WO2007061128A1 - Method for enzymatic modification of n-terminus of protein - Google Patents

Method for enzymatic modification of n-terminus of protein Download PDF

Info

Publication number
WO2007061128A1
WO2007061128A1 PCT/JP2006/323879 JP2006323879W WO2007061128A1 WO 2007061128 A1 WO2007061128 A1 WO 2007061128A1 JP 2006323879 W JP2006323879 W JP 2006323879W WO 2007061128 A1 WO2007061128 A1 WO 2007061128A1
Authority
WO
WIPO (PCT)
Prior art keywords
phers
modified
trna
protein
mutant
Prior art date
Application number
PCT/JP2006/323879
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Nishikawa
Takashi Yokogawa
Satoshi Ohno
Original Assignee
Gifu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University filed Critical Gifu University
Priority to JP2007546539A priority Critical patent/JP5061351B2/en
Publication of WO2007061128A1 publication Critical patent/WO2007061128A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • the present invention relates to the technical field of protein modification or modification. Furthermore, the present invention relates to a technique for modifying or labeling the N-terminal of a protein, and a technique for giving a mutation to the N-terminal of a protein.
  • a label is introduced at any position in the peptide chain using amber suppression as a technique for site-specific labeling of the protein to amino acids in the protein during synthesis.
  • a technique for C-terminal labeling (modification) as a technique for introducing a label into the C-terminus of the peptide chain using a puromycin derivative, or as an N-terminal labeling (modification) method, c-amino group-modified initiation meth
  • a method for introducing a label into the N-terminus of a peptide chain using a yun is known.
  • Patent Document 1 U.S. Pat.No. 6210941 Methods for the detection and isolation of proteins
  • Patent Document 2 US Patent No. 6303337 N-terminal and C-terminal markers in nascent proteins
  • Patent Document 3 US Patent No. 6306628 Methods for the detect in, analysis and i solat ion of nascent prote ins
  • Non-Patent Literature 3 Kudl icki W et al. (1994) J. Mol. Biol., 244, 319-331 Chaperone-dependent folding and activat ion of ribosome-bound nascent rhodanese. Analysi s by f luorescence.
  • Non-Patent Document 4 Tsalkova T., et al. (1998) J. Mol. Biol., 278, 713-723. Different conformat ions of nascent peptides on rinosomes.
  • Non-Patent Document 5 Mcintosh B., et al., (2000) Biochimie, 82, 167-174 Initiation of protein synthesis with th luorphore- et-tRNA (f) and the involvement of IF-2
  • Non-Patent Document 6 Ramachandiran V. Et al., (2000) J. Biol. Chem., 275, 1781-1786 r luorphores at the N-terminus of nascent chloramphenicol acethyl transferase pept ides affect translat ion and movement through the ribosorae. Disclosure
  • the conventional method is exclusively used as a separation marker for further analysis of proteins prepared by genetic recombination, and does not attempt to supply a large amount of protein modified with amino acids. Furthermore, when the N-terminus is labeled by the conventional method, since the E. coli S30 extract is used, the starting tRNA is also present in the reaction solution, so the labeling efficiency (labeled out of the synthesized protein) The ratio of the proteins that were produced was extremely low, and there was a problem that it was impossible to obtain a large amount of labeled proteins.
  • Non-Patent Document 3 Even if the start tRNA present in the translation reaction system is removed or the start codon described in Non-Patent Document 3 is mutated to an amber codon and a suppressor tRNA is used, the appearance rate of the modified protein itself is not Even if it improves, the reaction system becomes large-scale Since this is uneconomical, it was considered difficult to economically supply a large amount of a modified protein or labeled protein having an unnatural amino acid (modified amino acid) at the N-terminus.
  • the first object of the present invention is to provide a large amount of N-terminal modified proteins.
  • a modified phenylalanin (PheRS) modified mutant phenylalanin (PheRS) may be referred to as a mutant phenylalanine tRNA synthetase (PheRS). It is used to bind to tRNA phe to prepare modified phenylalanyl tRNA Phe . Therefore, leucyl / phenylalanyl-tRNA-protein transferase (hereinafter referred to as LFPT) has the ability to add Phe from phenylalanyl tRNA Phe to proteins with arginine or lysine at the N-terminus.
  • LFPT leucyl / phenylalanyl-tRNA-protein transferase
  • the present invention relates to a method for modifying the N-terminus of a protein using LFPT and modified phenylalanyl tRNA phe .
  • the present invention relates to a protein having an arginine or lysine at the N-terminus, a leucine / phenylanil-tRNA protein transferase (LFPT) having the ability to add leucine or phenylalanin to the terminus.
  • LFPT leucine / phenylanil-tRNA protein transferase
  • the present invention is designed to reduce the N-terminal by degrading any protein.
  • a method for preparing a protein having a modified phenylalanine is included.
  • the present invention prepares a protein in which arginine or lysine is added to the N-terminal side of an arbitrary protein, and in the same manner as described above, LFPT is used to convert the modified phenylalanine from the modified phenylalanyl tRNA Phe to N. Including a method of preparing a protein having phenylalanin modified at the N-terminus by addition to terminal arginyl or lysine.
  • Figure 1 shows confirmation of LFPT gene amplification after PCR: After 1% agarose gel electrophoresis, the gel was stained with ethidium bromide. M indicates a marker, and lane 1 is the result of running the PCR product. Lane 1. An amplified band is seen near the arrow in Fig. 1 (about 700 bp), confirming the increase in the target LFPT gene (705 bp).
  • the markers are 10, 8, 6, 5, 4, 3.5, 3, 3, 2.5, 2, 1.5, 1, 0.5 kbp from the top.
  • Figure 2 shows the restriction enzyme treatment for LFPT gene confirmation after mini-prep:
  • the recovered plasmid was cleaved with the restriction enzyme used for introduction. After 1% agarose gel electrophoresis, the gel was stained with ethidium bromide. M represents a marker, and the plasmid restriction enzyme-treated reaction solution collected in lanes 1 to 4 was flowed. Near the arrow (approx. 700 bp) Since the band derived from the target LFPT gene was confirmed, introduction of the target gene was confirmed.
  • the markers are 10, 8, 6, 5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5 kbp from the top.
  • the # 3 plasmid solution showed the most clear band and was used for transformation.
  • Fig. 3 shows LFPT expression and purification in ER2566 strain: ER2566 strain was transformed and expressed. After crushing, purification was performed with Ni-NTA agarose. 15% of each sample during purification Analyzed by SDS PAGE. M indicates a protein marker, and 97.4, 66. 2, 42. 4, 30, 20 kDa from the top. Lane 1 is the insoluble fraction, lane 2 is the S30 fraction, lane 3 is the fraction that did not bind to the Ni-NTA agarose resin, lane 4 is the resin wash fraction, and lane 5 is the fraction required. Since a band that seems to be LFPT (about 27 kDa) can be confirmed in lane 1, most of it seems to be in the insoluble fraction. However, in lane 5, a band thought to be LFPT (about 27 kDa) was confirmed, and a part of the expressed LFPT is present in the soluble fraction and is thought to have a histidine tag.
  • the markers are 97.4, 66.2, 42.4, 30.0, 20.0 kDa from the top.
  • Fig. 4 shows confirmation of LFPT aminoamino acid transfer reaction using RI:
  • the amino acid tRNA was prepared in the same reaction system using the radioactive amino acid [ 14 C] phenylalanine. Transfer to the acceptor protein was measured. After the reaction, they were separated by 15% SDS PAGE and visualized using an imaging plate. M represents a protein molecular weight marker.
  • C shows the results when ⁇ casein is used as the receptor protein, and 2 shows the result using EGFP with the ceptin protein treated with TAGZyme, a diaminopeptidase, exposing arginine at the N-terminus.
  • the band derived from [ 14 C] phenylalanin can be confirmed, so that it is possible to confirm the transfer activity of LFPT while preparing aminoacyl tRNA in the same reaction system. did it.
  • the marker is 170, 130, 100, 72, 55, 40, 33 kDa from the top.
  • Figure 5 shows the ratio of amino acid transfer by LFPT to various proteins:
  • aminoacyl tRNA was prepared in the same reaction system using radioactive amino acid [ 14 C] ferroalanine. The amount transferred to the acceptor protein was measured. Sampling was performed at 0, 10, 20 and 30 minutes, and the amount of [ 14 C] phenylalanin transferred to the acceptor protein was measured.
  • E. coli-derived tRNA phe and E. coli-derived PheRS for preparation of the donor phenylalanyl tRNA and ⁇ -casein as the acceptor, amino acid transfer by LFPT was confirmed.
  • yeast-derived tRNA Phe and yeast-derived PheRS were used to prepare donor phenylalanyl tRNA, amino acid transfer by LFPT was also confirmed. Threos without arginine or lysine at the N-terminus as an acceptor protein
  • ThrRS ur tRNA synthetase
  • EGFP EGFP treated with N-terminal by TAGZyme
  • Figure 6 shows the cloning of pTAG: production of a vector (pTAG) that can be co-expressed with pET21a (+).
  • pTAG a vector
  • MCS multicloning site
  • Fig. 7 shows the composition of pTAGFRSA and pETFRSB: the yeast-derived PheRS a subunit was introduced into pTAG with Ndel and Notl, and the yeast-derived PheRS / 3 subunit was introduced into pET21a (+) with NdeI and Notl. did. Since these vectors have different origins of replication and different drug resistance genes, it is possible to hold two plasmids on the same host.
  • Fig. 8 shows the expression and purification of yeast PheRS-: ER2566 strain was used to express yeast-derived PheRS. Subsequently, purification was performed on Ni-NTA agarose and Phenylsepharose HP columns, and each fraction was analyzed by SDSPAGE. M indicates a protein marker, 97.4, 66.2, 42.4, and 30 kDa from the top. Lane 1 is E. coli-derived PheRS, lane 3 is the S30 fraction after cell disruption, lane 4 is the fraction after purification with Ni-NTA agarose, and lane 5 is the sample purified by Phenyl sepharose HP column. In any of lanes 3 to 5, it was confirmed that bands corresponding to both subunits of the target yeast-derived PheRS could be confirmed and expressed and purified.
  • Figure 9 shows the measurement of the aminoacylation activity of yeast PheRS: from yeast?
  • the aminoacylation reaction was measured using the radioactive amino acid [ 14 C] phenylalanine. Samples were taken at 0, 5, 10, 15 and 20 minutes. Aminoacylation reaction does not occur if the enzyme is not added, but aminoacylation was observed when the enzyme was added, and it was confirmed that the recovered enzyme had a PheRS enzyme function.
  • Fig. 10 shows the expression and purification of mutant PheRS (T415G and T415A): Expression of fermenter-derived PheRS was performed using ER2566 strain. Subsequently, purification was performed with Ni-NTA agarose, and each fraction was analyzed with SDSPAGE. Lane 1 shows the S30 fraction after disruption of T415A mutant PheRS-expressing cells, and Lane 2 shows the fraction after purification with Ni-NTA agarose. 3 indicates a protein marker, showing 97.4, 66.2, 42.4, 30 kDa from the top. Lane 4 shows the S30 fraction after disruption of T415G mutant PheRS-expressing cells, and Lane 5 shows the fraction after purification with Ni.-NTA agarose. In both lanes 2 and 5 , bands corresponding to both subunits of the target yeast-derived PheRS were confirmed, and the expression and purification of each mutant PheRS were confirmed. '
  • Figure 11 shows the measurement of aminoacylation activity of mutant PheRS (T415G and T415A): To confirm the time course of enzyme activity of mutant PheRS, we used radioactive mino acid [ 14 C] phenylalanine, The aminoacylation reaction was measured. All of the mutant PheRSs were weaker than the wild type, but it was confirmed that they recognized the original substrate, phenylalanin.
  • - Figure 12 shows the search for unnatural amino acid recognition ability of PheRS using a phenylalanine analog with a substitution at the para position as a substrate: the results of confirmation of the formation of a tripartite complex by gel electrophoresis. ,
  • Figure 1 3 is a continuation of Figure 1 2
  • Figure 14 is a continuation of Figure 13
  • Figure 15 is a part of the cloning / express ion region of pET29a: When digested with diaminopeptidase, cleavage occurs at the arrow. When arginine comes out during cleavage, the cleavage reaction is terminated at this site, so that a protein in which arginine is presented at the protein N-terminus can be prepared.
  • Figure 16 shows the results of 15% SDS PAGE analysis of EGFP TAGZyme digested EGFP cloned products in pET29 treated with TAGZyme.
  • M indicates a protein molecular weight marker, and is 170, 130, 100, 72, 55, 40, and 33 kDa from the top.
  • the major force is 170, 130, 100, 72, 55, 40, 33 kDa from the top.
  • FIG. 17 TAGZyme digested amino acid transfer to EGFP and fluorescence: Azidophenylalanine was selected as the vinylalanine analog, and the mutant PheRS was used to prepare the donor aminoacyl tRNA in the same reaction system. However, the transfer to the acceptor protein was measured. After the reaction, a modification reaction is performed with an azide group selective fluorescence modifying reagent, and then separated by 12.5% SDS PAGE and visualized by a fluorescence imager. C shows the result when ⁇ casein is used as the acceptor protein, and 1 shows the result using EGFP in which the receptor protein is treated with TAGZyme, a diaminopeptidase to expose arginine at the N-terminus.
  • Figure 18 shows modification of the N-terminal side of pET_EGFP.
  • pET-EGFP instead of N-terminal treatment with diaminopeptidase, we modified pET-EGFP to investigate the N-terminal display method of arginine or lysine with Entrokinase. The top shows a part of the sequence from the start codon before modification, and the bottom shows a part of the sequence from the start codon after modification.
  • the StrepTag sequence was incorporated downstream of the initiation codon, and an Entrokinase cleavage site (EK site) was further introduced downstream.
  • EK site Entrokinase cleavage site
  • Fig. 20 shows Entrokinase digested EGFP modified with tetramethylrhodamine (TMR) fluorescence.
  • TMR tetramethylrhodamine
  • Lane 1 was the result of using EGFP modification 1 in which the acceptor protein was treated with Entrokinase and arginine was exposed at the N-terminus.
  • Lane 3 shows the case where no acceptor protein is added to the reaction.
  • the fluorescence band of tetramethylrhodamine derived from the azide group-selective fluorescence modifying reagent can be confirmed, so the protein that has been treated with Entrokinase to expose arginine at the N-terminus can be used as an acceptor protein. I knew it was possible.
  • Figure 21 shows the PEG modification of Entirokinase digested EGFP modified 1 by PAGE.
  • an azide group-modifying reagent containing PEG was used, and the product was electrophoresed.
  • the fluorescence signal derived from EGFP used as an acceptor protein was detected by a fluorescence imager (LAS3000). Comparing each lane, the addition of an azide group-modifying reagent with PEG shifts the band derived from EGFP upward, and the difference in the average molecular weight of PEG used for modification is also reflected in mobility.
  • LFPT is an enzyme that uses leucyl-tRNA Leu or phenylalanyl-tRNA Phe as a donor and transfers the tRNA-binding amino acid (leucine or phenylalanin) to a protein as an acceptor.
  • the N-terminal must be arginine or lysine. This enzyme is a protein tube It is believed that there is a reason.
  • the LFPT used in the present invention can be any LFPT. Furthermore, even a mutant LFPT obtained by mutating a natural LFPT can be used as long as it has the LFPT activity.
  • LFPT one derived from E. coli can be used. Furthermore, 1 to 50 amino acids, preferably 1 to 20 amino acids, more preferably 1 to 10 amino acids are missing from the amino acid sequence of these LFPTs (SEQ ID NO: 1). A mutant LFPT having an amino acid sequence having one or more mutations selected from deletion, substitution, or addition, and represented by the amino acid sequence having the LFPT activity is included. More specifically, 1-50 amino acids, preferably 1-20, with respect to LFPT represented by the amino acid sequence of SEQ ID NO: 1 derived from E. coli and the amino acid sequence represented by SEQ ID NO: 1. Of amino acids, more preferably 1 to 10 amino acids, having an amino acid sequence having one or more mutations selected from deletion, substitution, or addition, and represented by the amino acid sequence having the LFPT activity. Mutated LFPT may be mentioned. .
  • modified leucyl tRNA Leu As tRNA to which a modified amino acid that can be used in the present invention is bound, modified leucyl tRNA Leu , and modified phenylalanyl tRNA Phe can be used.
  • the modified phenylalanine includes a compound represented by the following formula (1).
  • I is hydrogen, hydroxyl group, methoxy or acetyl
  • R 3 is hydrogen or hydroxyl group
  • R 4 is hydrogen, halogen, azide group, nitro group, methoxy or acetyl or It is a hydroxyl group.
  • R 2 in the above formula 1 is 0CH 3 or 0H
  • R 3 is 0H
  • R 4 is H, F, Cl, Br, I, N 3 , N0 2 , 0CH 3 or OH.
  • ⁇ ! ⁇ Decorative fenaluanine is sometimes referred to as phenilalanin analog
  • modified leucine is sometimes referred to as leucine analog
  • Modified glycyl tRNA Leu and modified furanyl tRNA phe can be produced by a conventionally known method such as an organic synthesis method.
  • modified leucine, 'or modified fullanine is used as a substrate.
  • Mutant aminoacyl tRNA synthetase specifically, mutant LeuRS (Leu-tRNA Synthase) or mutant PheRS (Phe-tRNA Synthase), respectively. It can be prepared by binding to tRNA Leu or tRNA Phe .
  • Aminoacyl-tRNA synthetase is an enzyme that exists in all living organisms. In protein synthesis, it uses the hydrolysis energy of ATP to activate amino acids and bind them to transfer RNA (tRNA). In prokaryotes, there are 20 types of aminoacyl tRNA synthetases corresponding to 20 kinds of natural amino acids, and in eukaryotes, there are 20 types of aminoacyl tRNA synthetases present in cytoplasm, and in mitochondria. There are 20 aminoacyl tRNA synthetases.
  • Class 1 includes aminoacyl tRNA synthetases for arginine, cysteine, glutamine, glutamic acid, isoloicin, leucine, methionine, tryptophan, tyrosine, and parin.
  • Class II does not contain these characteristic sequences, and includes aminoacyl tRNA synthetases for each of alanine, asparagine, aspartate, glycine, lysine, ferroalanine, proline, and serine.
  • the aminoacyl tRNA synthetase for each amino acid catalyzes the process of binding the amino acid to tRNA.
  • phenylalanyl tRNA synthetase PheRS
  • Phe phenylalanin
  • ATP ATP + tRNA Phe + PheRS—> AMP + -Reacts with tRNA Phe (Phe-tRNA Phe ) + PheRS.
  • the substrate of LFPT may be leucyl tRNA Leu or phenylalanyl tRNA Phe , leucyl tRNA synthetase (may be abbreviated as LRS or LeuRS) or ferulanyl tRNA synthetase (abbreviated as FRS or PheRS). Use). '
  • Mutations can be introduced into the aminoacyl tRNA synthetase so that the tRNA can be aminoacylated with a modified amino acid.
  • leucyl tRNA synthetase may be abbreviated as LRS or LeuRS
  • phenylalanyl tRNA synthetase sometimes abbreviated as FRS or PheRS
  • Mutant LeuRS or mutant PheRS can be used.
  • mutant PheRS include mutants of yeast-derived PheRS. Fermenter-derived PheRS is composed of two ⁇ subunits and two ⁇ subunits. As the modified PheRS, the subunit is, for example, a PheRS abruni Tyr414 represented by SEQ ID NO: 3 and / or a mutant PheRS in which a mutation is introduced into Thr415, preferably threonine at position 415. PheRS mutated to arayun or dalysin can be used. Note that the sequence represented by SEQ ID NO: 2 can be used as the / 3 subunit of PheRS.
  • the PheRS / 3 subunit is represented by (1) an amino acid sequence in which 1 to several amino acids are substituted, deleted, and / or added in the amino acid sequence represented by SEQ ID NO: 2.
  • PheRS a subunit is used as a PheRS a subunit: (2) In the amino acid sequence represented by SEQ ID NO: 3, 1 to several amino acids are substituted, deleted, And a mutant PheRS a subunit represented by the amino acid sequence represented by the amino acid sequence or the added amino acid sequence, and at least a mutation is introduced into Tyr414 and / or Thr415, and tRNA Phe is Mutant PheRS that can be converted into lulanin can also be used.
  • the protein can be used as it is as a substrate for LFPT.
  • peptidase is used to make arginine or lysine N
  • a protein to be modified an acceptor protein
  • the peptidase for example, endopeptidase or exopeptidase can be used.
