WO2007060811A1 - Process for production of fucoxanthinol - Google Patents

Process for production of fucoxanthinol Download PDF

Info

Publication number
WO2007060811A1
WO2007060811A1 PCT/JP2006/321659 JP2006321659W WO2007060811A1 WO 2007060811 A1 WO2007060811 A1 WO 2007060811A1 JP 2006321659 W JP2006321659 W JP 2006321659W WO 2007060811 A1 WO2007060811 A1 WO 2007060811A1
Authority
WO
WIPO (PCT)
Prior art keywords
fucoxanthinol
fucoxanthin
producing
organic solvent
lipase
Prior art date
Application number
PCT/JP2006/321659
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Miyashita
Masashi Hosokawa
Tokutake Sashima
Takanori Sasaki
Original Assignee
National University Corporation Hokkaido University
Marine Tec Kamaishi Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Hokkaido University, Marine Tec Kamaishi Inc. filed Critical National University Corporation Hokkaido University
Publication of WO2007060811A1 publication Critical patent/WO2007060811A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/32Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/32Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by aldehydo- or ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes

Definitions

  • the present invention relates to a process for producing fucoxanthinol that enables fucoxanthin power to be obtained by enzymatic reaction.
  • Fucoxanthin and fucoxanthinol are the same basic skeleton as ⁇ -carotene (see Fig. 6), that is, a kind of carotenoids with conjugated double bond chains, and have various physiological functions. It has been reported.
  • fucoxanthin the anti-obesity effect (disclosed in Non-Patent Document 1, the disclosure of which is incorporated herein by reference) and high cancer cell-inducing ability to induce apoptosis ( Non-Patent Document 2 is disclosed, and the disclosure is incorporated herein by reference thereto.
  • fucoxanthin is highly! And has a physiological activity.
  • Fucoxanthinol which has a chemical structure in which the acetyl group of fucoxanthin is replaced with a hydroxyl group, has a higher physiological activity than fucoxanthin. The inventors found out.
  • Non-Patent Document 3 the disclosure of which is incorporated herein by reference, only 8 mg of fucoxanthinol is obtained from 200 mg of fucoxanthin.
  • this production method (2) has a yield of fucoxanthinol of 10% or less and is suitable for a large amount of production method! You can say /!
  • Non-Patent Document 7 the disclosure of which is incorporated herein by reference, the acetyl group of fucoxanthin is hydrolyzed using cholesterol esterase derived from microorganisms (Pseudomonas fluorescens (scientific name)). Decomposes and synthesizes fucoxanthinol.
  • Solution A is a fucoxanthin solution that is 10 L of fucoxanthin in acetone prepared to a concentration of 0.33 g / L.
  • Non-patent document 7 reports that the deacetylation reaction of fucoxanthin using this enzyme has a slow reaction rate and the yield is 5% or less.
  • fucoxanthin is obtained by hydrolyzing the acetyl group of fucoxanthin using esterase (PLE) derived from pig liver. Synthesizes a knoll.
  • the reaction is performed by adding the following solutions C and D to fucoxanthin.
  • Solution D is a porcine liver-derived esterase (PLE) enzyme solution.
  • PLE activity is 355 units Zmg).
  • Non-Patent Document 9 the disclosure of which is incorporated herein by reference, the acetylase of fucoxanthin is hydrolyzed using a lipase derived from a microorganism (Candida cylindracea (scientific name)). Fucoxanthinol is synthesized. The reaction conditions were as follows: lmL Britton-Robinson buffer containing 5mg of lipase was added to 10 ⁇ L of fucoxanthin in acetone with 26pmol fucoxanthin dissolved. C, hydrolysis is carried out by incubating for 6 hours.
  • This document does not describe the yield of fucoxanthin to fucoxanthinol. However, a yield of about 60% is predicted from the HPLC analysis results. This method is at the laboratory level, is performed in a very small amount, and uses expensive lipase, so it is doubtful whether it is a technology capable of mass production.
  • fucoxanthinol is obtained by hydrolyzing the acetyl group of fucoxanthin using a cholesterol esterase derived from porcine spleen. Have gained.
  • the reaction conditions were: 5 / z mol fucoxanthin and lOOmg taurocholic acid dissolved in a small amount of dichloromethane Zmethanol (2: 1), the solvent was evaporated with argon gas, and 10mL potassium containing lOunit cholesterol esterase Fucoxanthin is hydrolyzed by dissolving in phosphate buffer and incubating at 37 ° C for 2 hours.
  • the yield is completely described, it is unsuitable for mass production because it uses expensive cholesterol esterase.
  • Non-Patent Document 1 H. Maeda et al., Biochemical and Biophysical Research Communication, 332 (2005) 392—397.
  • Non-Patent Document 2 Hosokawa, BIO INDUSTRY, 21 (2004) 52—57.
  • Non-Patent Document 3 H. Nitsche, Biochemica et Biophysica Acta 338 (197 4) 572-576.
  • Non-Patent Document 4 M. Ookubo and T. Matsuno, Comp. Biochem. Physiol., 81B (1985) 137—141.
  • Patent Document 5 1. Konishi et al., Comparative Biochemistry and Phys iology. Part Pharmacology, toxicology & endocrinology, In p ress.
  • Non-Patent Document 6 J. A. Haugan et al., Acta Chemica Scandinavica 46
  • Non-Patent Document 7 P. B. Jacobs et al., Comp. Biochem. Physiol., 72 B (1982) 157-160.
  • Non-Patent Document 8 T. Aakermann et al., Biocatalysis and Biotransformation, 13 (1996) 157-163.
  • Non-Patent Document 9 T. Sugawara et al., J. Nutri. 132 (2002) 946-951
  • Non-Patent Document 10 A. Asai et al., Drug Metabolism and Disposition, 3 2 (2004) 205-211.
  • the present invention has been made in view of the problems of the prior art, and can produce fucoxanthinol in a short time and at a low cost with a high yield.
  • the purpose is to provide a manufacturing method.
  • the method for producing fucoxanthinol of the present invention comprises a first step of dissolving fucoxanthin and a surfactant in a first organic solvent, evaporating the first organic solvent, and A lipase is added to a second step of drying fucoxanthin and the surfactant, and a pH buffer solution in which the dried product obtained in the second step is dissolved. And a third step of incubating only for a time.
  • a critical difference between the present invention and the conventional method is that a lipase, particularly an animal-derived lipase is used as a hydrolase of fucoxanthin.
  • fucoxanthinol can be obtained by hydrolysis of fucoxanthin in a sufficiently high yield even with an unpurified lipase.
  • the fucoxanthinol obtained up to the third step may be further dissolved in a second organic solvent, and may further include a fourth step of purification by chromatography.
  • the fucoxanthin may be an organic compound, or an animal or plant or algae extract that has been isolated and purified, or a bacterial fungus extracted and purified.
  • the first organic solvent is at least one selected from alcohols, ethers, ketos, halogenated compounds of aliphatic hydrocarbons, aliphatic hydrocarbons, and aromatic hydrocarbons. Also good.
  • the surfactant includes taurocholic acid, dexoxylic acid, glycolic acid and their alkali salts or lecithins, fatty acid glycerin ester, fatty acid propylene glycol ester, fatty acid sorbitan ester, fatty acid sucrose ester, oleic acid alkali salt
