WO2007058077A1 - Gene test method, microreactor for gene test and gene test system - Google Patents

Gene test method, microreactor for gene test and gene test system Download PDF

Info

Publication number
WO2007058077A1
WO2007058077A1 PCT/JP2006/321964 JP2006321964W WO2007058077A1 WO 2007058077 A1 WO2007058077 A1 WO 2007058077A1 JP 2006321964 W JP2006321964 W JP 2006321964W WO 2007058077 A1 WO2007058077 A1 WO 2007058077A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplification
flow path
mixture
liquid
reagent
Prior art date
Application number
PCT/JP2006/321964
Other languages
French (fr)
Japanese (ja)
Inventor
Akihisa Nakajima
Yasuhiro Sando
Kusunoki Higashino
Youichi Aoki
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007545192A priority Critical patent/JPWO2007058077A1/en
Publication of WO2007058077A1 publication Critical patent/WO2007058077A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Definitions

  • the present invention relates to a genetic testing method, a genetic testing microreactor, and a genetic testing system.
  • Patent Document 3 When control for accurate analysis is performed on the chip, complicated flow paths and fluid control elements must be configured and arranged, and fluids must be mixed and divided, which often involves various technical difficulties. .
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-322099
  • Patent Document 2 JP 2004-108285 A
  • Patent Document 3 Japanese Patent Application No. 2004-138959
  • the genetic testing method of the present invention comprises:
  • a gene testing method using a genetic testing microreactor provided with a constant amount of a reagent contained in the reagent containing part is fed to a flow path, and then divided into three parts, and the divided reagents are respectively separated.
  • a genetic testing microreactor provided with a constant amount of a reagent contained in the reagent containing part is fed to a flow path, and then divided into three parts, and the divided reagents are respectively separated.
  • Amplification reaction is performed on the fluid mixture (1) only, the mixture of the mixture (1) and the mixture (2), each fluid of the mixture (2) only, and only the mixture (3) in the amplification section. Is detected by each detector.
  • the genetic testing method of the present invention is the genetic testing method described above,
  • the probe accommodating portion is arranged in communication with the flow path for accommodating the probe to be hybridized with the gene to be detected amplified by the nucleic acid amplification reaction
  • the amplification product generated in the amplification part is mixed with the probe accommodated in the probe accommodating part in the flow path to bind or hybridize with the probe, and the target gene is detected based on the reaction product,
  • the positive control and the negative control are configured such that their amplification products are combined or hybridized in the flow path with the probe accommodated in the probe accommodating portion, and detection is performed based on the reaction product. It is characterized by that.
  • the microreactor for genetic testing of the present invention is
  • a negative control accommodating portion for accommodating a negative control;
  • An amplification section for performing a nucleic acid amplification reaction;
  • a detection part in the downstream flow path and
  • a microreactor for genetic testing provided with
  • a first liquid dividing means for dividing a predetermined amount of the reagent accommodated in the reagent accommodating portion fed into the flow path into three parts, a first reagent, a second reagent and a third reagent;
  • a mixed liquid (1) generating unit that generates a mixed liquid (1) by mixing the first reagent divided by the first liquid dividing unit and the sample sent from the sample storage unit;
  • a mixed liquid (2) generating unit that mixes the second reagent divided by the first liquid feeding dividing unit and the positive control sent from the positive control storage unit to generate a mixed liquid (2);
  • liquid mixture (1) generated in the generating section is divided into two liquid feeding and dividing means (1), and the liquid mixture (2) generated in the generating section (2) is mixed.
  • the amplification unit includes an amplification unit that amplifies only the mixture (1), an amplification unit that amplifies the mixture of the mixture (1) and the mixture (2), and the mixture (2).
  • the amplifying unit that amplifies only the mixed solution (3) and the amplifying unit that amplifies only the mixed solution (1) are amplified.
  • An amplification reaction is carried out in a detection section for detecting an amplification product obtained by amplification reaction in an amplification section that amplifies only the mixture (2), and an amplification section in which amplification reaction is performed only in the mixture (3). It is also characterized by four forces with the detection unit that detects the resulting amplification product.
  • the gene testing microreactor of the present invention is the gene testing microreactor.
  • a probe storage unit that is disposed in communication with each of the detection units and stores a probe that is hybridized to the amplification product.
  • Each of the detection units detects a reaction product in which the amplification product and a probe delivered from the probe storage unit are combined or hybridized.
  • the gene testing microreactor of the present invention is the gene testing microreactor
  • the first, second and third liquid feeding and dividing means are:
  • a liquid feed control unit that blocks passage of liquid at a pressure lower than a preset pressure, and allows passage of liquid at a pressure higher than a preset pressure
  • a backflow prevention unit for preventing backflow of liquid in the flow path
  • the genetic test system of the present invention comprises:
  • the micropump is a Bosch micropump.
  • a second flow path whose rate of change in flow path resistance with respect to a change in differential pressure is smaller than that of the first flow path; a pressure chamber connected to the first flow path and the second flow path;
  • the invention's effect [0012]
  • the genetic test system of the present invention has a system configuration in which reagents' chips that are microreactors for each specimen, each equipped with an element for a liquid delivery system ', and a control' detection component that is a device main body are separated. It is. Therefore, the problems of false or insufficient amplification, cross-contamination and carry-over contamination for microanalysis and amplification reactions are avoided.
  • the microreactor for gene testing of the present invention has a flow channel configuration that can simultaneously analyze positive control and negative control in order to eliminate the influence of reaction inhibition, contamination, and increase in nottag round. Therefore, since the accuracy and reliability of the results can always be verified, the accuracy of the analysis results finally obtained in the form of numerical data can be ensured. Therefore, the accuracy of the analysis result finally obtained in the form of numerical data can be secured in the same manner as described above for the genetic testing method using such a genetic testing mic reactor.
  • FIG. 1 is a schematic diagram of a genetic test system comprising a microreactor and an apparatus main body.
  • FIG. 2 is a schematic view of a microreactor (chip) for genetic testing. Note that the micropump belongs to a separate device from the microreactor.
  • FIG. 3 shows a conceptual diagram of a sample configuration of a sample and a control.
  • FIG. 4 shows an embodiment of the microreactor for gene testing of the present invention, and shows an embodiment corresponding to FIG. 3 (c).
  • FIG. 5 shows a configuration around the pump connection portion of the microreactor when the micropump 11 is separated from the microreactor.
  • (a) is a diagram showing a configuration of a pump unit for feeding a driving liquid
  • (b) is a diagram showing a configuration of a pump unit for feeding a reagent.
  • FIG. 6 shows a piezo pump
  • (a) is a sectional view showing an example of the pump
  • (b) is a top view thereof.
  • (C) is a sectional view showing another example of a piezo pump.
  • FIG. 7 shows an example of a flow path configuration for dividing a fluid into three on the flow path.
  • FIGS. 8 (a) and 8 (b) are cross-sectional views along the flow path axis direction of the liquid feeding control unit.
  • Fig. 9 is a view for explaining a fixed-quantity liquid feeding mechanism using a check valve.
  • FIG. 10 is a system schematic diagram of a micro analysis system including a microreactor and an apparatus main body.
  • the “specimen” is a fluid containing the nucleic acid to be measured.
  • a “gene” refers to DNA or RNA that carries genetic information that expresses a certain function, but may also be referred to simply as DNA or RNA that is a chemical entity. These and the polynucleotide are collectively referred to as “nucleic acid”.
  • element refers to a functional component installed in the microreactor.
  • the “fine channel” is a channel formed in the microreactor of the present invention, and is also simply referred to as “channel”. The fluid flowing in the fine channel is usually a liquid.
  • Nucleic acid amplification methods such as the PCR method and the ICAN method are widely used because even a very small amount of DNA can be amplified hundreds of thousands to several million times. Due to the extremely high amplification factor, the effects of contamination such as cross-contamination and carry-over contamination are extremely serious. Furthermore, it is said that false amplification or non-specific amplification is not uncommon. For this reason, always performing positive control and internal control simultaneously in parallel with sample analysis is essential for checking that PCR reactions are occurring correctly, especially in gene amplification by PCR. For example, if any problem arises, it is effective to verify whether it originates from the set conditions, reagents, operation, analysis system, or sample.
  • the internal control is used as an internal standard for target nucleic acid (DNA, RNA), monitoring of amplification, or quantification. It is particularly useful for quantitative analysis.
  • the internal control sequence is placed on both sides of the sequence different from the sample. Since the same primer as the ima has a sequence that can be hybridized, it can be amplified in the same manner as the sample.
  • Nucleic acids (DNA, RNA) used for internal control may be those described in publicly known technical literature. If internal control cannot be successfully amplified, it may be possible that a sample-derived interfering factor was present.
  • the sequence of the positive control is a specific sequence for detecting the sample, and the portion where the primer hybridizes and the sequence between them are the same as the sample. This is useful for detecting interfering factors in added reagents, verifying the appropriateness of set conditions, and nonspecific interactions. If amplification of the positive control is unsatisfactory, there may be operational problems such as reagent defects, reagent delivery, and mixing failure.
  • Negative control is used for background correction, such as checking for the presence or absence of contamination that can be used as ultrapure water instead of nucleic acid (DNA, RNA), correction of fluorescence, and color development of substances mixed in reagents, etc. Used for. If an amplified gene is detected in the negative control, it is possible that a gene other than the sample is mixed.
  • the internal control is included in the amplification reagent, and is amplified and reacted together in each of the three analyzes of the specimen, the positive control, and the negative control, and the detection is performed in a separate detection unit.
  • the internal control will surely hybridize with the primer, the sequence to be amplified is different from the sample, so during amplification, only the sample or only the internal control may be amplified, making the control meaningless. There may not be.
  • the present inventor devises the division of the fluid and the configuration of the flow path in the microreactor for genetic testing of the present invention, as described in “Control measurement and flow path configuration”.
  • Fig. 1 is a schematic diagram of a genetic testing system comprising a genetic testing microreactor (hereinafter sometimes simply referred to as a microreactor) that can be attached to and detached from the device main body
  • Fig. 2 is a schematic diagram of the genetic testing microreactor. It is.
  • the present invention can be arbitrarily modified and changed in various embodiments in accordance with the spirit of the present invention, and these are included in the present invention. That is, the structure, configuration, arrangement, shape, dimensions, material, method, method, etc. of the whole or a part of the gene testing microreactor (test chip) and test apparatus of the present invention are consistent with the gist of the present invention. As long as it can be various.
  • the test chip 2 shown in FIG. 1 and FIG. 2, that is, the microreactor for gene testing, is a single chip manufactured by appropriately combining one or more members such as plastic resin, glass, silicon, ceramics, etc. It is.
  • the vertical and horizontal sizes are usually several tens of mm and the height is several mm.
  • the micro flow path and the housing of the microreactor are formed of plastic resin that is easy to be molded by calorie and inexpensive, and easy to dispose of by incineration.
  • polystyrene resin is preferable because it has excellent moldability and can easily form a detection part on a fine channel having a strong tendency to adsorb streptavidin and the like as will be described later.
  • the microchannel is formed by a microfabrication technique with a width and height force of about m to several hundreds / zm, for example, a width of about 100 m and a depth of about 100 m.
  • the detection part covering at least the detection part of the microchannel on the surface of the microreactor is preferably a transparent member, preferably Must be transparent plastic.
  • FIG. 10 is a system overview of a micro analysis system including a microreactor and an apparatus main body.
  • the genetic test system of the present invention includes a micropump 11, a control device (not shown) for controlling the micropump 11, a temperature control device (not shown) for controlling the heater 4 and the Peltier element 3, and a detection device (LED6 And a photodiode 5) are integrated into a device main body 1 and a genetic testing microreactor 2 that can be attached to the device main body 1.
  • the mechanical connection for operating the liquid feed pump, If necessary, control electrical connections are also made. Therefore, when the apparatus main body 1 and the microreactor 2 are joined, the flow path of the microreactor is also activated.
  • a series of consecutive steps are taken, including sample and reagent delivery, nucleic acid amplification based on mixing, nucleic acid-probe binding reactions, reactant detection, and optical measurements.
  • the measurement data is stored in a file together with the necessary conditions and recorded items, and nucleic acid measurement is performed automatically.
  • the detection device irradiates the detection unit on the flow path with measurement light such as an LED, and detects transmitted light or reflected light by optical detection means such as a photodiode or a photomultiplier tube.
  • optical detection means such as a photodiode or a photomultiplier tube.
  • optical detection means such as a photodiode or a photomultiplier tube.
  • the genetic testing system of the present invention is incorporated in the apparatus main body 1 together with the liquid feeding means and the temperature control apparatus including the above-described micropump, which detects the nucleic acid contained in the sample optically. It has become the composition.
  • a control system related to each control of liquid feeding, temperature, and reaction a unit responsible for optical detection, data collection and processing, together with the micropump and the optical device, the main body 1 of the gene detection system of the present invention.
  • the apparatus main body 1 is commonly used for samples by mounting the microreactor 2 on the apparatus main body 1.
  • the reaction and detection such as amplification described above are performed under conditions set in advance with respect to the order of delivery, volume, timing, etc., and a gene inspection system as a program along with control of the mic pump and temperature, and data processing for optical detection. It is built into the software installed on the PC.
  • the conventional analysis chip when performing different analysis or synthesis, it is necessary to configure a microphone port fluid device corresponding to the changed contents each time. Unlike this, in the present invention, desorption Replace only the above microreactor 2 possible. If it is necessary to change the control of each element, change the control program stored in the main unit 1 as appropriate.
  • the genetic test system of the present invention all components are miniaturized and are in a form that is convenient to carry. Therefore, the genetic test system is not restricted by the place and time of use, and has good workability and operability. Since a large number of micropump units used for liquid feeding are incorporated in the main body of the apparatus, the microreactor chip can be used as a disposable type.
  • the microreactor and gene testing system for gene testing of the present invention can be suitably used particularly for testing genes or nucleic acids.
  • a mechanism for nucleic acid amplification is mounted on the microreactor.
  • the basic structure of nucleic acids other than genes is almost the same.
  • a reverse transcriptase storage unit may be installed. Normally, it is sufficient to change the specimen pretreatment unit, reagents, probes, etc. In that case, the arrangement and number of liquid supply elements will change.
  • the microreactor for gene testing of the present invention has at least a sample storage unit, a reagent storage unit, a liquid feeding / dividing unit, a micropump connection unit, and a fine channel in one chip, and the respective parts are connected with each other through the fine channel. .
  • a pump connection is provided upstream of each container, and a micro pump separate from the microreactor is connected to these pump connections, and the driving liquid is supplied from each micro pump to thereby supply the sample in each container.
  • the liquid (the sample liquid containing the nucleic acid to be measured) and the reagent are extruded and merged.
  • the nucleic acid is measured by flowing the combined solution to the flow path constituting the nucleic acid amplification section provided downstream thereof, and then to the flow path constituting the detection section. Furthermore, in addition to each storage unit, flow path, and pump connection unit, each element such as a liquid feed control unit, backflow prevention unit, reagent quantification unit, and mixing unit is installed at a functionally appropriate position by microfabrication technology. ing.
  • necessary reagents 31 are preliminarily encapsulated in a predetermined amount in a reagent storage unit 18 in the microreactor (FIG. 2).
  • a plurality of reagent containers 18 are provided corresponding to the plurality of reagents 31. Therefore, this departure
  • the bright microreactor is ready for immediate use without having to fill the required amount of reagent each time it is used, so it can be tested quickly regardless of location or time.
  • reagents necessary for the measurement are generally known. Examples of reagents for genetic testing include various reagents used for nucleic acid amplification, probes used for detection, and coloring reagents.
  • sealing material (sealing liquid) It is enclosed by.
  • These sealing materials are solid or gelled under refrigerated conditions in which the microreactor is stored before use. If it becomes, it will melt
  • a water-insoluble plastic material can be used. Preferably, it has a solubility power in water of S 1% or less and a melting point of 8 ° C. to room temperature (25 ° C. ) And an aqueous solution of gelatin.
  • each part of the reagent storage unit and the mixing unit for mixing the reagents (and the sample storage unit if necessary) is cooled by the Peltier element 3.
  • the Peltier element 3 may be provided on the upper surface of the chip, which is a microreactor of each part, or on both upper and lower surfaces of the chip.
  • the positive control accommodating portion accommodates a positive control that is a specific sequence for detecting the sample and in which the primer hybridizes and the sequence between them is the same as that of the sample.