  • Endopeptidases include enterokinase (cleaves DDDDKX between DDDDK and X), FactorXa (cleaves after IE / DGR.
  • the part represented by / in the amino acid sequence is the amino acid before /
  • the following can also be used: the same after the geneaseKPGAAHY), the SUM0 protease (which recognizes and cleaves the SUM0 protein), and the like. It is also possible to prepare an acceptor protein from the N-terminal side by acting an exopeptidase. In this case, use aminopeptidase, diaminopeptidase, etc.
  • the diaminopeptidase is preferably an enzyme that terminates the quenching reaction with arginine or lysine. For example, TAGzyme can be used. ⁇ ,
  • the N-terminus of the target protein is other than Argyyun or lysine and it is intended to modify the N-terminus with a modified pheralanine or modified leucine without impairing the overall length of the target protein
  • the N-terminus of the target protein Prepare to add an amino acid sequence upstream.
  • a gene encoding a target protein with an additional sequence in which a base sequence encoding the amino acid Met_Xaa-Arg / Lys is added upstream of the base sequence encoding the target protein, is expressed by genetic recombination.
  • arginine or lysine is added to the N-terminal of the target protein.
  • a modified protein acceptor protein
  • the gene is designed to have arginine or lysine downstream of the signal cleavage position of the signal peptide, and arginine or lysine is used as the N-terminus of mature protein poor after cleavage after signal peptide cleavage. Can be obtained.
  • N-terminus of the ceptor protein can be modified with the modified phenylalanin or modified leucine.
  • modified Fuweniruaraniru tRNA Phe or modified leucyl tRNA respectively a modified phenyl Aranin or modified leucine
  • it can be prepared by coupling in the presence of the mutant type FRS or mutant LRS to tRNA Phe or tRNA Leu
  • modified Fueniruaraniru tRNA Phe or Preparation of modified leucyl tRNA Leu and transfer reaction of modified phenylalanine or modified leucine with LFPT can be carried out in the same step (same reaction solution).
  • the tRNA Phe reproduced by transferring from modified Hue Niruaraniru t RNA Phe modified phenylene Ruaranin the N-terminal of the protein, again using modified phenylene Ruaranin and mutant FRS It is more efficient because it can be prepared into a modified file tRNA Phe .
  • the N-terminal can be modified with the above-mentioned modified phenolin by treating a protein having arginine or lysine at the N-terminal in the presence of LFPT, tRNA Phe , or mutant FRS.
  • the N-terminal can be modified with the modified leucine by treating a protein having arginine or lysine at the N-terminal in the presence of LFPT, tRNA and mutant LRS.
  • para-azido-phenylalanine is used as a modified pheneno-alanine, and para-azido-phenylalanine is introduced at the N-terminus of a protein (acceptor protein) having arginine or lysine at the N-terminus.
  • the introduced para-azido-phenylalanine can be used as, for example, a cross-linker, using azide group-modifying reagents, adding polyethylene glycol, and adding a labeling molecule such as a fluorescent molecule or piotin. Etc. are possible.
  • the LFPT gene was amplified from E. coli genomic DNA by PCR (Polymerase Chain Reaction).
  • the primers used for PCR have the following sequences.
  • PCR reaction solution is lOXpyrobest buffer (kit supplied) 5juL, dNTPmix (kit supplied) 4 and primer 1 (lOOpmol / ⁇ ) ll primer 2 (100 pmol // iUl; uL, E. coli genomic DNA 1 L, and pyrobest DNA polymerase (5 U / L) 0.5 ⁇ was prepared as 50 L with dH 20 .
  • the PCR reaction was pre-denatured at 98 ° C for 4 minutes, denatured at 98 ° C for 10 seconds, annealed at 55 ° C for 30 seconds, and extended at 72 ° C for 1 minute for 30 cycles.
  • the PCR product was ethanol precipitated by adding 1/20 volume of 5 M NaCl aqueous solution. The precipitate was dried under reduced pressure to recover the DNA fragment.
  • FIG. 1 represents the sample after the PCR reaction, and the arrow indicates the amplified LFPT gene. From Fig. 1, a band was detected at almost the same length as the expected chain length of the LFPT gene, confirming the amplification of the LFPT gene.
  • the recovered DNA solution was incubated at 55 ° C for 5 minutes, centrifuged at 10, OOOrpm for 2 minutes, and the supernatant was transferred to another tube.
  • the composition of the reaction solution was determined at 37 ° C with the following guidance.
  • the composition of the digestion reaction solution is 10 XR buffer (attached with restriction enzyme) 3 Collected DNA fragment 19 L, Nco 1 (10 ⁇ / ⁇ 1) 2 / xL, and Xho 1 (10 U / w L) 2 / z L It was prepared in dH 2 0 30 / L.
  • pET22b was similarly digested with Nco I and Xho I.
  • Each digest was mixed, and 0.1 A260 unit of yeast tRNA mixture was added as a carrier, followed by ethanol precipitation.
  • the precipitate was dried under reduced pressure, a reaction solution was prepared as follows, and a ligation reaction was performed.
  • the reaction uses Nibonbon Ligation Pack,
  • Ligation reaction solution was lOXLigation buffer 2 ju
  • the precipitate as DNA mixture was BSA with (kit in the attached) 2.5 z L
  • the Mini-prep. Method was performed according to the following procedure.
  • the plasmid DNA was prepared by the alkaline method according to the following procedure. The colonies that had grown on the plate were picked with a toothpick, inoculated into 2 mL of LB-amp (50 g / mL ampicillin) medium in a test tube with an aluminum cap, and cultured at 37 ° C with shaking. 1.5 mL of the bacterial cell culture solution was dispensed into an Eppendorf tube and centrifuged at 10,000 rpm for 2 minutes to collect the cells. The medium was removed as much as possible, the cells were suspended in 100 L of Solution I, 200 L of Solutionll was added, and the tube was moved up and down and gently stirred.
  • Solution I TE-Glucose Buffer
  • Tris-HCl pH 7.6
  • EDTA-Na pH 7.0
  • Solutionll is, NaOH 0 ⁇ 2M, a SDS1%
  • Solutionlll (lOOmL) is, 5M acetate force Li um 60 mL, glacial acetic acid 11.5 mL, dH 2 0 28.5 mL force, Ranaru.
  • TE buffer contains Tris-HCl (pH 8.0) 10 mM, and EDTA (pH 8.0) 'lm.
  • pET_LFPT was digested with Nco I and Xho I. This was subjected to 1% agarose gel electrophoresis.
  • M is a marker (from the top 10, 8, 6, 5, 4, 3.5, 3, 2.5, 2, 1.5, 1.2, 1.03, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.lkbp ).
  • plasmid DNA prepared in a competent cell of E. coli ER2566 strain was added to about lng, and transformation was performed using an LB-amp plate.
  • Growing mouth-- Was inoculated into 100 mL of LB_amp medium with platinum ears and cultured at 37 degrees.
  • turbidity (A600) reached 0.7
  • IPTG Isopropyl- 3-D-thiogalactopyranoside
  • IPTG Isopropyl- 3-D-thiogalactopyranoside
  • the culture solution was transferred to a 50 mL tube and a 1.5 raL tube, and centrifuged at 4 ° C and 6, OOOrpm for 10 minutes, respectively.
  • the remaining culture solution was added to the same 50 mL tube, and further centrifuged at 4 ° (:, 6, OOOrpm for 10 minutes to remove the supernatant, and the cells were stored frozen at -80 ° C.
  • the bacterial cells collected in a 50 mL phenolic tube are mixed with 15 mL of the above Sonication Buffer (20 mM Tris-HCl (pH 7.6), 1 mM MgCl 2 , 0.2 M NaCl, 6 mM) 3-ercaptoethanoU 5 ° / o glycerin
  • the cells were disrupted by sonication for 15 minutes and centrifuged at 30, OOOxg for 30 minutes (4 ° C). The supernatant was designated as S30. .
  • reaction solution was prepared and reacted at 37 ° C for 30 minutes.
  • the composition of the reaction solution is 5 X AAM (Tris-HCl (pH 7.6) 500m, MgCl 2 50mM, KC1 200mM, and ATP 20m) 4 / i L, LFPT 2 / i L, tRNA Phe 0.1 A260unit, 14 C phenylalanine (394raCi / ramol) 1 ⁇ L, PheRS (0. lmg / mL) 1 L, acceptor protein ( ⁇ -casein or TAGZyme-treated EGFP) 50 pmol to 20 ⁇ L with dH 2 0 Prepared.
  • AAM Tris-HCl (pH 7.6) 500m, MgCl 2 50mM, KC1 200mM, and ATP 20m) 4 / i L, LFPT 2 / i L, tRNA Phe 0.1 A260unit, 14 C phenylalanine (3
  • reaction solution was subjected to 15% SDS PAGE, and the gel was subjected to image analysis using a bioimaging analyzer BAS-2500 (Fig. 4).
  • the reaction solution was spotted on a filter paper, washed with 5% TCA at 98 ° C for 20 minutes, and then shaken with 5% TCA at 4 ° C for 5 minutes. This was repeated three times.
  • Filter paper water with ethanol The amount of [ 14 C] Phe incorporated into ct-casein was evaluated by measuring the radioactivity remaining on the filter paper with a liquid scintillation counter after the sample was sufficiently dried (Fig. 5).
  • FIG. 6 shows the outline of the procedure. Based on the vectors pET 21-a (+) and pPROLar. A122, primer 1 (corresponds to T7 promoter of pET21-a (+)): 5 '-GGG GTA CCT AAT ACG ACT CAC TAT-3', ' Primer
  • Primer 3 (corresponds upstream of pPROL r. A122MCS): 5 '-GGG GTA CCT CGA CAG TTC ATA GGT-3 ', Primer 4 (corresponding to the downstream of pPROLar. A122MCS): 5'-GGG GTA CCG GAT ATA TTC CGC TTC-3' was designed.
  • Each primer has a Kpnl restriction enzyme recognition site.
  • PCR reaction solution is 10 X pyrobest buffer (kit supplied) 5 rep dNTP mix (kit supplied) 4 ⁇ Primer 1 (100 pmol / zi L) 0.5 ⁇ L, Primer 2 (lOOpmol / 1) 0.5 ⁇ L, pET21 -a (+) 0.05 ug> and pyrobest DNA polymerase (5 U // z L) 0.5 L were prepared with 50 d of 'dH 2 O.
  • PCR product (1) The PCR reaction was pre-denatured at 95 ° C for 2 minutes, denatured at 95 ° C for 10 seconds, annealed at 55 ° C for 30 seconds, and extended at 72 ° C for 1 minute for 30 cycles.
  • This PCR product is designated as PCR product (1).
  • PCR reaction (2) was performed using primers 3 and 4 with the following reaction composition.
  • PCR reaction solution is 10 X pyrobest buffer (kit supplied) 5 ⁇ dNTP mix (kit supplied) 4 / xL, primer 3 (100 pmol / ⁇ L) 0.5 / i L, primer 4 (lOOpmol / ⁇ L ) 0.5 ⁇ L s pPROLarA.1220.g and pyrobest DNA polymerase (5 U / ⁇ 0.5
  • PCR product (2) was prepared to 50 zL with dH 2 O. PCR reaction is 30 cycles of pre-denaturation at 95 ° C for 2 minutes, denaturation at 95 ° C for 30 seconds, firing at 55 ° C for 30 seconds, and extension at 72 ° C for 2 minutes. went. This PCR product is designated as PCR product (2).
  • electrophoresis was performed on a 1% agarose gel for 30 minutes. This is 0.5 / ig / mL.
  • the sample was immersed in a solution of thymium bromide for 10 minutes, the target band was confirmed with UV at a wavelength of 366 nm, and cut with a razor.
  • EASYTRAP TM was used for DNA extraction from the gel pieces, and the following procedure was performed according to the protocol.
  • PCR product (1) After purification by EASYTRAP TM (1) One-fifth of the solution and the total amount of PCR product (2) solution were mixed, and yeast tRNA mix 0.1 A260 unit was added as a carrier, followed by ethanol precipitation.
  • the collected precipitate was digested with Kpnl.
  • the composition of the reaction solution was as follows and was performed overnight at 37 ° C.
  • the composition of the digestion reaction solution was ⁇ I buffer (with restriction enzyme) 2 / L, the recovered DNA fragment, and Kpn 1 (1011 / /) .3 / ⁇ (111 2 0 to 20 / ⁇ ).
  • PCR was performed using primers ⁇ 5 and 6 with the following reaction composition to amplify the ⁇ subunit gene of PheRS.
  • LOXpyrobest buffer (with kit) 5 // L, dNTPmix (with kit) 4 W L, primer 5 (lOOpmol / iu L) 1 L, primer 6 (l, 00pmol // L) l Yeast genomic DNA 1 ⁇ L, and pyrobest DNA was prepared to 50 L with dH 2 O.
  • the PCR reaction was pre-denatured at 95 ° C for 2 minutes, denatured at 95 ° C for 10 seconds, annealed at 55 ° C for 30 seconds, and elongated at 72 ° C for 1 minute for 30 cycles. . .
  • PCR was performed using primers 7 and 8 with the same reaction composition and program as above, and a) 3 subunit genes were amplified.
  • electrophoresis was performed on a 1% agarose gel for 30 minutes. This was immersed in a solution of 0.5 ⁇ g / ml ethidium bromide for 10 minutes, the target band was confirmed with UV at a wavelength of 366 nm, and cut with a razor. EASYTRAP TM was used for DNA extraction from the gel pieces, and the following procedure was performed according to the protocol.
  • the ⁇ -sublet gene digest of PheRS is mixed with the pTAG digest and mixed with ethanol.
  • the / 3 subunit gene digest of PheRS was mixed with PET21-a (+) digest and subjected to ethanol precipitation.
  • the precipitate was dried under reduced pressure, and a reaction solution was prepared as follows, and a ligation reaction was performed for each.
  • the reaction was carried out using Nibonbon Ligation Pack for 2 to 3 hours at 16 ° C.
  • the Ligation reaction solution was 10 ⁇ L Ligation buffer 2 ⁇ , the precipitate as a DNA mixture, BSA (attached to the kit) 2.5 L, and T4 DNA Ligase 0.5 was adjusted to 20 L with dH 20.
  • pETFRSB was added to E. coli ER2566 competent cells, transformed, spread on a LB-amp plate medium with a congeal rod, and left at 37 ° C. While one of the colonies on the plate medium was picked with a toothpick and cultured at 37 ° C in LB-amp medium, the turbidity (0D600) of the culture solution was measured at 600 nm, and the OD600 was 0.3-0. When 4 was reached, the culture was cooled on ice for 15 minutes and collected.
  • plasmid pTAGFRSA to ER2566 competent cells with pETFRSB and perform transformation in the same manner as above, then add LB-50 ⁇ g / mL ampicillin in 25 g / mL kanamycin (LB-ampkan) pre-culture medium. Spreaded with a stick and incubated at 37 ° C. The colony produced on the plate medium is inoculated with a toothpick into the LB-ampkan medium and cultured at 37 ° C.
  • LB-ampkan kanamycin
  • the culture medium is isopropyl- / 3 -D (- ) -thiogalactopyranoside (IPTG) was added to a final concentration of 500 M, and further cultured at 37 ° C. for 4 hours for expression.
  • HG 1. 5 Buffer and HG 0 Buffer (20m HEPES-KOH (pH7. 0), ImM MgCl 2, 5% Glycerol, 6mM ⁇ -Mercaptoethanol, and 50 M pABSF) using a 150 at a flow rate of 2 mL / min
  • the sample was eluted by applying a linear ammonium sulfate concentration gradient from 1.5 M to 0 M over a period of minutes. This was subjected to 10% SDS-polyacrylamide gel electrophoresis (PAGE), and the target protein was detected and examined with the CBB staining solution (Fig. 8).
  • Figure 8 Lanes 4 and 5 confirm the expression and purification of yeast-derived PheRS because a band was confirmed at the estimated molecular weight position.
  • an aminoacylation reaction was performed using C phenylalanine. After removing the enzyme with the following reaction composition, the reaction solution was kept at 30 ° C for about 5 minutes, and then the enzyme was added. Incubate at 30 ° C for 0, 5, 10, 15, 20 minutes each time
  • composition of the aminoacylation reaction solution was prepared by adding 10 ⁇ L of 5XAAM (Amino Acylation Mixture), tRNA Phe 0.05 A260 unit of yeast, 0.126 / g of yeast PheRS, and 1 ⁇ L of 14 C ferulalanin in dH 20 .
  • 5XAAM Amino Acylation Mixtufe
  • Tris-HCl H 7.6 500 mM
  • MgCl 2 50 mM
  • KC1 200 mM
  • ATP 20 mM.
  • mutant funinyllanil tRNA synthetase (mutant PheRS)
  • the ⁇ TAG expression plasmid pTAGFRSA was modified by PCR using the above two primers.
  • the reaction solution is 10 X pyrobest buffer (enzyme attached) 5 i L, dNTP mix (enzyme attached) 4 L, primer 9 (l00pmol / zL) l ⁇ u L, primer 1 0 (lOOpmol / Dl ⁇ l, pTAGFRSAO. 05 ⁇ g, and pyrobest DNA polymerase (5 U / ⁇ L) 0.5 / i L was prepared at 50 / L with dH 20 0.
  • the PCR program was pre-denaturing at 95 ° C for 2 minutes, with a denaturation of 95 ° A cycle of 30 seconds at C, annealing at 50 ° C for 1 minute, and elongation at 12. for 10 minutes was 16 cycles.
  • Fig. 10 In lanes 2 and 5, a band was confirmed at the estimated molecular weight, indicating that expression and purification of both types of yeast-derived mutant PheRS were confirmed.
  • Fig. 11 when the enzyme is missing, no receptor is seen, and when the enzyme is added to the reaction, although it is weakly accepted, each mutant PheRS uses phenylalanin as a substrate. It turns out that it has the ability to recognize.
  • EF-Tu and EF-Ts form a complex, forming a complex of (EF- Tu ⁇ EF_Ts) 2.
  • EF_Ts dissociates, and when aminoacyl tRNA is present, ⁇ EF- Tu ⁇ GTP complex is formed.
  • EF-Tu has the ability to bind and form a complex with an aminoacyl-tRNA, but does not bind to tRNA.
  • Complexes bound with aminoacyl tRNA, unreacted EF-Tu, unreacted tRNA (non-aminoacylated tRNA) were separated by gel electrophoresis and bound to any aminoacyl tRNA using the difference in mobility.
  • Aminoacylation can be determined based on whether the complex can be confirmed.
  • the unreacted tRNA that flows fast is EF-Tu, etc., which is visible at the top, and the complex (intermediate level in the gel results) is between them.
  • unnatural amino acids that can be recognized by wild-type PheRS wtPheRS
  • mutant-type PheRS T415G and T415A
  • Reaction solution is 5 X Tu Buffer
  • lxTAM 6% PAGE was performed using 6 X LS ( ⁇ 0: 25 ° /., Xylene cyanol 0.25% and glycerin 30%). After electrophoresis, it was stained with CBB staining solution, sufficiently decolorized, and then stained with 0.3% methylene blue / 1 M AcOH Buffer (pH 4.7) to detect the band.
  • is a solution containing Ti11s base 2511 ⁇ , acetic acid 25 mM and magnesium acetate 5 mM. The results are shown in Fig. 12 to Fig. And Table 1. .
  • TAGZyme is an N-terminal specific dipeptidase (sometimes abbreviated as DAPase) that has been commercialized by QIAGEN. TAGZyme is called the stop point, the force that cleaves the N-terminal dipeptide, lysine, arginine, proline, or glutamine Dipeptide cleavage ends when appears at the N-terminus (Table 2).
  • the reaction mixture was DAPase (10U / ml) 2.5 L, cysteamine-HC1 (20m) 5 L, 1 X TAGZyme Buffer (sodium phosphate buffer (pH 7.0) 20 mM and NaCl 150 mM) 67.5 ⁇ ⁇ Mixed and left at room temperature for 5 minutes.
  • EGFP (approx. 0.35 raol / L) was added to it, reacted at 37 ° C for 1 hour, and analyzed by SDS PAGE ( Figure 16). As a result, the EGFP band shifted. Since it was divided into two, EGFP dipeptidic cleavage was confirmed.
  • TAGZyme digested EGFP as a substrate [Reference Example] After the reaction solution was reacted at 37 ° C for 30 minutes according to the procedure of 1-5, 15% SDS PAGE was performed, and the gel was imaged using Bio Imaging Analyzer BAS-2500. Analysis was performed (Fig. 4, lane 2). In addition, the amino acid transfer activity was measured by the procedure of [Reference Example] 1-5. From the measurement results of radioactivity using a liquid scintillation counter, TAGZyme-digested EGFP shows amino acid transfer similar to ⁇ -casein (Fig. 5).
  • TAGZyme digestion Tetramethylrhodamine (TMR) fluorescence of EGFP
  • XL1-BLUE was transformed with this plasmid.
  • the LB-Kan plate was inoculated, and the next day the colonies that grew on the plate were cultured in a small test (LB-Kan medium) and then mini-cultured. -Prep was performed and the plasmid was recovered.
  • this plasmid was sequenced, it was confirmed that the plasmid was modified as shown in FIG. This plasmid is called pET-EGFP modification 1.
  • ER2566 was transformed with pET_EGFP modified 1 and inoculated into LB-Kan plate. The next day, the puppy that grew on the plate was cultured in lOOmL LB-Kan medium. When 0D reached 0.6, IPTG concentration It was added to 0.5 mM and collected after shaking at 37 ° C for 4 hours. The cells were sonicated and purified using Ni-NTA Agarose. This purified protein was designated EGFP modified 1.
  • Entrokinase is a specific enzyme that cleaves behind Lys of Asp Asp Asp Asp Lys. It is considered that arginine appears at the N-terminus of the EGFP modified 1 used this time when it is cleaved with Entrokinase (Fig. 18). Therefore, cleavage of EGFP modification 1 with Entrokinase was performed using Entrokinase Buffer (Tris-HCl (pH 8.0) 20 mM, NaCl 50 mM and CaCl 2
  • Entrokinase Buffer 300 was suspended in Entrokinase Buffer 300, transferred to i. 5 mL tube, Entrokinase (2 mg / mL) was added thereto, and allowed to stand at room temperature for 1: 'hour. Thereafter, the whole amount was poured into Ultrafree-MC and centrifuged at 2, OOOrpm for 2 minutes to recover the solution. The solution was concentrated using a centrifugal evaporator or VIVASPIN 500-MAXIMUM SPIN SPEED. Finally, it was confirmed by 10% SDS PAGE that EGFP-modified 1 was cleaved by Entrokinase (Fig. 19).
  • TMR Tetromethylrhodamine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The object is to provide a protein having the modified N-terminus in a large quantity. Disclosed is a method for preparation of a protein having an N-terminus that has a modified phenylalanine residue. According to the method, in a protein having an Arg or Lys residue at the N-terminus, a modified phenylalanine residue is added to the N-terminal arginine residue with a modified phenylalanine tRNAPhe using a leucine/phenylalanine-tRNA protein transferase (LFPT) capable of adding a Leu or Phe residue to the terminus, whereby a protein having a modified phenylalanine residue at the N-terminus can be prepared.

