WO2007063157A2 - Sistema de monitorización de pacientes - Google Patents

Sistema de monitorización de pacientes Download PDF

Info

Publication number
WO2007063157A2
WO2007063157A2 PCT/ES2006/000664 ES2006000664W WO2007063157A2 WO 2007063157 A2 WO2007063157 A2 WO 2007063157A2 ES 2006000664 W ES2006000664 W ES 2006000664W WO 2007063157 A2 WO2007063157 A2 WO 2007063157A2
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring system
patient monitoring
microcontroller
wpan
patient
Prior art date
Application number
PCT/ES2006/000664
Other languages
English (en)
French (fr)
Other versions
WO2007063157A3 (es
Inventor
Vicente Jorge RIBAS RIPOLL
Original Assignee
Sabirmedical, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sabirmedical, S.L. filed Critical Sabirmedical, S.L.
Publication of WO2007063157A2 publication Critical patent/WO2007063157A2/es
Publication of WO2007063157A3 publication Critical patent/WO2007063157A3/es

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition

Definitions

  • the present invention develops a system, including a device of the Personal Wearable Device type and a gateway, for the monitoring of biomedical data of patients that are evaluated by means of devices grouped in a wireless network of personal area. Specifically, it groups electrocardiogram, pulse oximetry, blood pressure and a breathing indicator data, among others.
  • the system manages said biomedical data of each patient in real time, linking with different information systems and services through a gateway (Gateway), so that it performs the controls that are parameterized and executes the appropriate warnings in accordance with them, transmitting the relevant information to different types of media or means of visualization, management and interaction with the system.
  • European patent EP 1433432 of Brainlab AG develops a system that integrates several devices for medical use, in which a central control unit made with a processor receives the signals from the different devices and encodes these signals to a unified format, while another The processor performs the coding of said signals to be used by the different components that control the relevant medical instruments.
  • said system does not provide a suitable means for monitoring the biomedical data of a plurality of patients located in one or different rooms, nor does it allow to configure a means that allows said monitoring when said patients are transferred, nor does it allow to integrate a decentralized monitoring and distant, within the same system, of said patients.
  • the means of establishing the monitoring of some type of biomedical data and integrating it into a wireless network including connecting said network to the Internet and allowing the evaluation of patients located remotely but connected to said network.
  • US2002 / 0013517 provides a patient monitoring system that, through a wireless network, obtains biomedical data from patients who have a wireless signal transmitter coupled to the control of a personal biological level. Patients can be displaced by the hospital and different access points of the wireless network, according to the already known specifications of the wireless networks, they will capture the signals of their data transmitters.
  • the patent establishes a system for starting and ending communications between the different points that make up the network.
  • Pulse oximetry could provide an erroneous indication of the patient's breathing, but the respiration indicator of the present invention makes it possible to supplement such information and know if the patient is breathing properly.
  • the respiration indicator of the present invention makes it possible to supplement such information and know if the patient is breathing properly.
  • one of the main objects of the present invention is to solve one of the problems raised regarding the monitoring of patients in operating rooms and hospitals, especially those derived from the mobilization of patients both in the pre-operative phases, surgery, as in the postoperative period, providing monitoring for the quatern of data characteristic of the present invention.
  • Another of the objectives and advantages obtained with the system of the present invention refers to the increase of the quality and comfort of the hospital stay of the patients, being another of the main reasons of the present invention to extend the coverage of the monitoring of patients from hospital facilities to other locations such as geriatric, private homes, outpatient, etc.
  • the patient monitoring system consists of several differentiated elements that provide flexibility to the system:
  • ECG blood pressure
  • ECG Electrocardiogram
  • the invention uses wireless connections between its parts, by means of the IEEE 802.15.4-2003 and IEEE 802.15.4 - 2006 standards, which define the protocol of communication and interconnection of devices via radio frequency in personal area networks with low transmission rates (LR -WPAN - Low Rate Wireless Personal Network Area).
  • the standard uses CSMA-CA (Carrier Sense Multiple Acces with Avoidance Collusion - prevents collisions) as does the IEEE 802.3 standard that define Ethernet.
  • IEEE 802.15.4-2003 and 802.15.2-2006 support both star and point-to-point topologies.
  • the selected protocol is highly indicated for the implementation of this monitoring system due to the low variability, from the statistical point of view, of the different bio-signals that are monitored, supporting transmission rates on radio channels of 250Kbps, 40Kbps and 20Kbps, depending on the carriers / channels available within the free band ISM II that are configured within the range 868/915 Mhz and 2,450 Ghz.
  • the protocol used allows to facilitate the installation and configuration of the system by the health personnel, providing coverage areas of 1Om around the patient, which allow its perfect and continuous monitoring, representing a low consumption of the batteries used.
  • the system provides for the use of two different types of devices, working in full functionality mode (FFD) or reduced functionality
  • Network Area - PAN both as FFD and RFD.
  • Figure 1 shows a representation of a monitoring system with only two personal area networks, distinguishing between devices that work in full functionality and those that work in reduced functionality.
  • FIG. 2 shows a diagram of the system components and their range of use
  • Figure 3 represents an ECG signal
  • Figure 4 schematically represents an Electro Cardiogram (EGC) data acquisition circuit within the known technique for said task and using, essentially, a DSP56F805 microprocessor.
  • ECG Electro Cardiogram
  • FIG. 5 is a block diagram representation, within the known technique, of the ECG encoder in the DSP56F805 microcontroller.
  • Figure 6 represents a module that obtaining the ECG signals encoded through the microcontroller of the previous figure, allows its transmission via wireless to the whole system of the invention.
  • Figure 7 is a representation, within the known technique, of a blood pressure sensor, based on the DSP56F803 microcontroller.
  • Figure 8 shows the interface module between the data obtained and encoded by the microcontroller of the previous figure for its wireless transmission to the whole system of the invention.
  • Figure 9 details a device for obtaining pulse oximetry. It uses a DSP56F803 microcontroller and an interface suitable for wireless transmission to the whole system of the data obtained by said device.
  • Figure 10 shows an analogous mechanism of biometric data collection, this time of the patient's breathing, in which through a sensor of them, signals are obtained that are encoded and transmitted by means of the appropriate interface to the system as a whole through wireless communications.
  • Figure 11 shows a scheme for wireless coordination of the different devices that make up the present invention for the coordination of the different devices that make up a personal area network.
  • the biomedical data of the different devices that their own interfaces transmit wirelessly are captured by a device receiving said signals that transmits them to the whole system, decoding said signals ⁇ where appropriate, through a gateway or Gateway.
  • Figure 12 shows a decoder like the one shown in the previous figure, referring to the ECG signals.
  • FIGS 13 and 14 represent diagrams with possible topologies of use of the invention, which can be used together or independently.
  • FIGS 15 and 16 schematically represent the Ethernet and Bluetooth Gateways, respectively.
  • Figure 17 shows a general implementation of the system identifying the Coordinator of the LR-WPAN (Personal Wearable Device) and the System Coordinator (Gateway) along with all its components.
  • the present invention consists of a wireless patient monitoring system (1) whose biomedical data (2) are evaluated in real time by means of devices (3,4,5,6) grouped in a personal area network (7), and linked through different services to information receivers (8) that centralize, decode and transmit them to the system as a whole (D.
  • the system of the present invention can be subdivided into different ranges of application: the wireless sensor devices (3, 4, 5, 6) that form each personal area network (7), the set of personal biomedical data
  • Wireless personal area networks are designed as modular systems that provide connectivity to the set of subsystems for the capture of biometric signals, thereby allowing high scalability in the configuration of the system of the invention.
  • the invention characterizes different biomedical data capture interfaces: ECG-LR-WPAN device
  • the ECG-LR-WPAN device or interface (3) provides an electrocardiogram signal, this is a signal of cardiac electrical activity ( Figure 3).
  • the capture of an ECG is done through the potentials captured by various electrodes (11) (between 2 and 5 depending on the configuration) located on the patient's skin at different points.
  • the ECG signal is captured, it is sent to a microcontroller (12) capable of processing very low amplitude signals (between 0.5mV and 5mV) coupled with a DC component.
  • Microcontroller It allows working with the bandwidth selected for the 100Hz monitoring system, although other bandwidths can also be selected depending on the clinical application of the monitor, such as between the range 0.5 to 100 Hz.
  • the microcontroller (12) used for monitoring is a Freescale DSP56F805 that is included in a device (3) that the patient can carry with him ( Figure 4).