  • the negative control container contains sterilized ultrapure water instead of the specimen as a negative control.
  • Conceptual diagram 3 shows the flow path configuration for sample and control measurements in the genetic testing microreactor of the present invention.
  • the flow path configuration of Fig. 3 (a) includes an internal control in the amplification reagent divided into three, and the specimen, the positive control, and the negative control are independent of each other. It is a conventional method in which it is amplified by flowing in a separate flow path.
  • various flow from the reagent storage section at the uppermost stream part and the flow path to the reagent division to basically three flow paths (flow paths that branch into three flow paths and reach each waste liquid storage part).
  • the reagent is configured to flow.
  • the analysis channel on the left is a channel for analyzing the sample
  • the analysis channel in the center is a channel for positive control
  • the analysis channel on the right is a channel for negative control.
  • FIGS. 3 (b) and 3 (c) the flow path configuration of FIGS. 3 (b) and 3 (c) is employed.
  • a 4-split technique, a 3-liquid simultaneous mixing technique, etc. are further required.
  • FIG. 4 shows a specific flow path configuration in which the flow path configuration of FIG. 3 (c) is particularly preferred.
  • a micropump is connected to the genetic test microreactor of the present invention via a pump connection part, and a fixed amount of the amplification reagent stored in the reagent storage part is sent to the flow path, and the liquid splitting means ( The first solution dividing means) divides a fixed amount of the reagent into three parts, the first reagent, the second reagent, and the third reagent, and the divided reagents (first reagent, second reagent, and third reagent). In each flow path
  • the liquid mixture (1) and the liquid mixture (2) are further divided into liquid feed dividing means (in this case, for convenience, the second liquid feed dividing means for dividing the liquid mixture (1) into two, the liquid mixture (2) is divided into 2 Divided into two by the third liquid feeding and dividing means), then mixed liquid (1) only, mixed liquid (1) and mixed liquid (2), mixed liquid (2) only, mixed liquid (3)
  • each fluid is subjected to an amplification reaction in the amplification section, and the amplification product is detected in each detection section.
  • the heater 4 can be provided on the upper surface of the chip, which is a microreactor, or on both upper and lower surfaces of the chip.
  • sample amplification Product (amplification of mixture (1) only)
  • mixture of sample and positive control amplification product (amplification of mixture of mixture (1) and mixture (2))
  • positive control amplification product mixture ( (A) amplification only
  • negative control amplification products amplification of mixture (3) only
  • the role for internal control is the detection of the second amplification product. That is, since the sequences obtained by the amplification reaction of the sample and the positive control and the mixture of the sample and the positive control are all the same, detection is performed using the same probe.
  • the detection result may be judged only when the negative control is negative, the positive control is positive, and the mixture of the sample and the positive control is positive. In other cases, there will be some error and a retest will be required.
  • Use a positive control probe DNA to detect a reliable mixture of sample and positive control amplification products amplification of mixture (1) and mixture (2). If the amplification is unsatisfactory and there is no problem with amplification of the mixture (2) alone, it is possible that the amplification is disturbed due to the sample.
  • a micropump is connected to the microreactor for genetic testing of the present invention via a pump connection part, and a certain amount of the sample accommodated in the sample accommodating part and a certain amount of the positive control accommodated in the positive control accommodating part, respectively.
  • Liquid is sent to the flow path and divided into two parts by the liquid feed dividing means, and a predetermined amount of the amplification reagent contained in the reagent container is sent to the flow path, and divided into four parts by the liquid feed dividing means.
  • Each reagent in the flow channel (0 mixed with one of the two divided specimens to produce a mixed liquid (1)
  • Amplification reaction was performed on the mixture (1) to (4) in the amplification section, and the amplification products were This is a method of detecting by the detector.
  • the amplification product of the sample (amplification of the mixture (1) only), the mixture of the sample and the positive control amplification product (amplification of the mixture (2)), the amplification product of the positive control (mixture (3)) Amplification) and negative control amplification products (amplification of the mixture (4) only) can be detected.
  • the role for internal control is played by the detection of the second amplification product.
  • the force that requires four-part fluid technology and three-liquid simultaneous mixing technology is not technically easy.
  • the mixing of the reagent and the reagent and the mixing of the specimen and the reagent may be performed at a desired ratio in a single mixing unit, or may be performed by dividing either force or both into a plurality.
  • a merging portion may be provided and mixed so that the desired mixing ratio is finally obtained.
  • a micropump 11 for feeding a predetermined amount of the contents of the sample storage unit 20, the reagent storage unit 18 and the control storage unit is provided separately from the microreactor.
  • the micropump 11 is connected to the upstream side of the reagent storage unit 18 and supplies the driving liquid to the reagent storage unit side by the micropump 11 to push the reagent and the like into the flow path and send the liquid.
  • the micropump unit is incorporated in the main body of the apparatus separate from the microreactor, and the microreactor is connected to the microreactor from the pump connection portion 12 by attaching the microreactor to the main body of the microreactor (see FIG. Four).
  • a piezo pump is used as a micro pump! That is, the first flow path in which the flow path resistance changes according to the differential pressure, A second flow path whose rate of change in flow path resistance with respect to a change in differential pressure is smaller than that of the first flow path; a pressure chamber connected to the first flow path and the second flow path;
  • the reagents and the sample are divided into two or more and sent to the respective analysis channels.
  • the liquid feed dividing means is provided for that purpose. As shown in FIG. 4, the liquid feed dividing means includes a branched fine channel, a liquid feed control unit 13 and a backflow prevention unit (check valve 16).
  • the liquid feeding control unit 13 blocks the passage of the liquid until the liquid feeding pressure in the forward direction (usually the direction in which the liquid is pushed out by the pump, that is, the downstream direction) reaches a predetermined pressure, Allow fluid to pass by applying hydraulic pressure.
  • the liquid feeding control unit 13 is composed of a portion with a narrowed channel diameter, thereby restricting the liquid that has reached the throttle channel (fine channel) 51 from one end side from passing to the other end side.
  • the specific flow channel mode is a trickle having a cross-sectional area smaller than the cross-sectional area of these adjacent flow channels formed between these flow channels so as to connect the flow channels adjacent to both sides in series. This is realized by using a road.
  • the throttle channel 51 is formed to have a length and width of about 30 m ⁇ 30 m with respect to a channel of 150 m ⁇ 150 m connected in series on both sides.
  • the backflow prevention unit for preventing the backflow of the liquid in the flow path is a check valve 16 (see FIGS. 4 and 9) in which the valve body closes the flow path opening due to the backflow pressure, or the valve body is deformed. An active valve force that presses the valve body to the flow path opening by means to close the opening.
  • a check valve used in the flow path of the gene testing microreactor of the present invention a microsphere is used as a valve body, and an opening formed in the substrate is opened and closed by the movement of the microsphere, thereby allowing liquid to pass therethrough. And a check valve that shuts off is preferred.
  • a check valve of a type in which the opening is opened and closed by moving up and down the upper side of the opening by a flexible substrate force hydraulic pressure stacked on the substrate and extending at the end of the opening. Also good.
  • the micropump In the fine flow path of the microreactor for genetic testing of the present invention, the micropump, the liquid feed control unit 13 that can control the passage of the liquid by the pump pressure, and the backflow prevention that prevents the backflow of the liquid in the flow path.
  • the division (check valve) 16 controls the division of each liquid in the branched flow path and delivers a fixed amount of liquid. Reagents and specimens are divided at an appropriate ratio by the action of the powerful liquid dividing means and the micropump 11.
  • FIG. 7 shows a system in which a nucleic acid amplification reagent is mixed, divided into equal parts, and allowed to flow downstream.
  • Reagents such as a pyotin-modified chimera primer that specifically hybridizes to the gene to be detected, a DNA polymerase having strand displacement activity, and an endonuclease are housed in the reagent housings 18a, 18b, and 18c.
  • a piezo pump 11, which is a micropump built in the main body of the apparatus separate from the microreactor, is connected to the upstream side of the storage unit by a pump connection unit 12, and is passed from each reagent storage unit to the downstream flow path 15 a. The reagent is fed by the pump.
  • the flow path 15a, the flow path to the next process branched from the flow path 15a, and the liquid feeding control units 13a and 13b constitute a merging portion of the flow path, and the reagent fed from each reagent storage unit Cut off the tip of the mixed solution, and after the mixing state is stabilized, divide the reagent mixed solution into three equal parts and send it to the next step.
  • Each reagent storage unit contains more than three times the amount of reagent that flows downstream after division, and a predetermined amount of reagent mixture is sent to the three branched channels 15b, 15c, and 15d. .
  • a check valve is provided at an appropriate position in the flow path between the reagent storage unit, the nucleic acid amplification unit, and the detection unit. In addition to the above, it is preferable to provide a check valve at an appropriate position for preventing contamination as well as cross contamination as described above.
  • the reagent is quantitatively fed as follows.
  • the reagent solution 60 is first introduced into the reagent-filling flow path 15A at a solution feeding pressure (a pressure lower than a preset pressure) at which the reagent solution 60 does not pass from the check valve 16 side to the hydrophobic valve 13a first.
  • a solution feeding pressure a pressure lower than a preset pressure
  • the micropump 11 applies the branch flow path 15B to the reagent filling flow path 15A.
  • the reagent liquid 60 filled in the reagent filling flow path 15A is pushed out from the liquid feeding control unit 15A first, and thereby the reagent liquid 60 is quantitatively fed. . It should be noted that by providing a large-volume storage section 7 in the reagent filling channel 15A, the quantitative variation is reduced. This quantitative feeding mechanism is also used for quantitative mixing of reagents and quantitative feeding of specimens.
  • the specimen container 20 into which the specimen or DNA extracted from the specimen is injected has the following configuration (see Fig. 2).
  • the sample storage unit 20 communicates with the sample injection unit to temporarily store a sample (containing nucleic acid) and supply the sample to the mixing unit.
  • the sample injected into the sample storage unit 20 is connected to the micropump 11 (not shown) via the pump connection unit 12, and is fed to the mixing unit immediately downstream of the amplification unit by these actions.
  • sample injection portion is made of an elastic material such as a rubber-like material in order to prevent external leakage, infection and contamination, and to ensure sealing. It is desirable that the stopper is formed or covered with a resin or reinforcing film such as polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the sample to be measured in the present invention is not particularly limited to a biological sample itself! However, for example, most of biological samples such as whole blood, plasma, serum, buffy coat, urine, feces, saliva, sputum, etc. Most samples fall under this category. In the case of genetic testing, it remains as a nucleic acid that serves as a template for amplification reactions. Genes, DNA or RNA can be analyzed. The specimen may also have been prepared or isolated from sample forces that may contain such nucleic acids. Therefore, in addition to the above samples, cell cultures; nucleic acid-containing samples such as viruses, bacteria, molds, yeasts, plants and animals; samples that may contain or contain microorganisms, and other nucleic acids. Therefore, any sample that has the possibility of being covered is considered.
  • the microreactor for genetic testing of the present invention requires a very small amount of specimen as compared with the case of manual work performed using a conventional apparatus. For example, a blood sample of about 2 to 3 L is simply injected into a chip with a length and width of several centimeters. For example, in the case of a gene, the DNA is 0.001 to 100 ng.
  • the form of the amplification part in which the nucleic acid amplification reaction is performed is not particularly limited, and various forms and modes are conceivable.
  • the reaction part of the nucleic acid amplification part is basically desirably a wide liquid reservoir-like flow path, but may be a fine flow path sufficiently long for the reaction.
  • a nucleic acid non-adsorbing bead is further held inside the flow channel of the amplification section, and when the nucleic acid is amplified, the bead is moved inside the flow channel to increase the amplification efficiency.
  • the nucleic acid amplification method is not limited.
  • the DNA amplification technique can use the PCR amplification method which is widely used in various fields.
  • Various conditions for implementing the amplification technique have been studied in detail, and are described in various documents including improvements.
  • PCR amplification a force that requires temperature control to be raised or lowered between three temperatures has already been proposed by the present inventors, which enables temperature control suitable for a microchip (Japanese Patent Application Laid-Open No. 2004-4). —See publication 108285).
  • This device system is used as a microarray for genetic testing according to the present invention. What is necessary is just to apply to the amplification channel of an actor. As a result, the heat cycle can be switched at high speed, and the micro flow path is a micro reaction cell with a small heat capacity, so that nucleic acid amplification can be performed in a much shorter time than the conventional method that is performed manually.
  • the ICAN (Isothermal chimera primer initiated nucleic acid amplification) method which was recently developed as an improvement of PCR, has the feature that nucleic acid amplification can be performed in a short time under any constant temperature at 50 to 65 ° C. (See Japanese Patent No. 3433929). Therefore, the I CAN (registered trademark) method is a suitable amplification technique because simple temperature control is sufficient in the microreactor for genetic testing of the present invention.
  • the nucleic acid amplification reaction may be another PCR modification method, and the microreactor for genetic testing of the present invention is flexible enough to cope with any change in the design of the flow path.
  • the microreactor for genetic testing of the present invention is flexible enough to cope with any change in the design of the flow path.
  • a detection unit for detecting the amplified nucleic acid is provided in the flow path downstream of the nucleic acid amplification unit.
  • Piotin-affinity protein avidin, streptavidin
  • the probe labeled with piotin or the amplified nucleic acid is trapped by this detection unit.
  • a method for detecting the separated amplified nucleic acid is not particularly limited, but as a preferred embodiment, it is basically carried out in the following steps. That is, using the microreactor for genetic testing of the present invention, (1) DNA as a specimen, DNA extracted from specimen force, or cDNA synthesized from specimen or RNA extracted from specimen force by reverse transcription reaction, and 5 ′ position The primer modified with biotin is fed from these storage parts to the downstream fine channel.
  • Amplifying the nucleic acid in the flow path in the nucleic acid amplification section mixing the amplification reaction solution containing the amplified nucleic acid and the denaturing solution in the fine flow path, denaturing the amplified DNA into a single strand, amplification
  • the processed solution obtained by denaturing the resulting DNA into a single strand is sent to the detection section in the microchannel adsorbed with the protein that has affinity for piotins, and the amplified nucleic acid is passed through the step of trapping the amplified gene.
  • a probe DNA whose end is fluorescently labeled with FITC fluorescein isothiocyanate is allowed to flow through the detection section in the microchannel where the trap is trapped, and this is hybridized to the immobilized gene.
  • FITC fluorescently labeled with fluorescein isothiocyanate
  • a colloidal gold solution whose surface is modified with an anti-FITC antibody that specifically binds to FITC is allowed to flow into the microchannel, and the gold colloid is adsorbed to the FITC-modified probe hybridized to DNA.
  • streptavidin When streptavidin is immobilized in a microchannel formed on a polystyrene substrate, it is not necessary to perform a special chemical treatment. It is only necessary to apply the piotino-affinity protein on the fine channel downstream of the amplification reaction part and to adsorb the piotin-affinity protein on the channel.
  • a probe DNA for genetic testing fluorescently labeled oligonucleotides are preferably used.
  • the DNA base sequence a sequence that is complementary to a part of the gene base sequence to be detected is selected. By appropriately selecting the base sequence of the probe DNA, it is possible to detect with high sensitivity without being affected by the coexisting DNA and background by specifically binding to the target gene.
  • FITC anti-FITC antibodies for example, gold colloid anti-FITC anti-mouse IgG are preferable because they are available.
  • a preferred embodiment of the microreactor for genetic testing of the present invention is as follows:
  • a reagent storage section for storing reagents used in nucleic acid amplification reaction, probe binding reaction, detection reaction, etc .
  • a positive control accommodating part for accommodating a positive control
  • a probe container that houses a probe for example, a probe that hybridizes to a gene to be detected amplified by a nucleic acid amplification reaction
  • a detection part in the downstream flow path and
  • a pump connection portion that can be connected to each accommodating portion and a separate micropump for feeding the liquid in the flow path;
  • a micropump is connected to the chip via a pump connection part, and a predetermined amount of the amplification reagent used for the nucleic acid amplification reaction stored in the reagent storage part is sent to the flow path, and divided into three by the liquid supply dividing means. The divided reagents are then added to the merging section immediately before the nucleic acid amplification section in the flow path.
  • the mixed solution (1) and the mixed solution (2) are further divided into two by the liquid feeding and dividing means, and then
  • a waste liquid storage part that is in communication with the specimen pretreatment part and the detection part through a through hole, is a hollow chamber provided at the bottom of the microreactor, and is a sealed waste liquid reservoir that contains waste liquids and the like resulting from the measurement of the specimen. It is comprised so that it may have.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