Description

タンパク質の N末を酵素的に修飾する方法  Enzymatic modification of protein N-terminus
技術分野 Technical field
本願発明は、タンパク質の修飾又は修飾の技術分野に関する。更に本願発明は、 タンパク質の N末の修飾又は標識する技術、 並びに、. タンパク質の N末に変異を 与える技術に関する。  The present invention relates to the technical field of protein modification or modification. Furthermore, the present invention relates to a technique for modifying or labeling the N-terminal of a protein, and a technique for giving a mutation to the N-terminal of a protein.
明 背景技術  Background art
 Food
タンパク質に修飾を施すことにより、 そのタンパク質の機能を改変又は増強す る試みは種々行われでいる。 例えば、 血中に投与するタンパク質を PEG化するこ とにより、 血中滞在時間を延長させることなどが既になされている。  Various attempts have been made to modify or enhance the function of a protein by modifying the protein. For example, it has already been made to extend the residence time in the blood by PEGylating the protein to be administered into the blood.
このような、 タンパク質の修飾のため、 タンパク質を合成時に、 タンパク質中 のァミノ酸に部位特異的にラベル化する技術として、 アンバーサプレツションを 用いて、ペプチド鎖中の任意の位置にラベルを導入する技術、 C末端ラベル(修飾) する技術として、 ピュー口マイシン誘導体を用いてぺプチド鎖の C末端にラベル を導入する方法、 N 末端ラベル(修飾)法として、 c アミノ基を修飾した開始メチ ォユンを用いてぺプチド鎖の N末端にラベルを導入する方法などが知られている。 このうち、 N末端ラベル化タンパク質合成としては、 ( 1 ) 開始 tRNAにメチォ ニンをチャージした後で、 ctアミノ基を目的のラベル化剤で修飾し、 (2 ) 修飾 メチォニル開始 tRNAを精製し、 (3 ) 大腸菌 S30抽出液でタンパク質を合成する 際に上記修飾開始 tRNAを添加して合成する方法が知られている。具体的には、既 に以下の方法が報告されている (特許文献 1-3、 及び非特許文献 1一 6 )。  For this kind of protein modification, a label is introduced at any position in the peptide chain using amber suppression as a technique for site-specific labeling of the protein to amino acids in the protein during synthesis. As a technique for C-terminal labeling (modification), as a technique for introducing a label into the C-terminus of the peptide chain using a puromycin derivative, or as an N-terminal labeling (modification) method, c-amino group-modified initiation meth A method for introducing a label into the N-terminus of a peptide chain using a yun is known. Among these, for N-terminal labeled protein synthesis, (1) after charging the starting tRNA with methionine, the ct amino group was modified with the desired labeling agent, and (2) the modified methionyl starting tRNA was purified, (3) A method of synthesizing by adding the above-mentioned modified tRNA when synthesizing a protein with an Escherichia coli S30 extract is known. Specifically, the following methods have already been reported (Patent Documents 1-3 and Non-Patent Documents 1-16).
特許文献 1 米国特許第 6210941 号 Methods for the detection and isolation of proteins  Patent Document 1 U.S. Pat.No. 6210941 Methods for the detection and isolation of proteins
特許文献 2 米国特許第 6303337号 N- terminal and C- terminal markers in nascent proteins  Patent Document 2 US Patent No. 6303337 N-terminal and C-terminal markers in nascent proteins
特許文献 3 米国特許 6306628号 Methods for the detect in, analysis and i solat ion of nascent prote ins Patent Document 3 US Patent No. 6306628 Methods for the detect in, analysis and i solat ion of nascent prote ins
非特許文献 1 Gi te S. , at al . (2000) Anal. Biochem. 279, 218-225 Ultrasens it ive fluorescence-based detection of nascent prote ins in gel s 非特許文献 2 Olejnik J. , et al. (2005) Methods, 36, 252-260 N-terminal label ing of prote ins us ing ini tiator tRNA  Non-patent literature 1 Gi te S., at al. (2000) Anal. Biochem.279, 218-225 Ultrasens it ive fluorescence-based detection of nascent prote ins in gel s Non-patent literature 2 Olejnik J., et al. 2005) Methods, 36, 252-260 N-terminal label ing of prote ins us ing ini tiator tRNA
非特許文献 3 Kudl icki W et al . (1994) J. Mol. Biol . , 244, 319-331 Chaperone - dependent folding and activat ion of ribosome-bound nascent rhodanese. Analysi s by f luorescence.  Non-Patent Literature 3 Kudl icki W et al. (1994) J. Mol. Biol., 244, 319-331 Chaperone-dependent folding and activat ion of ribosome-bound nascent rhodanese. Analysi s by f luorescence.
非特許文献 4 Tsalkova T. , et al. (1998) J. Mol. Biol . , 278, 713-723. Different conformat ions of nascent peptides on rinosomes.  Non-Patent Document 4 Tsalkova T., et al. (1998) J. Mol. Biol., 278, 713-723. Different conformat ions of nascent peptides on rinosomes.
非特許文献 5 Mcintosh B. , et al. , (2000) Biochimie, 82, 167-174 Initiation of protein synthesis wi th f luorphore- et-tRNA (f ) and the involvement of IF - 2 ■' ■  Non-Patent Document 5 Mcintosh B., et al., (2000) Biochimie, 82, 167-174 Initiation of protein synthesis with th luorphore- et-tRNA (f) and the involvement of IF-2
非特許文献 6 RamachandiranV. Et al. , (2000) J. Biol . Chem. , 275, 1781 - 1786 r luorphores at the N- terminus of nascent chloramphenicol acethyl transferase pept ides affect translat ion and movement through the ribosorae. 発明の開示  Non-Patent Document 6 Ramachandiran V. Et al., (2000) J. Biol. Chem., 275, 1781-1786 r luorphores at the N-terminus of nascent chloramphenicol acethyl transferase pept ides affect translat ion and movement through the ribosorae. Disclosure
従来方法は、 もっぱら、 遺伝子組み換え法で調製されたタンパク質を更に分析 するために分離マーカ一として使用する方法であり、 アミノ酸が修飾されたタン パク質を大量に供給しょうとするものではなかった。 さらに、 従来方法で N末端 をラベルすると、大腸菌 S30抽出液を使用しているため、反応液内には,開始 tRNA も存在しているので、 ラベル化効率 (合成されたタンパク質のうち、 ラベル化さ れたタンパク質の割合) が極めて低く、 ラベルされたタンパク質を大量に入手し ようとすることはできないという問題があった。  The conventional method is exclusively used as a separation marker for further analysis of proteins prepared by genetic recombination, and does not attempt to supply a large amount of protein modified with amino acids. Furthermore, when the N-terminus is labeled by the conventional method, since the E. coli S30 extract is used, the starting tRNA is also present in the reaction solution, so the labeling efficiency (labeled out of the synthesized protein) The ratio of the proteins that were produced was extremely low, and there was a problem that it was impossible to obtain a large amount of labeled proteins.
仮に翻訳反応系に存在する開始 tRNAを除く方法や、上記非特許文献 3に記載の 開始コドンをアンバーコドンに変異させ、サプレッサー tRNAを用いる方法によつ たとしても、 修飾タンパク質の出現率自体は向上しても、 反応系を大規模にする ことは非経済的であることから、 非天然アミノ酸 (修飾アミノ酸) を N末に有す る修飾タンパク質又は標識タンパク質を、 経済的に大量に供給することは困難で あると考えた。 Even if the start tRNA present in the translation reaction system is removed or the start codon described in Non-Patent Document 3 is mutated to an amber codon and a suppressor tRNA is used, the appearance rate of the modified protein itself is not Even if it improves, the reaction system becomes large-scale Since this is uneconomical, it was considered difficult to economically supply a large amount of a modified protein or labeled protein having an unnatural amino acid (modified amino acid) at the N-terminus.
そこで、本願発明は、 N末端を修飾したタンパク質を大量に提供することを第 1 の課題とする。  Accordingly, the first object of the present invention is to provide a large amount of N-terminal modified proteins.
本願発明者等は、 N 末端を修飾したタンパク質を大量に供給するためには、 N 末修飾蛋白質を遺伝子組み換え法により調製するよりも,.、 未修飾蛋白質を酵素処 理することにより修飾できる方法を開発するほうが効率的であると考え、 酵素処 理による蛋白質の N末端を修飾する方法の開発を検討したところ、 鋭意研究の結 果、 酵素的に任意の蛋白質の N末端を修飾できる方法を見出した。  In order to supply a large amount of N-terminal modified protein, the inventors of the present application can modify an unmodified protein by enzymatic treatment, rather than preparing an N-terminal modified protein by genetic recombination. As a result of diligent research, we have developed a method that can enzymatically modify the N-terminus of any protein. I found it.
本願発明者らは、 既に、 フエ二ルァラニン (Phe).を修飾した修飾フエ二ルァラ ニン (以下フエ-ルァラニンアナログと呼ぶこともある) を変異型フエ二ルァラ ニル tRNA 合成酵素 (PheRS) を用いて tRNApheに結合し、 修飾フエニルァラニル tRNAPheを調製している。 そこで、 フエニルァラニル tRNAPheから Pheを N末端にァ ルギニン又はリジンを有するタンパク質に付加する能力を備えたロイシル /フ; n ニルァラ-ル -tRNA タンパク質転移酵素 (Leucyl/Phenylalanyl- tRNA- Protein transferase ;以下 LFPTと略することがある。) を用いることにより、 本修飾フエ ニルァラニル tRNAPheから修飾フエ二ルァラニンを前記タンパク質の N末端に付加 できるかどうか検討した。 その結果、 前記 LFPTを用いることにより、 タンパク質 の N末端を修飾できることを見出した。 The inventors of the present application have already introduced a modified phenylalanin (Phe). A modified phenylalanine (PheRS) modified mutant phenylalanin (PheRS) may be referred to as a mutant phenylalanine tRNA synthetase (PheRS). It is used to bind to tRNA phe to prepare modified phenylalanyl tRNA Phe . Therefore, leucyl / phenylalanyl-tRNA-protein transferase (hereinafter referred to as LFPT) has the ability to add Phe from phenylalanyl tRNA Phe to proteins with arginine or lysine at the N-terminus. It was investigated whether the modified phenylalanine can be added to the N-terminus of the protein from the modified phenylalanyl tRNA Phe . As a result, it was found that the N-terminus of the protein can be modified by using the LFPT.
すなわち、 本願発明は、 LFPT及び修飾フエニルァラニル tRNApheを用いるタン パク質の N末端の修飾方法に関する。 That is, the present invention relates to a method for modifying the N-terminus of a protein using LFPT and modified phenylalanyl tRNA phe .
第 1に、 本願発明は、 N 末端にアルギニン又はリジンを有するタンパク質につ いては、 当該末端にロイシン又はフエ二ルァラニンを付加する能力を備えたロイ シル /フエ二ルァラニル- tRNAタンパク質転移酵素 (LFPT) を用いて、 修飾フエ二 ルァラニル t RNAPheから修飾フエ二ルァラニンを N末端アルギニン又はリジンに付 加させることにより、 N 末に修飾されたフヱニルァラニンを有するタンパク質を 調製する方法を包含する。 First, the present invention relates to a protein having an arginine or lysine at the N-terminus, a leucine / phenylanil-tRNA protein transferase (LFPT) having the ability to add leucine or phenylalanin to the terminus. ) Is used to add a modified phenylalanine from the modified phenylalanyl tRNA Phe to the N-terminal arginine or lysine to prepare a protein having a phenylalanine modified at the N-terminus.
第 2には、 本願発明は、 任意のタンパク質を分解することにより、 N 末端にァ ルギニン又はリジンを有する蛋白質を調製し、 前記と同様に、 LFPTを用いて、 修 飾フエ二ルァラ二る tRNAPheから修飾フエ-ルァラニンを N末端アルギニン又はリ ジンに付加させることにより、 N 末に修飾されたフエ二ルァラニンを有するタン - パク質を調製する方法を包含する。 Secondly, the present invention is designed to reduce the N-terminal by degrading any protein. Prepared arginine or protein having a lysine, similarly to the above, by using the LFPT, modified Hue qualified phenylene Ruara sulfonyl tRNA Phe - the Ruaranin by addition to the N-terminal arginine or lysine, the N-terminal A method for preparing a protein having a modified phenylalanine is included.
第 3には、 本願発明は、 任意の蛋白質の N末側にアルギニン又はリジンを付加 したタンパク質を調製し、 前記と同様に、 LFPTを用いて、 修飾フヱニルァラニル t RNAPheから修飾フエ二ルァラニンを N末端アルギ 又はリジンに付加させる ことにより、 N 末に修飾された.フエ二ルァラニンを有するタンパク ·質を調製する, ― 方法を包含する。 Third, the present invention prepares a protein in which arginine or lysine is added to the N-terminal side of an arbitrary protein, and in the same manner as described above, LFPT is used to convert the modified phenylalanine from the modified phenylalanyl tRNA Phe to N. Including a method of preparing a protein having phenylalanin modified at the N-terminus by addition to terminal arginyl or lysine.
本明細書は本願の優先権の基礎である日本国特許出願 2005-337537号の明細書 および/または図面に記載される内容を包含する。 図面の簡単な説明  This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2005-337537, which is the basis of the priority of the present application. Brief Description of Drawings
図 1は、 PCR後の LFPT遺伝子増幅の確認: 1 %ァガロースゲル電気泳動後、 ゲ ルをェチジゥムブロミ ドにより染色した。 Mはマーカ一を示し、 レーン 1 は PCR 産物を流した結果である。 レーン. 1 の矢印の付近 (約 700bp) に増幅したバンド がみられることから、 目的とする LFPT遺伝子 (705bp) の增幅が確認できた。  Figure 1 shows confirmation of LFPT gene amplification after PCR: After 1% agarose gel electrophoresis, the gel was stained with ethidium bromide. M indicates a marker, and lane 1 is the result of running the PCR product. Lane 1. An amplified band is seen near the arrow in Fig. 1 (about 700 bp), confirming the increase in the target LFPT gene (705 bp).
なお、 マーカーは上から 10, 8, 6, 5, 4, 3. 5, 3, 2. 5, 2, 1. 5, 1, 0. 5kbpである。  The markers are 10, 8, 6, 5, 4, 3.5, 3, 3, 2.5, 2, 1.5, 1, 0.5 kbp from the top.
図 2は、 mini- prep後、 LFPT遺伝子確認のための制限酵素処理: 回収したプラ スミ ドを導入に利用した制限酵素により切断した。 1 %ァガロースゲル電気泳動 後、 ゲルをェチジゥムブロミ ドにより染色した。 M はマーカーを示し、 レーン 1 〜 4が回収したプラスミ ドの制限酵素処理反応液を流した。 矢印の付近 (約 700bp) 〖こ目的とする LFPT遺伝子に由来するバンドが確認できたので、 目的遺伝 子の導入が確認できた。  Figure 2 shows the restriction enzyme treatment for LFPT gene confirmation after mini-prep: The recovered plasmid was cleaved with the restriction enzyme used for introduction. After 1% agarose gel electrophoresis, the gel was stained with ethidium bromide. M represents a marker, and the plasmid restriction enzyme-treated reaction solution collected in lanes 1 to 4 was flowed. Near the arrow (approx. 700 bp) Since the band derived from the target LFPT gene was confirmed, introduction of the target gene was confirmed.
なお、 マーカーは上から 10, 8, 6, 5, 4, 3. 5, 3, 2. 5, 2, 1. 5, 1, 0. 5kbpである。  The markers are 10, 8, 6, 5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.5 kbp from the top.
3 番のプラスミ ド溶液がもっともバンドがはっきり確認できたので、 これを形質 転換に用いた。 The # 3 plasmid solution showed the most clear band and was used for transformation.
図 3は、 ER2566株での LFPT発現と精製: ER2566株を形質転換し、 発現を行つ た。 破砕の後、 Ni-NTA agaroseにより精製を行った。 精製時の各サンプルを 15% SDS PAGEにより分析した。 Mはタンパク質マ一カーを示し上から 97. 4, 66. 2, 42. 4, 30, 20kDaを示す。レーン 1は不溶性画分、レーン 2は S30画分、レーン 3は Ni- NTA agarose 樹脂に結合しなかった画分、 レーン 4は樹脂の洗浄画分そしてレーン 5 は要出画分である。 レーン 1に LFPT (約 27kDa) と思われるバンドが確認できる ことから、多くは不溶性画分にあるものと思われる。しかしレーン 5でも LFPT (約 27kDa) と思われるバンドが確認でき、 発現した LFPTの一部は可溶性画分に存在 し、 且つヒスチジンタグを有しているものと考えられる。 Fig. 3 shows LFPT expression and purification in ER2566 strain: ER2566 strain was transformed and expressed. After crushing, purification was performed with Ni-NTA agarose. 15% of each sample during purification Analyzed by SDS PAGE. M indicates a protein marker, and 97.4, 66. 2, 42. 4, 30, 20 kDa from the top. Lane 1 is the insoluble fraction, lane 2 is the S30 fraction, lane 3 is the fraction that did not bind to the Ni-NTA agarose resin, lane 4 is the resin wash fraction, and lane 5 is the fraction required. Since a band that seems to be LFPT (about 27 kDa) can be confirmed in lane 1, most of it seems to be in the insoluble fraction. However, in lane 5, a band thought to be LFPT (about 27 kDa) was confirmed, and a part of the expressed LFPT is present in the soluble fraction and is thought to have a histidine tag.
なお、 マーカーは上から 97. 4, 66. 2, 42. 4, 30. 0, 20. 0 kDaである。  The markers are 97.4, 66.2, 42.4, 30.0, 20.0 kDa from the top.
図 4は、 RIを用いた LFPTのァミノ酸転移反応の確認: LFPTの活性を確認する 為に、 放射性アミノ酸 [14C]フヱニルァラニンを利用し、 アミノアシル tRNA を同 一反応系にて調製しながら、 ァクセプタータンパク質への転移を測定した。 反応 後 15%SDS PAGEにより-分離し、 イメージングプレートを用いて可視化した。 Mは タンパク質分子量マーカーを示す。 C はァクセプタ一タンパク質に αカゼインを 用いた場合、 2はァクセプタ一タンパク質にジァミノぺプチターゼである TAGZymeによる処理を施し N末端にアルギニンを露出させた EGFPを用いた結果で ある。 Cおよび 2のどちらのレーンにおいても、 [14C]フエ二ルァラニンに由来す るバンドが確認できることから、アミノアシル tRNAを同一反応系にて調製しなが ら、 LFPTの転移活性を確認することができた。 Fig. 4 shows confirmation of LFPT aminoamino acid transfer reaction using RI: In order to confirm the activity of LFPT, the amino acid tRNA was prepared in the same reaction system using the radioactive amino acid [ 14 C] phenylalanine. Transfer to the acceptor protein was measured. After the reaction, they were separated by 15% SDS PAGE and visualized using an imaging plate. M represents a protein molecular weight marker. C shows the results when α casein is used as the receptor protein, and 2 shows the result using EGFP with the ceptin protein treated with TAGZyme, a diaminopeptidase, exposing arginine at the N-terminus. In both lanes C and 2, the band derived from [ 14 C] phenylalanin can be confirmed, so that it is possible to confirm the transfer activity of LFPT while preparing aminoacyl tRNA in the same reaction system. did it.
なお、 マーカ一は上から 170, 130, 100, 72, 55, 40, 33 kDaである。  The marker is 170, 130, 100, 72, 55, 40, 33 kDa from the top.
図 5は、 様々なタンパク質への LFPTによるアミノ酸転移の割合: LFPT活性の 経時変化を確認する為に、 放射性アミノ酸 [14C]フエ-ルァラニンを利用し、 アミ ノアシル tRNAを同一反応系にて調製しながら、ァクセプタータンパク質への転移 量を測定した。 0、 10、 20および 30分にサンプリングし、 ァクセプタータンパク 質に転移した [14C]フエ二ルァラニンの量を測定した。 ドナーであるフエ二ルァラ ニル tRNAの調製に大腸菌由来 tRNApheおよび大腸菌由来 PheRSを用い、 ァクセプ ターとして αカゼインを利用した場合には LFPT によるアミノ酸転移が確認でき た。 また、 ドナーであるフエニルァラニル tRNAの調製に酵母由来 tRNAPheおよび 酵母由来 PheRSを用いた場合でも同様に LFPTによるァミノ酸転移が確認できた。 ァクセプタ一タンパク質として N末端にアルギニン又はリジンを持たないスレオ ュル tRNA合成酵素(ThrRS) および EGFPを用いた場合は転移が確認できないのに 対し、 TAGZymeにより N末端側処理をした EGFPでは LFPTによるアミノ酸転移が 確認できた。 Figure 5 shows the ratio of amino acid transfer by LFPT to various proteins: In order to confirm the chronological change of LFPT activity, aminoacyl tRNA was prepared in the same reaction system using radioactive amino acid [ 14 C] ferroalanine. The amount transferred to the acceptor protein was measured. Sampling was performed at 0, 10, 20 and 30 minutes, and the amount of [ 14 C] phenylalanin transferred to the acceptor protein was measured. When using E. coli-derived tRNA phe and E. coli-derived PheRS for preparation of the donor phenylalanyl tRNA and α-casein as the acceptor, amino acid transfer by LFPT was confirmed. In addition, even when yeast-derived tRNA Phe and yeast-derived PheRS were used to prepare donor phenylalanyl tRNA, amino acid transfer by LFPT was also confirmed. Threos without arginine or lysine at the N-terminus as an acceptor protein In the case of using ur tRNA synthetase (ThrRS) and EGFP, no transposition could be confirmed, whereas in EGFP treated with N-terminal by TAGZyme, amino acid transfer by LFPT was confirmed.
図 6は、 pTAG のクローニング: pET21a (+)と共発現可能なベクター(pTAG)の作 製を示す。 P15A由来の複製起点を持つ pPR0LarA122 を母体とし、 pET21a (+)由来 のマルチクローニングサイ ト(MCS)を導入した。  Figure 6 shows the cloning of pTAG: production of a vector (pTAG) that can be co-expressed with pET21a (+). Using pPR0LarA122, which has a replication origin derived from P15A, as a parent, a multicloning site (MCS) derived from pET21a (+) was introduced.
図.7は、 pTAGFRSA と pETFRSBの構成:酵母由来 PheRS aサブュニッ トは pTAG に Nde lおよび Not l にて導入し、 酵母由来 PheRS /3サブユニッ トは pET21a (+) に Nde Iおよび Notlにて導入した。 これらベクターは異なった複製起点を持ち、 また薬剤耐性遺伝子も異なる為、 同一ホストに 2つのプラスミ ドを保持すること、 が可能である。  Fig. 7 shows the composition of pTAGFRSA and pETFRSB: the yeast-derived PheRS a subunit was introduced into pTAG with Ndel and Notl, and the yeast-derived PheRS / 3 subunit was introduced into pET21a (+) with NdeI and Notl. did. Since these vectors have different origins of replication and different drug resistance genes, it is possible to hold two plasmids on the same host.
図 8は、 酵母 PheRS-の発現と精製: ER2566株を利用し、 酵母由来 PheRSの発現 を行った。 その後、 Ni- NTA agaroseおよび Phenylsepharose HPカラムにて精製 を行い、 それぞれの画分を SDSPAGEにて分析を行った。 Mはタンパク質マーカ一 を示し、上から 97. 4, 66. 2, 42. 4, 30kDaを示す。 レーン 1は大腸菌由来 PheRS 、 レーン 3は細胞破砕後の S30画分、 レーン 4は Ni- NTA agarose による精製後の 画分、 レーン 5は Phenyl sepharose HPカラム精製 のサンプルである。 レーン 3 〜 5いずれのレーンにおいても、 目的とする酵母由来 PheRSの両サブュニッ トに 相当するバンドが確認でき発現、 および精製できていることが確認できた。  Fig. 8 shows the expression and purification of yeast PheRS-: ER2566 strain was used to express yeast-derived PheRS. Subsequently, purification was performed on Ni-NTA agarose and Phenylsepharose HP columns, and each fraction was analyzed by SDSPAGE. M indicates a protein marker, 97.4, 66.2, 42.4, and 30 kDa from the top. Lane 1 is E. coli-derived PheRS, lane 3 is the S30 fraction after cell disruption, lane 4 is the fraction after purification with Ni-NTA agarose, and lane 5 is the sample purified by Phenyl sepharose HP column. In any of lanes 3 to 5, it was confirmed that bands corresponding to both subunits of the target yeast-derived PheRS could be confirmed and expressed and purified.
図 9は、 酵母 PheRSのアミノアシル化活性測定:酵母由来? heRS の酵素活性の 経時変化を確認する為に、 放射性アミノ酸 [14C]フエ二ルァラニンを利用し、 アミ ノアシル化反応を測定した。 0、 5、 10、 15および 20分にサンプリングした。 酵 素を入れなければァミノアシル化反応は起こらないが、 酵素を加えることでァミ ノアシル化が見られ、 回収した酵素は PheRS酵素機能を有していることが確認で きた。 Figure 9 shows the measurement of the aminoacylation activity of yeast PheRS: from yeast? In order to confirm the time course of the enzyme activity of heRS, the aminoacylation reaction was measured using the radioactive amino acid [ 14 C] phenylalanine. Samples were taken at 0, 5, 10, 15 and 20 minutes. Aminoacylation reaction does not occur if the enzyme is not added, but aminoacylation was observed when the enzyme was added, and it was confirmed that the recovered enzyme had a PheRS enzyme function.
