, it is possible to divide the part of the gas flowing through the 2 to adjust the flow rate of the cold air.Here, the power is improved because it is heated at the time of the cyclode rotation.
  • the flow rate of the indoor exchanger 49 is cut off, so that the deterioration of the indoor exchanger 49 can be suppressed, and the deterioration of the indoor exchanger 49 can be suppressed.
  • the untransferred heat can be recovered not only in 2 and gas 3, but also in it 4.
  • gas 3 and hitter 9 but also iss 4 can be removed, so that the heat performance in flowing through iss 4 can be obtained without being the result of the above conditions. Can be secured, and the rate can be increased.
  • the heat insulation is not limited to this, and the heat insulation a may be adopted as a configuration in which a material having a heat insulation function is adopted in the casing.

Abstract

A refrigerant heater which can be fixed afterward easily and can enhance the heat recovery efficiency. An option heater unit (10) for heating a refrigerant comprises a liquid pipe (12), a gas pipe (13), a heater (19), and a casing (11). The liquid pipe (12) is arranged to distribute a liquid refrigerant. The gas pipe (13) is arranged to distribute a gas refrigerant. The heater (19) heats the refrigerant flowing through the liquid pipe. The casing (11) contains the liquid pipe (12), the gas pipe (13) and the heater (19) such that the opposite ends of the liquid pipe (12) and the gas pipe (13) communicate with the outside. At least a part of the heater (19) is arranged in proximity to the gas pipe (13).