It is intended to provide a microreactor for gene test and a gene test system which enable highly reliable and highly sensitive analysis. Namely, a gene test system comprising chip components for individual specimens, each carrying a reagent and a liquid-feeding element, and controlling and detection components which are separately provided as the main body of the apparatus. These microreactor chips, by which a positive control, a negative control and specimens are simultaneously analyzed in the course of nucleic acid amplification, have a channel structure free from internal control. Since the internal control is omitted from the channel structure of the microreactor as described above, simplified channels and elements can be provided. Furthermore, the accuracy and reliability of the data can be examined thereby, which ensures the acquisition of accurate analytical data.

Description

明 細 書  Specification
遺伝子検査方法、遺伝子検査用マイクロリアクタ、および遺伝子検査シス テム  Genetic testing method, genetic testing microreactor, and genetic testing system
技術分野  Technical field
[0001] 本発明は、遺伝子検査方法、遺伝子検査用マイクロリアクタ、および遺伝子検査シ ステムに関するものである。  The present invention relates to a genetic testing method, a genetic testing microreactor, and a genetic testing system.
背景技術  Background art
[0002] 近年、マイクロマシン技術および超微細加工技術を駆使することにより、従来の試 料調製、化学分析、化学合成などを行うための装置、手段 (例えばポンプ、バルブ、 流路、センサーなど)を微細化して 1チップ上に集積ィ匕したシステムが開発されている 。これは、 一 TAS (Micro total Analysis System)、バイオリアクタ、ラブ 'オン'チ ップ (Lab-on-chips)、バイオチップとも呼ばれ、医療検査'診断分野、環境測定分野 、農産製造分野でその応用が期待されている。煩雑な工程、熟練した手技、機器類 の操作が必要とされる場合には、自動化、高速化および簡便化されたミクロ化分析シ ステムは、コスト、必要試料量、所要時間のみならず、時間および場所を選ばない分 析を可能とする。  [0002] In recent years, by making full use of micromachine technology and ultrafine processing technology, devices and means (for example, pumps, valves, flow paths, sensors, etc.) for performing conventional sample preparation, chemical analysis, chemical synthesis, etc. have been developed. A system that has been miniaturized and integrated on a single chip has been developed. This is also called TAS (Micro total Analysis System), bioreactor, lab 'on-chips', biochip, and is used in medical examination' diagnostic field, environmental measurement field, agricultural production field. Its application is expected. When complex processes, skilled procedures, and instrumentation are required, automated, accelerated and simplified microanalysis systems are not only cost, required sample volume, and time, but also time Analysis is possible anywhere.
[0003] 臨床検査を始めとする各種検査を行う現場では、場所を選ばず迅速に結果を出す これらの分析用チップにおける測定においても、その定量性、解析の精度などが重 要視される。分析チップではそのサイズ、形態の点力 厳しい制約があるため、シン プルな構成で、高い信頼性の送液システムを確立することが課題となる。そのため精 度が高ぐ信頼性に優れるマイクロ流体制御素子が求められている。これに好適なマ イク口ポンプシステムを本発明者らはすでに提案して ヽる(特許文献 1および 2)。  [0003] In the field where various tests such as clinical tests are performed, results are obtained quickly regardless of the location. Even in the measurement using these analysis chips, the quantitativeness, accuracy of analysis, etc. are important. Since the analysis chip has severe restrictions on its size and shape, establishing a highly reliable liquid delivery system with a simple configuration is an issue. Therefore, there is a need for a microfluidic control element that has high accuracy and excellent reliability. The present inventors have already proposed a microphone pump system suitable for this (Patent Documents 1 and 2).
[0004] 簡便かつ迅速な検査手段を提供するマイクロリアクタには、実際問題として解決す べき具体的な問題、要望が提起され、その解決が望まれている。例えばチップ上で 検査などを行うために、試料の量を極少とし、必要な試薬量も少なくて済む分析の微 量ィ匕を図ることは、マイクロリアクタに求められる最大課題である。ところが試料によつ ては、検出対象である遺伝子または核酸の濃度が極めて希薄であることがある。チッ プに導入できる検体量も限られていることから、そうした検体量では濃縮しない限り測 定できる範囲内に入らない。遺伝子、核酸の検出では、 PCR (polymerase chain re action)法による増幅反応を利用することが有利である。その場合、コンタミネーシヨン 、複製の誤りや非特異的な増幅、反応阻害による増幅不調などの障害、陥穽を回避 するためにコントロールを並行して分析するのが通例である。そのための流路構成を 持つマイクロリアクタを本発明者らは既に提案している (特許文献 3)。分析の正確を 期するためのコントロールもチップ上で実施するとなると、複雑な流路と流体制御素 子の構成と配置、流体の混合および分割が必要となり、様々な技術的困難を伴うこと が多い。 [0004] Specific problems and demands that should be solved as actual problems have been raised for microreactors that provide simple and rapid inspection means, and their solutions are desired. For example, in order to perform an inspection on a chip, it is the greatest challenge required for a microreactor to minimize the amount of sample and reduce the amount of reagent required. However, depending on the sample, the concentration of the gene or nucleic acid to be detected may be very dilute. Chi Since the amount of sample that can be introduced into the cell is limited, such sample amount will not fall within the measurable range unless it is concentrated. For detection of genes and nucleic acids, it is advantageous to use an amplification reaction by PCR (polymerase chain reaction). In that case, it is customary to analyze the controls in parallel to avoid contamination, failure of replication, nonspecific amplification, failure such as amplification failure due to reaction inhibition, and pitfalls. The present inventors have already proposed a microreactor having a channel configuration for that purpose (Patent Document 3). When control for accurate analysis is performed on the chip, complicated flow paths and fluid control elements must be configured and arranged, and fluids must be mixed and divided, which often involves various technical difficulties. .
特許文献 1:特開 2001-322099号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-322099
特許文献 2:特開 2004-108285号公報  Patent Document 2: JP 2004-108285 A
特許文献 3:特願 2004-138959号  Patent Document 3: Japanese Patent Application No. 2004-138959
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記の実状に鑑みてなされた本発明は、核酸増幅に際し、コントロールとしてポジ ティブコントロールおよびネガティブコントロールの分析を検体の分析と同時に並行し て行なうが、インターナルコントロールを省略することを可能とする遺伝子検査用マイ クロリアクタ、遺伝子検査用マイクロリアクタを用いる遺伝子検査方法、および、遺伝 子検査用マイクロリアクタを含む遺伝子検査システムについて提案する。 [0005] In the present invention made in view of the above situation, positive control and negative control analysis are performed in parallel with the analysis of a sample at the time of nucleic acid amplification, but the internal control can be omitted. We propose a genetic testing microreactor, a genetic testing method using a genetic testing microreactor, and a genetic testing system including a genetic testing microreactor.
課題を解決するための手段  Means for solving the problem
[0006] 本発明の遺伝子検査方法は、 [0006] The genetic testing method of the present invention comprises:
一つのチップ内に、少なくとも  At least in one chip
検体もしくは検体から抽出した DNAが注入される検体収容部と、  A sample container into which a sample or DNA extracted from the sample is injected;
核酸増幅反応に用いる試薬が収容される試薬収容部と、  A reagent container for storing a reagent used in the nucleic acid amplification reaction;
ポジティブコントロールが収容されるポジティブコントロール収容部と、  A positive control accommodating part for accommodating a positive control;
ネガティブコントロールが収容されるネガティブコントロール収容部と、  A negative control accommodating portion for accommodating a negative control;
核酸増幅反応を行う増幅部と、  An amplification section for performing a nucleic acid amplification reaction;
その下流側流路にある検出部と これらの各収容部に連通する流路と、 A detection part in the downstream flow path and A flow path communicating with each of these accommodating portions,
が設けられた遺伝子検査用マイクロリアクタを用いる遺伝子検査方法であって、 前記試薬収容部に収容された試薬の一定量を流路に送液し、次いで 3分割し、分 割された試薬を、それぞれ流路内で A gene testing method using a genetic testing microreactor provided with a constant amount of a reagent contained in the reagent containing part is fed to a flow path, and then divided into three parts, and the divided reagents are respectively separated. In the flow path
(0 検体収容部から送られた検体と混合して、生成させた混合液 (1)、  (0 Mixed liquid (1) generated by mixing with the sample sent from the sample container,
(ii) ポジティブコントロール収容部力 送られたポジティブコントロールと混合して、生 成させた混合液 (2)、および  (ii) Force of positive control housing Mixture formed by mixing with sent positive control (2), and
(iii) ネガティブコントロール収容部力 送られたネガティブコントロールと混合して、 生成させた混合液 (3)  (iii) Negative control storage capacity Mixture produced by mixing with the sent negative control (3)
を得て、さらに混合液 (1)および混合液 (2)をそれぞれ 2分割し、次いで Then, the mixture (1) and the mixture (2) were further divided into two parts,
混合液 (1)のみ、混合液 (1)と混合液 (2)の混合物、混合液 (2)のみ、混合液 (3)のみの 各流体を増幅部でそれぞれ増幅反応をさせて、増幅産物を各々の検出部で検出す ることを特徴としている。 Amplification reaction is performed on the fluid mixture (1) only, the mixture of the mixture (1) and the mixture (2), each fluid of the mixture (2) only, and only the mixture (3) in the amplification section. Is detected by each detector.
また、本発明の遺伝子検査方法は、前記遺伝子検査方法において、  Moreover, the genetic testing method of the present invention is the genetic testing method described above,
さらに核酸増幅反応により増幅された検出対象の遺伝子にハイブリダィズさせるプロ ーブが収容されるプローブ収容部力 流路に連通して配設されており、 Furthermore, the probe accommodating portion is arranged in communication with the flow path for accommodating the probe to be hybridized with the gene to be detected amplified by the nucleic acid amplification reaction,
前記増幅部で生成した増幅産物をそのプローブ収容部に収容されたプローブと流 路内で混合してプローブと結合またはハイブリダィズさせ、この反応生成物に基づ ヽ て対象遺伝子の検出を行い、  The amplification product generated in the amplification part is mixed with the probe accommodated in the probe accommodating part in the flow path to bind or hybridize with the probe, and the target gene is detected based on the reaction product,
ポジティブコントロールおよびネガティブコントロールについても同様に、それらの増 幅産物を、プローブ収容部に収容されたプローブと流路内で結合またはハイブリダィ ズさせ、その反応生成物に基 、て検出を行うように構成されて 、ることを特徴とする。 本発明の遺伝子検査用マイクロリアクタは、 Similarly, the positive control and the negative control are configured such that their amplification products are combined or hybridized in the flow path with the probe accommodated in the probe accommodating portion, and detection is performed based on the reaction product. It is characterized by that. The microreactor for genetic testing of the present invention is
一つのチップ内に、少なくとも  At least in one chip
検体もしくは検体から抽出した DNAが注入される検体収容部と、 A sample container into which a sample or DNA extracted from the sample is injected;
核酸増幅反応に用いる試薬が収容される試薬収容部と、 A reagent container for storing a reagent used in the nucleic acid amplification reaction;
ポジティブコントロールが収容されるポジティブコントロール収容部と、 A positive control accommodating part for accommodating a positive control;
ネガティブコントロールが収容されるネガティブコントロール収容部と、 核酸増幅反応を行う増幅部と、 A negative control accommodating portion for accommodating a negative control; An amplification section for performing a nucleic acid amplification reaction;
その下流側流路にある検出部と A detection part in the downstream flow path and
これらの各収容部に連通する流路と、 A flow path communicating with each of these accommodating portions,
が設けられている遺伝子検査用マイクロリアクタであって、 A microreactor for genetic testing provided with
流路に送液される前記試薬収容部に収容される試薬の一定量を第 1試薬、第 2試 薬及び第 3試薬の 3つに 3分割する第 1送液分割手段と、  A first liquid dividing means for dividing a predetermined amount of the reagent accommodated in the reagent accommodating portion fed into the flow path into three parts, a first reagent, a second reagent and a third reagent;
(0 前記第 1送液分割手段で分割された前記第 1試薬と前記検体収容部から送られ る検体とが混合されて、混合液 (1)を生成する混合液(1)生成部と、  (0) A mixed liquid (1) generating unit that generates a mixed liquid (1) by mixing the first reagent divided by the first liquid dividing unit and the sample sent from the sample storage unit;
GO 前記第 1送液分割手段で分割された前記第 2試薬と前記ポジティブコントロール 収容部から送られるポジティブコントロールとが混合されて、混合液 (2)を生成する混 合液 (2)生成部と、 GO A mixed liquid (2) generating unit that mixes the second reagent divided by the first liquid feeding dividing unit and the positive control sent from the positive control storage unit to generate a mixed liquid (2); ,
(iii) 前記第 1送液分割手段で分割された前記第 3試薬と前記ネガティブコントロール 収容部から送られるネガティブコントロールとが混合されて、混合液 (3)を生成する混 合液 (3)生成部と、を備え、  (iii) Mixed liquid (3) generated by mixing the third reagent divided by the first liquid dividing means and the negative control sent from the negative control storage unit to produce a mixed liquid (3) And comprising
さらに、前記混合液(1)生成部で生成される混合液 (1)を 2分割する第 2送液分割手 段と、前記混合液 (2)生成部で生成される混合液 (2)を 2分割する第 3送液分割手段 と、を備え、 Further, the liquid mixture (1) generated in the generating section is divided into two liquid feeding and dividing means (1), and the liquid mixture (2) generated in the generating section (2) is mixed. A third liquid feeding and dividing means for dividing into two,
前記増幅部は、前記混合液(1)のみを増幅反応させる増幅部と、前記混合液 (1)と前 記混合液 (2)の混合物を増幅反応させる増幅部と、前記混合液 (2)のみを増幅反応 させる増幅部と、前記混合液(3)のみを増幅反応させる増幅部との 4つから構成され 前記検出部は、前記混合液(1)のみを増幅反応させる増幅部で増幅反応されて得ら れる増幅産物を検出する検出部と、前記混合液 (1)と前記混合液 (2)の混合物を増幅 反応させる増幅部で増幅反応されて得られる増幅産物を検出する検出部と、前記混 合液 (2)のみを増幅反応させる増幅部で増幅反応されて得られる増幅産物を検出す る検出部と、前記混合液 (3)のみを増幅反応させる増幅部で増幅反応されて得られ る増幅産物を検出する検出部との 4つ力も構成されていることを特徴とする。 The amplification unit includes an amplification unit that amplifies only the mixture (1), an amplification unit that amplifies the mixture of the mixture (1) and the mixture (2), and the mixture (2). The amplifying unit that amplifies only the mixed solution (3) and the amplifying unit that amplifies only the mixed solution (1) are amplified. A detection unit for detecting the amplification product obtained, and a detection unit for detecting the amplification product obtained by the amplification reaction in the amplification unit that amplifies the mixture of the mixture (1) and the mixture (2). An amplification reaction is carried out in a detection section for detecting an amplification product obtained by amplification reaction in an amplification section that amplifies only the mixture (2), and an amplification section in which amplification reaction is performed only in the mixture (3). It is also characterized by four forces with the detection unit that detects the resulting amplification product.
また、本発明の遺伝子検査用マイクロリアクタは、前記遺伝子検査用マイクロリアク タにおいて、 The gene testing microreactor of the present invention is the gene testing microreactor. In
さらに、前記各々の検出部に連通して配設され、前記増幅産物にハイブリダィズさ せるプローブを収容するプローブ収容部を有し、  And a probe storage unit that is disposed in communication with each of the detection units and stores a probe that is hybridized to the amplification product.
各々の前記検出部では、前記増幅産物と前記プローブ収容部から送出されるプロ一 ブとが結合またはハイブリダィズされた反応生成物が検出されることを特徴とする。  Each of the detection units detects a reaction product in which the amplification product and a probe delivered from the probe storage unit are combined or hybridized.
[0009] さらに、本発明の遺伝子検査用マイクロリアクタは、前記遺伝子検査用マイクロリア クタにおいて、  [0009] Further, the gene testing microreactor of the present invention is the gene testing microreactor,
前記第 1、第 2及び第 3の送液分割手段は、  The first, second and third liquid feeding and dividing means are:
分岐した微細流路と、  Branched microchannels,
予め設定された圧より低い圧では液体の通過を遮断し、予め設定された圧以上の圧 では 液体の通過を許容する送液制御部と、  A liquid feed control unit that blocks passage of liquid at a pressure lower than a preset pressure, and allows passage of liquid at a pressure higher than a preset pressure;
流路内の液体の逆流を防止する逆流防止部と、  A backflow prevention unit for preventing backflow of liquid in the flow path;
から構成され、  Consisting of
分岐した流路内における液体の送液およびその送液量を制御することを特徴とする  It is characterized by controlling the liquid feeding and the amount of liquid feeding in the branched flow path
[0010] 本発明の遺伝子検査システムは、 [0010] The genetic test system of the present invention comprises:
核酸の検出を光学的に行う検出装置とともにマイクロポンプおよび温度の制御装置 が一体化された装置本体と、この装置本体に装着可能な前記の遺伝子検査用マイク 口リアクタとからなり、装置本体に該マイクロリアクタを装着することにより核酸の測定を 行うことを特徴とする。  A device main body in which a micropump and a temperature control device are integrated together with a detection device that optically detects nucleic acid, and the above-described genetic testing microphone reactor that can be attached to the device main body. Nucleic acid measurement is performed by attaching a microreactor.
[0011] また、本発明の遺伝子検査システムは、前記遺伝子検査システムにおいて、  [0011] Further, the genetic test system of the present invention, in the genetic test system,
前記マイクロポンプは、  The micropump is
流路抵抗が差圧に応じて変化する第一流路と、  A first channel in which the channel resistance changes according to the differential pressure;
差圧の変化に対する流路抵抗の変化の割合が該第一流路よりも小さい第二流路と、 該第一流路および該第二流路に接続された加圧室と、  A second flow path whose rate of change in flow path resistance with respect to a change in differential pressure is smaller than that of the first flow path; a pressure chamber connected to the first flow path and the second flow path;
該加圧室の内部の圧力を変化させるためのァクチユエータと  An actuator for changing the pressure inside the pressurizing chamber;
を備えたことを特徴とする。  It is provided with.
発明の効果 [0012] 本発明の遺伝子検査システムは、試薬類'送液系用のエレメントを搭載した、検体 ごとのマイクロリアクタなるチップ'コンポーネント、装置本体である制御'検出コンポ一 ネントとを別個にするシステム構成である。よって微量分析、増幅反応に対し、誤まつ た増幅または不充分な増幅、クロス'コンタミネーシヨン、キャリーオーバ一'コンタミネ ーシヨンの問題が回避される。 The invention's effect [0012] The genetic test system of the present invention has a system configuration in which reagents' chips that are microreactors for each specimen, each equipped with an element for a liquid delivery system ', and a control' detection component that is a device main body are separated. It is. Therefore, the problems of false or insufficient amplification, cross-contamination and carry-over contamination for microanalysis and amplification reactions are avoided.
[0013] 本発明の遺伝子検査用マイクロリアクタは、反応阻害、コンタミネーシヨン、ノ ッタグ ラウンドの上昇などによる影響を排除するために、ポジティブコントロールおよびネガ ティブコントロールも同時に分析できる流路構成を有する。したがってその結果の精 度、信頼性を常に検証できる方式であるために、最終的に数値データの形で得られ る分析結果についての正確さを確保できる。したがって、このような遺伝子検査用マ イク口リアクタを用いる遺伝子検査方法についても、上記と同様に、最終的に数値デ ータの形で得られる分析結果についての正確さを確保できる。  [0013] The microreactor for gene testing of the present invention has a flow channel configuration that can simultaneously analyze positive control and negative control in order to eliminate the influence of reaction inhibition, contamination, and increase in nottag round. Therefore, since the accuracy and reliability of the results can always be verified, the accuracy of the analysis results finally obtained in the form of numerical data can be ensured. Therefore, the accuracy of the analysis result finally obtained in the form of numerical data can be secured in the same manner as described above for the genetic testing method using such a genetic testing mic reactor.
[0014] インターナルコントロールを省略できる流路構成を採用するために、簡略された流 路構成とエレメントの配設が可能となって 、る。 図面の簡単な説明 [0014] In order to employ a flow path configuration that can omit internal control, a simplified flow path configuration and arrangement of elements are possible. Brief Description of Drawings
[0015] [図 1]図 1は、マイクロリアクタと装置本体とからなる遺伝子検査システムの概要図であ る。  [0015] FIG. 1 is a schematic diagram of a genetic test system comprising a microreactor and an apparatus main body.
[図 2]図 2は、遺伝子検査用マイクロリアクタ(チップ)の概略図である。なお、マイクロ ポンプは、本マイクロリアクタとは別途の装置に属する。  FIG. 2 is a schematic view of a microreactor (chip) for genetic testing. Note that the micropump belongs to a separate device from the microreactor.
[図 3]図 3は、検体およびコントロールの流路構成例について、概念図を示す。  [FIG. 3] FIG. 3 shows a conceptual diagram of a sample configuration of a sample and a control.
[図 4]図 4は、本発明の遺伝子検査用マイクロリアクタの一実施形態であり、図 3 (c)に 対応した態様を示す。  [FIG. 4] FIG. 4 shows an embodiment of the microreactor for gene testing of the present invention, and shows an embodiment corresponding to FIG. 3 (c).
[図 5]図 5は、マイクロポンプ 11をマイクロリアクタとは別体とした場合におけるマイクロ リアクタのポンプ接続部周辺の構成を示す。 (a)は、駆動液を送液するポンプ部の構 成を示した図であり、 (b)は試薬を送液するポンプ部の構成を示した図である。  [FIG. 5] FIG. 5 shows a configuration around the pump connection portion of the microreactor when the micropump 11 is separated from the microreactor. (a) is a diagram showing a configuration of a pump unit for feeding a driving liquid, and (b) is a diagram showing a configuration of a pump unit for feeding a reagent.
[図 6]図 6は、ピエゾポンプを示し、(a)は、このポンプの一例を示した断面図、(b)は 、その上面図である。(c)は、ピエゾポンプの他の例を示した断面図である。  FIG. 6 shows a piezo pump, (a) is a sectional view showing an example of the pump, and (b) is a top view thereof. (C) is a sectional view showing another example of a piezo pump.
[図 7]図 7は、流路上での流体 3分割のための流路構成の一例を示す。 [図 8]図 8 (a)、(b)は、送液制御部の流路軸方向に沿った断面図である。 FIG. 7 shows an example of a flow path configuration for dividing a fluid into three on the flow path. FIGS. 8 (a) and 8 (b) are cross-sectional views along the flow path axis direction of the liquid feeding control unit.
[図 9]図 9は、逆止弁を利用した定量送液機構を説明する図である。  [Fig. 9] Fig. 9 is a view for explaining a fixed-quantity liquid feeding mechanism using a check valve.
[図 10]図 10は、マイクロリアクタと装置本体とからなるマイクロ分析システムのシステム 概要図である。  FIG. 10 is a system schematic diagram of a micro analysis system including a microreactor and an apparatus main body.
符号の説明 Explanation of symbols
1 装置本体  1 Main unit
2 マイクロリアクタ (検査チップ)  2 Microreactor (inspection chip)
3 ペルチェ素子  3 Peltier element
4 ヒーター  4 Heater
5 ホトダイオード  5 photodiode
6 LED  6 LED
7 試薬貯留部  7 Reagent reservoir
11 マイクロポンプ(ピエゾポンプ)  11 Micro pump (piezo pump)
12 ポンプ接続部  12 Pump connection
13 送液制御部  13 Liquid feed controller
15 流路  15 flow path
15A 試薬充填流路  15A reagent filling channel
15B 分岐流路  15B branch flow path
16 逆止弁  16 Check valve
17 貯留部  17 Reservoir
18 試薬収容部  18 Reagent storage
19 検体  19 specimens
20 検体収容部  20 Sample storage
21a 停止液収容部  21a Stop liquid reservoir
21b 変性液収容部  21b Denaturing solution container
21c ハイブリダィゼーシヨンバッファー収容部  21c Hybridization buffer housing
21d 洗浄液収容部  21d Cleaning liquid container
21e 金コロイド収容部 If プローブ DNA収容部21e Gold colloid container If probe DNA compartment
1g ポジティブコントロール用プローブ DNA収容部1h ポジティブコントロール収容部1g Probe for positive control DNA housing 1h Positive control housing
11 ネガティブコントロール収容部11 Negative control housing
1j 希釈用緩衝液1j Dilution buffer
1k ポジティブコントロール用プローブ DNA収容部11 プローブ DNA収容部1k Positive control probe DNA compartment 11 Probe DNA compartment
2 検出部 (ストレプトアジビン吸着部)2 Detection unit (Streptazibine adsorption unit)
3 廃液貯留部 3 Waste liquid reservoir
駆動液収容部 Drive fluid storage
5 封止液収容部5 Sealing liquid container
6 空気抜き用流路6 Air vent flow path
7 液体7 liquid
1 試薬1 Reagent
1 上側基板1 Upper board
2 基板2 Board
3 振動板 3 Diaphragm
圧電素子 Piezoelectric element
5 加圧室5 Pressurization chamber
6 第 1流路6 First flow path
7 第 2流路7 Second channel
8 第 1液室8 1st chamber
9 第 2液室9 Second liquid chamber
1 絞り流路1 Restriction flow path
0 試薬液0 Reagent solution
0 駆動液0 Drive fluid
1 シリコン基板1 Silicon substrate
2 ポート 73 ポート 2 ports 73 ports
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の遺伝子検査用マイクロリアクタおよびこのマイクロリアクタとマイクロ ポンプ、各種制御装置、検出装置とからなる遺伝子検査システムについて説明する。 なお本明細書において、「検体」とは、測定対象の核酸を含有する流体である。「遺 伝子」とは、何らかの機能を発現する遺伝情報を担う DNAまたは RNAをいうが、単 に化学的実体である DNA、 RNAの形でいうこともある。これらとポリヌクレオチドを総 称して「核酸」という。「エレメント」とは、マイクロリアクタに設置される機能部品をいう。 「微細流路」は、本発明のマイクロリアクタに形成された流路のことであり、単に「流路」 ともいう。微細流路内を流れる流体は、通例液体である。  Hereinafter, a genetic testing microreactor according to the present invention and a genetic testing system including the microreactor, a micropump, various control devices, and a detection device will be described. In the present specification, the “specimen” is a fluid containing the nucleic acid to be measured. A “gene” refers to DNA or RNA that carries genetic information that expresses a certain function, but may also be referred to simply as DNA or RNA that is a chemical entity. These and the polynucleotide are collectively referred to as “nucleic acid”. “Element” refers to a functional component installed in the microreactor. The “fine channel” is a channel formed in the microreactor of the present invention, and is also simply referred to as “channel”. The fluid flowing in the fine channel is usually a liquid.
[0018] 遺伝子分析におけるコントロール  [0018] Control in gene analysis
PCR法および ICAN法を始めとする核酸増幅法は、検体中に存在する DNAが超 微量であっても、その数十万〜数百万倍以上にも増幅できることから広範に利用され ている。増幅倍率が極めて高いために、クロス'コンタミネーシヨン、キャリーオーバー 'コンタミネーシヨンといった汚染による影響は著しく深刻である。さらに、偽の増幅ま たは非特異的な増幅も珍しくないと言われている。このため、ポジティブコントロール 、インターナルコントロールを常に検体の分析と並行して同時に行うことは、特に PCR 法による遺伝子増幅では、 PCR反応が正しく起きて 、ることのチェックのために必須 である。例えば何らかの問題が生じた場合、それが設定条件、試薬類、操作、分析 系に由来するか、あるいは検体に由来するかの検証に有効である。マイクロリアクタを 用いる遺伝子検査においては、検体の処理、増幅および検出がほぼ自動的に実施 される。このため最終的な分析結果について、その精度、信頼性を常に確認できる 方式にすることは、極めて重要である。マイクロリアクタ上の増幅反応でも、偽陽性お よび偽陰性の判定に有用なこれらのコントロールの設定と検証は、従来の分析技術 の慣行に従う。  Nucleic acid amplification methods such as the PCR method and the ICAN method are widely used because even a very small amount of DNA can be amplified hundreds of thousands to several million times. Due to the extremely high amplification factor, the effects of contamination such as cross-contamination and carry-over contamination are extremely serious. Furthermore, it is said that false amplification or non-specific amplification is not uncommon. For this reason, always performing positive control and internal control simultaneously in parallel with sample analysis is essential for checking that PCR reactions are occurring correctly, especially in gene amplification by PCR. For example, if any problem arises, it is effective to verify whether it originates from the set conditions, reagents, operation, analysis system, or sample. In genetic testing using a microreactor, specimen processing, amplification, and detection are performed almost automatically. For this reason, it is extremely important to ensure that the accuracy and reliability of final analysis results can always be confirmed. The setting and validation of these controls, which are useful for determining false positives and false negatives in amplification reactions on microreactors, follow conventional analytical techniques.
[0019] インターナルコントロールは、標的核酸(DNA、 RNA)につ!/、て、増幅のモニタリン グ、あるいは定量の際の内部標準物質として使用される。特に定量分析には有用で ある。インターナルコントロールの配列は、検体とは異なる配列の両側に、検体用プラ イマ一と同じプライマーがハイブリダィズできる配列を有するために検体と同様に増 幅できるものである。インターナルコントロールに使用する核酸(DNA, RNA)は、公 知技術文献に記載されているものを使用すればよい。インターナルコントロールがう まく増幅できない場合には、検体由来の増幅反応の妨害因子が存在するといつた可 能性が考えられる。 [0019] The internal control is used as an internal standard for target nucleic acid (DNA, RNA), monitoring of amplification, or quantification. It is particularly useful for quantitative analysis. The internal control sequence is placed on both sides of the sequence different from the sample. Since the same primer as the ima has a sequence that can be hybridized, it can be amplified in the same manner as the sample. Nucleic acids (DNA, RNA) used for internal control may be those described in publicly known technical literature. If internal control cannot be successfully amplified, it may be possible that a sample-derived interfering factor was present.
[0020] ポジティブコントロールの配列は、検体を検出する特異的な配列で、プライマーが ハイブリダィズする部分とその間の配列が検体と同じものである。添加する試薬等に おける妨害因子の検出、設定した条件の適切性、非特異的な相互作用などの検証 に有用である。ポジティブコントロールの増幅が不調である場合には、試薬類の欠陥 、試薬の送液、混合の不良などの操作トラブルが考えられる。  [0020] The sequence of the positive control is a specific sequence for detecting the sample, and the portion where the primer hybridizes and the sequence between them are the same as the sample. This is useful for detecting interfering factors in added reagents, verifying the appropriateness of set conditions, and nonspecific interactions. If amplification of the positive control is unsatisfactory, there may be operational problems such as reagent defects, reagent delivery, and mixing failure.
[0021] ネガティブコントロールは、核酸(DNA、 RNA)の代わりに超純水としてもよぐコン タミネーシヨンの有無のチヱック、蛍光などの補正、試薬等に混在する物質の発色と いったバックグラウンド補正用に用いる。ネガティブコントロールで、増幅された遺伝 子が検出された場合には、検体以外からの遺伝子の混入が考えられる。  [0021] Negative control is used for background correction, such as checking for the presence or absence of contamination that can be used as ultrapure water instead of nucleic acid (DNA, RNA), correction of fluorescence, and color development of substances mixed in reagents, etc. Used for. If an amplified gene is detected in the negative control, it is possible that a gene other than the sample is mixed.
[0022] 検体とは別個の分析流路において、同一試薬、同一条件のもとで、同時進行で行 うポジティブコントロール、ネガティブコントロールおよびインターナルコントロールを すべて実施するとなると、 03 (a)に示すように、 6個の検出部を設置する必要が生じ る。  [0022] When all positive control, negative control, and internal control are performed in the same flow path under the same reagent and the same conditions in a separate analysis channel from the sample, it is shown in 03 (a). In addition, it is necessary to install six detectors.
上記のように、インターナルコントロールは増幅試薬中に含められて、検体、ポジティ ブコントロール、ネガティブコントロールの 3分析のそれぞれにおいて、一緒に増幅反 応され、検出は、別個の検出部において行われる。しかしながら、インターナルコント ロールの分析の意義からはポジティブコントロールにインターナルコントロールを兼ね 備えさせることが好ましい。インターナルコントロールは、確かにプライマーとハイブリ ダイズするが、増幅される配列が検体とは異なるため、増幅時、検体のみ、またはィ ンターナルコントロールのみしか増幅しない可能性があり、コントロールの意味をなさ ないことがある。この点を考慮して、本発明者は、本発明の遺伝子検査用マイクロリア クタにお 、て、「コントロールの測定および流路構成」で述べるように流体の分割と流 路の構成を工夫することにより、インターナルコントロールの分析を省略し、ポジティ ブコントロールを用いることにより、検出部の数を 4個に減らすことができた。その流路 構成によれば、従来の方式よりも簡略化されており、サイズの点で制約が大きいため に複雑な流路とすることは避けるべきマイクロリアクタでは好まし 、構成である。さらに 核酸増幅部の流路内では、充分な混合を実現している。核酸、試薬等の不充分な拡 散に基づく増幅多寡といった差異が、検体、コントロール間で生じにくい。 As described above, the internal control is included in the amplification reagent, and is amplified and reacted together in each of the three analyzes of the specimen, the positive control, and the negative control, and the detection is performed in a separate detection unit. However, from the significance of internal control analysis, it is preferable to combine positive control with internal control. Although the internal control will surely hybridize with the primer, the sequence to be amplified is different from the sample, so during amplification, only the sample or only the internal control may be amplified, making the control meaningless. There may not be. In consideration of this point, the present inventor devises the division of the fluid and the configuration of the flow path in the microreactor for genetic testing of the present invention, as described in “Control measurement and flow path configuration”. This eliminates internal control analysis and By using the sub-control, the number of detectors could be reduced to four. According to the configuration of the flow path, it is more simplified than the conventional method, and since the restrictions are large in terms of size, a complicated flow path is preferable for a microreactor that should be avoided. Furthermore, sufficient mixing is realized in the flow path of the nucleic acid amplification section. Differences such as amplification due to insufficient diffusion of nucleic acids and reagents are unlikely to occur between samples and controls.
[0023] 遺伝子検査用マイクロリアクタおよび遺伝子検査システムの概要  [0023] Overview of microreactor and genetic testing system for genetic testing
図 1は、装置本体に脱着可能な遺伝子検査用マイクロリアクタ(以下、単にマイクロ リアクタと称することもある)と装置本体とからなる遺伝子検査システムの概要図、図 2 は、遺伝子検査用マイクロリアクタの概略図である。本発明は、種々の実施の形態に おいて、本発明の趣旨に沿って任意の変形、変更が可能であり、それらは本発明に 含まれる。すなわち、本発明の遺伝子検査用マイクロリアクタ (検査チップ)および検 查装置の全体または一部について、構造、構成、配置、形状形態、寸法、材質、方 式、方法などを本発明の趣旨に合致する限り、種々のものにすることができる。  Fig. 1 is a schematic diagram of a genetic testing system comprising a genetic testing microreactor (hereinafter sometimes simply referred to as a microreactor) that can be attached to and detached from the device main body, and Fig. 2 is a schematic diagram of the genetic testing microreactor. It is. The present invention can be arbitrarily modified and changed in various embodiments in accordance with the spirit of the present invention, and these are included in the present invention. That is, the structure, configuration, arrangement, shape, dimensions, material, method, method, etc. of the whole or a part of the gene testing microreactor (test chip) and test apparatus of the present invention are consistent with the gist of the present invention. As long as it can be various.
[0024] 図 1および図 2に示された検査チップ 2、すなわち遺伝子検査用マイクロリアクタは、 プラスチック榭脂、ガラス、シリコン、セラミックスなどの 1以上の部材を適宜組み合わ せて作製される一枚のチップである。その縦横のサイズは、通常、数十 mmぐらい、 高さが数 mm程度である。好ましくは、マイクロリアクタの微細流路および躯体は、カロ 工成型が容易で安価であり、焼却廃棄が容易なプラスチック榭脂で形成される。なか でもポリスチレン榭脂は成型性に優れ、後述するようにストレプトアビジンなどを吸着 する傾向が強ぐ微細流路上に検出部を容易に形成することができるために望まし!/ヽ 。微細流路は、微細加工技術によりその幅および高さ力 約 m〜数百/ z mのサ ィズ、例えば幅 100 m、深さ 100 m程度に形成される。また、そうしたマイクロリア クタにおいて、蛍光物質または呈色反応の生成物などを光学的に検出するために、 マイクロリアクタ表面のうち少なくとも微細流路の検出部を覆うその検出部分は透明で ある部材、好ましくは透明なプラスチックとなっていることが必要である。図 3の (b)、 ( c)は、本発明の遺伝子検査用マイクロリアクタの典型的な流路構成の一例を示すも のである。  [0024] The test chip 2 shown in FIG. 1 and FIG. 2, that is, the microreactor for gene testing, is a single chip manufactured by appropriately combining one or more members such as plastic resin, glass, silicon, ceramics, etc. It is. The vertical and horizontal sizes are usually several tens of mm and the height is several mm. Preferably, the micro flow path and the housing of the microreactor are formed of plastic resin that is easy to be molded by calorie and inexpensive, and easy to dispose of by incineration. Among these, polystyrene resin is preferable because it has excellent moldability and can easily form a detection part on a fine channel having a strong tendency to adsorb streptavidin and the like as will be described later. The microchannel is formed by a microfabrication technique with a width and height force of about m to several hundreds / zm, for example, a width of about 100 m and a depth of about 100 m. In addition, in such a microreactor, in order to optically detect a fluorescent substance or a product of a color reaction, the detection part covering at least the detection part of the microchannel on the surface of the microreactor is preferably a transparent member, preferably Must be transparent plastic. (B) and (c) of FIG. 3 show an example of a typical flow path configuration of the microreactor for gene testing of the present invention.