図 1 0は、 変異型 PheRS (T415Gと T415A)の発現と精製: ER2566株を利用し、 酵 母由来 PheRSの発現を行った。 その後、 Ni- NTA agaroseにて精製を行い、 それぞ れの画分を SDSPAGEにて分析を行った。 レーン 1は T415Aの変異型 PheRS発現菌 体の破砕後の S30画分、 レーン 2はその Ni- NTA agaroseによる精製後の画分、 レ ーン 3はタンパク質マーカーを示し、 上から 97. 4, 66. 2, 42. 4, 30kDaを示す。 レーン 4は T415Gの変異型 PheRS発現菌体の破砕後の S30画分、 レーン 5はその Ni.-NTA agaroseによる精製後の画分。 レーン 2および5いずれのレーンにおいて も、 目的とする酵母由来 PheRSの両サブュニットに相当するバンドが確認でき各 変異型 PheRSの発現、 および精製が確認できた。 ' Fig. 10 shows the expression and purification of mutant PheRS (T415G and T415A): Expression of fermenter-derived PheRS was performed using ER2566 strain. Subsequently, purification was performed with Ni-NTA agarose, and each fraction was analyzed with SDSPAGE. Lane 1 shows the S30 fraction after disruption of T415A mutant PheRS-expressing cells, and Lane 2 shows the fraction after purification with Ni-NTA agarose. 3 indicates a protein marker, showing 97.4, 66.2, 42.4, 30 kDa from the top. Lane 4 shows the S30 fraction after disruption of T415G mutant PheRS-expressing cells, and Lane 5 shows the fraction after purification with Ni.-NTA agarose. In both lanes 2 and 5 , bands corresponding to both subunits of the target yeast-derived PheRS were confirmed, and the expression and purification of each mutant PheRS were confirmed. '
図 1 1は、 '変異型 PheRS (T415G と T415A)のァミノアシル化活性測定:変異型 PheRS の酵素活性の経時変化を確認する為に、 放射性 ミノ酸 [14C]フエ二ルァラ ニンを利用し、 アミノアシル化反応を測定した。 変異型 PheRSのいずれも野生型 と比較すれば弱いが、 本来の基質であるフエ二ルァラニンを認識していることが 確認できた。 - 図 1 2は、 パラ位に置換 ¾をもつフエ二ルァラニンアナ口グを基質と した PheRS の非天然アミノ酸認識能の検索:三者複合体形成をゲル電気泳動により確 認した結果を示す。 , Figure 11 shows the measurement of aminoacylation activity of mutant PheRS (T415G and T415A): To confirm the time course of enzyme activity of mutant PheRS, we used radioactive mino acid [ 14 C] phenylalanine, The aminoacylation reaction was measured. All of the mutant PheRSs were weaker than the wild type, but it was confirmed that they recognized the original substrate, phenylalanin. -Figure 12 shows the search for unnatural amino acid recognition ability of PheRS using a phenylalanine analog with a substitution at the para position as a substrate: the results of confirmation of the formation of a tripartite complex by gel electrophoresis. ,
図 1 3は、 図 1 2のつづき  Figure 1 3 is a continuation of Figure 1 2
図 1 4は、 図 1 3のつづき 図 1 5は、 pET29aの cloning/express ion regionの一部: ジァミノぺプチター ゼで消化した場合矢印のところで切断が起き.る。 切断中にアルギニンが出てきた 場合、 この部位で切断反応が終結するため、 タンパク質 N末端にアルギニンを提 示した状態のタンパク質を調製することができる。  Figure 14 is a continuation of Figure 13 Figure 15 is a part of the cloning / express ion region of pET29a: When digested with diaminopeptidase, cleavage occurs at the arrow. When arginine comes out during cleavage, the cleavage reaction is terminated at this site, so that a protein in which arginine is presented at the protein N-terminus can be prepared.
なお、 矢印が切断部位、 アンダーラインの部分が切断されるジペプチドを示す。 図 1 6は、 EGFPの TAGZyme消化: pET29にクローンされている EGFPの TAGZyme による処理産物を 15%SDS PAGE により分析した結果を示す。 Mはタンパク質分子 量マ一カーを示し、 上から 170、 130, 100、 72、 55、 40、 33kDaである。 Cはァク セプタータンパク質として αカゼインを用いた場合、 レーン 2は TAGZymeにより 処理した EGFP, レーン 3は処理しなかった EGFPである。 レーン 2と 3を比較する と、 TAGZyme処理により、 分子量に違いが見られることから、 EGFP は TAGZymeの 基質となり、 切断反応が起きていることが確認できた。 また更なる分解物は見ら れないことから、 N 末端にアルギニンを提示した状態で切断反応が止まっている ことが示唆される。 The arrow indicates the cleavage site and the dipeptide whose underline is cleaved. Figure 16 shows the results of 15% SDS PAGE analysis of EGFP TAGZyme digested EGFP cloned products in pET29 treated with TAGZyme. M indicates a protein molecular weight marker, and is 170, 130, 100, 72, 55, 40, and 33 kDa from the top. When α-casein is used as an acceptor protein for C, lane 2 is EGFP treated with TAGZyme, and lane 3 is EGFP not treated. When comparing lanes 2 and 3, a difference in molecular weight was observed with TAGZyme treatment, confirming that EGFP was a substrate for TAGZyme and a cleavage reaction occurred. In addition, since no further degradation products were found, the cleavage reaction stopped with arginine presented at the N-terminus. It is suggested.
なお、 マ一力一は上から 170, 130, 100, 72, 55, 40, 33 kDaである。  The major force is 170, 130, 100, 72, 55, 40, 33 kDa from the top.
図 1 7は、 TAGZyme消化 EGFPへアミノ酸転移と蛍光化: フヱニルァラニンアナ ログとしてアジドフエ二ルァラニンを選択し、 変異型 PheRSを利用し、 ドナーで あるアミノアシル tRNAを同一反応系にて調製しながら、ァクセプタータンパク質 への転移を測定した。反応後アジド基選択的蛍光修飾試薬により修飾反応を行い、 その後 12. 5%SDS PAGEにより分離し、 蛍光イメージャ により可視化し 。 Cは ァクセプタ—タンパク質に αカゼインを用いた場合、 1はァクセプタータンパク 質にジァミノぺプチターゼである TAGZyme による処理を施レ N末端にアルギニン を露出させた EGFPを用いた結果である。 Cおよび 1のどちらのレーンにおいても、' アジド基選択的蛍光修飾試薬に由来する蛍光のバンドが確認できることから、 ァ ジドフエニルァラ-ル tRNAを同一反応系にて調製しながら、 LFPTによりアジド フエ二ルァラ =ンを転移できることが確認できた。 Figure 17: TAGZyme digested amino acid transfer to EGFP and fluorescence: Azidophenylalanine was selected as the vinylalanine analog, and the mutant PheRS was used to prepare the donor aminoacyl tRNA in the same reaction system. However, the transfer to the acceptor protein was measured. After the reaction, a modification reaction is performed with an azide group selective fluorescence modifying reagent, and then separated by 12.5% SDS PAGE and visualized by a fluorescence imager. C shows the result when α casein is used as the acceptor protein, and 1 shows the result using EGFP in which the receptor protein is treated with TAGZyme, a diaminopeptidase to expose arginine at the N-terminus. In both lanes C and 1, the fluorescence band derived from the azide group selective fluorescence modifying reagent can be confirmed. Therefore, while preparing the azidophenylal tRNA in the same reaction system, the azimuth It was confirmed that = could be transferred.
図 1 8は、 pET_EGFPの N末端側の改変。 : ジアミノぺプチターゼによる N末端 処理にかわり、 Entrokinaseによるアルギニン又はリジンの N末端提示法を検討 する為に pET- EGFPの改変を行った。上は改変前の開始コ ドンからの配列の一部を 示し、 下は改変後の開始コドンからの配列の一部を示してある。 か異変後は開始 コ ドンの下流に StrepTag配列を組み込み、且つさらに下流に Entrokinase切断サ ィ ト(EK site)を導入した。 こ により Entrokinase処理によりアルギニンが露出 する。  Figure 18 shows modification of the N-terminal side of pET_EGFP. : Instead of N-terminal treatment with diaminopeptidase, we modified pET-EGFP to investigate the N-terminal display method of arginine or lysine with Entrokinase. The top shows a part of the sequence from the start codon before modification, and the bottom shows a part of the sequence from the start codon after modification. After the change, the StrepTag sequence was incorporated downstream of the initiation codon, and an Entrokinase cleavage site (EK site) was further introduced downstream. As a result, arginine is exposed by Entrokinase treatment.
なお、 上が改変前、 下が改変後を表す。 Note that the top is before modification and the bottom is after modification.
図 1 9は、 EGFP改 1が Entrokinaseにより切断されていることを 10%SDS PAGE により確認した。 : EGFP改 1の Entrokinaseの処理の有無による電気泳動の移動 度の違いを確認した。 Entrokinaseの処理により約 2. 2kDa変化する。 Mはタンパ ク質分子量マ一カーを示し、 上から 97、 66、 42および 30kDaを示す。 レーン 1は In FIG. 19, it was confirmed by 10% SDS PAGE that EGFP modification 1 was cleaved by Entrokinase. : We confirmed the difference in electrophoretic mobility depending on the presence or absence of EGFP Kai 1 Entrokinase treatment. Entrokinase treatment changes about 2.2 kDa. M indicates the protein molecular weight marker, and 97, 66, 42 and 30 kDa from the top. Lane 1 is
EGFP改 1を Entrokinaseにより処理したサンプル、 Cは未処理の EGFP改 1である。 移動度 差が見られることから、 Entrokinase により末端処理が施されているこ とが確認できた。 なお、 CBB染色した。 Sample EGFP modified 1 treated with Entrokinase, C is untreated EGFP modified 1 From the difference in mobility, it was confirmed that the end treatment was performed by Entrokinase. CBB staining was performed.
図 2 0は、 テトラメチルローダミン(TMR)蛍光化した Entrokinase消化 EGFP改 1の ¾光検出 : アジドフ'ェニルァラニンと変異型 PheRSを利用し、 ドナーである アミノアシル tRNAを同一反応系にて調製しながら、ァクセプタータンパク質への 転移を測定した。 反応後アジド基'選択的蛍光修飾試薬により修飾反応を行い、 そ の後 SDS PAGEにより分離し、 蛍光イメージヤー (LAS3000) により可視化した。 C はァクセプタータンパク質にひカゼィンを用いた場合、 レーン 1はァクセプター タンパク質に Entrokinase による処理を施し N 末端にアルギニンを露出させた EGFP改 1を用いた結果、 レーン 2は未処理の EGFP改 1を用いた結果、 レーン 3 はァクセプタータンパク質を反応に加えない場合を示す。 レーン 1において、 ァ ジド基選択的蛍光修飾試薬に由来するテトラメチルローダミンの蛍光のバンドが 確認できることか.ら、 Entrokinaseによる処理を施し N末端にアルギニンを露出 させたタンパク質はァクセプタータンパク質として利用できることがわかった。 図 2 1は、 Entirokinase消化 EGFP改 1の PEG修飾の PAGEによる確認。 :アジド フエ二ルァラニンの導入後、 PEG を有するアジド基修飾試薬をおこない、 その産 物を電気泳動した。ァクセプタータンパク質として用いた EGFP由来の蛍光シグナ ルを蛍光イメージヤー (LAS3000) により検出した。 各レーンを比較すると PEG を有するアジド基修飾試薬を加えることにより、 EGFPに由来するバンドが上にシ フトしていること、 また、 修飾に用いた PEGの平均分子量の違いも移動度に反映 されていることから、 Entrokinaseにより処理した EGFP改 1に LFPTによりアジ ドフエ二ルァラニンが転移し、 その後アジド基選択的修飾^:薬により PEG修飾が 導入できたと考えられる。 発明を実施するための最良の形態 Fig. 20 shows Entrokinase digested EGFP modified with tetramethylrhodamine (TMR) fluorescence. 1 Fluorescence detection: Using azidophenylalanine and mutant PheRS, transfer to an acceptor protein was measured while preparing donor aminoacyl tRNA in the same reaction system. After the reaction, a modification reaction was performed with an azide group-selective fluorescence modifying reagent, followed by separation by SDS PAGE and visualization with a fluorescence imager (LAS3000). In the case of C, when Hicasein was used as the acceptor protein, Lane 1 was the result of using EGFP modification 1 in which the acceptor protein was treated with Entrokinase and arginine was exposed at the N-terminus. As a result of using, Lane 3 shows the case where no acceptor protein is added to the reaction. In lane 1, the fluorescence band of tetramethylrhodamine derived from the azide group-selective fluorescence modifying reagent can be confirmed, so the protein that has been treated with Entrokinase to expose arginine at the N-terminus can be used as an acceptor protein. I knew it was possible. Figure 21 shows the PEG modification of Entirokinase digested EGFP modified 1 by PAGE. : After the introduction of azidophenylalanin, an azide group-modifying reagent containing PEG was used, and the product was electrophoresed. The fluorescence signal derived from EGFP used as an acceptor protein was detected by a fluorescence imager (LAS3000). Comparing each lane, the addition of an azide group-modifying reagent with PEG shifts the band derived from EGFP upward, and the difference in the average molecular weight of PEG used for modification is also reflected in mobility. Therefore, it is considered that azidophenylalanine was transferred to EGFP modified 1 treated with Entrokinase by LFPT, and then PEG modification could be introduced by selective modification of azide group ^: drug. BEST MODE FOR CARRYING OUT THE INVENTION
1 . LFPTを用いる修飾フヱ二ルァラニンを N末に有する修飾タンパク質の製造方 法  1. Method for producing modified protein with modified vinylanine at the N-terminus using LFPT
1一 1 . LFPTの調製  1 1 1. Preparation of LFPT
LFPT は、 ロイシル -tRNALeuもしくはフエニルァラニル -tRNAPheをドナーとし、 tRNAに結合しているアミノ酸 (ロイシンもしくはフエ二ルァラニン) を、 ァクセ プターとするタンパク質へ転移させる酵素である。 ァクセプタータンパク質とし ては N末端がアルギニン又はリジンである必要が有る。 本酵素はタンパク質の管 理に ¾係があると考えられている。 LFPT is an enzyme that uses leucyl-tRNA Leu or phenylalanyl-tRNA Phe as a donor and transfers the tRNA-binding amino acid (leucine or phenylalanin) to a protein as an acceptor. As an acceptor protein, the N-terminal must be arginine or lysine. This enzyme is a protein tube It is believed that there is a reason.
本願発明で用いる LFPTとしては、 LFPT活性(ロイシル /フエ二ルァラ二ルー tRNA タンパク質転移酵素 (Leucyl/Phenylalany卜 tRNA— Protein transferase活十生) を 有している限り、 いかなる起源の LFPTであっても使用することができる。 更に、 天然型の LFPTを変異させた変異型 LFPTであっても、前記 LFPT活性を有する琅り 使用することができる。  As long as it has LFPT activity (Leucyl / Phenylalany 卜 tRNA-protein transferase activity), the LFPT used in the present invention can be any LFPT. Furthermore, even a mutant LFPT obtained by mutating a natural LFPT can be used as long as it has the LFPT activity.
具体的には、 LFPTとしては、 大腸菌由来のものを用いることができる。 更にこ れらの LFPTのアミノ酸配列(配列番号 1)に対して、 1〜50個のァミノ酸、好適に は、 1〜20個のアミノ酸、 更に好適には 1〜10個のアミノ酸を、 欠失、 置換、 又 は付加から選ばれる 1 以上の変異を与えたアミノ酸配列を有し、 且つ前記 LFPT 活性を有するァミノ^配列で表される変異型 LFPTが包含される。更に具体的には、 大腸菌由来の配列番号 1のアミノ酸配列で示される LFPT及び該配列番号 1で表さ れるアミノ酸配列に対して、 1〜50個のアミノ酸、.好適には、 1〜20個のァミノ 酸、 更に好適には 1〜10個のアミノ酸を、 欠失、 置換、 又は付加から選ばれる 1 以上の変異を与えたアミノ酸配列を有し、且つ前記 LFPT活性を有するアミノ酸配 列で表される変異型 LFPTを挙げることができる。.  Specifically, as LFPT, one derived from E. coli can be used. Furthermore, 1 to 50 amino acids, preferably 1 to 20 amino acids, more preferably 1 to 10 amino acids are missing from the amino acid sequence of these LFPTs (SEQ ID NO: 1). A mutant LFPT having an amino acid sequence having one or more mutations selected from deletion, substitution, or addition, and represented by the amino acid sequence having the LFPT activity is included. More specifically, 1-50 amino acids, preferably 1-20, with respect to LFPT represented by the amino acid sequence of SEQ ID NO: 1 derived from E. coli and the amino acid sequence represented by SEQ ID NO: 1. Of amino acids, more preferably 1 to 10 amino acids, having an amino acid sequence having one or more mutations selected from deletion, substitution, or addition, and represented by the amino acid sequence having the LFPT activity. Mutated LFPT may be mentioned. .
1 - 2 . 修飾ァミノ酸が tRNAに結合した修飾ァミ 酸 tRNA 1-2. Modified amino acid tRNA with modified amino acid bound to tRNA
本願発明で使用できる修飾アミノ酸が結合した tRNA としては、 修飾ロイシル tRNALeu, 及び修飾フエニルァラニル tRNAPheを用いることができる。 As tRNA to which a modified amino acid that can be used in the present invention is bound, modified leucyl tRNA Leu , and modified phenylalanyl tRNA Phe can be used.
また、 本願発明では、 修飾フエ二ルァラニンとしては、 下記式 (1 ) で表され る化合物が含まれる。  In the present invention, the modified phenylalanine includes a compound represented by the following formula (1).
化 1 1
COOH COOH
Figure imgf000012_0001
上記式 1中、 I は、 水素、 水酸基又はメ トキシ若しくはァセチル、 R3は水素又- は水酸基、 そして、 R4は、 水素、 ハロゲン、 アジド基、 ニトロ基、 メ トキシ若し くはァセチル又は水酸基である。
Figure imgf000012_0001
In the above formula 1, I is hydrogen, hydroxyl group, methoxy or acetyl, R 3 is hydrogen or hydroxyl group, and R 4 is hydrogen, halogen, azide group, nitro group, methoxy or acetyl or It is a hydroxyl group.
なお、 好適には、 上記式 1中の R2は 0CH3又は 0H、 R3は 0H、 R4は H、 F、 Cl、 Br、 I、 N3、 N02、 0CH3又は OHである。 Preferably, R 2 in the above formula 1 is 0CH 3 or 0H, R 3 is 0H, R 4 is H, F, Cl, Br, I, N 3 , N0 2 , 0CH 3 or OH.
なお、 ·ί!^飾フエ二ルァラニンをフエ二ルァラニンアナログと、 修飾,ロイシンを ロイシンアナログと呼ぶこともある。  In addition, ί! ^ Decorative fenaluanine is sometimes referred to as phenilalanin analog, and modified leucine is sometimes referred to as leucine analog.
1一 2— 1 . 修飾ァミノ酸 tRNAの調製 1 一 2— 1. Preparation of Modified Amino Acid tRNA
修飾口ィシル tRNALeu、及び修飾フヱ-ルァラニル tRNApheは、有機合成法などの 従来から周知の方法で製造できるが、 例えば、 修飾ロイシン、'又は修飾フ- ル ァラニンを、それぞれを基質とする変異型のアミノアシル tRNA合成酵素、具体的 には、 変異型 LeuRS (Leu- tRNA Synthase; ロイシル tRNA合成酵素) 又は変異型 の PheRS (Phe- tRNA Synthase; フエニルァラニル tRNA合成酵素)を用いて、 それ ぞれ tRNALeu又は tRNAPheに結合させることにより調製することができる。 Modified glycyl tRNA Leu and modified furanyl tRNA phe can be produced by a conventionally known method such as an organic synthesis method. For example, modified leucine, 'or modified fullanine is used as a substrate. Mutant aminoacyl tRNA synthetase, specifically, mutant LeuRS (Leu-tRNA Synthase) or mutant PheRS (Phe-tRNA Synthase), respectively. It can be prepared by binding to tRNA Leu or tRNA Phe .
1— 2— 2 . アミノアシル tRNA合成酵素 1— 2— 2. Aminoacyl tRNA synthetase
ァミノアシル tRNA合成酵素は、すべての生物に存在する酵素で、 タンパク質合 成において、 ATP の加水分解エネルギーを利用し、 アミノ酸を活性化しトランス ファー RNA (tRNA)に結合させる酵素である。 原核生物では、 20 種類の天然アミノ 酸に対応し、 20種類のアミノアシル tRNA合成酵素が存在し、 真核生物では、 細 胞質に存在するアミノアシル tRNA合成酵素 20種類と、 ミ トコンドリアに存在す るアミノアシル tRNA合成酵素 20種がある。これらのアミノアシル tRNA合成酵素 は、 大きくは、 クラス 1 とクラス 2に分類され、 クラス 1は、 アミノ酸配列中に HXGHというシグニチヤ一配列及ぴ KMSKSのヌクレオチド結合領域(ロスマンフォ 一ルド) を有している。 クラス Iは、 アルギニン、 システィン、 グルタミン、 グ ルタミン酸、 ィソロイシン、 ロイシン、 メチォニン、 トリプトファン、 チロシン、 及びパリンに対するアミノアシル tRNA合成酵素が含まれる。 Aminoacyl-tRNA synthetase is an enzyme that exists in all living organisms. In protein synthesis, it uses the hydrolysis energy of ATP to activate amino acids and bind them to transfer RNA (tRNA). In prokaryotes, there are 20 types of aminoacyl tRNA synthetases corresponding to 20 kinds of natural amino acids, and in eukaryotes, there are 20 types of aminoacyl tRNA synthetases present in cytoplasm, and in mitochondria. There are 20 aminoacyl tRNA synthetases. These aminoacyl tRNA synthetases are broadly classified into class 1 and class 2, and class 1 has a signature sequence called HXGH in the amino acid sequence and a nucleotide binding region (Rossmanfield) of KMSKS. . Class I includes aminoacyl tRNA synthetases for arginine, cysteine, glutamine, glutamic acid, isoloicin, leucine, methionine, tryptophan, tyrosine, and parin.
クラス IIは、 これら特徴的配列を含んでおらず、 ァラニン、 ァスパラギン、 ァ スパラギン酸、 グリシン、 リジン、 フエ-ルァラニン、 プロリン、 及びセリンの それぞれに対するアミノアシル tRNA合成酵素が含まれる。  Class II does not contain these characteristic sequences, and includes aminoacyl tRNA synthetases for each of alanine, asparagine, aspartate, glycine, lysine, ferroalanine, proline, and serine.
それぞれのアミノ酸に対するアミノアシル tRNA合成酵素は、 アミノ酸を tRNA に結合させる工程を触媒し、 フエニルァラニル tRNA合成酵素(PheRS)を例に取れ ば、 フエニルァラニン (Phe) + ATP + tRNAPhe + PheRS— > AMP +フエ-ルァラ二 ル tRNAPhe (Phe-tRNAPhe) + PheRSと反応する。 The aminoacyl tRNA synthetase for each amino acid catalyzes the process of binding the amino acid to tRNA. For example, phenylalanyl tRNA synthetase (PheRS) is phenylalanin (Phe) + ATP + tRNA Phe + PheRS—> AMP + -Reacts with tRNA Phe (Phe-tRNA Phe ) + PheRS.
これまでに、 種々の生物種から、 それぞれのアミノ酸についての、 アミノアシ ル RNA合成酵素が採取され、 報告されている。  So far, aminoacyl RNA synthases have been collected and reported for various amino acids from various species.
本発明では、 LFPTの基質は、 ロイシル tRNA Leu又はフエニルァラニル tRNA Phe であることがら、 ロイシル tRNA合成酵素 (LRS又は LeuRSと略すことがある) 又 はフエ-ルァラニル tRNA合成酵素 (FRS又は PheRSと略すことがある) を利用す る。' In the present invention, the substrate of LFPT may be leucyl tRNA Leu or phenylalanyl tRNA Phe , leucyl tRNA synthetase (may be abbreviated as LRS or LeuRS) or ferulanyl tRNA synthetase (abbreviated as FRS or PheRS). Use). '
1— 2— 3 . 変異型アミノアシル tRNA合成酵素  1— 2— 3. Mutant aminoacyl tRNA synthetase
修飾ァミノ酸で tRNAをアミノアシル化できるように、 アミノアシル tRNA合成 酵素に変異を導入することができる。  Mutations can be introduced into the aminoacyl tRNA synthetase so that the tRNA can be aminoacylated with a modified amino acid.
本発明では、 ロイシル tRNA合成酵素 (LRS又は LeuRSと略すことがある) 又は フエニルァラニル tRNA合成酵素 (FRS又は PheRSと略すことがある) に、 変異を 導入して、修飾ァミノ酸を tRNAに結合することができる変異型 LeuRS又は変異型 PheRSを利用することができる。  In the present invention, mutation is introduced into leucyl tRNA synthetase (may be abbreviated as LRS or LeuRS) or phenylalanyl tRNA synthetase (sometimes abbreviated as FRS or PheRS), and the modified amino acid is bound to tRNA. Mutant LeuRS or mutant PheRS can be used.
変異型 PheRSとしては、 酵母由来の PheRSの変異体を挙げることができる。 酵 母由来の PheRSは、 2つの αサブュニット及ぴ 2つの βサブュニッ トからなつて いる。 変真型 PheRSとしては、 ひサブユニッ トは、 例えば、 配列番号 3であらわされ る PheRS aサブュニッ 卜の Tyr414、 及び/又は Thr415 に変異を導入した変異型 PheRS、好適には、 415位のトレオニンをァラユン又はダリシンに変異させた PheRS を用いることができる。 なお、 PheRSの /3サブユニッ トとしては、 配列番号 2で 表される配列を用いることができる。 Examples of mutant PheRS include mutants of yeast-derived PheRS. Fermenter-derived PheRS is composed of two α subunits and two β subunits. As the modified PheRS, the subunit is, for example, a PheRS abruni Tyr414 represented by SEQ ID NO: 3 and / or a mutant PheRS in which a mutation is introduced into Thr415, preferably threonine at position 415. PheRS mutated to arayun or dalysin can be used. Note that the sequence represented by SEQ ID NO: 2 can be used as the / 3 subunit of PheRS.
また、 PheRS /3サブユニッ トとしては、 (1 ) 配列番号 2で表されるアミノ酸配 列において、 1から数個のアミノ酸が、 置換、 欠失、 び/又は付加されたアミ ノ酸配列で表される変異型の PheRS ]3サブュニッ トを用い、 PheRS aサブュニッ ト としては、 (2 ) 配列番号 3で表されるアミノ酸配列において、 1から'数個のアミ ノ酸が、 置換、 欠失、 及びノ又は付加されたアミノ酸配列で表される変異型の PheRS aサブユニットを用いる、 変異型 PheRSであって、 少なく とも、 Tyr414、 及 び/又は Thr415に変異が導入され、 tRNAPheをフエ二ルァラニンアナ口グ化できる 変異型 PheRSを用いることもできる。 The PheRS / 3 subunit is represented by (1) an amino acid sequence in which 1 to several amino acids are substituted, deleted, and / or added in the amino acid sequence represented by SEQ ID NO: 2. PheRS a subunit is used as a PheRS a subunit: (2) In the amino acid sequence represented by SEQ ID NO: 3, 1 to several amino acids are substituted, deleted, And a mutant PheRS a subunit represented by the amino acid sequence represented by the amino acid sequence or the added amino acid sequence, and at least a mutation is introduced into Tyr414 and / or Thr415, and tRNA Phe is Mutant PheRS that can be converted into lulanin can also be used.
1 — 3 . 被修飾タンパク質(ァクセプタータンパク質とも呼ぶ)の調製  1 — 3. Preparation of modified protein (also called acceptor protein)
( 1 ) 修飾フエニルァラ ンまたは修飾ロイシンで N末を修飾しよう,とする対象 タンパク質が N 末にアルギニン又はリジンを有する場合は、 そのタンパク質を LFPTの基質としてそのまま使用できる。  (1) If the target protein to be modified at the N-terminus with modified phenylalanine or modified leucine has arginine or lysine at the N-terminus, the protein can be used as it is as a substrate for LFPT.