  • fatty acid morpholine salt, calcium stearyl lactate, or protein may be at least one kind selected.
  • the pH of the pH buffer solution is preferably 5 or more and 9 or less.
  • the lipase can be a lipase derived from an animal viscera.
  • the predetermined temperature of the incubation is desirably 10 ° C or higher and 50 ° C or lower. Furthermore, the predetermined incubation time may be not less than 30 minutes and not more than 48 hours.
  • the second organic solvent and the developing solvent for the chromatography were selected from alcohols, ethers, ketos, halogenated aliphatic hydrocarbons, aliphatic hydrocarbons, and aromatic hydrocarbons. It can be at least one kind.
  • the packing material used in the chromatography is normal phase silica gel, celite, alumina, calcium hydroxide, or reverse phase linear alkyl group, aromatic functional group, hydrophilic functional group, or polarity. It may be at least one selected from those in which the encapsulated functional group is chemically bonded to the silica gel.
  • This process consists of a third step in which lipase is added to the pH buffer solution in which the dried product obtained in the second step is dissolved and incubated at a predetermined temperature for a predetermined time.
  • the fucoxanthinol is dissolved in a second organic solvent and further purified by chromatography, so that fucoxanthinol can be produced in a short time and at a low cost with a high yield. It becomes possible to do.
  • FIG. 1 is a flowchart of the method for producing fucoxanthinol of the present invention. Extraction of wakame force, isolated 'purified fucoxanthin force was also shown for a series of operations to synthesize fucoxanthinol using porcine spleen lipase
  • the fucoxanthin used as the raw material here is fucoxanthin extracted from seaweed.
  • fucoxanthin obtained by organic synthesis is fucoxanthin extracted from an animal containing fucoxanthin. Even if it is fucoxanthin biosynthesized by Escherichia coli or yeast, these fucosanthins may be used in combination. In other words, the fucoxanthin, which is the final product, can be obtained at a low cost and in a high yield in a short time using fucoxanthin obtained by any means.
  • fucoxanthin and sodium taurocholate which is a surfactant
  • methanol as the first organic solvent.
  • sodium taurocholate is difficult to dissolve, it is possible to use a soaker.
  • the obtained dried product is dissolved in a potassium phosphate buffer solution as a pH buffer solution, and subsequently, for example, porcine spleen-derived lipase is added as a lipase.
  • porcine liver lipase used here does not need to be an expensive and purified product, and there is no particular problem in reaction efficiency and reaction time even if crude lipase is used. Therefore, crude lipase is sufficient to produce fucoxanthinol at low cost.
  • the pH of the pH buffer solution is 5 or more and 9 or less. If the pH is less than 5, the 5,6-epoxide in the fucoxanthin becomes 5,8-epoxide, which is unfavorable. On the other hand, if the pH exceeds 9, it is described in the background art Fucoxanthinol production method (2) As mentioned above, the decomposition of fucoxanthin is accelerated, which is not preferable.
  • the lipase After the lipase is dissolved, it is incubated at a temperature of 10 ° C to 50 ° C for 30 minutes to 48 hours.
  • the enzyme reaction activity decreases.In addition, the yield is low and the reaction time becomes longer, which is not preferable. On the other hand, if it exceeds 50 ° C, the enzyme reaction activity decreases. In addition, low yield and longer reaction time and decomposition of the raw material fucoxanthin and the synthetic fucoxanthinol are preferable.
  • the incubation time is less than 30 minutes, the amount of unreacted fucoxanthinol increases, which is unfavorable. On the other hand, if it exceeds 48 hours, the produced fucoxanthinol is decomposed, which is not preferable.
  • unpurified fucoxanthinol obtained in the first step to the third step is dissolved in a second organic solvent and subjected to column chromatography for purification by chromatography.
  • the second organic solvent and the developing solvent for the chromatography are desired to have a boiling point of 100 ° C. or lower when the alcohol is removed later, alcohols having 1 to 4 carbon atoms are particularly preferable. .
  • a first step 0.5 g of fucoxanthin was dissolved in 300 mL of methanol, and then 2.5 g of sodium taurocholate as a surfactant was added to this solution and dissolved.
  • the methanol solution of fucoxanthin and sodium taurocholate obtained in the first step was evaporated to dryness with an evaporator, and further, dry nitrogen gas was blown onto the dried product to remove the methanol.
  • the obtained unpurified fucoxanthinol is subjected to column chromatography (filler: silica gel, developing solvent: 50% acetone Z hexane (volume ratio or weight ratio?)).
  • Figure 2 shows the development of column chromatography.
  • sodium taurocholate elutes, followed by unreacted fucoxanthin followed by fucoxanthinol.
  • the amount of lipase is 10 times the amount of raw fucoxanthin
  • the unreacted fucoxanthin appears.
  • the reaction conditions in the flowchart of Fig. 1 the amount of lipase is the amount of raw fucoxanthin
  • no fucoxanthin band was visually confirmed in the column chromatogram.
  • FIG. 4 is a one-dimensional proton NMR of all-transfucoxanthinol after HPLC purification
  • FIG. 5 is a one-dimensional carbon NMR of all-transfucoxanthinol after HPLC purification. This confirmed that the obtained hydrolyzate of fucoxanthin was fucoxanthinol. Therefore, the fucoxanthinol production method of the present invention makes it possible to produce high-purity fucoxanthinol in large quantities, at low cost and in a short period of time.
  • fucoxanthinol produced by the method for producing fucoxanthinol of the present invention By adding fucoxanthinol produced by the method for producing fucoxanthinol of the present invention to a food material or the like, it can be used as a functional food material.
  • industrial application fields are not limited to this.
  • FIG. 1 is a flowchart showing an embodiment of the method for producing fucoxanthinol of the present invention.
  • FIG. 2 is a photograph showing the development of column chromatography in an example of the method for producing fucoxanthinol of the present invention.
  • FIG. 3 is a HPLC analysis chart of each component after the column in the example of the method for producing fucoxanthinol of the present invention.
  • FIG. 4 is a one-dimensional proton NMR of all transfucoxanthinol after HPLC purification in an example of the method for producing fucoxanthinol of the present invention.
  • FIG. 5 is a one-dimensional carbon NMR analysis of all transfucoxanthinol after HPLC purification in an example of the method for producing fucoxanthinol of the present invention.
  • FIG. 6 is a chemical structural formula of fucoxanthinol and fucoxanthin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Obesity (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Epoxy Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