  • the microcontroller input converts the analog ECG signal into digital, performing the filtering operations of the interferences derived from muscular activity, coupling with other electrical sources and electrodes.
  • a digital FIR-Band FIR filter (14) with a cutoff frequency of 0.05 Hz and 100Hz can be used.
  • a Wiener Causal Digital Filter (15) of order 10 is also used to cancel interference from other 50Hz electrical sources.
  • the ECG signal is sent to the Peripheral Serial Interface (SPI) (13) of the microcontroller (12) to be sent to the ECG waveform encoder ( Figure 5).
  • SPI Peripheral Serial Interface
  • This coding optimizes traffic to work with 132-bit packets, the maximum allowed by the IEEE 802.15.4-2003 standard.
  • the channel coding of the signal obtained for wireless transmission can be performed with a channel encoder (16), for example a FreeScale MC13192, configured as RFD, this is to work as a reduced functionality device.
  • This coding is done by means of DSSS (Direct Sequence Spread Spectrum) modulation and configures the wireless link with the FDD coordinator of the LR-WPAN (figure 1).
  • a Holter sensor (18) located in another device that the patient carries with him is used.
  • This device used by most clinical applications, uses an oscillometric algorithm to estimate blood pressure, and is a non-intrusive mechanism.
  • the blood pressure is read through an inflatable bull (17) located around the patient's left arm so that the vessels are compressed when the bull is swollen.
  • the systolic, diastolic and mean blood pressure reading are read at the point where the Holter sensor is replaced.
  • the biomedical data obtained by the Holter sensor (18) reading SBP, DBP and MAP are sent to a microcontroller (19) Freescale DSP56F803.
  • the digital output of said microcontroller is separated into two paths, one to perform its reading, another to filter the fluctuations on the reading derived from the internal pressure of the bull (17).
  • the digitized signal output actually corresponds to two signals that in a time interval correspond to the oscillation of blood pressure
  • a high-pass FIR digital filter (22) with a cutoff frequency is located in the microcontroller 0.04 Hz. This process to eliminate the CP component in CB allows to obtain two signals with a constant oscillation to make the necessary comparisons and obtain a correct reference for the calculation of the real SBP, DBP and MAP.
  • Figure 7 shows the inputs and outputs of the microcontroller (19).
  • the signals obtained SBP, DBP and MAP already real, are encoded at 16 bits and are ready for transmission and sent to a microcontroller (23) FreeScale MC13192 configured as RFD ( Figure 8).
  • This device performs the channel coding for radio frequency transmission, DSSS modulation and establishes the link with the coordinating FDD of the LR-WPAN, according to figure 1.
  • the pulsi-oximeter is another non-invasive device of wide clinical use that monitors the percentage of hemoglobin (Hb) saturated with oxygen.
  • the device for taking said biomedical data like that in the previous cases, it is placed in the patient. It is a light probe (24) hooked to an earlobe or a patient's finger that is connected to a microcontroller (25), such as a FreeScale DSP56F803.
  • P02 can also be used in clinical applications for blood flow measurement.
  • a probe (24) is used that measures the absorption of light at two different wavelengths (650 nm and 805 nm) since light is partially absorbed by hemoglobin in amounts that are a function of oxygen saturation. Calculating these absorptions the microcontroller (25) is able to estimate the percentage of Hb saturated with oxygen.
  • the output of the PO2 sensor consists of two Hb saturation signals (26) and arterial flow (27).
  • the microcontroller (25) is capable of processing very weak input signals (between 0.5mV and 5mV) and working with bandwidths between 0.05 and 100Hz. In the preferred embodiment the selected bandwidth is 100 Hz.
  • the Hb and flow saturation readings once estimated and encoded with 16 bits are sent to a microcontroller (28), such as a Freescale MC13192, configured with reduced functionality or RFD ( Figure 9), so that this device performs the coding channel for radio frequency transmission, DSSS (Direct Sequence Spread Spectrum Spectrum Direct Sequence Spectrum) modulation and establishes the link with the FDD coordinator of the LR-WPAN ( Figure D
  • An anemometer (29) is placed in the artificial respirator tube (30) and connected to a microcontroller (31), such as a FreeScale DSP56F803, which filters the fluctuations of the reading, output amplification and comparison with a threshold of respiratory activity (figure 10).
  • a microcontroller such as a FreeScale DSP56F803 which filters the fluctuations of the reading, output amplification and comparison with a threshold of respiratory activity (figure 10).
  • the system output is calculated through the application of the following conditions on the digital anemometer reading (29):
  • FIG. 10 shows the implementation of the breathing indicator (6) with an anemometer prayed D6F-10A5- 00Q with unidirectional air flow sensor.
  • the indicator is encoded in 8 bits and sent to a microcontroller (34), such as a FreeScale MC13192 configured as RFD ( Figure 10).
  • a microcontroller such as a FreeScale MC13192 configured as RFD ( Figure 10).
  • This device performs the channel coding for radio frequency transmission, DSSS modulation and establishes the link with the coordinating FDD of the LR-WPAN (figure 1)
  • An LR-WPAN is a wireless network that provides connectivity between the different biomedical signal capture systems (7) and the monitoring system coordinator (Gateway) (10).
  • the LR-WPAN (9) coordination integrates the different devices detailed above and intercoms using the IEEE 802.15.4-2003 or IEEE 802.15.4 - 2006 protocol together with the management program for the processing and presentation of timely data.
  • This coordinator - PWD (9) performs the functions of: setting the node indicator of the LR-WPAN, indicator The quality of the radio links with the different devices, indicator of battery consumption, prevents interference from LR-WPANs through interference filtering algorithms (Wiener Filters, CDMA with orthogonal Bark sequences and Digital Certificates).
  • This device can work with both batteries (NiMH or Li-Polymer) and connected to the mains.
  • the System Coordinator (10) provides connectivity to the different LR-WPAN (7) with the health information and monitoring systems. It integrates the different LR-WPAN into the monitoring system and communicates them with the different health information and monitoring systems through two different types of gateways: Ethernet (36) and Bluetooth (37).
  • Ethernet 36)
  • Bluetooth 37
  • PWD LR-WPAN Coordinator
  • Gateway System Coordinator
  • the Monitoring System Coordinator acts as the termination point for the communications of all the LR-WPANs coordinators (9) ( Figure 1 and Figure 17) and in the preferred embodiment it is built using a configured FreeScale MC 13193 microcontroller (35) as FDD (figure 11).
  • Said System Coordinator (10) also performs the following functions: detect and link with new LR-WPANs detected, indicate the quality of the links with the different LR-WPANs, indicate the overall network consumption, avoid interference between LR-WPANs next, assign communication channels for each LR-WPAN, generates the identifiers of the LR-WPAN, which are assigned to each patient and establishes the univocal identification procedures for each LR-WPAN by assigning digital certificates with symmetric key and, by So much for each patient.
  • the patient is authenticated by means of the RADIUS (Remote Authentication Dial-In User Server) protocol Remote Server Authentication for the incoming call of the User) in the hospital systems.
  • RADIUS Remote Authentication Dial-In User Server
  • Remote Server Authentication for the incoming call of the User
  • the Ethernet gateway (36) is connected to the System Coordinator (10) and is responsible for translating IEEE 802.15.4-2003 / 802.15.4- 2006 frames into Ethernet frames. This translation is done with a microcontroller (38) FreeScale DSP56F804 (figure 15) that collects all the data of the LR-WPAN connected to the system coordinator and translates them to the IEEE 802.3 standard. This translation allows integration with most existing networks, including WiFi, WiMax and ADSL since these allow direct connection with Ethernet
  • the Bluetooth gateway (37) is connected to the system coordinator and is responsible for translating IEEE 802.15.4-2003 frames into Bluetooth frames, for the integration of biometric data collection devices that could use this protocol . It is used to perform said translation in the preferred embodiment of the invention, a microcontroller (preferably an LMX 9830) (39) that collects all the frames of the different LR-WPANs and translates them into Bluetooth ( Figure 16). This translation also guarantees the integration of the system for example with a PDA (Personal Data Assistant) or mobile phone for data presentation.
  • PDA Personal Data Assistant
  • the System Coordinator also includes a GSM / GPRS / UMTS mobile communications board for the transmission of biomedical data through the mobile network.
  • the communications module ( Figure 17) connects to the Internet via GSM / GPRS / ÜMTS. Once the connection is made, the System Coordinator establishes an SSL tunnel against hospital systems (extranet / neutral point) also using strong authentication based on the RADIUS protocol.
  • the System Coordinator has a LIFO type memory buffer
  • the Buffer has enough memory to store the collected data within one to three hours.
  • the System Coordinator has a touch screen (figure 7) for the presentation of data, visualization of alarms (of channel broth, full memory and battery), reception of alarms (in the case that in the hospital systems will detect a dangerous situation derived from the reading of the biometric data of the patient) and to force the sending of data to the hospital systems.
  • This operating platform is based on the open source operating system LINUX.
  • the data visualization platform of this sub-system is based on JAVA.
  • This device can work with both batteries (NiMH or Li-Polymer) and connected to the mains.
  • the System Coordinator can integrate with session control platforms to switch between protocols (Ethernet, ADSL,
  • GSM Global System for Mobile communications