( 2 ) 修飾フエ二ルァラニンまたは修飾'ロイ.シンで N末を修飾しようとする対象 タンパク質の N末がアルギニン又はリジン以外の場合は、 ぺプチダ一ゼを作用さ せて、 アルギニン又はリジンが N末となるようにして、 対象タンパク質から被修 飾タンパク質(ァクセプタ一タンパク質)を調製することができる。 ぺプチダーゼ としては、 例えば、 エンドぺプチダーゼ又はェキソぺプチダーゼを用いることが できる。 エンドぺプチダーゼとしては、 ェンテロキナーゼ (DDDDKXを DDDDKと X の間で切断する)、 FactorXa (IE/DGRの後で切断する。 なおアミノ酸配列中で/で 表される部分は、 /の前のァミノ酸又は/の後のァミノ酸いずれでも良いことを示 す。 以下同様。)、 GeneaseKPGAAHY の後で切断する)、 SUM0 プロテアーゼ (SUM0 タンパク質を認識して切断する) などを用いることができる。 また N末側からェ キソぺプチダーゼを作用させてァクセプタータンパク質を調製することも可能で ある。 その場合は、 アミノぺプチダーゼ、 ジアミノぺプチダ一ゼなどを用いるこ とができ、 ジァミノぺプチダ一ゼとしては、 好適にはアルギニン又はリジンで消 化反応が終結する酵素が望ましく、 例えば、 タグザィム (TAGzyme) を用いること ができる。 ■ , (2) Modified phenylalanin or modified 'leu. When the N-terminus of the protein to be modified with leucine is not arginine or lysine, peptidase is used to make arginine or lysine N In the end, a protein to be modified (an acceptor protein) can be prepared from the target protein. As the peptidase, for example, endopeptidase or exopeptidase can be used. Endopeptidases include enterokinase (cleaves DDDDKX between DDDDK and X), FactorXa (cleaves after IE / DGR. The part represented by / in the amino acid sequence is the amino acid before / The following can also be used: the same after the geneaseKPGAAHY), the SUM0 protease (which recognizes and cleaves the SUM0 protein), and the like. It is also possible to prepare an acceptor protein from the N-terminal side by acting an exopeptidase. In this case, use aminopeptidase, diaminopeptidase, etc. The diaminopeptidase is preferably an enzyme that terminates the quenching reaction with arginine or lysine. For example, TAGzyme can be used. ■,
( 3 ) 対象タンパク質の N末にアルギユン又はリジン以外の場合であって、 対象 タンパク質の全長を損なうことなく修飾フエ ルァラニンまたは修飾ロイシンで N末を修飾しようとする場合は、 対象タンパグ質の N末上流側にアミノ酸配列を 付加するように調製する。 . 、 例えば、 対象タンパク質をコードする塩基配列の上流に Met_Xaa- Arg/Lys とい うアミノ酸をコードする塩基配列を付加させた、 付加配列つきの対象蛋白質をコ 一ドする遺伝子を遺伝子組み換え法により発現させて得た、 Met- Xaa- Arg/Lys-対 象タンパク質を、上記(2 )の方法により、ジアミノぺプチダーゼ、例えば、 TAGZyme で処理することにより、 対象タンパク質の N末にアルギニン又はリジンが付加さ れた被修飾タンパク質(ァクセプタータンパク質)を調製することもできる。' ある いは、 シグナルぺプチドのシグナル切断位置の下流にアルギ^ン又はリジンを有 するように遺伝子を設計し、 発現後シグナルペプチドの切断に伴い成熟型タンパ ク貧の N末としてアルギニン又はリジンを有するものを得ることができる。  (3) If the N-terminus of the target protein is other than Argyyun or lysine and it is intended to modify the N-terminus with a modified pheralanine or modified leucine without impairing the overall length of the target protein, the N-terminus of the target protein Prepare to add an amino acid sequence upstream. For example, a gene encoding a target protein with an additional sequence, in which a base sequence encoding the amino acid Met_Xaa-Arg / Lys is added upstream of the base sequence encoding the target protein, is expressed by genetic recombination. By treating the Met-Xaa-Arg / Lys-target protein obtained in this way with a diaminopeptidase such as TAGZyme according to the method (2) above, arginine or lysine is added to the N-terminal of the target protein. A modified protein (acceptor protein) can also be prepared. 'Or, the gene is designed to have arginine or lysine downstream of the signal cleavage position of the signal peptide, and arginine or lysine is used as the N-terminus of mature protein poor after cleavage after signal peptide cleavage. Can be obtained.
2 . LFPTを用いる修飾フエ二ルァラニン又は修飾ロイシンを N末に有する修飾タ ンパク質の製造法 2. Process for producing modified protein with modified phenylalanine or modified leucine at the N-terminus using LFPT
上記 1 で調製された LFPT、 修飾フエ二ルァラ 'ニル tRNAphe又は修飾ロィシル - tRNALeuの共存下で、 N末にアルギニン又はリジンを有するダンパク質(ァクセプ タータンパク質)を処理することにより、ァクセプタータンパク質の N末を前記修 飾フエ二ルァラニン又は修飾ロイシンで修飾することができる。 By treating a protein (acceptor protein) having arginine or lysine at the N-terminus in the presence of LFPT, modified phenyl 'nyl tRNA phe or modified roysil-tRNA Leu prepared in 1 above, The N-terminus of the ceptor protein can be modified with the modified phenylalanin or modified leucine.
更に、 修飾フヱニルァラニル tRNAPhe又は修飾ロイシル tRNAは、 修飾フエニル ァラニン又は修飾ロイシンをそれぞれ、 tRNAPhe又は tRNALeuに変異型 FRS又は変異 型 LRSでの存在下で結合させて調製でき、修飾フエニルァラニル tRNAPhe又は修飾 ロイシル tRNALeuの調製と LFPTによる修飾フエ二ルァラニン又は修飾ロイシンの 転移反応を同一工程(同一反応液)で行なうこともできる。 これにより、 修飾フエ ニルァラニル tRNAPheから修飾フエ二ルァラニンをタンパク質の N末に転移させる ことにより再生した tRNAPheを、再度修飾フエ二ルァラニン及び変異型 FRSを用い て修飾フヱ-ルァラ-ル tRNAPheに調製できるのでより効率的である。 例えば、 (1) LFPT, tRNAPhe、 変異型 FRSの存在下で、 N末にアルギニン又はリ ジンを有するタンパク質を処理することにより、 N 末を前記修飾フエ二.ルァラ二 ンで修飾することができ、 (2) LFPT, tRNA 及び変異型 LRSでの存在下、 N末に アルギニン又はリジンを有するタンパク質を処理することにより、 N 末を前記修 飾ロイシンで修飾できる。 Furthermore, modified Fuweniruaraniru tRNA Phe or modified leucyl tRNA, respectively a modified phenyl Aranin or modified leucine, it can be prepared by coupling in the presence of the mutant type FRS or mutant LRS to tRNA Phe or tRNA Leu, modified Fueniruaraniru tRNA Phe or Preparation of modified leucyl tRNA Leu and transfer reaction of modified phenylalanine or modified leucine with LFPT can be carried out in the same step (same reaction solution). Thus, the tRNA Phe reproduced by transferring from modified Hue Niruaraniru t RNA Phe modified phenylene Ruaranin the N-terminal of the protein, again using modified phenylene Ruaranin and mutant FRS It is more efficient because it can be prepared into a modified file tRNA Phe . For example, (1) the N-terminal can be modified with the above-mentioned modified phenolin by treating a protein having arginine or lysine at the N-terminal in the presence of LFPT, tRNA Phe , or mutant FRS. (2) The N-terminal can be modified with the modified leucine by treating a protein having arginine or lysine at the N-terminal in the presence of LFPT, tRNA and mutant LRS.
具体的には、 例えば、 修飾フエニノレアラニンとして p ra— azido— phenylalanine を角いて、 N末にアルギニン又はリジンを有するタンパク質(ァクセプタ一タンパ ク質)の N末に para- azido- phenylalanineを導入することができる。 導入された para-azido-phenylalanine は、 例えば、 クロスリンカ一として利用できるほか、— アジド基修飾試薬を利用し、 ポリエチレングリコールを付加すること、 更に、 蛍 光分子やピオチンなど標識分子を付加することなどが可能である。  Specifically, for example, para-azido-phenylalanine is used as a modified pheneno-alanine, and para-azido-phenylalanine is introduced at the N-terminus of a protein (acceptor protein) having arginine or lysine at the N-terminus. be able to. The introduced para-azido-phenylalanine can be used as, for example, a cross-linker, using azide group-modifying reagents, adding polyethylene glycol, and adding a labeling molecule such as a fluorescent molecule or piotin. Etc. are possible.
[参考例 1] ノ  [Reference Example 1]
1. Leucyl/phenylalanyl-tRNA-protein transferase の調製と活性確認  1. Preparation and activity confirmation of Leucyl / phenylalanyl-tRNA-protein transferase
1 - 1. LFPT 遺伝子の増幅  1-1. Amplification of LFPT gene
大腸菌ゲノム DNAより LFPT遺伝子を PCR法 (Polymerase Chain Reaction) に より増幅させた。 PCR に用いたプライマーは次のような配列である。 プライマー The LFPT gene was amplified from E. coli genomic DNA by PCR (Polymerase Chain Reaction). The primers used for PCR have the following sequences. Primer
1 : GGGGCCATGGCCCGCCTGGTTCAGGCT,プライマー 2: GGGGCTCGAGTTCTTGTGGTGAAAACA を用いた。 PCR反応時の組成と反応条件を以下に す。 PCR反応液は、 lOXpyrobest buffer (キッ ト添付) 5juL、 dNTPmix (キット添付) 4 し、プライマー 1 (lOOpmol/ μ ΐ) l l プライマー 2 (100 pmol//iUl;uL、 大腸菌ゲノム DNA 1 L、 及び pyrobest DNA polymerase (5 U/ L) 0.5μίを、 dH20で 50 L として調製した。1: GGGGCCATGGCCCGCCTGGTTCAGGCT, primer 2: GGGGCTCGAGTTCTTGTGGTGAAAACA was used. The composition and reaction conditions for the PCR reaction are as follows. PCR reaction solution is lOXpyrobest buffer (kit supplied) 5juL, dNTPmix (kit supplied) 4 and primer 1 (lOOpmol / μΐ) ll primer 2 (100 pmol // iUl; uL, E. coli genomic DNA 1 L, and pyrobest DNA polymerase (5 U / L) 0.5 μί was prepared as 50 L with dH 20 .
PCR反応は、 予備変性を 98°Cで 4分、 変性を 98°Cで 10秒、 ァニーリングを 55°C で 30秒、 及び伸長を 72°Cで 1分間のサイクルを 30サイクル行った。 The PCR reaction was pre-denatured at 98 ° C for 4 minutes, denatured at 98 ° C for 10 seconds, annealed at 55 ° C for 30 seconds, and extended at 72 ° C for 1 minute for 30 cycles.
PCR産物は 5 M NaCl水溶液を溶液の 1/20量加え、 エタノール沈殿を行った。 沈殿を減圧乾燥し、 DNA断片を回収した。  The PCR product was ethanol precipitated by adding 1/20 volume of 5 M NaCl aqueous solution. The precipitate was dried under reduced pressure to recover the DNA fragment.
回収した DNA断片を、 1%ァガロースゲル電気泳動を行い、 LFPT遺伝子の増幅を 確認した。 その結果を図 1に示す。 なお、 図 1中で Mは:マーカー(上から 10、 8、 The recovered DNA fragment was subjected to 1% agarose gel electrophoresis to confirm amplification of the LFPT gene. The results are shown in Fig. 1. In Figure 1, M is: Marker (10, 8, from top)
6、 5、 4、 3.5、 3、 2.5、 2、 1.5、 1.2、 1.03、 0.9、 0.8、 0.7、 0.6、 0.5、 0.4、 0.3、 0.2、 0.1 kbp )を示す。 6, 5, 4, 3.5, 3, 2.5, 2, 1.5, 1.2, 1.03, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 kbp).
1は PCR反応後のサンプルを表し、 矢印は増幅した LFPT遺伝子を示している。 図 1より、 LFPT遺伝子の予想される鎖長とほぼ同じところにバンドが検出され たので LFPT遺伝子の増幅が確認できた。  1 represents the sample after the PCR reaction, and the arrow indicates the amplified LFPT gene. From Fig. 1, a band was detected at almost the same length as the expected chain length of the LFPT gene, confirming the amplification of the LFPT gene.
1 — 2. pET22bへのクロ一ニング 1 — 2. Cloning to pET22b
エタノール沈殿を行った残りの PCR産物を dH2ひ 15ju Lに溶かし 6 X loading dye を 2/ Lカ卩え、 1%ァガロースゲルで 30分間電気泳動を行った。 これを 0.5 i g/mL のェチジゥムブロミ ドの溶液に 10分間浸し、 366nmの波長の UVで.目的バンドを. 確認し、 かみそりで切り出した。 ゲル片からの DNA抽出には EASYTRAP™を用い、 プロ トコルに従い次の操作を行った。切り出したゲルの 3倍量の Nal溶液を加え、 55°Cで数分間保温し、 ゲルを溶解し lOw Lのガラスパウダーを加えてよく混合し 室温に 5分間放置して' DNAを吸着させた後 10, OOOrpmで 10秒間遠心した。上清を 除き、 500 z Lの洗浄用緩衝液を加えてよく懸濁した後 10, OOOrpmで 10秒間遠心 した (この操作は 2回繰り返した)。 上清をできるだけ取り除き、 Η20 20μ ίをカロ え、 55度で 5分間保温して DNAを抽出した後、 10, OOOrpmで 2分間遠心した。 上 清を回収した後もう一度抽出操作を繰り返し、回収した の DNA溶液を 55°C で 5分間保温した後 10, OOOrpmで 2分間遠心し、 上清を別のチューブに移した。 回収した DNA断片を pET22bベクタ一に'組み込むために、 Nco I と Xho Iで消化 した。 反応液の組成は以下の導りで、 37°Cでー晚行った。 消化反応液組成は、 10 XR buffer (制限酵素添付) 3 回収した DNA断片 19 L、 Nco 1(10 Ό/μ 1)2 /xL、 及び Xho 1(10 U/w L)2/z Lを dH20で 30/ Lにして調製した。 pET22bも同様 にして Nco I と Xho Iで消化した。 Ethanol precipitated and the remaining PCR product dH 2 Facial Been 15Ju L to dissolve 6 X loading dye a 2 / L Ka卩E, was carried out for 30 minutes electrophoresed on 1% Agarosugeru. This was immersed in a solution of 0.5 ig / mL ethidium bromide for 10 minutes, the target band was confirmed with UV at a wavelength of 366 nm, and cut with a razor. EASYTRAP ™ was used for DNA extraction from the gel pieces, and the following procedure was performed according to the protocol. Add 3 times the amount of Nal solution of the excised gel, incubate at 55 ° C for several minutes, dissolve the gel, add lOw L glass powder, mix well and let stand for 5 minutes at room temperature to adsorb DNA After that, it was centrifuged at OOOrpm for 10 seconds. The supernatant was removed, 500 zL of washing buffer was added and well suspended, and then centrifuged at 10, OOOrpm for 10 seconds (this operation was repeated twice). Supernatant as possible was removed, Η 2 0 20 μ ί Caro example, after extracting the DNA by incubating at 55 ° for 5 minutes, and centrifuged for 2 min at 10, OOOrpm. After recovering the supernatant, the extraction procedure was repeated once. The recovered DNA solution was incubated at 55 ° C for 5 minutes, centrifuged at 10, OOOrpm for 2 minutes, and the supernatant was transferred to another tube. In order to incorporate the recovered DNA fragment into the pET22b vector, it was digested with Nco I and Xho I. The composition of the reaction solution was determined at 37 ° C with the following guidance. The composition of the digestion reaction solution is 10 XR buffer (attached with restriction enzyme) 3 Collected DNA fragment 19 L, Nco 1 (10 Ό / μ 1) 2 / xL, and Xho 1 (10 U / w L) 2 / z L It was prepared in dH 2 0 30 / L. pET22b was similarly digested with Nco I and Xho I.
各消化物を混合し、キヤリァ一として酵母 tRNA mixtureを 0.1 A260unit加え、 エタノール沈殿を行った。 沈殿は減圧乾燥し、 以下のように反応液を調製し、 ラ ィゲーシヨン反応を行った。 反応は二ツボンジーンの Ligation Packを使用し、 Each digest was mixed, and 0.1 A260 unit of yeast tRNA mixture was added as a carrier, followed by ethanol precipitation. The precipitate was dried under reduced pressure, a reaction solution was prepared as follows, and a ligation reaction was performed. The reaction uses Nibonbon Ligation Pack,
16°Cで 2〜3時間行った。 なお、 Ligation反応溶液は、 lOXLigation buffer 2 juし、 DNA 混合物として前記沈殿、 BSA(kit に添付) 2.5 z L、 T4 DNA Ligase 0.5 Lを dH20で 20 Lとした。 Performed at 16 ° C for 2-3 hours. Incidentally, Ligation reaction solution was lOXLigation buffer 2 ju, the precipitate as DNA mixture was BSA with (kit in the attached) 2.5 z L, T4 DNA Ligase 0.5 L with dH 2 0 and 20 L.
ライゲーション反応後の溶液を JM109株コンビテントセル 100μ Lに加え、氷上 で 5分間放置し、 LB-amp培地のプレートに溶液を塗り広げ、 37°Cでー晚放置した。 生えてきたコロニーを Mini- prep.法を行って、 プラスミ ド DNAを回収した。 この プラスミ ド DNAを pET- LFPTと名付けた。 Add the solution after the ligation reaction to 100 μL of JM109 strain competent cell, For 5 minutes, spread the solution on a plate of LB-amp medium, and leave it at 37 ° C. The colonies that grew were subjected to the Mini-prep. Method, and the plasmid DNA was recovered. This plasmid DNA was named pET-LFPT.
Mini- prep.法(アルカリ法)は以下の手順で行った。 プラスミ ド DNAの調製はァ ルカリ法により以下の操作手順で行った。 プレートに生えてきたコロニーを爪楊 枝でつっき、アルミキヤップ付き試験管の 2mLの LB-amp (50 g/mLの ampicillin) 培地に植菌し、 37°Cでー晚振とう培養した。 エツペンドルフチューブに菌体培養 液を 1.5mL分注し、 10,000rpmで 2分間遠心分離を行い、 集菌した。 培地をでき るだけ取り除き、 菌体を 100 Lの Solution I に懸濁し、 200 Lの' Solutionll を加え、 チューブを上下して穏やかに撹拌した。 つぎに 150 し の Solutionlll をカ卩え、さらに撹拌した後、 150 //Lのフエノール:ク口口ホルム(1:1)溶液を加え、 十分に懸濁し、 r2,000rpmX10 分間遠心した。 上層を回収し、 エタノール沈殿し た。遠心分離して得られた沈殿は 30 Lの TE Bufferに溶解させた。なお、 Solution I (TE- Glucose Buffer)は、 Tris-HCl (pH7.6) 25mM、 EDTA - Na(pH7.0) 10mM、 Glucose 50mMを含有する。  The Mini-prep. Method (alkali method) was performed according to the following procedure. The plasmid DNA was prepared by the alkaline method according to the following procedure. The colonies that had grown on the plate were picked with a toothpick, inoculated into 2 mL of LB-amp (50 g / mL ampicillin) medium in a test tube with an aluminum cap, and cultured at 37 ° C with shaking. 1.5 mL of the bacterial cell culture solution was dispensed into an Eppendorf tube and centrifuged at 10,000 rpm for 2 minutes to collect the cells. The medium was removed as much as possible, the cells were suspended in 100 L of Solution I, 200 L of Solutionll was added, and the tube was moved up and down and gently stirred. Next, after 150 ml of Solutionlll was added and stirred further, 150 // L of phenol: formal mouth (1: 1) solution was added, suspended sufficiently, and centrifuged at r2,000 rpm for 10 minutes. The upper layer was collected and ethanol precipitated. The precipitate obtained by centrifugation was dissolved in 30 L TE Buffer. Solution I (TE-Glucose Buffer) contains Tris-HCl (pH 7.6) 25 mM, EDTA-Na (pH 7.0) 10 mM, and Glucose 50 mM.
また、 Solutionll は、 NaOH 0· 2M、 SDS1%であり、 Solutionlll (lOOmL)は、 5M 酢酸力リ ウム 60mL、 氷酢酸 11.5mL、 dH20 28.5mL 力、らなる。 TE buffer は、 Tris-HCl (pH8.0)10mM, 及び EDTA(pH8.0)'lm 、 を含有する。 Further, Solutionll is, NaOH 0 · 2M, a SDS1%, Solutionlll (lOOmL) is, 5M acetate force Li um 60 mL, glacial acetic acid 11.5 mL, dH 2 0 28.5 mL force, Ranaru. TE buffer contains Tris-HCl (pH 8.0) 10 mM, and EDTA (pH 8.0) 'lm.
(結果)  (Result)
pET22bとのライゲーシヨン後、 LFPT遺伝子が組み込まれたかを確認した。 結果を図 2に示す。 pET_LFPTを Nco I と Xho Iで消化した。 これを 1%ァガロー スゲル電気泳動した。  After ligation with pET22b, it was confirmed whether the LFPT gene was integrated. The result is shown in figure 2. pET_LFPT was digested with Nco I and Xho I. This was subjected to 1% agarose gel electrophoresis.
Mは、 マーカー(上から 10、 8、 6、 5、 4、 3.5、 3、 2.5、 2、 1.5、 1.2、 1.03、 0.9、 0.8、 0.7、 0.6、 0.5、 0.4、 0.3、 0.2、 0. lkbp)を示す。  M is a marker (from the top 10, 8, 6, 5, 4, 3.5, 3, 2.5, 2, 1.5, 1.2, 1.03, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.lkbp ).
1〜4は、 pET- LFPT の消化反応後のサンプルを示す。 バンドが予測と一致して いるので pET- LFPTプラスミ ドが構築できたことが確認できた。  1-4 show the sample after digestion reaction of pET-LFPT. Since the band was consistent with the prediction, it was confirmed that the pET-LFPT plasmid was constructed.
1一 3. 発現  1 1 3. Expression
大腸菌 ER2566株のコンビテントセルに調製したプラスミ ド DNAが lng程度にな るように加え、 LB- ampプレートを用いて形質転換を行った。 生えてきたコ口-— を白金耳で突いて 100mLの LB_amp培地に植菌し、 37度で培養した。 濁度(A600) が 0. 7になったら 0. 5Mの Isopropyl— 3— D— thiogalactopyranos ide (IPTG)を培地 の 1/1000量加え(終濃度 0. 5mM)さらに室温で一晩振とう した。 その後、 培養液を 50mLチューブと 1. 5raLチューブに移し、 それぞれ 4°C、 6, OOOrpmで 10分間遠心 した。上清を取り除いた後、残りの培養液を同じ 50mLチューブに加えさらに、 4° (:、 6, OOOrpmで 10分間遠心して上清を取り除き、 菌体を- 80°Cで冷凍保存した。 In addition, plasmid DNA prepared in a competent cell of E. coli ER2566 strain was added to about lng, and transformation was performed using an LB-amp plate. Growing mouth-- Was inoculated into 100 mL of LB_amp medium with platinum ears and cultured at 37 degrees. When the turbidity (A600) reached 0.7, add 0.5M Isopropyl- 3-D-thiogalactopyranoside (IPTG) 1/1000 volume of the medium (final concentration 0.5 mM) and shake at room temperature overnight. . Thereafter, the culture solution was transferred to a 50 mL tube and a 1.5 raL tube, and centrifuged at 4 ° C and 6, OOOrpm for 10 minutes, respectively. After removing the supernatant, the remaining culture solution was added to the same 50 mL tube, and further centrifuged at 4 ° (:, 6, OOOrpm for 10 minutes to remove the supernatant, and the cells were stored frozen at -80 ° C.
1 - 4 . Ni-NTA Agaroseカラムによる LFPTの精製 .  1-4. Purification of LFPT by Ni-NTA Agarose column.
50mL のファノレコ ンチューブに回収した菌体を 15mL の上記 Sonication Buffer (20mM Tr i s-HCl (pH7. 6)、 1 m MgCl2、 0. 2 M NaCl、 6mM ]3 - ercaptoethanoU 5°/oグリセリン)で懸濁し 15分間超音波処理によって菌体を破砕した後、 30, OOOxg で 30分間遠心し(4°C)、 この上清を S30とした。 . The bacterial cells collected in a 50 mL phenolic tube are mixed with 15 mL of the above Sonication Buffer (20 mM Tris-HCl (pH 7.6), 1 mM MgCl 2 , 0.2 M NaCl, 6 mM) 3-ercaptoethanoU 5 ° / o glycerin The cells were disrupted by sonication for 15 minutes and centrifuged at 30, OOOxg for 30 minutes (4 ° C). The supernatant was designated as S30. .
Poly-Prep Chomatography Colum (BI0 - RAD社製)に Ni-NTA Agaroseを IraL充填 し、 Sonication Buffer lOmL で平衡化した後 S30 をロードした。 その後 Wash Buffer (20mM Tri s-HCl (pH7. 6) , ImM MgCl2 0. 2 NaCl , 6mM β -Mercaptoethanol , 5%グリセリン、 及ぴ lOmM イミダゾール) lOmL で洗浄し、 Elut ion Buffer (20mM Tri s_HCl (pH7. 6)、 ImM MgCl2、 0. 2 NaCl , 6mM i3 - ercaptoethanol , 5%グリセ リン、 及び lOraM ィミダゾール) 8mLで溶出した。 それ 15%SDS PAGEし、 LpPTの バンドが確認できたので(図 3 )、 溶出液を Amicon Ultraを用いて約 400 / Lまで 濃縮したものを LFPTとした。 また精製した LFPTは _80°Cに保存した。 Poly-Prep Chomatography Colum (BI0-RAD) was filled with IraL of Ni-NTA Agarose, equilibrated with Sonication Buffer lOmL, and S30 was loaded. Thereafter Wash Buffer (20mM Tri s-HCl (pH7. 6), ImM MgCl 2 0. 2 NaCl, 6mM β -Mercaptoethanol, 5% glycerol,及Pi lOmM imidazole) and washed with lOmL, Elut ion Buffer (20mM Tri s_HCl ( Elution with 8 mL of pH 7.6), ImM MgCl 2 , 0.2 NaCl, 6 mM i3-ercaptoethanol, 5% glycerin, and lOraM imidazole). As a result of 15% SDS PAGE, an LpPT band was confirmed (Fig. 3), and the eluate was concentrated to about 400 / L using Amicon Ultra, and was designated as LFPT. The purified LFPT was stored at _80 ° C.
1 — 5 . RI標識を用いた LFPTの活性の測定 .  1 — 5. Measurement of LFPT activity using RI labeling.
酵素の活性を測定するために以下の反応液を調製し 37°C、 30分間反応させた。 反応液組成は、 5 X AAM (Tri s-HCl (pH7. 6) 500m 、 MgCl2 50mM、 KC1 200mM、 及 び ATP 20m ) 4 /i L、 LFPT 2 /i L、 tRNAPhe 0. 1 A260unit , 14C フエ二ルァラニン (394raCi/ramol) 1 μ L, PheRS (0. lmg/mL) 1 L、 ァクセプタ一タンパク質 ( α -カゼ ィン又は TAGZyme処理済 EGFP) 50pmolを dH20で 20 μ Lにして調製した。 In order to measure the enzyme activity, the following reaction solution was prepared and reacted at 37 ° C for 30 minutes. The composition of the reaction solution is 5 X AAM (Tris-HCl (pH 7.6) 500m, MgCl 2 50mM, KC1 200mM, and ATP 20m) 4 / i L, LFPT 2 / i L, tRNA Phe 0.1 A260unit, 14 C phenylalanine (394raCi / ramol) 1 μL, PheRS (0. lmg / mL) 1 L, acceptor protein (α-casein or TAGZyme-treated EGFP) 50 pmol to 20 μL with dH 2 0 Prepared.
反応液を 15%SDS PAGEし、 ゲルをバイオイメージングアナライザー BAS- 2500 を用いて画像分析した(図 4)。  The reaction solution was subjected to 15% SDS PAGE, and the gel was subjected to image analysis using a bioimaging analyzer BAS-2500 (Fig. 4).
また、反応液を濾紙にスポッ トし、それを 98°Cの 5%TCAで 20分間洗った後 4°C の 5%TCA で 5分間振とうした。 これを 3回繰り返した。 エタノールで濾紙の水 分を除き、 充分に乾かした後液体シンチレーションカウンタ一により濾紙に残る 放射能を測定することにより [14C]Phe の ct—カゼインへの取り込みを評価した (図 5)。 The reaction solution was spotted on a filter paper, washed with 5% TCA at 98 ° C for 20 minutes, and then shaken with 5% TCA at 4 ° C for 5 minutes. This was repeated three times. Filter paper water with ethanol The amount of [ 14 C] Phe incorporated into ct-casein was evaluated by measuring the radioactivity remaining on the filter paper with a liquid scintillation counter after the sample was sufficiently dried (Fig. 5).