[PROBLEMS] To provide a process which can produce fucoxanthinol within a short time, at low cost and with high efficiency. [MEANS FOR SOLVING PROBLEMS] A process for production of fucoxanthinol comprises: a first step in which fucoxanthin (0.5 g) is dissolved in methanol (300 mL) and a surfactant sodium taurocholate (2.5 g) is then added and dissolved to the resulting solution; a second step in which the solution of fucoxanthin and sodium taurocholate in methanol prepared in the first step is evaporated to dryness; a third step in which the resulting dry material is dissolved in a potassium phosphate buffer (0.1 M; pH=7.0; 500 mL), a porcine pancreas-derived lipase (10 g) is added to the solution, and the resulting mixed solution is incubated at 37˚C for 2 hours; and a forth step in which fucoxanthinol thus produced is purified by column chromatography. The process can produce fucoxanthinol having high purity in a large amount, at low cost, and within a short time.

Description

フコキサンチノールの製造方法  Process for producing fucoxanthinol
技術分野  Technical field
[0001] 本発明は、フコキサンチン力もフコキサンチノールを酵素反応によって得ることを可 能にするフコキサンチノールの製造方法に関するものである。  The present invention relates to a process for producing fucoxanthinol that enables fucoxanthin power to be obtained by enzymatic reaction.
背景技術  Background art
[0002] フコキサンチン及びフコキサンチノールは βカロテン等と同じ基本骨格(図 6参照) 、即ち、共役二重結合鎖を持つカロテノイド (carotenoids)の一種で、様々な生理的 機能を有することが報告されている。例えば、フコキサンチンの場合、抗肥満効果 (非 特許文献 1に開示され、これを参照することによってその開示内容が本願明細書に 組み込まれて 、る)やガン細胞への高 、アポトーシス誘導能 (非特許文献 2に開示さ れ、これを参照することによってその開示内容が本願明細書に組み込まれている)を 有することが見出されて 、る。このようにフコキサンチンは高!、生理的活性を持つ力 フコキサンチンのァセチル基が水酸基に置き換わったィ匕学構造を持つフコキサンチ ノールには、フコキサンチンよりも更に高い生理活性があることを、最近発明者等は 見出した。  [0002] Fucoxanthin and fucoxanthinol are the same basic skeleton as β-carotene (see Fig. 6), that is, a kind of carotenoids with conjugated double bond chains, and have various physiological functions. It has been reported. For example, in the case of fucoxanthin, the anti-obesity effect (disclosed in Non-Patent Document 1, the disclosure of which is incorporated herein by reference) and high cancer cell-inducing ability to induce apoptosis ( Non-Patent Document 2 is disclosed, and the disclosure is incorporated herein by reference thereto. In this way, fucoxanthin is highly! And has a physiological activity. Fucoxanthinol, which has a chemical structure in which the acetyl group of fucoxanthin is replaced with a hydroxyl group, has a higher physiological activity than fucoxanthin. The inventors found out.
[0003] 現在のところ学術論文において、次の 3種類のフコキサンチノールの製造方法が報 告されている。即ち、(1)フコキサンチンを餌とする海洋生物 (例えば、ホヤなど)から 有機溶媒を用いて抽出する方法 (非特許文献 3〜5に開示され、これを参照すること によってその開示内容が本願明細書に組み込まれている)、(2)フコキサンチンをァ ルカリ加水分解することによって得られた反応物から単離'精製する方法 (非特許文 献 3、 6に開示され、これを参照することによってその開示内容が本願明細書に組み 込まれている)、(3)加水分解酵素によるフコキサンチンの加水分解によって得られ た反応物から単離'精製する方法 (非特許文献 7〜10に開示され、これを参照するこ とによってその開示内容が本願明細書に組み込まれている)である。  [0003] Currently, the following three types of fucoxanthinol production methods are reported in academic papers. That is, (1) a method for extracting from marine organisms that feed on fucoxanthin (for example, sea squirts) using an organic solvent (disclosed in Non-Patent Documents 3 to 5; (2) A method for isolating and purifying fucoxanthin from a reaction product obtained by alkaline hydrolysis (disclosed in Non-Patent Documents 3 and 6) (3) a method of isolating and purifying from a reaction product obtained by hydrolysis of fucoxanthin with a hydrolase (in Non-Patent Documents 7 to 10). And the disclosure of which is incorporated herein by reference).
[0004] 上記(1)の製造方法では、フコキサンチノールの大量生産という観点から、「フコキ サンチノールを抽出する材料 (海洋生物)の確保」と「同時に抽出される数種類のカロ テノイドからの単離 ·精製の困難さ」の理由により、非効率的であると言える。例えば、 参照することによってその開示内容が本願明細書に組み込まれている非特許文献 4 によると、ホヤ科の中で最もフコキサンチノールを多く含有しているシロウスボャ(学名 : Didemnum moseleyi)の場合、 7種類のカロテノイドが存在し、フコキサンチノ一 ルはシロウスボャ lOOg当り 12. 4mg存在している。つまり、 lg単位でのフコキサンチ ノールを調製するには、抽出材料となるシロウスボャを約 8kg必要とし、抽出材料の 安定的確保 ·保存 ·調達資金に難点がある。 [0004] In the production method of (1) above, from the viewpoint of mass production of fucoxanthinol, "Securing material for extracting fucoxanthinol (marine organisms)" and " It can be said that it is inefficient because of the difficulty of isolation and purification from tenoids. For example, according to Non-Patent Document 4, the disclosure of which is incorporated herein by reference, in the case of Shirosuboya (scientific name: Didemnum moseleyi) that contains the most fucoxanthinol in the ascidian family There are seven types of carotenoids, and fucoxanthinol is present at 12.4 mg per shirosbo lOOg. In other words, in order to prepare fucoxanthinol in lg units, about 8 kg of Syringa as an extraction material is required, and there are difficulties in securing stable storage, storage and procurement of the extraction material.
[0005] 次に上記(2)の製造方法の場合、フコキサンチノールを得るための操作は、上記( 1)、(3)の製造方法と比較して非常に簡便であるが、収率が非常に悪い点に問題が ある。例えば、参照することによってその開示内容が本願明細書に組み込まれている 非特許文献 6によると、フコキサンチンを 0. 01%水酸ィ匕カリウムのメタノール溶液に 添加(水酸ィ匕カリウムとフコキサンチンのモル比 = 2. 2)すると、 40分後の各カロテノ イドの成分比は、フコキサンチン(33%)、フコキサンチノール(8%)、フコキサンチン へミケタール( 11 %)、フコキサンチノールへミケタール(3%)、イソフコキサンチン( 1 7%)、イソフコキサンチノール(14%)になると記載されている。これによれば、フコキ サンチノールの収率は僅力 8%である。  [0005] Next, in the case of the production method of (2) above, the operation for obtaining fucoxanthinol is very simple as compared with the production methods of (1) and (3) above. There is a problem with the very bad point. For example, according to Non-Patent Document 6, the disclosure of which is incorporated herein by reference, fucoxanthin is added to a methanolic solution of 0.01% potassium hydroxide (potassium hydroxide and fucoxane). When xanthine molar ratio = 2.2), the component ratio of each carotenoid after 40 minutes is as follows: fucoxanthin (33%), fucoxanthinol (8%), fucoxanthin hemiketal (11%), fucoki Santinol hemiketal (3%), isofucoxanthin (17%), and isofucoxanthinol (14%) are described. According to this, the yield of fucoxanthinol is only 8%.
[0006] また、 0. 1%水酸ィ匕カリウムのメタノール溶液に添加(水酸ィ匕カリウムとフコキサンチ ンのモル比 = 24)すると、 35分後の各カロテノイドの成分比は、フコキサンチン(20 %)、フコキサンチノール(6%)、フコキサンチンへミケタール(10%)、フコキサンチノ ールへミケタール(3%)、イソフコキサンチン(4%)、イソフコキサンチノール(7%)に なると記載されている。即ち、フコキサンチノールの収率は僅か 6%である。  [0006] Further, when 0.1% potassium hydroxide in methanol was added to the methanol solution (molar ratio of potassium hydroxide to fucoxanthin = 24), the component ratio of each carotenoid after 35 minutes was calculated as fucoxanthin ( 20%), fucoxanthinol (6%), fucoxanthin hemiketal (10%), fucoxanthinol hemiketal (3%), isofucoxanthin (4%), isofucoxanthinol (7%) Are listed. That is, the yield of fucoxanthinol is only 6%.
