WO2007060170A2 - Bilayer tablet comprising telmisartan and diuretic - Google Patents

Bilayer tablet comprising telmisartan and diuretic Download PDF

Info

Publication number
WO2007060170A2
WO2007060170A2 PCT/EP2006/068737 EP2006068737W WO2007060170A2 WO 2007060170 A2 WO2007060170 A2 WO 2007060170A2 EP 2006068737 W EP2006068737 W EP 2006068737W WO 2007060170 A2 WO2007060170 A2 WO 2007060170A2
Authority
WO
WIPO (PCT)
Prior art keywords
tablet
telmisartan
bilayer
matrix
diuretic
Prior art date
Application number
PCT/EP2006/068737
Other languages
French (fr)
Other versions
WO2007060170A3 (en
Inventor
Manabu Nakatani
Kazutoshi Yokoyama
Takeshi Sawada
Original Assignee
Boehringer Ingelheim International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International Gmbh filed Critical Boehringer Ingelheim International Gmbh
Priority to JP2008541736A priority Critical patent/JP2009517366A/en
Priority to EP06819653A priority patent/EP1959934A2/en
Priority to CA2625404A priority patent/CA2625404C/en
Publication of WO2007060170A2 publication Critical patent/WO2007060170A2/en
Publication of WO2007060170A3 publication Critical patent/WO2007060170A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • A61K9/209Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/549Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame having two or more nitrogen atoms in the same ring, e.g. hydrochlorothiazide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/10Antioedematous agents; Diuretics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/08Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space co-operating with moulds carried by a turntable