Description

明 細 書 Specification
冷媒加熱装置 Refrigerant heating device
技術分野 Technical field
[0001] 本発明は、冷媒加熱装置、特に、冷媒配管中を流れる冷媒を加熱する冷媒加熱装 置に関する。 [0001] The present invention relates to a refrigerant heating device, and particularly to a refrigerant heating device that heats a refrigerant flowing through refrigerant piping.
背景技術 Background technology
[0002] 一般に、冷媒加熱装置として、空気調和装置の室内機と室外機との間で循環する 冷媒を加熱するものが知られて ヽる。 [0002] Generally, there are known refrigerant heating devices that heat refrigerant that circulates between an indoor unit and an outdoor unit of an air conditioner.
このような冷媒加熱装置では、従来より、例えば、以下に示す特許文献 1において、 この種の冷媒加熱装置が開示されている。この冷媒加熱装置は、冷媒回路中、圧縮 機の吐出側の配管に設けられており、暖房運転時の補助ヒータ等として用いられて いる。 Conventionally, such a refrigerant heating device has been disclosed, for example, in Patent Document 1 shown below. This refrigerant heating device is installed in the piping on the discharge side of the compressor in the refrigerant circuit, and is used as an auxiliary heater during heating operation.
この冷媒加熱装置のヒータとしては、例えば、磁性体等の発熱体を含む配管にコィ ルが卷き付けられ、このコイルに対して高周波電流が供給されることにより、磁性体を 電磁誘導により加熱するものが用いられる。この電磁誘導加熱方式では、コイルに高 周波電流が供給されることで生じる磁力線によって磁性体を非接触に加熱することが できるため、冷媒を素早く加熱できる等の利点を有しており、近年、特に注目されて いる。 As the heater of this refrigerant heating device, for example, a coil is attached to a pipe containing a heating element such as a magnetic material, and a high frequency current is supplied to this coil to heat the magnetic material by electromagnetic induction. The one that does is used. With this electromagnetic induction heating method, magnetic materials can be heated without contact using magnetic lines of force generated when high-frequency current is supplied to the coil, so it has the advantage of being able to quickly heat the refrigerant. It is receiving particular attention.
[0003] そして、本願出願人は、以下に示す特許文献 2に記載のように、空気調和装置を構 成する室内機や室外機とは別個に、後付け可能な (ユニット化させた)冷媒加熱装置 を提案している。この冷媒加熱装置では、ガス管とヒータが設けられた液管とが設けら れており、各配管の両端部分において、室外機側と室内機側とのそれぞれに対して 接続可能となるように構成されている。このユニット化された冷媒加熱装置によると、 冷媒加熱機能を後付けした ヽ場合であっても、空気調和装置の全体を取り替えるこ と無ぐ冷媒加熱装置を容易に後付けすることができ、ユーザの希望に応じて冷媒の 素早い加熱効果が得られる。 [0003] As described in Patent Document 2 shown below, the applicant has developed a refrigerant heating system that can be retrofitted (unitized) separately from the indoor unit and outdoor unit that constitute the air conditioner. We are proposing a device. This refrigerant heating device is equipped with a gas pipe and a liquid pipe equipped with a heater, and each pipe is connected at both ends to the outdoor unit and the indoor unit, respectively. It is configured. According to this unitized refrigerant heating device, even if the refrigerant heating function is retrofitted, the refrigerant heating device can be easily retrofitted without replacing the entire air conditioner, and the user's wishes can be met. A quick heating effect of the refrigerant can be obtained depending on the temperature.
特許文献 1 :特開平 5— 223194号公報 特許文献 2:特開 2002— 5537号公報 Patent document 1: Japanese Patent Application Laid-Open No. 5-223194 Patent document 2: Japanese Patent Application Publication No. 2002-5537
発明の開示 Disclosure of invention
発明が解決しょうとする課題 Problems that the invention seeks to solve
[0004] この特許文献 2に記載の後付け可能な冷媒加熱装置では、冷媒の加熱を素早くす る目的で空気調和装置に後付けした場合、運転に必要とされるエネルギが増加する ことになる。ところが、液管に取り付けられたヒータからの熱の一部力 冷媒に伝わる ことなく周囲に漏れ出しており、熱ロスが生じている。 [0004] In the retrofittable refrigerant heating device described in Patent Document 2, when it is retrofitted to an air conditioner for the purpose of quickly heating the refrigerant, the energy required for operation will increase. However, some of the heat from the heater attached to the liquid pipe is not transmitted to the refrigerant and leaks out into the surrounding area, causing heat loss.
本発明は上述した点に鑑みてなされたものであり、本発明の課題は、後付けが容 易であり、且つ、熱回収効率を向上させることが可能な冷媒加熱装置を提供すること にある。 The present invention has been made in view of the above points, and an object of the present invention is to provide a refrigerant heating device that can be easily retrofitted and that can improve heat recovery efficiency.
課題を解決するための手段 Means to solve problems
[0005] 第 1発明に係る冷媒加熱装置は、冷媒を加熱するための冷媒加熱装置であって、 液管と、ガス管と、加熱部と、ケーシングとを備えている。液管は、液冷媒が流通する ように構成されている。ガス管は、ガス冷媒が流通するように構成されている。加熱部 は、液管を流通する冷媒を加熱する。ケーシングは、液管およびガス管の各両端部 分が外部に通じるように、液管とガス管と加熱部とを収納する。そして、加熱部の少な くとも一部が、ガス管に近接して配置されている。なお、ここでの加熱部とガス管との 近接した配置には、加熱部とガス管とが接触して配置されている場合が含まれる。ま た、ここでの液管、ガス管および加熱部を収納するケーシングとしては、例えば、液管 、ガス管および加熱部に対して繊維状のものを巻き付けて構成されるものであっても よぐ榭脂等によって形成される筐体等であってもよぐこのケーシングを構成する素 材としては硬質の素材であってもよ 、し柔軟性を有する素材であってもよぐ特に限 定されるものではない。 [0005] A refrigerant heating device according to a first aspect of the invention is a refrigerant heating device for heating a refrigerant, and includes a liquid pipe, a gas pipe, a heating section, and a casing. The liquid pipe is configured to allow liquid refrigerant to flow therethrough. The gas pipe is configured to allow gas refrigerant to flow therethrough. The heating section heats the refrigerant flowing through the liquid pipe. The casing accommodates the liquid pipe, the gas pipe, and the heating section so that both end portions of the liquid pipe and gas pipe communicate with the outside. At least a portion of the heating section is arranged close to the gas pipe. Note that the arrangement of the heating section and the gas pipe in close proximity includes the case where the heating section and the gas pipe are arranged in contact with each other. In addition, the casing for housing the liquid pipe, gas pipe, and heating part may be constructed by wrapping a fibrous material around the liquid pipe, gas pipe, and heating part, for example. Even if the casing is made of bamboo resin, etc., the material constituting the casing may be a hard material, and even if it is a flexible material, there are no particular limitations. It is not something that will be done.
[0006] 冷媒加熱機能を備えさせる目的で空気調和装置に冷媒加熱装置を後付けした場 合、運転に必要とされるエネルギが増加するが、従来の冷媒加熱装置では、液管に 取り付けられたヒータからの熱の一部が液管を流通する冷媒に伝わることなく周囲に 漏れ出すことで熱ロスが生じることがあり、熱効率が悪い。 [0006] When a refrigerant heating device is retrofitted to an air conditioner for the purpose of providing a refrigerant heating function, the energy required for operation increases, but in conventional refrigerant heating devices, the heater attached to the liquid pipe is Some of the heat from the liquid pipes leaks into the surrounding area without being transmitted to the refrigerant flowing through the liquid pipes, causing heat loss, resulting in poor thermal efficiency.
これに対して第 1発明の冷媒加熱装置は、ケーシングによって 1つのユニットとして 構成され、空気調和装置の設置後に取り付けるようにしている。具体的には、この冷 媒加熱装置では、液管およびガス管の各両端部分がケーシングの外部に通じて 、る ため、一端を室内機に対して、他端を室外機に対して、それぞれ接続することができ る。このため、冷媒加熱機能を後付けしたい場合であっても、空気調和装置の全体を 取り替えること無ぐ冷媒加熱装置を容易に後付けすることができる。また、加熱部は 、熱伝達効率の高い液管を流通する冷媒を対象として加熱を行う。そして、この加熱 部の少なくとも一部に近接して配置されているガス管は、この加熱部からの液冷媒の 加熱に用いられることなく漏れ出した熱の一部を回収する。このように回収された熱を 利用して、ガス管を流れる冷媒を加熱することができる。 In contrast, the refrigerant heating device of the first invention functions as a single unit using the casing. It is designed to be installed after the air conditioner is installed. Specifically, in this refrigerant heating device, both ends of the liquid pipe and the gas pipe are connected to the outside of the casing, so one end is connected to the indoor unit and the other end is connected to the outdoor unit. Can be connected. Therefore, even if it is desired to retrofit the refrigerant heating function, the refrigerant heating device can be easily retrofitted without replacing the entire air conditioner. Further, the heating section heats the refrigerant flowing through the liquid pipe with high heat transfer efficiency. A gas pipe disposed close to at least a portion of the heating section recovers a portion of the heat that leaks from the heating section without being used for heating the liquid refrigerant. The heat recovered in this way can be used to heat the refrigerant flowing through the gas pipe.
[0007] これにより、空気調和装置に対して容易に後付けすることができ、且つ、熱回収効 率を向上させることが可能になる。 [0007] This makes it possible to easily retrofit the air conditioner and improve heat recovery efficiency.
[0008] 第 2発明に係る冷媒加熱装置は、第 1発明の冷媒加熱装置であって、ケーシング は、加熱部、液管およびガス管を一体化させる断熱材として機能する。 [0008] A refrigerant heating device according to a second invention is the refrigerant heating device according to the first invention, in which the casing functions as a heat insulating material that integrates the heating section, the liquid pipe, and the gas pipe.
ここでは、断熱材として機能するケーシンダカ 加熱部、液管およびガス管を一体 化させている。これにより、加熱部力 生じた熱が外部に漏れ出すことを抑えて、熱を 有効に利用しつつ、断熱材をケーシングとは別途新たに設ける必要を無くすることが できる。 Here, the casing heater, which functions as a heat insulator, the liquid pipe, and the gas pipe are integrated. This makes it possible to prevent the heat generated by the heating section from leaking outside, making effective use of the heat, and eliminating the need to newly provide insulation material separately from the casing.
これにより、ケーシングが加熱部、液管およびガス管を一体化させる機能と断熱機 能とを兼ねることで、部品点数の増加を抑えつつ熱回収効率を向上させることが可能 になる。 This allows the casing to serve both the function of integrating the heating section, liquid pipes, and gas pipes as well as its insulation function, making it possible to improve heat recovery efficiency while suppressing an increase in the number of parts.
[0009] 第 3発明に係る冷媒加熱装置は、第 1発明または第 2発明の冷媒加熱装置であつ て、バイパス管と、開閉機構をさらに備えている。バイパス管は、液管とガス管とをバイ ノ スする。開閉機構は、バイパス管に設けられている。ケーシングは、加熱部、液管 およびバイパス管を一体化させる断熱材として機能する。 [0009] A refrigerant heating device according to a third invention is the refrigerant heating device according to the first or second invention, further comprising a bypass pipe and an opening/closing mechanism. The bypass pipe connects the liquid pipe and the gas pipe. The opening/closing mechanism is provided in the bypass pipe. The casing acts as an insulator that integrates the heating section, liquid pipes and bypass pipes.
[0010] ここでは、断熱材として機能するケーシンダカ 加熱部、液管およびバイパス管を一 体化させている。これにより、加熱部から生じた熱が外部に漏れ出すことを抑えて、熱 を有効に利用しつつ、断熱材をケーシングとは別途新たに設ける必要を無くすること ができる。また、バイパス管は、液管とガス管とをバイパスしており冷媒を分流させるこ とができ、開閉機構によって分流を行うか否か、分流される冷媒の量を調整すること ができる。 [0010] Here, the casing heater, which functions as a heat insulator, the liquid pipe, and the bypass pipe are integrated. As a result, it is possible to prevent the heat generated from the heating section from leaking to the outside, make effective use of the heat, and eliminate the need to newly provide a heat insulating material separately from the casing. In addition, the bypass pipe bypasses the liquid pipe and the gas pipe and allows the refrigerant to flow separately. The opening/closing mechanism can be used to adjust whether or not to divide the flow and the amount of refrigerant to be diverted.
このため、ケーシングが加熱部、液管およびバイパス管を一体ィ匕させる機能と断熱 機能とを兼ねることで、部品点数の増加を抑えつつ、流量調整のためにバイパス管を 流れる冷媒についても熱回収効率を向上させることが可能になる。 For this reason, the casing has the function of integrating the heating section, liquid pipe, and bypass pipe, and also has a heat insulation function, thereby suppressing an increase in the number of parts and recovering heat from the refrigerant flowing through the bypass pipe for flow rate adjustment. It becomes possible to improve efficiency.
なお、例えば、本第 3発明と第 2発明とを両立させて得られる発明では、ガス管だけ でなくバイノス管にっ 、ても一体に断熱されるため、熱回収効率を 、つそう向上させ ることが可能になる。 For example, in the invention obtained by combining the third invention and the second invention, not only the gas pipe but also the binos pipe are insulated integrally, so that the heat recovery efficiency can be greatly improved. It becomes possible to