[0007] 参照することによってその開示内容が本願明細書に組み込まれている非特許文献 3に於いても、 200mgのフコキサンチンから 8mgのフコキサンチノールしか得られて いない。つまり、フコキサンチンのアルカリ加水分解では、原料となるフコキサンチン に対しての収率が 10%以下と非常に低収率である。従って、後述のフコキサンチノ ールの製造方法(3)と比較して、この製造方法(2)はフコキサンチノールの収率が 1 0%以下であるため、大量の製造方法には適して!/、な!/、と言える。  [0007] Even in Non-Patent Document 3, the disclosure of which is incorporated herein by reference, only 8 mg of fucoxanthinol is obtained from 200 mg of fucoxanthin. In other words, in the alkaline hydrolysis of fucoxanthin, the yield based on fucoxanthin as a raw material is very low, 10% or less. Therefore, compared with the production method (3) of fucoxanthinol described later, this production method (2) has a yield of fucoxanthinol of 10% or less and is suitable for a large amount of production method! You can say /!
[0008] 上記(3)の製造方法の場合、(1)と(2)の製造方法と比較して、高い収率でフコキ サンチノールを合成できるが、コストや収率に於いて、従来報告されている製造方法 では問題が残されている。 [0008] In the production method of (3) above, fucoki is produced in a higher yield than the production methods of (1) and (2). Although Santinol can be synthesized, there are still problems with the production methods reported so far in terms of cost and yield.
[0009] 例えば、参照することによってその開示内容が本願明細書に組み込まれている非 特許文献 7によると、微生物(Pseudomonas fluorescens (学名))由来のコレステロール エステラーゼを用いてフコキサンチンのァセチル基を加水分解してフコキサンチノ一 ルを合成している。 [0009] For example, according to Non-Patent Document 7, the disclosure of which is incorporated herein by reference, the acetyl group of fucoxanthin is hydrolyzed using cholesterol esterase derived from microorganisms (Pseudomonas fluorescens (scientific name)). Decomposes and synthesizes fucoxanthinol.
[0010] 反応は次の 3つの溶液 A、 B、 Cを混合することによって行われる。溶液 Aは、フコキ サンチン溶液であって、濃度が 0. 33 g/ Lになるように調製されたフコキサンチ ンのアセトン溶液 10 Lである。溶液 Bは、コレステロールエステラーゼ溶液であって 、 37°C、pH = 7. 0において活性度が 2300ユニット Zgである微生物由来コレステロ ールエステラーゼから次のようにして作成したストック溶液である。 lOlmgのコレステ ロールエステラーゼを pH = 7. 0に調製されたトリス塩酸緩衝液 10mLに溶解し、得ら れた溶液をストックする。このストック溶液のうち、 45. 8 Lを溶液 Bとして使用する。 溶液 Cは、緩衝液であって、 944. 2 Lの pH = 7. 0、 0. 05M (モノレ/ L)に調製さ れたトリス塩酸緩衝液である。これら A、 B、 Cの 3つの溶液を混合させ、 30分間反応 させる。一般的に、精製されたコレステロールエステラーゼは高価であり、この酵素を 用いたフコキサンチンの脱ァセチルイ匕反応は反応速度が遅ぐ収率は 5%以下であ ると非特許文献 7には報告されて 、る。  [0010] The reaction is carried out by mixing the following three solutions A, B, and C. Solution A is a fucoxanthin solution that is 10 L of fucoxanthin in acetone prepared to a concentration of 0.33 g / L. Solution B is a cholesterol esterase solution, which is a stock solution prepared as follows from a microorganism-derived cholesterol esterase having an activity of 2300 units Zg at 37 ° C. and pH = 7.0. Dissolve lOlmg of cholesterol esterase in 10 mL of Tris-HCl buffer adjusted to pH = 7.0 and stock the resulting solution. Use 45.8 L of this stock solution as Solution B. Solution C is a buffer, which is a Tris-HCl buffer prepared to 94.2 L pH = 7.0, 0.05M (Monole / L). Mix these three solutions A, B, and C and react for 30 minutes. In general, purified cholesterol esterase is expensive. Non-patent document 7 reports that the deacetylation reaction of fucoxanthin using this enzyme has a slow reaction rate and the yield is 5% or less. And
[0011] 参照することによってその開示内容が本願明細書に組み込まれている非特許文献 8によると、豚肝臓由来のエステラーゼ(PLE)を用いてフコキサンチンのァセチル基 を加水分解してフコキサンチノールを合成している。反応は、次の溶液 C、 Dをフコキ サンチンに加えて行う。溶液 Cは、メタノールとトリス塩酸緩衝液 (pH = 7. 3、 50mM )の混合溶液であって、比率はメタノール:トリス塩酸緩衝液 = 2: 3 (容量比? OR重量 比?)である。溶液 Dは、豚肝臓由来エステラーゼ (PLE)酵素溶液であって、まず、 PLE (活性度が 355ユニット Zmg)を用意する。この PLE19mgを 100 /z Lの硫酸ァ ンモ-ゥム溶液に溶解させる。ここで使用する硫酸アンモ-ゥム溶液は、濃度が 3. 2 Mになるように調製したものである。このように調製された溶液 C、 Dを用いて以下の 条件で反応させる。 lmgのフコキサンチンを 6. 5mLの溶液 Cに溶解させた後、 100 Lの溶液 Dをカ卩える。この混合溶液を窒素雰囲気下で、 25〜28°Cにおいて攪拌 機で攪拌しながら 24時間反応させることにより、加水分解反応を行っている。 [0011] According to Non-Patent Document 8, the disclosure of which is incorporated herein by reference, fucoxanthin is obtained by hydrolyzing the acetyl group of fucoxanthin using esterase (PLE) derived from pig liver. Synthesizes a knoll. The reaction is performed by adding the following solutions C and D to fucoxanthin. Solution C is a mixed solution of methanol and Tris-HCl buffer (pH = 7.3, 50 mM), and the ratio is methanol: Tris-HCl buffer = 2: 3 (volume ratio or OR weight ratio?). Solution D is a porcine liver-derived esterase (PLE) enzyme solution. First, prepare PLE (activity is 355 units Zmg). Dissolve PLE19mg in 100 / zL ammonium sulfate solution. The ammonium sulfate solution used here was prepared to a concentration of 3.2 M. The solutions C and D prepared in this way are reacted under the following conditions. After lmg fucoxanthin is dissolved in 6.5mL of solution C, 100mg Cover solution D of L. The mixed solution is allowed to react for 24 hours while stirring with a stirrer at 25 to 28 ° C. in a nitrogen atmosphere to carry out a hydrolysis reaction.
[0012] この反応条件ではフコキサンチノールが 0. 33mg (収率 45%)得られている力 依 然収率は改善される余地がある。さらに反応終了まで 24時間掛カつていることから、 短時間で反応を完結させる必要も残されて 、る。  [0012] Under these reaction conditions, 0.33 mg (yield 45%) of fucoxanthinol was obtained. There is still room for improvement in yield. Furthermore, since the reaction takes 24 hours to complete, there is still a need to complete the reaction in a short time.
[0013] 参照することによってその開示内容が本願明細書に組み込まれている非特許文献 9によると、微生物(Candida cylindracea (学名))由来のリパーゼを用いてフコキサンチ ンのァセチル基を加水分解してフコキサンチノールを合成している。反応条件は、 26 pmolのフコキサンチンを溶解させたフコキサンチンのアセトン溶液 10 μ Lに、 5mgの リパーゼを含む lmLの Britton— Robinson緩衝液を加え、 37。C、 6時間インキュべ ートすることにより加水分解反応を行って 、る。この文献中にはフコキサンチンカもフ コキサンチノールへの収率は記載されていない。しかし、 HPLCの分析結果の図から 、 60%程度の収率であるものと予測される。この方法は実験室レベルであり、且つ非 常に少量で行っており、然も高価なリパーゼを使用しているため、大量生産可能な技 術であるかどうかは疑問である。  [0013] According to Non-Patent Document 9, the disclosure of which is incorporated herein by reference, the acetylase of fucoxanthin is hydrolyzed using a lipase derived from a microorganism (Candida cylindracea (scientific name)). Fucoxanthinol is synthesized. The reaction conditions were as follows: lmL Britton-Robinson buffer containing 5mg of lipase was added to 10µL of fucoxanthin in acetone with 26pmol fucoxanthin dissolved. C, hydrolysis is carried out by incubating for 6 hours. This document does not describe the yield of fucoxanthin to fucoxanthinol. However, a yield of about 60% is predicted from the HPLC analysis results. This method is at the laboratory level, is performed in a very small amount, and uses expensive lipase, so it is doubtful whether it is a technology capable of mass production.