[0025] 図 10は、マイクロリアクタと装置本体とからなるマイクロ分析システムのシステム概要 図である。本発明の遺伝子検査システムは、マイクロポンプ 11、マイクロポンプ 11を 制御する制御装置(図示せず)、ヒーター 4とペルチェ素子 3を制御する温度制御装 置(図示せず)、および検出装置 (LED6とホトダイオード 5)などが一体化された装置 本体 1と、この装置本体 1に装着可能な遺伝子検査用マイクロリアクタ 2とからなる。予 め試薬が封入されたマイクロリアクタ 2の検体収容部に検体液を注入して、そのマイク 口リアクタを遺伝子検査システムの装置本体 1に装着すると、送液ポンプを作動させ るための機構的連結、必要であれば制御用の電気的接続もなされる。したがって装 置本体 1とこの上記マイクロリアクタ 2とを接合させると、マイクロリアクタの流路も作動 状態となる。好ましくは分析が開始されると、検体および試薬類の送液、混合に基づ く核酸の増幅、核酸とプローブとの結合などの反応、反応物の検出および光学的測 定が、一連の連続的工程として自動的に実施され、測定データが、必要な条件、記 録事項とともにファイル内に格納され、核酸の測定が自動的に行われる。 [0025] FIG. 10 is a system overview of a micro analysis system including a microreactor and an apparatus main body. FIG. The genetic test system of the present invention includes a micropump 11, a control device (not shown) for controlling the micropump 11, a temperature control device (not shown) for controlling the heater 4 and the Peltier element 3, and a detection device (LED6 And a photodiode 5) are integrated into a device main body 1 and a genetic testing microreactor 2 that can be attached to the device main body 1. When the sample liquid is injected into the sample storage part of the microreactor 2 in which the reagent is sealed in advance and the microphone reactor is attached to the main body 1 of the genetic test system, the mechanical connection for operating the liquid feed pump, If necessary, control electrical connections are also made. Therefore, when the apparatus main body 1 and the microreactor 2 are joined, the flow path of the microreactor is also activated. Preferably, once the analysis is started, a series of consecutive steps are taken, including sample and reagent delivery, nucleic acid amplification based on mixing, nucleic acid-probe binding reactions, reactant detection, and optical measurements. The measurement data is stored in a file together with the necessary conditions and recorded items, and nucleic acid measurement is performed automatically.
[0026] 前記検出装置とは、流路上の検出部に対して、例えば LEDなど力も測定光を照射 し、ホトダイオード、光電子増倍管などの光学的検出の手段で透過光もしくは反射光 を検出する装置である。光学的検出の手段として原理を異にする各種の光学装置が あるが、紫外'可視分光光度計が望ましい。好ましくは本発明の遺伝子検査システム は、検体に含有されている核酸の検出を光学的に行う検出装置力 上記マイクロポ ンプを含む送液手段および温度制御装置とともに装置本体 1に組み込まれ、一体ィ匕 した構成となっている。 [0026] The detection device irradiates the detection unit on the flow path with measurement light such as an LED, and detects transmitted light or reflected light by optical detection means such as a photodiode or a photomultiplier tube. Device. There are various optical devices with different principles as means for optical detection, but an ultraviolet-visible spectrophotometer is desirable. Preferably, the genetic testing system of the present invention is incorporated in the apparatus main body 1 together with the liquid feeding means and the temperature control apparatus including the above-described micropump, which detects the nucleic acid contained in the sample optically. It has become the composition.
[0027] 送液、温度、反応の各制御に関わる制御系、光学的検出、データの収集および処 理を受け持つユニットは、マイクロポンプおよび光学装置とともに本発明の遺伝子検 查システムの装置本体 1を構成する。この装置本体 1は、これに上記マイクロリアクタ 2 を装着することによりサンプルに対して共通で使用される。上記の増幅などの反応お よび検出は、送液順序、容量、タイミングなどについて予め設定された条件として、マ イク口ポンプおよび温度の制御、光学的検出のデータ処理とともにプログラムとして遺 伝子検査システムに搭載されたソフトウェアに組みこまれて ヽる。従来の分析チップ では、異なる分析または合成などを行う場合には、変更される内容に対応するマイク 口流体デバイスをその都度構成する必要があった。これとは異なり、本発明では脱着 可能な上記マイクロリアクタ 2のみ交換すればょ 、。各エレメントの制御変更も必要と なる場合には、装置本体 1に格納された制御プログラムを適宜改変すればょ 、。 [0027] A control system related to each control of liquid feeding, temperature, and reaction, a unit responsible for optical detection, data collection and processing, together with the micropump and the optical device, the main body 1 of the gene detection system of the present invention. Constitute. The apparatus main body 1 is commonly used for samples by mounting the microreactor 2 on the apparatus main body 1. The reaction and detection such as amplification described above are performed under conditions set in advance with respect to the order of delivery, volume, timing, etc., and a gene inspection system as a program along with control of the mic pump and temperature, and data processing for optical detection. It is built into the software installed on the PC. In the conventional analysis chip, when performing different analysis or synthesis, it is necessary to configure a microphone port fluid device corresponding to the changed contents each time. Unlike this, in the present invention, desorption Replace only the above microreactor 2 possible. If it is necessary to change the control of each element, change the control program stored in the main unit 1 as appropriate.
[0028] 本発明の遺伝子検査システムは、いずれのコンポーネントも小型化され、持ち運び に便利な形態としているために、使用する場所および時間に制約されず、作業性、 操作性が良好である。送液に使用する多数のマイクロポンプユニットが装置本体側に 組み込まれて 、るので、マイクロリアクタであるチップはデイスポーザブルタイプとして 使用できる。 [0028] In the genetic test system of the present invention, all components are miniaturized and are in a form that is convenient to carry. Therefore, the genetic test system is not restricted by the place and time of use, and has good workability and operability. Since a large number of micropump units used for liquid feeding are incorporated in the main body of the apparatus, the microreactor chip can be used as a disposable type.
[0029] 本発明の遺伝子検査用マイクロリアクタおよび遺伝子検査システムは、特に遺伝子 または核酸の検査に好適に用いることができる。その場合、核酸増幅のための機構 がマイクロリアクタ上に搭載される。しかし、遺伝子以外の核酸についても基本的な構 成は、ほぼ同一になるといえる。例えば逆転写酵素収容部を設置してもよい。通常は 検体前処理部、試薬類、プローブ類などを変更すればよぐその場合、送液エレメン トの配置、数などは変化するであろう。  [0029] The microreactor and gene testing system for gene testing of the present invention can be suitably used particularly for testing genes or nucleic acids. In that case, a mechanism for nucleic acid amplification is mounted on the microreactor. However, it can be said that the basic structure of nucleic acids other than genes is almost the same. For example, a reverse transcriptase storage unit may be installed. Normally, it is sufficient to change the specimen pretreatment unit, reagents, probes, etc. In that case, the arrangement and number of liquid supply elements will change.
[0030] 遺伝子検査用マイクロリアクタ  [0030] Microreactor for genetic testing
本発明の遺伝子検査用マイクロリアクタは、 1つのチップ内に少なくとも検体収容部 、試薬収容部、送液分割手段、マイクロポンプ接続部および微細流路を有し、各部を 微細流路で連通させている。各収容部の上流側にポンプ接続部が設けられ、これら のポンプ接続部にマイクロリアクタとは別途のマイクロポンプを接続し、各マイクロボン プから駆動液を供給することにより前記各収容部内の前記検体液 (測定対象である 核酸を含む検体の液体)および前記試薬を押し出してこれらを合流させる。合流液を その下流側に設けられた核酸増幅部を構成する流路、次いで検出部を構成する流 路へ流して核酸を測定することを特徴とする。さらに各収容部、流路、ポンプ接続部 に加えて、送液制御部、逆流防止部、試薬定量部、混合部などの各エレメントが、機 能的に適当な位置に微細加工技術により設置されている。  The microreactor for gene testing of the present invention has at least a sample storage unit, a reagent storage unit, a liquid feeding / dividing unit, a micropump connection unit, and a fine channel in one chip, and the respective parts are connected with each other through the fine channel. . A pump connection is provided upstream of each container, and a micro pump separate from the microreactor is connected to these pump connections, and the driving liquid is supplied from each micro pump to thereby supply the sample in each container. The liquid (the sample liquid containing the nucleic acid to be measured) and the reagent are extruded and merged. The nucleic acid is measured by flowing the combined solution to the flow path constituting the nucleic acid amplification section provided downstream thereof, and then to the flow path constituting the detection section. Furthermore, in addition to each storage unit, flow path, and pump connection unit, each element such as a liquid feed control unit, backflow prevention unit, reagent quantification unit, and mixing unit is installed at a functionally appropriate position by microfabrication technology. ing.
[0031] 試薬収容部  [0031] Reagent storage unit
本発明の遺伝子検査用マイクロリアクタでは、必要な試薬 31 (洗浄液なども含む) があら力じめ所定の量、マイクロリアクタ内の試薬収容部 18に封入されている(図 2)。 試薬収容部 18は、複数の試薬 31に対応して複数設けられている。したがって本発 明のマイクロリアクタは使用時にその都度、試薬を必要量充填する必要はなぐ即使 用可能の状態になっているため、場所や時間を問わず迅速に検査ができる。検体中 の核酸を分析する場合、測定に必要な試薬類は、通常それぞれ公知である。遺伝子 検査用の試薬類には、核酸増幅に用いられる各種試薬、検出に使用されるプローブ 類、発色試薬などが挙げられる。 In the microreactor for gene testing of the present invention, necessary reagents 31 (including a cleaning solution) are preliminarily encapsulated in a predetermined amount in a reagent storage unit 18 in the microreactor (FIG. 2). A plurality of reagent containers 18 are provided corresponding to the plurality of reagents 31. Therefore, this departure The bright microreactor is ready for immediate use without having to fill the required amount of reagent each time it is used, so it can be tested quickly regardless of location or time. When analyzing nucleic acids in a specimen, reagents necessary for the measurement are generally known. Examples of reagents for genetic testing include various reagents used for nucleic acid amplification, probes used for detection, and coloring reagents.
[0032] マイクロリアクタ内に内蔵される試薬類などは、蒸発、漏失、気泡の混入、汚染、変 性などを防止するため、その試薬部の表面が密封処理され、封止材 (封止液)により 封入されている。これらの封止材(図 5では封止液収容部 25に収容される)は、使用 前、マイクロリアクタが保管される冷蔵条件下では、固ィ匕もしくはゲルイ匕しており、使 用時、室温にすると融解し流動状態となるものである。このような封止材としては、水 に対して難溶性の可塑性物質を使用することができ、好ましくは、水に対する溶解度 力 S l %以下であり且つ融点が 8°C〜室温(25°C)である油脂、およびゼラチンの水溶 液が挙げられる。  [0032] Reagents and the like built in the microreactor are subjected to sealing treatment on the surface of the reagent part in order to prevent evaporation, leakage, mixing of bubbles, contamination, modification, etc., and a sealing material (sealing liquid) It is enclosed by. These sealing materials (contained in the sealing liquid container 25 in FIG. 5) are solid or gelled under refrigerated conditions in which the microreactor is stored before use. If it becomes, it will melt | dissolve and will be in a fluid state. As such a sealing material, a water-insoluble plastic material can be used. Preferably, it has a solubility power in water of S 1% or less and a melting point of 8 ° C. to room temperature (25 ° C. ) And an aqueous solution of gelatin.
[0033] 試薬収容部および試薬を混合する混合部の各部 (さらに必要であれば検体収容部 も)は、ペルチェ素子 3によって冷却されるようになっている。ペルチェ素子 3は、これ らの各部のマイクロリアクタであるチップ上面に、あるいはチップ上下両面に設けても よい。試薬収容部などを冷却することにより、加温による試薬の変質を防止できる。通 常は、 4°C以下程度に保てば試薬の変質を充分に防止できる。  [0033] Each part of the reagent storage unit and the mixing unit for mixing the reagents (and the sample storage unit if necessary) is cooled by the Peltier element 3. The Peltier element 3 may be provided on the upper surface of the chip, which is a microreactor of each part, or on both upper and lower surfaces of the chip. By cooling the reagent container or the like, it is possible to prevent the reagent from being altered by heating. Usually, if the temperature is kept below 4 ° C, the reagent can be sufficiently prevented from being altered.
[0034] ·コントロール収容部  [0034] · Control housing
ポジティブコントロール収容部には、検体を検出する特異的な配列で、プライマー がハイブリダィズする部分とその間の配列が検体と同じものであるポジティブコント口 ールが収容される。ネガティブコントロール収容部には、ネガティブコントロールとして 検体の代わりに滅菌した超純水などが収容される。  The positive control accommodating portion accommodates a positive control that is a specific sequence for detecting the sample and in which the primer hybridizes and the sequence between them is the same as that of the sample. The negative control container contains sterilized ultrapure water instead of the specimen as a negative control.
[0035] コントロールの測定および流路構成  [0035] Control measurement and flow path configuration
本発明の遺伝子検査用マイクロリアクタにおける検体およびコントロールの測定の ための流路構成を、概念図 3に示す。  Conceptual diagram 3 shows the flow path configuration for sample and control measurements in the genetic testing microreactor of the present invention.
[0036] 図 3 (a)の流路構成は、 3分割される増幅用試薬中にインターナルコントロールを含 めて、検体、ポジティブコントロールおよびネガティブコントロールを、それぞれ独立し た別個の流路に流して増幅させ、測定する従来の方式である。その配置では、最上 流部の試薬収容部および試薬分割への流路から、基本的に 3本の流路(3つの流路 に分岐して力 それぞれの廃液貯留部まで至る流路)へ各種試薬が流れるように構 成されている。左側の分析流路は、検体の分析のための流路であり、中央の分析流 路は、ポジティブコントロール用の流路、右側の分析流路は、ネガティブコントロール 用の流路である。 [0036] The flow path configuration of Fig. 3 (a) includes an internal control in the amplification reagent divided into three, and the specimen, the positive control, and the negative control are independent of each other. It is a conventional method in which it is amplified by flowing in a separate flow path. In the arrangement, various flow from the reagent storage section at the uppermost stream part and the flow path to the reagent division to basically three flow paths (flow paths that branch into three flow paths and reach each waste liquid storage part). The reagent is configured to flow. The analysis channel on the left is a channel for analyzing the sample, the analysis channel in the center is a channel for positive control, and the analysis channel on the right is a channel for negative control.
[0037] 本発明では、図 3 (b)および図 3 (c)の流路構成を採用する。図 3 (b)の流路構成の 場合には、 4分割技術、 3液同時混合技術などがさらに必要である。本発明において は、特に図 3 (c)の流路構成が好ましぐその具体的な流路構成を図 4に示す。この 方式では、本発明の遺伝子検査用マイクロリアクタにポンプ接続部を介してマイクロ ポンプを接続し、試薬収容部に収容された増幅用試薬の一定量を流路に送液し、送 液分割手段 (第 1送液分割手段)により試薬の一定量を第 1試薬、第 2試薬及び第 3 試薬の 3つに 3分割し、分割された試薬 (第 1試薬、第 2試薬及び第 3試薬)を、それ ぞれ流路内で  [0037] In the present invention, the flow path configuration of FIGS. 3 (b) and 3 (c) is employed. In the case of the flow path configuration shown in Fig. 3 (b), a 4-split technique, a 3-liquid simultaneous mixing technique, etc. are further required. In the present invention, FIG. 4 shows a specific flow path configuration in which the flow path configuration of FIG. 3 (c) is particularly preferred. In this system, a micropump is connected to the genetic test microreactor of the present invention via a pump connection part, and a fixed amount of the amplification reagent stored in the reagent storage part is sent to the flow path, and the liquid splitting means ( The first solution dividing means) divides a fixed amount of the reagent into three parts, the first reagent, the second reagent, and the third reagent, and the divided reagents (first reagent, second reagent, and third reagent). In each flow path
(0 検体収容部から送られた検体と混合して、生成させた混合液 (1)、  (0 Mixed liquid (1) generated by mixing with the sample sent from the sample container,
(ii) ポジティブコントロール収容部力 送られたポジティブコントロールと混合して、生 成させた混合液 (2)、および  (ii) Force of positive control housing Mixture formed by mixing with sent positive control (2), and
(iii) ネガティブコントロール収容部力 送られたネガティブコントロールと混合して、 生成させた混合液 (3)  (iii) Negative control storage capacity Mixture produced by mixing with the sent negative control (3)
を得て、混合液 (1)および混合液 (2)をさらに送液分割手段 (ここでは、便宜上、混合 液( 1)を 2分割する第 2送液分割手段、混合液 (2)を 2分割する第 3送液分割手段と いう)により 2分割し、次いで混合液 (1)のみ、混合液 (1)と混合液 (2)の混合物、混合液 ( 2)のみ、混合液 (3)のみの各流体を増幅部でそれぞれ増幅反応をさせて、増幅産物 を各々の検出部で検出する方式である。  The liquid mixture (1) and the liquid mixture (2) are further divided into liquid feed dividing means (in this case, for convenience, the second liquid feed dividing means for dividing the liquid mixture (1) into two, the liquid mixture (2) is divided into 2 Divided into two by the third liquid feeding and dividing means), then mixed liquid (1) only, mixed liquid (1) and mixed liquid (2), mixed liquid (2) only, mixed liquid (3) In this method, each fluid is subjected to an amplification reaction in the amplification section, and the amplification product is detected in each detection section.
[0038] 増幅反応を行わせるときには、概ね 50°C以上にヒーター 4で加熱する必要がある。 [0038] When the amplification reaction is performed, it is necessary to heat the heater 4 to approximately 50 ° C or higher.
ヒーター 4は、マイクロリアクタであるチップ上面に、あるいはチップ上下両面に設ける ことができる。 The heater 4 can be provided on the upper surface of the chip, which is a microreactor, or on both upper and lower surfaces of the chip.
[0039] この態様では増幅部および検出部はそれぞれ 4個ですむ。その場合、検体の増幅 産物(混合液 (1)のみの増幅)、検体およびポジティブコントロールの増幅産物の混合 物 (混合液 (1)と混合液 (2)の混合物の増幅)、ポジティブコントロールの増幅産物 (混 合液 (2)のみの増幅)、ネガティブコントロールの増幅産物(混合液 (3)のみの増幅)を それぞれのプローブ DNAで検出することになる。インターナルコントロールのための 役割は、前記 2番目の増幅産物の検出が担う。すなわち検体およびポジティブコント ロール、検体およびポジティブコントロールの混合物の増幅反応により得られる配列 は全て同じであるため、同じプローブを用いて検出する。 [0039] In this embodiment, only four amplifying units and four detecting units are required. In that case, sample amplification Product (amplification of mixture (1) only), mixture of sample and positive control amplification product (amplification of mixture of mixture (1) and mixture (2)), positive control amplification product (mixture ( (A) amplification only) and negative control amplification products (amplification of mixture (3) only) will be detected by each probe DNA. The role for internal control is the detection of the second amplification product. That is, since the sequences obtained by the amplification reaction of the sample and the positive control and the mixture of the sample and the positive control are all the same, detection is performed using the same probe.