[0011] 第 4発明に係る冷媒加熱装置は、第 1発明から第 3発明のいずれかの冷媒加熱装 置であって、加熱部、液管およびガス管を一体ィ匕させる断熱材をさらに備えている。 ここでは、断熱材によって、加熱部、液管およびガス管が一体ィ匕されることで、加熱 部からの熱が外部に漏れ出すことを抑えることができる。さらに断熱材は、ケーシング によって覆われて 、るため、断熱効果を向上させることができる。 [0011] A refrigerant heating device according to a fourth invention is the refrigerant heating device according to any one of the first to third inventions, further comprising a heat insulating material that integrates the heating section, the liquid pipe, and the gas pipe. ing. Here, the heating part, the liquid pipe, and the gas pipe are integrated with the heat insulating material, so that heat from the heating part can be prevented from leaking to the outside. Furthermore, since the heat insulating material is covered by the casing, the heat insulating effect can be improved.
これにより、ケーシングだけでなく断熱材が設けられていることによって、熱回収効 率を向上させることが可能になる。 This makes it possible to improve heat recovery efficiency by providing insulation in addition to the casing.
[0012] 第 5発明に係る冷媒加熱装置は、第 1発明から第 4発明のいずれかの冷媒加熱装 置であって、バイパス管と、開閉機構と、断熱材とをさらに備えている。バイパス管は、 液管とガス管とをバイノスしている。開閉機構は、ノ ィパス管に設けられている。断熱 材は、加熱部、液管およびバイパス管を一体ィ匕させている。 [0012] A refrigerant heating device according to a fifth invention is the refrigerant heating device according to any one of the first to fourth inventions, further comprising a bypass pipe, an opening/closing mechanism, and a heat insulating material. The bypass pipe binos the liquid pipe and gas pipe. The opening/closing mechanism is provided in the noipass tube. The heating section, liquid pipe, and bypass pipe are integrated into the heat insulating material.
[0013] ここでは、断熱材が、加熱部、液管およびバイノス管を一体ィ匕させて 、る。これによ り、加熱部力 生じた熱が外部に漏れ出すことを抑えて、熱を有効に利用することが できる。また、バイパス管は、液管とガス管とをバイパスしており冷媒を分流させること ができ、開閉機構によって分流を行うか否か、分流される冷媒の量を調整することが できる。 [0013] Here, the heat insulating material integrates the heating section, the liquid pipe, and the binos pipe. This prevents the heat generated by the heating section from leaking to the outside and allows the heat to be used effectively. In addition, the bypass pipe bypasses the liquid pipe and the gas pipe and can separate the refrigerant, and the opening/closing mechanism can adjust whether or not to perform the separation and the amount of refrigerant to be separated.
このため、ケーシングだけでなく断熱材が設けられていることによって、流量調整の ためにバイノス管を流れる冷媒についても熱回収効率を向上させることが可能にな る。 Therefore, by providing a heat insulating material in addition to the casing, it is possible to improve the heat recovery efficiency of the refrigerant flowing through the BINOS pipe to adjust the flow rate.
なお、例えば、本第 5発明と第 4発明とを両立させて得られる発明では、ガス管だけ でなくバイノス管にっ 、ても一体に断熱されるため、熱回収効率を 、つそう向上させ ることが可能になる。 For example, in an invention obtained by combining the fifth invention and the fourth invention, only gas pipes Since it is insulated integrally with the BINOS tube, it is possible to greatly improve heat recovery efficiency.
[0014] 第 6発明に係る冷媒加熱装置は、第 1発明から第 5発明のいずれかの冷媒加熱装 置であって、液管において冷媒の流れる向きと、ガス管において冷媒の流れる向きと は、互いに略逆向きである。 [0014] The refrigerant heating device according to the sixth invention is the refrigerant heating device according to any one of the first to fifth inventions, in which the direction in which the refrigerant flows in the liquid pipe and the direction in which the refrigerant flows in the gas pipe are , are almost opposite to each other.
[0015] ここでは、液管を流れる冷媒の方向と、ガス管を流れる冷媒の方向とが互いに逆向 きとなつている。このため、ガス管を流れる冷媒は、始めは加熱部によって加熱される 前の液管を流れる冷媒力 の熱回収によって少しづつ温度が上昇し、終わりは加熱 部によって充分に加熱された液管を流れる冷媒からの熱回収によってさらに温度を 上昇させることができる。 [0015] Here, the direction of the refrigerant flowing through the liquid pipe and the direction of the refrigerant flowing through the gas pipe are opposite to each other. For this reason, the temperature of the refrigerant flowing through the gas pipe increases little by little due to heat recovery from the power of the refrigerant flowing through the liquid pipe before it is heated by the heating section, and at the end, the temperature of the refrigerant that flows through the gas pipe rises little by little due to heat recovery from the power of the refrigerant flowing through the liquid pipe before being heated by the heating section. Temperatures can be further increased by recovering heat from the flowing refrigerant.
これにより、熱回収効率をより 、つそう向上させることが可能になる。 This makes it possible to further improve heat recovery efficiency.
[0016] 第 7発明に係る冷媒加熱装置は、第 1発明から第 6発明のいずれかの冷媒加熱装 置であって、液管において冷媒の流れる向きと、ガス管において冷媒の流れる向きと は、略同じ向きである。 [0016] The refrigerant heating device according to the seventh invention is the refrigerant heating device according to any one of the first to sixth inventions, in which the direction in which the refrigerant flows in the liquid pipe and the direction in which the refrigerant flows in the gas pipe are , are in almost the same direction.
ここでは、ガス管と液管とのそれぞれについて冷媒の流れる向きが略同一となって いるため、例えば、空気調和装置に対して設置する場合に、室内機側力 の冷媒配 管および室外機側力 の冷媒配管を折り曲げる等によって設置に要するスペースが 拡大することを抑えることができる。 Here, the direction in which the refrigerant flows is approximately the same for both the gas pipe and the liquid pipe, so for example, when installing it in an air conditioner, the refrigerant pipe for the indoor unit side and the outdoor unit side This prevents the space required for installation from increasing due to bending the refrigerant piping.
[0017] これにより、冷媒加熱装置の大きさを抑えて、設置スペースを狭小化させることが可 會 になる。 [0017] This makes it possible to reduce the size of the refrigerant heating device and reduce the installation space.
[0018] 第 8発明に係る冷媒加熱装置は、第 1発明から第 7発明のいずれかの冷媒加熱装 置であって、加熱部は、液管に巻き付けられるコイルと、磁性体部分と、を有している 。コイルの外周は、ガス管に近接して配置されている。なお、ここでの加熱部の有して いる磁性体部分は、液管の内壁に設けられていてもよいし、液管の内部に設けられ ていてもよい。 [0018] A refrigerant heating device according to an eighth invention is the refrigerant heating device according to any one of the first to seventh inventions, in which the heating section includes a coil wound around a liquid pipe and a magnetic portion. have. The outer periphery of the coil is located close to the gas pipe. Note that the magnetic material portion of the heating section here may be provided on the inner wall of the liquid tube, or may be provided inside the liquid tube.
ここでは、磁性体部分に巻き付けられているコイルに高周波電流が流され、電磁誘 導によって生じる熱を利用して冷媒を迅速に加熱することができる。 Here, a high-frequency current is passed through a coil wrapped around a magnetic part, and the heat generated by electromagnetic induction can be used to rapidly heat the refrigerant.
発明の効果 [0019] 第 1発明に係る冷媒加熱装置では、空気調和装置に対して容易に後付けすること ができ、且つ、熱回収効率を向上させることが可能になる。 Effect of the invention [0019] The refrigerant heating device according to the first invention can be easily retrofitted to an air conditioner and can improve heat recovery efficiency.
[0020] 第 2発明に係る冷媒加熱装置では、ケーシングが加熱部、液管およびガス管を一 体化させる機能と断熱機能とを兼ねることで、部品点数の増加を抑えつつ熱回収効 率を向上させることが可能になる。 [0020] In the refrigerant heating device according to the second invention, the casing has the function of integrating the heating section, the liquid pipe, and the gas pipe and also has a heat insulation function, thereby increasing heat recovery efficiency while suppressing an increase in the number of parts. It becomes possible to improve.
[0021] 第 3発明に係る冷媒加熱装置では、ケーシングが加熱部、液管およびバイパス管を 一体化させる機能と断熱機能とを兼ねることで、部品点数の増加を抑えつつ、流量 調整のためにバイパス管を流れる冷媒につ!/、ても熱回収効率を向上させることが可 會 になる。 [0021] In the refrigerant heating device according to the third invention, the casing has the function of integrating the heating section, the liquid pipe, and the bypass pipe, and also has a heat insulation function, so that it is possible to control the flow rate while suppressing an increase in the number of parts. It is possible to improve the heat recovery efficiency even when the refrigerant flows through the bypass pipe.
[0022] 第 4発明に係る冷媒加熱装置では、ケーシングだけでなく断熱材が設けられて 、る ことによって、熱回収効率を向上させることが可能になる。 [0022] In the refrigerant heating device according to the fourth invention, by providing not only the casing but also a heat insulating material, it is possible to improve heat recovery efficiency.
[0023] 第 5発明に係る冷媒加熱装置では、ケーシングだけでなく断熱材が設けられて 、る ことによって、流量調整のためにバイパス管を流れる冷媒につ 、ても熱回収効率を 向上させることが可能になる。 [0023] In the refrigerant heating device according to the fifth invention, not only the casing but also the heat insulating material is provided, thereby improving the heat recovery efficiency of the refrigerant flowing through the bypass pipe for flow rate adjustment. becomes possible.
[0024] 第 6発明に係る冷媒加熱装置では、熱回収効率をよりいっそう向上させることが可 會 になる。 [0024] In the refrigerant heating device according to the sixth invention, it is possible to further improve heat recovery efficiency.
[0025] 第 7発明に係る冷媒加熱装置では、冷媒加熱装置の大きさを抑えて、設置スぺー スを狭小化させることが可能になる。 [0025] In the refrigerant heating device according to the seventh invention, the size of the refrigerant heating device can be suppressed and the installation space can be reduced.
[0026] 第 8発明に係る冷媒加熱装置では、電磁誘導加熱によって冷媒を迅速に加熱する ことができる。 [0026] In the refrigerant heating device according to the eighth aspect of the invention, the refrigerant can be rapidly heated by electromagnetic induction heating.
図面の簡単な説明 Brief description of the drawing
[0027] [図 1]本発明の一実施形態に係るオプションヒータユニットが接続された冷媒回路の 構成図。 [0027] [FIG. 1] A configuration diagram of a refrigerant circuit to which an optional heater unit according to an embodiment of the present invention is connected.
[図 2]オプションヒータユニットの概略構成図。 [Figure 2] Schematic diagram of the optional heater unit.
[図 3]電磁誘導による加熱についての説明図。 [Figure 3] Explanatory diagram of heating by electromagnetic induction.
[図 4]他の実施形態 (A)に係る冷媒回路の構成図。 [Figure 4] A configuration diagram of a refrigerant circuit according to another embodiment (A).
[図 5]他の実施形態 (A)に係るオプションヒータユニットの概略構成図。 [Figure 5] A schematic configuration diagram of an optional heater unit according to another embodiment (A).
符号の説明 10 オプションヒータユニット (冷媒加熱装置) Explanation of symbols 10 Optional heater unit (refrigerant heating device)
11 ケーシング 11 Casing
12 液管 12 Liquid pipe
12a 端部 12a end
12b 端部 12b End
13 ガス管 13 Gas pipe
13a 端部 13a End
13b 端部 13b End
14 バイパス管 14 Bypass pipe
19 ヒータ (加熱部) 19 Heater (heating part)
19a コィノレ 19a Koinore
19b 磁性体部 19b Magnetic body part
19c 高周波電源 19c high frequency power supply
20 第 1電磁弁 20 1st solenoid valve
22 第 2電磁弁 22 2nd solenoid valve
30 除霜コントローラ 30 defrost controller
43 液配管 43 Liquid piping
44 ガス配管 44 Gas piping
45 圧縮機 45 Compressor
47 室外熱交 47 Outdoor heat exchanger
48 膨張弁 48 Expansion valve
49 室内熱交換器 49 Indoor heat exchanger
50 冷媒回路 50 Refrigerant circuit
60 空調コントローラ 60 Air conditioning controller
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
<発明の概略 > <Summary of the invention>
本発明は、冷媒配管中を流れる冷媒を加熱するユニット化された冷媒加熱装置を 提供する。本発明の冷媒加熱装置では、ユニット内において、液配管の冷媒を加熱 する加熱部の近傍にガス配管を配置して熱回収を行う構造を採用している。本発明 は、このように冷媒加熱機能を空気調和装置に対して室内機や室外機とは別個に後 付けする場合であっても、取り付けが容易であり、冷媒加熱による熱ロスを低減させ て加熱効率を向上させる点に特徴がある。 The present invention provides a unitized refrigerant heating device that heats refrigerant flowing through refrigerant piping. In the refrigerant heating device of the present invention, the refrigerant in the liquid pipe is heated within the unit. A structure is adopted in which gas piping is placed near the heating section to recover heat. Even when the refrigerant heating function is retrofitted to an air conditioner separately from the indoor unit or outdoor unit, the present invention is easy to install and reduces heat loss due to refrigerant heating. The feature is that it improves heating efficiency.