[0014] 参照することによってその開示内容が本願明細書に組み込まれている非特許文献 10によると、豚脾臓由来のコレステロールエステラーゼを用いてフコキサンチンのァ セチル基を加水分解してフコキサンチノールを得ている。反応条件は、 5 /z molフコ キサンチンと lOOmgのタウロコール酸を少量のジクロロメタン Zメタノール(2 : 1)に溶 解しアルゴンガスで溶媒を気化させた後、 lOunitのコレステロールエステラーゼを含 む 10mLのカリウムリン酸緩衝液中に溶解させ、 37°Cで 2時間インキュベートすること によりフコキサンチンを加水分解して 、る。収率に関しては全く記載されて ヽな 、が、 高価なコレステロールエステラーゼを使用していることから大量生産に不向きである。  [0014] According to Non-Patent Document 10, the disclosure of which is incorporated herein by reference, fucoxanthinol is obtained by hydrolyzing the acetyl group of fucoxanthin using a cholesterol esterase derived from porcine spleen. Have gained. The reaction conditions were: 5 / z mol fucoxanthin and lOOmg taurocholic acid dissolved in a small amount of dichloromethane Zmethanol (2: 1), the solvent was evaporated with argon gas, and 10mL potassium containing lOunit cholesterol esterase Fucoxanthin is hydrolyzed by dissolving in phosphate buffer and incubating at 37 ° C for 2 hours. Although the yield is completely described, it is unsuitable for mass production because it uses expensive cholesterol esterase.
[0015] 非特許文献 1 : H. Maeda et al. , Biochemical and Biophysical Resear ch Comunications, 332 (2005) 392— 397.  [0015] Non-Patent Document 1: H. Maeda et al., Biochemical and Biophysical Research Communication, 332 (2005) 392—397.
非特許文献 2 :細川、 BIO INDUSTRY, 21 (2004) 52— 57.  Non-Patent Document 2: Hosokawa, BIO INDUSTRY, 21 (2004) 52—57.
非特許文献 3 : H. Nitsche, Biochemica et Biophysica Acta 338 (197 4) 572- 576. 非特許文献 4 : M. Ookubo and T. Matsuno, Comp. Biochem. Physi ol. , 81B (1985) 137—141. Non-Patent Document 3: H. Nitsche, Biochemica et Biophysica Acta 338 (197 4) 572-576. Non-Patent Document 4: M. Ookubo and T. Matsuno, Comp. Biochem. Physiol., 81B (1985) 137—141.
特許文献 5 : 1. Konishi et al. , Comparative Biochemistry and Phys iology. Part し, Pharmacology, toxicology & endocrinology, In p ress.  Patent Document 5: 1. Konishi et al., Comparative Biochemistry and Phys iology. Part Pharmacology, toxicology & endocrinology, In p ress.
非特許文献 6 :J. A. Haugan et al. , Acta Chemica Scandinavica 46 Non-Patent Document 6: J. A. Haugan et al., Acta Chemica Scandinavica 46
(1992) 614- 624. (1992) 614-624.
非特許文献 7 : P. B. Jacobs et al. , Comp. Biochem. Physiol. , 72 B (1982) 157- 160.  Non-Patent Document 7: P. B. Jacobs et al., Comp. Biochem. Physiol., 72 B (1982) 157-160.
非特許文献 8 : T. Aakermann et al. , Biocatalysis and Biotransformati on, 13 (1996) 157—163.  Non-Patent Document 8: T. Aakermann et al., Biocatalysis and Biotransformation, 13 (1996) 157-163.
非特許文献 9 : T. Sugawara et al. , J. Nutri. 132 (2002) 946 - 951 非特許文献 10 : A. Asai et al. , Drug Metabolism and Disposition, 3 2 (2004) 205 - 211.  Non-Patent Document 9: T. Sugawara et al., J. Nutri. 132 (2002) 946-951 Non-Patent Document 10: A. Asai et al., Drug Metabolism and Disposition, 3 2 (2004) 205-211.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] 本発明は、従来技術の問題点に鑑みてなされたものであり、フコキサンチノールを 短時間で且つ低コストで然も高収率で製造することが可能な、フコキサンチノールの 製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and can produce fucoxanthinol in a short time and at a low cost with a high yield. The purpose is to provide a manufacturing method.
課題を解決するための手段  Means for solving the problem
[0017] 本発明者等は上記課題について鋭意検討を行った結果、動物内臓由来リパーゼ をフコキサンチンに適温、適濃度、適時間で作用させたところ、 80%以上もの効率で フコキサンチノールが得られることを見出した。  [0017] As a result of intensive studies on the above problems, the present inventors have made fucoxanthinol effective at 80% or more when lipase derived from animal viscera is allowed to act on fucoxanthin at an appropriate temperature, at an appropriate concentration, and at an appropriate time. It was found that it can be obtained.
[0018] 即ち、本発明のフコキサンチノールの製造方法は、フコキサンチンと界面活性剤と を第一の有機溶媒に溶解させる第一の工程と、前記第一の有機溶媒を蒸発させて 前記フコキサンチンと前記界面活性剤とを乾燥させる第二の工程と、第二の工程で 得られた乾燥物を溶解させた pH緩衝溶液にリパーゼを加え、所定の温度で所定の 時間だけインキュベートする第三の工程とよりなることを特徴とする。 [0018] That is, the method for producing fucoxanthinol of the present invention comprises a first step of dissolving fucoxanthin and a surfactant in a first organic solvent, evaporating the first organic solvent, and A lipase is added to a second step of drying fucoxanthin and the surfactant, and a pH buffer solution in which the dried product obtained in the second step is dissolved. And a third step of incubating only for a time.
[0019] 本発明と従来法との決定的な違いは、フコキサンチンの加水分解酵素としてリパー ゼ、特に動物由来のリパーゼを使用している点にある。動物由来のリパーゼであれば 、未精製のリパーゼであっても十分に高収率でフコキサンチンの加水分解によりフコ キサンチノールを得ることが可能である。  [0019] A critical difference between the present invention and the conventional method is that a lipase, particularly an animal-derived lipase is used as a hydrolase of fucoxanthin. In the case of an lipase derived from an animal, fucoxanthinol can be obtained by hydrolysis of fucoxanthin in a sufficiently high yield even with an unpurified lipase.
[0020] 前記第三の工程までで得られたフコキサンチノールを、第二の有機溶媒に溶解し、 クロマトグラフィにより精製する第四の工程を更に含む様にすることができる。  [0020] The fucoxanthinol obtained up to the third step may be further dissolved in a second organic solvent, and may further include a fourth step of purification by chromatography.
[0021] 前記フコキサンチンは、有機合成物、若しくは動物又は植物又は藻類力も抽出し単 離'精製されたもの、若しくは細菌カゝら抽出し精製されたものとすることができる。また 、前記第一の有機溶媒は、アルコール類、エーテル類、ケト類、脂肪族炭化水素の ハロゲンィ匕合物、脂肪族炭化水素、芳香族炭化水素の中から選ばれた少なくとも一 種であってもよい。  [0021] The fucoxanthin may be an organic compound, or an animal or plant or algae extract that has been isolated and purified, or a bacterial fungus extracted and purified. The first organic solvent is at least one selected from alcohols, ethers, ketos, halogenated compounds of aliphatic hydrocarbons, aliphatic hydrocarbons, and aromatic hydrocarbons. Also good.
[0022] 前記界面活性剤は、タウロコール酸、デキシコール酸、グリコール酸及びこれらのァ ルカリ塩又はレシチン類、脂肪酸グリセリンエステル、脂肪酸プロピレングリコールェ ステル、脂肪酸ソルビタンエステル、脂肪酸ショ糖エステル、ォレイン酸アルカリ塩、 脂肪酸モルホリン塩、ステアリル乳酸カルシウム、タンパク質の中力 選ばれた少なく とも一種であってもよい。  [0022] The surfactant includes taurocholic acid, dexoxylic acid, glycolic acid and their alkali salts or lecithins, fatty acid glycerin ester, fatty acid propylene glycol ester, fatty acid sorbitan ester, fatty acid sucrose ester, oleic acid alkali salt Fatty acid morpholine salt, calcium stearyl lactate, or protein may be at least one kind selected.
[0023] 前記 pH緩衝溶液の pHは、 5以上 9以下とするのが望ま 、。また、前記リパーゼは 、動物内臓由来のリパーゼとすることができる。前記インキュベートの所定の温度は、 10°C以上 50°C以下とするのが望ましい。さらに前記インキュベートの所定の時間は 、 30分以上 48時間以下であってもよい。  [0023] The pH of the pH buffer solution is preferably 5 or more and 9 or less. The lipase can be a lipase derived from an animal viscera. The predetermined temperature of the incubation is desirably 10 ° C or higher and 50 ° C or lower. Furthermore, the predetermined incubation time may be not less than 30 minutes and not more than 48 hours.
[0024] 前記第二の有機溶媒及び前記クロマトグラフィの展開溶媒は、アルコール類、エー テル類、ケト類、脂肪族炭化水素のハロゲン化合物、脂肪族炭化水素、芳香族炭化 水素の中から選ばれた少なくとも一種とすることができる。また、前記クロマトグラフィ に用いる充填剤は、順相系のシリカゲル、セライト、アルミナ、水酸ィ匕カルシウム、若し くは逆相系の直鎖アルキル基、芳香族官能基、親水性官能基又は極性内包型官能 基がシルカゲルに化学結合したものの中から選ばれた少なくとも一種とすることがで きる。 発明の効果 [0024] The second organic solvent and the developing solvent for the chromatography were selected from alcohols, ethers, ketos, halogenated aliphatic hydrocarbons, aliphatic hydrocarbons, and aromatic hydrocarbons. It can be at least one kind. The packing material used in the chromatography is normal phase silica gel, celite, alumina, calcium hydroxide, or reverse phase linear alkyl group, aromatic functional group, hydrophilic functional group, or polarity. It may be at least one selected from those in which the encapsulated functional group is chemically bonded to the silica gel. The invention's effect