[参考例 2]  [Reference Example 2]
フエニルァラニル tRNA合成酵素の調製と活性確認 Preparation and activity confirmation of phenylalanyl tRNA synthetase
1— 1. 共発'現用ベクターの作成  1— 1. Create a co-occurrence 'current vector
pETベクターとの共発現用ベクターの作製を行った。 手順概略は図 6に示す。 ベクター pET 21- a( + )と pPROLar. A122の配列を基に、 プライマー 1 (pET21- a( + ) の T7 promoterに対応) : 5' - GGG GTA CCT AAT ACG ACT CAC TAT- 3'、 'プライマー A vector for co-expression with the pET vector was prepared. Figure 6 shows the outline of the procedure. Based on the vectors pET 21-a (+) and pPROLar. A122, primer 1 (corresponds to T7 promoter of pET21-a (+)): 5 '-GGG GTA CCT AAT ACG ACT CAC TAT-3', ' Primer
2 (pET21- a( + )の T7 terminatorに対応): 5' -GGG GTA CCC AAA AAA CCC CTC AAG-3' プライマー 3 (pPROL r. A122MCSの上流に対応) : 5' - GGG GTA CCT CGA CAG TTC ATA GGT- 3'、 プライマー 4 (pPROLar. A122MCSの下流に対応) : 5' -GGG GTA CCG GAT ATA TTC CGC TTC- 3'を設計した。 なお、 各プライマ一は、 Kp nlの制限酵素認識部位 を有している。 2 (corresponds to T7 terminator of pET21-a (+)): 5 '-GGG GTA CCC AAA AAA CCC CTC AAG-3' Primer 3 (corresponds upstream of pPROL r. A122MCS): 5 '-GGG GTA CCT CGA CAG TTC ATA GGT-3 ', Primer 4 (corresponding to the downstream of pPROLar. A122MCS): 5'-GGG GTA CCG GAT ATA TTC CGC TTC-3' was designed. Each primer has a Kpnl restriction enzyme recognition site.
まずプライマ一 1および 2を用いて以下の反応組成により PCR反応 ( 1) を行 つ ft。 PCR反応液は、 10 X pyrobest buffer (キッ ト添付) 5 レ dNTP mix (キッ ト添付) 4μύ プライマ一 1 (100 pmol/zi L)0.5μ L、 プライマー 2 (lOOpmol/ 1)0.5 μ L, pET21-a(+)0.05 u g> 及び pyrobest DNA polymerase (5U/ /z L) 0.5 L を、' dH20で 50 Lにして調製した。 PCR反応は、 予備変性を 95°Cで 2分、 変性を 95°Cで 10秒、 ァニーリングを 55°Cで 30秒、及び伸長を 72°Cで 1分間のサイクル を 30サイクル行った。 この PCR産物を PCR産物 (1) とする。 First, perform PCR reaction (1) using primers 1 and 2 with the following reaction composition ft. PCR reaction solution is 10 X pyrobest buffer (kit supplied) 5 rep dNTP mix (kit supplied) 4 μύ Primer 1 (100 pmol / zi L) 0.5 μL, Primer 2 (lOOpmol / 1) 0.5 μL, pET21 -a (+) 0.05 ug> and pyrobest DNA polymerase (5 U // z L) 0.5 L were prepared with 50 d of 'dH 2 O. The PCR reaction was pre-denatured at 95 ° C for 2 minutes, denatured at 95 ° C for 10 seconds, annealed at 55 ° C for 30 seconds, and extended at 72 ° C for 1 minute for 30 cycles. This PCR product is designated as PCR product (1).
同様にプライマー 3および 4を用いて以下の反応組成により PCR反応 (2) を 行った。 PCR反応液は、 10 X pyrobest buffer (キッ ト添付) 5μ dNTP mix (キ ッ ト添付) 4/xL、 プライマ一 3 (100 pmol/μ L)0.5/i L、 プライマ一 4 (lOOpmol/ μ L)0.5^ Ls pPROLarA.1220. g、 及び pyrobest DNA polymerase (5 U/〃 0.5Similarly, PCR reaction (2) was performed using primers 3 and 4 with the following reaction composition. PCR reaction solution is 10 X pyrobest buffer (kit supplied) 5 μdNTP mix (kit supplied) 4 / xL, primer 3 (100 pmol / μL) 0.5 / i L, primer 4 (lOOpmol / μL ) 0.5 ^ L s pPROLarA.1220.g and pyrobest DNA polymerase (5 U / 〃 0.5
/ Lを、 dH20で 50 zLにして調製した。 PCR反応は、 予備変性を 95°Cで 2分、 変 性を 95°Cで 30秒、 ァ -ーリングを 55°Cで 30秒、 及び伸長を 72°Cで 2分間のサ イクルを 30サイクル行った。 この PCR産物を PCR産物 (2) とする。 / L was prepared to 50 zL with dH 2 O. PCR reaction is 30 cycles of pre-denaturation at 95 ° C for 2 minutes, denaturation at 95 ° C for 30 seconds, firing at 55 ° C for 30 seconds, and extension at 72 ° C for 2 minutes. went. This PCR product is designated as PCR product (2).
反応後、 1%ァガロースゲルで 30分間電気泳動を行った。 これを 0.5/ig/mLのェ チジゥムブロミ ドの溶液に 10分間浸し、 366nmの波長の UVで目的バンドを確認 し、 かみそりで切り出した。 ゲル片からの DNA抽出には EASYTRAP™を用い、 プロ トコルに従い次の操作を行った。切り出したゲルの 3倍量の Nal溶液を加え、 55°C で数分間保温し、 ゲルを溶解し lO^uLのガラスパウダーを加えてよく混合し室温 に 5分間放置して DNAを吸着させた後 lOOOOrpmXIOsec遠心した。 上清を除き、 500 Lの洗 用緩衝液を加えてよく懸濁した後 lOOOOrpmXIOsec遠心した (2回 繰り返した)。 上清をできるだけ取り除き、 H2020/i lを,加え、 55°Cで 5分間保温 して DNAを抽出した後、 10000rpmX2分間遠心した。 上清を回収した後もう一度 抽出操作を繰り返し、 回収した 40 し の DNA 溶液を 55°Cで 5 分間保温した後 10000rpmX2分間遠心し、 上清を別のチューブに移した。 After the reaction, electrophoresis was performed on a 1% agarose gel for 30 minutes. This is 0.5 / ig / mL. The sample was immersed in a solution of thymium bromide for 10 minutes, the target band was confirmed with UV at a wavelength of 366 nm, and cut with a razor. EASYTRAP ™ was used for DNA extraction from the gel pieces, and the following procedure was performed according to the protocol. Add 3 times the amount of Nal solution of the excised gel, incubate at 55 ° C for several minutes, dissolve the gel, add lO ^ uL glass powder, mix well and let stand at room temperature for 5 minutes to adsorb DNA Thereafter, lOOOOrpmXIOsec was centrifuged. The supernatant was removed, 500 L of washing buffer was added and well suspended, and then centrifuged at lOOOOrpmXIOsec (repeated twice). The supernatant was removed as much as possible, H 2 020 / il was added, and DNA was extracted by incubating at 55 ° C for 5 minutes, followed by centrifugation at 10,000 rpm for 2 minutes. After collecting the supernatant, the extraction operation was repeated once more, and the collected 40 DNA solutions were incubated at 55 ° C for 5 minutes and then centrifuged at 10000 rpm for 2 minutes, and the supernatant was transferred to another tube.
EASYTRAP™による精製後の PCR産物 (1) 溶液の 5分の 1量と、 PCR産物 (2) 溶液の全量を混ぜ合わせ、 さらにキヤリァ一として酵母 tRNA mix 0.1 A260unit を加え、 これをエタノール沈澱した。  PCR product (1) After purification by EASYTRAP ™ (1) One-fifth of the solution and the total amount of PCR product (2) solution were mixed, and yeast tRNA mix 0.1 A260 unit was added as a carrier, followed by ethanol precipitation.
回収した沈殿を、 Kpnlで消化した。 反応液の組成は以下の通りで、 37°Cで一晩 行った。 消化反応液組成は、 ΙΟΧΚρη I buffer (制限酵素添付) 2/ L、 回収した DNA断片、 および Kpn 1(1011/ /し).3 /丄を (11120で20/^にして調製した。 The collected precipitate was digested with Kpnl. The composition of the reaction solution was as follows and was performed overnight at 37 ° C. The composition of the digestion reaction solution was ΙΟΧΚρη I buffer (with restriction enzyme) 2 / L, the recovered DNA fragment, and Kpn 1 (1011 / /) .3 / 丄 (111 2 0 to 20 / ^).
消化反応後はエタノール沈殿を行った。 沈殿は減圧乾燥し、 以下のように反応 液を調製し、 ライゲ一シヨン反応を行った。 .反応は二ツボンジーンの Ligation Pack を使用し、 16°Cで 3hr行った。 なお、 Ligation反応.溶液は、 lOXLigation buffer 2/zL、 DNA混合物として前記沈殿、 BSA (kitに添付) 2.5 μ L、 及び T4 DNA Ligase 0· 5μ Lを dH20で 20μ Lにして調製した。 After the digestion reaction, ethanol precipitation was performed. The precipitate was dried under reduced pressure, a reaction solution was prepared as follows, and a ligation reaction was performed. The reaction was carried out for 3 hours at 16 ° C using a Ligation Pack from Nibonbon Gene. Incidentally, Ligation reaction. Solution, lOXLigation buffer 2 / zL, the precipitate as a DNA mixture (supplied with kit) BSA 2.5 μ L, and was prepared T4 DNA Ligase 0 · 5μ L in the 20 [mu] L with dH 2 0.
ライゲ一ション反応後の溶液を XL- 1 Blueコンビテントセル 100 〖こ力!]え、 氷 上で 5分間放置し、 LB- amp培地のプレートに溶液を塗り広げ、 37°Cでー晚放置し た。 生えてきたコロニーを Mini- prep.法を行って、 プラスミ ド DNAを回収した。 このプラスミ ド DNAを pTAG と名付けた。 目的の配列を有するかは日立 DNAシー ケンサ一 SQ5500Eを用いて確認を行った。  After the ligation reaction, the XL-1 Blue combi- tive cell 100 squeezed force!], Left on ice for 5 minutes, spread the solution on the LB-amp medium plate, and left at 37 ° C. did. The colonies that grew were subjected to the Mini-prep. Method, and the plasmid DNA was recovered. This plasmid DNA was named pTAG. Whether it has the target sequence was confirmed using Hitachi DNA Sequencer SQ5500E.
1一 2. pTAGFRSA及び pETFRSBの調製  1 One 2. Preparation of pTAGFRSA and pETFRSB
酵母 PheRS 遺伝子を pTAG と pET21_a (+)にクローニングするために、 酵母 S accharomyces cerevisiae ゲノムの全酉己歹 IJの中力 ら、 PheRSの αサブユニッ トと βサブュ-ッ トをコ一ドする遺伝子配列を基に、プライマー 5 (ct遺伝子- 5'末端に 対応 。 Pstl及び Ndelの制限酵素部位を含む) : 5'- GGG GCT GCA GCA TAT GTC TGA CTT CCA ATT AGA- 3'、 プライマー 0 遺伝子- 3'末端に ^応。 Pst I及び Not Iの 制限酵素部位を含む。 ) : 5'- GGG GCT GCA GGC GGC CGC TTA TTC GTA CAA GTC TTC GT- 3'、 プライマー 7 ( ]3遺伝子- 5' 末端に対応。 Pst I及び Ndelの制限酵素部位 を含む。 ) : 5'- GGG GCT GCA GCA TAT GCC TAC CGT CTC CGT GAA CAA- 3'、 プライ マー 8 ( )3遺伝子- 3'末端に対応、 Pstl及び Notlの制限 ¾素部位を含む。):、5'_GGG GCT GCA GGC GGC CGC TAG GAA GAC TTC GGC CAT - 3,を用い、 PCR 法によって DNA 断片を増幅させた。 . ', ' まずプライマー · 5および 6を用いて以下の反応組成により PCRを行い PheRSの αサブユニッ ト遺伝子を増幅した。 PCR反応液は、 . lOXpyrobest buffer (キッ ト 添付) 5//L、 dNTPmix (キッ ト添付) 4WL、 プライマー 5 (lOOpmol/iu L) 1 L、 プ ライマー 6 (l,00pmol// L)l し、 酵母ゲノム DNA 1 μ L, 及び pyrobest DNA
Figure imgf000022_0001
を、 dH20で 50 Lにして調製した。. PCR反応は、 予備 変性を 95°Cで 2分、 変性を 95°Cで 10秒、 ァニーリングを 55°Cで 30秒、 及び伸 長を 72°Cで 1分間のサイクルを 30サイクル行った。 .
In order to clone the yeast PheRS gene into pTAG and pET21_a (+), the entire Saccharomyces cerevisiae genome, IJ Nakatsuji, and the PheRS α subunit Primer 5 (corresponds to ct gene-5 'end, including restriction enzyme sites of Pstl and Ndel): 5'- GGG GCT GCA GCA TAT GTC TGA CTT CCA ATT AGA-3 ', Primer 0 gene-Adapted to the 3' end. Contains restriction sites for Pst I and Not I. ): 5'-GGG GCT GCA GGC GGC CGC TTA TTC GTA CAA GTC TTC GT-3 ', primer 7 (corresponds to 3 genes-5' end, including Pst I and Ndel restriction enzyme sites): 5 ' -GGG GCT GCA GCA TAT GCC TAC CGT CTC CGT GAA CAA-3 ', Primer 8 () 3 gene-Corresponds to the 3' end, and contains restriction sites for Pstl and Notl. ): 5'_GGG GCT GCA GGC GGC CGC TAG GAA GAC TTC GGC CAT-3, and the DNA fragment was amplified by PCR. ',' First, PCR was performed using primers · 5 and 6 with the following reaction composition to amplify the α subunit gene of PheRS. LOXpyrobest buffer (with kit) 5 // L, dNTPmix (with kit) 4 W L, primer 5 (lOOpmol / iu L) 1 L, primer 6 (l, 00pmol // L) l Yeast genomic DNA 1 μL, and pyrobest DNA
Figure imgf000022_0001
Was prepared to 50 L with dH 2 O. The PCR reaction was pre-denatured at 95 ° C for 2 minutes, denatured at 95 ° C for 10 seconds, annealed at 55 ° C for 30 seconds, and elongated at 72 ° C for 1 minute for 30 cycles. . .
またプライマー 7および 8を用いて上記と同様の反応組成およびプログラムに て PCRを行い、 )3サブユニッ ト遺伝子の増幅を行った。  PCR was performed using primers 7 and 8 with the same reaction composition and program as above, and a) 3 subunit genes were amplified.
反応後、 1%ァガロースゲルで 30分間電気泳動を行った。 これを 0· 5/ g/mlのェ チジゥムブロミ ドの溶液に 10分間浸し、 366nmの波長の UVで目的バンドを確認 し、 かみそりで切り出した。 ゲル片からの DNA抽出には EASYTRAP™を用い、 プロ トコルに従い次の操作を行った。  After the reaction, electrophoresis was performed on a 1% agarose gel for 30 minutes. This was immersed in a solution of 0.5 · g / ml ethidium bromide for 10 minutes, the target band was confirmed with UV at a wavelength of 366 nm, and cut with a razor. EASYTRAP ™ was used for DNA extraction from the gel pieces, and the following procedure was performed according to the protocol.
回収した PheRSの αサブュニッ ト遺伝子および サブユエッ ト遺伝子を各べク ターに組み込むために、 それぞれ Ndel と Notlで消化した。 反応液の組成は以下 の通りで、 37°Cでー晚行った。 消化反応液組成は、 lOXRbuffer (制限酵素添付) 2//L、 回収した DNA断片沈殿、 NdeI(10U/ L)l L、 及び Notl (10U/ μ L) 1 L を dH20で 20μίにして調製した。 pET21-a(+)および pTAGも同様にして Ndel と Notl で消化した。 In order to incorporate the recovered PheRS α subunit gene and subunit gene into each vector, digestion was performed with Ndel and Notl, respectively. The composition of the reaction solution was as follows, and was performed at 37 ° C. Digestion reaction composition, lOXRbuffer (restriction enzyme attached) 2 // L, recovered DNA fragment precipitation, NdeI (10U / L) l L, and Notl (10U / μ L) in the 20μί a 1 L with dH 2 0 Prepared. pET21-a (+) and pTAG were similarly digested with Ndel and Notl.
PheRSの αサブュ-ッ ト遺伝子消化物は pTAG消化物と混合しェタノ一ル沈殿処 理をし、 PheRSの /3サブュニッ ト遺伝子消化物は PET21- a (+)消化物と混合しエタ ノール沈殿処理を行った。 沈殿は減圧乾燥し、 以下のように反応液を調製し、 そ れぞれライゲーシヨン反応を行った。 反応は二ツボンジーン Ligation Packを 使用し、 16°Cで 2、 3hr行った。 なお、 Ligation反応溶液は、 10 X Ligation buffer 2 μ Ι, DNA混合物として前記沈殿、 BSA (kitに添付) 2. 5 L、 T4 DNA Ligase 0. 5 を dH20で 20 Lとした。 The α-sublet gene digest of PheRS is mixed with the pTAG digest and mixed with ethanol. As a result, the / 3 subunit gene digest of PheRS was mixed with PET21-a (+) digest and subjected to ethanol precipitation. The precipitate was dried under reduced pressure, and a reaction solution was prepared as follows, and a ligation reaction was performed for each. The reaction was carried out using Nibonbon Ligation Pack for 2 to 3 hours at 16 ° C. The Ligation reaction solution was 10 μL Ligation buffer 2 μΙ, the precipitate as a DNA mixture, BSA (attached to the kit) 2.5 L, and T4 DNA Ligase 0.5 was adjusted to 20 L with dH 20.
ライゲーション反応後の溶液を XL- 1 Blueコンビテン,トセル 100 μ Lに力]]え、氷 上で.5分間放置し、 LB- amp培地のプレートに溶液を塗り広げ、 37°Cでー晚放置し た。 生えてきたコロニーを Mini-prep.法を行って、 プラスミ ド DNAを回収し 。 このプラスミ ド DN.Aを pTAGFRSAおよび pETFRSBと名付けた。目的の配列を有する かは日立 DNAシーケンサー SQ5500Eを用いて確認を行った。 それぞれのベクター の構成を図 7に示す。 " . After the ligation reaction, force XL-1 Blue combiton and Tocel 100 μL]], leave on ice for 5 minutes, spread the solution on the LB-amp medium plate, and leave it at 37 ° C. did. The colony that has grown is subjected to the Mini-prep. Method, and the plasmid DNA is recovered. This plasmid DN.A was named pTAGFRSA and pETFRSB. Whether the target sequence was present was confirmed using Hitachi DNA Sequencer SQ5500E. Figure 7 shows the structure of each vector. ".
1 — 3 . PheRSの発現  1 — 3. Expression of PheRS
酵母 PheRSを発現させるために、 pETFRSBを大腸菌 ER2566コ,ンピテントセルに 加え、形質転換を行った後、それを LB-ampプレート培地にコンラージ棒で塗り広 げ、 37°Cでー晚放置した。 プレート培地に生じたコロニーの 1つを爪楊枝でつつ き、 LB- amp培地で 37°Cで培養しながら、 600nmで培養液の濁度(0D600)を測定し、 OD600が 0. 3〜0. 4になったら培養液を氷上で 15分間冷やし集菌した。 上清の培 養液を取り除き、 菌体に l X TSS (10g/し Bacto-tryptone , 5g/し Bacto— yeast extract , lOg/L NaCl、 10% PEG 6000 (w/v) , 50mM MgCl2、 及び 5°/。ジメチルスル ホキシド)を加え、 液体窒素で凍結させ- 80°Cで保存した。 To express yeast PheRS, pETFRSB was added to E. coli ER2566 competent cells, transformed, spread on a LB-amp plate medium with a congeal rod, and left at 37 ° C. While one of the colonies on the plate medium was picked with a toothpick and cultured at 37 ° C in LB-amp medium, the turbidity (0D600) of the culture solution was measured at 600 nm, and the OD600 was 0.3-0. When 4 was reached, the culture was cooled on ice for 15 minutes and collected. Remove the culture medium from the supernatant, and add 1 x TSS (10 g / b Bacto-tryptone, 5 g / b Bacto-yeast extract, lOg / L NaCl, 10% PEG 6000 (w / v), 50 mM MgCl 2 , And 5 ° /. Dimethyl sulfoxide) was added, frozen in liquid nitrogen and stored at -80 ° C.
pETFRSBをもつ ER2566コンビテントセルにプラスミ ド pTAGFRSAを加え上記と 同様の方法で形質転換を行い、 LB- 50 μ g/mLampici l l in · 25 g/mL kanamycin (LB- ampkan)プレ一ト培地にコンラージ棒で塗り広げ、 37°Cでー晚培養 した。プレート培地に生じたコロニーを爪楊枝でつっき LB- ampkan培地に植菌し、 37°Cで培養しながら 0D600が 0. 7〜0. 9になったところで培養液に Isopropyl- /3 -D (-) -thiogalactopyranoside (IPTG)を終濃度 500 Mになるように加え、 さらに 37°Cで 4hr培養し、 発現させた。  Add plasmid pTAGFRSA to ER2566 competent cells with pETFRSB and perform transformation in the same manner as above, then add LB-50 μg / mL ampicillin in 25 g / mL kanamycin (LB-ampkan) pre-culture medium. Spreaded with a stick and incubated at 37 ° C. The colony produced on the plate medium is inoculated with a toothpick into the LB-ampkan medium and cultured at 37 ° C. When 0D600 reaches 0.7 to 0.9, the culture medium is isopropyl- / 3 -D (- ) -thiogalactopyranoside (IPTG) was added to a final concentration of 500 M, and further cultured at 37 ° C. for 4 hours for expression.
1 一 4 . 酵母 PheRSの精製 発現させた酵母 PheRS'を精製するために、得られた培養液の菌体を Sonicati0n Buffer (20mM Hepes-KOH (pH7. 0)、 1 mM MgCl2、 0. 2 M NaCl、 6 mM i3 - ercaptoethanol , 及び 5% グリセリン)で懸濁しだ後、 Bioruptorで菌体を超音波破砕し遠心する ことで S30画分を得た。 あらかじめ平衡化した Ni- NTA agaroseカラムクロマトグ ラフィ一に前記 S30画分サンプルをロードし、 前言己 Sonication Buffer と Wash Buffer (10mMイミダゾ一ル含有 Sonication Buff er溶液)を用いて UVモニタ一に よ り A280 を観察しながらピークがなく なるまで ラムを洗い、. Elution Buffer (250mM含有イミダゾール Sonicatipn Buffer溶液)でサンプルを溶出し、 UVモニターで A280を観察しながらピークが現れた部分を闫収した。 得られた^ ンプルに等量の HG. 3 Buffer (40mM HEPES-K0H (pH7. 0)、 2mM MgCl2、 3M (NH4) 2S04、 10%Glycerol、 12mM β -Mercaptoethanol , 及び 100 M pABSF) を加えて混ぜ合わ せ、あらかじめ HG 1. 5 Buffer (20 raM HEPES-KOH (pH7. 0)、 1 mM MgCl2、 1. 5 M (NH4) 2S04、 5%Glycerol、 6mM β -MercaptoethanoK 及び 50 M' pABSF)で平衡ィ匕した Phenyl Sepharose H. P.カラム(樹脂量 8ml)にロードし、 UVモニターでの A280が 0· 03以 下になるまで HG 1. 5 Bufferを流速 2mL/minで流した。 次に HG 1. 5 Bufferと HG 0 Buffer (20m HEPES-KOH (pH7. 0) 、 ImM MgCl2 、 5% Glycerol 、 6mM β -Mercaptoethanol , 及び 50 M pABSF)を用いて、 流速 2mL/minで 150分間かけて 1. 5Mから 0 Mまでの硫酸アンモ-ゥム直線濃度勾配をかけ、サンプルを溶出した。 これちを 10%SDS-ポリアクリルミ ドゲル電気泳動(PAGE)を行い、 CBB染色液により 目的のタンパク質を検出、 検討した(図 8)。. 図 8.レーン 4および 5より、 推定分 子量の位置にバンドが確認できたことから、 酵母由来 PheRSの発現、 精製が確認 できた。 1 1 4. Purification of yeast PheRS In order to purify the expressed yeast PheRS ', the cells of the obtained culture broth were mixed with Sonicati0n Buffer (20 mM Hepes-KOH (pH 7.0), 1 mM MgCl 2 , 0.2 M NaCl, 6 mM i3-ercaptoethanol , And 5% glycerin), and the cells were sonicated with a Bioruptor and centrifuged to obtain the S30 fraction. Load the S30 fraction sample into a pre-equilibrated Ni-NTA agarose column chromatograph, and use the UV monitor with the Sonication Buffer and Wash Buffer (Sonication Buffer solution containing 10 mM imidazole). The ram was washed until the peak disappeared, and the sample was eluted with Elution Buffer (250 mM imidazole Sonicatipn Buffer solution). The portion where the peak appeared was collected while observing A280 with a UV monitor. Equal amounts of HG. 3 Buffer (40 mM HEPES-K0H (pH 7.0), 2 mM MgCl 2 , 3M (NH 4 ) 2 S0 4 , 10% Glycerol, 12 mM β-Mercaptoethanol, and 100 M pABSF HG 1.5 Buffer (20 raM HEPES-KOH (pH 7.0), 1 mM MgCl 2 , 1.5 M (NH 4 ) 2 S0 4 , 5% Glycerol, 6 mM β-MercaptoethanoK) And 50 M 'pABSF) equilibrated with Phenyl Sepharose HP column (resin volume 8 ml), and flow HG 1.5 Buffer at a flow rate of 2 mL / min until A280 on UV monitor is below 0.03. did. Then HG 1. 5 Buffer and HG 0 Buffer (20m HEPES-KOH (pH7. 0), ImM MgCl 2, 5% Glycerol, 6mM β -Mercaptoethanol, and 50 M pABSF) using a 150 at a flow rate of 2 mL / min The sample was eluted by applying a linear ammonium sulfate concentration gradient from 1.5 M to 0 M over a period of minutes. This was subjected to 10% SDS-polyacrylamide gel electrophoresis (PAGE), and the target protein was detected and examined with the CBB staining solution (Fig. 8). Figure 8. Lanes 4 and 5 confirm the expression and purification of yeast-derived PheRS because a band was confirmed at the estimated molecular weight position.
1 - 5 . 酵母 PheRSの活性測定  1-5. Measurement of yeast PheRS activity
酵素の活性を測定するために "C フヱニルァラニンを使ってアミノアシル化反 応を行った。下記の反応組成で酵素を除いた状態で反応液を 30°Cで 5分程度保温 した後、 酵素を加え 30°Cでインキュベートし、 0、 5、 10、 15、 20 分の各時間で In order to measure the activity of the enzyme, an aminoacylation reaction was performed using C phenylalanine. After removing the enzyme with the following reaction composition, the reaction solution was kept at 30 ° C for about 5 minutes, and then the enzyme was added. Incubate at 30 ° C for 0, 5, 10, 15, 20 minutes each time
5% TCAを湿らせておいた濾紙にスポッ トし、 5% TCAに浸した。 各時間の反応液を スポッ トし終わったら、 5% TCAをいつたん捨て、 新たな 5% TCAをビーカ一に加 え 10分間振とうした。これを 2回繰り返したらエタノールを加えて軽く振とうし、 電熱灯下で乾燥させた。 その後、 シンチレ一ターに浸し、 液体シンチレーシヨン カウンタ一でカウンドを測定した。 Spotted on a filter paper moistened with 5% TCA and soaked in 5% TCA. After spotting the reaction solution for each hour, 5% TCA was thrown away and fresh 5% TCA was added to the beaker and shaken for 10 minutes. After repeating this twice, add ethanol and shake gently. Dry under electric light. After that, it was immersed in a scintillator and the count was measured with a liquid scintillation counter.
アミノアシル化反応液組成は、 5XAAM (Amino Acylation Mixture) 10μし、 酵 母 tRNAPhe0.05 A260unit、 酵母 PheRS 0.126/ g、 及び14 Cフエ-ルァラニン 1 μ L を dH20で しにして調製した。 The composition of the aminoacylation reaction solution was prepared by adding 10 μL of 5XAAM (Amino Acylation Mixture), tRNA Phe 0.05 A260 unit of yeast, 0.126 / g of yeast PheRS, and 1 μL of 14 C ferulalanin in dH 20 .
5XAAM (Amino Acylation Mixtufe)は、 Tris-HCl ( H 7.6)500mM、 MgCl2 50mM、 KC1 200mM、 及び ATP 20mMを含有した。 , ' 5XAAM (Amino Acylation Mixtufe) contained Tris-HCl (H 7.6) 500 mM, MgCl 2 50 mM, KC1 200 mM, and ATP 20 mM. , '
シンチレータ一は、 Dotite. DPO 4g、 Dotite P0P0P 0. lg を トル.ェンで 1L に 調製した。 ,  For the scintillator, Dotite. DPO 4g and Dotite P0P0P 0. lg were prepared in 1 L with toluene. ,
結果を図 9に示す。 酵素が欠けた場合では受容が見られず、 酵素を反応に加え た場合に受容が見られたことにより、 '発現したものは PheRSだと確定できた。 実施例 1 、 ―  The results are shown in FIG. In the absence of the enzyme, no acceptance was seen, and when the enzyme was added to the reaction, the acceptance was seen, so it was confirmed that what was expressed was PheRS. Example 1,-