以下、本発明の一実施形態が採用された冷媒加熱装置について、以下の実施形 態を例に挙げて具体的に説明する。また、冷媒加熱装置に関する他の実施形態に ついては、後述する。 Hereinafter, a refrigerant heating device employing an embodiment of the present invention will be specifically described using the following embodiment as an example. Further, other embodiments regarding the refrigerant heating device will be described later.
[0030] <空気調和装置 40の概略構成 > [0030] <Schematic configuration of air conditioner 40>
空気調和装置 40は、図 1に示すように、液配管 43およびガス配管 44によって接続 された室外ユニット 41と、室内ユニット 42とを有している。そして、オプションヒータュ ニット 10は、この液配管 43やガス配管 44等で構成される既設の冷媒回路 50の途中 に後付けされ、冷媒回路 50を流れる冷媒を部分的に加熱する補助ヒータとして用い られる。 As shown in FIG. 1, the air conditioner 40 includes an outdoor unit 41 and an indoor unit 42, which are connected by a liquid pipe 43 and a gas pipe 44. The optional heater unit 10 is retrofitted midway through the existing refrigerant circuit 50 consisting of the liquid pipe 43, gas pipe 44, etc., and is used as an auxiliary heater to partially heat the refrigerant flowing through the refrigerant circuit 50. .
くオプションヒータユニット 10の構成 > Configuration of optional heater unit 10 >
オプションヒータユニット 10は、図 2に示すように、略直方体形のケーシング 11によ つてユニット化されており、このケーシング 11に液管 12、ガス管 13、ヒータ 19、除霜 コントローラ 30および断熱材 1 laが収納されて!、る。 As shown in Figure 2, the optional heater unit 10 is made into a unit by a substantially rectangular parallelepiped-shaped casing 11, and this casing 11 includes a liquid pipe 12, a gas pipe 13, a heater 19, a defrost controller 30, and a heat insulator. 1 la is stored!,ru.
[0031] 液管 12は、図 2に示すように、ケーシング 11の中央部付近に略水平に配置され、 ケーシング 11の対向する第 1側面 15および第 2側面 16の中央部付近を貫通してい る。つまり、液管 12の一端部 12aは、ケーシング 11の第 1側面 15から図の左に向か つてケーシング 11の外側に突き出している。そして、液管 12の他端部 12bは、ケー シング 11の第 2側面 16から図の右に向かってケーシング 11の外側に突き出している 。液管 12の両端部 12a, 12bは、図 2に示すように、片ユニオン管継手 17がろう付さ れている。冷媒回路 50の液配管 43と液管 12との接続は、液配管に嵌め込まれてい るフレアナット 53 (図 1参照)を液管 12の片ユニオン管継手 17にねじ込むことで接続 される。 [0031] As shown in FIG. 2, the liquid pipe 12 is arranged approximately horizontally near the center of the casing 11, and penetrates near the center of the opposing first side surface 15 and second side surface 16 of the casing 11. Ru. That is, one end 12a of the liquid pipe 12 protrudes from the first side surface 15 of the casing 11 toward the left in the figure and to the outside of the casing 11. The other end 12b of the liquid pipe 12 protrudes outside the casing 11 from the second side surface 16 of the casing 11 toward the right in the figure. As shown in FIG. 2, both ends 12a and 12b of the liquid pipe 12 are brazed with one-side union joints 17. The liquid pipe 43 of the refrigerant circuit 50 and the liquid pipe 12 are connected by screwing the flare nut 53 (see Figure 1) fitted into the liquid pipe into the one-side union joint 17 of the liquid pipe 12.
ヒータ 19は、図 3に示すように、コイル 19aと、磁性体材料を含んでいる磁性体部 1 9bと、高周波電源 19c (図 2では図示を省略)と、を有している。このヒータ 19は、図 2 に示すように、第 1側面 15側から順に液管 12を流れる冷媒を加熱する。具体的には 、ヒータ 19の磁性体部 19bは、液管 12の表面に設けられている。ヒータ 19のコイル 1 9aは、液管 12の表面を覆って 、る磁性体部 19bのさらに外部に巻き付けられて 、る 。また、高周波電源 19cは、コイル 19aの両端部分に接続されており、後述する除霜 コントローラ 30からの指令を受けて、高周波電流をコイル 19aに対して供給する。そ して、ヒータ 19による加熱は、図 3に示すように、高周波電源 19cからコイル 19aに高 周波電流が供給され、コイル 19aに高周波の電流が流れることにより、コイル 19aの 周辺に磁力線が生じ、高周波磁界が発生する。この磁束は、電磁誘導にしたがって 、磁性体に誘導電流を誘起させる。このため、磁性体材料を含んでいる磁性体部 19 bにおいて無数の渦電流が誘起される。これにより、磁性体部 19b自体の電気抵抗と 無数の渦電流とによってジュール熱が発生し、磁性体部 19bは、瞬時に発熱する(電 磁誘導加熱方式)。加熱された磁性体部 19bの熱は、液管 12および液管を流れる。 これにより、磁性体部 19bが加熱されるだけでなく液管 12が加熱され、液管 12を流 れる冷媒が加熱される。ここで、電磁誘導加熱によって磁性体部 19bから生じた熱の 一部が、液管 12を流れる冷媒に伝わることなぐヒータ 19の周囲に拡散する。 As shown in FIG. 3, the heater 19 includes a coil 19a, a magnetic part 19b containing a magnetic material, and a high frequency power source 19c (not shown in FIG. 2). This heater 19 is shown in Figure 2 As shown in the figure, the refrigerant flowing through the liquid pipe 12 is heated sequentially from the first side surface 15 side. Specifically, the magnetic body portion 19b of the heater 19 is provided on the surface of the liquid tube 12. The coil 19a of the heater 19 covers the surface of the liquid tube 12 and is further wound around the outside of the magnetic body portion 19b. Further, the high frequency power supply 19c is connected to both ends of the coil 19a, and supplies high frequency current to the coil 19a upon receiving a command from a defrosting controller 30, which will be described later. As shown in Fig. 3, the heating by the heater 19 is performed by supplying a high frequency current from the high frequency power supply 19c to the coil 19a, and by causing the high frequency current to flow through the coil 19a, lines of magnetic force are generated around the coil 19a. , a high frequency magnetic field is generated. This magnetic flux induces an induced current in the magnetic body according to electromagnetic induction. Therefore, countless eddy currents are induced in the magnetic portion 19b containing the magnetic material. As a result, Joule heat is generated by the electric resistance of the magnetic body part 19b itself and countless eddy currents, and the magnetic body part 19b instantaneously generates heat (electromagnetic induction heating method). The heat of the heated magnetic body portion 19b flows through the liquid pipe 12 and the liquid pipe. As a result, not only the magnetic body portion 19b is heated, but also the liquid pipe 12 is heated, and the refrigerant flowing through the liquid pipe 12 is heated. Here, a part of the heat generated from the magnetic body portion 19b by electromagnetic induction heating is diffused around the heater 19 without being transmitted to the refrigerant flowing through the liquid pipe 12.
ガス管 13は、液管 12もしくはそれを取り巻くヒータ 19に接するようにして、ケーシン グ 11の下部に略水平に配置され、ケーシング 11の対向する第 1側面 15および第 2 側面 16の下部付近を貫通している。具体的には、ガス管 13は、図 2に示すように、ヒ ータ 19のコイル 19aに接するようにして配置されて ヽるため、磁性体部 19bから拡散 してくる熱を回収し、内部を流れる冷媒を加熱することができる。また、上述した冷媒 回路 50の接続形態によると、ある運転サイクルにおいて、ガス管 13内を流れる冷媒 の方向と、液管 12内を流れる冷媒の方向とは、互いに略逆方向となるように配置され ている。このため、ガス管 13を流れる冷媒の熱回収は、より効率的に行うことができて いる。 The gas pipe 13 is arranged approximately horizontally at the bottom of the casing 11 so as to be in contact with the liquid pipe 12 or the heater 19 surrounding it, and extends near the bottom of the opposing first side surface 15 and second side surface 16 of the casing 11. Penetrating. Specifically, as shown in Fig. 2, the gas pipe 13 is arranged so as to be in contact with the coil 19a of the heater 19, so that the heat diffused from the magnetic body part 19b is recovered. It is possible to heat the refrigerant flowing inside. Further, according to the connection form of the refrigerant circuit 50 described above, the direction of the refrigerant flowing in the gas pipe 13 and the direction of the refrigerant flowing in the liquid pipe 12 are arranged so as to be substantially opposite to each other in a certain operation cycle. It is being done. Therefore, heat recovery from the refrigerant flowing through the gas pipe 13 can be performed more efficiently.
ここで、ガス管 13の一端部 13aは、ケーシング 11の第 1側面 15から図の左に向か つてケーシング 11の外側に突き出している。また、ガス管 13の他端部 13bは、ケーシ ング 11の第 2側面 16から図の右に向かってケーシング 11の外側に突き出している。 ガス管 13の両端部 13a, 13bは、図 2に示すように、片ユニオン管継手 18がろう付さ れている。冷媒回路 50のガス配管 44とガス官 13との接続は、ガス配管 44に嵌め込 まれているフレアナット 54 (図 1参照)をガス管 13の片ユニオン管継手 18にねじ込む ことで接続される。 Here, one end portion 13a of the gas pipe 13 protrudes from the first side surface 15 of the casing 11 toward the left in the figure and to the outside of the casing 11. Further, the other end 13b of the gas pipe 13 protrudes outside the casing 11 from the second side surface 16 of the casing 11 toward the right in the figure. As shown in Figure 2, both ends 13a and 13b of gas pipe 13 are brazed with single union fittings 18. It is. The gas pipe 44 of the refrigerant circuit 50 and the gas pipe 13 are connected by screwing the flare nut 54 (see Figure 1) fitted into the gas pipe 44 into the union joint 18 of the gas pipe 13. .
[0033] 除霜コントローラ 30は、ケーシング 11内の上方に配置されており、逆サイクル加熱 制御、正サイクル加熱制御、能力制御を行う。また、この除霜コントローラ 30は、冷媒 回路の空調コントローラ 60から制御信号を受けることにより、ヒータ 19の高周波電源 19cの出力制御を行うように構成されて!、る。 [0033] The defrosting controller 30 is disposed above the casing 11, and performs reverse cycle heating control, forward cycle heating control, and capacity control. Furthermore, this defrosting controller 30 is configured to control the output of the high frequency power source 19c of the heater 19 by receiving a control signal from the air conditioning controller 60 of the refrigerant circuit! ,ru.
ここで、逆サイクル加熱制御では、逆サイクルデフロスト運転を行う際に空調コント口 ーラ 60が出力する制御信号を受信したときに、ヒータ 19を駆動させる。また、正サイ クル加熱制御では、正サイクルデフロスト運転を行う際に空調コントローラ 60が出力 する制御信号を受信したときに、ヒータ 19を駆動させる。能力制御では、暖房運転時 に暖房負荷に対し暖房能力が不足していると判断したときに空調コントローラ 60が出 力する制御信号を受信したときに、ヒータ 19を駆動させる。 Here, in the reverse cycle heating control, the heater 19 is driven when a control signal output from the air conditioning controller 60 is received when performing the reverse cycle defrost operation. Furthermore, in the normal cycle heating control, the heater 19 is driven when a control signal output from the air conditioning controller 60 is received when performing the normal cycle defrost operation. In capacity control, the heater 19 is driven when the air conditioning controller 60 receives a control signal output when it is determined that the heating capacity is insufficient for the heating load during heating operation.
[0034] 断熱材 11aは、図 2に示すように、上述した液管 12、ガス管 13およびヒータ 19を取 り卷くようにして設けられている。これにより、ヒータ 19によって生じた熱を、外部に漏 らすことなぐ液管 12および液管 12を流れる冷媒に対して効率的に伝えることができ る。さらに、ヒータ 19によって生じた熱の一部で、液管 12に対して伝わらなかった熱 のガス管 13における回収を、効率的行うことができる。 [0034] As shown in FIG. 2, the heat insulating material 11a is provided so as to surround the liquid pipe 12, gas pipe 13, and heater 19 described above. Thereby, the heat generated by the heater 19 can be efficiently transferred to the liquid pipe 12 and the refrigerant flowing through the liquid pipe 12 without leaking to the outside. Furthermore, part of the heat generated by the heater 19 that was not transferred to the liquid pipe 12 can be efficiently recovered in the gas pipe 13.
ケーシング 11は、図 2に示すように、略直方体形状であって、上述した液管 12、ガ ス管 13、ヒータ 19、断熱材 11aおよび除霜コントローラ 30をまとめて覆うことで 1つの ユニットを構成している。 As shown in FIG. 2, the casing 11 has a substantially rectangular parallelepiped shape, and forms one unit by covering the liquid pipe 12, gas pipe 13, heater 19, heat insulating material 11a, and defrost controller 30 all together. It consists of
<冷媒回路 50の構成 > <Configuration of refrigerant circuit 50>
図 1に示すように、オプションヒータユニット 10が後付けされることで、室内ユニット 4 2および室外ユニット 41に対して接続されて 、る空気調和装置 40の冷媒回路 50に ついて説明する。 As shown in FIG. 1, the refrigerant circuit 50 of the air conditioner 40 that is connected to the indoor unit 42 and the outdoor unit 41 by retrofitting the optional heater unit 10 will be described.
[0035] 室外ユニット 41は、圧縮機 45と、四路切換弁 46と、流量調整自在な電動膨張弁に より構成される膨張弁 48と、室外空気と冷媒とを熱交換させる熱源側熱交換器として の室外熱交換器 47および室外ファン 57と、を備えている。ここで、四路切換弁 46は 、接続状態を切り換えることにより冷媒の循環方向を反転させ、ヒートポンプサイクル 動作と冷凍サイクル動作とを切り換える。また、室外熱交 47には、室外温度 T1 を検出して制御信号を出力する外気温センサ S1が設置されている。室外熱交換器 4 7の伝熱管には、冷媒温度 Τ2を検出して、制御信号を出力する熱交温度センサ S2 が設置されている。 [0035] The outdoor unit 41 includes a compressor 45, a four-way switching valve 46, an expansion valve 48 composed of an electric expansion valve that can freely adjust the flow rate, and a heat source side heat exchanger that exchanges heat between outdoor air and refrigerant. An outdoor heat exchanger 47 and an outdoor fan 57 are provided. Here, the four-way switching valve 46 is By switching the connection state, the refrigerant circulation direction is reversed, and the heat pump cycle operation and the refrigeration cycle operation are switched. Further, the outdoor heat exchanger 47 is installed with an outside temperature sensor S1 that detects the outside temperature T1 and outputs a control signal. A heat exchanger temperature sensor S2 that detects the refrigerant temperature T2 and outputs a control signal is installed in the heat exchanger tube of the outdoor heat exchanger 47.