[0025] フコキサンチンと界面活性剤とを第一の有機溶媒に溶解させる第一の工程と、前記 第一の有機溶媒を蒸発させて前記フコキサンチンと前記界面活性剤とを乾燥させる 第二の工程と、第二の工程で得られた乾燥物を溶解させた pH緩衝溶液にリパーゼ を加え、所定の温度で所定の時間だけインキュベートする第三の工程とよりなり、第 三の工程までで得られたフコキサンチノールを、第二の有機溶媒に溶解し、クロマト グラフィにより精製する第四の工程を更に含むので、フコキサンチノールを短時間で 且つ低コストで然も高収率で製造することが可能となる。  [0025] A first step of dissolving fucoxanthin and a surfactant in a first organic solvent; and evaporating the first organic solvent to dry the fucoxanthin and the surfactant. This process consists of a third step in which lipase is added to the pH buffer solution in which the dried product obtained in the second step is dissolved and incubated at a predetermined temperature for a predetermined time. The fucoxanthinol is dissolved in a second organic solvent and further purified by chromatography, so that fucoxanthinol can be produced in a short time and at a low cost with a high yield. It becomes possible to do.
[0026] また、このフコキサンチノールを食品素材に添加することで、種々の機能を有する 機能性食品素材とすることが可能となる。  [0026] Further, by adding this fucoxanthinol to a food material, a functional food material having various functions can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明の実施の形態について具体的に説明する力 本発明がこの実施の 形態のみに限定されるものではない。図 1は、本発明のフコキサンチノールの製造方 法のフローチャートである。ワカメ力も抽出し、単離'精製したフコキサンチン力も豚脾 臓由来リパーゼを用いてフコキサンチノールを合成する一連の操作について示した  Hereinafter, the power to specifically describe the embodiment of the present invention The present invention is not limited only to this embodiment. FIG. 1 is a flowchart of the method for producing fucoxanthinol of the present invention. Extraction of wakame force, isolated 'purified fucoxanthin force was also shown for a series of operations to synthesize fucoxanthinol using porcine spleen lipase
[0028] 原料となるフコキサンチンは、ここでは海藻力も抽出したフコキサンチンを用いたが 、有機合成によって得られたフコキサンチンであっても、フコキサンチンを含有する動 物から抽出されたフコキサンチンであっても、大腸菌や酵母に生合成させたフコキサ ンチンであっても、これらのフキコサンチンは、組み合わせて用いてもよい。言い換え ると、如何なる手段で得られたフコキサンチンを用いても最終生成物であるフコキサ ンチノールを短時間に安価で高収率に得ることが可能である。 [0028] The fucoxanthin used as the raw material here is fucoxanthin extracted from seaweed. However, even fucoxanthin obtained by organic synthesis is fucoxanthin extracted from an animal containing fucoxanthin. Even if it is fucoxanthin biosynthesized by Escherichia coli or yeast, these fucosanthins may be used in combination. In other words, the fucoxanthin, which is the final product, can be obtained at a low cost and in a high yield in a short time using fucoxanthin obtained by any means.
[0029] 先ず第一の工程として、フコキサンチンと界面活性剤であるタウロコール酸ナトリウ ムを第一の有機溶媒としてのメタノールに溶解させる。ここでタウロコール酸ナトリウム が溶解しにく 、場合には、ソ-ケータを用いることも可能である。  [0029] First, as the first step, fucoxanthin and sodium taurocholate, which is a surfactant, are dissolved in methanol as the first organic solvent. Here, in the case where sodium taurocholate is difficult to dissolve, it is possible to use a soaker.
[0030] 次に第二の工程として、第一の工程で得られたフコキサンチンとタウロコール酸ナト リウムの第一の有機溶媒としてのメタノール溶液から、メタノール溶液を蒸発させるた めにエバポレータで乾固させる。さらに乾燥窒素ガスを乾固物に吹き付けて、メタノー ルを取り除く様にする。 [0030] Next, as a second step, from an methanol solution as the first organic solvent of fucoxanthin and sodium taurocholate obtained in the first step, an evaporator is used to evaporate the methanol solution. Let Furthermore, dry nitrogen gas is blown onto the dried solids, and methanol Try to remove it.
[0031] さらに第三の工程として、得られた乾固物を pH緩衝溶液としてのリン酸カリウム緩 衝液に溶解し、続いてリパーゼとして例えば豚脾臓由来リパーゼを加える。ここで用 いる豚肝臓由来リパーゼは高価な精製された物である必要は無ぐ粗リパーゼを用 いても反応効率や反応時間において特に問題は無い。従って、安価にフコキサンチ ノールを製造するには粗精製リパーゼで十分である。  [0031] Further, as a third step, the obtained dried product is dissolved in a potassium phosphate buffer solution as a pH buffer solution, and subsequently, for example, porcine spleen-derived lipase is added as a lipase. The porcine liver lipase used here does not need to be an expensive and purified product, and there is no particular problem in reaction efficiency and reaction time even if crude lipase is used. Therefore, crude lipase is sufficient to produce fucoxanthinol at low cost.
[0032] 前記 pH緩衝溶液の pHは、 5以上 9以下とされる。 pHが 5未満の場合にはフコキサ ンチン内の 5, 6—ェポキサイドが 5, 8—ェポキサイドとなり好ましくなぐ反面 pHが 9 を超える場合には背景技術のフコキサンチノール製造方法(2)で記述した通り、フコ キサンチンの分解が促進されることとなり好ましくない。  [0032] The pH of the pH buffer solution is 5 or more and 9 or less. If the pH is less than 5, the 5,6-epoxide in the fucoxanthin becomes 5,8-epoxide, which is unfavorable. On the other hand, if the pH exceeds 9, it is described in the background art Fucoxanthinol production method (2) As mentioned above, the decomposition of fucoxanthin is accelerated, which is not preferable.
[0033] リパーゼが溶解した後、 10°C以上 50°C以下の温度で 30分以上 48時間以下インキ ュベー卜する。  [0033] After the lipase is dissolved, it is incubated at a temperature of 10 ° C to 50 ° C for 30 minutes to 48 hours.
インキュベート温度が 10°C未満では酵素反応の活性が低下する事に伴!、、低収率 且つ長反応時間化となり好ましくなぐ反面 50°Cを超える場合には酵素反応の活性 が低下する事に伴 、、低収率且つ長反応時間化及び原料のフコキサンチンと合成 物のフコキサンチノールの分解が生じ好ましくな 、。  If the incubation temperature is less than 10 ° C, the enzyme reaction activity decreases.In addition, the yield is low and the reaction time becomes longer, which is not preferable. On the other hand, if it exceeds 50 ° C, the enzyme reaction activity decreases. In addition, low yield and longer reaction time and decomposition of the raw material fucoxanthin and the synthetic fucoxanthinol are preferable.
また、インキュベート時間が 30分未満では未反応のフコキサンチノール量が多くな り好ましくなぐ反面 48時間を超える場合には生成されたフコキサンチノールが分解 し好ましくない。  Further, if the incubation time is less than 30 minutes, the amount of unreacted fucoxanthinol increases, which is unfavorable. On the other hand, if it exceeds 48 hours, the produced fucoxanthinol is decomposed, which is not preferable.
[0034] 以上に引き続き、さらに第四の工程として、第一工程〜第三工程で得られた未精製 フコキサンチノールを第二の有機溶媒に溶解し、クロマトグラフィにより精製するカラ ムクロマトグラフィに供する。前記第二の有機溶媒及び前記クロマトグラフィの展開溶 媒は、後にアルコールを取り除く操作の時に沸点が 100°C以下のものであることが望 まれる為、炭素数 1〜4のアルコール類が特に好ましい。  [0034] Following the above, as a fourth step, unpurified fucoxanthinol obtained in the first step to the third step is dissolved in a second organic solvent and subjected to column chromatography for purification by chromatography. . Since the second organic solvent and the developing solvent for the chromatography are desired to have a boiling point of 100 ° C. or lower when the alcohol is removed later, alcohols having 1 to 4 carbon atoms are particularly preferable. .
[0035] [実施例]  [0035] [Example]
次に本発明の一実施例につき説明する。  Next, an embodiment of the present invention will be described.