Abstract

Sistema de monitorización de pacientes que mediante conexiones inalámbricas incluye para cada paciente dispositivos de toma de datos biomédicos, tales como de electrocardiograma (3), pulsi-oximetro (4), presión arterial (5) e Indicador de respiración (6), formando una red de área personal inalámbrica (7) que agrupa dichos dispositivos con una Coordinación LR-WPAN (9) . Mediante un coordinador (Gateway) (10) de las diferentes LR-WPAN, para proporcionar y visualizar la información y lps datos de monitorización realizada, transmite los mensajes oportunos a los diferentes dispositivos de visualización conectados al sistema o servicios de monitorización hospitalarios.

Description

SISTEMA DE MONITORIZACION DE PACIENTES
CAMPO DE LA INVENCIÓN
La presente invención desarrolla un sistema, incluyendo un dispositivo del tipo Personal Wearable Device (Dispositivo Inalámbrico Personal) y una puerta de enlace, para la monitorización de datos biomédicos de pacientes que son evaluados mediante dispositivos agrupados en red inalámbrica de área personal. En concreto agrupa datos de electro cardiograma, pulsi- oximetria, presión arterial y un indicador de respiración, entre otros. El sistema gestiona dichos datos biomédicos de cada paciente en tiempo real, enlazando con diferentes sistemas y servicios de información mediante una puerta de enlace (Gateway) , de forma que realiza los controles que se parametrizan y ejecuta los avisos oportunos de acuerdo con los mismos, transmitiendo la información pertinente a diferentes tipos de soportes o medios de visualización, gestión e interacción con el sistema.
ANTECEDENTES
Los modernos hospitales y las atenciones y cuidados que hoy dia se requieren de los centros médicos implican la utilización de diferentes medios de monitorización de pacientes. En concreto son habituales la toma de electro cardiograma, pulsi-oximetria y la medida de la presión arterial que, tradicionalmente, son comprobados visualmente con regularidad en los diferentes monitores por el personal médico.
Es conocida la centralización y organización de alguno de dichos dispositivos para los diferentes enfermos, de forma que las variaciones más significativas en los mismos produzcan señales adecuadas que pueda controlar el personal médico al cargo de dicha sala. También son conocidos sistemas de integración de algunos dispositivos de toma de datos biométricos en una red informática adecuada para su control.
La patente europea EP 1433432 de Brainlab AG, desarrolla un sistema que integra varios dispositivos de utilización médica, en que una unidad central de control realizada con un procesador recibe las señales de los diferentes dispositivos y codifica dichas señales a un formato unificado, mientras que otro procesador realiza la codificación de dichas señales para ser utilizada por los diferentes componentes que controlan los instrumentos médicos pertinentes.
Sin embargo, dicho sistema no proporciona un medio adecuado para la monitorización de los datos biomédicos de una pluralidad de pacientes situados en una o distintas habitaciones, ni permite configurar un medio que permita dicha monitorización cuando dichos pacientes son trasladados, ni permite integrar una monitorización descentralizada y distante, dentro del mismo sistema, de dichos pacientes.
Por otra parte son conocidos los medios de establecer la monitorización de algún tipo de dato biomédico e integrarlo en una red inalámbrica, incluso de conectar dicha red a Internet y permitir la evaluación de pacientes situados remotamente pero conectados a dicha red.
Por ejemplo, la patente US2002/0013517 proporciona un sistema de monitorización de pacientes que mediante una red inalámbrica obtiene datos biomédicos de pacientes que disponen de un transmisor inalámbrico de señales acoplado a la toma de control de un nivel biológico personal. Los pacientes pueden ser desplazados por el hospital y diferentes puntos de acceso de la red inalámbrica, de acuerdo a las especificaciones ya conocidas de las redes inalámbricas, captaran las señales de sus transmisores de datos. La patente establece un sistema de inicio y fin de las comunicaciones entre los diferentes puntos que componen la red.
Persiste sin embargo sin resolver la cuestión de establecer un sistema de monitorización de pacientes que integre un conjunto de datos biomédicos particular y los integre en un sistema general. En concreto, persiste la necesidad de establecer un sistema que configure un conjunto personal de datos biomédicos, captados en tiempo real por los oportunos sensores, y que dichas redes de área personal con dichos conjuntos de datos biomédicos participen de un sistema que integre otros análogos de otros pacientes y forme un sistema global de monitorización de pacientes con dicho conjunto de datos de cada individuo. En general, puede afirmarse que es de vital importancia la obtención no únicamente de un dato biométrico de un tipo especial, sino la obtención de un conjunto de dichos datos referidos a cada paciente. La pulsi- oximetria, por ejemplo, podria proporcionar una indicación errónea sobre la respiración del paciente, pero el indicador de respiración de la presente invención permite complementar dicha información y conocer si el paciente respira adecuadamente. Asi, no sólo es útil disponer para cada paciente de la cuaterna de datos biomédicos propuesta por la invención, sino que dicho conjunto de datos es complementario en su interpretación .
Es por ello que uno de los objetos principales de la presente invención es dar solución a uno de los problemas planteados respecto de la monitorización de pacientes en quirófanos y hospitales, especialmente los derivados de la movilización de los pacientes tanto en las fases pre-operatoria, cirugía, como en el postoperatorio, proporcionando monitorización para la cuaterna de datos característica de la presente invención.
Otro de los objetivos y ventajas que se obtienen con el sistema de la presente invención hace referencia al aumento de la calidad y confort de la estancia hospitalarias de los pacientes, siendo otro de los motivos principales de la presente invención extender la cobertura de la monitorización de los pacientes desde instalaciones hospitalarias hasta otras ubicaciones como geriátricos, domicilios particulares, ambulatorios, etc.
BREVE EXPLICACIÓN DE LA INVENCIÓN
El sistema de monitorización de pacientes consta de varios elementos diferenciados que proporcionan flexibilidad al sistema:
- los subsistemas de captura de datos biométricos (ECG, Presión sanguínea, Pulsi-oximetria e indicador de respiración) ;
- interfases de integración entre los diferentes subsistemas de capturas de señales y los elementos que configuran las redes de área personales - módulo coordinador de las redes de área personales
- módulo interfase entre las diferentes redes de área personales y otras redes basadas en protocolos como Ethernet o Bluetooth