室内ユニット 42は、冷媒と室内空気とを熱交換させる利用側熱交^^としての室内 熱交換器 49および室内ファン 58を備えている。また、室内熱交換器 49には、室内 温度 Τ3を検出して制御信号を出力する室内温度センサ S3が設置されている。 The indoor unit 42 includes an indoor heat exchanger 49 and an indoor fan 58 as a user-side heat exchanger that exchanges heat between the refrigerant and indoor air. Further, the indoor heat exchanger 49 is provided with an indoor temperature sensor S3 that detects the indoor temperature T3 and outputs a control signal.
[0036] 冷媒回路 50は、上述した圧縮機 45、四路切換弁 46、室外熱交翻47、膨張弁 4 8および室内熱交換器 49が、液配管 43およびガス配管 44により接続され、冷媒循 環が可逆となるようにして形成されて!、る。 [0036] In the refrigerant circuit 50, the above-described compressor 45, four-way switching valve 46, outdoor heat exchanger 47, expansion valve 48, and indoor heat exchanger 49 are connected by liquid piping 43 and gas piping 44, and the refrigerant It is formed in such a way that the circulation is reversible! ,ru.
液配管 43は、室外熱交翻 47に接続する第 1液配管 51と室内熱交翻 49に接 続する第 2液配管 52とにより構成されている。第 1液配管 51と第 2液配管 52とがォプ シヨンヒータユニット 10の液管 12を介して接続されている。 The liquid pipe 43 includes a first liquid pipe 51 connected to the outdoor heat exchanger 47 and a second liquid pipe 52 connected to the indoor heat exchanger 49. A first liquid pipe 51 and a second liquid pipe 52 are connected via a liquid pipe 12 of the option heater unit 10.
具体的には、液管 12の一端部 12aは、室外熱交換器 47に接続される第 1液配管 5 1の一端に接続されている。この接続は、第 1液配管 51に嵌め込まれているフレアナ ット 53を液管 12の端部 12aにろう付されている片ユニオン管継手 17に嵌め込むこと により行っている。液管 12の他端部 12bは、室内熱交換器 49に接続される第 2液配 管 52の一端に接続されている。この接続は、第 2液配管 52に嵌め込まれているフレ ァナット 53を液管 12の端部 12bにろう付されている片ユニオン管継手 17に嵌め込む ことにより行っている。 Specifically, one end 12a of the liquid pipe 12 is connected to one end of the first liquid pipe 51 that is connected to the outdoor heat exchanger 47. This connection is made by fitting the flare nut 53 fitted into the first liquid pipe 51 into the one-side union joint 17 brazed to the end 12a of the liquid pipe 12. The other end 12b of the liquid pipe 12 is connected to one end of a second liquid pipe 52 that is connected to the indoor heat exchanger 49. This connection is made by fitting a flare nut 53 fitted into the second liquid pipe 52 into a one-piece union joint 17 brazed to the end 12b of the liquid pipe 12.
[0037] 暖房および正サイクルデフロスト運転時には、冷媒が端部 12aから端部 12bに向か つて液管 12を流れ、逆サイクルデフロスト運転時には、冷媒が端部 12bから端部 12a に向かって流れるように構成されて!、る。 [0037] During heating and forward cycle defrost operation, refrigerant flows through liquid pipe 12 from end 12a to end 12b, and during reverse cycle defrost operation, refrigerant flows from end 12b toward end 12a. It is composed of!,ru.
ガス配管 44は、室外熱交換器 47に接続する第 1ガス配管 55と室内熱交換器 49に 接続する第 2ガス配管 56とにより構成されている。第 1ガス配管 55は、四路切換弁 4 6と圧縮機 45が設置され、一端が室外熱交 47に接続されている。第 1ガス配管 55と第 2ガス配管 56とがオプションヒータユニット 10のガス管 13を介して接続されて いる。 The gas pipe 44 includes a first gas pipe 55 connected to the outdoor heat exchanger 47 and a second gas pipe 56 connected to the indoor heat exchanger 49. The first gas pipe 55 is equipped with a four-way switching valve 46 and a compressor 45, and one end is connected to an outdoor heat exchanger 47. The first gas pipe 55 and the second gas pipe 56 are connected via the gas pipe 13 of the optional heater unit 10. There is.
具体的には、ガス管 13の一端部 13aは、室外熱交換器 47に接続する第 1ガス配管 55の一端に接続されている。この接続は、第 1ガス配管 55に嵌め込まれているフレ ァナット 54をガス管 13の端部 13aにろう付されている片ユニオン管継手 18に嵌め込 むことにより行っている。ガス管 13の他端部 13bは、室内熱交 に接続する第 2ガス配管 56の一端に接続されている。この接続は、第 2ガス配管 56に嵌め込まれ て 、るフレアナット 54をガス管 13の端部 13bにろう付されて 、る片ユニオン管継手 1 8に嵌め込むことにより行っている。 Specifically, one end 13a of the gas pipe 13 is connected to one end of a first gas pipe 55 that connects to the outdoor heat exchanger 47. This connection is made by fitting the flare nut 54 fitted into the first gas pipe 55 into the one-side union joint 18 brazed to the end 13a of the gas pipe 13. The other end 13b of the gas pipe 13 is connected to one end of a second gas pipe 56 connected to an indoor heat exchanger. This connection is made by fitting a flare nut 54, which is fitted into the second gas pipe 56, into a one-piece union joint 18 which is brazed to the end 13b of the gas pipe 13.
[0038] <空調コントローラ 60による制御 > [0038] <Control by air conditioning controller 60>
空調コントローラ 60は、上述した外気温センサ Sl、熱交温度センサ S2および室内 温度センサ S3等の各センサから出力される各温度 Tl、 Τ2、 Τ3についての制御信 号を受信する。この空調コントローラ 60は、各温度の制御信号 Τ1,Τ2,Τ3を受け取り 、暖房運転とデフロスト運転との切り換えを行うと共に、オプションヒータユニット 10に 設けられる除霜コントローラ 30に制御信号を送る。 The air conditioning controller 60 receives control signals for each temperature Tl, T2, T3 output from each sensor such as the above-mentioned outside temperature sensor Sl, heat exchanger temperature sensor S2, and indoor temperature sensor S3. The air conditioning controller 60 receives control signals Τ1, Τ2, and Τ3 for each temperature, switches between heating operation and defrost operation, and sends a control signal to the defrost controller 30 provided in the optional heater unit 10.
空調コントローラ 60は、逆サイクルデフロスト制御、正サイクルデフロスト制御、暖房 制御を行う。 The air conditioning controller 60 performs reverse cycle defrost control, forward cycle defrost control, and heating control.
逆サイクルデフロスト制御では、外気温センサ S1が検出する室外温度 T1が 0°C未 満の場合の暖房運転時において、熱交温度センサ S2が検出する冷媒温度 T2から 着霜と判断されたときに、暖房運転を逆サイクルデフロスト運転に切り換えると共に、 除霜コントローラ 30に制御信号である逆サイクルデフロスト信号を出力する。 In reverse cycle defrost control, during heating operation when the outdoor temperature T1 detected by the outdoor air temperature sensor S1 is less than 0°C, when it is determined that frost has formed based on the refrigerant temperature T2 detected by the heat exchanger temperature sensor S2. , switches the heating operation to the reverse cycle defrost operation, and outputs a reverse cycle defrost signal, which is a control signal, to the defrost controller 30.
[0039] 正サイクルデフロスト制御では、外気温センサ S1が検出する室外温度 T1が 0°C以 上の場合の暖房運転時において、熱交温度センサ S2が検出する冷媒温度 T2から 着霜と判断されたときに、暖房運転を正サイクルデフロスト運転に切り換えると共に、 除霜コントローラ 30に制御信号である正サイクルデフロスト信号を出力する。 [0039] In the forward cycle defrost control, during heating operation when the outdoor temperature T1 detected by the outdoor temperature sensor S1 is 0°C or higher, frost formation is determined from the refrigerant temperature T2 detected by the heat exchanger temperature sensor S2. At this time, the heating operation is switched to the positive cycle defrost operation, and a positive cycle defrost signal, which is a control signal, is output to the defrosting controller 30.
暖房制御部 63は、暖房運転時において、外気温センサ S1が検出する室外温度 T 1および室内温度センサ S3が検出する室内温度 T3により室内熱交換器 49の能力 が不足していると判断されたときに、除霜コントローラ 30に制御信号であるハイパワー 要求信号を出力する。 運転動作 During heating operation, the heating control unit 63 determines that the capacity of the indoor heat exchanger 49 is insufficient based on the outdoor temperature T1 detected by the outdoor temperature sensor S1 and the indoor temperature T3 detected by the indoor temperature sensor S3. At times, a high power request signal, which is a control signal, is output to the defrost controller 30. Driving action
オプションヒータユニット 10が接続された空気調和装置 40の運転動作について説 明する。 The operation of the air conditioner 40 to which the optional heater unit 10 is connected will be explained.
[0040] (暖房運転) [0040] (Heating operation)
暖房運転時には、四路切換弁 46による接続状態が図 2中に示す実線側に切り換 わる。圧縮機 45から吐出されたガス冷媒は、四路切換弁 46を通過した後、ォプショ ンヒータユニット 10のガス管 13を流れ、室内熱交換器 49に流れる。室内熱交換器 4 9に流入したガス冷媒は、室内空気と熱交換し、室内を暖房すると共に凝縮する。室 内熱交換器 49から流出した液冷媒は、オプションヒータユニット 10の液管 12を通過 した後、膨張弁 48により減圧されると共に低温の液冷媒となる。この低温の液冷媒は 、室外熱交換器 47に流入し、室外空気と熱交換する。室外熱交換器 47では、液冷 媒が蒸発し、この室外熱交換器 47を流出したガス冷媒は、四路切換弁 46を通過し、 圧縮機 45に戻り、この循環が繰り返される。 During heating operation, the connection state by the four-way switching valve 46 is switched to the solid line side shown in FIG. 2. The gas refrigerant discharged from the compressor 45 passes through the four-way switching valve 46, flows through the gas pipe 13 of the option heater unit 10, and flows into the indoor heat exchanger 49. The gas refrigerant flowing into the indoor heat exchanger 49 exchanges heat with indoor air, heats the room, and condenses. The liquid refrigerant flowing out of the indoor heat exchanger 49 passes through the liquid pipe 12 of the optional heater unit 10, and then is depressurized by the expansion valve 48 and becomes a low-temperature liquid refrigerant. This low-temperature liquid refrigerant flows into the outdoor heat exchanger 47 and exchanges heat with outdoor air. In the outdoor heat exchanger 47, the liquid refrigerant evaporates, and the gas refrigerant that flows out of the outdoor heat exchanger 47 passes through the four-way switching valve 46, returns to the compressor 45, and this circulation is repeated.
[0041] (逆サイクルデフロスト運転) [0041] (Reverse cycle defrost operation)
また、空調コントローラ 60は、外気温センサ S1が検出する室外温度 T1が 0°C未満 の場合において、熱交温度センサ S2によって検出される冷媒温度 T2により着霜と判 断されると、逆サイクルデフロスト制御を行う。逆サイクルデフロスト制御では、冷媒回 路 50を逆サイクルデフロスト運転に切り換えると共に、除霜コントローラ 30に対して逆 サイクルデフロスト信号を出力する。 In addition, when the outdoor temperature T1 detected by the outdoor temperature sensor S1 is less than 0°C, the air conditioning controller 60 performs a reverse cycle if frost formation is determined based on the refrigerant temperature T2 detected by the heat exchanger temperature sensor S2. Performs defrost control. In the reverse cycle defrost control, the refrigerant circuit 50 is switched to reverse cycle defrost operation, and a reverse cycle defrost signal is output to the defrost controller 30.
この逆サイクルデフロスト運転では、圧縮機 45の出力を上げ、四路切換弁 46による 接続状態を図中の波線側に切り換え、膨張弁 48を全開し、室外ファン 57および室 内ファン 58を停止する。除霜コントローラ 30が逆サイクルデフロスト信号を受けると、 逆サイクル加熱制御によってヒータ 19を駆動させる。 In this reverse cycle defrost operation, the output of the compressor 45 is increased, the connection state by the four-way selector valve 46 is switched to the dotted line side in the figure, the expansion valve 48 is fully opened, and the outdoor fan 57 and indoor fan 58 are stopped. . When the defrost controller 30 receives the reverse cycle defrost signal, it drives the heater 19 by reverse cycle heating control.
[0042] したがって、冷媒の循環方向が反転するため、圧縮機 45から吐出したガス冷媒は、 四路切換弁 46、室外熱交換器 47、膨張弁 48、オプションヒータユニット 10の液管 1 2、ガス管 13および四路切換弁 46の順に通過し、圧縮機 45に戻る。 [0042] Therefore, since the circulation direction of the refrigerant is reversed, the gas refrigerant discharged from the compressor 45 passes through the four-way switching valve 46, the outdoor heat exchanger 47, the expansion valve 48, the liquid pipes 1 2 of the optional heater unit 10, It passes through the gas pipe 13 and the four-way switching valve 46 in that order, and returns to the compressor 45.