Definitions

  • Telmisartan is generally manufactured and supplied in the free acid form. As disclosed in WO 00/43370, crystalline telmisartan exists in two polymorphic forms having different melting points. Under the influence of heat and humidity, the lower melting polymorph B transforms irreversibly into the higher melting polymorph A. Both forms are characterized by a very poor solubility in aqueous systems at the physiological pH range of the gastro-intestinal tract of between pH 1 to 7. Telmisartan is obtainable on the market under the trade name Micardis®. Starting from the free acid form Telmisartan as introduced to the market is manufactured using an expensive spray-drying process. Due to the poor solubility of the free acid form preparation of alternative telmisartan formulation is difficult.
  • telmisartan dissolution rate of HCTZ from tablets comprising coated HCTZ in a telmisartan formulation was further reduced due to the gel-forming properties of the polymer.
  • Another approach was to produce separate film-coated tablets for telmisartan and HCTZ in such a size and shape that these could be filled into a capsule. By dividing the doses into two to four single small tablets for telmisartan and into one or two small tablets for HCTZ, a capsule of size 1 to 0 long could be filled. Yet, with this approach the drug dissolution rate of telmisartan was reduced compared to the single
  • the bilayer tablet according to the present invention provides a largely pH- independent dissolution of the poorly water-soluble telmisartan, thereby facilitating dissolution of the drug at a physiological pH level, and also provides for immediate release of the diuretic from the fast disintegrating matrix.
  • the bilayer tablet structure overcomes the stability problem caused by the incompatibility of diuretics like HCTZ with basic constituents of the telmisartan formulation.
  • a surfactant or emulsifier in an amount of about 1 to 20 wt.% of the final composition , (c) 25 to 70 wt.% of a wate r-soluble diluent, and
  • dissolving tablet matrix refers to a pharmaceutical tablet base formulation having immediate release (fast dissolution) characteristics that readily dissolves in a physiological aqueous medium.
  • the active ingredient telmisartan is generally supplied in its free acid form, although pharmaceutically acceptable salts may also be used. It is preferred to remove agglomerates from the starting material, e.g. by sieving, in order to facilitate wetting and dissolution during further processing.
  • telmisartan may be produced by any suitable method known to those skilled in the art, for instance, by freeze drying of aqueous solutions, coating of carrier particles in a fluidized bed, and solvent deposition on sugar pellets or other carriers.
  • telmisartan is prepared by the conventional wet granulation methods such as fluid bed granulation.
  • suitable basic agents are alkali metal hydroxides such as NaOH and KOH; furthermore NaHCO 3 , KHCO 3 , Na 2 CO 3 , K 2 CO 3 , Na 2 H PO 4 , K 2 HPO 4 ; basic amino acids such as arginine; and meglumine (N-methyl-D-glucamine).
  • the surfactants and emulsifiers may be ionic or non-ionic, the latter being preferred.
  • Specific examples of surfactants and emulsifiers are such as poloxamers or pluronics, polyethylene glycols, polyethylene glycol monostearate, polysorbates, sodium lauryl sulfate, polyethoxylated and hydrogenated castor oil etc.
  • Suitable poloxamers may have an average mol weight of about 2000 to 12000, preferably 4000 to 10000, more preferred 6000 to 10000, most preferred 8000 to 9000.
  • Examples for specific poloxamers are poloxamer 182LF, poloxamer 331 and poloxamer 188.
  • suitable water-soluble diluents are carbohydrates such as monosaccharides like glucose; oligosaccharides like sucrose; and sugar alcohols like erythritol, sorbitol, mannitol, dulcitol, ribitol and xylitol. Mannitol, erythritol, sorbitol and sucrose are preferred diluents.
  • the other excipients and/or adjuvants are, for instance, selected from binders, carriers, lubricants, flow control agents, crystallization retarders, solubilizers and coloring agents.
  • the binder may be selected from the group of dry binders and/or the group of wet granulation binders, depending on the manufacturing process chosen for the pharmaceutical composition.
  • Suitable dry binders are, e.g., cellulose powder, crystalline cellulose, microcrystalline cellulose or light anhydrous silicic acid.
  • Specific examples of wet granulation binders are corn starch, polyvinyl pyrrolidone (Povidone), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropyl- cellulose and hydroxypropylmethylcellulose.
  • Suitable disintegrants are, e.g., sodium starch glycolate, Crospovidon, Croscarmellose, sodium carboxymethylcellulose and dried corn starch.
  • the other excipients and adjuvants are preferably selected from diluents and carriers such as cellulose powder, crystalline cellulose or microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxy-propylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, polyvinyl pyrrolidone (Povidone) etc.; lubricants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol thbehenate, etc.; flow control agents such as colloidal silica, light anhydrous silicic acid, crystalline cellulose, talc, etc.; crystallization retarders such as Povidone, etc.; coloring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; and mixtures of two or more of these excipients and/or adjuvants.
  • the first tablet layer containing telmisartan according to the present invention provides solubilization of the poorly water-soluble telmisartan of up to a concentration of more than 4.4 ⁇ mg/10OmL, thereby facilitating dissolution of the drug at a physiological pH level, and also provides for immediate release from the fast disintegrating matrix.
  • compositions according to the invention comprises 15 to 25 wt.% of telmisartan dispersed in a dissolving matrix comprising
  • the most preferred non-ionic surfactants are selected from poloxamers
  • the most preferred water-soluble diluents are selected from mannitol, erythritol, sorbitol and sucrose, and
  • the second tablet layer composition contains a diuretic in a fast disintegrating tablet matrix.
  • the disintegrating tablet matrix comprises a filler, a binder, a disintegrant and, optionally, other excipients and adjuvants.
  • the diuretic is usually employed as a fine-crystalline powder, optionally i n fine-milled, peg-milled or micronized form.
  • the binder is selected from the group of dry binders and/or the group of wet granulation binders, depending on the manufacturing process chosen for the second tablet layer.
  • Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose.
  • Specific examples of wet granulation binders are corn starch, polyvinyl pyrrolidone (Povidon), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropyl-cellulose and hydroxypropylmethylcellulose.
  • the other excipients and adjuvants are preferably selected from diluents and carriers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, polyvinyl pyrrolidone (Povidone) etc.; lubricants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization retarders such as Povidone, etc.; solubilizers such as Pluronic, Povidone, etc.; coloring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate, dibasic
  • the second tablet layer composition generally comprises 1.5 to 35 wt.%, preferably 2 to 25 wt.%, of active ingredient; 25 to 85 wt.%, preferably 35 to 75 wt.%, of filler; 1 to 40 wt.%, preferably 10 to 30 wt.%, of binder; 0.5 to 10 wt.%, preferably 1 to 5 wt.%, of wet granulation binder; and 1 to 10 wt.%, preferably 2 to 8 wt.%, of disintegrant.
  • the other excipients and adjuvants are generally employed in the same amount as in the first tablet layer composition.
  • the tablets so obtained can be further processed using conventional techniques, for instance can be coated using suitable coatings known in the art which do not negatively affect the dissolution properties of the final formulation.
  • the tablets can be provided with a film coat for moisture protection by film forming polymers such as polyvinyl alcohol, hydroxypropyl cellulose, ethylcellulose, polyvinylacetal diethylaminoacetate and polymeric methacrylates together with plasticizers such as polyethylene glycols onto the core tablets. Even though the polymer is water soluble, its rate of solution is slow enough to afford the core tablets moisture protection. Other polymers, which offer similar water solubility and a similar degree of moisture protection may also be used.
  • agents such as beeswax, shellac, cellulose acetate phthalate, polyvinyl acetate phthalate, zein, can be dissolved in a suitable solvent together with plasticizers such as polyethylene glycol and applied to the tablets, provided that the coating has no substantial effect on the disintegration/dissolution of the dosage form and that the coated dosage form is physiochemically stable.
  • the bilayer tablet according to the present i nvention generally contains 1 0 to 1 60 mg, preferably 40 to 80 mg, of telmisartan and 5 to 50 mg, preferably 6.25 to 25 mg, of diuretic.
  • Presently preferred forms are bilayer tablets comprising 40/6.25mg, 40/1 2.5 mg, 80/12.5 mg and 80/25 mg of telmisartan and HCTZ, respectively.
  • the total composition of the telmisartan layer according to the invention may vary within the following ranges, with the proviso that the proportional composition given above with respect to the basic pharmaceutical compositions is met:
  • telmisartan 10 to 1 60 mg of telmisartan; 10 to 1 60 mg of meglumine or arginine, or 2 to 33 mg of NaOH, or
  • telmisartan 20 to 80 mg of telmisartan; 10 to 90 mg of meglumine, or 4 to 1 6 mg of NaOH, or 6 to 23 mg of KOH; 2 to 40 mg of non-ionic surfactants or emulsifiers selected from poloxamers, polyethylene glycols, polyethoxylated and hydrogenated castor oil, poloxamers being especially preferred;
  • telmisartan 20 to 80 mg of meglumine
  • water soluble diluents selected from mannitol, erythritol, sorbitol and sucrose; and 0.1 to 20 mg of further excipients and/or adjuvants selected from crystalline cellulose, light anhydrous silicic acid and magnesium stearate.
  • HCTZ is incompatible with basic agents being a component of the telmisartan tablet formulations according to the invention.
  • This problem can be overcome by means of a bilayer pharmaceutical tablet comprising a first telmisartan containing tablet layer prepared from a pharmaceutical composition mentioned hereinbefore under the first aspect of the invention, and a second tablet layer containing a diuretic in a disintegrating tablet matrix.
  • the second tablet layer composition generally comprises 1.5 to 35 wt.%, preferably 2 to 25 wt.%, of active ingredient; 25 to 85 wt.%, preferably 35 to 75 wt.%, of filler; 10 to 40 wt.%, preferably 10 to 30 wt.%, of dry binder; 0.5 to 10 wt.%, preferably 1 to 5 wt.%, of wet granulation binder; and 1 to 10 wt.%, preferably 2 to 8 wt.%, of disintegrant.
  • the other excipients and adjuvants are generally employed in the same amount as in the first tablet layer composition.
  • the filler is may be selected from D- mannitol, erytthritol, anhydrous lactose, spray-dried lactose and lactose monohydrate.
  • Tablets of the present invention tend to be very low hygroscopic and may be packaged using PVC-blisters, PVC/PVDC-blisters or a moisture-proof packaging material such as aluminium foil blister packs, polypropylene tubes, glass bottles and HDPE bottles.
  • a further object of the invention is directed to methods for producing the bilayer tablets hereinbefore.
  • the tablet layers comprising telmisartan according to the invention may be prepared by any suitable method known to those skilled in the art, for instance, by freeze drying of aqueous solutions, coating of carrier particles in a fluidized bed, and by solvent deposition on sugar pellets or other carriers.
  • the pharmaceutical compositions are prepared using a granulation process, e.g. the fluid-bed granulation process (A), or, in the alternative, the spray-drying process (B) described specifically hereinafter.
  • A fluid-bed granulation process
  • B spray-drying process
  • telmisartan Since during subsequent processing telmisartan is normally dissolved and transformed into a substantially amorphous form, its initial crystal morphology and particle size are of little importance for the physical and biopharmaceutical properties of the pharmaceutical composition obtained.
  • a fluid-bed granulation process (A) can be used for preparation of the pharmaceutical compositions according to the invention, characterized by the following steps: (i) preparing a granulation liquid as an aqueous solution by dissolving 3 to 50 wt.% of telmisartan together with the following components in water or in a mixture solution of ethanol and water:
  • telmisartan 1 :1 to 10:1
  • a non-ionic surfactant or emulsifier in an amount of about 1 to 20 wt.%
  • step (ii) an inlet air temperature of about 60 to 120 °C may be used.
  • step (iii) an inlet temperature of about 80 to 100 °C may be used.
  • the spraying rate greatly depends on the type of granulator used as well as the batch size and can be adjusted by the skilled person by routine. Only for instance, a spraying rate of 400 to 1000 imL/min may be suitable for a 200 kg granulate batch. Lower or higher spray rates may also used.
  • a spraying rate of 400 to 1000 imL/min may be suitable for a 200 kg granulate batch. Lower or higher spray rates may also used.
  • an inlet temperature of about 60 to 120 °C, and a duration of drying of about 1 to 30 minutes may be used.
  • a screen with a mesh size of 0.5 to 3 mm may be suitable.
  • the optional milling step (vi) can be carried out conventionally by the skilled person.
  • a spray-drying process (B) can be used for preparation of the pharmaceutical compositions according to the invention, characterized by the following steps:
  • step (v) optionally, adding further excipients and/or adjuvants in any of steps (i) to (iv), wherein all percentage amounts given are related to the final composition to be prepared.
  • a conventional milling step may be applied, preferably before optional addition of a lubricant according to step (iv). Furthermore, a powdery composition may be converted into a granular composition applying conventional granulation techniques.
  • Process data drying step Inlet air temperature: 80 - 100 °C
  • the granules are screened, for i nstance using an oscillator or comil screen machine, with a mesh size of 1.5 mm.
  • a suitable rotary tablet press i.e. bi-layer and/or triple-layer tablet press
  • the final mixtures of telmisartan layer and HCTZ layer for tablet compression are compressed into bilayer tablets.
  • the target weight is about 240 mg for T40+H12.5 FDC.
  • the tablet hardness can be adjusted by variation of the main compression force.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

The invention relates to a bilayer pharmaceutical tablet comprising a first layer containing 3 to 50 wt.% of telmisartan dispersed in a dissolving tablet matrix and a second layer containing a diuretic in a disintegrating tablet matrix as well as a processes for producing same.