- codificación de Electro Cardiogramas (ECG) mediante técnicas de codificación en forma de onda
- indicadores de calidad de canal, detección de energía y niveles de baterías de los dispositivos.
La invención utiliza conexiones inalámbricas entre sus partes, mediante los estándares IEEE 802.15.4-2003 e IEEE 802.15.4 - 2006, que definen el protocolo de comunicación e interconexión de dispositivos via radiofrecuencia en redes de área personal con bajas tasas de transmisión (LR-WPAN - Low Rate Wireless Personal Área Network) . El estándar utiliza CSMA-CA (Carrier Sense Múltiple Acces con Colusión Avoidance - evita colisiones) al igual que el estándar IEEE 802.3 que define Ethernet. IEEE 802.15.4-2003 y 802.15.2-2006 soportan tanto topologías en estrella como punto a punto.
El protocolo seleccionado está altamente indicado para la implementación de este sistema de monitorización debido a la baja variabilidad, desde el punto de vista estadístico, de las diferentes bio-señales que se monitorizan, soportando tasas de transmisión sobre canales de radio de 250Kbps, 40Kbps y 20Kbps, dependiendo de las portadoras/canales disponibles dentro de la banda libre ISM II que se configuren dentro del rango 868/915 Mhz y 2,450 Ghz.
El protocolo utilizado, IEEE 802.15.4-2003 o IEE 802.15.4-2006, permite facilitar la instalación y configuración del sistema por parte del personal sanitario, proporcionando zonas de cobertura de 1Om alrededor del paciente, que permiten su perfecta y continua monitorización, representando un bajo consumo de las baterías utilizadas.
El sistema prevé la utilización de dos tipos diferenciados de dispositivos, que trabajen en modo de funcionalidad completa (FFD) o funcionalidad reducida
(RFD) . Los primeros pueden funcionar de dos formas diferentes dentro de la Red de Área Personal (Personal
Área Network - PAN), tanto como FFD como RFD.
Para una mejor comprensión de la invención, se acompaña de diferentes hojas de dibujos, a título meramente ilustrativo y no limitativo de la misma. BREVE EXPLICACIÓN DE LOS DIBUJOS
La figura 1 muestra una representación de un sistema de monitorización con sólo dos redes de área personal, distinguiendo entre los dispositivos que trabajan en funcionalidad completa y los que lo hacen en funcionalidad reducida.
La figura 2 muestra un diagrama de los componentes del sistema y su rango de utilización
La figura 3 representa una señal ECG, mientras que la figura 4 representa esquemáticamente un circuito de adquisición de datos de Electro Cardiograma (EGC) dentro de la técnica conocida para dicha tarea y utilizando, esencialmente, un microprocesador DSP56F805.
La figura 5 es una representación en diagrama de bloques, dentro de la técnica conocida, del codificador del ECG en el microcontrolador DSP56F805.
La figura 6 representa un módulo que obteniendo las señales de ECG codificadas a través del microcontrolador de la figura anterior, permite su transmisión via inalámbrica al conjunto del sistema de la invención.
La figura 7 es una representación, dentro de la técnica conocida, de un sensor de la presión sanguinea, basado en el microcontrolador DSP56F803.
La figura 8 muestra el módulo interfase entre los datos obtenidos y codificados por el microcontrolador de la figura anterior para su transmisión inalámbrica al conjunto del sistema de la invención.
La figura 9 detalla un dispositivo para la obtención de la pulsi-oximetria. Utiliza un microcontrolador DSP56F803 y un interfase adecuado para la transmisión inalámbrica al conjunto del sistema de los datos obtenidos por dicho dispositivo.
La figura 10 muestra un mecanismo análogo de toma de datos biométricos, esta vez de la respiración del paciente, en que mediante un captador de las mismas se obtienen señales que se codifican y se transmiten mediante el interfase adecuado al conjunto del sistema mediante comunicaciones inalámbricas.
La figura 11 muestra un esquema para coordinación inalámbrica de los diferentes dispositivos que conforman la presente invención para la coordinación de los diferentes dispositivos que conforman una red de área personal. Los datos biomédicos de los diferentes dispositivos que sus interfases propios transmiten de forma inalámbrica son captados por un dispositivo receptor de dichas señales que las transmite al conjunto del sistema, decodificando dichas señales^ cuando corresponde, mediante una puerta de enlace o Gateway.
La figura 12 muestra un decodificador como el mostrado en la figura anterior, referido a las señales ECG.
La figuras 13 y 14 representan diagramas con posibles topologías de uso de la invención, que pueden ser utilizadas conjuntamente o de forma independiente.
La figuras 15 y 16 representan esquemáticamente los Gateways Ethernet y Bluetooth, respectivamente.
La figura 17 muestra una implementación general del sistema identificando el Coordinador de la LR-WPAN (Personal Wearable Device) y el Coordinador del Sistema (Gateway) junto con todos sus componentes.
EXPLICACIÓN DETALLADA DE LA INVENCIÓN
Consiste la presente invención en un sistema inalámbrico de monitorización de pacientes (1) cuyos datos biomédicos (2) son evaluados en tiempo real mediante dispositivos (3,4,5,6) agrupados en una red de área personal (7), y enlazados mediante diferentes servicios hacia receptores de información (8) que los centralizan, los decodifican y los transmiten al conjunto del sistema (D .
Tal como se muestra en la figura 2, el sistema de la presente invención puede subdividirse en diferentes rangos de aplicación: los dispositivos inalámbricos sensores (3, 4, 5, 6) que forman cada red de área personal (7), el conjunto de datos biomédicos personales
(2) integrados en un dispositivo Personal Wearable Device (PWD) , el sistema de control de las diferentes redes de área personal (9) de datos biomédicos y el conjunto del sistema (1) . Analizamos cada uno de dichos niveles en detalle.
Las redes inalámbricas de área personal (LR-WPAN) están diseñadas como sistemas modulares que proporcionan conectividad al conjunto de subsistemas para la captura de las señales biométricas, permitiendo gracias a ello una alta escalabilidad en la configuración del sistema de la invención.
La invención caracteriza diferentes interfases de captura de datos biomédicos: dispositivo ECG- LR-WPAN
(3), dispositivo BP- LR-WPAN (4), dispositivo PO2- LR-
WPAN (5) y Dispositivo indicador de respiración- LR-WPAN (6). Todos estos interfases se integran en un dispositivo del tipo Personal Wearable Device (figura 17) .
ECG- LR-WPAN
El dispositivo o interfase ECG- LR-WPAN (3) proporciona una señal de electro cardiograma, esto es una señal de la actividad eléctrica cardiaca (figura 3) . La captura de un ECG se realiza a través de los potenciales capturados por diversos electrodos (11) (entre 2 y 5 en función de la configuración) emplazados sobre la piel del paciente en diferentes puntos.