つまり、圧縮機 45から吐出した高温のガス冷媒は、室外熱交換器 47に流れる。そ して、室外熱交換器 47に付着した霜が高温のガス冷媒によって融解する。 室外熱交翻47を流れた冷媒は、冷媒回路 50の液配管 43を流れることになるが 、この液配管 43を流れる途中において、オプションヒータユニット 10の液管 12を流れ る。この液管 12を流れる際、冷媒はヒータ 19によって加熱される。この加熱された冷 媒は、室内熱交換器 49を流れた後、オプションヒータユニット 10のガス管 13を流れる 。そして、このガス管 13を流れる際に、ヒータ 19からの熱を回収することで、冷媒が加 熱され、圧縮機 45に戻る。この循環動作を繰り返して室外熱交換器 47の逆サイクル デフロストが行われる。このように、逆サイクルデフロスト運転時において、オプション ヒータユニット 10のヒータ 19が冷媒を加熱するので、除霜能力を向上させることがで きる。また、ガス管 13を流れる際に、冷媒に過熱度を充分に付けることができるため、 圧縮機 45の運転を安定ィ匕させることができるようになる。 That is, the high temperature gas refrigerant discharged from the compressor 45 flows to the outdoor heat exchanger 47. Then, the frost adhering to the outdoor heat exchanger 47 is melted by the high temperature gas refrigerant. The refrigerant that has flowed through the outdoor heat exchanger 47 will flow through the liquid pipe 43 of the refrigerant circuit 50, and while flowing through this liquid pipe 43, it flows through the liquid pipe 12 of the optional heater unit 10. When flowing through this liquid pipe 12, the refrigerant is heated by a heater 19. This heated refrigerant flows through the indoor heat exchanger 49 and then through the gas pipe 13 of the optional heater unit 10. Then, while flowing through this gas pipe 13, the refrigerant is heated by recovering heat from the heater 19 and returns to the compressor 45. By repeating this circulation operation, the outdoor heat exchanger 47 is defrosted in a reverse cycle. In this way, during the reverse cycle defrost operation, the heater 19 of the optional heater unit 10 heats the refrigerant, so the defrosting ability can be improved. Furthermore, since the refrigerant can be sufficiently superheated while flowing through the gas pipe 13, the compressor 45 can operate stably.
[0043] (正サイクルデフロスト運転) [0043] (Forward cycle defrost operation)
また、空調コントローラ 60は、外気温センサ S1が検出する室外温度 T1が 0°C以上 の場合において、熱交温度センサ S2により検出される冷媒温度 T2によって着霜と判 断されると、正サイクルデフロスト制御を行う。この正サイクルデフロスト運転では、空 調コントローラ 60は、オプションヒータユニット 10に設置される除霜コントローラ 30に 正サイクルデフロスト信号を出力する。 In addition, when the outdoor temperature T1 detected by the outdoor temperature sensor S1 is 0°C or more, the air conditioning controller 60 starts the normal cycle if frost formation is determined based on the refrigerant temperature T2 detected by the heat exchanger temperature sensor S2. Performs defrost control. In this positive cycle defrost operation, the air conditioning controller 60 outputs a positive cycle defrost signal to the defrost controller 30 installed in the optional heater unit 10.
正サイクルデフロスト運転では、圧縮機 45の能力を小さくし、膨張弁 48を全開し、 室内ファン 58を低回転に制御する。室外ファン 57は、暖房運転時と同様に運転され て 、る。除霜コントローラ 30が正サイクルデフロスト信号を受けると正サイクル加熱制 御を行って、ヒータ 19を駆動させる。 In the normal cycle defrost operation, the capacity of the compressor 45 is reduced, the expansion valve 48 is fully opened, and the indoor fan 58 is controlled to a low rotation speed. The outdoor fan 57 is operated in the same manner as during heating operation. When the defrost controller 30 receives the positive cycle defrost signal, it performs positive cycle heating control and drives the heater 19.
[0044] この場合、冷媒循環方向が反転することなぐ冷媒が循環する。暖房運転時に比べ 低圧の状態で圧縮機 45から吐出したガス冷媒はオプションヒータユニット 10のガス 管 13を通過する際にヒータ 19から熱を回収することで加熱される。このため、室内熱 交 49に流入する冷媒のェンタルピを上昇させることができる。そして、室内熱交 49において、このようにェンタルビが上昇したガス冷媒を用いて、室内空気と熱 交換させて、室内の暖房を行うと共に冷媒を凝縮させる。このため、特に圧縮機 45の 出力を上げることなぐ暖房の能力を向上させることができる。液冷媒がオプションヒ ータユニット 10のヒータ 19により加熱された後、室外熱交^^ 47に流れる。冷媒は、 室外熱交換器 47の伝熱管に付着した霜を除霜して圧縮機 45に戻る。つまり、暖房 運転を継続しながら除霜が行われる。 [0044] In this case, the refrigerant circulates without reversing the refrigerant circulation direction. The gas refrigerant discharged from the compressor 45 at a lower pressure than during heating operation is heated by recovering heat from the heater 19 when passing through the gas pipe 13 of the optional heater unit 10. Therefore, the enthalpy of the refrigerant flowing into the indoor heat exchanger 49 can be increased. Then, in the indoor heat exchanger 49, the gas refrigerant whose enthalpy has increased in this way is used to exchange heat with indoor air to heat the room and condense the refrigerant. Therefore, the heating capacity can be improved without particularly increasing the output of the compressor 45. After the liquid refrigerant is heated by heater 19 of optional heater unit 10, it flows to outdoor heat exchanger^^47. The refrigerant is The frost adhering to the heat transfer tubes of the outdoor heat exchanger 47 is defrosted and returned to the compressor 45. In other words, defrosting is performed while heating operation continues.
[0045] 低外気温時での使用の場合や運転開始時の場合に、室内温度センサ S3が検出 する室内温度 T3が所定温度以下の低温状態が所定時間以上継続するときには、室 内熱交 の能力が不足していると判断され、暖房制御部 63が除霜コントローラ 30にハイパワー要求信号を出力する。除霜コントローラ 30がハイパワー要求信号を 受けると、能力制御を行い、ヒータ 19の高周波電源 19cの出力を上げる制御を行い 、室内熱交換器 49から流出した冷媒を加熱する。 [0045] When used at low outside temperatures or at the start of operation, if the indoor temperature T3 detected by the indoor temperature sensor S3 remains below a predetermined temperature for a predetermined period or longer, the indoor heat exchanger It is determined that the capacity is insufficient, and the heating control unit 63 outputs a high power request signal to the defrosting controller 30. When the defrosting controller 30 receives the high power request signal, it performs capacity control and increases the output of the high frequency power source 19c of the heater 19, thereby heating the refrigerant flowing out from the indoor heat exchanger 49.
このため、室外熱交 における冷媒の熱交換量を低減させることができる。し たがって、室外熱交換器 47において、冷媒温度 T2と外気温度 T1との温度差が小さ くなつても、冷媒の蒸発に必要な熱交換量を確保することができるので、室外熱交換 器 47の冷媒温度を上昇させることができる。この結果、圧縮機 45に吸入される冷媒 の温度が上昇すると共に、吐出温度が上昇し、室内熱交換器 49に流入する冷媒の ェンタルビが上昇する。また、圧縮機 45から吐出した冷媒は、オプションヒータュ-ッ ト 10のガス管 13を通過する際にヒータ 19からの熱を回収することでさらに加熱される ため、室内熱交換器 49に流入する冷媒のェンタルピはよりいっそう上昇される。 Therefore, the amount of heat exchanged by the refrigerant in the outdoor heat exchanger can be reduced. Therefore, in the outdoor heat exchanger 47, even if the temperature difference between the refrigerant temperature T2 and the outside air temperature T1 becomes small, the amount of heat exchange required for evaporation of the refrigerant can be secured, so the outdoor heat exchanger 47 47 refrigerant temperature can be increased. As a result, the temperature of the refrigerant sucked into the compressor 45 increases, the discharge temperature also increases, and the enthalpy of the refrigerant flowing into the indoor heat exchanger 49 increases. In addition, the refrigerant discharged from the compressor 45 is further heated by recovering heat from the heater 19 when passing through the gas pipe 13 of the optional heater 10, so that it flows into the indoor heat exchanger 49. The enthalpy of the refrigerant is further increased.
[0046] 一方、室外熱交換器 47に流入する前に液冷媒が加熱されるので、室外熱交換器 4 [0046] On the other hand, since the liquid refrigerant is heated before flowing into the outdoor heat exchanger 47, the liquid refrigerant is heated before flowing into the outdoor heat exchanger 4.
7に流入する冷媒のェンタルビが低下することなぐ室内熱交 における冷媒 の過冷却度を大きくすることができる。したがって、室内熱交翻49から流出する冷 媒のェンタルピを小さくすることができる。 The degree of supercooling of the refrigerant in the indoor heat exchanger can be increased without reducing the enthalpy of the refrigerant flowing into the indoor heat exchanger. Therefore, the enthalpy of the refrigerant flowing out from the indoor heat exchanger 49 can be reduced.
よって、室内熱交換器 49に流入する冷媒のェンタルビが大きくなると共に、室内熱 交 49から流出する冷媒のェンタルビが小さくなるので、室内熱交 におけ る冷媒凝縮量が増大し、室内熱交換器 49の能力が増大する。このように、空気調和 装置 40の構成として能力の大きな室外熱交 を採用することなぐ室内熱交換 器 49の能力を向上させることができ、暖房能力の不足を解消することができる。 Therefore, the enthalby of the refrigerant flowing into the indoor heat exchanger 49 increases, and the enthalvy of the refrigerant flowing out from the indoor heat exchanger 49 decreases, so the amount of refrigerant condensed in the indoor heat exchanger increases, and the amount of refrigerant condensed in the indoor heat exchanger 49 increases. 49 abilities increase. In this way, the capacity of the indoor heat exchanger 49 can be improved without employing a high-capacity outdoor heat exchanger as the configuration of the air conditioner 40, and the lack of heating capacity can be resolved.
(冷房運転) (Cooling operation)
冷房運転時には、四路切換弁 46が図中の波線側に切り換わる。圧縮機 45から吐 出したガス冷媒は、四路切換弁 46を通過し、室外熱交換器 47に流れ、室外空気と 熱交換をして凝縮する。凝縮した液冷媒は、膨張弁 48により減圧され、液管 12を通 過して室内熱交換器 49に流入する。室内熱交換器 49において、液冷媒は、室内空 気と熱交換し、該室内空気を冷却すると共に、蒸発する。蒸発したガス冷媒は、ガス 管 13を通過し、四路切換弁 46を通過して、圧縮機 45に戻り、この循環が繰り返され る。 During cooling operation, the four-way switching valve 46 switches to the dotted line side in the figure. The gas refrigerant discharged from the compressor 45 passes through the four-way switching valve 46, flows to the outdoor heat exchanger 47, and is mixed with outdoor air. It exchanges heat and condenses. The condensed liquid refrigerant is depressurized by the expansion valve 48, passes through the liquid pipe 12, and flows into the indoor heat exchanger 49. In the indoor heat exchanger 49, the liquid refrigerant exchanges heat with indoor air, cools the indoor air, and evaporates. The evaporated gas refrigerant passes through the gas pipe 13, passes through the four-way switching valve 46, returns to the compressor 45, and this circulation is repeated.
[0047] <本実施形態のオプションヒータュ-ット 10の特徴 > [0047] <Characteristics of the optional heater unit 10 of this embodiment>
(1) (1)
既設の空気調和装置に冷媒加熱機能を備えさせる場合には、加熱に必要とされる エネルギが増大するが、従来の冷媒加熱装置では、このエネルギの増大分に関する 配慮が特になされて 、な 、ため、熱効率の向上が図られて 、な 、。 When equipping an existing air conditioner with a refrigerant heating function, the energy required for heating increases, but with conventional refrigerant heating equipment, special consideration has not been given to this increase in energy. , the thermal efficiency has been improved.
これに対して、本実施形態に係るオプションヒータユニット 10では、ガス管 13が、液 管 12を加熱するヒータ 19に接するように配置されている。このため、液管 12の冷媒 の補助ヒータ等として用いられるヒータ 19から得られる熱のうち、液管 12を流れる冷 媒の加熱に利用されることなく漏れ出した熱があつたとしても、近接されたガス管 13 において熱回収することができる。このため、回収された熱によってガス管 13を流れ ている冷媒を加熱することができる。これにより、オプションヒータユニット 10を空気調 和装置 40に対して後付けした場合であっても、熱ロスを抑えて、熱効率を向上させる ことができる。 In contrast, in the optional heater unit 10 according to the present embodiment, the gas pipe 13 is arranged so as to be in contact with the heater 19 that heats the liquid pipe 12. Therefore, even if some of the heat obtained from the heater 19 used as an auxiliary heater for the refrigerant in the liquid pipe 12 leaks out without being used to heat the refrigerant flowing through the liquid pipe 12, Heat can be recovered in the gas pipe 13. Therefore, the refrigerant flowing through the gas pipe 13 can be heated by the recovered heat. Thereby, even when the optional heater unit 10 is retrofitted to the air conditioner 40, heat loss can be suppressed and thermal efficiency can be improved.
[0048] また、オプションヒータユニット 10は、空気調和装置の設置当初と比較して室内の 快適性を向上させた 、場合や暖房能力を向上させた!/、場合にぉ 、て、空気調和装 置を新たに買い換える必要がなぐ既設装置と有効に利用しつつ一体化されたュ- ットを後付けするだけで、容易に快適性や暖房能力を向上させることができる。このた め、ユーザの希望に応じて冷媒の加熱を素早くさせたり、補助ヒータとして活用させる ことができる。 [0048] In addition, the optional heater unit 10 has improved indoor comfort and heating capacity compared to when the air conditioner was initially installed. Comfort and heating capacity can be easily improved by simply retrofitting an integrated unit while making effective use of existing equipment, which eliminates the need to purchase a new unit. Therefore, the refrigerant can be heated quickly or used as an auxiliary heater according to the user's wishes.
また、上述のオプションヒータユニット 10のヒータ 19は、電磁誘導加熱方式を採用 しているため、ヒータ 19を小型化させることができ、その結果、後付けするオプション ヒータユニット 10自体をコンパクトに設計でき、後付けの際に必要とされる設置スぺー スが多く必要とならない。 (2) Furthermore, since the heater 19 of the optional heater unit 10 described above uses an electromagnetic induction heating method, the heater 19 can be made smaller, and as a result, the optional heater unit 10 itself can be designed more compactly. It does not require a lot of installation space, which is required for retrofitting. (2)
