WO2007059094A2 - Methods for prediction and prognosis of cancer, and monitoring cancer therapy - Google Patents
Methods for prediction and prognosis of cancer, and monitoring cancer therapy Download PDFInfo
- Publication number
- WO2007059094A2 WO2007059094A2 PCT/US2006/044117 US2006044117W WO2007059094A2 WO 2007059094 A2 WO2007059094 A2 WO 2007059094A2 US 2006044117 W US2006044117 W US 2006044117W WO 2007059094 A2 WO2007059094 A2 WO 2007059094A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cancer
- level
- expression
- cell
- vegf
- Prior art date
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 98
- 201000011510 cancer Diseases 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims description 139
- 238000012544 monitoring process Methods 0.000 title claims description 10
- 238000004393 prognosis Methods 0.000 title abstract description 8
- 238000011275 oncology therapy Methods 0.000 title description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 claims abstract description 59
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 claims abstract description 56
- 238000011282 treatment Methods 0.000 claims abstract description 41
- 239000000090 biomarker Substances 0.000 claims abstract description 31
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000005511 L01XE05 - Sorafenib Substances 0.000 claims abstract description 24
- 229960003787 sorafenib Drugs 0.000 claims abstract description 24
- 108090000623 proteins and genes Proteins 0.000 claims description 154
- 239000000523 sample Substances 0.000 claims description 136
- 230000014509 gene expression Effects 0.000 claims description 105
- 102000004169 proteins and genes Human genes 0.000 claims description 63
- 210000001519 tissue Anatomy 0.000 claims description 59
- 108020004999 messenger RNA Proteins 0.000 claims description 40
- 150000001875 compounds Chemical class 0.000 claims description 31
- 239000003795 chemical substances by application Substances 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 22
- 238000002493 microarray Methods 0.000 claims description 21
- 210000002381 plasma Anatomy 0.000 claims description 19
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 17
- 238000001574 biopsy Methods 0.000 claims description 15
- 201000010099 disease Diseases 0.000 claims description 15
- 210000004369 blood Anatomy 0.000 claims description 14
- 239000008280 blood Substances 0.000 claims description 14
- 238000004458 analytical method Methods 0.000 claims description 12
- 239000012472 biological sample Substances 0.000 claims description 12
- 102000040430 polynucleotide Human genes 0.000 claims description 11
- 108091033319 polynucleotide Proteins 0.000 claims description 11
- 239000002157 polynucleotide Substances 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 11
- 210000002700 urine Anatomy 0.000 claims description 10
- 210000000056 organ Anatomy 0.000 claims description 8
- 206010039491 Sarcoma Diseases 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 7
- 230000001850 reproductive effect Effects 0.000 claims description 7
- 206010025323 Lymphomas Diseases 0.000 claims description 6
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 6
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 6
- 239000002299 complementary DNA Substances 0.000 claims description 6
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 6
- 210000002345 respiratory system Anatomy 0.000 claims description 6
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 5
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 5
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 5
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 claims description 5
- 208000026310 Breast neoplasm Diseases 0.000 claims description 5
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 claims description 5
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 claims description 5
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims description 5
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 5
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 5
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 5
- 201000009277 hairy cell leukemia Diseases 0.000 claims description 5
- 231100000844 hepatocellular carcinoma Toxicity 0.000 claims description 5
- 210000002966 serum Anatomy 0.000 claims description 5
- 206010003571 Astrocytoma Diseases 0.000 claims description 4
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 4
- 206010006187 Breast cancer Diseases 0.000 claims description 4
- 208000032612 Glial tumor Diseases 0.000 claims description 4
- 206010018338 Glioma Diseases 0.000 claims description 4
- 208000017604 Hodgkin disease Diseases 0.000 claims description 4
- 208000010747 Hodgkins lymphoma Diseases 0.000 claims description 4
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 4
- 208000006990 cholangiocarcinoma Diseases 0.000 claims description 4
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 claims description 4
- 208000029742 colonic neoplasm Diseases 0.000 claims description 4
- 210000003734 kidney Anatomy 0.000 claims description 4
- 208000032839 leukemia Diseases 0.000 claims description 4
- 201000001441 melanoma Diseases 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 210000000582 semen Anatomy 0.000 claims description 4
- 210000003491 skin Anatomy 0.000 claims description 4
- 210000001635 urinary tract Anatomy 0.000 claims description 4
- 208000002008 AIDS-Related Lymphoma Diseases 0.000 claims description 3
- 208000007860 Anus Neoplasms Diseases 0.000 claims description 3
- 206010060971 Astrocytoma malignant Diseases 0.000 claims description 3
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 3
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 3
- 206010014967 Ependymoma Diseases 0.000 claims description 3
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 3
- 208000022072 Gallbladder Neoplasms Diseases 0.000 claims description 3
- 208000037396 Intraductal Noninfiltrating Carcinoma Diseases 0.000 claims description 3
- 206010073094 Intraductal proliferative breast lesion Diseases 0.000 claims description 3
- 206010061252 Intraocular melanoma Diseases 0.000 claims description 3
- 208000007766 Kaposi sarcoma Diseases 0.000 claims description 3
- 206010073099 Lobular breast carcinoma in situ Diseases 0.000 claims description 3
- 206010025312 Lymphoma AIDS related Diseases 0.000 claims description 3
- 208000006644 Malignant Fibrous Histiocytoma Diseases 0.000 claims description 3
- 208000000172 Medulloblastoma Diseases 0.000 claims description 3
- 208000001894 Nasopharyngeal Neoplasms Diseases 0.000 claims description 3
- 206010061306 Nasopharyngeal cancer Diseases 0.000 claims description 3
- 208000009277 Neuroectodermal Tumors Diseases 0.000 claims description 3
- 206010031096 Oropharyngeal cancer Diseases 0.000 claims description 3
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 claims description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 3
- 208000007641 Pinealoma Diseases 0.000 claims description 3
- 201000008199 Pleuropulmonary blastoma Diseases 0.000 claims description 3
- 208000015634 Rectal Neoplasms Diseases 0.000 claims description 3
- 201000000582 Retinoblastoma Diseases 0.000 claims description 3
- 208000004337 Salivary Gland Neoplasms Diseases 0.000 claims description 3
- 208000021712 Soft tissue sarcoma Diseases 0.000 claims description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 3
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 claims description 3
- 208000024313 Testicular Neoplasms Diseases 0.000 claims description 3
- 206010057644 Testis cancer Diseases 0.000 claims description 3
- 208000015778 Undifferentiated pleomorphic sarcoma Diseases 0.000 claims description 3
- 206010046458 Urethral neoplasms Diseases 0.000 claims description 3
- 201000005969 Uveal melanoma Diseases 0.000 claims description 3
- 206010047741 Vulval cancer Diseases 0.000 claims description 3
- 208000004354 Vulvar Neoplasms Diseases 0.000 claims description 3
- 210000004381 amniotic fluid Anatomy 0.000 claims description 3
- 210000001185 bone marrow Anatomy 0.000 claims description 3
- 210000004556 brain Anatomy 0.000 claims description 3
- 210000000133 brain stem Anatomy 0.000 claims description 3
- 210000000481 breast Anatomy 0.000 claims description 3
- 201000005389 breast carcinoma in situ Diseases 0.000 claims description 3
- 201000002143 bronchus adenoma Diseases 0.000 claims description 3
- 210000003169 central nervous system Anatomy 0.000 claims description 3
- 201000007335 cerebellar astrocytoma Diseases 0.000 claims description 3
- 208000030239 cerebral astrocytoma Diseases 0.000 claims description 3
- 230000002490 cerebral effect Effects 0.000 claims description 3
- 210000001072 colon Anatomy 0.000 claims description 3
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 claims description 3
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 claims description 3
- 208000028715 ductal breast carcinoma in situ Diseases 0.000 claims description 3
- 201000007273 ductal carcinoma in situ Diseases 0.000 claims description 3
- 230000002357 endometrial effect Effects 0.000 claims description 3
- 210000001508 eye Anatomy 0.000 claims description 3
- 208000024519 eye neoplasm Diseases 0.000 claims description 3
- 210000000232 gallbladder Anatomy 0.000 claims description 3
- 230000002496 gastric effect Effects 0.000 claims description 3
- 210000003128 head Anatomy 0.000 claims description 3
- 201000010536 head and neck cancer Diseases 0.000 claims description 3
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 3
- 201000008893 intraocular retinoblastoma Diseases 0.000 claims description 3
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 claims description 3
- 201000010985 invasive ductal carcinoma Diseases 0.000 claims description 3
- 206010073096 invasive lobular breast carcinoma Diseases 0.000 claims description 3
- 210000004185 liver Anatomy 0.000 claims description 3
- 208000014018 liver neoplasm Diseases 0.000 claims description 3
- 201000011059 lobular neoplasia Diseases 0.000 claims description 3
- 208000025036 lymphosarcoma Diseases 0.000 claims description 3
- 208000030883 malignant astrocytoma Diseases 0.000 claims description 3
- 210000000716 merkel cell Anatomy 0.000 claims description 3
- 201000005962 mycosis fungoides Diseases 0.000 claims description 3
- 210000003739 neck Anatomy 0.000 claims description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 3
- 201000002575 ocular melanoma Diseases 0.000 claims description 3
- 201000006958 oropharynx cancer Diseases 0.000 claims description 3
- 201000008968 osteosarcoma Diseases 0.000 claims description 3
- 230000002611 ovarian Effects 0.000 claims description 3
- 230000000849 parathyroid Effects 0.000 claims description 3
- 208000024724 pineal body neoplasm Diseases 0.000 claims description 3
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 claims description 3
- 208000029340 primitive neuroectodermal tumor Diseases 0.000 claims description 3
- 210000002307 prostate Anatomy 0.000 claims description 3
- 238000003757 reverse transcription PCR Methods 0.000 claims description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 claims description 3
- 201000000849 skin cancer Diseases 0.000 claims description 3
- 201000008261 skin carcinoma Diseases 0.000 claims description 3
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 3
- 210000000813 small intestine Anatomy 0.000 claims description 3
- 201000002314 small intestine cancer Diseases 0.000 claims description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 3
- 201000003120 testicular cancer Diseases 0.000 claims description 3
- 210000001685 thyroid gland Anatomy 0.000 claims description 3
- 210000004291 uterus Anatomy 0.000 claims description 3
- 201000005102 vulva cancer Diseases 0.000 claims description 3
- 206010027476 Metastases Diseases 0.000 claims description 2
- 206010061289 metastatic neoplasm Diseases 0.000 claims description 2
- 206010009944 Colon cancer Diseases 0.000 claims 4
- 239000011230 binding agent Substances 0.000 claims 3
- 239000012453 solvate Substances 0.000 claims 3
- 206010061424 Anal cancer Diseases 0.000 claims 2
- 206010021042 Hypopharyngeal cancer Diseases 0.000 claims 2
- 206010056305 Hypopharyngeal neoplasm Diseases 0.000 claims 2
- 206010023825 Laryngeal cancer Diseases 0.000 claims 2
- 206010062038 Lip neoplasm Diseases 0.000 claims 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims 2
- 206010061934 Salivary gland cancer Diseases 0.000 claims 2
- 206010046431 Urethral cancer Diseases 0.000 claims 2
- 208000006593 Urologic Neoplasms Diseases 0.000 claims 2
- 201000011165 anus cancer Diseases 0.000 claims 2
- 210000001124 body fluid Anatomy 0.000 claims 2
- 201000004101 esophageal cancer Diseases 0.000 claims 2
- 201000010175 gallbladder cancer Diseases 0.000 claims 2
- 206010017758 gastric cancer Diseases 0.000 claims 2
- 201000006866 hypopharynx cancer Diseases 0.000 claims 2
- 238000011221 initial treatment Methods 0.000 claims 2
- 206010023841 laryngeal neoplasm Diseases 0.000 claims 2
- 201000006721 lip cancer Diseases 0.000 claims 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims 2
- 201000008106 ocular cancer Diseases 0.000 claims 2
- 201000005443 oral cavity cancer Diseases 0.000 claims 2
- 201000002528 pancreatic cancer Diseases 0.000 claims 2
- 208000008443 pancreatic carcinoma Diseases 0.000 claims 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims 2
- 206010038038 rectal cancer Diseases 0.000 claims 2
- 201000001275 rectum cancer Diseases 0.000 claims 2
- 201000011549 stomach cancer Diseases 0.000 claims 2
- 208000012993 vulva sarcoma Diseases 0.000 claims 2
- 201000008758 vulvar sarcoma Diseases 0.000 claims 2
- 201000009030 Carcinoma Diseases 0.000 claims 1
- 238000012286 ELISA Assay Methods 0.000 claims 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 claims 1
- 206010035226 Plasma cell myeloma Diseases 0.000 claims 1
- 208000035269 cancer or benign tumor Diseases 0.000 claims 1
- 239000004202 carbamide Substances 0.000 claims 1
- 230000001079 digestive effect Effects 0.000 claims 1
- 208000005017 glioblastoma Diseases 0.000 claims 1
- 208000003747 lymphoid leukemia Diseases 0.000 claims 1
- 210000003205 muscle Anatomy 0.000 claims 1
- 201000000050 myeloid neoplasm Diseases 0.000 claims 1
- 108091008601 sVEGFR Proteins 0.000 abstract description 6
- 210000004027 cell Anatomy 0.000 description 190
- 150000007523 nucleic acids Chemical class 0.000 description 135
- 102000039446 nucleic acids Human genes 0.000 description 114
- 108020004707 nucleic acids Proteins 0.000 description 114
- 108090000765 processed proteins & peptides Proteins 0.000 description 85
- 102000004196 processed proteins & peptides Human genes 0.000 description 79
- 229920001184 polypeptide Polymers 0.000 description 78
- 239000003550 marker Substances 0.000 description 77
- 238000009396 hybridization Methods 0.000 description 48
- 125000003729 nucleotide group Chemical group 0.000 description 40
- 239000002773 nucleotide Substances 0.000 description 39
- 238000012360 testing method Methods 0.000 description 37
- 238000003556 assay Methods 0.000 description 27
- 239000000047 product Substances 0.000 description 27
- 229920002477 rna polymer Polymers 0.000 description 27
- BJHCYTJNPVGSBZ-YXSASFKJSA-N 1-[4-[6-amino-5-[(Z)-methoxyiminomethyl]pyrimidin-4-yl]oxy-2-chlorophenyl]-3-ethylurea Chemical compound CCNC(=O)Nc1ccc(Oc2ncnc(N)c2\C=N/OC)cc1Cl BJHCYTJNPVGSBZ-YXSASFKJSA-N 0.000 description 20
- 108010053099 Vascular Endothelial Growth Factor Receptor-2 Proteins 0.000 description 20
- 102000016549 Vascular Endothelial Growth Factor Receptor-2 Human genes 0.000 description 20
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 20
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 17
- 108091028043 Nucleic acid sequence Proteins 0.000 description 17
- 238000003491 array Methods 0.000 description 17
- 238000004422 calculation algorithm Methods 0.000 description 17
- 238000001514 detection method Methods 0.000 description 17
- 239000002853 nucleic acid probe Substances 0.000 description 17
- 108091008605 VEGF receptors Proteins 0.000 description 16
- 108091034117 Oligonucleotide Proteins 0.000 description 13
- 230000000295 complement effect Effects 0.000 description 12
- 229940079593 drug Drugs 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 230000001105 regulatory effect Effects 0.000 description 11
- 108091026890 Coding region Proteins 0.000 description 10
- 108020004414 DNA Proteins 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 230000027455 binding Effects 0.000 description 10
- 229940088598 enzyme Drugs 0.000 description 10
- 238000003752 polymerase chain reaction Methods 0.000 description 10
- 210000004881 tumor cell Anatomy 0.000 description 10
- 102000053602 DNA Human genes 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 238000003018 immunoassay Methods 0.000 description 9
- 239000013610 patient sample Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 230000003321 amplification Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003199 nucleic acid amplification method Methods 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 150000003384 small molecules Chemical class 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 7
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- -1 DNA or RNA Chemical class 0.000 description 6
- 108700020796 Oncogene Proteins 0.000 description 6
- 102000043276 Oncogene Human genes 0.000 description 6
- 239000000556 agonist Substances 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 238000003364 immunohistochemistry Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 238000000018 DNA microarray Methods 0.000 description 4
- 238000002965 ELISA Methods 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000002934 lysing effect Effects 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- 239000000902 placebo Substances 0.000 description 4
- 229940068196 placebo Drugs 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000009877 rendering Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 3
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 3
- 206010053614 Type III immune complex mediated reaction Diseases 0.000 description 3
- 229940024606 amino acid Drugs 0.000 description 3
- 238000010804 cDNA synthesis Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 230000034994 death Effects 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 238000002405 diagnostic procedure Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 230000016178 immune complex formation Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002207 metabolite Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- 108091033380 Coding strand Proteins 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 206010061309 Neoplasm progression Diseases 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 239000013614 RNA sample Substances 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 239000013060 biological fluid Substances 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000002055 immunohistochemical effect Effects 0.000 description 2
- 238000007901 in situ hybridization Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000000370 laser capture micro-dissection Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000001819 mass spectrum Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000013188 needle biopsy Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 239000000816 peptidomimetic Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 230000005751 tumor progression Effects 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- CJIJXIFQYOPWTF-UHFFFAOYSA-N 7-hydroxycoumarin Natural products O1C(=O)C=CC2=CC(O)=CC=C21 CJIJXIFQYOPWTF-UHFFFAOYSA-N 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 102100021935 C-C motif chemokine 26 Human genes 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 101100218845 Escherichia coli (strain K12) bioH gene Proteins 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000897493 Homo sapiens C-C motif chemokine 26 Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 206010027761 Mixed hepatocellular cholangiocarcinoma Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 208000005289 Neoplastic Cell Transformation Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061336 Pelvic neoplasm Diseases 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 108020005093 RNA Precursors Proteins 0.000 description 1
- 108091028733 RNTP Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 101150046474 Vhl gene Proteins 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000011366 aggressive therapy Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 210000003567 ascitic fluid Anatomy 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 101150029327 bioB gene Proteins 0.000 description 1
- 101150085692 bioC gene Proteins 0.000 description 1
- 101150023452 bioD gene Proteins 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000000091 biomarker candidate Substances 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 208000011588 combined hepatocellular carcinoma and cholangiocarcinoma Diseases 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 125000001295 dansyl group Chemical group [H]C1=C([H])C(N(C([H])([H])[H])C([H])([H])[H])=C2C([H])=C([H])C([H])=C(C2=C1[H])S(*)(=O)=O 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000013501 data transformation Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000000857 drug effect Effects 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002875 fluorescence polarization Methods 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000011223 gene expression profiling Methods 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 238000001114 immunoprecipitation Methods 0.000 description 1
- 238000012296 in situ hybridization assay Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 201000007450 intrahepatic cholangiocarcinoma Diseases 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 238000001531 micro-dissection Methods 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000000683 nonmetastatic effect Effects 0.000 description 1
- 238000003499 nucleic acid array Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000002966 oligonucleotide array Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 239000004031 partial agonist Substances 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000003711 photoprotective effect Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 210000004910 pleural fluid Anatomy 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000000063 preceeding effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000000672 surface-enhanced laser desorption--ionisation Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- ORHBXUUXSCNDEV-UHFFFAOYSA-N umbelliferone Chemical compound C1=CC(=O)OC2=CC(O)=CC=C21 ORHBXUUXSCNDEV-UHFFFAOYSA-N 0.000 description 1
- HFTAFOQKODTIJY-UHFFFAOYSA-N umbelliferone Natural products Cc1cc2C=CC(=O)Oc2cc1OCC=CC(C)(C)O HFTAFOQKODTIJY-UHFFFAOYSA-N 0.000 description 1
- 210000003954 umbilical cord Anatomy 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 230000004143 urea cycle Effects 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57488—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57492—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/475—Assays involving growth factors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/71—Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
Definitions
- the present invention relates to biomarkers and the use of biomarkers for the prediction and prognosis of cancer as well as the use of biomarkers to monitor the efficacy of cancer treatment. Specifically, this invention relates to the use of soluble VEGF (“VEGF”) and soluble VEGF receptor (sVEGFR) as biomarkers for the efficacy of treatment with sorafenib.
- VEGF soluble VEGF
- sVEGFR soluble VEGF receptor
- one mechanism of activating unregulated growth is to increase the number of genes coding for oncogene proteins or to increase the level of expression of these oncogenes (e.g., in response to cellular or environmental changes), and another mechanism is to lose genetic material or to decrease the level of expression of genes that code for tumor suppressors.
- This model is supported by the losses and gains of genetic material associated with glioma progression (Mikkelson, et al., J. Cellular Biochem. 46:3-8, 1991).
- changes in the expression (transcription) levels of particular genes serve as signposts for the presence and progression of vari ⁇ fs cancers.
- the present invention relates to biomarkers and the use of biomarkers for the prediction and prognosis of cancer as well as the use of biomarkers to monitor the efficacy of cancer treatment.
- this invention relates to the use of VEGF and sVEGFR, more preferably sVEGFR-2 (soluble VEGFR-2), as biomarkers for efficacy of sorafenib treatment.
- VEGF and sVEGFR more preferably sVEGFR-2 (soluble VEGFR-2)
- sVEGFR-2 soluble VEGFR-2
- Another embodiment of the present invention is a method for screening the effects of a drug on a tissue or cell sample comprising the step of analyzing the level of expression of one or more genes and/or gene products, wherein the gene expression and/or gene product levels in the tissue or cell sample are analyzed before and after exposure to the drug, and a variation in the expression level of the gene and/or gene product is indicative of a drug effect or provides a patient diagnosis or predicts a patient's response to the treatment.
- the drug is a sorafenib.
- the gene or gene product is VEGF and VEGFR, more preferably VEGFR-2, and their soluble forms thereof (e.g., detection of shed VEGFR2).
- Another aspect of the present invention is a method for discovering novel drugs comprising the step of analyzing the level of expression of one or more genes and/or gene products, wherein the gene expression and/or gene product levels of the cells are analyzed before and after exposure to the drug, and a variation in the expression level of the gene and/or gene product is indicative of drug efficacy.
- the gene or gene product is VEGF and VEGFR, more preferably VEGFR-2, and their soluble forms thereof (e.g., detection of shed VEGFR2).
- the invention further provides a method for identifying a compound useful for the treatment of cancer comprising administering to a subject with cancer a test compound, and measuring the activity of the polypeptide, wherein a change in fh ' e activity of the polypeptide is indicative of the test compound being useful for the treatment of cancer.
- the polypeptide is VEGF and VEGFR, more preferably VEGFR-2, and their soluble forms thereof (e.g., detection of shed VEGFR2), and in another embodiment, the compound is a sorafenib.
- the invention provides methods which may be used to identify compounds which may act, for example, as regulators or modulators such as agonists and antagonists, partial agonists, inverse agonists, activators, co-activators, and inhibitors. Accordingly, the invention provides reagents and methods for regulating the expression of a polynucleotide or a polypeptide associated with cancer.
- Reagents that modulate the expression, stability, or amount of a polynucleotide or the activity of the polypeptide may be a protein, a peptide, a peptidomimetic, a nucleic acid, a nucleic acid analogue (e.g., peptide nucleic acid, locked nucleic acid), or a small molecule.
- the present invention also provides a method for providing a patient diagnosis comprising the step of analyzing the level of expression of one or more genes and/or gene products, wherein the gene expression and/or gene product levels of normal and patient samples are analyzed, and a variation in the expression level of the gene and/or gene product in the patient sample is diagnostic of a disease.
- the patient samples include, but are not limited to, blood, amniotic fluid, plasma, semen, bone marrow, and tissue biopsy.
- the gene or gene product is VEGF and VEGFR, more preferably VEGFR-2, and their soluble forms thereof (e.g., detection of shed VEGFR2). ⁇
- the present invention still further provides a method of diagnosing cancer in a subject comprising measuring the activity of the polypeptide in a subject suspected of having cancer, wherein if there is a difference in the activity of the polypeptide, relative to the activity of the polypeptide in a subject not suspected of having cancer, then the subject is diagnosed has having cancer.
- the polypeptide is VEGF and VEGFR, more preferably VEGFR-2, and their soluble forms thereof (e.g., detection of shed VEGFR2).
- the invention provides a method for detecting cancer in a patient sample in which an antibody to a protein is used to react with proteins in the patient sample.
- the antibody is specific for VEGF and VEGFR, more preferably VEGFR-2, and their soluble forms thereof (e.g., detection of shed VEGFR2).
- Antibodies can be generated routinely, e.g., to exposed regions of the polypeptides. For example, antibodies can be routinely generated to the extracellular domain of VEGFR-2, e.g., a soluble VEGFR-2.
- Another aspect of the present invention is a method for distinguishing between normal and disease states comprising the step of analyzing the level of expression of one or more genes and/or gene products, wherein the gene expression and/or gene product levels of normal and disease tissues are analyzed, and a variation in the expression level of the gene and/or gene product is indicative of a disease state.
- the gene or gene product is VEGF or VEGFR-2.
- the invention pertains to a method of determining the phenotype of cells comprising detecting the differential expression, relative to normal cells, of at least one gene, wherein the gene is differentially expressed by at least a factor of two, at least a factor of five, at least a factor of twenty, or at least a factor of fifty.
- the gene encodes VEGF and VEGFR, more preferably VEGFR-2.
- the invention pertains to a method of determining the phenotype of cells, comprising detecting the differential expression, relative to normal cells, of at least one polypeptide, wherein the protein is differentially expressed by at least a factor of two, at least a factor of five, at least a factor of twenty, an up to at least a factor of fifty.
- the polypeptide is VEGF and VEGFR, more preferably VEGFR-2, and their soluble forms thereof (e.g., detection of shed VEGFR2).
- the invention pertains to a method for determining the phenotype of cells from a patient by providing a nucleic acid probe comprising a nucleotide sequence having at least about 10, at least about 15, at least about 25, or at least about 40 consecutive nucleotides, obtaining a sample of cells from a patient, optionally providing a second sample of cells substantially all of which are noncancerous, contacting the nucleic acid probe under stringent conditions with mRNA of each of said first and second cell samples, and comparing (a) the amount of hybridization of the probe with mRNA of the first cell sample, with (b) the amounf of hybridization of the probe with mRNA of the second cell sample, wherein a difference of at least a factor of two, at least a factor of five, at least a factor of twenty, or at least a factor of fifty in the amount of hybridization with the mRNA of the first cell sample as compared to the amount of hybridization with the mRNA. of the second cell sample is
- the invention provides a test kit for identifying the presence of cancerous cells or tissues, comprising a probe/primer, for measuring a level of a nucleic acid in a sample of cells isolated from a patient.
- the kit may further include instructions for using the kit, solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a. nucleic acid susceptible to hybridization, solutions for lysing cells, or solutions for the purification of nucleic acids.
- the probe/primer comprises a nucleotide sequence encoding a fragment of VEGF and/or VEGFR, preferably VEGFR-2.
- the invention provides a test kit for identifying the presence of cancer cells or tissues, comprising an antibody specific for a protein.
- the kit further includes instructions for using the kit.
- the kit may further include solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a polypeptide susceptible to the binding of an antibody, solutions for lysing cells, or solutions for the purification of polypeptides.
- the antibody is specific for VEGF and/or sVEGFR, preferably sVEGFR-2.
- the invention provides a test kit for monitoring the efficacy of a compound or therapeutic in cancerous cells or tissues, comprising a probe/primer, for measuring a level of a nucleic acid in a sample of cells isolated from a patient.
- the kit may further include instructions for using the kit, solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a nucleic acid susceptible to hybridization, solutions for lysing cells, or solutions for the purification of nucleic acids.
- the probe/primer comprises the nucleotide sequence encoding VEGF and/or VEGFR.
- the invention provides a test kit for monitoring the efficacy of a compound or therapeutic in cancer cells or tissues, comprising an antibody specific for a protein.
- the kit further includes instructions for using the kit.
- the kit may further include solutions for suspending or fixing the cells, detectable tags or labels, solutions for rendering a polypeptide susceptible to the binding of an antibody, solutions for lysing cells, or solutions for the purification of polypeptides.
- the antibody is specific for VEGF and/or VEGFR-2, such as its soluble extracellular domain.
- An "address" on an array refers to a location at which an element, for example, an oligonucleotide, is attached to the solid surface of the array.
- agonist is meant to refer to an agent that mimics or up-regulates (e.g., potentiates or supplements) the bioactivity of a protein.
- An agonist may be a wild-type protein or derivative thereof having at least one bioactivity of the wild-type protein.
- An agonist may also be a compound that up- regulates expression of a gene or which increases at least one bioactivity of a protein.
- An agonist can also be a compound which increases the interaction of a polypeptide with another molecule, for example, a target peptide or nucleic acid.
- amplification relates to the production of additional copies of a nucleic acid sequence.
- amplification may be carried out using polymerase chain reaction (PCR) technologies which are well known in the art. (see, e.g., Dieffenbach and Dveksler (1995) PCR Primer, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N. Y.)
- Antagonist is meant to refer to an agent that down- regulates (e.g., suppresses or inhibits) at least one bioactivity of a protein.
- a sorafenib is an example of such an antagonist.
- An antagonist may be a compound which inhibits or decreases the interaction between a protein and another molecule, for example, a target peptide or enzyme substrate.
- An antagonist may also be a compound that down-regulates expression of a gene or which reduces the amount of expressed protein present.
- antibody is intended to include whole antibodies, for example, of any isotype (IgG, IgA, IgM, IgE, etc.), and includes fragments thereof which are also specifically reactive with a vertebrate (e.g., mammalian) protein.
- Antibodies may be fragmented using conventional techniques and the fragments screened for utility in the same manner as described above for whole antibodies.
- the term includes segments of proteolytically-cleaved or recombinantly- prepared portions of an antibody molecule that are capable of selectively reacting with a certain protein.
- Non-limiting examples of such proteolytic and/or recombinant fragments include Fab, F(ab')2, Fab', Fv, and single chain antibodies (scFv) containing a V[L] and/or V[H] domain joined by a peptide linker.
- the scFv's may be covalently or non-covalently linked to form antibodies having two or more binding sites.
- the subject invention includes polyclonal, monoclonal, or other purified preparations of antibodies and recombinant antibodies.
- array or “matrix” refer to an arrangement of addressable locations or “addresses” on a device.
- the locations can be arranged in two-dimensional arrays, three-dimensional arrays, or other matrix formats.
- the number of locations may range from several to at least hundreds of thousands. Most importantly, each location represents a totally independent reaction site.
- a “nucleic acid array” refers to an array containing nucleic acid probes, such as oligonucleotides or larger portions of genes.
- the nucleic acid on the array is preferably single-stranded.
- oligonucleotide arrays Arrays wherein the probes are oligonucleotides are referred to as “oligonucleotide arrays” or “oligonucleotide chips.”
- a “microarray,” also referred to herein as a “biochip” or “biological chip,” is an array of regions having a density of discrete regions of at least about 100/cm 2 , and preferably at least about 10007cm 2 .
- the regions in a microarray have typical dimensions, for example, diameters, in the range of between about 10-250 ⁇ m, and are separated from other regions in the array by about the same distance.
- Bioactivity or “bioactivity” or “activity” or “biological function,” which are used interchangeably, herein mean an effector or antigenic function that is directly or indirectly performed by a polypeptide (whether in its native or denatured conformation), or by any subsequence thereof.
- Biological activities include binding to polypeptides, binding to other proteins or molecules, activity as a DNA binding protein, as a transcription regulator, ability to bind damaged DNA, etc.
- a bioactivity can be modulated by directly affecting the subject polypeptide.
- a bioactivity can be altered by modulating the level of the polypeptide, such as by modulating expression of the corresponding gene.
- biological sample refers to a sample obtaiifed from an organism or from components (e.g., cells) of an organism.
- the sample may be of any biological tissue or fluid.
- the sample may be a sample which is derived from a patient. Such samples include, but are not limited to, sputum, blood, blood cells (e.g., white cells), tissue or biopsy samples (e.g., tumor biopsy), , urine, peritoneal fluid, and pleural fluid, or cells therefrom.
- Biological samples may also include sections of tissues such as frozen sections taken for histological purposes.
- Biomarker encompasses a broad range of intra- and extra-cellular events as well as whole-organism physiological changes.
- Biomarkers may be represent essentially any aspect of cell function, for example, but not limited to, levels or rate of production of signaling molecules, transcription factors, metabolites, gene transcripts as well as post-translational modifications of proteins.
- Biomarkers may include whole genome analysis of transcript levels or whole proteome analysis of protein levels and/or modifications.
- a biomarker may also refer to a gene or gene product which is up- or down- regulated in a compound-treated, diseased cell of a subject having the disease compared to an untreated diseased cell. That is, the gene or gene product is sufficiently specific to the treated cell that it may be used, optionally with other genes or gene products, to identify, predict, or detect efficacy of a small molecule.
- a biomarker is a gene or gene product that is characteristic of efficacy of a compound in a diseased cell or the response of that diseased cell to treatment by the compound.
- a nucleotide sequence is "complementary" to another nucleotide sequence if each of the bases of the two sequences match, that is, are capable of forming Watson-Crick base pairs.
- the term "complementary strand” is used herein interchangeably with the term “complement.”
- the complement of a nucleic acid strand may be the complement of a coding strand or the complement of a non- coding strand.
- Detection agents of genes refers to agents that can be used to specifically detect the gene or other biological molecules relating to it, for example, RNA transcribed from the gene or polypeptides encoded by the gene.
- exemplary detection agents are nucleic acid probes, which hybridize to nucleic acfds corresponding to the gene, and antibodies.
- cancer includes, but is not limited to, solid tumors, such as cancers of the breast, respiratory tract, brain, reproductive organs, digestive tract, urinary tract, eye, liver, skin, head and neck, thyroid, parathyroid, and their 'distant metastases.
- solid tumors such as cancers of the breast, respiratory tract, brain, reproductive organs, digestive tract, urinary tract, eye, liver, skin, head and neck, thyroid, parathyroid, and their 'distant metastases.
- lymphomas, sarcomas, and leukemias include lymphomas, sarcomas, and leukemias.
- breast cancer examples include, but are not limited to, invasive ductal carcinoma, invasive lobular carcinoma, ductal carcinoma in situ, and lobular carcinoma in situ.
- cancers of the respiratory tract include, but are not limited to, small-cell and non-small-cell lung carcinoma, as well as bronchial adenoma and pleuropulmonary blastoma.
- brain cancers include, but are not limited to, brain stem and hypophtalmic glioma, cerebellar and cerebral astrocytoma, medulloblastoma, ependymoma, as well as neuroectodermal and pineal tumor.
- Tumors of the male reproductive organs include, but are not limited to, prostate and testicular cancer.
- Tumors of the female reproductive organs include, but are not limited to, endometrial, cervical, ovarian, vaginal, and vulvar cancer, as well as sarcoma of the uterus.
- Tumors of the digestive tract include, but are not limited to, anal, colon, colorectal, esophageal, gallbladder, gastric, pancreatic, rectal, small-intestine, and salivary gland cancers.
- Tumors of the urinary tract include, but are not limited to, bladder, penile, kidney, renal (e.g., renal cell carcinoma) pelvis, ureter, and urethral cancers.
- Eye cancers include, but are not limited to, intraocular melanoma and retinoblastoma.
- liver cancers include, but are not limited to, hepatocellular carcinoma (liver cell carcinomas with or without fibrolamellar variant), cholangiocarcinoma (intrahepatic bile duct carcinoma), and mixed hepatocellular cholangiocarcinoma.
- Skin cancers include, but are not limited to, squamous cell carcinoma, Kaposi's sarcoma, malignant melanoma, Merkel cell skin cancer, and non-melanoma skin cancer.
- Head-and-neck cancers include, but are not limited to, laryngeal / hypopharyngeal / nasopharyngeal / oropharyngeal cancer, and lip and oral' cavity cancer.
- Lymphomas include, but are not limited to, AIDS-related lymphoma, non- Hodgkin's lymphoma, cutaneous T-cell lymphoma, Hodgkin's disease, and lymphoma of the central nervous system.
- Sarcomas include, but are not limited to, sarcoma of the soft tissue, osteosarcoma, malignant fibrous histiocytoma, lymphosarcoma, and rhabdomyosarcoma.
- Leukemias include, but are not limited to, acute myeloid leukemia, acute lymphoblastic leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, and hairy cell leukemia.
- a diseased cell of cancer refers to a cell present in subjects having cancer. That is, a cell which is a modified form of a normal cell and is not present in a subject not having cancer, or a cell which is present in significantly higher or lower numbers in subjects having cancer relative to subjects not having cancer.
- Equivalent is understood to include nucleotide sequences encoding functionally equivalent polypeptides.
- Equivalent nucleotide sequences may include sequences that differ by one or more nucleotide substitutions, additions, or deletions, such as allelic variants.
- expression profile which is used interchangeably herein with “gene expression profile” and “fingerprint” of a cell refers to a set of values representing mRNA levels of one or more genes in a cell.
- An expression profile preferably comprises values representing expression levels of at least about 10 genes, preferably at least about 50, 100, 200 or more genes.
- Expression profiles may also comprise an mRNA level of a gene which is expressed at similar levels in multiple cells and conditions (e.g., a housekeeping gene such as GAPDH).
- an expression profile of a diseased cell of cancer refers to a set of values representing mRNA levels of 10 or more genes in a diseased cell.
- the term "gene” refers to a nucleic acid sequence that comprises control an ' d coding sequences necessary for the production of a polypeptide or precursor.
- the polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence.
- the gene may be derived in whole or in part from any source known to the art, including a plant, a fungus, an animal, a bacterial genome or episome, eukaryotic, nuclear or plasmid DNA, cDNA, viral DNA, or chemically synthesized DNA.
- a gene may contain one or more modifications in either the coding or the untranslated regions which could affect the biological activity or the chemical structure of the expression product, the rate of expression, or the manner of expression control.
- Such modifications include, but are not limited to, mutations, insertions, deletions, and substitutions of one or more nucleotides.
- the gene may constitute an uninterrupted coding sequence or it may include one or more introns, bound by the appropriate splice junctions.
- Hybridization refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.
- two single- stranded nucleic acids "hybridize” when they form a double-stranded duplex.
- the region of double-strandedness may include the full-length of one or both of the single-stranded nucleic acids, or all of one single-stranded nucleic acid and a subsequence of the other single-stranded nucleic acid, or the region of double- strandedness may include a subsequence of each nucleic acid.
- Hybridization also includes the formation of duplexes which contain certain mismatches, provided that the two strands are still forming a double-stranded helix.
- “Stringent hybridization conditions” refers to hybridization conditions resulting in essentially specific hybridization.
- isolated refers to molecules separated from other DNAs or RNAs, respectively, that are present in the natural source of the macromolecule.
- isolated as used herein also refers to a nucleic acid or peptide that is substantially free of cellular material, viral material, culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
- an "isolated nucleic acid” may include nucleic acid fragments which are not naturally occurring as fragments and would not be found in the natural state.
- isolated is also used herein to refer to polypeptides which are isolated from other cellular proteins and is meant to encompass both purified and recombinant polypeptides.
- label and “detectable label” refer to a molecule capable of detection, including, but not limited to, radioactive isotopes, fluorophores, chemiluminescent moieties, enzymes, enzyme substrates, enzyme cofactors, enzyme inhibitors, dyes, metal ions, ligands (e.g., biotin or haptens), and the like.
- fluorescer refers to a substance or a portion thereof which is capable of exhibiting fluorescence in the detectable range.
- the term “level of expression” refers to the measurable expression level of a given nucleic acid.
- the level of expression of a nucleic acid is determined by methods well known in the art.
- the term “differentially expressed” or “differential expression” refers to an increase or decrease in the measurable expression level of a given nucleic acid.
- “differentially expressed” or “differential expression” means the difference in the level of expression of a nucleic acid is at least 1.4-fold or more in two samples used for comparison, both of which are compared to the same normal standard sample.
- “Differentially expressed” or “differential expression” also means a 1.4-fold, or more, up to and including 2-fold, 5-fold, 10-fold, 20-fold, 50-fold or more difference in the level of expression of a nucleic acid in two samples used for comparison.
- a nucleic acid is also said to be “differentially expressed” in two samples if one of the two samples contains no detectable expression of a given nucleic acid, provided that the detectably expressed nucleic acid is expressed at +/- at least 1.4 fold.
- Differential expression of a nucleic acid sequence is "inhibited" the difference in the level of expression of the nucleic acid in two or more samples used for comparison is altered such that it is no longer at least a 1.4 fold difference.
- Absolute quantification of the level of expression of a nucleic acid may be accomplished by including a known concentration(s) of one or more control nucleic acid species, generating a standard curve based on the amount of the control nucleic acid and extrapolating the expression level of the "unknown" nucleic acid species from the hybridization intensities of the unknown with respect to the standard curve.
- nucleic acid refers to polynucleotides such ' a ' s deoxyribonucleic acid (DNA) and, where appropriate, ribonucleic acid (RNA).
- RNA or DNA made from nucleotide analogs and, as applicable to the embodiment being described, single-stranded (sense or antisense) and double-stranded polynucleotides.
- Chromosomes, cDNAs, mRNAs, rRNAs, and ESTs are representative examples of molecules that may be referred to as nucleic acids.
- oligonucleotide refers to a nucleic acid molecule comprising, for example, from about 10 to about 1000 nucleotides. Oligonucleotides for use in the present invention are preferably from about 15 to about 150 nucleotides, more preferably from about 150 to about 1000 in length.
- the oligonucleotide may be a naturally occurring oligonucleotide or a synthetic oligonucleotide. Oligonucleotides may be prepared by the phosphoramidite method (Beaucage and Carruthers, Tetrahedron Lett. 22:1859-62, 1981), or by the triester method (Matteucci, et al., J. Am. Chem. Soc. 103:3185, 1981), or by other chemical methods known in the art.
- patient or "subject” as used herein includes mammals (e.g., humans and animals).
- a nucleic acid or other molecule attached to an array is referred to as a "probe” or “capture probe.”
- probe When an array contains several probes corresponding to one gene, these probes are referred to as a “gene-probe set.”
- a gene-probe set may consist of, for example, about 2 to about 20 probes, preferably from about 2 to about 10 probes, and most preferably about 5 probes.
- the "profile" of a cell's biological state refers to the levels of various constituents of a cell that are known to change in response to drug treatments and other perturbations of the biological state of the cell.
- Constituents of a cell include, for example, levels of RNA, levels of protein abundances, or protein activity levels.
- protein is used interchangeably herein with the terms “peptide” and “polypeptide.”
- An expression profile in one cell is "similar" to an expression profile in another cell when the level of expression of the genes in the two profiles are sufficiently similar that the similarity is indicative of a common characteristic, for example, the same type of cell. Accordingly, the expression profiles of a first cell and a second cell are similar when at least 75% of the genes that are expressed in the first cell are expressed in the second cell at a level that is within a factor of two relative to the first cell.
- Small molecule refers to a composition with a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids, or other organic or inorganic molecules. Many pharmaceutical companies have extensive libraries of chemical and/or biological mixtures, often fungal, bacterial, or algal extracts, which can be screened with any of the assays of the invention to identify compounds that modulate a bioactivity.
- hybridization of a probe to a target site of a template nucleic acid refers to hybridization of the probe predominantly to the target, such that the hybridization signal can be clearly interpreted.
- such conditions resulting in specific hybridization vary depending on the length of the region of homology, the GC content of the region, and the melting temperature ("Tm") of the hybrid.
- Tm melting temperature
- hybridization conditions may vary in salt content, acidity, and temperature of the hybridization solution and the washes.
- a "variant" of polypeptide refers to a polypeptide having an amino acid sequence in which one or more amino acid residues is altered.
- the variant may have "conservative” changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine).
- a variant may also have "nonconservative” changes (e.g., replacement of glycine with tryptophan).
- Analogous minor variations may include amino acid deletions or insertions, or both.
- Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be identified using computer programs well known in the art, for example, LASERGENE software (DNASTAR).
- variants when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to that of a particular gene or the coding sequence thereof. This definition may also include, for example, "allelic,” “splice,” “species,” or “polymorphic” variants.
- a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser numberbf polynucleotides due to alternate splicing of exons during mRNA processing.
- the corresponding polypeptide may possess additional functional domains or an absence of domains.
- Species variants are polynucleotide sequences that vary from one species to another.
- polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
- Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
- SNPs single nucleotide polymorphisms
- An aspect of the invention is directed to the identification of agents capable of modulating the differentiation and proliferation of cells characterized by aberrant proliferation. More specifically, the invention relates to methods of screening candidate compounds or substances for their ability to regulate the differential expression of nucleic acid sequences. That is, if a nucleic acid sequence is overexpressed in cancer cells, then the candidate compounds are screened for their ability to decrease expression, and if a nucleic acid sequence is underexpressed in cancer cells, then a test compound is screened for its ability to increase expression. In addition, the invention relates to screening assays to identify test compounds or substances which modulate the activity of one or more polypeptides which are encoded by the differentially expressed sequences described herein. In this regard, the invention provides assays for determining compounds that modulate the expression of marker nucleic acids and/or alter the bioactivity of the encoded polypeptide.
- Drug screening is performed by adding a test compound (e.g., sorafenib and diaryl urea derivatives thereof) to a sample of cells, and monitoring the effect. A parallel sample which does not receive the test compound is also monitored as a control.
- the treated and untreated cells are then compared by any suitable phenotypic criteria, including but not limited to microscopic analysis, viability testing, ability to replicate, histological examination, the level of a particular RNA or polypeptide associated with the cells, the level of enzymatic activity expressed by ffi ' e cells or cell lysates, and the ability of the cells to interact with other cells or compounds. Differences between treated and untreated cells indicates effects attributable to the test compound.
- Desirable effects of a test compound include an effect on any phenotype that was conferred by the cancer-associated marker nucleic acid sequence. Examples include a test compound that limits the overabundance of mRNA, limits production of the encoded protein, or limits the functional effect of the protein. The effect of the test compound would be apparent when comparing results between treated and untreated cells.
- the invention thus, also encompasses methods of screening for agents (e.g., sorafenib and diaryl urea derivatives thereof) which inhibit or enhance the expression of the nucleic acid markers in vitro, comprising exposing a cell or tissue in which the marker nucleic acid mRNA (e.g., VEGF or VEGFR-2) is detectable in cultured cells to an agent in order to determine whether the agent is capable of inhibiting or enhancing production of the mRNA; and determining the level of mRNA in the exposed cells or tissue, wherein a decrease in the level of the mRNA after exposure of the cell line to the agent is indicative of inhibition of the marker nucleic acid mRNA production and an increase in mRNA levels is indicative of enhancement of maker mRNA production.
- agents e.g., sorafenib and diaryl urea derivatives thereof
- the screening method may include in vitro screening of a cell or tissue in which marker protein is detectable in cultured cells to an agent suspected of inhibiting or enhancing production of the marker protein; and determining the level of the marker protein in the cells or tissue, wherein a decrease in the level of marker protein after exposure of the cells or tissue to the agent is indicative of inhibition of marker protein production and an increase on the level of marker protein is indicative of enhancement of marker protein production.
- the invention also encompasses in vivo methods of screening for agents which inhibit or enhance expression of the marker nucleic acids, comprising exposing a subject having tumor cells in which marker mRNA or protein is detectable to an agent suspected of inhibiting or enhancing production of marker mRNA or protein; and determining the level of marker mRNA or protein in tumor cells of the exposed mammal.
- a decrease in the level of marker mRNA or protein after exposure of the subject to the agent is indicative of inhibition of marker nucleic acid expression and an increase in the level of marker mRNA or protein is indicative of enhancement of marker nucleic acid expression.
- the invention provides a method comprising incubating 1 a cell expressing the marker nucleic acids with a test compound and measuring the mRNA or protein level.
- the invention further provides a method for quantitatively determining the level of expression of the marker nucleic acids in a cell population, and a method for determining whether an agent is capable of increasing or decreasing the level of expression of the marker nucleic acids in a cell population.
- the method for determining whether an agent is capable of increasing or decreasing the level of expression of the marker nucleic acids in a cell population comprises the steps of (a) preparing cell extracts from control and agent-treated cell populations, (b) isolating the marker polypeptides from the cell extracts, and (c) quantifying (e.g., in parallel) the amount of an immunocomplex formed between the marker polypeptide and an antibody specific to said polypeptide.
- the marker polypeptides of this invention may also be quantified by assaying for its bioactivity.
- Agents that induce an increase in the marker nucleic acid expression may be identified by their ability to increase the amount of immunocomplex formed in the treated cell as compared with the amount of the immunocomplex formed in the control cell.
- agents that decrease expression of the marker nucleic acid may be identified by their ability to decrease the amount of the immunocomplex formed in the treated cell extract as compared to the control cell.
- the present invention provides isolated nucleic acid sequences which are differentially regulated in cancer, and a method for identifying such sequences.
- the present invention provides a method for identifying a nucleotide sequence which is differentially regulated in a subject with cancer, comprising: hybridizing a nucleic acid sample corresponding to RNA obtained from the subject to a nucleic acid sample comprising one or more nucleic acid molecules of known identity; and measuring the hybridization of the nucleic acid sample to the one or more nucleic acid molecules of known identity, wherein a two-fold difference in the hybridization of the nucleic acid sample to the one or more nucleic acid molecules of known identity relative to a nucleic acid sample obtained from a subject without cancer is indicative of tTi ' e differential expression of the nucleotide sequence in a subject with cancer.
- the present invention provides a method for identifying nucleic acid sequences which are differentially regulated in a subject with cancer comprising isolating messenger RNA from a subject, generating cRNA from the mRNA s'ample, hybridizing the cRNA to a microarray comprising a plurality of nucleic acid molecules stably associated with discrete locations on the array, and identifying patterns of hybridization of the cRNA to the array.
- a nucleic acid molecule which hybridizes to a given location on the array is said to be differentially regulated if the hybridization signal is at least two-fold higher or lower than the hybridization signal at the same location on an identical array hybridized with a nucleic acid sample obtained from a subject that does not have cancer.
- Microarrays for Determining the Level of Expression of Genes may be accomplished utilizing microarrays. Generally, the following steps may be involved: (a) obtaining an mRNA sample from a subject and preparing labeled nucleic acids therefrom (the "target nucleic acids” or “targets”); (b) contacting the target nucleic acids with an array under conditions sufficient for the target nucleic acids to bind to the corresponding probes on the array, for example, by hybridization or specific binding; (c) optional removal of unbound targets from the array; (d) detecting the bound targets, and (e) analyzing the results, for example, using computer based analysis methods.
- “nucleic acid probes” or “probes” are nucleic acids attached to the array
- target nucleic acids are nucleic acids that are hybridized to the array.
- Nucleic acid specimens may be obtained from a subject to be tested using either “invasive” or “non-invasive” sampling means.
- a sampling means is said to be “invasive” if it involves the collection of nucleic acids from within the skin or organs of an animal (including murine, human, ovine, equine, bovine, porcine, canine, or feline animal).
- invasive methods include, for example, blood collection, semen collection, needle biopsy, pleural aspiration, umbilical cord biopsy. Examples of such methods are discussed by Kim, et al., (J. Virol. 66:3879-3882, 1992); Biswas, et al., (Ann. NY Acad. Sci.
- a "non-invasive" sampling means is one in which the nucleic acid ⁇ molecules are recovered from an internal or external surface of the animal.
- non-invasive sampling means include, for example, “swabbing,” collection of tears, saliva, urine, fecal material, sweat or perspiration, hair.
- RNA is isolated from the cells.
- a sample of peripheral blood leukocytes (PBLs) cells is obtained from the subject. It is also possible to obtain a cell sample from a subject, and then to enrich the sample for a desired cell type. For example, cells may be isolated from other cells using a variety of techniques, such as isolation with an antibody binding to an epitope on the cell surface of the desired cell type.
- the desired cells are in a solid tissue
- particular cells may be dissected, for example, by microdissection or by laser capture microdissection (LCM) (see, e.g., Bonner, et al., Science 278:1481 , 1997; Emmert-Buck, et al., Science 274:998, 1996; Fend, et al., Am. J. Path. 154:61 , 1999; and Murakami, et al., Kidney Int. 58:1346, 2000).
- LCM laser capture microdissection
- RNA may be extracted from tissue or cell samples by a variety of methods, for example, guanidium thiocyanate lysis followed by CsCI centrifugation (Chirgwin, et al., Biochemistry 18:5294-5299, 1979).
- RNA from single cells may be obtained as described in methods for preparing cDNA libraries from single cells (see, e.g., Dulac, Curr. Top. Dev. Biol. 36:245, 1998; Jena, et al., J. Immunol. Methods 190:199, 1996).
- RNA sample can be further enriched for a particular species.
- poly(A)+ RNA may be isolated from an RNA sample.
- the RNA population may be enriched for sequences of interest by primer-specific cDNA synthesis, or multiple rounds of linear amplification based on cDNA synthesis and template-directed in vitro transcription (see, e.g., Wang, et al., Proc. Natl. Acad. Sci. USA 86:9717, 1989; Dulac, et al., supra; Jena, et al., supra).
- RNA may be further amplified by a variety of amplification methods including, for example, PCR; ligase chain reaction (LCR) (see, e.g., Wu and Wallace, Genomics 4:560, 1989; Landegren, et al., Science 241 :1077, 1988); self-sustained sequence replication (SSR) (see, e.g., Guatelli, et al., Proc. Natl. Acad. Sci. USA 87:1874, 1990); nucleic acid based sequence amplification (NASBA) and transcription amplification (see, e.g., Kwoh, et al., Proc. Natl.
- LCR ligase chain reaction
- SSR self-sustained sequence replication
- NASBA nucleic acid based sequence amplification
- transcription amplification see, e.g., Kwoh, et al., Proc. Natl.
- PCR Technology Principles and Applications for DNA Amplification (ed. H. A. Erlich, Freeman Press, N.Y., N.Y., 1992); PCR Protocols: A Guide to Methods and Applications (eds. Innis, et al., Academic Press, San Diego, Calif., 1990); Mattila, et al., Nucleic Acids Res. 19:4967, 1991 ; Eckert, et al., PCR Methods and Applications 1 :17, 1991 ; PCR (eds. McPherson et al., IRL Press, Oxford); and U.S. Pat.
- RNA amplification and cDNA synthesis may also be conducted in cells in situ (see, e.g., Eberwine, et al. Proc. Natl. Acad. Sci. USA 89:3010, 1992).
- the nucleic acid molecules may be labeled to permit detection of hybridization of the nucleic acid molecules to a microarray. That is, the probe may comprise a member of a signal producing system and thus, is detectable, either directly or through combined action with one or more additional members of a signal producing system.
- the nucleic acids may be labeled with a fluorescently labeled dNTP (see, e.g., Kricka, 1992, Nonisotopic DNA Probe Techniques, Academic Press San Diego, Calif.), biotinylated dNTPs or rNTP followed by addition of labeled streptavidin, chemiluminescent labels, or isotopes.
- Hybridization may be also be determined, for example, by plasmon resonance (see, e.g., Thiel, et al. Anal. Chem. 69:4948, 1997).
- a plurality (e.g., 2, 3, 4, 5, or more) of sets of target nucleic acids are labeled and used in one hybridization reaction ("multiplex" analysis).
- one set of nucleic acids may correspond to RNA from one cell and another set of nucleic acids may correspond to RNA from another cell.
- the plurality of sets of nucleic acids may be labeled with different labels, for example, different fluorescent labels (e.g., fluorescein and rhodamine) which have distinct emission spectra so that they can be distinguished.
- the sets may then be mixed and hybridized simultaneously to one microarray (see, e.g., Shena, et al., Science 270:467-470, 1995).
- Micro arrays for use according to the invention include one or more probes of genes characteristic of small molecule efficacy.
- the microarray comprises probes corresponding to one or more of genes selected from the group consisting of genes which are up-regulated in cancer and genes which are down-regulated in cancer.
- the microarray may comprise probes corresponding to at least 10, preferably at least 20, at least 50, at least 100 or at least 1000 genes characteristic of small molecule efficacy.
- a microarray may contain from 2 to 20 probes corresponding to one gene and preferably about 5 to 10.
- the probes may correspond to the full-length RNA sequence or complement thereof of genes characteristic of small molecule efficacy, or the probe may correspond to a portion thereof, which portion is of sufficient length to permit specific hybridization.
- Such probes may comprise from about 50 nucleotides to about 100, 200, 500, or 1000 nucleotides or more than 1000 nucleotides.
- microarrays may contain oligonucleotide probes, consisting of about 10 to 50 nucleotides, preferably about 15 to 30 nucleotides and more preferably about 20-25 nucleotides.
- the probes are preferably single-stranded and will have sufficient complementarity to its target to provide for the desired level of sequence specific hybridization.
- the arrays used in the present invention will have a site density of greater than 100 different probes per cm 2 .
- the arrays will have a site density of greater than 500/cm 2 , more preferably greater than about 1000/cm 2 , and most preferably, greater than about 10,000/cm 2 .
- the arrays will have more than 100 different probes on a single substrate, more preferably greater than about 1000 different probes, still more preferably, greater than about 10,000 different probes and most preferably, greater than 100,000 different probes on a single substrate.
- Arrays preferably include control and reference nucleic acids.
- Control nucleic acids include, for example, prokaryotic genes such as bioB, bioC and bioD, ere from P1 bacteriophage or polyA controls, such as dap, lys, phe, thr, and trp.
- Reference nucleic acids allow the normalization of results from one experiment to another and the comparison of multiple experiments on a quantitative level.
- Exemplary reference nucleic acids include housekeeping genes of known expression levels, for example, GAPDH, hexokinase, and actin.
- an array of oligonucleotides may be synthesized on a solid support.
- Exemplary solid supports include glass, plastics, polymers, metals, metalloids, ceramics, organics, etc.
- chip masking technologies and photoprotective chemistry it is possible to generate ordered arrays of nucleic acid probes.
- These arrays which are known, for example, as "DNA chips” or very large scale immobilized polymer arrays (“VLSIPSTM" arrays), may include millions of defined probe regions on a substrate having an area of about 1 cm 2 to several cm 2 , thereby incorporating from a few to millions of probes (see, e.g., U.S. Patent No. 5,631 ,734).
- labeled nucleic acids may be contacted with the array under conditions sufficient for binding between the target nucleic acid and the probe on the array.
- the hybridization conditions may be selected to provide for the desired level of hybridization specificity; that is, conditions sufficient for hybridization to occur between the labeled nucleic acids and probes on the microarray.
- Hybridization may be carried out in conditions permitting essentially specific hybridization.
- the length and GC content of the nucleic acid will determine the thermal melting point and thus, the hybridization conditions necessary for obtaining specific hybridization of the probe to the target nucleic acid. These factors are well known to a person of skill in the art, and may also be tested in assays.
- An extensive guide to nucleic acid hybridization may be found in Tijssen, et al. (Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 24: Hybridization With Nucleic Acid Probes, P. Tijssen, ed. Elsevier, N.Y., (1993)).
- the methods described above result in the production of hybridization patterns of labeled target nucleic acids on the array surface.
- the resultant hybridization patterns of labeled nucleic acids may be visualized or detected in a variety of ways, with the particular manner of detection selected based on the particular label of the target nucleic acid.
- Representative detection means include scintillation counting, autoradiography, fluorescence measurement, colorimetric measurement, light emission measurement, light scattering, and the like.
- One such method of detection utilizes an array scanner that is commercially available (Affymetrix, Santa Clara, CA), for example, the 417TM Arrayer, the 418TM Array Scanner, or the Agilent GeneArrayTM Scanner.
- This scanner is controlled from a system computer with an interface and easy-to-use software tools. The output may be directly imported into or directly read by a variety of software applications.
- Preferred scanning devices are described in, for example, U.S. Patent Nos. 5,143,854 and 5,424,186.
- the fluorescence emissions at each site of a transcript array may be, preferably, detected by scanning confocal laser microscopy.
- a laser may be used that allows simultaneous specimen illumination at wavelengths specific to the two fluorophores and emissions from the two fluorophores may be analyzed simultaneously (see, e.g., Shalon, et al., Genome Res. 6:639-645, 1996).
- the arrays may be scanned with a laser fluorescent scanner with a computer controlled X-Y stage and a microscope objective. Fluorescence laser scanning devices are described in Shalon, et at, supra.
- Various algorithms are available for analyzing gene expression data, for example, the type of comparisons to perform.
- a preferred embodiment for identifying such groups of genes ⁇ involves clustering algorithms (for reviews of clustering algorithms, see, e.g., Fukunaga, 1990, Statistical Pattern Recognition, 2nd Ed., Academic Press, San Diego; Everitt, 1974, Cluster Analysis, London: Heinemann Educ. Books; Hartigan, 1975, Clustering Algorithms, New York: Wiley; Sneath and Sokal, 1973, Numerical Taxonomy, Freeman; Anderberg, 1973, Cluster Analysis for Applications, Academic Press: New York).
- Expression patterns may be used to derive a panel of biomarkers that can be used to predict the efficacy of drug treatment in the patients.
- the biomarkers may consist of gene expression levels from microarray experiments on RNA isolated from biological samples, RNA isolated from frozen samples of tumor biopsies, or mass spectrometry-derived protein masses in the serum.
- plasma (1 ⁇ l) may be applied to a hydrophobic SELDI-target, washed extensively in water, and analyzed by the SELDI- Tof mass spectrometer. This may be repeated on 100 or more patient samples.
- the protein profiles resulting from the intensities of some 16,000 m/z values in each sample would be statistically analyzed in order to identify sets of specific m/z values that are predictive of drug efficacy.
- Identical experiments using other SELDI-targets, such as ion-exchange or IMAC surfaces could also be conducted. These will capture different subsets of the proteins present in plasma.
- the plasma may be denatured and prefractionated prior to application onto the SELDI target.
- the present invention provides methods for determining whether a subject is at risk for developing a disease or condition characterized by unwanted cell proliferation by detecting biomarkers (e.g., VEGF or VEGFR, such as VEGFR-2), that is, nucleic acids and/or polypeptide markers for cancer.
- biomarkers e.g., VEGF or VEGFR, such as VEGFR-2
- human tissue samples may be screened for the presence and/or absence of biomarkers identified herein.
- samples could consist of needle biopsy cores, surgical resection samples, lymph node tissue, or serum.
- these methods include obtaining a biopsy, which is optionally fractionated by cryostat sectioning to enrich tumor cells to about 80% of the total cell population.
- nucleic acids extracted from these samples may be amplified using techniques well known in the art. The levels of selected markers detected would be compared with statistically valid groups of metastatic, non-metastatic malignant, benign, or normal tissue samples.
- the diagnostic method comprises determining whether a subject has an abnormal mRNA and/or protein level of the biomarkers (e.g., VEGF or VEGFR, such as VEGFR-2, including soluble forms thereof), such as by Northern blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization, immunoprecipitation, Western blot hybridization, or immunohistochemistry.
- the biomarkers e.g., VEGF or VEGFR, such as VEGFR-2, including soluble forms thereof
- RT-PCR reverse transcription-polymerase chain reaction
- cells may be obtained from a subject and the levels of the biomarkers, protein, or mRNA level, are determined and compared to the level of these markers in a healthy subject.
- An abnormal level of the biomarker polypeptide or mRNA levels is likely to be indicative of cancer.
- the invention provides probes and primers that are specific to the unique nucleic acid markers disclosed herein.
- the nucleic acid probes comprise a nucleotide sequence at least 10 nucleotides in length, preferably at least 15 nucleotides, more preferably, 25 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of the coding sequence which is complementary to a portion of the coding sequence of a marker nucleic ac' ⁇ d sequence.
- the method comprises using a nucleic acid probe to determine the presence of cancerous cells in a tissue from a patient. Specifically, the method comprises:
- nucleic acid probe comprising a nucleotide sequence at least 10 nucleotides in length, preferably at least 15 nucleotides, more preferably, 25 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of the coding sequence which is complementary to a portion of the coding sequence of a nucleic acid sequence and is differentially expressed in tumors cells;
- RNA of each of said first and second tissue samples e.g., in a Northern blot or in situ hybridization assay
- the method comprises in situ hybridization with a probe derived from a given marker nucleic acid sequence (e.g., VEGF or VEGFR-2).
- the method comprises contacting the labeled hybridization probe with a sample of a given type of tissue potentially containing cancerous or pre-cancerous cells as well as normal cells, and determining whether the probe labels some cells of the given tissue type to a degree significantly different (e.g., by at least a factor of two, or at least a factor of " five, or at least a factor of twenty, or at least a factor of fifty) than the degree to which it labels other cells of the same tissue type.
- a degree significantly different e.g., by at least a factor of two, or at least a factor of " five, or at least a factor of twenty, or at least a factor of fifty
- Also within the invention is a method of determining the phenotype of a test cell from a given human tissue, for example, whether the cell is (a) normal, " or (b) cancerous or precancerous, by contacting the mRNA of a test cell with a nucleic acid probe at least 12 nucleotides in length, preferably at least 15 nucleotides, more preferably at least 25 nucleotides, and most preferably at least 40 nucleotides, and up to all or nearly all of a sequence which is complementary to a portion of the coding sequence of a nucleic acid sequence, and which is differentially expressed in tumor cells as compared to normal cells of the given tissue type; and determining the approximate amount of hybridization of the probe to the mRNA, an amount of hybridization either more or less than that seen with the mRNA of a normal cell of that tissue type being indicative that the test cell is cancerous or pre-cancerous.
- the above diagnostic assays may be carried out using antibodies to detect the protein product encoded by the marker nucleic acid sequence (e.g., VEGF or sVEGFR-2).
- the assay would include contacting the proteins of the test cell with an antibody specific for the gene product of a nucleic acid, the marker nucleic acid being one which is expressed at a given control level in normal cells of the same tissue type as the test cell, and determining the approximate amount of immunocomplex formation by the antibody and the proteins of the test cell, wherein a statistically significant difference in the amount of the immunocomplex formed with the proteins of a test cell as compared to a normal cell of the same tissue type is an indication that the test cell is cancerous or pre-cancerous.
- the antibody is specific for VEGF or sVEGFR-2, especially its extracellular domain.
- Another such method includes the steps of: providing an antibody specificTor the gene product of a marker nucleic acid sequence, the gene product being present in cancerous tissue of a given tissue type at a level more or less than the level of the gene product in non-cancerous tissue of the same tissue type; obtaining from a patient a first sample of tissue of the given tissue type, which sample potentially includes cancerous cells; providing a second sample of tissue of the same tissue type (which may be from the same patient or from a normal control, e.g.
- this second sample containing normal cells and essentially no cancerous cells; contacting the antibody with protein (which may be partially purified, in lysed but unfractionated cells, or in situ) of the first and second samples under conditions permitting immunocomplex formation between the antibody and the marker nucleic acid sequence product present in the samples; and comparing (a) the amount of immunocomplex formation in the first sample, with (b) the amount of immunocomplex formation in the second sample, wherein a statistically significant difference in the amount of immunocomplex formation in the first sample less as compared to the amount of immunocomplex formation in the second sample is indicative of the presence of cancerous cells in the first sample of tissue.
- protein which may be partially purified, in lysed but unfractionated cells, or in situ
- the subject invention further provides a method of determining whether a cell sample obtained from a subject possesses an abnormal amount of marker polypeptide which comprises (a) obtaining a cell sample from the subject, (b) quantitatively determining the amount of the marker polypeptide in the sample so obtained, and (c) comparing the amount of the marker polypeptide so determined with a known standard, so as to thereby determine whether the cell sample obtained from the subject possesses an abnormal amount of the marker polypeptide.
- marker polypeptides may be detected by immunohistochemical assays, dot-blot assays, ELISA, and the like.
- Immunoassays are commonly used to quantitate the levels of proteins in cell samples, and many other immunoassay techniques are known in the art. The invention is not limited to a particular assay procedure, and therefore, is intended to include both homogeneous and heterogeneous procedures. Exemplary immunoassays which may be conducted according to the invention include fluorescence polarization immunoassay (FPIA), fluorescence immunoassay (FIA), enzyme immunoassay (EIA), nephelometric inhibition immunoassay (NlA), enzyme- linked immunosorbent assay (ELlSA), and radioimmunoassay (RIA).
- FPIA fluorescence polarization immunoassay
- FIA fluorescence immunoassay
- EIA enzyme immunoassay
- NlA nephelometric inhibition immunoassay
- ELlSA enzyme- linked immunosorbent assay
- RIA radioimmunoassay
- An indicator moiety may be attached to the subject antibodies and is selected so as to meet the needs of various uses of the method which are often dictated by the availability of assay equipment and compatible immunoassay procedures.
- General techniques to be used in performing the various immunoassays noted above are known to those of ordinary skill in the art.
- the level of the encoded product, or alternatively the level of the polypeptide, in a biological fluid (e.g., blood or urine) of a patient may be determined as a way of monitoring the level of expression of the marker nucleic acid sequence in cells of that patient.
- a biological fluid e.g., blood or urine
- Such a method would include the steps of obtaining a sample of a biological fluid from the patient, contacting the sample (or proteins from the sample) with an antibody specific for an encoded marker polypeptide, and determining the amount of immune complex formation by the antibody, with the amount of immune complex formation being indicative of the level of the marker encoded product in the sample. This determination is particularly instructive when compared to the amount of immune complex formation by the same antibody in a control sample taken from a normal individual or in one or more samples previously or subsequently obtained from the same person.
- the method may be used to determine the amount of marker polypeptide present in a cell, which in turn may be correlated with progression of a hyperproliferative disorder.
- the level of the marker polypeptide may be used predictively to evaluate whether a sample of cells contains cells which are, or are predisposed towards becoming, transformed cells.
- the subject method may be used to assess the phenotype of cells which are known to be transformed, the phenotyping results being useful in planning a particular therapeutic regimen. For example, very high levels of the marker polypeptide in sample cells is a powerful diagnostic and prognostic marker for a cancer. The observation of marker polypeptide levels may be utilized in decisions regarding, for example, the use of more aggressive therapies.
- one aspect of the present invention relates to diagnostic assays for determining, in the context of cells isolated from a patient, if the level of a marker polypeptide is significantly reduced in the sample cells.
- the term "significantly reduced” refers to a cell phenotype wherein the cell possessesT ' a reduced cellular amount of the marker polypeptide relative to a normal cell of similar tissue origin.
- a cell may have less than about 50%, 25%, 10%, or 5% of the marker polypeptide compared to that of a normal control cell.
- the assay evaluates the level of marker polypeptide in the test cells, and, preferably, compares the measured level with marker polypeptide detected in at least one control cell, for example, a normal cell and/or a transformed cell of known phenotype.
- the number of cells with a particular marker polypeptide phenotype may then be correlated with patient prognosis.
- the marker polypeptide phenotype of a lesion is determined as a percentage of cells in a biopsy which are found to have abnormally high/low levels of the marker polypeptide. Such expression may be detected by immunohistochemical assays, dot-blot assays, ELISA, and the like.
- immunohistochemical staining may be used to determine the number of cells having the marker polypeptide phenotype.
- a multiblock of tissue may be taken from the biopsy or other tissue sample and subjected to proteolytic hydrolysis, employing such agents as protease K or pepsin.
- proteolytic hydrolysis employing such agents as protease K or pepsin.
- tissue samples are fixed by treatment with a reagent such as formalin, glutaraldehyde, methanol, or the like.
- a reagent such as formalin, glutaraldehyde, methanol, or the like.
- the samples are then incubated with an antibody, preferably a monoclonal antibody, with binding specificity for the marker polypeptides.
- This antibody may be conjugated to a label for subsequent detection of binding.
- Samples are incubated for a time sufficient for formation of the immunocomplexes. Binding of the antibody is then detected by virtue of a label conjugated to this antibody.
- a second labeled antibody may be employed, for example, which is specific for the isotype of the anti- marker polypeptide antibody.