Una vez capturada la señal del ECG se envía a un microcontrolador (12) capaz de procesar señales de muy baja amplitud (entre 0,5mV y 5mV) acopladas con una componente de corriente continua. El microcontrolador permite trabajar con el ancho de banda seleccionado para el sistema de monitorización de 100Hz, aunque también pueden seleccionarse otros anchos de banda en función de la aplicación clinica del monitor, como entre el rango 0,5 a 100 Hz.
En la realización preferida de la invención, el microcontrolador (12) utilizado para la monitorización es un Freescale DSP56F805 que se incluye en un dispositivo (3) que puede llevar el paciente consigo (figura 4) . La entrada del microcontrolador convierte la señal analógica del ECG en digital, realizando las operaciones de filtrado de las interferencias derivadas de la actividad muscular, acoplamiento con otras fuentes eléctricas y de los electrodos.
Por ejemplo, puede ser utilizado un filtro FIR digital Paso-Banda (14) con una frecuencia de corte en 0,05 Hz y 100Hz. También se utiliza un Filtro Digital Causal de Wiener (15) de orden 10 para cancelar la interferencia de otras fuentes eléctricas a 50Hz.
Una vez digitalizada y filtrada, la señal ECG es enviada al Interfase Periférico Serie (SPI) (13) del microcontrolador (12) para ser enviada al codificador en forma de onda ECG (figura 5) . Esta codificación optimiza el tráfico para trabajar con paquetes de 132 bits, el máximo permitido por el estándar IEEE 802.15.4-2003.
La codificación de canal de la señal obtenida para su transmisión inalámbrica puede ser realizada con un codificador de canal (16), por ejemplo un FreeScale MC13192, configurado como RFD, esto es para trabajar como dispositivo de funcionalidad reducida. Esta codificación se realiza mediante modulación DSSS (Direct Sequence Spread Spectrum - Ampliación del Espectro por Secuencia Directa) y configura el enlace inalámbrico con el coordinador FDD de la LR-WPAN (figura 1) .
BP- LR-WPAN
En la captura de la presión arterial se utiliza un sensor Holter (18) emplazado en otro dispositivo que lleva el paciente consigo. Este dispositivo utilizado por la mayoría de aplicaciones clínicas, utiliza un algoritmo oscilométrico para la estimación de la presión arterial, y es un mecanismo no intrusivo. La lectura de la presión sanguínea se realiza a través de un toro hinchable (17) emplazado alrededor del brazo izquierdo del paciente de manera que los vasos quedan comprimidos al hinchar el toro.
La lectura de la presión arterial sistólica, diastólica y media (SBP, DBP y MAP respectivamente) se leen en el punto donde está amplazado el sensor Holter.
Los datos biomédicos obtenidos por el sensor Holter (18) de lectura de SBP, DBP y MAP son enviados a un microcontrolador (19) Freescale DSP56F803. La salida digital de dicho microcontrolador se separa en dos caminos, uno para realizar su lectura, otro para filtrar las fluctuaciones sobre la lectura derivadas de la presión interna del toro (17) . La salida de señal digitalizada corresponde en realidad a dos señales que en un intervalo de tiempo se corresponden con la oscilación de la presión arterial
(20) y la otra a la presión interna del toro -CP- (21) . Ambas señales tienen oscilaciones en torno a IHz y 0,04
Hz, respectivamente. Por tanto, para filtrar la señal CB de oscilación de presión arterial (20) y eliminar el componente CP (21) de presión interna del toro, hay emplazado en el microcontrolador un filtro digital FIR paso-alto (22) con una frecuencia de corte de 0,04 Hz. Este procesado para eliminar la componente CP en CB permite obtener dos señales con una oscilación constante para realizar las comparaciones necesarias y obtener una referencia correcta para el cálculo de la SBP, DBP y MAP reales.
La figura 7 muestra las entradas y salidas del microcontrolador (19). Las señales obtenidas SBP, DBP y MAP ya reales, son codificadas a 16 bits quedando listas para su transmisión y ser enviadas a un microcontrolador (23) FreeScale MC13192 configurado como RFD (figura 8) . Este dispositivo realiza la codificación de canal para la transmisión via radiofrecuencia, la modulación DSSS y establece el enlace con el FDD coordinador de la LR- WPAN, de acuerdo a la figura 1.
P02-LR-WPAN
El pulsi-oximetro (PO2) es otro dispositivo no invasivo de amplia utilización clínica que monitoriza el porcentaje de hemoglobina (Hb) saturada con oxigeno. El dispositivo de toma de dicho dato biomédico, al igual que en los casos anteriores, está colocado en el paciente. Se trata de una sonda luminosa (24) enganchada a un lóbulo de la oreja o a un dedo del paciente que está conectada a un microcontrolador (25) , tal como un FreeScale DSP56F803.
El P02 puede ser utilizado también en aplicaciones clínicas para la medición del flujo sanguíneo.
Se utiliza una sonda (24) que mide la absorción de la luz a dos longitudes de onda diferentes (650 nm y 805 nm) ya que la luz es parcialmente absorbida por la hemoglobina en unas cantidades que están en función de la saturación de oxigeno. Calculando estas absorciones el microcontrolador (25) es capaz de estimar el porcentaje de Hb saturada con oxigeno.
Cabe destacar que un PO2 no da ninguna indicación sobre la ventilación de un paciente, sólo su nivel de oxigeno en sangre y, por lo tanto, podrían darse errores de lectura atendiendo a que un alto nivel de Hb saturada con oxigeno no quiere decir que el paciente esté respirando con normalidad. En la presente invención este problema se soluciona con el monitor de respiración.
La salida del sensor PO2 consta de dos señales de saturación de Hb (26) y flujo arterial (27) . El microcontrolador (25) es capaz de procesar señales de entrada muy débiles (entre 0,5mV y 5 mV) y de trabajar con anchos de banda entre 0,05 y 100 Hz. En la realización preferente el ancho de banda seleccionado es de 100 Hz. Las lecturas de saturación de Hb y flujo una vez estimadas y codificadas con 16 bits son enviadas a un microcontrolador (28) , tal como un Freescale MC13192, configurado de funcionalidad reducida o RFD (figura 9) , de forma que este dispositivo realiza la codificación de canal para la transmisión de radiofrecuencia, la modulación DSSS (Direct Sequence Spread Spectrum Espectro Ensanchado por Secuencia Directa) y establece el enlace con el coordinador FDD de la LR-WPAN (figura D
Indicador de respiración - LR-WPAN
En determinadas aplicaciones clinicas, además de monitorizar ECG (3), BP (4) y PO2 (5), es necesario validar si el paciente está ventilado o no. En el sistema de la presente invención ello se realiza con un indicador "SI o NO" que proporciona dicha información.
Se emplaza un anemómetro (29) en el tubo del respirador artificial (30) y se conecta con un microcontrolador (31) , tal como un FreeScale DSP56F803, que realiza el filtrado de las fluctuaciones de la lectura, la amplificación de salida y la comparación con un umbral de actividad respiratoria (figura 10) . La salida del sistema se calcula a través de la aplicación de las siguientes condiciones sobre la lectura del anemómetro digital (29) :