先ず第一の工程として、フコキサンチン 0. 5gをメタノール 300mLに溶解し、続いて 界面活性剤であるタウロコール酸ナトリウム 2. 5gをこの溶液に加え、溶解させた。次 に第二の工程として、第一の工程で得られたフコキサンチンとタウロコール酸ナトリウ ムのメタノール溶液をエバポレータで乾固させ、さらに乾燥窒素ガスを乾固物に吹き 付けて、メタノールを取り除いた。 As a first step, 0.5 g of fucoxanthin was dissolved in 300 mL of methanol, and then 2.5 g of sodium taurocholate as a surfactant was added to this solution and dissolved. Next As a second step, the methanol solution of fucoxanthin and sodium taurocholate obtained in the first step was evaporated to dryness with an evaporator, and further, dry nitrogen gas was blown onto the dried product to remove the methanol.
[0036] さらに第三の工程として、得られた乾固物を 0. 1M、 pH = 7. 0のリン酸カリウム緩 衝液 500mLに溶解し、続いて豚脾臓由来粗リパーゼ 10gを加えた。なお粗リパーゼ を用いているが、反応効率や反応時間において何ら問題は無力つた。リパーゼが溶 解した後、 37°Cで 2時間インキュベートした。  [0036] Further, as the third step, the obtained dried product was dissolved in 500 mL of a potassium phosphate buffer solution of 0.1 M, pH = 7.0, followed by addition of 10 g of porcine spleen-derived crude lipase. Although crude lipase was used, there was no problem in reaction efficiency or reaction time. After the lipase was dissolved, it was incubated at 37 ° C for 2 hours.
[0037] 以上に引き続き、酵素反応後の溶液にメタノール 300mLを加えて攪拌後、 10分間 静置した。この溶液にジェチルエーテル 500mLをカロえて分液操作を行った。ジェチ ルエーテル相は回収し、水相はカロテノイドの色が無くなるまで分液操作を繰り返し た。回収したジェチルエーテル相をエバポレータで乾固することで、未精製フコキサ ンチノールを得た。  [0037] Following the above, 300 mL of methanol was added to the solution after the enzyme reaction, and the mixture was stirred and allowed to stand for 10 minutes. To this solution, 500 mL of jetyl ether was added to carry out a liquid separation operation. The gel ether phase was recovered, and the water phase was repeated until the carotenoid color disappeared. The recovered jetyl ether phase was dried with an evaporator to obtain unpurified fucoxanthinol.
[0038] さらに第四の工程として、得られた未精製フコキサンチノールをカラムクロマトグラフ ィ(充填剤:シリカゲル、展開溶媒: 50%アセトン Zへキサン (容積比? or重量比? )) に供した。図 2にカラムクロマトグラフィの展開状況を示した。まず、タウロコール酸ナト リウムが溶出し、続いて未反応のフコキサンチン、フコキサンチノールの順番で溶出 する。図 2に示した反応条件(リパーゼ量が原料フコキサンチンの 10倍量)の場合に は、未反応のフコキサンチンが現れてきている力 図 1のフローチャートの反応条件( リパーゼ量が原料フコキサンチンの 20倍量)では目視に於いて、カラムクロマトグラム でフコキサンチンのバンドは確認されなかった。  [0038] Further, as the fourth step, the obtained unpurified fucoxanthinol is subjected to column chromatography (filler: silica gel, developing solvent: 50% acetone Z hexane (volume ratio or weight ratio?)). Provided. Figure 2 shows the development of column chromatography. First, sodium taurocholate elutes, followed by unreacted fucoxanthin followed by fucoxanthinol. Under the reaction conditions shown in Fig. 2 (the amount of lipase is 10 times the amount of raw fucoxanthin), the unreacted fucoxanthin appears. The reaction conditions in the flowchart of Fig. 1 (the amount of lipase is the amount of raw fucoxanthin) In the 20 times amount), no fucoxanthin band was visually confirmed in the column chromatogram.
[0039] 図 2に示した反応条件と図 1のフローチャートの反応条件において、それぞれ 2回 づっ実験を行った。図 2に示した反応条件では原料 518. 9g (l回目)、 620. lmg ( 2回目)力もそれぞれフコキサンチノール 272. 8g (l回目:収率 56. 1%)、 360. 6m g (2回目:収率 62. 2%)、未反応フコキサンチン 223. 5mg (l回目)、 168. 9mg (2 回目)が得られた。一方、図 1のフローチャートの反応条件では原料 496. 7mg (l回 目)、 531. 7mg (2回目)力らそれぞれフコキサンチノ一ノレ 434. 4mg (l回目:収率 9 3. 4%)、 412. 2mg (2回目:収率 82. 8%)が得られた。従って、フコキサンチンとリ パーゼの量を適切な比に設定することで、フコキサンチノールの収率を高めることが 可能となる。 [0039] The experiment was conducted twice under the reaction conditions shown in FIG. 2 and the reaction conditions shown in the flowchart of FIG. Under the reaction conditions shown in Fig. 2, the raw materials were 518.9 g (l time) and 620. lmg (2nd time), respectively, and fucoxanthinol was 272.8 g (l time: yield 56. 1%), 360. 6 mg ( Second time: yield 62.2%), unreacted fucoxanthin 223.5 mg (first time), 168.9 mg (second time) were obtained. On the other hand, under the reaction conditions in the flowchart of FIG. 1, the raw materials 496.7 7 mg (l time), 531.7 7 mg (second time), and the like, fucoxanthino monool 434.4 mg (l time: yield 93.4%), 412 2 mg (2nd: yield 82.8%) was obtained. Therefore, by setting the amount of fucoxanthin and lipase at an appropriate ratio, the yield of fucoxanthinol can be increased. It becomes possible.
[0040] 得られたカラムクロマトグラフィ精製フコキサンチノールの高速液体クロマトグラフィ( HPLC)分析を行ったところ、図 3に示したように、 80%を越える全トランス体フコキサ ンチノールが得られた。 HPLCで全トランス体のみを単離 '精製し、 NMR分析を行つ た。図 4は HPLC精製後の全トランスフコキサンチノールの 1次元プロトン NMRであり 、図 5は HPLC精製後の全トランスフコキサンチノールの 1次元カーボン NMRである 。これにより、得られたフコキサンチンの加水分解物がフコキサンチノールであること を確認した。従って、本発明のフコキサンチノールの製造方法によって、高純度のフ コキサンチノールを大量、安価且つ短期間に製造することが可能になった。  [0040] When the obtained column chromatography purified fucoxanthinol was analyzed by high performance liquid chromatography (HPLC), more than 80% of all-trans fucoxanthinol was obtained as shown in FIG. Only all trans isomers were isolated by HPLC 'purification and NMR analysis was performed. FIG. 4 is a one-dimensional proton NMR of all-transfucoxanthinol after HPLC purification, and FIG. 5 is a one-dimensional carbon NMR of all-transfucoxanthinol after HPLC purification. This confirmed that the obtained hydrolyzate of fucoxanthin was fucoxanthinol. Therefore, the fucoxanthinol production method of the present invention makes it possible to produce high-purity fucoxanthinol in large quantities, at low cost and in a short period of time.
産業上の利用可能性  Industrial applicability
[0041] 本発明のフコキサンチノールの製造方法によって製造したフコキサンチノールを食 品素材等に添加することで、機能性食品素材として用いることができる。しかし、産業 上の利用分野はこれに限定されるものではない。 [0041] By adding fucoxanthinol produced by the method for producing fucoxanthinol of the present invention to a food material or the like, it can be used as a functional food material. However, industrial application fields are not limited to this.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]本発明のフコキサンチノールの製造方法の実施の形態を示すフローチャートで ある。  FIG. 1 is a flowchart showing an embodiment of the method for producing fucoxanthinol of the present invention.
[図 2]本発明のフコキサンチノールの製造方法の実施例におけるカラムクロマトグラフ ィの展開状況を示す写真である。  FIG. 2 is a photograph showing the development of column chromatography in an example of the method for producing fucoxanthinol of the present invention.
[図 3]本発明のフコキサンチノールの製造方法の実施例におけるカラム後の各成分 の HPLC分析チャートである。  FIG. 3 is a HPLC analysis chart of each component after the column in the example of the method for producing fucoxanthinol of the present invention.
[図 4]本発明のフコキサンチノールの製造方法の実施例における HPLC精製後の全 トランスフコキサンチノールの 1次元プロトン NMRである。  FIG. 4 is a one-dimensional proton NMR of all transfucoxanthinol after HPLC purification in an example of the method for producing fucoxanthinol of the present invention.
[図 5]本発明のフコキサンチノールの製造方法の実施例における HPLC精製後の全 トランスフコキサンチノールの 1次元カーボン NMRである。  FIG. 5 is a one-dimensional carbon NMR analysis of all transfucoxanthinol after HPLC purification in an example of the method for producing fucoxanthinol of the present invention.
[図 6]フコキサンチノールとフコキサンチンの化学構造式である。  FIG. 6 is a chemical structural formula of fucoxanthinol and fucoxanthin.