Description

BILAYER TABLET COMPRISING TELMISARTAN AND DIURETIC
FIELD OF THE INVENTION
The present invention relates to an alternative bilayer pharmaceutical tablet formulation comprising the angiotensin Il receptor antagonist telmisartan e.g. in form of granules or in form of a powder in combination with a diuretic such as hydrochlorothiazide (HCTZ). It further provides a method of producing said bilayer tablet.
BACKGROUND OF THE INVENTION
INN Telmisartan is an angiotensin Il receptor antagonist developed for thetreatment of hypertension and other medical indications as disclosed in EP-A-502314. Its chemical name is 4'-[2-n-propyl-4-methyl-6-(1 -methylbenzimidazol-2-yl)- benzimidazol-1 -ylmethyl]-biphenyl-2-carboxylic acid having the following structure:
Figure imgf000002_0001
Telmisartan is generally manufactured and supplied in the free acid form. As disclosed in WO 00/43370, crystalline telmisartan exists in two polymorphic forms having different melting points. Under the influence of heat and humidity, the lower melting polymorph B transforms irreversibly into the higher melting polymorph A. Both forms are characterized by a very poor solubility in aqueous systems at the physiological pH range of the gastro-intestinal tract of between pH 1 to 7. Telmisartan is obtainable on the market under the trade name Micardis®. Starting from the free acid form Telmisartan as introduced to the market is manufactured using an expensive spray-drying process. Due to the poor solubility of the free acid form preparation of alternative telmisartan formulation is difficult.
Diuretics such as amiloride, chlorthalidone, furosemide, hydrochlorothiazide, indapamide and piretanide are therapeutic agents used in the treatment of edema and hypertension. Occasionally they are combined with anti-hypertensive agents acting on the basis of a different mode of action to achieve synergistic therapeutic efficacy in the treatment of hypertension. A preferred diuretic is hydrochlorothiazide (HCTZ). The chemical name of HCTZ is 6-chloro-3,4-dihydro-2 H-1 ,2,4- benzothiadiazine-7-sulfonamide-1 ,1 -dioxide having the following structure
Figure imgf000003_0001
It is an object of the present invention to provide a fixed dose combination drug comprising telmisartan and a diuretic such as HCTZ displaying the required fast dissolution and immediate drug release profile combined with adequate stability. Generally, a fixed-dose combination of drugs intended for immediate release is prepared by either making a powder mixture or a co-granulate of the two active ingredients with the necessary excipients, normally keeping the basic formulation of the corresponding mono-drug preparation and simply adding the second drug component.
With a combination of telmisartan and HCTZ, this approach was not feasible due to the incompatibility of HCTZ with basic compounds such as, e.g., meglumine (N- methyl-D-glucamine) which is a component of conventional telmisartan formulations, and the reduced dissolution rate of HCTZ from a dissolving matrix as compared with dissolution from a disintegrating tablet matrix.
Several galenical approaches to overcome the incompatibility problem have been investigated. A classical approach is to coat the HCTZ particles in a fluidized-bed granulator with a polymer solution containing water soluble polymers like hydroxypropylcellulose, hydroxypropylmethylcellulose or polyvinylpyrrolidone, thereby reducing the contact surface area of the HCTZ particles with the telmisartan formulation during mixing and compressing. Yet, by these means it was not possible 5 to reduce the contact area of HCTZ with the telmisartan formulation in a compressed tablet to a degree sufficient to achieve the desired prolonged shelf life. Furthermore, the dissolution rate of HCTZ from tablets comprising coated HCTZ in a telmisartan formulation was further reduced due to the gel-forming properties of the polymer. i o Another approach was to produce separate film-coated tablets for telmisartan and HCTZ in such a size and shape that these could be filled into a capsule. By dividing the doses into two to four single small tablets for telmisartan and into one or two small tablets for HCTZ, a capsule of size 1 to 0 long could be filled. Yet, with this approach the drug dissolution rate of telmisartan was reduced compared to the single
15 entities due to a lag-time effect of the large capsule shells. Furthermore, with regard to patients' compliance a zero long capsule is not deemed reliable.
BRIEF SUMMARY OF THE INVENTION
20
In accordance with the present invention, is has now been found that the above- described problems associated with conventional approaches in the preparation of a fixed dose combination drug comprising telmisartan and a diuretic can be solved by means of a bilayer pharmaceutical tablet comprising a first layer containing 3 to 50
25 wt.% of telmisartan dispersed in a dissolving tablet matrix comprising
(a) a basic agent in a molar ratio of basic agent : telmisartan = 1 :1 to 10:1 ,
(b) a surfactant or emulsifier in an amount of about 1 to 20 wt.% of the final composition,
(c) 25 to 70 wt.% of a water-soluble diluent, and
30 (d) optionally 0 to 20 wt.% of further excipients and/or adjuvants, and a second tablet layer containing a diuretic in a disintegrating tablet matrix. The bilayer tablet according to the present invention provides a largely pH- independent dissolution of the poorly water-soluble telmisartan, thereby facilitating dissolution of the drug at a physiological pH level, and also provides for immediate release of the diuretic from the fast disintegrating matrix. At the same time, the bilayer tablet structure overcomes the stability problem caused by the incompatibility of diuretics like HCTZ with basic constituents of the telmisartan formulation.
In a further aspect, the present invention relates to the process of producing the bilayer tablet according to the invention.
DETAILED DESCRIPTION OF THE INVENTION
It is known from WO 2004/028505 that the solubility of telmisartan can be raised by a factor of several hundred by a pharmaceutical composition comprising 3 to 50 wt.% of telmisartan dispersed in a dissolving matrix comprising
(a) a basic agent in a molar ratio of basic agent : telmisartan = 1 :1 to 10:1 ,
(b) a surfactant or emulsifier in an amount of about 1 to 20 wt.% of the final composition , (c) 25 to 70 wt.% of a wate r-soluble diluent, and
(d) optionally 0 to 20 wt.% of further excipients and/or adjuvants, the sum of all components adding to 100%.
The problem of a known incompatibility of diuretics such as HCTZ with basic compounds such as meglumine which are a component of the conventional telmisartan formulation can be solved by preparing bilayer tablets according to the present invention, which keep the incompatibility under control.
The term "dissolving tablet matrix" refers to a pharmaceutical tablet base formulation having immediate release (fast dissolution) characteristics that readily dissolves in a physiological aqueous medium. The active ingredient telmisartan is generally supplied in its free acid form, although pharmaceutically acceptable salts may also be used. It is preferred to remove agglomerates from the starting material, e.g. by sieving, in order to facilitate wetting and dissolution during further processing.
Substantially amorphous telmisartan may be produced by any suitable method known to those skilled in the art, for instance, by freeze drying of aqueous solutions, coating of carrier particles in a fluidized bed, and solvent deposition on sugar pellets or other carriers. Preferably, however, telmisartan is prepared by the conventional wet granulation methods such as fluid bed granulation.
Specific examples of suitable basic agents are alkali metal hydroxides such as NaOH and KOH; furthermore NaHCO3, KHCO3, Na2CO3, K2CO3, Na2H PO4, K2HPO4; basic amino acids such as arginine; and meglumine (N-methyl-D-glucamine).
The surfactants and emulsifiers may be ionic or non-ionic, the latter being preferred. Specific examples of surfactants and emulsifiers are such as poloxamers or pluronics, polyethylene glycols, polyethylene glycol monostearate, polysorbates, sodium lauryl sulfate, polyethoxylated and hydrogenated castor oil etc.
With regard to the poloxamers or pluronics suitable as non-ionic surfactants and emulsifiers is referred to the definition given in The Merck Index, 12th edition, 1996 being herewith incorporated by reference. Suitable poloxamers may have an average mol weight of about 2000 to 12000, preferably 4000 to 10000, more preferred 6000 to 10000, most preferred 8000 to 9000. Examples for specific poloxamers are poloxamer 182LF, poloxamer 331 and poloxamer 188.
Specific examples of suitable water-soluble diluents are carbohydrates such as monosaccharides like glucose; oligosaccharides like sucrose; and sugar alcohols like erythritol, sorbitol, mannitol, dulcitol, ribitol and xylitol. Mannitol, erythritol, sorbitol and sucrose are preferred diluents. The other excipients and/or adjuvants are, for instance, selected from binders, carriers, lubricants, flow control agents, crystallization retarders, solubilizers and coloring agents.
The binder may be selected from the group of dry binders and/or the group of wet granulation binders, depending on the manufacturing process chosen for the pharmaceutical composition. Suitable dry binders are, e.g., cellulose powder, crystalline cellulose, microcrystalline cellulose or light anhydrous silicic acid. Specific examples of wet granulation binders are corn starch, polyvinyl pyrrolidone (Povidone), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropyl- cellulose and hydroxypropylmethylcellulose.
Suitable disintegrants are, e.g., sodium starch glycolate, Crospovidon, Croscarmellose, sodium carboxymethylcellulose and dried corn starch.
The other excipients and adjuvants, if used, are preferably selected from diluents and carriers such as cellulose powder, crystalline cellulose or microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxy-propylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, polyvinyl pyrrolidone (Povidone) etc.; lubricants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol thbehenate, etc.; flow control agents such as colloidal silica, light anhydrous silicic acid, crystalline cellulose, talc, etc.; crystallization retarders such as Povidone, etc.; coloring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; and mixtures of two or more of these excipients and/or adjuvants.
The first tablet layer containing telmisartan according to the present invention provides solubilization of the poorly water-soluble telmisartan of up to a concentration of more than 4.4 ιmg/10OmL, thereby facilitating dissolution of the drug at a physiological pH level, and also provides for immediate release from the fast disintegrating matrix.
The presence of component (b), a surfactant or emulsifier, is essential to achieve this dissolution of the active ingredient as well as for the use of a simplified manufacture process such as fluid-bed granulation instead of spray-drying for preparing a bilayer tablet layer according to the invention.
In a preferred embodiment the pharmaceutical composition according to the invention comprises 10 to 35 wt.% of telmisartan dispersed in a dissolving matrix comprising
(a) a basic agent, in a molar ratio of basic agent : telmisartan = 1.5:1 to 5:1 ,
(b) a non-ionic surfactant or emulsifier, in an amount of about 1 to 10 wt.% of the final composition,
(c) 35 to 60 wt.% of a water-soluble diluent, and (d) optionally 0 to 20 wt.% of further excipients and/or adjuvants, the sum of all components adding to 100%.
All specified components (a) to (d) mentioned hereinbefore may be used in the preferred embodiment, whereas • preferred basic agents are NaOH, KOH, arginine and meglumine,
• preferred non-ionic surfactants or emulsifiers are selected from poloxamers, polyethylene glycols, polyethoxylated and hydrogenated castor oil,
• preferred water-soluble diluents are selected from sucrose, erythritol, sorbitol, mannitol and xylitol, and • preferred optional further excipients and/or adjuvants are selected from crystalline cellulose, light anhydrous silicic acid, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropyl-cellulose , hydroxypropylmethylcellulose, magnesium stearate, corn starch, polyvinyl pyrrolidone, vinylpyrrolidone- vinylacetate copolymer, stearic acid, magnesium stearate, sodium stearylfumarate, colloidal silica, talc, povidone and coloring agents. In a more preferred embodiment the pharmaceutical composition according to the invention comprises 15 to 25 wt.% of telmisartan dispersed in a dissolving matrix comprising
(a) a basic agent, in a molar ratio of basic agent : telmisartan = 2:1 to 3:1 , (b) a non-ionic surfactant or emulsifier, in an amount of about 2 to 7 wt.% of the final composition ,
(c) 35 to 50 wt.% of a water-soluble diluent, and
(d) optionally 0 to 20 wt.% of further excipients and/or adjuvants, the sum of all components adding to 100%.
All specified components (a) to (d) mentioned hereinbefore may be used in the more preferred embodiment, whereas
• the most preferred basic agent is meglumine,
• the most preferred non-ionic surfactants are selected from poloxamers, • the most preferred water-soluble diluents are selected from mannitol, erythritol, sorbitol and sucrose, and
• the most preferred optional further excipients and/or adjuvants are selected from crystalline cellulose, light anhydrous silicic acid and magnesium stearate.
In any embodiment of the invention one or more of the non-ionic surfactants or emulsifiers, water-soluble diluents and excipients and/or adjuvants may be present.
The second tablet layer composition contains a diuretic in a fast disintegrating tablet matrix. In a preferred embodiment, the disintegrating tablet matrix comprises a filler, a binder, a disintegrant and, optionally, other excipients and adjuvants. The diuretic is usually employed as a fine-crystalline powder, optionally i n fine-milled, peg-milled or micronized form. For instance, the particle size distribution of hydrochlorothiazide, as determined by the method of laser light scattering in a dry dispersion system (Sympatec Helos/Rodos, focal length 100 mm) is preferably as follows: di0 : = 20 μm, preferably 2 to 10 μm Cl50 : 5 to 50 μm, preferably 10 to 30 μm Cl90 : 20 to 100 μm, preferably 40 to 80 μm
The filler is preferably selected from D-mannitol, erytthritol, anhydrous lactose, spray- dried lactose and lactose monohydrate.
The binder is selected from the group of dry binders and/or the group of wet granulation binders, depending on the manufacturing process chosen for the second tablet layer. Suitable dry binders are, e.g., cellulose powder and microcrystalline cellulose. Specific examples of wet granulation binders are corn starch, polyvinyl pyrrolidone (Povidon), vinylpyrrolidone-vinylacetate copolymer (Copovidone) and cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropyl-cellulose and hydroxypropylmethylcellulose.
Suitable disintegrants are, e.g., sodium starch glycolate, Crospovidon, Croscarmellose, sodium carboxymethylcellulose and dried corn starch, sodium starch glycolate being preferred.
The other excipients and adjuvants, if used, are preferably selected from diluents and carriers such as cellulose powder, microcrystalline cellulose, cellulose derivatives like hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose and hydroxypropylmethylcellulose, dibasic calcium phosphate, corn starch, pregelatinized starch, polyvinyl pyrrolidone (Povidone) etc.; lubricants such as stearic acid, magnesium stearate, sodium stearylfumarate, glycerol tribehenate, etc.; flow control agents such as colloidal silica, talc, etc.; crystallization retarders such as Povidone, etc.; solubilizers such as Pluronic, Povidone, etc.; coloring agents, including dyes and pigments such as Iron Oxide Red or Yellow, titanium dioxide, talc, etc.; pH control agents such as citric acid, tartaric acid, fumaric acid, sodium citrate, dibasic calcium phosphate, dibasic sodium phosphate, etc.; surfactants and emulsifiers such as
Pluronic, polyethylene glycols, sodium carboxymethyl cellulose, polyethoxylated and hydrogenated castor oil, etc.; and mixtures of two or moreof these excipients and/or adjuvants.
The second tablet layer composition generally comprises 1.5 to 35 wt.%, preferably 2 to 25 wt.%, of active ingredient; 25 to 85 wt.%, preferably 35 to 75 wt.%, of filler; 1 to 40 wt.%, preferably 10 to 30 wt.%, of binder; 0.5 to 10 wt.%, preferably 1 to 5 wt.%, of wet granulation binder; and 1 to 10 wt.%, preferably 2 to 8 wt.%, of disintegrant. The other excipients and adjuvants are generally employed in the same amount as in the first tablet layer composition.
The tablets so obtained can be further processed using conventional techniques, for instance can be coated using suitable coatings known in the art which do not negatively affect the dissolution properties of the final formulation. For instance the tablets can be provided with a film coat for moisture protection by film forming polymers such as polyvinyl alcohol, hydroxypropyl cellulose, ethylcellulose, polyvinylacetal diethylaminoacetate and polymeric methacrylates together with plasticizers such as polyethylene glycols onto the core tablets. Even though the polymer is water soluble, its rate of solution is slow enough to afford the core tablets moisture protection. Other polymers, which offer similar water solubility and a similar degree of moisture protection may also be used.
Additionally, agents such as beeswax, shellac, cellulose acetate phthalate, polyvinyl acetate phthalate, zein, can be dissolved in a suitable solvent together with plasticizers such as polyethylene glycol and applied to the tablets, provided that the coating has no substantial effect on the disintegration/dissolution of the dosage form and that the coated dosage form is physiochemically stable.
After the dosage form is coated, a sugar coating may be applied onto the sealed pharmaceutical dosage form. The sugar coating may comprise sucrose, dextrose, sorbitol and the like or mixtures thereof. If desired, colorants or opacifiers may be added to the sugar solution. Flow control agents are preferably not added for production of tablet formulations according to the present invention since these agents, in combination with the high compression forces used in tablet production, deteriorate dissolution or disintegration of the tablets. Therefore, in tablet formulations the content of the further excipients and/or adjuvants will preferably be in the lower range, e.g. in the range of 0.1 to 5 wt.%, preferably 0.3 to 2 wt.%, of the final formulation since only low amounts of lubricants should be present.