- S(n) > Th —> Si
- S(n) < Th --> No Donde S(n) es la salida del anemómetro (32) y Th es el umbral de respiración (33) seleccionado. En la realización preferente de la invención, dicho umbral (33) ha sido establecido a IV (que corresponde a una presión de 0,5kPa) La figura 10 muestra la implementación del indicador de respiración (6) con un anemómetro Oraron D6F-10A5-00Q con sensor unidireccional de flujo de aire.
Una vez determinado el indicador, se codifica en 8 bits y se envia a un microcontrolador (34) , tal como un FreeScale MC13192 configurado como RFD (figura 10) . Dicho dispositivo realiza la codificación de canal para la transmisión via radio frecuencia, la modulación DSSS y establece el enlace con el FDD coordinador de la LR- WPAN (figura 1)
Coordinación LR-WPAN (Personal Wearable Device)
Una LR-WPAN es una red inalámbrica que provee conectividad entre los diferentes sistemas de captura de señales biomédicas (7) y el coordinador del sistema de monitorización (Gateway) (10) . La coordinación LR-WPAN (9) integra los diferentes dispositivos detallados con anterioridad y los intercomunica utilizando el protocolo IEEE 802.15.4-2003 o IEEE 802.15.4 - 2006 junto con el programa de gestión para el procesado y presentación de datos oportuno.
Dicho coordinador - PWD (9) realiza las funciones de: establecer el indicador de nodo de la LR-WPAN, indicador de la calidad de los enlaces de radio con los diferentes dispositivos, indicador del consumo de baterías, evita las interferencias de LR-WPANs mediante algoritmos de filtrado de interferencias (Filtros de Wiener, CDMA con secuencias de Bark Ortogonales y Certificados Digitales) .
Este dispositivo (Gateway) puede funcionar tanto con baterías (NiMH o Li-Polymer) como conectado a la red eléctrica.
La Coordinación del Sistema de Monitorización (Gateway)
El Coordinador del sistema (10) provee de conectividad a las diferentes LR-WPAN (7) con los sistemas de información y monitorización sanitarios. Integra las diferentes LR-WPAN en el sistema de monitorización y las comunica con los diferentes sistemas de información y monitorización sanitarios a través de dos tipos diferentes de pasarelas: Ethernet (36) y Bluetooth (37). En la implementación más simple del sistema (para un paciente) siempre habrá un Coordinador de LR-WPAN (PWD) y un Coordinador del Sistema (Gateway) .
El Coordinador del sistema de monitorización actúa como punto de finalización de las comunicaciones de todos los coordinadores de las LR-WPANs (9) (figura 1 y figura 17) y en la realización predilecta está construido mediante un microcontrolador (35) FreeScale MC 13193 configurado como FDD (figura 11) . Dicho Coordinador del sistema (10) realiza además las funciones siguientes: detectar y enlazar con nuevas LR- WPANs detectadas, indicar la calidad de los enlaces con las diferentes LR-WPANs, indicar el consumo general de la red, evitar interferencias entre LR-WPANs contiguas, asignar canales de comunicación para cada LR-WPAN, genera los identificadores de las LR-WPAN, que se asignan a cada paciente y establece los procedimientos de identificación univoca para cada LR-WPAN mediante la asignación certificados digitales con clave simétrica y, por lo tanto para cada paciente.
Una vez identificado el paciente y asignados los certificados digitales con cada PWD, se procede a la autenticación fuerte del paciente mediante el protocolo RADIUS (Remote Authentication Dial-In User Server Autenticación Remota del Servidor para llamada entrante del Usuario) en los sistemas hospitalarios. Este indicador para cada paciente lo identifica de forma univoca . con su correspondiente número de historia clinica.
La pasarela Ethernet (36) está conectada con el Coordinador del sistema (10) y está encargada de la traducción de las tramas IEEE 802.15.4-2003 / 802.15.4- 2006 en tramas Ethernet. Dicha traducción se realiza con un microcontrolador (38) FreeScale DSP56F804 (figura 15) que recoge todos los datos de las LR-WPAN conectadas al coordinador del sistema y las traduce al estándar IEEE 802.3. Esta traducción permite la integración con la mayoria de redes existentes, incluyendo WiFi, WiMax y ADSL ya que éstas permiten conectar directamente con Ethernet .
La pasarela (gateway) Bluetooth (37) está conectada al coordinador del sistema y es la encargada de la traducción de las tramas IEEE 802.15.4-2003 en tramas Bluetooth, para la integración de dispositivos de toma de datos biométricos que pudieran utilizar este protocolo. Se utiliza para realizar dicha traducción en la realización preferente de la invención, un microcontrolador (preferiblemente un LMX 9830) (39) que recoge todas las tramas de las diferentes LR-WPANs y las traduce a Bluetooth (figura 16) . Esta traducción, también garantiza la integración del sistema por ejemplo con un PDA (Personal Data Assistant - Asistente de Datos Personal) o teléfono móvil para presentación de datos.
A parte de las pasarelas indicadas anteriormente, el Coordinador del Sistema (Gateway) también incluye una placa GSM/GPRS/UMTS de comunicaciones móviles para la transmisión de datos biomédicos a través de la red móvil. En el campo de la presente invención, el módulo de comunicaciones (figura 17) conecta a Internet via GSM/GPRS/ÜMTS. Una vez realizada la conexión, el Coordinador del Sistema establece un túnel SSL contra los sistemas hospitalarios (extranet / punto neutro) utilizando también autenticación fuerte basada en el protocolo RADIUS.
En el caso de calda de un enlace, el Coordinador del Sistema dispone de un buffer de memoria de tipo LIFO
(Last In First Out - Ultimo en entrar, primero en salir) para almacenar los datos capturados y reenviarlos tanto de forma automática como manual a los sistemas hospitalarios. En la implementación preferida de este sistema, el Buffer tiene memoria suficiente para almacenar los datos recogidos en el lapso de una a tres horas.
Finalmente, el Coordinador del Sistema (Gateway) dispone de una pantalla táctil (figura 7) para la presentación de datos, visualización de alarmas (de calda de canal, memoria llena y batería) , recepción de alarmas (en el caso de que en los sistemas hospitalarios se detecte una situación peligrosa derivada de la lectura de los datos biométricos del paciente) y para forzar el envió de datos hacia los sistemas hospitalarios. Esta plataforma de operación está basada en el sistema operativo de código abierto LINUX. La plataforma de visualización de datos de este sub-sistema está basada en JAVA.
Este dispositivo (Gateway) puede funcionar tanto con baterías (NiMH o Li-Polymer) como conectado a la red eléctrica. Finalmente, el Coordinador del Sistema puede integrarse con plataformas de control de sesión para conmutar entre protocolos (Ethernet, ADSL,
GSM/GPRS/UMTS) con la finalidad de disminuir los costes de transmisión.
Se sobreentiende que en el presente pueden variar cuantos detalles no alteren o modifiquen el contenido esencial de la invención.