本実施形態におけるオプションヒータユニット 10では、断熱材 11aが、液管 12、ガ ス管 13およびヒータ 19を覆っている。このため、ヒータ 19から生じた熱が外部に漏れ 出すことを抑えて、ヒータ 19から得られる熱を冷媒の加熱に有効に利用することがで きる。また、断熱材 11aは、さらにケーシング 11によって覆われている。この結果、液 管 12、ガス管 13およびヒータ 19は、二重に覆われていることになり、断熱効果をより 向上させることができて!/ヽる。 In the optional heater unit 10 of this embodiment, a heat insulating material 11a covers the liquid pipe 12, the gas pipe 13, and the heater 19. Therefore, the heat generated from the heater 19 is prevented from leaking to the outside, and the heat obtained from the heater 19 can be effectively used for heating the refrigerant. Further, the heat insulating material 11a is further covered with a casing 11. As a result, the liquid pipe 12, the gas pipe 13, and the heater 19 are double covered, and the heat insulation effect can be further improved!/ヽru.
[0049] (3) [0049] (3)
本実施形態におけるオプションヒータユニット 10では、液管 12を流れる冷媒の方向 と、ガス管 13を流れる冷媒の方向とが互いに逆向きになるように、各管が配置されて いる。このため、ガス管 13を流れる冷媒は、始めはヒータ 19によって加熱される前の 液管 12を流れる冷媒からの熱回収によって少しづつ温度が上昇し、終わりはヒータ 1 9によって充分に加熱された液管 12を流れる冷媒カもの熱回収によってさらに温度 を上昇させることができる。これにより、ガス管 13における熱回収効率がより向上され る。 In the optional heater unit 10 of this embodiment, the tubes are arranged so that the direction of the refrigerant flowing through the liquid tube 12 and the direction of the refrigerant flowing through the gas tube 13 are opposite to each other. Therefore, the temperature of the refrigerant flowing through the gas pipe 13 increases little by little due to heat recovery from the refrigerant flowing through the liquid pipe 12 before it is heated by the heater 19, and at the end it is sufficiently heated by the heater 19. The temperature can be further increased by recovering heat from the refrigerant flowing through the liquid pipe 12. This further improves the heat recovery efficiency in the gas pipe 13.
<他の実施形態 > <Other embodiments>
以上、本発明の一実施形態について説明したが、本発明は実施形態に限定される ものではなぐ発明の要旨を逸脱しない範囲で種々の変更が可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the embodiment, and various changes can be made without departing from the gist of the invention.
[0050] (A) [0050] (A)
上記実施形態におけるオプションヒータユニット 10では、液管 12とガス管 13とがそ れぞれ独立して並んでいる場合を例に挙げて説明した。 The optional heater unit 10 in the above embodiment has been described using an example in which the liquid pipe 12 and the gas pipe 13 are arranged independently.
しかし、本発明はこれに限られるものではなぐ図 4に示すように、ケーシング 11内 において、第 1電磁弁 20が設けられた液管 12とガス管 13とが、第 2電磁弁が設けら れたバイノス管 14によってバイパスされて 、る構成を採用してもよ!、。 However, the present invention is not limited to this. As shown in FIG. Bypassed by the binos tube 14, the configuration can also be adopted.
具体的には、図 4に示すように、バイパス管 14の一端は、液管 12におけるヒータ 19 と第 1電磁弁 20との間に接続されている。また、バイパス管 14の他端は、ガス管 13に 接続されている。そして、第 2開閉機構である第 2電磁弁 22は、バイパス管 14の液管 12接続部分とガス管 13接続部分との間にお 、て設けられて!/、る。 [0051] そして、空調コントローラ 60からの制御指令にしたがって、除霜コントローラ 30は、 第 1電磁弁 20の開閉制御および第 2電磁弁 22の開閉制御を行う。この開閉制御で は、逆サイクルデフロスト運転に切り換えられる際に空調コントローラ 60が出力する制 御信号を受けたときに、液管 12に設置される第 1電磁弁 20を閉鎖し、バイパス管 14 に設置される第 2電磁弁 22を開放する。このようにバイパス管 14を設けることで、液 管 12を流通するガス冷媒の一部を分流させて冷媒流量を調整することが可能になる ここでは、逆サイクルデフロスト運転時において冷媒を加熱するので、除霜能力を 向上させることができる。また、これと同時に、室内熱交 に流れる冷媒が遮断 されて、室内熱交 の温度低下を抑制することができ、室内熱交 の温 度低下を抑制することができる。これにより、暖房運転開始後、室内熱交 が停 止前の温度に戻るまでの時間の短縮効果を奏することができ、室内をさらに快適に 保つことができる。 Specifically, as shown in FIG. 4, one end of the bypass pipe 14 is connected between the heater 19 and the first electromagnetic valve 20 in the liquid pipe 12. Further, the other end of the bypass pipe 14 is connected to the gas pipe 13. The second solenoid valve 22, which is the second opening/closing mechanism, is provided between the liquid pipe 12 connection part and the gas pipe 13 connection part of the bypass pipe 14! /, Ru. [0051] According to control commands from the air conditioning controller 60, the defrosting controller 30 controls the opening and closing of the first solenoid valve 20 and the second solenoid valve 22. In this opening/closing control, when receiving a control signal output from the air conditioning controller 60 when switching to reverse cycle defrost operation, the first solenoid valve 20 installed in the liquid pipe 12 is closed, and the first solenoid valve 20 installed in the liquid pipe 12 is closed. Open the second solenoid valve 22 to be installed. By providing the bypass pipe 14 in this way, it is possible to divide a part of the gas refrigerant flowing through the liquid pipe 12 to adjust the refrigerant flow rate. Here, since the refrigerant is heated during reverse cycle defrost operation, , defrosting ability can be improved. Moreover, at the same time, the refrigerant flowing into the indoor heat exchanger is cut off, making it possible to suppress a decrease in the temperature of the indoor heat exchanger, thereby suppressing a decrease in the temperature of the indoor heat exchanger. This has the effect of shortening the time it takes for the indoor heat exchanger to return to the temperature before it was stopped after the heating operation has started, making it possible to keep the room more comfortable.
[0052] このような構成を採用する場合に、図 5に示すように、ヒータ 19から液管 12の冷媒 に伝わらな力つた熱を、液管 12およびガス管 13だけでなぐバイノス管 14において も回収することができる。また、断熱材 11aによって、液管 12、ガス管 13、ヒータ 19だ けでなぐさらにバイパス管 14を取り囲むことで、上記実施形態における断熱効果だ けでなぐバイパス管 14を流れる冷媒についての断熱性をも確保することができ、熱 効率をよりいっそう向上させることができる。 [0052] When adopting such a configuration, as shown in FIG. can also be recovered. In addition, by surrounding not only the liquid pipe 12, gas pipe 13, and heater 19 but also the bypass pipe 14 with the heat insulating material 11a, not only the heat insulation effect in the above embodiment but also the heat insulation property for the refrigerant flowing through the bypass pipe 14 can be achieved. This also makes it possible to further improve thermal efficiency.
(B) (B)
上記実施形態におけるオプションヒータユニット 10では、ケーシング 11の内部に断 熱材 1 laが設けられて 、る場合にっ 、て例に挙げて説明した。 The optional heater unit 10 in the above embodiment has been described by way of example in which the heat insulating material 1 la is provided inside the casing 11 .
しかし、本発明はこれに限られるものではなぐケーシング 11自体に断熱機能を備 えた材料を採用した構成として、断熱材 1 laを省略してもよ!/、。 However, the present invention is not limited to this; the casing 11 itself may be made of a material with a heat insulating function, and the heat insulating material 1 la may be omitted. /,.
[0053] これにより、断熱性を確保しつつ、断熱材 11aをケーシング 11とは別途新たに設け る必要を無くすることができ、部品点数を削減させることができる。 [0053] This makes it possible to eliminate the need to newly provide the heat insulating material 11a separately from the casing 11 while ensuring heat insulating properties, and it is possible to reduce the number of parts.
(C) (C)
上記実施形態におけるヒータ 60では、液管 12を流れる冷媒の向きと、ガス管 13を 流れる冷媒の向きとが互いに逆向きである場合について例に挙げて説明した。 し力し、本発明はこれに限られるものではなぐオプションヒータユニット 10内の液管 12の冷媒の流れる向きと、ガス管 13の冷媒の流れる向きとが共通するような配置構 成を採用してもよい。この場合には、冷媒配管の配置を互いに冷媒の流れる向きが 逆側になるように配置する必要がなく、冷媒配管の折り曲げ部分を設ける必要が少な くなる場合がある。これにより、オプションヒータユニット 10の内部構成を簡略ィ匕させる ことができ、全体形状を小型化させることができ、設置スペースを確保し易ぐ後付け 作業が容易になる。 In the heater 60 in the above embodiment, the direction of the refrigerant flowing through the liquid pipe 12 and the direction of the gas pipe 13 are An example has been described in which the directions of the flowing refrigerant are opposite to each other. However, the present invention is not limited to this, but an arrangement is adopted in which the direction in which the refrigerant flows in the liquid pipe 12 in the optional heater unit 10 and the direction in which the refrigerant flows in the gas pipe 13 are the same. It's okay. In this case, there is no need to arrange the refrigerant pipes so that the directions of refrigerant flow are opposite to each other, and the need to provide bent portions of the refrigerant pipes may be reduced. As a result, the internal configuration of the optional heater unit 10 can be simplified, the overall shape can be reduced, and installation space can be easily secured and retrofitting work can be facilitated.
[0054] (D) [0054] (D)
上記実施形態におけるオプションヒータユニット 60では、液管 12に対してのみコィ ル 19aが巻き付けられている場合を例に挙げて説明した。 In the optional heater unit 60 in the above embodiment, the case where the coil 19a is wound only around the liquid pipe 12 has been described as an example.
しかし、本発明はこれに限られるものではなぐ液管 12に巻き付けられているコイル 19aの一部をガス管 13にも巻き付け、磁性体部 19bにつ 、てもガス管 13に設けるよ うな構成にしてもよい。これにより、液管 12およびガス管 13の両者を一緒に加熱する ことがでさるよう〖こなる。 However, the present invention is not limited to this. A part of the coil 19a wound around the liquid pipe 12 may also be wound around the gas pipe 13, and the magnetic body portion 19b may also be provided in the gas pipe 13. You can also do this. This makes it possible to heat both the liquid pipe 12 and the gas pipe 13 together.
(E) (E)
実施形態におけるオプションヒータユニット 60では、 1つの室外ユニット 41に対して 1つに室内ユニット 42が接続されたペア型の空気調和装置 40を例に挙げて説明し た。 The optional heater unit 60 in the embodiment has been described using as an example a pair type air conditioner 40 in which one indoor unit 42 is connected to one outdoor unit 41.
[0055] し力し、本発明はこれに限られるものではなぐ例えば、 1つの室外ユニット 41に対 して複数の室内ユニット 42が接続されているマルチ空調方式が採用されたシステム 構成の各室内ユニット 42それぞれに対して、オプションヒータユニット 10を後付けす るような構成としてちよい。 [0055] However, the present invention is not limited to this. For example, each room in a system configuration employing a multi-air conditioning system in which a plurality of indoor units 42 are connected to one outdoor unit 41 may be used. The configuration may be such that the optional heater unit 10 is retrofitted to each of the units 42.
また、この場合、接続されている複数の室内ユニット 42のうち、オプションヒータュ- ット 10の設置を望むユーザに対応した室内ユニット 42についてのみ選択的に後付け するようにしてちょい。 Furthermore, in this case, among the plurality of connected indoor units 42, only the indoor units 42 corresponding to the user who desires to install the optional heater tut 10 may be retrofitted selectively.
(F) (F)
上記実施形態におけるオプションヒータユニット 10のヒータ 19では、コイル 19aによ つて束ねられて電磁誘導によって加熱される対象部分である磁性体部 19bとして、磁 性体材料が含まれたているものを例に挙げて説明した。 In the heater 19 of the optional heater unit 10 in the above embodiment, the coil 19a The explanation has been given using an example in which a magnetic material is included as the magnetic material portion 19b, which is a target portion that is bundled together and heated by electromagnetic induction.
[0056] しかし、本発明はこれに限られるものではなぐ電磁誘導に基づいて発熱させる対 象となるものとしては、例えば、電導体を含む部材や、抵抗値と比誘磁率との積が所 定値以上の部材や、冷媒の加熱時の温度がキュリー温度以下である強磁性体を含 む部材等であってもよい。この場合であっても、実施形態と同様の効果を奏すること ができる。 [0056] However, the present invention is not limited to this, and examples of objects that generate heat based on electromagnetic induction include, for example, members including electrical conductors, and materials whose product of resistance value and relative permittivity is It may be a member having a temperature higher than a certain value or a member containing a ferromagnetic material whose temperature during heating of the refrigerant is lower than the Curie temperature. Even in this case, the same effects as in the embodiment can be achieved.
産業上の利用可能性 Industrial applicability
[0057] 本発明によれば、ユニット化されていることにより、室内機や室外機とは別個に、後 付けすることが容易であり、熱回収効率を向上させる効果が得られるため、冷媒回路 を流れる冷媒を部分的に加熱する装置への適用が特に有用である。 [0057] According to the present invention, since it is unitized, it can be easily retrofitted separately from the indoor unit and outdoor unit, and the effect of improving heat recovery efficiency can be obtained. It is particularly useful for applications in devices that partially heat a refrigerant flowing through a refrigerant.