Claims

請求の範囲 The scope of the claims
[1] フコキサンチンと界面活性剤とを第一の有機溶媒に溶解させる第一の工程と、前記 第一の有機溶媒を蒸発させて前記フコキサンチンと前記界面活性剤とを乾燥させる 第二の工程と、第二の工程で得られた乾燥物を溶解させた pH緩衝溶液にリパーゼ を加え、所定の温度で所定の時間だけインキュベートする第三の工程とよりなることを 特徴とするフコキサンチノールの製造方法。  [1] A first step of dissolving fucoxanthin and a surfactant in a first organic solvent, and evaporating the first organic solvent to dry the fucoxanthin and the surfactant. And a third step of adding lipase to the pH buffer solution in which the dried product obtained in the second step is dissolved and incubating at a predetermined temperature for a predetermined time. A method for producing a knoll.
[2] 前記第三の工程までで得られたフコキサンチノールを、第二の有機溶媒に溶解し、 クロマトグラフィにより精製する第四の工程を更に含む請求項 1記載のフコキサンチノ ールの製造方法。 [2] The method for producing fucoxanthinol according to claim 1, further comprising a fourth step in which fucoxanthinol obtained up to the third step is dissolved in a second organic solvent and purified by chromatography. .
[3] 前記フコキサンチンは、有機合成物、若しくは動物又は植物又は藻類力も抽出し単 離-精製されたもの、若しくは細菌力 抽出し精製されたものである請求項 1に記載の フコキサンチノールの製造方法。  [3] The fucoxanthinol according to claim 1, wherein the fucoxanthin is extracted from an organic compound, animal or plant or algal force, isolated and purified, or extracted and purified by bacterial force. Manufacturing method.
[4] 前記第一の有機溶媒は、アルコール類、エーテル類、ケト類、脂肪族炭化水素の ハロゲンィ匕合物、脂肪族炭化水素、芳香族炭化水素の中から選ばれた少なくとも一 種である請求項 1に記載のフコキサンチノールの製造方法。  [4] The first organic solvent is at least one selected from alcohols, ethers, ketos, halogenated compounds of aliphatic hydrocarbons, aliphatic hydrocarbons, and aromatic hydrocarbons. The method for producing fucoxanthinol according to claim 1.
[5] 前記界面活性剤は、タウロコール酸、デキシコール酸、グリコール酸及びこれらのァ ルカリ塩又はレシチン類、脂肪酸グリセリンエステル、脂肪酸プロピレングリコールェ ステル、脂肪酸ソルビタンエステル、脂肪酸ショ糖エステル、ォレイン酸アルカリ塩、 脂肪酸モルホリン塩、ステアリル乳酸カルシウム、タンパク質の中力 選ばれた少なく とも一種である請求項 1に記載のフコキサンチノールの製造方法。  [5] The surfactant includes taurocholic acid, dexoxylic acid, glycolic acid and their alkali salts or lecithins, fatty acid glycerin ester, fatty acid propylene glycol ester, fatty acid sorbitan ester, fatty acid sucrose ester, and oleic acid alkali salt. 2. The method for producing fucoxanthinol according to claim 1, wherein the fatty acid morpholine salt, calcium stearyl lactate, or protein is at least one selected.
[6] 前記 pH緩衝溶液の pHは、 5以上 9以下である請求項 1に記載のフコキサンチノ一 ルの製造方法。  6. The process for producing fucoxanthinol according to claim 1, wherein the pH of the pH buffer solution is 5 or more and 9 or less.
[7] 前記リパーゼは、動物内臓由来のリパーゼである請求項 1に記載のフコキサンチノ ールの製造方法。  7. The method for producing fucoxanthinol according to claim 1, wherein the lipase is a lipase derived from an internal organ of an animal.
[8] 前記インキュベートの所定の温度は、 10°C以上 50°C以下である請求項 1に記載の フコキサンチノールの製造方法。  8. The method for producing fucoxanthinol according to claim 1, wherein the predetermined temperature of the incubation is 10 ° C or higher and 50 ° C or lower.
[9] 前記インキュベートの所定の時間は、 30分以上 48時間以下である請求項 1に記載 のフコキサンチノールの製造方法。 [9] The method for producing fucoxanthinol according to claim 1, wherein the predetermined time for the incubation is 30 minutes or more and 48 hours or less.
[10] 前記第二の有機溶媒及び前記クロマトグラフィの展開溶媒は、アルコール類、エー テル類、ケト類、脂肪族炭化水素のハロゲン化合物、脂肪族炭化水素、芳香族炭化 水素の中力 選ばれた少なくとも一種である請求項 2に記載のフコキサンチノールの 製造方法。 [10] The second organic solvent and the developing solvent for the chromatography were selected from alcohols, ethers, ketos, aliphatic hydrocarbon halogen compounds, aliphatic hydrocarbons, and aromatic hydrocarbons. The method for producing fucoxanthinol according to claim 2, which is at least one kind.
[11] 前記クロマトグラフィに用いる充填剤は、順相系のシリカゲル、セライト、アルミナ、水 酸ィ匕カルシウムの中力 選ばれた少なくとも一種である請求項 2に記載のフコキサン チノールの製造方法。  11. The method for producing fucoxanthinol according to claim 2, wherein the filler used in the chromatography is at least one selected from normal phase silica gel, celite, alumina, and calcium hydroxide calcium hydroxide.
[12] 前記クロマトグラフィに用いる充填剤は、逆相系の直鎖アルキル基、芳香族官能基 、親水性官能基又は極性内包型官能基がシルカゲルに化学結合したものの中から 選ばれた少なくとも一種である請求項 2に記載のフコキサンチノールの製造方法。  [12] The packing used in the chromatography is at least one selected from the group consisting of a reverse-phase linear alkyl group, an aromatic functional group, a hydrophilic functional group, or a polar inclusion functional group chemically bonded to a silica gel. The method for producing fucoxanthinol according to claim 2.
PCT/JP2006/321659 2005-11-25 2006-10-30 Process for production of fucoxanthinol WO2007060811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-340997 2005-11-25
JP2005340997A JP2009033970A (en) 2005-11-25 2005-11-25 Process for producing fucoxanthinol

Publications (1)

Publication Number Publication Date
WO2007060811A1 true WO2007060811A1 (en) 2007-05-31

Family

ID=38067048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321659 WO2007060811A1 (en) 2005-11-25 2006-10-30 Process for production of fucoxanthinol

Country Status (2)

Country Link
JP (1) JP2009033970A (en)
WO (1) WO2007060811A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047530A1 (en) * 2009-10-20 2011-04-28 北京绿色金可生物技术股份有限公司 Carotenoid derivatives, preparation method and use thereof
EP2918278A1 (en) 2014-03-14 2015-09-16 Greenaltech S.L. Algal extracts comprising fucoxanthin and fucoxanthinol
RU2798267C1 (en) * 2023-01-09 2023-06-20 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт биологии южных морей имени А.О. Ковалевского РАН" (ФИЦ ИнБЮМ) Method of obtaining mixoxanthophill and oscillaxanthin from spirulina biomass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402405B2 (en) * 2014-12-19 2018-10-10 阪野 秀一 Fucoxanthinol derivative having lipolytic action and method for producing the same
CN106749110B (en) * 2016-12-29 2019-04-02 国家海洋局第三海洋研究所 A method of fucoxanthol is prepared using reducing agent
CN109805375B (en) * 2019-01-28 2022-05-17 集美大学 Functional food for improving oxidation resistance of visual organs and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASAI A. ET AL.: "Biotransformation of fucoxanthinol into amarouciaxanthin A in mice and HepG2 cells: formation and cytotoxiciy of fucoxanthin metabolites", DRUG METAB. DISPOS., vol. 32, no. 2, 2004, pages 205 - 211, XP003013406 *
SASHIMA T. ET AL.: "Taikai Koen Yoshishu", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 2006, pages 172, 3A03P10, XP003013408 *
SUGAWARA T. ET AL.: "Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by Caco-2 human intestinal cells and mice", J. NUTR., vol. 132, no. 5, 2002, pages 946 - 951, XP003013407 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047530A1 (en) * 2009-10-20 2011-04-28 北京绿色金可生物技术股份有限公司 Carotenoid derivatives, preparation method and use thereof
EP2918278A1 (en) 2014-03-14 2015-09-16 Greenaltech S.L. Algal extracts comprising fucoxanthin and fucoxanthinol
RU2798267C1 (en) * 2023-01-09 2023-06-20 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт биологии южных морей имени А.О. Ковалевского РАН" (ФИЦ ИнБЮМ) Method of obtaining mixoxanthophill and oscillaxanthin from spirulina biomass

Also Published As

Publication number Publication date
JP2009033970A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
WO2007060811A1 (en) Process for production of fucoxanthinol
HU202283B (en) Process for producing carboxylic acid esters by enzymatic reaction
KR20100043230A (en) Microbial kinetic resolution of ethyl-3,4-epoxybutyrate
JP5667050B2 (en) Enzymatic synthesis of acetoacetate esters and derivatives
JP2663294B2 (en) Method for producing vitamin D
WO2003042393A1 (en) Enzymatic preparation of mycophenolate mofetil
JP4405631B2 (en) Method for purification of conjugated linoleic acid isomers
AU645543B2 (en) Pharmaceuticals
FR2557455A1 (en) ANTIBIOTIC NEW 81-484 ANTITUMER AND ITS PRODUCTION
JP2003319793A (en) Phospholipid base exchange method
EP0325534B1 (en) Process for the synthesis of glyceryl mono nitrates by bioconversion of nitroglycerol
FR2489691A1 (en) AM-3603 ANTIBIOTIC AND PROCESS FOR PRODUCING THE SAME
FR2646669A1 (en) METHOD FOR ENANTIOMERICALLY SELECTIVE SEPARATION OF ESTERS OF HALOGENO-2 PROPIONIC ACIDS
JPH01101893A (en) Production of substance fr-66979
JPS63154695A (en) Novel antibiotic substance sf2446 and production thereof
WO1993003166A1 (en) Process for the preparation of 2-acetoxy-methyl-1,4-butanediole-1-acetate
FR2585022A1 (en) NEW MACROLIDE ANTIBIOTIC M 119
EP0251327A2 (en) Process for production of anthracycline compound R2OX2
JPH06277078A (en) Production of p-hydroxybenzaldehyde
JPH069501A (en) Optically active 2-alkoxycarbonyl-2-cycloalkene derivative and its production
CH323467A (en) Process for the preparation of 11B-hydroxy steroids
JPH04158789A (en) Production of benzenedicarboxylic acid monoester or derivative thereof
JP2005263740A (en) New rare saccharide fatty acid ester and method for producing the same
JPH02291281A (en) Preparation of 1,2-dihydroxy-1,2-dihydro-7-methylnaphthalene
PL194389B1 (en) Method of obtaining 14α-hydroxy-1-dehydrostesterone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06812169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP