WO2007058021A1 - Animal model and method for producing the same - Google Patents

Animal model and method for producing the same Download PDF

Info

Publication number
WO2007058021A1
WO2007058021A1 PCT/JP2006/319415 JP2006319415W WO2007058021A1 WO 2007058021 A1 WO2007058021 A1 WO 2007058021A1 JP 2006319415 W JP2006319415 W JP 2006319415W WO 2007058021 A1 WO2007058021 A1 WO 2007058021A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
observation
marker
animal model
transplanted
Prior art date
Application number
PCT/JP2006/319415
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Maruyama
Hirotaka Masuda
Yasunori Yoshimura
Hideyuki Okano
James Hirotaka Okano
Yumi Matsuzaki
Original Assignee
Keio University
Chugai Pharmaceutical Co., Ltd.
Central Institute For Experimental Animals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Chugai Pharmaceutical Co., Ltd., Central Institute For Experimental Animals filed Critical Keio University
Priority to JP2007545171A priority Critical patent/JP5288395B2/en
Publication of WO2007058021A1 publication Critical patent/WO2007058021A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases

Definitions

  • the present invention relates to an animal model and a method for producing the same.
  • Endometriosis is an ectopic occurrence of endometrial cells in various organs other than the uterus, particularly in the peritoneum, ovary, and eclampsia, where it proliferates in response to normal female hormone secretion.
  • This disease is one of the most common diseases in which the number of patients is as high as 15% of women of reproductive age, and the incidence is increasing in recent years. And this disease is a typical disease that damages women's quality of life (QOL), and disability at the time of women's social advancement also contributes to the era of low birthrates, so it cannot be overlooked socially. It is one of the diseases.
  • Organic lesions of eclampsia include blueberry spots, ovarian chocolate cysts, gonococcal adenomyosis, and Douglas fistula endometriosis.
  • Treatments include pharmacotherapy and surgery depending on the situation. Treatment is selected.
  • GnRH gonococcal adenomyosis
  • Douglas fistula endometriosis Treatments include pharmacotherapy and surgery depending on the situation. Treatment is selected.
  • GnRH gonococcal adenomyosis
  • Douglas fistula endometriosis Treatments include pharmacotherapy and surgery depending on the situation. Treatment is selected.
  • GnRH gonococcal adenomyosis
  • Douglas fistula endometriosis Treatment is selected.
  • GnRH gonococcal adenomyosis
  • Douglas fistula endometriosis Treatments include pharmacotherapy and surgery depending on the situation. Treatment is selected.
  • the present invention provides an animal model that can more accurately reflect a lesion of human intimal disease, a method for producing the same, and an animal that enables noninvasive observation of transplanted cells. It is an object of the present invention to provide a model and a manufacturing method thereof.
  • the animal model according to the present invention is a non-human vertebrate model having transplanted cells under the kidney capsule, and using the transplanted cell force observation marker, It is characterized by being able to distinguish vertebrate cell forces by invasive observation.
  • the location and z or proliferation of the transplanted cells may then be determined in real time by non-invasively observing the vertebrates.
  • the transplanted cells may be dispersed cells.
  • the transplanted cell may have an observation marker that allows noninvasive observation.
  • the observation marker may be a fluorescent marker or a luminescent marker.
  • the vertebrate may be an immunodeficient mouse, for example NO
  • mice may also be used.
  • the transplanted cells may be derived from human eclampsia intima or may be derived from a lesion of human eclampsia.
  • the present invention also includes a screening method for a therapeutic agent for endometriosis, comprising an administration step of administering a candidate substance for the therapeutic agent for endometriosis to an animal model.
  • the transplanted cells may be derived from a diseased lesion other than human eclampsia.
  • the present invention also includes a therapeutic drug screening method characterized by including an administration step of administering a therapeutic drug candidate substance for the disease to an animal model.
  • a method for producing an animal model according to the present invention is a production method including a transplanting step of transplanting cells under the kidney coating of a vertebrate other than a human, and the cells are placed under the kidney capsule.