変異型フエニルァラニル tRNA合成酵素の調製と活性確認 Preparation and activity verification of mutant phenylalanyl tRNA synthetase
1.変異型フニニルァラニル tRNA合成酵素 (変異型 PheRS) の調製  1. Preparation of mutant funinyllanil tRNA synthetase (mutant PheRS)
酵母変異型 PheRSを調製するために、 種々.の PheRSのアミノ酸配列を比較し、 フエ二ルァラニン結合部位を推測した。 その中で α.遺伝子の 415位のトレォニン をァラニンまたはグリシンに変異させるため、 pTAGFRSAの配列を基にプライマー In order to prepare the yeast mutant PheRS, amino acid sequences of various PheRSs were compared, and a phenylalanin binding site was estimated. In order to mutate threonine at position 415 of α. Gene to alanine or glycine, primer based on pTAGFRSA sequence
9 : 5' -CTA CAA TCC TTA CGC TGA GCC ATC AAT G-3'およびプライマ一 1 0 : 5' - CAT9: 5'-CTA CAA TCC TTA CGC TGA GCC ATC AAT G-3 'and primer 1 0: 5'-CAT
TGA TGG CTC ACC GTA AGG ATT GTA G-3'で示される配列の DNA を設計した。 TGA TGG CTC ACC GTA AGG ATT GTA G-3 ′ DNA sequence was designed.
'上記の 2つのプライマーを用いて PCR 法により α遺伝子発現用プラスミ ド pTAGFRSAを改変した。 反応液は、 10 X pyrobest buffer (酵素添付) 5 i L、 dNTP mix (酵素添付) 4 L、プライマ一 9 (l00pmol/ zL) l^u L、プライマー 1 0 (lOOpmol/ Dl^l, pTAGFRSAO.05 μ g、 及び pyrobest DNA polymerase (5U/ μ L) 0.5 /i L を dH20で 50/ Lにして調製した。 PCRプログラムは、 予備変性を 95°Cで 2 分間、 変 性を 95°Cで 30秒、 ァニーリングを 50°Cで 1分間、 及び伸長を 12。 で 10分間を 行なうサイクルを 16サイクルとした。 'The αTAG expression plasmid pTAGFRSA was modified by PCR using the above two primers. The reaction solution is 10 X pyrobest buffer (enzyme attached) 5 i L, dNTP mix (enzyme attached) 4 L, primer 9 (l00pmol / zL) l ^ u L, primer 1 0 (lOOpmol / Dl ^ l, pTAGFRSAO. 05 μg, and pyrobest DNA polymerase (5 U / μL) 0.5 / i L was prepared at 50 / L with dH 20 0. The PCR program was pre-denaturing at 95 ° C for 2 minutes, with a denaturation of 95 ° A cycle of 30 seconds at C, annealing at 50 ° C for 1 minute, and elongation at 12. for 10 minutes was 16 cycles.
反応後、 反応液に Dpn 1(10 U/ L)を 加えて 37°Cで 1時間保温し、 テ ンプレートである pTAGFRSAを切断した。 Dpn I処理後の反応液 20/ Lを XL- 1 blue コンビテントセルに加え、 形質転換を行い、 mini- prep によって目的のプラスミ ドを回収した。配歹 IJを確認することによって、 pTAGFRSAの PheRS a遺伝子の Thr415 が Alaまたは Glyに変異したプラスミ ド(PTAGFRSAt415a、 PTAGFRSAt415g)が調製 できたことを確認した。 After the reaction, Dpn 1 (10 U / L) was added to the reaction solution and incubated at 37 ° C. for 1 hour to cleave the template, pTAGFRSA. Add 20 / L of the reaction solution after Dpn I treatment to XL-1 blue competent cells, perform transformation, and use mini-prep to prepare the target plasmid. Recovered. By checking the Hai歹IJ, plasmid (P TAGFRSAt415a, P TAGFRSAt415g) to Thr415 of PheRS a gene pTAGFRSA is mutated to Ala or Gly, it was confirmed that could be prepared.
発現 ·精製は [参考例 2 ] 野生型酵母 PheRSと同様の方法で行なった。  Expression and purification were performed in the same manner as in [Reference Example 2] wild-type yeast PheRS.
さらに、 活性は [参考例 2 ] の 1-5と同様の方法で測定した。  Furthermore, the activity was measured by the same method as 1-5 in [Reference Example 2].
結果をそれぞれ、 図 10及び図 11に示す。  The results are shown in Fig. 10 and Fig. 11, respectively.
図 1 0 レーン 2および 5において、 推定分子量の位置,にバンドが確認で、きたこ とから、 2種類の酵母由来変異型 PheRSの.どちらも発現、 精製が確認できた。 また、 図 1 1より酵素が欠けた場合では受容が見られず、 ,酵素を反応に加えた 場合に弱いながらも受容が見られたことにより、 各変異型 PheRSはフエ二ルァラ ニンを基質として認識できる能力を持つことがわかった。  Fig. 10 In lanes 2 and 5, a band was confirmed at the estimated molecular weight, indicating that expression and purification of both types of yeast-derived mutant PheRS were confirmed. In addition, as shown in Fig. 11, when the enzyme is missing, no receptor is seen, and when the enzyme is added to the reaction, although it is weakly accepted, each mutant PheRS uses phenylalanin as a substrate. It turns out that it has the ability to recognize.
実施例 2 、' Example 2, '
野生型 PheRSと変異型 PheRSが認識しうる非天然アミノ酸の検索 Search for unnatural amino acids that can be recognized by wild-type PheRS and mutant-type PheRS
EF-Tuと EF-Tsは複合体を开$成し、 (EF- Tu · EF_Ts) 2の complexを形成し、 この complexに GTPが接触すると、 EF_Tsは解離し、 アミノアシル tRNAが存在すると ァミファシル tRNA · EF- Tu · GTPの複合体を形成する。 EF- Tuはァミノァシル tRNA と結合し複合体形成をする能力を有するが、 tRNAとは結合しない。 アミノアシル tRNAと結合した複合体、 未反応 EF-Tu、 未反応 tRNA (アミノアシル化されなかつ た tRNA) をゲル電気泳動により分離し、 その移動度の違いを利用しどれく らいの アミノアシル tRNA と結合した複合体が確認でき.るかでアミノアシル化を判定す ることができる。 ゲル電気泳動で、早く流れるのが未反応 tRNAで一番上に見える のが EF-Tu等で、 その間 (ゲル結果では中間く らい) が複合体である。  EF-Tu and EF-Ts form a complex, forming a complex of (EF- Tu · EF_Ts) 2. When GTP contacts this complex, EF_Ts dissociates, and when aminoacyl tRNA is present, · EF- Tu · GTP complex is formed. EF-Tu has the ability to bind and form a complex with an aminoacyl-tRNA, but does not bind to tRNA. Complexes bound with aminoacyl tRNA, unreacted EF-Tu, unreacted tRNA (non-aminoacylated tRNA) were separated by gel electrophoresis and bound to any aminoacyl tRNA using the difference in mobility. Aminoacylation can be determined based on whether the complex can be confirmed. In gel electrophoresis, the unreacted tRNA that flows fast is EF-Tu, etc., which is visible at the top, and the complex (intermediate level in the gel results) is between them.
具体的には、野生型 PheRS (wtPheRS)と変異型 PheRS (T415G及び T415A)が認識し うる非天然ァミノ酸を三者複合体のゲル電気泳動による移動度の違いを利用して 検索した。 三者複合体の形成を調べるために、 wtPheRSと T415A、 T415Gを用いて 反応液を調製し、 37 °Cで 20 分間反応させた。 反応液は 5 X Tu Buffer Specifically, unnatural amino acids that can be recognized by wild-type PheRS (wtPheRS) and mutant-type PheRS (T415G and T415A) were searched using the difference in mobility of the tripartite complex by gel electrophoresis. In order to examine the formation of the ternary complex, a reaction solution was prepared using wtPheRS, T415A, and T415G, and reacted at 37 ° C for 20 minutes. Reaction solution is 5 X Tu Buffer
( Tri s- HCl (pH7. 6) 250mM、 MgCl2 25mM、 KC1 250mM、 NH4C1 250m 、 及び ]3(Tri s- HCl (pH7. 6 ) 250mM, MgCl 2 25mM, KC1 250mM, NH 4 C1 250m, and '3
-Mercaptoethanol 25mM) 2 し、 5mM GTP 2 μ L、 lOm ATP 2 μ L、 T. th. EF-Tu 100pmol、-Mercaptoethanol 25 mM) 2 and 5 mM GTP 2 μL, lOm ATP 2 μL, T. th.EF-Tu 100 pmol,
T. th. EF-Ts lOpmoK 酵母 tRNAPhe 0. 036A260uni t , wtPheRS (もしくは変異型 PheRS〈T415A、 T415 0. 04 g およ フエ二ルァラニンアナログ Inmol を含み dH20で全量を 10 μ にした。 T. th. EF-Ts lOpmoK yeast tRNA Phe 0. 036A260unit, wtPheRS (or mutant PheRS <T415A, T415 0.04 g, and phenylalanin analog Inmol were added to a total volume of 10 μm with dH 2 0.
反応後、 6 X LS (ΒΡΒ 0: 25°/。、 キシレンシァノール 0. 25%およびグリセリン 30%) を 力卩ぇ、 lxTAM 6%PAGEを行った。 泳動後、 CBB染色液で染色し、 十分脱色し た後、 0. 3%メチレンブルー /1 M AcOH Buffer (pH4. 7)で染色しバンドを検出した。 なお、 ΙχΤΑΜは Tii s塩基2511^、 酢酸 25mMおよび酢酸マグネシウム 5mMを含む 溶液である。 , 、 結果を図 12から図 及び.表 1に示す。 .  After the reaction, lxTAM 6% PAGE was performed using 6 X LS (ΒΡΒ 0: 25 ° /., Xylene cyanol 0.25% and glycerin 30%). After electrophoresis, it was stained with CBB staining solution, sufficiently decolorized, and then stained with 0.3% methylene blue / 1 M AcOH Buffer (pH 4.7) to detect the band. ΙχΤΑΜ is a solution containing Ti11s base 2511 ^, acetic acid 25 mM and magnesium acetate 5 mM. The results are shown in Fig. 12 to Fig. And Table 1. .
表 1 table 1
PheRS PheRS(T414G) PheRS(T414A)PheRS PheRS (T414G) PheRS (T414A)
L-Phe 〇 〇 〇 L-Phe ○ ○ ○
L-p-F-Phe 〇 〇 〇  L-p-F-Phe ○ ○ ○
L-p-Cl-Phe O 〇 〇  L-p-Cl-Phe O ○ ○
L-p-Br-Phe X 〇 - L-p-Br-Phe X 〇-
L-i I-Phe X 〇 -L-i I-Phe X 〇-
L-p-Azido-Phe X 〇 -L-p-Azido-Phe X 〇-
L-p-Benzozy-Phe X X - 、L-p-Benzozy-Phe X X-,
L-p-N02-Phe X 〇 -Lp-N0 2 -Phe X 〇-
L-3,5-(N02)2-Phe X X -L-3,5- (N0 2 ) 2 -Phe XX-
L-3,5-(I)2-Phe X X - レ 3,3,5-(I)3-Phe X X -L-3,5- (I) 2 -Phe XX-Les 3,3,5- (I) 3 -Phe XX-
L-p-OMe-Phe X 〇 -L-p-OMe-Phe X 〇-
L-p-OPhospho-Phe X X -L-p-OPhospho-Phe X X-
L-o-methoxy-Phe X O 〇 L-o-methoxy-Phe X O 〇
L-3-( 1 -Naphty 1 )- Alanine X X - レ Tyr X 〇 - L-3- (1 -Naphty 1)-Alanine X X-Les Tyr X ○-
L-p-O-DANSYL-Tyr X X - o-Tyr 〇 〇 - m-Tyr 〇 〇 L-p-O-DANSYL-Tyr X X-o-Tyr ○ ○-m-Tyr ○ ○
L-DOPA X X ―  L-DOPA X X ―
レ Trp X 〇 - Les Trp X ○-
L-Τ -ΟΗ X 〇 - L-Τ -ΟΗ X 〇-
実施例 3 Example 3
TAGZyme を用いたァクセプタータンパク質の調製、 及びァクセプタ一タンパク質 の N末の修飾  Preparation of acceptor protein using TAGZyme and modification of N-terminal of acceptor protein
( 1 ) TAGZymeを用いた N末端アルギニン EGFPの調製  (1) Preparation of N-terminal arginine EGFP using TAGZyme
TAGZymeとは QIAGEN社により製品化されている N末端特異的ジぺプチド切断酵 素 (DAPaseと略すことがある) である。 TAGZymeは N末端のジペプチド切断を行 う力 stop point と呼ばれる、 リジン、 アルギニン、 プロリン、 又はグルタミン が N末端に現れるとジぺプチド切断が終了する(表 2) TAGZyme is an N-terminal specific dipeptidase (sometimes abbreviated as DAPase) that has been commercialized by QIAGEN. TAGZyme is called the stop point, the force that cleaves the N-terminal dipeptide, lysine, arginine, proline, or glutamine Dipeptide cleavage ends when appears at the N-terminus (Table 2).
表 2  Table 2
Figure imgf000029_0001
Figure imgf000029_0001
太字のァミノ酸の前が TAGZyme のストツプポィント( )  TAGZyme stop point in front of bold amino acid ()
アンダーラインの部分が切断されるジペプチド) 今回利用した EGFPは pET29にクローニングされているため、 TAGZymeによる N 末端特異的ジぺプチド切断を行うと N末端にアルギニンがあらわれると考えられ る(図 15)。 この TAGZyme消化 EGFPを基質として用いることでァミノ酸転移反応 が起こると考え、 EGFPの TAGZymeによる N末端特異的ジペプチド切断を行なった。 反応液は DAPase (10U/ml) 2. 5 L、 システアミン- HC1 (20m ) 5 L、 1 X TAGZyme Buffer (リン酸ナトリウム緩衝液(pH 7. 0) 20mMおよび NaCl 150mM) 67. 5 μ ίを混 合し室温で 5分間放置した。そこに EGFP (約 0. 35 . raol/ L)を 5 し力 Dえ、 37°Cで 1晚反応させ、 SDS PAGE にて分析(図 16)したところ EGFPのバンドのシフトが起 こり、 バンドが 2つに分かれたため、 EGFPのジぺプチド切断が確認できた。 Since the EGFP used in this study has been cloned into pET29, it is thought that arginine appears at the N-terminus when N-terminal specific dipeptidation with TAGZyme is performed (Fig. 15). . It was thought that amino acid transfer reaction occurred by using this TAGZyme digested EGFP as a substrate, and N-terminal specific dipeptide cleavage of EGFP with TAGZyme was performed. The reaction mixture was DAPase (10U / ml) 2.5 L, cysteamine-HC1 (20m) 5 L, 1 X TAGZyme Buffer (sodium phosphate buffer (pH 7.0) 20 mM and NaCl 150 mM) 67.5 μ ί Mixed and left at room temperature for 5 minutes. EGFP (approx. 0.35 raol / L) was added to it, reacted at 37 ° C for 1 hour, and analyzed by SDS PAGE (Figure 16). As a result, the EGFP band shifted. Since it was divided into two, EGFP dipeptidic cleavage was confirmed.
( 2 ) TAGZyme消化 EGFPへのアミノ酸転移の確認 (2) TAGZyme digestion Confirmation of amino acid transfer to EGFP
TAGZyme消化 EGFPを基質として [参考例] 1-5の操作手順で反応液を 37°Cで 30 分間反応させた後、 15%SDS PAGE し、 ゲルを、 バイオイメージングアナライザー BAS- 2500を用いて画像分析した(図 4 レーン 2 )。 また、 [参考例] 1-5の操作手順 でァミノ酸転移活性を測定した。 液体シンチレーションカウンターによる放射能 を測定結果から TAGZyme消化 EGFPは α -カゼインと同程度アミノ酸転移が認めら れる(図 5 )。  TAGZyme digested EGFP as a substrate [Reference Example] After the reaction solution was reacted at 37 ° C for 30 minutes according to the procedure of 1-5, 15% SDS PAGE was performed, and the gel was imaged using Bio Imaging Analyzer BAS-2500. Analysis was performed (Fig. 4, lane 2). In addition, the amino acid transfer activity was measured by the procedure of [Reference Example] 1-5. From the measurement results of radioactivity using a liquid scintillation counter, TAGZyme-digested EGFP shows amino acid transfer similar to α-casein (Fig. 5).
( 3 ) TAGZyme消化 EGFPのテトラメチルローダミン(TMR)蛍光化  (3) TAGZyme digestion Tetramethylrhodamine (TMR) fluorescence of EGFP
5 X AAM 8 ju L、 Leucyl/phenylalanyl-tRNA protein transferase 4 /zし、 0. 5mM 7 ジドフエ二ルァラニン 0. 8 L、 lOOA/ml tRNAPhe 1 μし、 0. lmg/mL変異型フエニル ァラニル- tRNA 合成酵素 1 し、 TAGzyme消化 EGFP 50pmolを混合し、 dH20で全 量を 40 / しとした。 37°Cで 30分間反応させ、 その後上記の溶液 19 Lに、 蛍光試 薬(5mM TMR付き トリァリールホス'フィン誘導体) 1 μ Lを加え 37°Cで lhr反応した。 反応後 12: 5%SDS PAGEを行い、 富士フィルム社製 LAS3000でタンパグ質の蛍光化 を確認した(図 17)。 レーン 1において蛍光によるバンドが確認できることから、 TAGZyme により処理した EGFPに LFPTによりアジドフエ二ルァラニンが転移し、 その後アジド基選択的修飾試薬により蛍光修飾が導入できたと考えられる、。 5 X AAM 8 ju L, Leucyl / phenylalanyl-tRNA protein transferase 4 / z, 0.5 mM 7 Didophenylalanine 0.8 L, lOOA / ml tRNA Phe 1 μ , 0. lmg / mL mutant phenyl Araniru - tRNA synthetase 1, were mixed TAGzyme digestion EGFP 50 pmol, and the total amount in dH 2 0 and 40 / teeth. The mixture was allowed to react at 37 ° C for 30 minutes, and then 1 µL of a fluorescent reagent (trialylphos'fin derivative with 5 mM TMR) was added to 19 L of the above solution, followed by lhr reaction at 37 ° C. After the reaction, 12: 5% SDS PAGE was performed, and the fluorescence of the protein was confirmed with LAS3000 manufactured by Fuji Film (Fig. 17). Since a fluorescent band can be confirmed in lane 1, it is considered that azidophenylalanine was transferred to EGFP treated with TAGZyme by LFPT, and then fluorescence modification was introduced with an azido group selective modification reagent.
実施例 4 Example 4
Entrokinase を用いたァクセプタ一タンパク質の調製、 及びァクセプタータンパ ク質の N末の修飾- Preparation of acceptor protein using Entrokinase and modification of N-terminal of acceptor protein
( 1 ) pET- EGFP (pET29に EGFP gene を組み込んだプラスミ ド)の Quik Change pET-EGFPの N末端側を図 18のようになるように改変を行った。 (1) Quit Change of pET-EGFP (plasma in which EGFP gene was incorporated into pET29) was modified so that the N-terminal side of pET-EGFP was as shown in FIG.
Quik Change 後このプラスミ ドで XL1- BLUE を形質転換し、 キュアリ ングの後 LB-Kanプレー卜に植菌、翌日プレートに生えたコロニーを小試(LB- Kan培地)で一 晚培養、 その後 Mini- Prepを行い、 プラスミ ドを回収した。 このプラスミ ドのシ 一ケンスを行ったところ図 1 8の'改変後のように改変されたことが確認できた。 このプラスミ ドを pET- EGFP改 1 とする。  After Quik Change, XL1-BLUE was transformed with this plasmid. After curing, the LB-Kan plate was inoculated, and the next day the colonies that grew on the plate were cultured in a small test (LB-Kan medium) and then mini-cultured. -Prep was performed and the plasmid was recovered. When this plasmid was sequenced, it was confirmed that the plasmid was modified as shown in FIG. This plasmid is called pET-EGFP modification 1.
ER2566を pET_ EGFP改 1で形質転換し、 LB- Kanプレートに植菌、 翌日プレートに 生えたコ口ニーを lOOmLの LB-Kan培地で培養、 0Dが 0. 6になったら IPTGを週濃 度 0. 5mMとなるように加え、 37°Cで 4時間振とう後回収した。 この菌体を超音波 破砕後、 N i -NTA Agaroseを用いて精製を行った。この精製されたタンパク質を EGFP 改 1 とした。  ER2566 was transformed with pET_EGFP modified 1 and inoculated into LB-Kan plate. The next day, the puppy that grew on the plate was cultured in lOOmL LB-Kan medium. When 0D reached 0.6, IPTG concentration It was added to 0.5 mM and collected after shaking at 37 ° C for 4 hours. The cells were sonicated and purified using Ni-NTA Agarose. This purified protein was designated EGFP modified 1.
( 2 ) Entrokinaseを用いた N末端アルギニン EGFP改 1の調製  (2) Preparation of N-terminal arginine EGFP modified 1 using Entrokinase
Entrokinase とは Asp Asp Asp Asp Lysの Lysの後ろを切断する特異的な酵素で ある。 今回利用した EGFP改 1は Entrokinaseによる切断を行うと N 末端にアル ギニンがあらわれると考えられる(図 18)。 そこで EGFP改 1の Entrokinaseによ る切断を Entrokinase Buffer (Tris-HCl (pH8. 0) 20mM、 NaCl 50mMおよび CaCl2 Entrokinase is a specific enzyme that cleaves behind Lys of Asp Asp Asp Asp Lys. It is considered that arginine appears at the N-terminus of the EGFP modified 1 used this time when it is cleaved with Entrokinase (Fig. 18). Therefore, cleavage of EGFP modification 1 with Entrokinase was performed using Entrokinase Buffer (Tris-HCl (pH 8.0) 20 mM, NaCl 50 mM and CaCl 2
2raM) を用いて行なった。 2raM).
まず Strep- Tactin Superf low樹脂 50 μ Lを 2, OOOrpmで 2分間遠心し、 上清を 取り除き、 Entrokinase Buffer lmLで樹脂の平衡化を行った後 2, OOOrpmで 2分 間遠心し、上清を取り除いた。次に樹脂を 50 μ Lの Entrokinase Bufferで懸濁し、 そこに約 60 μ gの EGFP改 1 を良く混ぜた後、 Ultrafree- C 全量入れ。 また榭 脂を Entrokinase Buffer 300 しで Wash し; 2, OOOrpmで 2分間遠心して樹脂か ら溶液を取り除いた。 Washは三回行った。 この樹脂を Entrokinase Buffer 300 で懸濁、 i. 5mLチューブに移し、 そこに Entrokinase (2mg/mL)を 5 し加え、 室温で 1:'時間放置した。 その後、 Ultrafree- MCに全量辜し 2, OOOrpmで 2、分間遠 心し、 溶液を回収した。 溶^は遠心エバポレーターまたは VIVASPIN 500-MAXIMUM SPIN SPEEDにより濃縮した。 最後に、 EGFP改 1が Entrokinaseにより切断されて いることを 10%SDS PAGEにより確認した (図 19)。 レーン C とレーン 1を比較す ると Entrokinaseにより処理した EGFP改 1 (レーン 1 ) の分子量が短くなってい ると考えられ、 Entrokinase による切断が確認できた。 なお、 Entrokinase 消化 EGFP改 1は- 80°Cに保存した。 First, 50 μL of Strep-Tactin Superf low resin is centrifuged at 2, OOOrpm for 2 minutes. After removal, the resin was equilibrated with 1 mL of Entrokinase Buffer, centrifuged at 2, OOOrpm for 2 minutes, and the supernatant was removed. Next, suspend the resin in 50 μL of Entrokinase Buffer, mix approximately 60 μg of EGFP modified 1 well, and then add the entire amount of Ultrafree-C. The resin was washed with Entrokinase Buffer 300; 2, and centrifuged at OOOrpm for 2 minutes to remove the solution from the resin. Wash was performed three times. This resin was suspended in Entrokinase Buffer 300, transferred to i. 5 mL tube, Entrokinase (2 mg / mL) was added thereto, and allowed to stand at room temperature for 1: 'hour. Thereafter, the whole amount was poured into Ultrafree-MC and centrifuged at 2, OOOrpm for 2 minutes to recover the solution. The solution was concentrated using a centrifugal evaporator or VIVASPIN 500-MAXIMUM SPIN SPEED. Finally, it was confirmed by 10% SDS PAGE that EGFP-modified 1 was cleaved by Entrokinase (Fig. 19). Comparing lane C and lane 1, it was considered that the molecular weight of EGFP modified 1 (lane 1) treated with Entrokinase was shortened, and cleavage by Entrokinase was confirmed. Entrokinase digested EGFP modified 1 was stored at -80 ° C.
( 3 ) Entrokinase消化 EGFP改 1のテトラメチルローダミン(TMR)蛍光化  (3) Tetromethylrhodamine (TMR) fluorescence of Entrokinase digested EGFP modified 1
5 XAA 4 L、 Leucyl/phenylalanyl-tRNA protein transferase 2 / L、 0. Dm ,' ジドフエ二ルァラニン 0. 4 μ L、 lOOA/mL tRNAPhe0. 5 μ L, 0. lmg/raL変異型フエニル. ァラニル- tRNA合成酵素 0. 5 x L、及び Entrokinase消ィヒ EGFP改 1 約 2 ju gを混 合し、 dH20で全量を 20 //しとした。 5 XAA 4 L, Leucyl / phenylalanyl-tRNA protein transferase 2 / L, 0.Dm, 'Didophenylalanine 0.4 μL, lOOA / mL tRNA Phe 0.5 μL, 0.lmg / raL mutant phenyl. Alanyl-tRNA synthetase 0.5 x L and Entrokinase-depleted EGFP modified 1 ca 2 jug were mixed, and the total amount was adjusted to 20 // with dH 2 0.
37°Cで 30分間反応させ、 その後上記の溶液 19 W Lに、 蛍光試薬 (5mM TMR付き トリァリールホスフィン誘導体)l / L を加え 37°Cで 1 時間反応した。 反応後 15%SDS PAGEを行い、 富士フィルム社製 LAS3000でタンパク質の蛍光化を確認し た(図 20)。 レーン 1 と 2を比較すると Entrokinaseにより処理した EGFP改 1 (レ ーン 1 ) においてのみ蛍光分子によるバンドが確認でき、 Entrokinase により処 理した EGFP改 1に LFPTによりアジドフエ-ルァラニンが転移し、 その後アジド 基選択的修飾試薬により蛍光修飾が導入できたと考えられる。 The mixture was reacted at 37 ° C for 30 minutes, and then fluorescent reagent (triarylphosphine derivative with 5 mM TMR) l / L was added to 19 W L of the above solution and reacted at 37 ° C for 1 hour. After the reaction, 15% SDS PAGE was performed, and protein fluorescence was confirmed with Fuji Film LAS3000 (FIG. 20). Comparing lanes 1 and 2, a band due to a fluorescent molecule can be confirmed only in EGFP modified 1 (lane 1) treated with Entrokinase, and azidoferrulean was transferred to EGFP modified 1 treated with Entrokinase by LFPT. It is considered that the fluorescence modification could be introduced by the group selective modification reagent.
( 4 ) Entrokinase消化 EGFP改 1の PEG修飾  (4) PEG modification of Entrokinase digested EGFP modified 1
上記 (2 ) と同じ方法でアジドフヱ二ルァラニン転移反応を行い、 その後、 溶 液 19 / Lに、 5mMポリエチレンダリ コール(PEG)付き トリァリ一ルホスフィン誘導 体(GIF-0548 または GIF-0602) 1 L を加え 37でで 1 時間反応した。 反応後 10°/oNative PAGEを行い、富士フィルム社製 LAS3000で Entrokinase消化 EGFP改 1 の蛍光を検出したところバンドのシフトが確認できた(図 21)。 Perform the azidophenylalanine transfer reaction in the same manner as (2) above, and then add the triarylphosphine derivative (GIF-0548 or GIF-0602) 1 L with 5 mM polyethylene glycol (PEG) to the solution 19 / L. And reacted at 37 for 1 hour. After reaction A 10 ° / oNative PAGE was performed, and when the fluorescence of Entrokinase digested EGFP modified 1 was detected with Fuji Film LAS3000, a band shift was confirmed (FIG. 21).
レーンを比較すると PEGを有するアジド基修飾試薬を加えることによ.り、 EGFP に由来するバンドが上にシフトしていること、 また、 修飾に用いた PEGの平均分 子量の違いも移動度に反映されていることから、 Entrokinase により処理した EGFP改 1に LFPTによりアジドフエエルァラニンが転移し、 その後アジド基選択 的修飾試薬により PEG修飾が導入できたと考えられる。 , 、 産業上の利用可能性 ,  Compared to the lane, the addition of an azide group-modifying reagent with PEG shifts the band derived from EGFP upward, and the difference in the average molecular weight of PEG used for modification is also mobility. Therefore, it is considered that azido ferroalanine was transferred to EGFP modified with Etrokinase by LFPT, and then PEG modification could be introduced by a selective modification reagent for azide group. ,, Industrial applicability,
本願発明の方法により、 N 末に修飾されたアミノ酸を有するタンパク質を大量 に調製することができるようになった。  By the method of the present invention, a large amount of protein having an amino acid modified at the N-terminal can be prepared.
本明細書で引用した全ての刊行物、 特許および特許出願をそのまま参考として 本明細書にとり入れるものとする。 ' .  All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety. '.