Claims

請求の範囲 The scope of the claims
[1] 冷媒を加熱するための冷媒加熱装置(10)であって、 [1] A refrigerant heating device (10) for heating a refrigerant,
液冷媒が流通するように構成された液管(12)と、 a liquid pipe (12) configured to allow liquid refrigerant to flow;
ガス冷媒が流通するように構成されたガス管(13)と、 a gas pipe (13) configured to allow gas refrigerant to flow;
前記液管(12)を流通する冷媒を加熱する加熱部(19)と、 a heating section (19) that heats the refrigerant flowing through the liquid pipe (12);
前記液管(12)および前記ガス管(13)の各両端部分が外部に通じるように、前記 液管(12)と前記ガス管(13)と前記加熱部(19)とを収納するケーシング(11)と、 を備え、 A casing (1) that houses the liquid pipe (12), the gas pipe (13), and the heating section (19) so that both end portions of the liquid pipe (12) and the gas pipe (13) communicate with the outside. 11) and,
前記加熱部(19)の少なくとも一部が、前記ガス管(13)に近接して配置されている 冷媒加熱装置(10)。 A refrigerant heating device (10) in which at least a portion of the heating section (19) is disposed close to the gas pipe (13).
[2] 前記ケーシング( 11)は、前記加熱部(19)、前記液管( 12)および前記ガス管( 13 [2] The casing ( 11) includes the heating section (19), the liquid pipe ( 12), and the gas pipe ( 13).
)を一体化させる断熱材として機能する、 ), which functions as a heat insulating material that integrates the
請求項 1に記載の冷媒加熱装置( 10)。 The refrigerant heating device (10) according to claim 1.
[3] 前記液管(12)と前記ガス管(13)とをバイパスするバイパス管(14)と、 [3] a bypass pipe (14) that bypasses the liquid pipe (12) and the gas pipe (13);
前記バイパス管(14)に設けられた開閉機構 (22)と、 an opening/closing mechanism (22) provided in the bypass pipe (14);
をさらに備え、 Furthermore,
前記ケーシング(11)は、前記加熱部(19)、前記液管(12)および前記バイパス管 (14)を一体化させる断熱材として機能する、 The casing (11) functions as a heat insulating material that integrates the heating section (19), the liquid pipe (12), and the bypass pipe (14).
請求項 1または 2に記載の冷媒加熱装置(10)。 The refrigerant heating device (10) according to claim 1 or 2.
[4] 前記加熱部(19)、前記液管( 12)および前記ガス管(13)を一体化させる断熱材( 11a)をさらに備えた、 [4] Further comprising a heat insulating material ( 11a) that integrates the heating section (19), the liquid pipe ( 12) and the gas pipe (13),
請求項 1に記載の冷媒加熱装置( 10)。 The refrigerant heating device (10) according to claim 1.
[5] 前記液管(12)と前記ガス管(13)とをバイパスするバイパス管(14)と、 [5] a bypass pipe (14) that bypasses the liquid pipe (12) and the gas pipe (13);
前記バイパス管(14)に設けられた開閉機構 (22)と、 an opening/closing mechanism (22) provided in the bypass pipe (14);
前記加熱部(19)、前記液管(12)および前記バイパス管(14)を一体化させる断熱 材(11a)をさらに備えた、 further comprising a heat insulating material (11a) that integrates the heating section (19), the liquid pipe (12) and the bypass pipe (14);
請求項 1または 4に記載の冷媒加熱装置(10)。 The refrigerant heating device (10) according to claim 1 or 4.
[6] 前記液管(12)において冷媒の流れる向きと、前記ガス管(13)において冷媒の流 れる向きとは、互いに略逆向きである、 [6] The direction in which the refrigerant flows in the liquid pipe (12) and the direction in which the refrigerant flows in the gas pipe (13) are substantially opposite to each other.
請求項 1から 5の 、ずれか 1項に記載の冷媒加熱装置(10)。 The refrigerant heating device (10) according to any one of claims 1 to 5.
[7] 前記液管(12)において冷媒の流れる向きと、前記ガス管(13)において冷媒の流 れる向きとは、略同じ向きである、 [7] The direction in which the refrigerant flows in the liquid pipe (12) and the direction in which the refrigerant flows in the gas pipe (13) are substantially the same.
請求項 1から 5の 、ずれか 1項に記載の冷媒加熱装置(10)。 The refrigerant heating device (10) according to any one of claims 1 to 5.
[8] 前記加熱部(19)は、前記液管(12)に巻き付けられるコイル(19a)と、磁性体部分 [8] The heating section (19) includes a coil (19a) wound around the liquid tube (12) and a magnetic part.
(19b)と、を有しており、 (19b), and
前記コイル(19a)の外周は、前記ガス管(13)に近接して配置されている、 請求項 1から 7の 、ずれか 1項に記載の冷媒加熱装置(10)。 The refrigerant heating device (10) according to any one of claims 1 to 7, wherein the outer periphery of the coil (19a) is arranged close to the gas pipe (13).
PCT/JP2006/324053 2005-12-07 2006-12-01 Refrigerant heater WO2007066585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-353294 2005-12-07
JP2005353294A JP2007155259A (en) 2005-12-07 2005-12-07 Refrigerant heating apparatus

Publications (1)

Publication Number Publication Date
WO2007066585A1 true WO2007066585A1 (en) 2007-06-14

Family

ID=38122731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324053 WO2007066585A1 (en) 2005-12-07 2006-12-01 Refrigerant heater

Country Status (2)

Country Link
JP (1) JP2007155259A (en)
WO (1) WO2007066585A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010146803A1 (en) * 2009-06-19 2010-12-23 ダイキン工業株式会社 Refrigeration device
EP2299206A1 (en) * 2009-09-11 2011-03-23 LG ELectronics INC. Air conditioner and method for controlling the same
EP2410256A4 (en) * 2009-03-19 2015-03-18 Daikin Ind Ltd Air conditioning device
EP2336678A4 (en) * 2008-09-17 2017-04-19 Daikin Industries, Ltd. Refrigerant heating device assembly and mounting structure for same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247429A (en) * 2008-09-17 2011-12-08 Daikin Industries Ltd Refrigerant heating apparatus manufacturing method
JP5347400B2 (en) * 2008-09-17 2013-11-20 ダイキン工業株式会社 Electromagnetic induction heating unit and air conditioner
JP5393433B2 (en) * 2009-12-21 2014-01-22 三菱電機株式会社 Hot water heat source machine
EP3037744B1 (en) * 2013-09-27 2017-12-13 Panasonic Healthcare Holdings Co., Ltd. Refrigeration device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091065A (en) * 1999-09-27 2001-04-06 Daikin Ind Ltd Refrigerant heater
JP2002005537A (en) * 2000-06-22 2002-01-09 Daikin Ind Ltd Refrigerant heating apparatus and air conditioning apparatus
JP2005114253A (en) * 2003-10-08 2005-04-28 Mitsubishi Electric Corp Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091065A (en) * 1999-09-27 2001-04-06 Daikin Ind Ltd Refrigerant heater
JP2002005537A (en) * 2000-06-22 2002-01-09 Daikin Ind Ltd Refrigerant heating apparatus and air conditioning apparatus
JP2005114253A (en) * 2003-10-08 2005-04-28 Mitsubishi Electric Corp Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2336678A4 (en) * 2008-09-17 2017-04-19 Daikin Industries, Ltd. Refrigerant heating device assembly and mounting structure for same
EP2410256A4 (en) * 2009-03-19 2015-03-18 Daikin Ind Ltd Air conditioning device
US9074782B2 (en) 2009-03-19 2015-07-07 Daikin Industries, Ltd. Air conditioner with electromagnetic induction heating unit
WO2010146803A1 (en) * 2009-06-19 2010-12-23 ダイキン工業株式会社 Refrigeration device
EP2299206A1 (en) * 2009-09-11 2011-03-23 LG ELectronics INC. Air conditioner and method for controlling the same

Also Published As

Publication number Publication date
JP2007155259A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
WO2007066585A1 (en) Refrigerant heater
KR100997284B1 (en) Air conditioner and control method thereof
TWI235227B (en) Refrigerator
RU2486413C1 (en) Air conditioner
WO2013046720A1 (en) Hot-water-supplying, air-conditioning system
JP5177281B2 (en) Air conditioner
WO2012032680A1 (en) Refrigeration cycle apparatus
JP5308220B2 (en) Heat pump type hot water supply / air conditioner
WO2007063916A1 (en) Refrigerant heating apparatus
WO2007119414A1 (en) Cooling medium heating apparatus and heating control method
JP2007278536A (en) Air conditioner
JP4304832B2 (en) Air conditioner
JP2013104623A (en) Refrigeration cycle device and air conditioner with the same
WO2013088684A1 (en) Air conditioner
JP6057871B2 (en) Heat pump system and heat pump type water heater
KR100929192B1 (en) Air conditioner
JP2011080733A (en) Air conditioner
CN107270579A (en) Source pump and its multifunctional mode control method
JP2001263848A (en) Air conditioner
WO2015046228A1 (en) Air conditioner
JP2001263882A (en) Heat pump device
JP4016546B2 (en) Fluid heating device
JP2000220912A (en) Refrigerant heater
JP2010127602A (en) Refrigerating device
WO2010146807A1 (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823532

Country of ref document: EP

Kind code of ref document: A1