[0040] 検出の結果は、ネガティブコントロールがネガティブ、ポジティブコントロールがポジ ティブ、検体およびポジティブコントロールの混合物がポジティブと出たときのみ、判 定してもよい。その他の場合には、何らかのエラーがあるために再試験を要すること になる。信頼性の高い、検体およびポジティブコントロールの増幅産物の混合物(混 合液 (1)と混合液 (2)の混合物の増幅)について、ポジティブコントロール用のプローブ DNAを用いて検出する。その増幅が不調であり、混合液 (2)のみの増幅には問題が なければ、検体に起因する増幅の妨害が考えられる。  [0040] The detection result may be judged only when the negative control is negative, the positive control is positive, and the mixture of the sample and the positive control is positive. In other cases, there will be some error and a retest will be required. Use a positive control probe DNA to detect a reliable mixture of sample and positive control amplification products (amplification of mixture (1) and mixture (2)). If the amplification is unsatisfactory and there is no problem with amplification of the mixture (2) alone, it is possible that the amplification is disturbed due to the sample.
[0041] 他方、図 3(b)に示された流路構成の方式は、  [0041] On the other hand, the flow path configuration shown in FIG.
本発明の遺伝子検査用マイクロリアクタにポンプ接続部を介してマイクロポンプを接 続し、検体収容部に収容された検体の一定量、およびポジティブコントロール収容部 に収容されたポジティブコントロールの一定量を、それぞれ流路に送液して送液分割 手段により各々 2分割し、ならびに試薬収容部に収容された増幅用試薬の一定量を 流路に送液し、送液分割手段により 4分割し、分割された試薬を、それぞれ流路内で (0 2分割された検体の一方と混合して、生成させた混合液 (1)、  A micropump is connected to the microreactor for genetic testing of the present invention via a pump connection part, and a certain amount of the sample accommodated in the sample accommodating part and a certain amount of the positive control accommodated in the positive control accommodating part, respectively. Liquid is sent to the flow path and divided into two parts by the liquid feed dividing means, and a predetermined amount of the amplification reagent contained in the reagent container is sent to the flow path, and divided into four parts by the liquid feed dividing means. Each reagent in the flow channel (0 mixed with one of the two divided specimens to produce a mixed liquid (1),
GO 2分割された検体の他方と、 2分割されたポジティブコントロールの一方とを混合 して、生成させた混合液 (2)  GO Mixture prepared by mixing the other of the two divided samples and one of the two divided positive controls (2)
(iii) 2分割されたポジティブコントロールの他方と混合して生成させた混合液 (3)、お よび  (iii) Mixture formed by mixing with the other of the two divided positive controls (3), and
(iv) ネガティブコントロール収容部カゝら送られたネガティブコントロールと混合して生 成させた混合液 (4)  (iv) Mixture formed by mixing with the negative control sent from the negative control container (4)
を得て、(1)〜(4)の混合液を増幅部でそれぞれ増幅反応をさせて、増幅産物を各々 の検出部で検出する方式である。 Amplification reaction was performed on the mixture (1) to (4) in the amplification section, and the amplification products were This is a method of detecting by the detector.
[0042] この態様も、増幅部および検出部はそれぞれ 4個ですむ。すなわち、検体の増幅 産物(混合液 (1)のみの増幅)、検体およびポジティブコントロールの増幅産物の混合 物(混合液 (2)のの増幅)、ポジティブコントロールの増幅産物(混合液 (3)の増幅)、ネ ガティブコントロールの増幅産物(混合液 (4)のみの増幅)を検出すること〖こなる。この 場合もインターナルコントロールのための役割は、前記 2番目の増幅産物の検出が 担う。この場合には流体の 4分割技術、 3液同時混合の技術が必要となる力 これら は技術的には容易ではな 、。  [0042] In this embodiment, four amplifying units and four detecting units are required. That is, the amplification product of the sample (amplification of the mixture (1) only), the mixture of the sample and the positive control amplification product (amplification of the mixture (2)), the amplification product of the positive control (mixture (3)) Amplification) and negative control amplification products (amplification of the mixture (4) only) can be detected. In this case as well, the role for internal control is played by the detection of the second amplification product. In this case, the force that requires four-part fluid technology and three-liquid simultaneous mixing technology is not technically easy.
[0043] 図 3 (b)および (c)の流路構成では、流体の 2分割、 3分割または 4分割とともに、 2 液または 3液を合流させて混合する流体の合流もあり、これら送液の分割および合流 は、検体、ポジティブコントロールおよびネガティブコントロールにおいて同じとはなつ ていない(図 3 (a)の場合はいずれの場合も分割、合流が同等である)。このため、例 えば流体の 1:1の分割ではなぐ 2: 1の比に分割したりして流量の調整が必要となる。  [0043] In the flow path configuration of Figs. 3 (b) and (c), there are two, three or four divisions of the fluid, and also a combination of fluids that mix and mix two or three liquids. The split and merge are not the same in the sample, positive control and negative control (in Fig. 3 (a), split and merge are the same in all cases). For this reason, for example, it is necessary to adjust the flow rate by dividing the fluid into a ratio of 2: 1, rather than 1: 1.
[0044] このように試薬と試薬との混合、および検体と試薬との混合は、単一の混合部で所 望の比率で混合してもよぐあるいは何れ力もしくは両方を分割して複数の合流部を 設け、最終的に所望の混合比率となるように混合しても構わない。しかしながら所定 量の流体を定量して送液する定量送液、流体の分割、合流を正確かつ所望通りに実 現できるマイクロポンプ、送液エレメントおよび流路の配設と制御が必要になる。  [0044] As described above, the mixing of the reagent and the reagent and the mixing of the specimen and the reagent may be performed at a desired ratio in a single mixing unit, or may be performed by dividing either force or both into a plurality. A merging portion may be provided and mixed so that the desired mixing ratio is finally obtained. However, it is necessary to arrange and control a micropump, a liquid feeding element, and a flow path that can accurately and exactly realize a predetermined amount of fluid to be quantified and fed, a fluid division, and a merging.
[0045] マイクロポンプおよびポンプ接続部  [0045] Micropump and pump connection
本発明の遺伝子検査用マイクロリアクタでは、検体収容部 20、試薬収容部 18およ びコントロール収容部の内容液を一定量送液するマイクロポンプ 11がマイクロリアク タとは別途に設けられている。マイクロポンプ 11は試薬収容部 18の上流側に接続さ れ、マイクロポンプ 11により駆動液を試薬収容部側へ供給することによって、試薬な どを流路へ押し出して送液している。マイクロポンプユニットは、マイクロリアクタとは別 途の装置本体に組み込まれており、マイクロリアクタを装置本体に装着することによつ て、ポンプ接続部 12からマイクロリアクタに接続されるようになって 、る(図 4)。  In the microreactor for gene testing of the present invention, a micropump 11 for feeding a predetermined amount of the contents of the sample storage unit 20, the reagent storage unit 18 and the control storage unit is provided separately from the microreactor. The micropump 11 is connected to the upstream side of the reagent storage unit 18 and supplies the driving liquid to the reagent storage unit side by the micropump 11 to push the reagent and the like into the flow path and send the liquid. The micropump unit is incorporated in the main body of the apparatus separate from the microreactor, and the microreactor is connected to the microreactor from the pump connection portion 12 by attaching the microreactor to the main body of the microreactor (see FIG. Four).
[0046] 本実施形態では、マイクロポンプとしてピエゾポンプを用いて!/、る。すなわち、 流路抵抗が差圧に応じて変化する第一流路と、 差圧の変化に対する流路抵抗の変化の割合が該第一流路よりも小さい第二流路と、 該第一流路および該第二流路に接続された加圧室と、 In this embodiment, a piezo pump is used as a micro pump! That is, the first flow path in which the flow path resistance changes according to the differential pressure, A second flow path whose rate of change in flow path resistance with respect to a change in differential pressure is smaller than that of the first flow path; a pressure chamber connected to the first flow path and the second flow path;
該加圧室の内部の圧力を変化させるためのァクチユエータと  An actuator for changing the pressure inside the pressurizing chamber;
を備えたピエゾポンプである(図 6)。その詳細は、上記特許文献 1および 2に記載され ている。  This is a piezo pump equipped with (Fig. 6). The details are described in Patent Documents 1 and 2 above.
[0047] ·送液分割手段  [0047] Solution dividing means
本発明にお 、て、 1つの検体につ!、てポジティブコントロールおよびネガティブコン トロールを同時に分析する場合には、試薬類および検体を 2以上に分割して、それぞ れの分析流路へ送り出す必要がある。送液分割手段はそのために設置される。図 4 に示すように、送液分割手段は、分岐した微細流路、送液制御部 13および逆流防 止部 (逆止弁 16)から構成される。  In the present invention, when analyzing a positive control and a negative control at the same time for one sample, the reagents and the sample are divided into two or more and sent to the respective analysis channels. There is a need. The liquid feed dividing means is provided for that purpose. As shown in FIG. 4, the liquid feed dividing means includes a branched fine channel, a liquid feed control unit 13 and a backflow prevention unit (check valve 16).
[0048] 送液制御部 13は、正方向(通常、液体をポンプで押出す方向、すなわち下流方向 )への送液圧力が所定圧に達するまで液体の通過を遮断し、所定圧以上の送液圧 力を加えることにより液体の通過を許容する。送液制御部 13は、流路径を絞った部 分からなり、これにより、一端側からこの絞り流路 (細流路) 51に達した液体が、他端 側へ通過することを規制している。その具体的な流路の態様は、両側に隣接する流 路を直列に連結するようにこれらの流路の間に形成された、これらの隣接流路の断 面積よりも小さい断面積を有する細流路とすることにより実現する。この絞り流路 51は 、例えば、両側に直列に連結された縦横が 150 m X 150 mの流路に対して、縦 横が 30 m X 30 m程度となるように形成される。  [0048] The liquid feeding control unit 13 blocks the passage of the liquid until the liquid feeding pressure in the forward direction (usually the direction in which the liquid is pushed out by the pump, that is, the downstream direction) reaches a predetermined pressure, Allow fluid to pass by applying hydraulic pressure. The liquid feeding control unit 13 is composed of a portion with a narrowed channel diameter, thereby restricting the liquid that has reached the throttle channel (fine channel) 51 from one end side from passing to the other end side. The specific flow channel mode is a trickle having a cross-sectional area smaller than the cross-sectional area of these adjacent flow channels formed between these flow channels so as to connect the flow channels adjacent to both sides in series. This is realized by using a road. For example, the throttle channel 51 is formed to have a length and width of about 30 m × 30 m with respect to a channel of 150 m × 150 m connected in series on both sides.
[0049] 液体を、細径の絞り流路 51の端部 51aから太径の流路 15へ押し出すには、表面張 力のために所定の送液圧力を要する。したがって、マイクロポンプからのポンプ圧に より、液体の停止と通過を制御することができるので、例えば流路の所定箇所におい て液体の移動を一時止めておき、所望のタイミングでこの箇所力も先の流路へ送液 を再開することができる。  [0049] In order to extrude the liquid from the end 51a of the narrow diameter flow path 51 to the large diameter flow path 15, a predetermined liquid feeding pressure is required for surface tension. Therefore, since the stop and passage of the liquid can be controlled by the pump pressure from the micro pump, for example, the movement of the liquid is temporarily stopped at a predetermined position of the flow path, and the force at this position is also increased at a desired timing. The pumping can be resumed.
[0050] また流路内の液体の逆流を防止する逆流防止部は、逆流圧により弁体が流路開口 部を閉止する逆止弁 16 (図 4、図 9参照)か、あるいは弁体変形手段により弁体を流 路開口部へ押圧して該開口部を閉止する能動弁力 なる。 [0051] 本発明の遺伝子検査用マイクロリアクタの流路に使用される逆止弁として、微小球 を弁体として、基板に形成した開口をこの微小球の移動により開閉させることで液体 の通過を許容および遮断して ヽる逆止弁が好ま ヽ。あるいは基板上に積層されそ の端部が開口の上側に延び出した可撓性基板力 液圧によりその開口の上側を上 下動することにより該開口を開閉する方式の逆止弁であってもよい。 [0050] In addition, the backflow prevention unit for preventing the backflow of the liquid in the flow path is a check valve 16 (see FIGS. 4 and 9) in which the valve body closes the flow path opening due to the backflow pressure, or the valve body is deformed. An active valve force that presses the valve body to the flow path opening by means to close the opening. [0051] As a check valve used in the flow path of the gene testing microreactor of the present invention, a microsphere is used as a valve body, and an opening formed in the substrate is opened and closed by the movement of the microsphere, thereby allowing liquid to pass therethrough. And a check valve that shuts off is preferred. Alternatively, a check valve of a type in which the opening is opened and closed by moving up and down the upper side of the opening by a flexible substrate force hydraulic pressure stacked on the substrate and extending at the end of the opening. Also good.
[0052] 本発明の遺伝子検査用マイクロリアクタの微細流路において、前記マイクロポンプ、 そのポンプ圧により液体の通過を制御可能な送液制御部 13と、流路内の液体の逆流 を防止する逆流防止部(逆止弁) 16とによって、分岐した流路内における各液体の分 割の制御および定量送液がなされる。力かる送液分割手段およびマイクロポンプ 11 の働きにより、試薬類および検体は適当な比率で分割される。  [0052] In the fine flow path of the microreactor for genetic testing of the present invention, the micropump, the liquid feed control unit 13 that can control the passage of the liquid by the pump pressure, and the backflow prevention that prevents the backflow of the liquid in the flow path. The division (check valve) 16 controls the division of each liquid in the branched flow path and delivers a fixed amount of liquid. Reagents and specimens are divided at an appropriate ratio by the action of the powerful liquid dividing means and the micropump 11.
[0053] 図 7は、核酸増幅用試薬を混合し、等分に分割して流路下流へ流すシステムを図 示する。検出対象である遺伝子に特異的にハイブリダィズするピオチン修飾したキメ ラプライマ一、鎖置換活性を有する DNAポリメラーゼ、およびエンドヌクレアーゼなど の試薬は、試薬収容部 18a、 18b、 18cに収容されており、各試薬収容部の上流側 には、マイクロリアクタとは別途の装置本体に内蔵されたマイクロポンプであるピエゾ ポンプ 11がポンプ接続部 12で接続され、各試薬収容部から下流側の流路 15aへこ れらのポンプにより試薬が送液される。  FIG. 7 shows a system in which a nucleic acid amplification reagent is mixed, divided into equal parts, and allowed to flow downstream. Reagents such as a pyotin-modified chimera primer that specifically hybridizes to the gene to be detected, a DNA polymerase having strand displacement activity, and an endonuclease are housed in the reagent housings 18a, 18b, and 18c. A piezo pump 11, which is a micropump built in the main body of the apparatus separate from the microreactor, is connected to the upstream side of the storage unit by a pump connection unit 12, and is passed from each reagent storage unit to the downstream flow path 15 a. The reagent is fed by the pump.
[0054] 流路 15aと、流路 15aから分岐した次工程への流路と、送液制御部 13a、 13bは、 流路の合流部を構成し、各試薬収容部から送液された試薬の混合液の先端部を切 り捨て、混合状態が安定した後に、試薬混合液を 3等分割して次工程へ送液するよう にして 、る。各試薬収容部には分割後に下流に流す分量の 3倍超の試薬が収容さ れており、所定量の試薬混合液が、 3本に分岐した流路 15b、 15c、 15dへ送液され る。  [0054] The flow path 15a, the flow path to the next process branched from the flow path 15a, and the liquid feeding control units 13a and 13b constitute a merging portion of the flow path, and the reagent fed from each reagent storage unit Cut off the tip of the mixed solution, and after the mixing state is stabilized, divide the reagent mixed solution into three equal parts and send it to the next step. Each reagent storage unit contains more than three times the amount of reagent that flows downstream after division, and a predetermined amount of reagent mixture is sent to the three branched channels 15b, 15c, and 15d. .
[0055] ,定量送液機構  [0055] Quantitative liquid feeding mechanism
試薬収容部、核酸増幅部および検出部の間の流路における適宜の位置に、逆止 弁が設けられて 、る。それ以外にも上記のようにクロス 'コンタミネーシヨンと 、つた汚 染を防止するための適切な位置にも逆止弁を設けることが好ましい。  A check valve is provided at an appropriate position in the flow path between the reagent storage unit, the nucleic acid amplification unit, and the detection unit. In addition to the above, it is preferable to provide a check valve at an appropriate position for preventing contamination as well as cross contamination as described above.
[0056] 液体の逆流を防止して正確に所定の送液を行うために逆止弁を配設することが望 ましいが、逆止弁を利用した好適な機構として、図 9に示した定量送液機構を挙げる ことができる。この機構では、逆止弁 16と、疎水性バルブ 13aとの間の流路 (試薬充 填流路 15A)には、所定量の試薬が充填される。この試薬充填流路 15 Aから分岐し 、駆動液を送液するマイクロポンプ 11に連通する分岐流路 15Bが設けられて 、る。 [0056] It is desirable to provide a check valve in order to prevent liquid backflow and accurately perform a predetermined liquid feeding. However, as a suitable mechanism using a check valve, the quantitative liquid feeding mechanism shown in FIG. 9 can be exemplified. In this mechanism, a predetermined amount of reagent is filled in the flow path (reagent filling flow path 15A) between the check valve 16 and the hydrophobic valve 13a. A branch channel 15B that branches from the reagent-filled channel 15A and communicates with the micropump 11 that feeds the driving liquid is provided.
[0057] 試薬の定量送液は、次のように行われる。図 9において最初に逆止弁 16側から、疎 水性バルブ 13aから先へ試薬液 60が通過しない送液圧力(予め設定された圧より低 い圧)で試薬充填流路 15Aに試薬液 60を供給することにより試薬液 60を充填する。 次いで、疎水性バルブ 13aから先へ試薬液 60が通過することを許容する送液圧力( 予め設定された圧以上の圧)で、マイクロポンプ 11により分岐流路 15B力 試薬充填 流路 15Aに向力 方向へ駆動液 70を送液することにより、試薬充填流路 15A内に充 填された試薬液 60を送液制御部 15Aから先へ押し出し、これにより試薬液 60を定量 的に送液する。なお、試薬充填流路 15Aに、大容積の貯留部 7を設けることによって 、定量のバラツキが小さくなる。なおこの定量送液機構を、試薬の定量混合および検 体の定量送液にも使用している。  [0057] The reagent is quantitatively fed as follows. In FIG. 9, the reagent solution 60 is first introduced into the reagent-filling flow path 15A at a solution feeding pressure (a pressure lower than a preset pressure) at which the reagent solution 60 does not pass from the check valve 16 side to the hydrophobic valve 13a first. Fill reagent solution 60 by feeding. Next, at the liquid feeding pressure that allows the reagent solution 60 to pass through the hydrophobic valve 13a first (pressure equal to or higher than a preset pressure), the micropump 11 applies the branch flow path 15B to the reagent filling flow path 15A. By feeding the driving liquid 70 in the force direction, the reagent liquid 60 filled in the reagent filling flow path 15A is pushed out from the liquid feeding control unit 15A first, and thereby the reagent liquid 60 is quantitatively fed. . It should be noted that by providing a large-volume storage section 7 in the reagent filling channel 15A, the quantitative variation is reduced. This quantitative feeding mechanism is also used for quantitative mixing of reagents and quantitative feeding of specimens.
[0058] 検体収容部  [0058] Specimen container
検体もしくは検体カゝら抽出した DNAが注入される検体収容部 20は、次のような構 成を有する(図 2参照)。検体収容部 20は、検体注入部に連通して検体 (核酸を含有 する)の一時収容および混合部への検体供給を行う。検体収容部 20に注入された検 体は、ポンプ接続部 12を介しマイクロポンプ 11 (図示せず)と接続しており、これらの 作用により下流の増幅部直前の混合部へ送液される。  The specimen container 20 into which the specimen or DNA extracted from the specimen is injected has the following configuration (see Fig. 2). The sample storage unit 20 communicates with the sample injection unit to temporarily store a sample (containing nucleic acid) and supply the sample to the mixing unit. The sample injected into the sample storage unit 20 is connected to the micropump 11 (not shown) via the pump connection unit 12, and is fed to the mixing unit immediately downstream of the amplification unit by these actions.