Claims

請求の範囲 The scope of the claims
1 . N末にアルギニン又はリジンを有するタンパク質を、 (1 ) 修飾フエニル ァラニル tRNAPhe若しくは修飾ロイシル t RNA'Leu、 及び (2 ) ロイシル /フエニルァ ラ-ル tRNAタンパク質転移酵素の存在下で処理することによる、 N末にアルギニ ン又はリジンを有するタンパク質の修飾方法。 1. Treat proteins with arginine or lysine at the N-terminus in the presence of (1) modified phenylalanyl tRNA Phe or modified leucyl tRNA ' Leu , and (2) leucyl / phenylallyl tRNA protein transferase. To modify a protein having arginine or lysine at the N-terminus.
2 . :修飾フエニルァラニル tRNAPheが、 変異型フ ルァラニル tRNA、合成酵 素により修飾フエ二ルァラニンを' tRNAPheに結合させることにより調製される請 求項 1記載の方法。 2. The method according to claim 1, wherein the modified phenylalanyl tRNA Phe is prepared by linking the modified phenylalanine to the 'tRNA Phe by a mutant-type furanyl tRNA or a synthetic enzyme.
3 . 修飾フエ二ルァラニンが下記式 (1 ) で表される請求項 2記載の方法。 化 1  3. The method according to claim 2, wherein the modified phenylalanine is represented by the following formula (1). 1
COOH COOH
H2N— C一 H H 2 N—C 1 H
Figure imgf000033_0001
上記式 1中、 R2は、 水素、 水酸基又はメ トキシ若しくはァセチル、 R3は水素又 は水酸基、 そして、 R4は、 水素、 ハロゲン、 アジド基、 ニトロ基、 メ トキシ若し くはァセチル又は水酸基である。
Figure imgf000033_0001
In the above formula 1, R 2 is hydrogen, hydroxyl group or methoxy or acetyl, R 3 is hydrogen or hydroxyl, and R 4 is hydrogen, halogen, azide group, nitro group, methoxy or acetyl or It is a hydroxyl group.
4 . 修飾フエニノレアラニンが para- azido- phenylalanine又は蛍光標識された フエ二ルァラニンである請求項 3記載の方法。  4. The method according to claim 3, wherein the modified phenylenolanine is para-azido-phenylalanine or fluorescently labeled phenylalanine.
5 . 変異型フエニルァラニル tRNA合成酵素 (PheRS) 、 配列番号 2であら わされる PheRSの αサブュニッ トにおいて 415位のトレオニンをァラニン又はグ リシンに変異させた PheRSである請求項 2〜4いずれか 1項に記載の方法。  5. Mutant phenylalanyl tRNA synthetase (PheRS), which is PheRS obtained by mutating threonine at position 415 to alanine or glycine in the α subunit of PheRS represented by SEQ ID NO: 2 1 The method according to item.
6 . N 末にアルギニン又はリジンを有するタンパク質が任意の蛋白質をぺプ チダーゼにて処理して調製された請求項 1から 5いずれか 1項に記載の方法。6. Proteins with arginine or lysine at the N-terminal 6. The method according to any one of claims 1 to 5, which is prepared by treatment with thidase.
7 . N末にァノレギ ン又はリジンを有するタンパク質を、 ( 1 ) 修飾フエニル ァラニン若しくは修飾ロイシン、 (2 ) tRNAPhe若しくは tRNALeu、 (3 ) 変異型フエ ニルァラニル tRNA合成酵素若しくは変異型ロイシル tRNA合成酵素、 及び (4 ) ロイシル /フヱニルァラニル tRNAタンパク質転移酵素の存在下で処理することに よる、 N末ァ /レギニン又はリジンを有するタンパク質の修飾方法。 7. A protein having an anoregine or lysine at the N-terminus, (1) modified phenylalanine or modified leucine, (2) tRNA Phe or tRNA Leu , (3) mutant phenylalanyl tRNA synthetase or mutant leucyl tRNA synthetase And (4) A method for modifying a protein having an N-terminal / legginin or lysine by treatment in the presence of leucyl / phenylalanyl tRNA protein transferase.
8 . 修飾フエ二ルァラニンが下記式 (1 ) で表され^)請求項 7記載の.方法。  8. The method according to claim 7, wherein the modified phenylalanine is represented by the following formula (1) ^).
H2N H 2 N
Figure imgf000034_0001
上記式 1中、 R2は、 水素、 水酸基又はメ トキシ若しくはァセチル、 R3は水素又 は水酸基、 そして、 R4は、 水素、 ハロゲン、 アジド基、 ニトロ基、 メ トキシ若し くはァセチル又は水酸基である。
Figure imgf000034_0001
In the above formula 1, R 2 is hydrogen, hydroxyl group or methoxy or acetyl, R 3 is hydrogen or hydroxyl, and R 4 is hydrogen, halogen, azide group, nitro group, methoxy or acetyl or It is a hydroxyl group.
9 . 修飾フエ二ルァラニンが para-azido-phenylalanine又は蛍光標識された Pheである請求項 8記載の方法。  9. The method according to claim 8, wherein the modified phenylalanine is para-azido-phenylalanine or fluorescently labeled Phe.
1 0 . 変異型フエニルァラ-ル tRNA合成酵素 (PheRS) 力 配列番号 2であ らわされる PheRSの αサブュニッ トにおいて 415位のトレオニンをァラニン又は グリシンに変異させた PheRSである請求項 7記載の方法。  10. Mutant phenyl tRNA synthetase (PheRS) force The PheRS obtained by mutating threonine at position 415 to alanine or glycine in the α subunit of PheRS represented by SEQ ID NO: 2. Method.
1 1 . N末にアルギニン又はリジン を有するタンパク質が任意の蛋白質をぺ プチダーゼにて処理して調製された請求項 7から 10いずれか 1項に記載の方法。  11. The method according to any one of claims 7 to 10, wherein the protein having arginine or lysine at the N-terminal is prepared by treating an arbitrary protein with a peptidase.
1 2 . ( 1 ) 配列番号 3で表されるアミノ酸配列において、 1から数個のァミノ 酸が、置換、欠失、及び 又は付加されたアミノ酸配列で表される変異型の PheRS αサブュニッ ト、 並びに 1 2. (1) In the amino acid sequence represented by SEQ ID NO: 3, a mutant PheRS represented by an amino acid sequence in which 1 to several amino acids are substituted, deleted, or added α- subunit, and
( 2 ) 配列番号 2で表されるアミノ酸配列において、 1から数個のアミノ酸が、 置換、 欠失、 及びノ又は付加されたアミノ酸配列で表される変異型の PheRS 3サ ブユニッ トからなる変異 PheRSであって、  (2) A mutation consisting of a mutant PheRS 3 subunit represented by the amino acid sequence in which one to several amino acids are substituted, deleted, and / or added in the amino acid sequence represented by SEQ ID NO: 2. PheRS,
少なく とも、 Tyr414、 及び/又は Thr415に変異が導入され、 tRNAPheをフエ-ル ァラニンアナログ化できる変異 PheRS。 At least a mutation PheRS in which a mutation is introduced into Tyr414 and / or Thr415 and tRNA Phe can be converted to a ferulanine analog.
1 3 . :配列番号 3で表される PheRS aサブュニッ ト及,,び配列番号 2で表される PheRS j3サブュニッ トからなる野生型酵母 PheRSの変異体(変異 PheRS)であって、 該酵母 PheRSの変異体は tRNAPheをフエ二ルァラニンアナ口グ化でき、 少なく とも、 Ty. 13. A wild-type yeast PheRS mutant (mutant PheRS) comprising the PheRS a subunit represented by SEQ ID NO: 3 and the PheRS j3 subunit represented by SEQ ID NO: 2, wherein the yeast PheRS Mutants of tRNA Phe can be converted to phenylalanine and at least Ty.
14、 及び/又は Thr415に変異を導入した変異 PheRS。 14, and / or mutation PheRS in which a mutation is introduced into Thr415.
PCT/JP2006/323879 2005-11-22 2006-11-22 Method for enzymatic modification of n-terminus of protein WO2007061128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007546539A JP5061351B2 (en) 2005-11-22 2006-11-22 Method for enzymatic modification of protein N-terminus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005337537 2005-11-22
JP2005-337537 2005-11-22

Publications (1)

Publication Number Publication Date
WO2007061128A1 true WO2007061128A1 (en) 2007-05-31

Family

ID=38067345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323879 WO2007061128A1 (en) 2005-11-22 2006-11-22 Method for enzymatic modification of n-terminus of protein

Country Status (2)

Country Link
JP (1) JP5061351B2 (en)
WO (1) WO2007061128A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022288080A1 (en) * 2021-06-11 2023-12-07 Monsanto Technology Llc Methods and compositions for altering protein accumulation

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ABRAMOCHKIN G. ET AL.: "The leucyl/phenylalanyl-tRNA-protein transferase. Overexpression and characterization of substrate recognition, domain structure, and secondary structure", J. BIOL. CHEM., vol. 270, no. 35, 1995, pages 20621 - 20628, XP003013354 *
CHIN J.W. ET AL.: "An expanded eukaryotic genetic code", SCIENCE, vol. 301, no. 5635, 2003, pages 964 - 967, XP002996001 *
KUNO A. ET AL.: "Leucyl/phenylalanyl (L/F)-tRNA-protein transferase-mediated N-terminal specific labelling of a protein in vitro", NUCLEIC ACIDS RES., no. SUPPL., 2003, pages 259 - 260, XP003013352 *
SAKAMOTO K. ET AL.: "Ikita Saibo de Chotanpakushitsu o Tsukuru - Hitennen Amino Acid o Tanpakushitsu ni Donyu suru Hoho", CHEMISTRY, vol. 60, no. 4, 25 March 2005 (2005-03-25), pages 70 - 71, XP003013353 *
SANNI A. ET AL.: "Structure and expression of the genes encoding the alpha and beta subunits of yeast phenylalanyl-tRNA synthetase", J. BIOL. CHEM., vol. 263, no. 30, 1988, pages 15407 - 15415, XP003013355 *
SHARMA N. ET AL.: "Efficient introduction of aryl bromide functionality into proteins in vivo", FEBS LETT., vol. 467, no. 1, 2000, pages 37 - 40, XP004260918 *

Also Published As

Publication number Publication date
JP5061351B2 (en) 2012-10-31
JPWO2007061128A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US20230212535A1 (en) Modified helicases
JP7292442B2 (en) Modified aminoacyl-tRNA synthetase and uses thereof
EP3431497A1 (en) Split inteins, conjugates and uses thereof
You et al. Construct for high-level expression and low misincorporation of lysine for arginine during expression of pET-encoded eukaryotic proteins in Escherichia coli
WO2006078821A2 (en) Products and processes for in vitro synthesis of biomolecules
US20220325260A1 (en) Mirror nucleic acid replication system
Bantysh et al. Enzymatic synthesis and functional characterization of bioactive microcin C-like compounds with altered peptide sequence and length
WO2010057259A1 (en) Protein stability assay using a fluorescent reporter of protein folding
WO2007061128A1 (en) Method for enzymatic modification of n-terminus of protein
KR101300672B1 (en) Method for producing soluble foreign protein using specific intracellular cleavage system
Pérez-Martin et al. Design of a solubilization pathway for recombinant polypeptides in vivo through processing of a bi-protein with a viral protease.
JP5099881B2 (en) Highly efficient cell-free protein synthesis system
TW200531978A (en) Removal of n-terminal methionine from proteins by engineered methionine aminopeptidase
KR100925345B1 (en) Selective Labeling of Cell-free Synthesized Proteins Using the Labeling Agent Derived from In Vitro Transcribed tRNA
US20240053350A1 (en) High throughput peptide identification using conjugated binders and kinetic encoding
CN114057893B (en) Myristoylation polypeptide for encoding mitochondrial localization and preparation method and application thereof
JP5359155B2 (en) Novel Gaussia luciferase mutant with cysteine introduced
EP4079845A1 (en) Method for enhancing water solubility of target protein by whep domain fusion
JP5709098B2 (en) Protein reversible dual labeling method
CN117120608A (en) Protein translation system
Callis et al. Preparation, characterization, and use of tagged ubiquitins
Zhang et al. A Dual Cleavage System for Protein Purification Based on Small Ubiquitin-Like Modifier and a Split Intein
US20090023139A1 (en) Method For Site-Specifically Introducing Non-Natural Amino Acid Into Protien Using Mitochondrial Protein and Method For Effectively Preparing Trna
Harrison Development of Methods to Study Synthetic Histones In Cellulo Undergraduate Research Thesis
Muroni Rational design of artificial enzymes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007546539

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833682

Country of ref document: EP

Kind code of ref document: A1