- labels which may be employed include radionuclides, fluorescers, chemiluminescers, enzymes, and the like.
- the substrate for the enzyme may be added " to the samples to provide a colored or fluorescent product.
- suitable enzymes for use in conjugates include horseradish peroxidase, alkaline phosphatase, malate dehydrogenase, and the like. Where not commercially available, such antibody-enzyme conjugates are readily produced by techniques known to those skilled in the art.
- the assay is performed as a dot blot assay.
- the dot blot assay finds particular application where tissue samples are employed as it allows determination of the average amount of the marker polypeptide associated with a single cell by correlating the amount of marker polypeptide in a cell-free extract produced from a predetermined number of cells.
- tumor cells of the same type may not show uniformly increased expression of individual oncogenes or uniformly decreased expression of individual tumor suppressor genes.
- the invention provides for a battery of tests utilizing a number of probes of the invention, in order to improve the reliability and/or accuracy of the diagnostic test.
- the present invention also provides a method wherein nucleic acid probes are immobilized on a DNA chip in an organized array.
- Oligonucleotides may be bound to a solid support by a variety of processes, including lithography.
- a chip may hold up to 250,000 oligonucleotides.
- nucleic acid probes comprise a nucleotide sequence at least about 12 nucleotides in length, preferably at least about 15 nucleotides, more preferably at least about 25 nucleotides, and most preferably at least about 40 nucleotides, and up to all or nearly all of a sequence which is complementary to a portion of the coding sequence of a marker nucleic acid sequence and is differentially expressed in tumor cells.
- the present invention provides significant advantages over the available tests for various cancers, because it increases the reliability of the test by providing an array of nucleic acid markers on a single chip.
- the method includes obtaining a biopsy, which is optionally fractionated IBy cryostat sectioning to enrich tumor cells to about 80% of the total cell population.
- the DNA or RNA is then extracted, amplified, and analyzed with a DNA chip to determine the presence of absence of the marker nucleic acid sequences.
- the nucleic acid probes are spotted onto a substrate in a two-dimensional matrix or array. Samples of nucleic acids may be labeled and then hybridized to the probes. Double-stranded nucleic acids, comprising the labeled sample nucleic acids bound to probe nucleic acids, may be detected once the unbound portion of the sample is washed away.
- the probe nucleic acids may be spotted on substrates including glass, nitrocellulose, etc.
- the probes can be bound to the substrate by either covalent bonds or by non-specific interactions, such as hydrophobic interactions.
- the sample nucleic acids can be labeled using radioactive labels, fluorophores, chromophores, etc.
- arrays may be used to examine differential expression of genes and may be used to determine gene function.
- arrays of nucleic acid sequences may be used to determine if any of the nucleic acid sequences are differentially expressed between normal cells and cancer cells. Increased expression of a particular message in a cancer cell, which is not observed in a corresponding normal cell, may indicate a cancer-specific protein.
- nucleic acid molecules may be used to generate microarrays on a solid surface (e.g., a membrane) such that the arrayed nucleic acid molecules may be used to determine if any of the nucleic acids are differentially expressed between norma! cells or tissue and cancerous cells or tissue.
- the nucleic acid molecules of the invention may be cDNA or may be used to generate cDNA molecules to be subsequently amplified by PCR and spotted on nylon membranes. The membranes may then be reacted with radiolabeled target nucleic acid molecules obtained from equivalent samples of cancerous and norrffal tissue or cells.
- the invention contemplates using a panel of antibodies which are generated against the marker polypeptides of this invention.
- the antibodies are generated against VEGF or sVEGFR-2.
- Such a panel of antibodies may be used as a reliable diagnostic probe for cancer.
- the assay of the present invention comprises contacting a biopsy sample containing cells, for example, lung cells, with a panel of antibodies to one or more of the encoded products to determine the presence or absence of the marker polypeptides.
- the diagnostic methods of the subject invention may also be employed as follow-up to treatment, for example, quantitation of the level of marker polypeptides may be indicative of the effectiveness of current or previously employed cancer therapies as well as the effect of these therapies upon patient prognosis.
- marker nucleic acids or marker polypeptides may be utilized as part of a diagnostic panel for initial detection, follow-up screening, detection of reoccurrence, and post-treatment monitoring for chemotherapy or surgical treatment.
- the present invention makes available diagnostic assays and reagents for detecting gain and/or loss of marker polypeptides from a cell in order to aid in the diagnosis and phenotyping of proliferative disorders arising from, for example, tumorigenic transformation of cells.
- the diagnostic assays described above may be adapted to be used as prognostic assays, as well. Such an application takes advantage of the sensitivity of the assays of the invention to events which take place at characteristic stages in the progression of a tumor. For example, a given marker gene may be up- or down- regulated at a very early stage, perhaps before the cell is irreversibly committed to developing into a malignancy, while another marker gene may be characteristically up- or down-regulated only at a much later stage.
- Such a method could involve the steps of contacting the mRNA of a test cell with a nucleic acid probe derived from a given marker nucleic acid which is expressed at different characteristic levels ' ⁇ n cancerous or precancerous cells at different stages of tumor progression, and determining the approximate amount of hybridization of the probe to the mRNA of the cell, such amount being an indication of the level of expression of the gene in the cell, and thus an indication of the stage of tumor progression of the cell; alternatively, the assay may be carried out with an antibody specific for the gene product of the given marker nucleic acid, contacted with the proteins of the test cell.
- a battery of such tests will disclose not only the existence and location of a tumor, but also will allow the clinician to select the mode of treatment most appropriate for the tumor, and to predict the likelihood of success of that treatment.
- the methods of the invention may also be used to follow the clinical course of a tumor.
- the assay of the invention may be applied to a tissue sample from a patient; following treatment of the patient for the cancer, another tissue sample is taken and the test repeated. Successful treatment will result in either removal of all cells which demonstrate differential expression characteristic of the cancerous or precancerous cells, or a substantial increase in expression of the gene in those cells, perhaps approaching or even surpassing normal levels.
- a biomarker associated with the anti-cancer agent may be analyzed in a biological sample (e.g., tumor sample, plasma) before, during, and following treatment.
- a biological sample e.g., tumor sample, plasma
- VEGF or sVEGFR, preferably sVEGFR-2, polypeptide may be detected in plasma.
- changes in the baseline plasma concentration of these polypeptides may be monitored in patients with cancer.
- increased levels of VEGF and decreased levels of sVEGFR-2 can be associated with sorafenib efficacy.
- polypeptide levels may also be monitored by quantitative immunohistochemistry using paraffin-embedded tumor biopsies.
- Another approach to monitor treatment is an evaluation of serum proteomic spectra.
- plasma samples may be subjected to mass spectroscopy (e.g., surface-enhanced laser desorption and ionization) and a proteomic spectra may " Be generated for each patient.
- mass spectroscopy e.g., surface-enhanced laser desorption and ionization
- a set of spectra, derived from analysis of plasma from patients before and during treatment may be analyzed by an iterative searching algorithm, which can identify a proteomic pattern that completely discriminates the treated samples from the untreated samples. The resulting pattern may then be used to predict the clinical benefit following treatment.
- RNA isolated from cells derived from whole blood from patients before and during treatment may be used to generate blood cell gene expression profiles utilizing Affymetrix GeneChip technology and algorithms. These gene expression profiles may then predict the clinical benefit from treatment with a particular anti-cancer agent.
- Drug-, disease-, and genetic-stimuli have been shown to produce metabolic-specific changes in baseline urine profiles that are indicative of the timeline and magnitude of the metabolic response to the stimuli. These analyses are multi-variant and therefore use pattern recognition techniques to improve data interpretation. Urinary metabolic profiles may be correlated with clinical endpoints to determine the clinical benefit.
- mRNA was isolated from blood and analyzed by microrarrays for gene expression profiles that correlate with patient outcome. Additionally, a mass spectrometry-based approach was used to assess plasma for a protein signature, and urine was analyzed by 1 H-NMR for patterns of small molecules that correlate with patient outcome. Pre- and post-treatment plasma samples were analyzed by ELISA for VEGF and soluble VEGFR-2 (sVEGFR-2), and changes in these molecules related to sorafenib treatment were investigated.
- sVEGFR-2 soluble VEGFR-2
- TTD time to death
- PFS progression-free survival
- VEGF baseline verses TTD is illustrated in Fig. 1 (Kaplan- Meyer analysis) and the relationship of VEGF change at week 18 versus TTD is illustrated in Fig. 2 (Kaplan-Meyer analysis).
- Fig. 1 Kaplan- Meyer analysis
- Fig. 2 Kaplan-Meyer analysis
- higher baseline VEGF levels correlate with shorter time to death (when VEGF is analyzed as a continuous variable).
- Large increases in VEGF levels at week 18 also correlate with shorter time to death (when VEGF was analyzed as a continuous variable).