The bilayer tablet according to the present i nvention generally contains 1 0 to 1 60 mg, preferably 40 to 80 mg, of telmisartan and 5 to 50 mg, preferably 6.25 to 25 mg, of diuretic. Presently preferred forms are bilayer tablets comprising 40/6.25mg, 40/1 2.5 mg, 80/12.5 mg and 80/25 mg of telmisartan and HCTZ, respectively.
For instance, the total composition of the telmisartan layer according to the invention may vary within the following ranges, with the proviso that the proportional composition given above with respect to the basic pharmaceutical compositions is met:
10 to 1 60 mg of telmisartan; 10 to 1 60 mg of meglumine or arginine, or 2 to 33 mg of NaOH, or
3 to 46 mg of KOH, or
4 to 80 mg of NaHCO3, KHCO3, Na2CO3, K2CO3, Na2H PO4 or K2HPO4; 2 to 100 mg of non-ionic surfactants or emulsifiers;
20 to 400 mg of water soluble diluents; and 0 to 80 mg of further excipients and/or adjuvants; preferably
20 to 80 mg of telmisartan; 10 to 90 mg of meglumine, or 4 to 1 6 mg of NaOH, or 6 to 23 mg of KOH; 2 to 40 mg of non-ionic surfactants or emulsifiers selected from poloxamers, polyethylene glycols, polyethoxylated and hydrogenated castor oil, poloxamers being especially preferred;
40 to 200 mg of water soluble diluents selected from glucose, sucrose, erythritol, sorbitol, mannitol and xylitol; and
0.1 to 40 mg of further excipients and/or adjuvants selected from crystalline cellulose, light anhydrous silicic acid, hydroxymethylcellulose, hydroxyethylcellulose, hydroxypropyl-cellulose , hydroxypropylmethylcellulose, magnesium stearate, corn starch, polyvinyl pyrrolidone, vinylpyrrolidone- vinylacetate copolymer, stearic acid, magnesium stearate, sodium stearylfumarate, colloidal silica, talc, povidone and coloring agents;
and most preferred
40 to 80 mg of telmisartan; 20 to 80 mg of meglumine;
5 to 30 mg of non-ionic surfactants or emulsifiers selected from poloxamers, poloxamer 188 being especially preferred;
70 to 180 mg of water soluble diluents selected from mannitol, erythritol, sorbitol and sucrose; and 0.1 to 20 mg of further excipients and/or adjuvants selected from crystalline cellulose, light anhydrous silicic acid and magnesium stearate.
HCTZ is incompatible with basic agents being a component of the telmisartan tablet formulations according to the invention. This problem can be overcome by means of a bilayer pharmaceutical tablet comprising a first telmisartan containing tablet layer prepared from a pharmaceutical composition mentioned hereinbefore under the first aspect of the invention, and a second tablet layer containing a diuretic in a disintegrating tablet matrix.
The second tablet layer composition generally comprises 1.5 to 35 wt.%, preferably 2 to 25 wt.%, of active ingredient; 25 to 85 wt.%, preferably 35 to 75 wt.%, of filler; 10 to 40 wt.%, preferably 10 to 30 wt.%, of dry binder; 0.5 to 10 wt.%, preferably 1 to 5 wt.%, of wet granulation binder; and 1 to 10 wt.%, preferably 2 to 8 wt.%, of disintegrant. The other excipients and adjuvants are generally employed in the same amount as in the first tablet layer composition. The filler is may be selected from D- mannitol, erytthritol, anhydrous lactose, spray-dried lactose and lactose monohydrate.
Tablets of the present invention tend to be very low hygroscopic and may be packaged using PVC-blisters, PVC/PVDC-blisters or a moisture-proof packaging material such as aluminium foil blister packs, polypropylene tubes, glass bottles and HDPE bottles.
A further object of the invention is directed to methods for producing the bilayer tablets hereinbefore. The tablet layers comprising telmisartan according to the invention may be prepared by any suitable method known to those skilled in the art, for instance, by freeze drying of aqueous solutions, coating of carrier particles in a fluidized bed, and by solvent deposition on sugar pellets or other carriers. Preferably, however, the pharmaceutical compositions are prepared using a granulation process, e.g. the fluid-bed granulation process (A), or, in the alternative, the spray-drying process (B) described specifically hereinafter. The less complicated and cheaper fluid-bed granulation process (A) is preferred.
Since during subsequent processing telmisartan is normally dissolved and transformed into a substantially amorphous form, its initial crystal morphology and particle size are of little importance for the physical and biopharmaceutical properties of the pharmaceutical composition obtained.
In a first embodiment a fluid-bed granulation process (A) can be used for preparation of the pharmaceutical compositions according to the invention, characterized by the following steps: (i) preparing a granulation liquid as an aqueous solution by dissolving 3 to 50 wt.% of telmisartan together with the following components in water or in a mixture solution of ethanol and water:
(a) a basic agent in a molar ratio of basic agent : telmisartan = 1 :1 to 10:1 , (b) a non-ionic surfactant or emulsifier in an amount of about 1 to 20 wt.%,
(ii) placing 25 to 70 wt.% of a water-soluble diluent into a fluid-bed granulator, optionally together with 10 to 20 wt.% of a dry binder, including a premix-step, (iii) carrying out the fluid-bed granulation using the granulation liquid for spraying onto the components placed into the granulator, (iv) after completion of the granulation drying and, optionally, screening the granulate obtained, (v) optionally blending the granulate with further excipients and/or adjuvants in order to prepare the final composition, and
(vi) optionally milling the granulate thus obtained in order to produce a powdery composition of defined particle size distribution; wherein all percentage amounts given are related to the final composition to be prepared.
Preferred embodiments of the process with regard to specific components and proportional amounts fully correspond to those disclosed hereinbefore with regard to the first aspect of the invention.
In the premix step of step (ii) an inlet air temperature of about 60 to 120 °C may be used. In the granulation step (iii) an inlet temperature of about 80 to 100 °C may be used.
The spraying rate greatly depends on the type of granulator used as well as the batch size and can be adjusted by the skilled person by routine. Only for instance, a spraying rate of 400 to 1000 imL/min may be suitable for a 200 kg granulate batch. Lower or higher spray rates may also used. In the drying step of step (iv) an inlet temperature of about 60 to 120 °C, and a duration of drying of about 1 to 30 minutes may be used. In the screening step of step (iv) a screen with a mesh size of 0.5 to 3 mm may be suitable.
The optional milling step (vi) can be carried out conventionally by the skilled person.
In a second embodiment a spray-drying process (B) can be used for preparation of the pharmaceutical compositions according to the invention, characterized by the following steps:
(i) preparing an aqueous spray-solution by dissolving 3 to 50 wt.% of telmisartan together with the following components in water or mixture solution of ethanol and water:
(a) a basic agent in a molar ratio of basic agent : telmisartan = 1 :1 to 10:1 ,
(b) a non-ionic surfactant or emulsifier in an amount of about 1 to 20 wt.%, (ii) spray-drying said aqueous spray-solution to obtain a spray-dried granulate; (iii) mixing said spray-dried granulate with 25 to 70 wt.% of a water-soluble diluent to obtain a premix;
(iv) optionally, mixing said premix with a lubricant;
(v) optionally, adding further excipients and/or adjuvants in any of steps (i) to (iv), wherein all percentage amounts given are related to the final composition to be prepared.
If it is necessary to adjust a particular particle size distribution in a powdery composition thus obtained a conventional milling step may be applied, preferably before optional addition of a lubricant according to step (iv). Furthermore, a powdery composition may be converted into a granular composition applying conventional granulation techniques.
Preferred embodiments of the process with regard to specific components and proportional amounts fully correspond to those disclosed hereinbefore with regard to the first aspect of the invention. In a preferred embodiment of process (B), an aqueous alkaline solution of telmisartan is prepared by dissolving the active ingredient in water or mixture solution of ethanol and water with the help of one or more basic agents like sodium hydroxide or meglumine. Optionally, a recrystallization retarder may be added. The dry matter content of the starting aqueous solution is generally 10 to 40 wt.%, preferably 20 to 30 wt.%.
The aqueous solution is then spray-dried at room temperature or preferably at increased temperatures of, for instance, between 50 and 100°C in a co-current or counter-current spray-drier at a spray pressure of, for instance, 1 to 4 bar. Generally speaking, the spray-drying conditions are preferably chosen in such a manner that a spray-dried granulate having a residual humidity of = 5 wt.%, preferably = 3.5 wt.%, is obtained in the separation cyclone. To that end, the outlet air temperature of the spray-drier is preferably kept at a value of between about 80 and 90 °C whi Ie the other process parameters such as spray pressure, spraying rate, inlet air temperature, etc. are adjusted accordingly.