[0059] また検体収容部の上面で検体を注入する部分 (検体注入部)は、外部への漏失、 感染および汚染を防ぎ、密封性を確保するために、ゴム状材質などの弾性体からな る栓が形成されているか、あるいはポリジメチルシロキサン(PDMS)などの榭脂、強 化フィルムで覆われて 、ることが望まし 、。  [0059] In addition, the portion where the sample is injected on the upper surface of the sample container (sample injection portion) is made of an elastic material such as a rubber-like material in order to prevent external leakage, infection and contamination, and to ensure sealing. It is desirable that the stopper is formed or covered with a resin or reinforcing film such as polydimethylsiloxane (PDMS).
[0060] ·検体  [0060] · Sample
本発明の測定対象となる検体として、生体由来の試料自体にも特に制限はな!、が 、例えば全血、血漿、血清、バフィ一コート、尿、糞便、唾液、喀痰など生体由来のほ とんどの試料が該当する。遺伝子検査の場合、増幅反応の铸型となる核酸として遺 伝子、 DNAまたは RNAが分析の対象となる。検体は、このような核酸を含む可能性 のある試料力も調製または単離したものであってよい。したがって、上記の試料の他 に、細胞培養物;ウィルス、細菌、カビ、酵母、植物、動物などの核酸含有試料;微生 物などが混入または含有する可能性のある試料、その他核酸が含有されて 、る可能 性のあるあらゆる試料などが対象となる。 The sample to be measured in the present invention is not particularly limited to a biological sample itself! However, for example, most of biological samples such as whole blood, plasma, serum, buffy coat, urine, feces, saliva, sputum, etc. Most samples fall under this category. In the case of genetic testing, it remains as a nucleic acid that serves as a template for amplification reactions. Genes, DNA or RNA can be analyzed. The specimen may also have been prepared or isolated from sample forces that may contain such nucleic acids. Therefore, in addition to the above samples, cell cultures; nucleic acid-containing samples such as viruses, bacteria, molds, yeasts, plants and animals; samples that may contain or contain microorganisms, and other nucleic acids. Therefore, any sample that has the possibility of being covered is considered.
[0061] 本発明の遺伝子検査用マイクロリアクタは、従来の装置を使用して行う手作業の場 合に比べて、必要とされる検体量は極めて少ない。例えば、縦横の長さが数 cmのチ ップに 2〜3 L程度の血液検体を注入するだけである。例えば、遺伝子の場合、 D NAとして 0.001〜100ngである。  The microreactor for genetic testing of the present invention requires a very small amount of specimen as compared with the case of manual work performed using a conventional apparatus. For example, a blood sample of about 2 to 3 L is simply injected into a chip with a length and width of several centimeters. For example, in the case of a gene, the DNA is 0.001 to 100 ng.
[0062] 核酸増幅部  [0062] Nucleic acid amplification unit
核酸増幅反応が行われる増幅部の態様は特に限定されるものではなぐ様々な形 態および様式が考えられる。核酸増幅部の反応部は、基本的には広幅の液溜め状 の流路であることが望ましいが、反応のために充分に長くした微細流路であってもよ い。この場合、反応部に送液された各液の合流液の送液方向を切り替えて、合流液 を反応部で繰り返し前後動させる制御手段を備えることが望まし 、。これにより微細 流路中央部から流路内壁側へ粘性により流速勾配が生じるので、この条件下では、 流路前後方向への切り替え送液による試薬の拡散は 2次元的になり、遺伝子と試薬 とが出会う確率が高くなる。あるいは、さらに増幅部の流路内部に核酸非吸着性ビー ズが保持させて、核酸を増幅する際にそのビーズを流路内部で移動させて増幅効率 を高めることちでさる。  The form of the amplification part in which the nucleic acid amplification reaction is performed is not particularly limited, and various forms and modes are conceivable. The reaction part of the nucleic acid amplification part is basically desirably a wide liquid reservoir-like flow path, but may be a fine flow path sufficiently long for the reaction. In this case, it is desirable to provide a control means for switching the liquid feeding direction of the combined liquid of the liquids fed to the reaction section and repeatedly moving the combined liquid back and forth in the reaction section. This causes a flow velocity gradient due to viscosity from the center of the microchannel to the inner wall of the channel. Under these conditions, the diffusion of the reagent due to the switching liquid supply in the longitudinal direction of the channel becomes two-dimensional, and the gene and the reagent The probability of encountering is increased. Alternatively, a nucleic acid non-adsorbing bead is further held inside the flow channel of the amplification section, and when the nucleic acid is amplified, the bead is moved inside the flow channel to increase the amplification efficiency.
[0063] ,核酸増幅法  [0063], nucleic acid amplification method
本発明の遺伝子検査用マイクロリアクタを使用する遺伝子検査では、核酸の増幅 方法は限定されない。例えば DNA増幅技術は、多方面で盛んに利用されている PC R増幅法を使用することができる。その増幅技術を実施するための諸条件が詳細に 検討され、改良点も含めて各種文献などに記載されている。 PCR増幅においては、 3つの温度間で昇降させる温度管理が必要になる力 マイクロチップに好適な温度 制御を可能とする流路デバイスが、すでに本発明者らにより提案されている (特開 200 4—108285号公報参照)。このデバイスシステムを本発明の遺伝子検査用マイクロリ ァクタの増幅用流路に適用すればよい。これにより、熱サイクルが高速に切り替えら れ、微細流路を熱容量の小さいマイクロ反応セルとしているため、核酸増幅は、手作 業で行う従来の方式よりはるかに短時間で行うことができる。 In gene testing using the microreactor for gene testing of the present invention, the nucleic acid amplification method is not limited. For example, the DNA amplification technique can use the PCR amplification method which is widely used in various fields. Various conditions for implementing the amplification technique have been studied in detail, and are described in various documents including improvements. In PCR amplification, a force that requires temperature control to be raised or lowered between three temperatures has already been proposed by the present inventors, which enables temperature control suitable for a microchip (Japanese Patent Application Laid-Open No. 2004-4). —See publication 108285). This device system is used as a microarray for genetic testing according to the present invention. What is necessary is just to apply to the amplification channel of an actor. As a result, the heat cycle can be switched at high speed, and the micro flow path is a micro reaction cell with a small heat capacity, so that nucleic acid amplification can be performed in a much shorter time than the conventional method that is performed manually.
[0064] PCRの改良として最近開発された ICAN (Isothermal chimera primer initiated n ucleic acid amplification)法は、 50〜65°Cにおける任意の一定温度の下に核酸増 幅を短時間で実施できる特徴を有する (特許第 3433929号公報参照)。したがって、 I CAN (登録商標)法は、本発明の遺伝子検査用マイクロリアクタでは、簡便な温度管 理で済むために好適な増幅技術である。  [0064] The ICAN (Isothermal chimera primer initiated nucleic acid amplification) method, which was recently developed as an improvement of PCR, has the feature that nucleic acid amplification can be performed in a short time under any constant temperature at 50 to 65 ° C. (See Japanese Patent No. 3433929). Therefore, the I CAN (registered trademark) method is a suitable amplification technique because simple temperature control is sufficient in the microreactor for genetic testing of the present invention.
[0065] 核酸増幅反応は、その他の PCR変法であってもよぐ本発明の遺伝子検査用マイ クロリアクタは、流路の設計変更などによりいずれにも対応できる柔軟性がある。いず れの核酸増幅反応を使用する場合にも、その技術の詳細は開示されており、当業者 は容易に導入することができる。  [0065] The nucleic acid amplification reaction may be another PCR modification method, and the microreactor for genetic testing of the present invention is flexible enough to cope with any change in the design of the flow path. When using any nucleic acid amplification reaction, details of the technology are disclosed and can be easily introduced by those skilled in the art.
[0066] 検出部  [0066] Detection unit
本発明の遺伝子検査用マイクロリアクタでは上記核酸増幅部よりも下流側流路に、 増幅された核酸を検出するための検出部が設けられている。微細流路上の検出部に 吸着されたピオチン親和性タンパク質(アビジン、ストレプトアビジン)は、プローブ物 質に標識されたピオチン、または核酸増幅反応に使用されるプライマーの 5'末端に 標識されたピオチンと特異的に結合する。これによりピオチンで標識されたプローブ または増幅された核酸が本検出部でトラップされる。  In the microreactor for gene testing of the present invention, a detection unit for detecting the amplified nucleic acid is provided in the flow path downstream of the nucleic acid amplification unit. Piotin-affinity protein (avidin, streptavidin) adsorbed on the detection section on the microchannel is combined with either the biotin labeled with the probe substance or the 5 'end of the primer used in the nucleic acid amplification reaction. Bind specifically. As a result, the probe labeled with piotin or the amplified nucleic acid is trapped by this detection unit.
[0067] 分離された増幅核酸を検出する方法は特に限定されないが、好ましい態様として 基本的には以下の工程で行なわれる。すなわち本発明の遺伝子検査用マイクロリア クタを用い、(1)検体である DNAまたは検体力 抽出した DNA、あるいは検体もしく は検体力 抽出した RNAから逆転写反応により合成した cDNAと、 5'位置でビォチ ン修飾したプライマーとを、これらの収容部から下流の微細流路へ送液する。核酸増 幅部内の流路で、核酸を増幅する工程、微細流路内で増幅核酸を含む増幅反応液 と変性液とを混合し、増幅された DNAを一本鎖に変性処理する工程、増幅された D NAを一本鎖に変性処理した処理液を、ピオチン親和性タンパク質を吸着させた微 細流路内の検出部に送液し、前記増幅遺伝子をトラップする工程を経て、増幅核酸 をトラップした微細流路内の検出部に、末端を FITC (fluorescein isothiocyanate)で 蛍光標識したプローブ DNAを流し、これを固定ィ匕した遺伝子にハイブリダィズさせる 。(予め増幅遺伝子と蛍光標識したプローブ DNAとをノヽイブリダィズさせたものを検 出部でトラップしてもよい。) [0067] A method for detecting the separated amplified nucleic acid is not particularly limited, but as a preferred embodiment, it is basically carried out in the following steps. That is, using the microreactor for genetic testing of the present invention, (1) DNA as a specimen, DNA extracted from specimen force, or cDNA synthesized from specimen or RNA extracted from specimen force by reverse transcription reaction, and 5 ′ position The primer modified with biotin is fed from these storage parts to the downstream fine channel. Amplifying the nucleic acid in the flow path in the nucleic acid amplification section, mixing the amplification reaction solution containing the amplified nucleic acid and the denaturing solution in the fine flow path, denaturing the amplified DNA into a single strand, amplification The processed solution obtained by denaturing the resulting DNA into a single strand is sent to the detection section in the microchannel adsorbed with the protein that has affinity for piotins, and the amplified nucleic acid is passed through the step of trapping the amplified gene. A probe DNA whose end is fluorescently labeled with FITC (fluorescein isothiocyanate) is allowed to flow through the detection section in the microchannel where the trap is trapped, and this is hybridized to the immobilized gene. (A pre-amplified gene and fluorescently labeled probe DNA may be trapped at the detector.)
( 2)上記微細流路内に FITCに特異的に結合する抗 FITC抗体で表面を修飾した金 コロイド液を流し、これにより DNAにハイブリダィズした FITC修飾プローブに、その 金コロイドを吸着させる。  (2) A colloidal gold solution whose surface is modified with an anti-FITC antibody that specifically binds to FITC is allowed to flow into the microchannel, and the gold colloid is adsorbed to the FITC-modified probe hybridized to DNA.
(3)上記微細流路の金コロイドの濃度を光学的に測定する。  (3) Optically measure the concentration of gold colloid in the fine channel.
[0068] ポリスチレン基板に形成された微細流路内にストレプトアビジンを固定ィ匕する際、特 別な化学的処置を行うことは必要としな 、。単にピオチン親和性タンパク質を増幅反 応部よりも下流の微細流路上に適用して該流路上にピオチン親和性タンパク質を吸 着させるだけでよい。遺伝子検査用のプローブ DNAとして、蛍光標識されたオリゴデ ォキシヌクレオチドが好ましく用いられる。その DNA塩基配列は、検出目的の遺伝 子塩基配列の一部分と相補的である配列が選択される。プローブ DNAの塩基配列 を適切に選択することにより、目的の遺伝子に特異的に結合し、共存する DNA、バ ックグラウンドに影響されることなく高感度の検出が可能となる。  [0068] When streptavidin is immobilized in a microchannel formed on a polystyrene substrate, it is not necessary to perform a special chemical treatment. It is only necessary to apply the piotino-affinity protein on the fine channel downstream of the amplification reaction part and to adsorb the piotin-affinity protein on the channel. As a probe DNA for genetic testing, fluorescently labeled oligonucleotides are preferably used. As the DNA base sequence, a sequence that is complementary to a part of the gene base sequence to be detected is selected. By appropriately selecting the base sequence of the probe DNA, it is possible to detect with high sensitivity without being affected by the coexisting DNA and background by specifically binding to the target gene.
[0069] プローブを標識する蛍光色素として、公知の FITC、 RITC、 NBD、 Cy3、 Cy5など の蛍光物質などを用いることができる。特に FITC力 抗 FITC抗体、例えば金コロイ ド抗 FITC抗マウス IgGを入手できることから望ましい。  [0069] Known fluorescent substances such as FITC, RITC, NBD, Cy3, and Cy5 can be used as the fluorescent dye for labeling the probe. In particular, FITC anti-FITC antibodies, for example, gold colloid anti-FITC anti-mouse IgG are preferable because they are available.
[0070] 蛍光色素 FITCの蛍光を測定することも可能である力 蛍光色素の光褪色、バック グラウンドノイズなどを考慮する必要がある。最終的に可視光により、高感度で測定で きる方式が好ましい。蛍光測光よりも機器が汎用的であり、妨害因子が少なくデータ 処理も容易であるためである。  [0070] The ability to measure the fluorescence of the fluorescent dye FITC It is necessary to consider the light fading of the fluorescent dye, the background noise, and the like. A method that can finally measure with high sensitivity by visible light is preferable. This is because the equipment is more versatile than fluorescence photometry, and there are few interference factors and data processing is easy.
[0071] 本発明の遺伝子検査用マイクロリアクタとして好ましい態様は、  [0071] A preferred embodiment of the microreactor for genetic testing of the present invention is as follows:
一つのチップ内において、少なくとも  Within one chip, at least
検体もしくは検体から抽出した DNAが注入される検体収容部と、  A sample container into which a sample or DNA extracted from the sample is injected;
核酸増幅反応、プローブ結合反応、検出反応などに用いる試薬が収容される収容 される試薬収容部と、 ポジティブコントロールが収容されるポジティブコントロール収容部と、 A reagent storage section for storing reagents used in nucleic acid amplification reaction, probe binding reaction, detection reaction, etc .; A positive control accommodating part for accommodating a positive control;
ネガティブコントロールが収容されるネガティブコントロール収容部と、  A negative control accommodating portion for accommodating a negative control;
プローブ (例えば、核酸増幅反応により増幅された検出対象の遺伝子にハイブリダ ィズさせるプローブ)が収容されるプローブ収容部と、  A probe container that houses a probe (for example, a probe that hybridizes to a gene to be detected amplified by a nucleic acid amplification reaction);
これらの各収容部に連通する微細流路と、  A fine flow path communicating with each of these accommodating portions,
核酸増幅反応を行う増幅部と、  An amplification section for performing a nucleic acid amplification reaction;
その下流側流路にある検出部と  A detection part in the downstream flow path and
廃液貯留部とが設けられ、  And a waste liquid storage part,
これらの各収容部に連通する流路と、  A flow path communicating with each of these accommodating portions,
前記各収容部および流路内の液体を送液する別途のマイクロポンプに接続可能な ポンプ接続部とが設けられており、  A pump connection portion that can be connected to each accommodating portion and a separate micropump for feeding the liquid in the flow path;
前記チップにポンプ接続部を介してマイクロポンプを接続し、試薬収容部に収容さ れた、核酸増幅反応に用いる増幅用試薬の一定量を流路に送液し、送液分割手段 により 3分割し、分割された試薬を、それぞれ流路内で核酸増幅部の直前にある合流 部で  A micropump is connected to the chip via a pump connection part, and a predetermined amount of the amplification reagent used for the nucleic acid amplification reaction stored in the reagent storage part is sent to the flow path, and divided into three by the liquid supply dividing means. The divided reagents are then added to the merging section immediately before the nucleic acid amplification section in the flow path.
(0 検体収容部から送られた検体と混合して、生成させた混合液 (1)、  (0 Mixed liquid (1) generated by mixing with the sample sent from the sample container,
GO ポジティブコントロール収容部力 送られたポジティブコントロールと混合して、生 成させた混合液 (2)、および  GO positive control containment force mixture (2) formed by mixing with the sent positive control, and
(iii) ネガティブコントロール収容部力 送られたネガティブコントロールと混合して、 生成させた混合液 (3)  (iii) Negative control storage capacity Mixture produced by mixing with the sent negative control (3)
を得て、 Get
混合液 (1)および混合液 (2)をさらに送液分割手段により 2分割し、次いで The mixed solution (1) and the mixed solution (2) are further divided into two by the liquid feeding and dividing means, and then
混合液 (1)のみ、混合液 (1)と混合液 (2)の混合物、混合液 (2)のみ、混合液 (3)のみの 各流体を増幅部でそれぞれ増幅反応をさせて、 Only the mixture (1), the mixture of the mixture (1) and the mixture (2), each fluid of the mixture (2) only, and only the mixture (3) are amplified in the amplification section.
核酸増幅部で生成した増幅産物とプローブ収容部に収容されたプローブとをその 下流側流路にある検出部へ送液し、流路内で混合してプローブと結合 (またはハイブ リダィゼーシヨン)させ、この反応生成物に基づいて各々の検出部で検出するとともに 上記検体前処理部および検出部と貫通穴を介して連通しており、マイクロリアクタの 底部に設けられた中空室であり、検体の測定の結果生じる廃液などを収容する密閉 廃液溜りである廃液貯留部を有するように構成されて 、る。 The amplification product generated in the nucleic acid amplification section and the probe stored in the probe storage section are sent to the detection section in the downstream flow path, mixed in the flow path and combined with the probe (or hybridization), Based on this reaction product and detected by each detection unit A waste liquid storage part that is in communication with the specimen pretreatment part and the detection part through a through hole, is a hollow chamber provided at the bottom of the microreactor, and is a sealed waste liquid reservoir that contains waste liquids and the like resulting from the measurement of the specimen. It is comprised so that it may have.
以上、本発明の好ましい実施態様の一例として示された図面を参照しながら、遺伝 子検査を説明したが、本発明は、力かる態様および例に限定されるものではない。  As described above, the genetic test has been described with reference to the drawings shown as an example of a preferred embodiment of the present invention, but the present invention is not limited to a powerful mode and example.