- Fig. 1 is a graph of VEGF baseline versus TTD
- Fig. 2 is a graph of VEFG of ⁇ BL-Wk 18 versus TTD.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Oncology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2006315592A AU2006315592A1 (en) | 2005-11-14 | 2006-11-14 | Methods for prediction and prognosis of cancer, and monitoring cancer therapy |
EP06837519A EP1963849A2 (en) | 2005-11-14 | 2006-11-14 | Methods for prediction and prognosis of cancer, and monitoring cancer therapy |
BRPI0618597-5A BRPI0618597A2 (en) | 2005-11-14 | 2006-11-14 | cancer prediction and prognosis methods and cancer therapy monitoring method |
CA002629860A CA2629860A1 (en) | 2005-11-14 | 2006-11-14 | Methods for prediction and prognosis of cancer, and monitoring cancer therapy |
MX2008006239A MX2008006239A (en) | 2005-11-14 | 2006-11-14 | Methods for prediction and prognosis of cancer, and monitoring cancer therapy. |
JP2008541268A JP2009515553A (en) | 2005-11-14 | 2006-11-14 | Cancer prognosis and prognosis, and cancer treatment monitoring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73585405P | 2005-11-14 | 2005-11-14 | |
US60/735,854 | 2005-11-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007059094A2 true WO2007059094A2 (en) | 2007-05-24 |
WO2007059094A3 WO2007059094A3 (en) | 2008-01-24 |
Family
ID=37814675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/044117 WO2007059094A2 (en) | 2005-11-14 | 2006-11-14 | Methods for prediction and prognosis of cancer, and monitoring cancer therapy |
Country Status (12)
Country | Link |
---|---|
US (1) | US20070178494A1 (en) |
EP (1) | EP1963849A2 (en) |
JP (1) | JP2009515553A (en) |
KR (1) | KR20080073745A (en) |
CN (1) | CN101454668A (en) |
AU (1) | AU2006315592A1 (en) |
BR (1) | BRPI0618597A2 (en) |
CA (1) | CA2629860A1 (en) |
MX (1) | MX2008006239A (en) |
RU (1) | RU2008123406A (en) |
WO (1) | WO2007059094A2 (en) |
ZA (1) | ZA200804509B (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009094383A2 (en) * | 2008-01-25 | 2009-07-30 | Mayo Foundation For Medical Education And Research | Quantitation of lobular involution for breast cancer risk prediction |
US7838541B2 (en) | 2002-02-11 | 2010-11-23 | Bayer Healthcare, Llc | Aryl ureas with angiogenesis inhibiting activity |
US7897623B2 (en) | 1999-01-13 | 2011-03-01 | Bayer Healthcare Llc | ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors |
CN102053150A (en) * | 2009-10-30 | 2011-05-11 | 上海交通大学医学院附属瑞金医院 | Human osteosarcoma stem cell related antigen marker and application thereof |
JP2011528014A (en) * | 2008-07-14 | 2011-11-10 | ジーイー・ヘルスケア・リミテッド | Treatment monitoring |
US8124630B2 (en) | 1999-01-13 | 2012-02-28 | Bayer Healthcare Llc | ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors |
US8796250B2 (en) | 2003-05-20 | 2014-08-05 | Bayer Healthcare Llc | Diaryl ureas for diseases mediated by PDGFR |
US9315869B2 (en) | 2010-12-13 | 2016-04-19 | Samsung Life Public Welfare Foundation | Marker for predicting gastric cancer prognosis and method for predicting gastric cancer prognosis using the same |
US9737488B2 (en) | 2005-03-07 | 2017-08-22 | Bayer Healthcare Llc | Pharmaceutical composition for the treatment of cancer |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7557129B2 (en) | 2003-02-28 | 2009-07-07 | Bayer Healthcare Llc | Cyanopyridine derivatives useful in the treatment of cancer and other disorders |
SI1663978T1 (en) | 2003-07-23 | 2008-02-29 | Bayer Pharmaceuticals Corp | Fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention of diseases and conditions |
RU2395090C2 (en) * | 2005-10-21 | 2010-07-20 | БАЙЕР ХелсКер ЛЛСи | Methods of forecasting and prediction of cancer and control on therapy of cancer |
BRPI0618564A2 (en) * | 2005-11-02 | 2011-09-06 | Bayer Healthcare Llc | methods for cancer prediction and prognosis and for cancer therapy monitoring |
EP2061906B1 (en) * | 2006-09-12 | 2011-08-31 | Genentech, Inc. | Methods and compositions for the diagnosis and treatment of lung cancer using pdgfra, kit or kdr gene as genetic marker |
AR062927A1 (en) * | 2006-10-11 | 2008-12-17 | Bayer Healthcare Ag | 4- [4- ([[4- CHLORINE-3- (TRIFLUOROMETILE) PHENYL) CARBAMOIL] AMINO] -3- FLUOROPHENOXY) -N- METHYLPIRIDIN-2-MONOHIDRATED CARBOXAMIDE |
EP2156834A1 (en) * | 2008-08-08 | 2010-02-24 | S.I.F.I - Società Industria Farmaceutica Italiana - S.P.A. | Ophthalmic pharmaceutical compositions comprising Sorafenib for the treatment of neoangiogenic pathologies of the eye |
US20110257035A1 (en) * | 2008-10-21 | 2011-10-20 | Bayer Healthcare Llc | Identification of signature genes associated with hepatocellular carcinoma |
CN102576380B (en) * | 2009-10-07 | 2016-05-18 | 皇家飞利浦电子股份有限公司 | Evaluation stands the method for the patient's of cancer disposal toxic level |
CA2804350A1 (en) * | 2010-07-19 | 2012-01-26 | F. Hoffmann-La Roche Ag | Blood plasma biomarkers for bevacizumab combination therapies for treatment of breast cancer |
WO2012016948A1 (en) * | 2010-08-02 | 2012-02-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Novel methods for predicting the responsiveness of a patient affected with a tumor to a treatment with a tyrosine kinase inhibitor |
ES2609249T3 (en) * | 2011-01-11 | 2017-04-19 | Inserm - Institut National De La Santé Et De La Recherche Médicale | Methods of predicting the outcome of a cancer in a patient analyzing gene expression |
WO2013173384A1 (en) * | 2012-05-16 | 2013-11-21 | Dale Wong | Method and system for sorting biological samples |
JP6663347B2 (en) * | 2013-03-15 | 2020-03-11 | ヤンセン ファーマシューティカ エヌ.ベー. | Assays for predictive biomarkers |
CN105074467B (en) * | 2013-04-25 | 2018-06-15 | 株式会社Cbs生物科学 | Improve the analysis method of the sensibility of molecular targeted therapy hepatocellular carcinoma |
RU2546035C1 (en) * | 2014-04-15 | 2015-04-10 | Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации | Method for predicting metastases in patients with skin melanoma |
RU2643761C1 (en) * | 2017-08-10 | 2018-02-05 | Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации | Method of calculation of forecast for early development of skin melanoma |
WO2019074920A1 (en) * | 2017-10-10 | 2019-04-18 | Oncocyte Corporation | Methods and compositions for detection and diagnosis of breast cancer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005089443A2 (en) * | 2004-03-19 | 2005-09-29 | The Penn State Research Foundation | Combinatorial methods and compositions for treatment of melanoma |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6635421B1 (en) * | 1997-12-09 | 2003-10-21 | Children's Medical Center Corporation | Neuropilins and use thereof in methods for diagnosis and prognosis of cancer |
US20030232400A1 (en) * | 2002-12-20 | 2003-12-18 | Susan Radka | Methods of screening subjects for expression of soluble receptors of vascular endothelial growth factor (VEGF) for use in managing treatment and determining prognostic outcome |
US20060234931A1 (en) * | 2003-07-17 | 2006-10-19 | Biggs William H Iii | Treatment of diseases with kinase inhibitors |
-
2006
- 2006-11-14 CN CNA2006800505936A patent/CN101454668A/en active Pending
- 2006-11-14 CA CA002629860A patent/CA2629860A1/en not_active Abandoned
- 2006-11-14 RU RU2008123406/15A patent/RU2008123406A/en not_active Application Discontinuation
- 2006-11-14 EP EP06837519A patent/EP1963849A2/en not_active Withdrawn
- 2006-11-14 AU AU2006315592A patent/AU2006315592A1/en not_active Abandoned
- 2006-11-14 MX MX2008006239A patent/MX2008006239A/en not_active Application Discontinuation
- 2006-11-14 WO PCT/US2006/044117 patent/WO2007059094A2/en active Application Filing
- 2006-11-14 KR KR1020087014220A patent/KR20080073745A/en not_active Application Discontinuation
- 2006-11-14 JP JP2008541268A patent/JP2009515553A/en active Pending
- 2006-11-14 BR BRPI0618597-5A patent/BRPI0618597A2/en not_active IP Right Cessation
- 2006-11-14 US US11/598,824 patent/US20070178494A1/en not_active Abandoned
-
2008
- 2008-05-23 ZA ZA200804509A patent/ZA200804509B/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005089443A2 (en) * | 2004-03-19 | 2005-09-29 | The Penn State Research Foundation | Combinatorial methods and compositions for treatment of melanoma |
Non-Patent Citations (5)
Title |
---|
AHMAD T ET AL: "Kinase inhibition with BAY 43-9006 in renal cell carcinoma" CLINICAL CANCER RESEARCH, THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 10, no. 18 Pt 2, 19 March 2004 (2004-03-19), pages 6388S-6392S, XP002362669 ISSN: 1078-0432 * |
DATABASE MEDLINE [Online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; May 2004 (2004-05), GÓMEZ-ESQUER FRANCISCO ET AL: "mRNA expression of the angiogenesis markers VEGF and CD105 (endoglin) in human breast cancer." XP002425577 Database accession no. NLM15274325 & ANTICANCER RESEARCH 2004 MAY-JUN, vol. 24, no. 3a, May 2004 (2004-05), pages 1581-1585, ISSN: 0250-7005 * |
ELTING JAMES ET AL: "Biomarkers associated with clinical outcomes in TARGETs, a Phase III single-agent, placebo-controlled study of sorafenib in advanced renal cell carcinoma." PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING, vol. 47, April 2006 (2006-04), pages 683-684, XP001245679 & 97TH ANNUAL MEETING OF THE AMERICAN-ASSOCIATION-FOR-CANCER-RESEARCH (AACR); WASHINGTON, DC, USA; APRIL 01 -05, 2006 ISSN: 0197-016X * |
FOEKENS JOHN A ET AL: "High tumor levels of vascular endothelial growth factor predict poor response to systemic therapy in advanced breast cancer" CANCER RESEARCH, vol. 61, no. 14, 15 July 2001 (2001-07-15), pages 5407-5414, XP002425575 ISSN: 0008-5472 * |
VERONESE MARIA LUISA ET AL: "Mechanisms of hypertension associated with BAY 43-9006." JOURNAL OF CLINICAL ONCOLOGY : OFFICIAL JOURNAL OF THE AMERICAN SOCIETY OF CLINICAL ONCOLOGY 20 MAR 2006, vol. 24, no. 9, 20 March 2006 (2006-03-20), pages 1363-1369, XP001249174 ISSN: 1527-7755 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8124630B2 (en) | 1999-01-13 | 2012-02-28 | Bayer Healthcare Llc | ω-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors |
US7897623B2 (en) | 1999-01-13 | 2011-03-01 | Bayer Healthcare Llc | ω-carboxyl aryl substituted diphenyl ureas as p38 kinase inhibitors |
US8841330B2 (en) | 1999-01-13 | 2014-09-23 | Bayer Healthcare Llc | Omega-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors |
US7838541B2 (en) | 2002-02-11 | 2010-11-23 | Bayer Healthcare, Llc | Aryl ureas with angiogenesis inhibiting activity |
US8242147B2 (en) | 2002-02-11 | 2012-08-14 | Bayer Healthcare Llc | Aryl ureas with angiogenisis inhibiting activity |
US8618141B2 (en) | 2002-02-11 | 2013-12-31 | Bayer Healthcare Llc | Aryl ureas with angiogenesis inhibiting activity |
US8796250B2 (en) | 2003-05-20 | 2014-08-05 | Bayer Healthcare Llc | Diaryl ureas for diseases mediated by PDGFR |
US9737488B2 (en) | 2005-03-07 | 2017-08-22 | Bayer Healthcare Llc | Pharmaceutical composition for the treatment of cancer |
WO2009094383A3 (en) * | 2008-01-25 | 2009-10-22 | Mayo Foundation For Medical Education And Research | Quantitation of lobular involution for breast cancer risk prediction |
WO2009094383A2 (en) * | 2008-01-25 | 2009-07-30 | Mayo Foundation For Medical Education And Research | Quantitation of lobular involution for breast cancer risk prediction |
JP2011528014A (en) * | 2008-07-14 | 2011-11-10 | ジーイー・ヘルスケア・リミテッド | Treatment monitoring |
CN102053150A (en) * | 2009-10-30 | 2011-05-11 | 上海交通大学医学院附属瑞金医院 | Human osteosarcoma stem cell related antigen marker and application thereof |
US9315869B2 (en) | 2010-12-13 | 2016-04-19 | Samsung Life Public Welfare Foundation | Marker for predicting gastric cancer prognosis and method for predicting gastric cancer prognosis using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2009515553A (en) | 2009-04-16 |
BRPI0618597A2 (en) | 2011-09-06 |
CA2629860A1 (en) | 2007-05-24 |
CN101454668A (en) | 2009-06-10 |
US20070178494A1 (en) | 2007-08-02 |
RU2008123406A (en) | 2009-12-27 |
WO2007059094A3 (en) | 2008-01-24 |
KR20080073745A (en) | 2008-08-11 |
MX2008006239A (en) | 2008-12-12 |
EP1963849A2 (en) | 2008-09-03 |
AU2006315592A1 (en) | 2007-05-24 |
ZA200804509B (en) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070178494A1 (en) | Methods for prediction and prognosis of cancer, and monitoring cancer therapy | |
US8329408B2 (en) | Methods for prognosis and monitoring cancer therapy | |
EP1945819B1 (en) | Gene expression profiles and methods of use | |
WO2004066941A2 (en) | Expression profiles for colon cancer and methods of use | |
US20070065827A1 (en) | Gene expression profiles and methods of use | |
WO2007123722A2 (en) | Methods for prediction and prognosis of cancer, and monitoring cancer therapy | |
WO2005032495A2 (en) | Gene expression profiles and methods of use | |
WO2004078035A2 (en) | Expression profiles for breast cancer and methods of use | |
US20070134670A1 (en) | Methods for prediction and prognosis of cancer, and monitoring cancer therapy | |
WO2011146725A1 (en) | Biomarkers for a multikinase inhibitor | |
US20040121375A1 (en) | Methods for prediction and prognosis of cancer, and monitoring cancer therapy | |
WO2006032009A2 (en) | Methods for prediction and prognosis of cancer, and monitoring cancer therapy | |
WO2005067650A2 (en) | Gene expression profiles and methods of use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680050593.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2629860 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008541268 Country of ref document: JP Ref document number: MX/a/2008/006239 Country of ref document: MX Ref document number: 191433 Country of ref document: IL Ref document number: 2008050792 Country of ref document: EG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006315592 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2006315592 Country of ref document: AU Date of ref document: 20061114 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5108/DELNP/2008 Country of ref document: IN Ref document number: 1020087014220 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008123406 Country of ref document: RU Ref document number: 2006837519 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0618597 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080514 |