The spray-dried granulate obtained is preferably a fine powder having the following particle size distribution:
dio : = 20 μm, preferably = 1 0 μm d5o : = 80 μm, preferably 20 to 55 μm dgo : = 350 μm, preferably 50 to 150 μm
After spray-drying, the active ingredient (telmisartan) as well as the excipients contained in the spray-dried granulate are in a substantially amorphous stale with no crystallinity being detectable. From a physical point of view, the spray-dried granulate is a solidified solution or glass having a glass transition temperature Tg of preferably > 500C, more preferably > 80 °C. The lubricant is generally added to the premix in an amount of 0.1 to 5 wt.%, preferably 0.3 to 2 wt.%, based on the weight of the final composition.
Mixing is carried out in two stages, i.e. in a first mixing step the spray-dried granulate and the diluent are admixed using , e.g., a high-shear mixer or a free-fall blender, and in a second mixing step the lubricant is blended with the premix, preferably also under conditions of high shear. The method of the invention is however not limited to these mixing procedures and, generally, alternative mixing procedures may be employed in any steps of the process comprising a mixing procedure, such as, e.g., container mixing with intermediate screening.
Batches of granulates with different composition obtained by process (A) or (B) may be blended together in order to adjust a target composition and may additionally be blended with further excipients and/or adjuvants such as lubricants, if required for adjusting a final composition for further processing into the final formulation ready for use/ingestion, for instance for filling into capsules using a suitable capsule filling machine or for direct compression of tablets using a suitable rotary tablet press.
For direct compression, the final composition may be prepared by dry-mixing the constituent components, e.g. by means of a high-intensity mixer or a free-fall blender. Alternatively, the final composition may be prepared using a wet granulation technique wherein an aqueous solution of a wet granulation binder is added to a premix and subsequently the wet granulate obtained is dried, e.g. in a fluidized-bed dryer or drying chamber. The dried mixture is screened and then a lubricant is admixed, e.g. using a tumbling mixer or free-fall blender, whereafter the composition is ready for compression.
A bilayer tablet mentioned under the second aspect of the invention can be prepared by the following process:
(i) providing a first tablet layer composition comprising telmisartan by use of the fluid-bed granulation process (A) or the spray-drying process (B) described hereinbefore,
(ii) providing a second tablet layer composition by a) mixing , granulating , drying and screening a diuretic with the constituents of a disintegrating tablet matrix and, optionally, further excipients and/or adjuvants; b) admixing a lubricant to obtain a final blend for the second tablet layer; (iii) introducing the first or the second tablet layer composition in a tablet press; (iv) compressing said tablet layer composition to form a tablet layer;
(v) introducing the other tablet layer composition into the tablet press; and (vi) compressing both tablet layer compositions to form a bilayer tablet.
For preparing the bilayer tablet according to the present invention, the first and second tablet layer compositions may be compressed in the usual manner in a bilayer tablet press, e.g. a high-speed rotary press in a bilayer tableting mode.
However, care should be taken not to employ an excessive compression force for the first tablet layer. Preferably, the ratio of the compression force appled during compression of the first tablet layer to the compression force applied during compression of both the first and second tablet layers is in the range of from 1 :10 to 1 :2. For instance, the first tablet layer may be compressed at moderate force of 1 to 10 kN, whereas the main compression of first plus second layer is performed at a force of 8 to 30 kN.
During bilayer tablet compression adequate bond formation between the two layers is achieved by virtue of distance attraction forces (intermolecular forces) and mechanical interlocking between the particles.
In order to avoid any cross-contamination between the first and second tablet layers (which could lead to decomposition of HTCZ), any granulate residues have to be carefully removed during tableting by intense suction of the die table within the tableting chamber.
The bilayer tablets obtained release the active ingredients rapidly and in a largely pH- independent fashion, with complete release occurring within less than 60 min and release of the major fraction occurring within less than 45 min. The dissolution/- disintegration kinetics of the bilayer tablet may be controlled in different ways. For instance, both layers may dissolve/disintegrate simultaneously. Preferably, however, the second tablet layer containing the diuretic disintegrates first whereas the first tablet layer containing telmisartan dissolves in parallel or subsequently. Normally, at least 80% and typically at least 90% of the drug load are dissolved after 45 min.
In order to further illustrate the present invention, the following non-limiting examples are given:
EXAMPLES
Example 1 : Formulation example telmisartan + HCTZ
T40+H12.5 FDC T80+H12.5 FDC
BIBR277SE 40 mg 80 mg
Meglumine 40 mg 80 mg
Poloxamer 188 8 mg 16 mg
D-mannitol 80.5 mg 161 mg
Iron oxide yellow 0.14 mg 0.28 mg
Magnesium stearate 1.5 mg 3 mg
HCTZ 12.5 mg 12.5 mg
D-mannitol 43 mg 98.5 mg
Crystalline cellulose 1 1 mg 22 mg
HPC-L 3 mg 6 mg
Iron oxide yellow 0.07 mg 0.14 mg
Magnesium stearate 0.5 mg 1 mg
Total 240 480
Example 2: Manufacturing example for T40+H12.5 FDC
1. Telmisartan layer
1 .1 Granulation liquid or spray-solution
About 10.8 kg of purified water are measured into a suitable stainless steel vessel at a temperature of between 20-40 °C. In sequence, 0.96 kg of Poloxamer 188 (polyoxyethlene[160]polyoxypropylene[30]glycol), 4.8 kg of meglumine and 4.8 kg of telmisartan (mixture of polymorph A and B) are dissolved in the purified water under intensive stirring until a virtually clear solution is obtained. Total volume is about 1 8 L.
1 .2 Granulation, drying and screening
9.66 kg of D-mannitol and 16.8g of iron oxide yellow (iron oxide yellow is screened in advance) are placed into a fluid-bed granulator sprayed with 21.36 kg of granulation liquid (containing 10.56 kg of dry mass). Then is sprayed with about 0.5 L of purified water, followed by a drying step and a screening step.
Process data pre-mixing:
Inlet air temperature: 80 - 100 °C
End of pre-mixing: Gut temperature about 65 °C
Process data granulation:
Inlet air temperature: 80 - 100 °C Spraying rate: 50-300 g/min
Process data drying step: Inlet air temperature: 80 - 100 °C
End of drying : Gut temperature more than 70 °C Duration of drying : about 5 minutes
Process data screening step: The granules are screened, for instance using an oscillator or comil screen machine , with a mesh size of 1.5 mm.
1 .3 Final mixture for preparation of tablet formulation:
Two 20.2368 kg batches of screened granules are mixed using a suitable mixer with a revolution of 10 rpm for 10 to 20 min, resulting in a40.4736 kg mixed batch which is finally blended with 360 g of magnesium stearate, , using a suitable mixer with a revolution of 10 rpm for about 15 min thus producing the final mixture. 2. HCTZ layer
2.1 Granulation liquid or spray-solution
About 9 kg of purified water are measured into a suitable stainless steel vessel. In sequence, 0.72 kg of HPC-L is dissolved in the purified water under intensive stirring until a virtually clear solution is obtained.
2.2 Granulation, drying and screening
3 kg of HCTZ, 10.32 kg of D-mannitol, 2.64 kg of crystalline cellulose and 16.8g of iron oxide yellow (iron oxide yellow is screened in advance) are placed into a fluid- bed granulator sprayed with 9.72 kg of granulation liquid (containing 0.72 kg of dry mass). Then is sprayed with about 0.5 L of purified water, followed by a drying step and a screening step.
Process data pre-mixing: Inlet air temperature: 80 - 100 °C
End of pre-mixing: Gut temperature about 60 0C
Process data granulation: Inlet air temperature: 80 - 100 °C Spraying rate: 200-400 g/min
Process data drying step:
Inlet air temperature: 80 - 100 °C
End of drying : Gut temperature more than 70 °C Process data screening step:
The granules are screened, for i nstance using an oscillator or comil screen machine, with a mesh size of 1.5 mm.
2.3. Final mixture for preparation of tablet formulation: 16.6968 kg batch of screened granules is mixed with 120 g of magnesium stearate using a suitable mixer with a revolution of 10 rpm for 15 min thus producing the final mixture. 3. Tablet compression
Using a suitable rotary tablet press (i.e. bi-layer and/or triple-layer tablet press) the final mixtures of telmisartan layer and HCTZ layer for tablet compression are compressed into bilayer tablets. The target weight is about 240 mg for T40+H12.5 FDC.
Process parameters for tableting for T40+H12.5 FDC:
Figure imgf000023_0001
The tablet hardness can be adjusted by variation of the main compression force.