Claims

請求の範囲 The scope of the claims
[1] 一つのチップ内に、少なくとも  [1] At least in one chip
検体もしくは検体から抽出した DNAが注入される検体収容部と、  A sample container into which a sample or DNA extracted from the sample is injected;
核酸増幅反応に用いる試薬が収容される試薬収容部と、  A reagent container for storing a reagent used in the nucleic acid amplification reaction;
ポジティブコントロールが収容されるポジティブコントロール収容部と、  A positive control accommodating part for accommodating a positive control;
ネガティブコントロールが収容されるネガティブコントロール収容部と、  A negative control accommodating portion for accommodating a negative control;
核酸増幅反応を行う増幅部と、  An amplification section for performing a nucleic acid amplification reaction;
その下流側流路にある検出部と  A detection part in the downstream flow path and
これらの各収容部に連通する流路と、  A flow path communicating with each of these accommodating portions,
が設けられた遺伝子検査用マイクロリアクタを用いる遺伝子検査方法であって、 前記試薬収容部に収容された試薬の一定量を流路に送液し、次いで 3分割し、分 割された試薬を、それぞれ流路内で  A gene testing method using a genetic testing microreactor provided with a constant amount of a reagent contained in the reagent containing part is fed to a flow path, and then divided into three parts, and the divided reagents are respectively separated. In the flow path
(0 検体収容部から送られた検体と混合して、生成させた混合液 (1)、  (0 Mixed liquid (1) generated by mixing with the sample sent from the sample container,
(ii) ポジティブコントロール収容部力 送られたポジティブコントロールと混合して、生 成させた混合液 (2)、および  (ii) Force of positive control housing Mixture formed by mixing with sent positive control (2), and
(iii) ネガティブコントロール収容部力 送られたネガティブコントロールと混合して、 生成させた混合液 (3)  (iii) Negative control storage capacity Mixture produced by mixing with the sent negative control (3)
を得て、さらに混合液 (1)および混合液 (2)をそれぞれ 2分割し、次いで  Then, the mixture (1) and the mixture (2) were further divided into two parts,
混合液 (1)のみ、混合液 (1)と混合液 (2)の混合物、混合液 (2)のみ、混合液 (3)のみの 各流体を増幅部でそれぞれ増幅反応をさせて、増幅産物を各々の検出部で検出す ることを特徴とする遺伝子検査方法。  Amplification reaction is performed on the fluid mixture (1) only, the mixture of the mixture (1) and the mixture (2), each fluid of the mixture (2) only, and only the mixture (3) in the amplification section. Is detected by each detection unit.
[2] さらに核酸増幅反応により増幅された検出対象の遺伝子にハイブリダィズさせるプ ローブが収容されるプローブ収容部力 流路に連通して配設されており、 [2] In addition, a probe housing portion is arranged in communication with the flow path for accommodating a probe to be hybridized to the gene to be detected amplified by the nucleic acid amplification reaction,
前記増幅部で生成した増幅産物をそのプローブ収容部に収容されたプローブと流 路内で混合してプローブと結合またはハイブリダィズさせ、この反応生成物に基づ ヽ て対象遺伝子の検出を行い、  The amplification product generated in the amplification part is mixed with the probe accommodated in the probe accommodating part in the flow path to bind or hybridize with the probe, and the target gene is detected based on the reaction product,
ポジティブコントロールおよびネガティブコントロールについても同様に、それらの増 幅産物を、プローブ収容部に収容されたプローブと流路内で結合またはハイブリダィ ズさせ、その反応生成物に基 、て検出を行うように構成されて 、ることを特徴とする、 請求の範囲第 1項に記載の遺伝子検査方法。 Similarly, in the positive control and the negative control, those amplified products are combined or hybridized in the flow path with the probe accommodated in the probe accommodating portion. The genetic test method according to claim 1, wherein the detection is performed based on the reaction product.
一つのチップ内に、少なくとも  At least in one chip
検体もしくは検体から抽出した DNAが注入される検体収容部と、 A sample container into which a sample or DNA extracted from the sample is injected;
核酸増幅反応に用いる試薬が収容される試薬収容部と、 A reagent container for storing a reagent used in the nucleic acid amplification reaction;
ポジティブコントロールが収容されるポジティブコントロール収容部と、 A positive control accommodating part for accommodating a positive control;
ネガティブコントロールが収容されるネガティブコントロール収容部と、 A negative control accommodating portion for accommodating a negative control;
核酸増幅反応を行う増幅部と、 An amplification section for performing a nucleic acid amplification reaction;
その下流側流路にある検出部と A detection part in the downstream flow path and
これらの各収容部に連通する流路と、 A flow path communicating with each of these accommodating portions,
が設けられている遺伝子検査用マイクロリアクタであって、 A microreactor for genetic testing provided with
流路に送液される前記試薬収容部に収容される試薬の一定量を第 1試薬、第 2試 薬及び第 3試薬の 3つに 3分割する第 1送液分割手段と、  A first liquid dividing means for dividing a predetermined amount of the reagent accommodated in the reagent accommodating portion fed into the flow path into three parts, a first reagent, a second reagent and a third reagent;
(0 前記第 1送液分割手段で分割された前記第 1試薬と前記検体収容部から送られ る検体とが混合されて、混合液 (1)を生成する混合液(1)生成部と、  (0) A mixed liquid (1) generating unit that generates a mixed liquid (1) by mixing the first reagent divided by the first liquid dividing unit and the sample sent from the sample storage unit;
GO 前記第 1送液分割手段で分割された前記第 2試薬と前記ポジティブコントロール 収容部から送られるポジティブコントロールとが混合されて、混合液 (2)を生成する混 合液 (2)生成部と、 GO A mixed liquid (2) generating unit that mixes the second reagent divided by the first liquid feeding dividing unit and the positive control sent from the positive control storage unit to generate a mixed liquid (2); ,
(iii) 前記第 1送液分割手段で分割された前記第 3試薬と前記ネガティブコントロール 収容部から送られるネガティブコントロールとが混合されて、混合液 (3)を生成する混 合液 (3)生成部と、を備え、  (iii) Mixed liquid (3) generated by mixing the third reagent divided by the first liquid dividing means and the negative control sent from the negative control storage unit to produce a mixed liquid (3) And comprising
さらに、前記混合液(1)生成部で生成される混合液 (1)を 2分割する第 2送液分割手 段と、前記混合液 (2)生成部で生成される混合液 (2)を 2分割する第 3送液分割手段 と、を備え、 Further, the liquid mixture (1) generated in the generating section is divided into two liquid feeding and dividing means (1), and the liquid mixture (2) generated in the generating section (2) is mixed. A third liquid feeding and dividing means for dividing into two,
前記増幅部は、前記混合液(1)のみを増幅反応させる増幅部と、前記混合液 (1)と前 記混合液 (2)の混合物を増幅反応させる増幅部と、前記混合液 (2)のみを増幅反応 させる増幅部と、前記混合液(3)のみを増幅反応させる増幅部との 4つから構成され 前記検出部は、前記混合液(1)のみを増幅反応させる増幅部で増幅反応されて得ら れる増幅産物を検出する検出部と、前記混合液 (1)と前記混合液 (2)の混合物を増幅 反応させる増幅部で増幅反応されて得られる増幅産物を検出する検出部と、前記混 合液 (2)のみを増幅反応させる増幅部で増幅反応されて得られる増幅産物を検出す る検出部と、前記混合液 The amplification unit includes an amplification unit that amplifies only the mixture (1), an amplification unit that amplifies the mixture of the mixture (1) and the mixture (2), and the mixture (2). It consists of four parts: an amplification part that amplifies only the mixture and an amplification part that amplifies only the mixture (3). The detection unit includes a detection unit that detects an amplification product obtained by an amplification reaction in an amplification unit that amplifies only the mixed solution (1), and a mixture of the mixed solution (1) and the mixed solution (2). A detection unit that detects an amplification product obtained by an amplification reaction in an amplification unit that performs an amplification reaction, and a detection that detects an amplification product obtained by an amplification reaction in an amplification unit that performs an amplification reaction of only the mixture (2). Part and the mixed solution
(3)のみを増幅反応させる増幅部で増幅反応されて得られ る増幅産物を検出する検出部との 4つから構成されていることを特徴とする遺伝子検 查用マイクロリアクタ。 (3) A microreactor for gene detection, characterized in that it comprises four parts: a detection part for detecting an amplification product obtained by an amplification reaction in an amplification part for amplifying only.
[4] さらに、前記各々の検出部に連通して配設され、前記増幅産物にハイブリダィズさ せるプローブを収容するプローブ収容部を有し、  [4] In addition, a probe storage unit that is disposed in communication with each of the detection units and stores a probe that is hybridized to the amplification product,
各々の前記検出部では、前記増幅産物と前記プローブ収容部から送出されるプロ一 ブとが結合またはハイブリダィズされた反応生成物が検出されることを特徴とする請 求の範囲第 3項に記載の遺伝子検査用マイクロリアクタ。  4. The detection range according to claim 3, wherein each of the detection units detects a reaction product in which the amplification product and the probe delivered from the probe storage unit are combined or hybridized. Microreactor for genetic testing.
[5] 前記第 1、第 2及び第 3の送液分割手段は、 [5] The first, second and third liquid feeding and dividing means are
分岐した微細流路と、  Branched microchannels,
予め設定された圧より低い圧では液体の通過を遮断し、予め設定された圧以上の圧 では 液体の通過を許容する送液制御部と、  A liquid feed control unit that blocks passage of liquid at a pressure lower than a preset pressure, and allows passage of liquid at a pressure higher than a preset pressure;
流路内の液体の逆流を防止する逆流防止部と、  A backflow prevention unit for preventing backflow of liquid in the flow path;
から構成され、  Consisting of
分岐した流路内における液体の送液およびその送液量を制御することを特徴とする 請求の範囲第 3項または第 4項に記載の遺伝子検査用マイクロリアクタ。  5. The microreactor for genetic testing according to claim 3 or 4, wherein the liquid feeding and the amount of the liquid feeding in the branched flow path are controlled.
[6] 核酸の検出を光学的に行う検出装置とともにマイクロポンプおよび温度の制御装置 が一体化された装置本体と、この装置本体に装着可能な請求の範囲第 3項乃至第 5 項のいずれかに記載の遺伝子検査用マイクロリアクタとからなり、装置本体に該マイ クロリアクタを装着することにより核酸の測定を行うことを特徴とする遺伝子検査システ ム。 [6] A device main body in which a micropump and a temperature control device are integrated with a detection device that optically detects nucleic acids, and any one of claims 3 to 5 that can be attached to the device main body. A genetic testing system comprising the microreactor for genetic testing described in 1 above, wherein nucleic acid is measured by mounting the microreactor on the main body of the apparatus.
[7] 前記マイクロポンプは、  [7] The micropump
流路抵抗が差圧に応じて変化する第一流路と、  A first channel in which the channel resistance changes according to the differential pressure;
差圧の変化に対する流路抵抗の変化の割合が該第一流路よりも小さい第二流路と、 該第一流路および該第二流路に接続された加圧室と、 A second flow path in which a ratio of a change in flow path resistance to a change in differential pressure is smaller than the first flow path; A pressurizing chamber connected to the first flow path and the second flow path;
該加圧室の内部の圧力を変化させるためのァクチユエータと An actuator for changing the pressure inside the pressurizing chamber;
を備えたことを特徴とする請求の範囲第 6項に記載の遺伝子検査システム。 The genetic test system according to claim 6, further comprising:
PCT/JP2006/321964 2005-11-18 2006-11-02 Gene test method, microreactor for gene test and gene test system WO2007058077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007545192A JPWO2007058077A1 (en) 2005-11-18 2006-11-02 Genetic testing method, genetic testing microreactor, and genetic testing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005334542 2005-11-18
JP2005-334542 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007058077A1 true WO2007058077A1 (en) 2007-05-24

Family

ID=38048466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321964 WO2007058077A1 (en) 2005-11-18 2006-11-02 Gene test method, microreactor for gene test and gene test system

Country Status (2)

Country Link
JP (1) JPWO2007058077A1 (en)
WO (1) WO2007058077A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115732A (en) * 2007-11-09 2009-05-28 Konica Minolta Medical & Graphic Inc Micro-inspection chip, method for micro-inspection chip to determine quantity of a liquid, and inspection method
JP2009133719A (en) * 2007-11-30 2009-06-18 Konica Minolta Medical & Graphic Inc Microinspection chip, liquid quantifying method of microinspection chip and inspection device
WO2009081733A1 (en) * 2007-12-21 2009-07-02 Konica Minolta Medical & Graphic, Inc. Microchip
JP2011220857A (en) * 2010-04-09 2011-11-04 Hitachi High-Technologies Corp Nucleic acid analyzer and analysis method
JP2015213468A (en) * 2014-05-09 2015-12-03 東洋鋼鈑株式会社 Genetic screening apparatus
CN113176401A (en) * 2021-01-15 2021-07-27 北京中科生仪科技有限公司 Substrate for biochip
WO2021245859A1 (en) * 2020-06-03 2021-12-09 株式会社日立ハイテク Nucleic acid analyzer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322099A (en) * 2000-05-16 2001-11-20 Minolta Co Ltd Micro-pump
JP2004108285A (en) * 2002-09-19 2004-04-08 Foundation For The Promotion Of Industrial Science Micro fluid device
JP2005131556A (en) * 2003-10-30 2005-05-26 Konica Minolta Holdings Inc Liquid mixing method, mixing apparatus and mixing system
WO2005108571A1 (en) * 2004-05-07 2005-11-17 Konica Minolta Medical & Graphic, Inc. Micro-reactor for testing, genetic testing apparatus, and genetic testing method
WO2005121308A1 (en) * 2004-06-08 2005-12-22 Konica Minolta Medical & Graphic, Inc. Microreactor enhancing efficiency of liquid mixing and reaction
JP2006211997A (en) * 2005-02-07 2006-08-17 Konica Minolta Medical & Graphic Inc Microreactor for genetic screening
JP2006217818A (en) * 2005-02-08 2006-08-24 Konica Minolta Medical & Graphic Inc Micro reactor for inspecting gene and method for inspecting gene
WO2006109397A1 (en) * 2005-03-31 2006-10-19 Konica Minolta Medical & Graphic, Inc. Backflow prevention structure, and microchip for inspection and inspection device that use the same
JP2006292472A (en) * 2005-04-07 2006-10-26 Konica Minolta Medical & Graphic Inc Micro comprehensive analysis system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322099A (en) * 2000-05-16 2001-11-20 Minolta Co Ltd Micro-pump
JP2004108285A (en) * 2002-09-19 2004-04-08 Foundation For The Promotion Of Industrial Science Micro fluid device
JP2005131556A (en) * 2003-10-30 2005-05-26 Konica Minolta Holdings Inc Liquid mixing method, mixing apparatus and mixing system
WO2005108571A1 (en) * 2004-05-07 2005-11-17 Konica Minolta Medical & Graphic, Inc. Micro-reactor for testing, genetic testing apparatus, and genetic testing method
WO2005121308A1 (en) * 2004-06-08 2005-12-22 Konica Minolta Medical & Graphic, Inc. Microreactor enhancing efficiency of liquid mixing and reaction
JP2006211997A (en) * 2005-02-07 2006-08-17 Konica Minolta Medical & Graphic Inc Microreactor for genetic screening
JP2006217818A (en) * 2005-02-08 2006-08-24 Konica Minolta Medical & Graphic Inc Micro reactor for inspecting gene and method for inspecting gene
WO2006109397A1 (en) * 2005-03-31 2006-10-19 Konica Minolta Medical & Graphic, Inc. Backflow prevention structure, and microchip for inspection and inspection device that use the same
JP2006292472A (en) * 2005-04-07 2006-10-26 Konica Minolta Medical & Graphic Inc Micro comprehensive analysis system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115732A (en) * 2007-11-09 2009-05-28 Konica Minolta Medical & Graphic Inc Micro-inspection chip, method for micro-inspection chip to determine quantity of a liquid, and inspection method
JP2009133719A (en) * 2007-11-30 2009-06-18 Konica Minolta Medical & Graphic Inc Microinspection chip, liquid quantifying method of microinspection chip and inspection device
WO2009081733A1 (en) * 2007-12-21 2009-07-02 Konica Minolta Medical & Graphic, Inc. Microchip
JP2011220857A (en) * 2010-04-09 2011-11-04 Hitachi High-Technologies Corp Nucleic acid analyzer and analysis method
JP2015213468A (en) * 2014-05-09 2015-12-03 東洋鋼鈑株式会社 Genetic screening apparatus
WO2021245859A1 (en) * 2020-06-03 2021-12-09 株式会社日立ハイテク Nucleic acid analyzer
CN113176401A (en) * 2021-01-15 2021-07-27 北京中科生仪科技有限公司 Substrate for biochip
CN113176401B (en) * 2021-01-15 2022-03-01 北京中科生仪科技有限公司 Substrate for biochip

Also Published As

Publication number Publication date
JPWO2007058077A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4784508B2 (en) Inspection microreactor, inspection apparatus, and inspection method
EP1652912A1 (en) Micro-reactor, biological material inspection device, and microanalysis system
US20050196779A1 (en) Self-contained microfluidic biochip and apparatus
EP1806393A1 (en) Microreactor for genetic test
US20050221281A1 (en) Self-contained microfluidic biochip and apparatus
US20060239862A1 (en) Testing chip and micro analysis system
JP2007068413A (en) Microreactor for genetic testing
JP2007071555A (en) Substrate having protein immobilized thereon and microreactor using it
JP2007120399A (en) Micro fluid chip and micro comprehensive analysis system
WO2007058077A1 (en) Gene test method, microreactor for gene test and gene test system
JP2007083191A (en) Microreacter
JP4915072B2 (en) Microreactor
JP2007135504A (en) Microreactor used for nucleic acid inspection and holding beads at amplification site
JP2007136379A (en) Micro-reactor and its manufacturing method
WO2007099736A1 (en) Micro inspection chip, optical detector, and micro comprehensive analytical system
JP5077227B2 (en) Reaction method and analysis device in flow path of microchip
JP4687413B2 (en) Method for mixing two or more liquids in a microchip and a micro total analysis system
JP4548174B2 (en) Microchip for inspection and inspection apparatus using the same
JP2007139501A (en) Filling method of reagent into microchip
JP2006284323A (en) Micro total analysis system
JP2006217818A (en) Micro reactor for inspecting gene and method for inspecting gene
JP2006121935A (en) Micro-reactor for inspecting biosubstance equipped with pretreatment means and waste liquid storage tank
JPWO2006109397A1 (en) Backflow prevention structure, inspection microchip and inspection apparatus using the same
JP2006266925A (en) Micro-total analyzing system
JP2006149379A (en) Microreactor for testing biological substance and biological substance test device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007545192

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822882

Country of ref document: EP

Kind code of ref document: A1