Claims

REIVINDICACIONES
1.- SISTEMA DE MÓNITORIZACION DE PACIENTES,
CARACTERIZADO por - utilizar conexiones inalámbricas mediante cualquier protocolo conveniente, tal como el protocolo IEEE
802.15.4-2003 o IEEE 802.15.4 - 2006 para el establecimiento de LR-WPAN (Redes Inalámbricas de Área
Personal con Baja Tasa de transmisión) . - incluir para cada paciente dispositivos de toma de datos biomédicos de electrocardiograma -ECG- (3) , pulsi- oximetro -PO2- (4) , presión arterial -BP- (5) e
Indicador de respiración -IR- (6) en que está formada una red de área personal inalámbrica (7) que agrupa dichos dispositivos de toma de datos biométricos (3,4,5,6) con una Coordinación (PWD
- Dispositivo inalámbrico personal) (9) de Redes de Área Personal Inalámbrica de baja tasa de transmisión (LR- WPAN), dicha Coordinación LR-WPAN (9) estableciendo un indicador de nodo para el Sistema, indicando la calidad de las señales de radio para los enlaces de los diferentes dispositivos (3,4,5,6), estableciendo medios de filtrado de interferencias respecto de otras LR-WPAN contiguas, e indicando el consumo de las baterias de cada dispositivo.
- un coordinador (Gateway) (10) de las diferentes LR- WPAN para proporcionar y visualizar la información y los datos de monitorización realizada, transmitiendo los mensajes oportunos a los diferentes dispositivos de visualización conectados al sistema o servicios de monitorización.
2.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicación anterior, CARACTERIZADO porque permite, entre otras, la lectura de ECG, BP y P02 de forma remota desde las instalaciones hospitalarias.
3.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicaciones anteriores, CARACTERIZADO porque dicho dispositivo de ECG (3) mediante una pluralidad de electrodos (11) captura la actividad eléctrica cardiaca cuya señal es enviada a un microcontrolador (12), tal como un FreeScale DSP56F805, que digitaliza la señal, filtra las interferencias derivadas de la actividad muscular y de acoplamiento con otras fuentes eléctricas de dichos electrodos (11) , y envia dicha señal digitalizada y filtrada a un Interfase Periférico Serie -SPI- (13) de dicho microcontrolador (12) para su envió utilizando codificación y compresión en forma de onda.
4.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicación anterior, CARACTERIZADO porque se obtiene una codificación de canal para la transmisión en radio frecuencia de la señal de salida de dicho microcontrolador (12) por medio de un microcontrolador
(16) codificador de canal y fuente (empleando técnicas de codificación en forma de onda) , tal como un FreeScale
MC13192, mediante modulación DSSS (Ampliación del
Espectro por Secuencia Directa con secuencias de Bark
Ortogonales) que configura el enlace inalámbrico con dicho coordinador de la LR-WPAN (7) .
5.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones 3, 4 y 5, CARACTERIZADO porque el filtrado de la señal de dicho microcontrolador (12) se realiza mediante un filtro FIR digital Paso-Banda (14) con una frecuencia de corte entre 0,05 Hz y 100Hz.
6.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones 3 a 5, CARACTERIZADO porque el filtrado de la señal de dicho microcontrolador (12) se realiza adicionalmente mediante un filtro digital causal de Wiener (15) de orden 10, cancelador de interferencias de fuentes eléctricas a 50Hz.
7.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicación 1 y 2, CARACTERIZADO porque dicho dispositivo de BP (4) utiliza un toro hinchable (17) que recoge datos de la presión arterial sistólica -SBP-, diastólica -DBP- y media -MAP- por medio de un sensor (18) tipo Holter utilizando calibración por diversidad de caminos .
8.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicación anterior, CARACTERIZADO porque dichos datos tomados mediante dicho sensor (18) son utilizados por un microcontrolador (19), por ejemplo un FreeScale DSP56F803 produciendo una señal de oscilación de la presión arterial -CB- (20) y otra -CP- (21) de presión interna de dicho toro (17) .
9.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones 7 y 8, CARACTERIZADO porque se obtiene una codificación de canal para la transmisión en radio frecuencia de la señal de salida de dicho microcontrolador (19) por medio de un microcontrolador (23) codificador de canal, tal como un FreeScale
MC13192, mediante modulación DSSS (Secuencia directa de emisión de espectro y secuencias de Bark Ortogonales) que configura el enlace inalámbrico con dicho coordinador de la LR-WPAN (7) .
10.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones 7 a 9, CARACTERIZADO porque se utiliza un filtro digital FIR paso-alto (22) con una frecuencia de corte de 0,04 Hz.
11.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones 1 y 2, CARACTERIZADO porque dicho dispositivo de PO2 (5) utiliza una sonda luminosa (24) cuyas absorciones son codificadas por un microcontrolador (25), tal como por ejemplo un FreeScale DSP56F803, resultando una señal de saturación de Hb - hemoglobina- (26) y otra señal de flujo arterial (27) .
12.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicación anterior, CARACTERIZADO porque se obtiene una codificación de canal para la transmisión en radio frecuencia de la señal de salida de dicho microcontrolador (25) por medio de un microcontrolador (28) codificador de canal, tal como un FreeScale MC13192, mediante modulación DSSS (Secuencia directa de emisión de espectro y secuencias de Bark Ortogonales) que configura el enlace inalámbrico con dicho coordinador de la LR-WPAN (7) .
13.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicaciones 11 y 12, CARACTERIZADO porque dicho microcontrolador (25) trabaja a un ancho de banda seleccionado de 100 Hz.
14.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones 1 y 2, CARACTERIZADO porque dicho dispositivo de Indicador de Respiración (6) utiliza un anemómetro (29) conectado a un tubo de respiración artificial (30) cuya señal es codificada por un microcontrolador (31) , tal como un FreeScale DSP56F803, cuya señal de salida -S(n)-(32) es comparada con una señal umbral -Th- (33) para obtener un valor lógico de
Sí o No como resultado de dicho indicador de respiración
(6)
15.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicación anterior, CARACTERIZADO porque se obtiene una codificación de canal para la transmisión en radio frecuencia de la señal de salida de dicho microcontrolador (31) por medio de un microcontrolador (34) codificador de canal, tal como un FreeScale MC13192, mediante modulación DSSS (Secuencia directa de emisión de espectro con secuencias de Bark Ortogonales) que configura el enlace inalámbrico con dicho coordinador de la LR-WPAN (7) .
16.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones 14 y 15, CARACTERIZADO porque dicho Umbral de respiración -Th- (33) ha sido establecido en 1 V, que corresponde a una presión de 0,5 KPa.
17.- SISTEMA DE MONITORIZACION DE PACIENTES, según cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque se incluye una pasarela Ethernet
(36) que traduce las tramas IEEE 802.15.4-2003 o IEEE
802.15.4-2006 en tramas Ethernet mediante un microcontrolador (38), tal como un FreeScale DSP56F804, que recoge todos los datos de todas las LR-WPANs (7) conectadas y las traduce al estándar IEEE 802.3
18.- SISTEMA DE MONITORIZACION DE PACIENTES, según cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque se incluye una pasarela Bluetooth, para la integración en el sistema tanto dispositivos que utilicen dicho protocolo como PDAs para la presentación de datos, (37) que traduce las tramas IEEE 802.15.4-2003 o 802.15.4-2006 en tramas Bluetooth, mediante un microcontrolador (39), tal como un FreeScale MC9328MX1, que recoge todos los datos de todas las LR-WPANs (7) y las traduce a Bluetooth.
19.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque dicha
Coordinación del Sistema de Monitorización (10) que integra las diferentes LR-WPANs (7) en el sistema y las comunica con los diferentes sistemas de información y monitorización sanitarios, está construido mediante un microcontrolador (35), tal como un FreeScale MC 13193, que detecta y enlaza con nuevas LR-WPAN detectadas, indica la calidad de los enlaces con las distintas LR-
WPAN, indica el consumo general de la red, evita interferencias con LR-WPAN contiguas, asigna canales de comunicación para cada LR-WPAN, genera los identificadores de las LR-WPAN que se asigna a cada paciente.
20.- SISTEMA DE MONITORIZACION DE PACIENTES, según cualquiera de las reivindicaciones anteriores, CARACTERIZADO porque cualquier alarma sobre los parámetros anteriores utiliza un código semafórico.
21.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque cuando sólo existe una LR-WPAN, siempre existe un controlador de LR-WPAN (PWD) (9) y un Coordinador del Sistema de Monitorización (Gateway) (10) .
22.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque pueden realizarse diferentes construcciones en que sólo se utilicen uno o varios de los dispositivos de captación de datos biomédicos (3, 4, 5, 6) en alguno o varios pacientes .
23.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque las conexiones de los diferentes dispositivos de captación de datos biométricos (3, 4, 5, 6) se conectan al Coordinador de la LR-WPAN(PWD) mediante puertos Serie (RS232) o USB.
24.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque el coordinador de LR-WPAN integra cuatro RFD (Dispositivos de Funcionalidad Reducida) .
25,- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque el coordinador de LR-WPAN se conecta mediante el protocolo 802.15.4 - 2003 / 802.15.4 - 2006 con el Coordinador del Sistema (Gateway) .
26.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque el Coordinador del Sistema utiliza certificados digitales simétricos para la identificación de todos los dispositivos conectados a una LR-WPAN.
27.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque identifica de forma única cada paciente y lo autentica de forma fuerte contra los sistemas hospitalarios utilizando el protocolo RADIUS (Autenticación Remota del Servidor para llamada entrante del Usuario) .
28.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque el identificador de cada paciente es su número de historia clínica.
29.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque en el caso de utilizar conexiones a través de Internet (via GSM/GPRS/UMTS o ADSL) , utiliza el protocolo de intercambio seguro en Internet SSL.
30.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque los túneles SSL anteriores se finalizan en la extranet o punto neutro de la red hospitalaria.
31.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque el dispositivo Gateway Coordinador del Sistema, está configurado con un buffer del tipo LIFO (pila de Ultimo en entrar es el Primero en salir) para almacenar entre una y tres horas de datos biométricos y reenviarlos en caso de producirse cualquier fallo de conexión.
32.- SISTEMA DE MONITORIZACION DE PACIENTES, según la reivindicación anterior, CARACTERIZADO porque el reenvió de datos puede realizarse de forma automática o manual.
33.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque el dispositivo Gateway Coordinador del Sistema puede recibir alarmas basadas en códigos semafóricos desde los sistemas hospitalarios.
34.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque el Gateway de Coordinación del Sistema posee una pantalla táctil para la presentación de datos y la operación general del sistema de monitorización.
35.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque utiliza la red GSM/GPRS/UMTS cuando el paciente se encuentra fuera de su casa o de las instalaciones hospitalarias.
36.- SISTEMA DE MONITORIZACION DE PACIENTES, según las reivindicaciones anteriores, CARACTERIZADO porque puede integrarse con sistemas de control de sesión y conmutar entre todos los protocolos (Ethernet, ADSL, GSM/GPRS/UMTS) para disminuir los costes de transmisión.
PCT/ES2006/000664 2005-11-30 2006-11-29 Sistema de monitorización de pacientes WO2007063157A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200502956A ES2276616B1 (es) 2005-11-30 2005-11-30 Sistema de monitorizacion de pacientes.
ESP200502956 2005-11-30