  • the vertebrate cells can be distinguished from the vertebrate cells by non-invasive observation. This cell location and Z or proliferation may be determined in real time by non-invasive observation of vertebrates after transplantation under the renal capsule.
  • the cells may also be dispersed when transplanted.
  • this production method may include an introduction step of introducing an observation marker capable of noninvasive observation into cells.
  • the observation marker may be a fluorescent marker or a luminescent marker.
  • this observation marker may be introduced into a cell by introducing an expression vector having a gene encoding the observation marker, and the expression vector may be a viral vector.
  • the production method of the present invention may further include a sorting step of sorting cells into which the observation marker has been introduced using the observation marker as an index before transplantation, or the cells are subjected to the cell before transplantation.
  • the method may further include a second introduction step for introducing the selection marker and a selection step for selecting the cell into which the observation marker is introduced, using the selection marker as an index.
  • the cells to be transplanted may be derived from human eclampsia. Alternatively, it may be derived from a diseased part of a human disease.
  • the pathological animal model of eclampsia associated with the present invention is a vertebrate model other than human, and a lesion derived from cells isolated from the human endometrium is placed under the renal capsule. It has.
  • the vertebrate may be derived from an immunodeficient mouse, for example, a NOG mouse.
  • the present invention also provides a screening method for a therapeutic agent for endometriosis, comprising an administration step of administering a candidate substance for the treatment of endometriosis to such an animal model of endometriosis. Including.
  • the present invention provides a human endometrium with respect to any of the animal models of endometriosis in which cells derived from a human endometrium or a lesion of endometriosis are transplanted. Including a method of reproducing the environment, the method comprising the step of administering an exogenous steroid hormone.
  • FIG. 1 is a diagram showing the results of gross and histological observations of NOG mice transplanted with endometrial dispersed cells in an example of the present invention. Force of transplanted mouse Photo of the isolated uterus (first row) and kidney (second row, the transplant site is indicated by the arrowhead), and H-E staining (third row) and immunostaining of the tissue section of the transplant site An optical micrograph of (fourth column) is shown.
  • FIG. 2 is a diagram showing the results of immunohistological observation of the transplanted site in the examples of the present invention.
  • the immunostained images (first and second rows) and the nuclear stained images (third row) using the antibodies listed in Table 1 are shown as a superimposed image (fourth row).
  • FIG. 3 is a diagram showing a method and results of cyclic hormone treatment applied to endometrial cell transplanted mice in the examples of the present invention.
  • (A) is a schematic diagram showing the process of hormone treatment, which is a combination of constant administration of E and cyclic administration of P to mice after cell transplantation.
  • FIG. 4 is a schematic diagram showing a gene map of a marker gene expression vector introduced into a cell to be transplanted in an example of the present invention.
  • FIG. 5 is a diagram showing the results of observing endometrial cells cultured by introducing a marker gene in Examples of the present invention.
  • (a) shows a fluorescence microscope image of stromal cells (upper) or glandular epithelial cells (lower) on the culture plate.
  • (b) shows an observation image of the whole culture plate, and the intensity of luminescence by luciferase at the concentration of the scale bar on the right side of the figure.
  • FIG. 6 In the example of the present invention, the transplantation site of the abdomen (a, the position of the kidney in the circle) viewed from the outside of the endometrial cell transplanted mouse, the kidney exposed by the laparotomy of the same site (b), FIG. 3 is a diagram showing the results of BLI observation of bioluminescence emitted by the left and right kidneys (c) that were removed.
  • the image power of the luminescence intensity indicated by the density of the scale bar on the right side of each figure is superimposed on the photographic image, and the dark part near the center of the luminescent part has a particularly strong luminescence intensity (about 30000 for a).
  • b shows about 3.5 X 10 5 or more
  • c shows about 12000 or more).
  • FIG. 7 is a BLI observation image (a) of the abdomen of an endometrial cell transplanted mouse subjected to steady hormone treatment in the example of the present invention (a) and a graph showing the result of quantifying the luminescence intensity by analyzing the image (b ).