Claims

CLAIMS:
1 . A bilayer pharmaceutical tablet comprising a first layer containing 3 to 50 wt.% of telmisartan dispersed in a dissolving matrix comprising (a) a basic agent in a molar ratio of basic agent : telmisartan = 1 :1 to 10:1 ,
(b) a surfactant or emulsifier in an amount of about 1 to 20 wt.% of the final composition,
(c) 25 to 70 wt.% of a water-soluble diluent, and
(d) optionally 0 to 20 wt.% of further excipients and/or adjuvants, the sum of all components of the layer adding to 100% and a second layer containing a diuretic in a disintegrating tablet matrix.
2. The bilayer pharmaceutical tablet of claim 1 wherein the dissolving tablet matrix has immediate release characteristics.
3. The bilayer pharmaceutical tablet of claim 1 wherein the basic agent of the dissolving matrix is a metal hydroxide such as NaOH and KOH; or is selected from NaHCO3, KHCO3, Na2CO3, K2CO3, Na2HPO4, K2HPO4, from basic amino acids such as arginine; and from meglumine (N-methyl-D-glucamine).
4. The bilayer pharmaceutical tablet of claim 1 wherein the surfactants and emulsifiers are selected from poloxamers or pluronics, polyethylene glycols, polyethylene glycol monostearate, polysorbates, sodium lauryl sulfate, polyethoxylated and hydrogenated castor oil.
5. The bilayer pharmaceutical tablet of claim 1 wherein the water-soluble diluents of the dissolving matrix are selected from carbohydrates such as monosaccharides like glucose; oligosaccharides like sucrose; and sugar alcohols like erythritol, sorbitol, mannitol, dulcitol, ribitol and xylitol.
6. The bilayer pharmaceutical tablet of claim 1 wherein the other excipients and/or adjuvants of the dissolving matrix are selected from binders, carriers, lubricants, flow control agents, crystallization retarders, solubilizers and coloring agents.
7. The bilayer pharmaceutical tablet as claimed in any one of claims 1 -6 wherein the disintegrating tablet matrix containing the diuretic comprises a filler, a binder, a disintegrant and, optionally, other excipients and adjuvants.
8. The bilayer pharmaceutical tablet as claimed in claim 7 wherein the other excipients and adjuvants are selected from carriers, diluents, lubricants, flow control agents, solubilizers, coloring agents, pH control agents, surfactants and emulsifiers.
9. The bilayer pharmaceutical tablet as claimed in any one of claims 1 -8 containing 10 to 160 mg, preferably 20 to 80 mg, of telmisartan and 5 to 50 mg, preferably
6.25 to 25 mg, of diuretic.
10. The bilayer pharmaceutical tablet as claimed in any one of claims 1 -9 wherein the diuretic is hydrochlorothiazide.
1 1 . A fluid-bed granulation process for preparing a first tablet layer according to claim 1 .
1 2. A process for preparing a bilayer tablet according to claim 1 wherein the ratio of the compression force applied during compression of the first tablet layer to the compression force applied during compression of both the first and second tablet layers is in the range of from 1 :10 to 1 :2.
PCT/EP2006/068737 2005-11-24 2006-11-22 Bilayer tablet comprising telmisartan and diuretic WO2007060170A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008541736A JP2009517366A (en) 2005-11-24 2006-11-22 Bilayer tablet containing telmisartan and diuretic
EP06819653A EP1959934A2 (en) 2005-11-24 2006-11-22 Bilayer tablet comprising telmisartan and diuretic
CA2625404A CA2625404C (en) 2005-11-24 2006-11-22 Bilayer tablet comprising telmisartan and diuretic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05025601.5 2005-11-24
EP05025601 2005-11-24

Publications (2)

Publication Number Publication Date
WO2007060170A2 true WO2007060170A2 (en) 2007-05-31
WO2007060170A3 WO2007060170A3 (en) 2007-09-13

Family

ID=38067569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068737 WO2007060170A2 (en) 2005-11-24 2006-11-22 Bilayer tablet comprising telmisartan and diuretic

Country Status (7)

Country Link
US (1) US8637078B2 (en)
EP (1) EP1959934A2 (en)
JP (2) JP2009517366A (en)
AR (1) AR057932A1 (en)
CA (1) CA2625404C (en)
TW (1) TW200806288A (en)
WO (1) WO2007060170A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009135646A2 (en) 2008-05-05 2009-11-12 Farmaprojects, Sa Stable pharmaceutical compositions and their processes for preparation suitable for industrial scale
WO2010057449A2 (en) 2008-11-24 2010-05-27 Zentiva, K.S. A solid pharmaceutical composition with atorvastatin and telmisartan as the active substances
EP2203158A2 (en) 2007-10-30 2010-07-07 Dr. Reddy's Laboratories, Ltd. Pharmaceutical formulations comprising telmisartan and hydrochlorothiazide
EP2252273A1 (en) 2008-03-19 2010-11-24 Ratiopharm GmbH Solid pharmaceutical composition comprising a non-peptide angiotensin ii receptor antagonist and a diuretic
WO2010146187A2 (en) 2009-06-19 2010-12-23 Krka, Tovarna Zdravil, D.D., Novo Mesto Process for the preparation of telmisartan
WO2011025467A1 (en) 2009-08-24 2011-03-03 Bilgic Mahmut Solid dosage forms comprising telmisartan
WO2011161123A2 (en) 2010-06-21 2011-12-29 Krka, Tovarna Zdravil, D.D., Novo Mesto Multilayer pharmaceutical tablet comprising telmisartan and a diuretic
US8115011B2 (en) 2007-05-22 2012-02-14 Madrigal Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011136908A (en) * 2009-12-25 2011-07-14 Kyowa Yakuhin Kogyo Kk Solid preparation including angiotensin ii receptor antagonist and method of improving storage stability of angiotensin ii receptor antagonist in the solid preparation
JP5818219B2 (en) * 2012-05-14 2015-11-18 塩野義製薬株式会社 Preparation containing 6,7-unsaturated-7-carbamoylmorphinan derivative
JP6018420B2 (en) * 2012-06-05 2016-11-02 ニプロ株式会社 Pharmaceutical composition comprising an angiotensin II receptor antagonist and thiazide diuretic
EP2952196A4 (en) 2013-01-31 2016-08-03 Sawai Seiyaku Kk Multilayer tablet containing telmisartan and hydrochlorothiazide
JP6218664B2 (en) * 2013-04-04 2017-10-25 沢井製薬株式会社 Telmisartan-containing tablets
CN108524460B (en) * 2018-05-14 2021-01-01 佛山市南海东方澳龙制药有限公司 Nitenpyram double-layer tablet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059327A1 (en) * 2002-01-16 2003-07-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bilayer pharmaceutical tablet comprising telmisartan and a diuretic and preparation thereof
WO2004028505A1 (en) * 2002-09-24 2004-04-08 Boehringer Ingelheim International Gmbh Solid pharmaceutical formulations comprising telmisartan
WO2004096215A1 (en) * 2003-04-30 2004-11-11 Boehringer Ingelheim International Gmbh Pharmaceutical formulation of the sodium salt of telmisartan
WO2005014043A1 (en) * 2003-07-16 2005-02-17 Boehringer Ingelheim International Gmbh Chlorthalidone combinations
WO2006063737A1 (en) * 2004-12-17 2006-06-22 Boehringer Ingelheim International Gmbh Combination therapy comprising telmisartan and hydrochlorothiazide
WO2007061415A1 (en) * 2005-11-22 2007-05-31 Teva Pharmaceutical Industries Ltd. Pharmaceutical compositions of telmisartan