Publications (2)

Publication Number Publication Date
WO2007063157A2 true WO2007063157A2 (es) 2007-06-07
WO2007063157A3 WO2007063157A3 (es) 2007-07-19

Family

ID=37996379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000664 WO2007063157A2 (es) 2005-11-30 2006-11-29 Sistema de monitorización de pacientes

Country Status (2)

Country Link
ES (1) ES2276616B1 (es)
WO (1) WO2007063157A2 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211693A1 (en) * 2007-10-26 2010-08-04 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US10360787B2 (en) 2016-05-05 2019-07-23 Hill-Rom Services, Inc. Discriminating patient care communications system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919141A (en) * 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US20020013517A1 (en) * 2000-05-19 2002-01-31 West Kenneth G. Patient monitoring system
WO2004084720A2 (en) * 2003-03-21 2004-10-07 Welch Allyn, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
GB2409951A (en) * 2004-01-08 2005-07-13 Remote Diagnostic Technologies Wireless local area network of medical sensors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010027384A1 (en) * 2000-03-01 2001-10-04 Schulze Arthur E. Wireless internet bio-telemetry monitoring system and method
US7261690B2 (en) * 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
DE60134706D1 (de) * 2000-10-12 2008-08-21 Ge Med Sys Information Tech Mobiles klinisches Informationssystem
EP1356762A1 (de) * 2002-04-22 2003-10-29 UbiCom Gesellschaft für Telekommunikation mbH Geräteanordnung zur Fernüberwachung von Körperfunktionen
US20040235468A1 (en) * 2003-05-19 2004-11-25 Luebke Charles J. Wireless network clustering communication system, wireless communication network, and access port for same
WO2005050523A2 (en) * 2003-11-13 2005-06-02 Draeger Medical Systems, Inc A processing device and display system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919141A (en) * 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US20020013517A1 (en) * 2000-05-19 2002-01-31 West Kenneth G. Patient monitoring system
WO2004084720A2 (en) * 2003-03-21 2004-10-07 Welch Allyn, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
GB2409951A (en) * 2004-01-08 2005-07-13 Remote Diagnostic Technologies Wireless local area network of medical sensors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2211693A1 (en) * 2007-10-26 2010-08-04 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
EP2211693A4 (en) * 2007-10-26 2013-08-21 Hill Rom Services Inc SYSTEM AND METHOD FOR COLLECTING AND COMMUNICATING DATA FROM MULTIPLE PATIENT CARE DEVICES
US8756078B2 (en) 2007-10-26 2014-06-17 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US9734293B2 (en) 2007-10-26 2017-08-15 Hill-Rom Services, Inc. System and method for association of patient care devices to a patient
US11031130B2 (en) 2007-10-26 2021-06-08 Hill-Rom Services, Inc. Patient support apparatus having data collection and communication capability
US10360787B2 (en) 2016-05-05 2019-07-23 Hill-Rom Services, Inc. Discriminating patient care communications system
US11791055B2 (en) 2016-05-05 2023-10-17 Hill-Rom Services, Inc. Discriminating patient care communications system

Also Published As

Publication number Publication date
WO2007063157A3 (es) 2007-07-19
ES2276616B1 (es) 2008-06-16
ES2276616A1 (es) 2007-06-16

Similar Documents

Publication Publication Date Title
US11918353B2 (en) Wireless patient monitoring device
US11963736B2 (en) Wireless patient monitoring system
US20230329649A1 (en) Patient position detection system
US10342438B2 (en) Body-worn vital sign monitor
US7387607B2 (en) Wireless medical sensor system
Shnayder et al. Sensor networks for medical care
ES2295158T3 (es) Sistema inalambrico de electrodos programables para monitorizacion medica.
Monton et al. Body area network for wireless patient monitoring
Fensli et al. A wearable ECG-recording system for continuous arrhythmia monitoring in a wireless tele-home-care situation
US8527038B2 (en) Body-worn vital sign monitor
US20110040197A1 (en) Wireless patient monitoring system
US20110066050A1 (en) Body-worn vital sign monitor
US20110066051A1 (en) Body-worn vital sign monitor
US20100305412A1 (en) Device and system for wireless monitoring of the vital signs of patients
CN101371801A (zh) 基于ZigBee的病房无线监护系统
ES2276616B1 (es) Sistema de monitorizacion de pacientes.
CN103190888B (zh) 多参数遥测监护系统
CN105011920A (zh) 一种基于gsm的医疗监控系统
WO2017089986A1 (es) Monitor de signos vitales vestible con interconexión
CN204723055U (zh) 远程无线多功能监护仪系统
CN204723189U (zh) 基于3g网络的多功能监护仪系统
ITPI20070134A1 (it) Sistema per il monitoraggio di segnali vitali attraverso una rete di sensori wireless riprogrammabili
Fernández-López Remote vital signs monitoring based on wireless sensor networks
CN104856671A (zh) 远程多功能监护仪系统
CN104856769A (zh) 无线多功能监护仪系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06841716

Country of ref document: EP

Kind code of ref document: A2