  • the dark portion near the center of the light-emitting part of the image a shows that the light emission intensity is particularly strong.
  • FIG. 8 A BLI observation image (a) of the abdomen of a mouse and hormonal and antihormone-treated mouse treated with hormones and antihormones (a) and a dra ).
  • the dark part near the center of the light emitting part of the image a shows that the light emission intensity is particularly strong.
  • FIG. 9 Schematic diagram of cyclic hormone treatment applied to endometrial cell transplanted mice in Example of the present invention (a), image of observation results by BLI of transplanted mouse abdomen (b), and results of quantification thereof. It is a graph (c) showing. The dark and colored portions near the center of the light emitting part of the image b indicate that the light emission intensity is particularly strong.
  • the vertebrate model according to the present invention is a vertebrate model having transplanted cells under the kidney capsule, and the transplanted cells can be easily obtained by noninvasive observation of the vertebrate using an observation marker. Can be distinguished from other cells. In this way, if the transplanted cells can be distinguished from the vertebrate recipient animals by non-invasive observation of the vertebrates, the state of the transplanted cells can be observed while the vertebrates remain alive. Will be able to.
  • the cells to be transplanted may be derived from any source, but a disease model animal can be prepared by using cells derived from human lesions.
  • cell morphology is cell clumps, tissue pieces, individually dispersed cells, cells that have been isolated and cultured, cells that have been transplanted into other animals, and cells that have been isolated from animal power through a process. Any cell can be used, but dispersed cells are preferred. This is because the number of cells at the time of transplantation can be made uniform, and the reproducibility of the cell state after transplantation is improved.
  • the number of cells to be transplanted may be a small number of 10 6 or less! However, it is possible to transplant more cells!
  • the site for cell transplantation according to the present invention is under the capsule of the kidney.
  • (3) Reasonable factors such as abundant growth factors are suitable.
  • the use of organs such as kidneys that have a pair of animals on the left and right side means that different grafts can be transplanted and compared to the transplant sites on the left and right organs of the same individual. It is also preferable in that the difference between the resulting transplantation results and the effect on the therapeutic agent can be accurately evaluated.
  • vertebrates other than humans can be used as recipient animals as long as they have a kidney that enables transplantation as described above.
  • Observation markers that can be non-invasively observed may have cells to be transplanted or The transplanted vertebrate cell may have an observation marker.
  • a genetically modified animal in which a gene for an observation marker is integrated into a body cell such as a recombinant mouse into which a luminescent gene has been introduced, a so-called “shining mouse” is used as a recipient animal.
  • a so-called “shining mouse” is used as a recipient animal.
  • it is more preferable to introduce a non-invasive observation marker for the cells to be transplanted because it is possible to select an appropriate observation marker and an observation method corresponding to it in transplantation.
  • a fluorescent marker such as GFP
  • the site where the cells are transplanted can be easily and non-invasively optically observed.
  • a luminescent marker such as luciferase
  • BBI bioluminescence imaging
  • proliferation can be determined in real time by non-invasive observation of the transplanted vertebrate.
  • observation methods such as X-ray computed tomography (computerized tomography), such as radioisotopes used as contrast agents, can be used as observation markers to make the transplanted site observable. tomography, CT) 'Magnetic resonance imaging ⁇ MRI ⁇ % ⁇
  • PET positron emission tomography
  • an expression vector having a gene encoding the observation marker is used in the cell.
  • a method for infecting a virus is mentioned.
  • the expression vector for example, a virus vector is suitable in terms of high infection efficiency, but other commonly used expression vectors such as a plasmid vector and a cosmid vector can also be used.
  • the observation marker is a protein as well as other substances, general introduction methods for introducing foreign substances into living cells, such as the lipofusion method and the electoral position method, can also be used to introduce observation markers. Can be used for
  • the transplanted cells remain in the state where donor organisms and patient force are collected, or although it may be used in the state after the introduction of the observation marker as described above, an operation for selecting cells having the observation marker can be added at the time of transplantation.