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263520A (en) * 1985-09-14 1987-03-20 Kyorin Pharmaceut Co Ltd Antirheumatic agent
TW235239B (en) 1992-11-20 1994-12-01 Pfizer
AU676315B2 (en) * 1993-06-30 1997-03-06 Takeda Chemical Industries Ltd. Stabilized solid pharmaceutical preparation and method of producing the same
JP3220373B2 (en) * 1995-11-28 2001-10-22 バイエル薬品株式会社 Long-acting nifedipine preparation
JPH1053520A (en) * 1996-06-03 1998-02-24 Takeda Chem Ind Ltd Antifatigue agent
US5906852A (en) * 1997-11-04 1999-05-25 Nabisco, Inc. Surface-modified cellulose as low calorie flour replacements
WO2000027397A1 (en) 1998-11-06 2000-05-18 Glaxo Group Limited Antihypertensive medicaments containing lacidipine and telmisartan
FR2787330A1 (en) 1998-12-18 2000-06-23 Sanofi Sa Compositions containing an immunosuppressant and an AT1 angiotensin II receptor antagonist, for prevention and treatment of vascular complications due to graft rejection
DE19901921C2 (en) 1999-01-19 2001-01-04 Boehringer Ingelheim Pharma Polymorphs of telmisartan, process for their preparation and their use in the manufacture of a medicament
EP1054019A1 (en) * 1999-05-18 2000-11-22 Shin-Etsu Chemical Co., Ltd. Low-substituted hydroxypropyl cellulose
CN1293867C (en) * 2001-05-25 2007-01-10 爱诗爱诗制药株式会社 Drug preparations
US20040028505A1 (en) 2002-06-07 2004-02-12 Bilbrey Robert A. Document tape binding system with automatic tape feed, tape indicia sensing, spine printing method and post-bind automation mechanisms
US8980870B2 (en) * 2002-09-24 2015-03-17 Boehringer Ingelheim International Gmbh Solid telmisartan pharmaceutical formulations
DE102004008804A1 (en) * 2004-02-20 2005-09-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg Multilayer tablet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059327A1 (en) * 2002-01-16 2003-07-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bilayer pharmaceutical tablet comprising telmisartan and a diuretic and preparation thereof
WO2004028505A1 (en) * 2002-09-24 2004-04-08 Boehringer Ingelheim International Gmbh Solid pharmaceutical formulations comprising telmisartan
WO2004096215A1 (en) * 2003-04-30 2004-11-11 Boehringer Ingelheim International Gmbh Pharmaceutical formulation of the sodium salt of telmisartan
WO2005014043A1 (en) * 2003-07-16 2005-02-17 Boehringer Ingelheim International Gmbh Chlorthalidone combinations
WO2006063737A1 (en) * 2004-12-17 2006-06-22 Boehringer Ingelheim International Gmbh Combination therapy comprising telmisartan and hydrochlorothiazide
WO2007061415A1 (en) * 2005-11-22 2007-05-31 Teva Pharmaceutical Industries Ltd. Pharmaceutical compositions of telmisartan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"MICARDIS HCT (TELMISARTAN AND HYDROCHLOROTHIAZIDE) TABLETS, 40MG/12.5 MG 80 MG/12.5 MG AND 80 MG/25 MG" INTERNET CITATION, [Online] 19 April 2004 (2004-04-19), XP002365096 Retrieved from the Internet: URL:http://www.fda.gov.medwatch/SAFETY/2004/apr_PI/MicardisHCT_PI.pdf> [retrieved on 2006-01-30] *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115011B2 (en) 2007-05-22 2012-02-14 Madrigal Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors
EP2203158A2 (en) 2007-10-30 2010-07-07 Dr. Reddy's Laboratories, Ltd. Pharmaceutical formulations comprising telmisartan and hydrochlorothiazide
EP2203158A4 (en) * 2007-10-30 2012-12-26 Reddys Lab Ltd Dr Pharmaceutical formulations comprising telmisartan and hydrochlorothiazide
EP2252273A1 (en) 2008-03-19 2010-11-24 Ratiopharm GmbH Solid pharmaceutical composition comprising a non-peptide angiotensin ii receptor antagonist and a diuretic
EP2252273B1 (en) * 2008-03-19 2016-12-28 ratiopharm GmbH Solid pharmaceutical composition comprising a non-peptide angiotensin ii receptor antagonist and a diuretic
WO2009135646A2 (en) 2008-05-05 2009-11-12 Farmaprojects, Sa Stable pharmaceutical compositions and their processes for preparation suitable for industrial scale
WO2010057449A2 (en) 2008-11-24 2010-05-27 Zentiva, K.S. A solid pharmaceutical composition with atorvastatin and telmisartan as the active substances
WO2010146187A2 (en) 2009-06-19 2010-12-23 Krka, Tovarna Zdravil, D.D., Novo Mesto Process for the preparation of telmisartan
WO2011025467A1 (en) 2009-08-24 2011-03-03 Bilgic Mahmut Solid dosage forms comprising telmisartan
WO2011161123A2 (en) 2010-06-21 2011-12-29 Krka, Tovarna Zdravil, D.D., Novo Mesto Multilayer pharmaceutical tablet comprising telmisartan and a diuretic
WO2011161123A3 (en) * 2010-06-21 2012-06-21 Krka, Tovarna Zdravil, D.D., Novo Mesto Multilayer pharmaceutical tablet comprising telmisartan and a diuretic

Also Published As

Publication number Publication date
WO2007060170A3 (en) 2007-09-13
JP2013082754A (en) 2013-05-09
AR057932A1 (en) 2007-12-26
US20080113023A1 (en) 2008-05-15
CA2625404C (en) 2015-10-06
JP5833037B2 (en) 2015-12-16
US8637078B2 (en) 2014-01-28
EP1959934A2 (en) 2008-08-27
TW200806288A (en) 2008-02-01
JP2009517366A (en) 2009-04-30
CA2625404A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US8637078B2 (en) Bilayer tablet comprising telmisartan and diuretic
CA2472392C (en) Bilayer pharmaceutical tablet comprising telmisartan and a diuretic and preparation thereof
EP1545467B1 (en) Solid pharmaceutical formulations comprising telmisartan
US8980870B2 (en) Solid telmisartan pharmaceutical formulations
KR20080100292A (en) A method for the preparation of substantially amorphous telmisartan

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2625404

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006819653

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06819653

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008541736

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006819653

Country of ref document: EP