  • the marker for selection may be the same as the aforementioned marker for observation, or a different marker may be used.
  • a selection marker it is preferable to use a visualization marker such as a luminescent marker or a fluorescent marker for the same reason as in the case of the marker for observation described above.
  • a fluorescent marker is used, flow cytometry can be used for sorting.
  • other substances that can be used as selection markers such as surface antigens and magnetic beads, can also be used as a suitable selection method, such as cell panning and magnetic separation methods. Can be used in combination
  • the method for introducing the selection marker into the cell can be the same method as the method for introducing the observation marker described above.
  • the step of introducing the selection marker may be performed simultaneously by the same method as the introduction of the observation marker, or may be performed separately by the same or different method.
  • the marker is a protein
  • the ability to separately infect cells with two types of expression vectors having the genes of each marker separately Co-infection of both at the same time This is preferable because both markers are more likely to coexist in the same cell.
  • the introduction is performed simultaneously, for example, a single expression vector having both marker genes can be constructed and cells can be infected with it. This method is more preferable because the introduction process is simpler and the cells selected using the selection marker have an observation marker.
  • an animal model of the disease can be prepared according to the present invention. Then, by continuously breeding the created animal model and observing the transplantation site, it is possible to noninvasively follow the changes in lesions derived from the disease. For example, the details to be transplanted
  • an animal model of eclampsia can be produced, and by using cells derived from other diseases such as tumors, tumor animal models can be produced. Therefore, it is possible to easily observe a lesion derived from such a disease non-invasively.
  • the vertebrate cell force can be distinguished by non-invasive observation of the transplanted cell force vertebrate using the observation marker. The condition can be observed continuously and quantitatively in a non-invasive manner. Furthermore, if the lesion or the entire animal is treated, and changes in the transplantation site are traced to the treatment, analysis of the effectiveness of the treatment and basic research for investigating the cause of the disease will be conducted. Yes.
  • a cyclic hormone that mimics the change in hormone concentration according to the menstrual cycle by adjusting the dose and timing.
  • the menstrual cycle-like hormonal environment can be continuously reproduced, and as a result, changes in the lesion similar to changes in the menstrual cycle in the endometrium can be analyzed.
  • an animal model of endometriosis drug candidates is administered to such animal models and screening is performed for candidate substances that can improve lesions, development of endometriosis drugs Can be useful.
  • the animal model of the present invention has the advantage of being able to observe a lesion in real time in a non-invasive manner, and thus a disease state that requires continuous tracking over a long period of time.
  • a model for example, a tumor cell derived from a tumor patient is transplanted, it is extremely useful as a model of a disease state of a tumor.
  • a method for producing such an animal model is also included in the scope of the present invention. It can be provided for the elucidation of the cause of the corresponding disease and the development of therapeutic methods and drugs. For example, if a tumor therapeutic drug candidate substance is administered to an animal model of a tumor prepared as described above, and screening is performed for a substance that can improve the lesion, It can be used to develop therapeutic drugs.
  • the endometriosis or pathological animal model of endometriosis which has a diseased part derived from cells from which human endometriosis or endometriotic lesion force has been isolated, under the kidney capsule, has no marker introduced. However, it can be used effectively.
  • This pathologic model shows that by administering periodic exogenous steroid hormones, the isolated endometrial cell force reconstructed tissue shows changes similar to the endometrial menstrual cycle change, i.e. This is the first model animal to reproduce the human endometrial environment.
  • exogenous steroid hormones such as estrogen and progesterone should be administered by various methods such as subcutaneous and intraperitoneal injection, dietary administration, and sustained release subcutaneous transplantation. Can do.
  • an analysis such as a histological observation is performed on the transplantation site of an animal model that reproduces the menstrual cycle-like hormonal environment as described above by adjusting the hormone administration, it is possible to analyze eclampsia.
  • a substance that can improve the lesion by administering a candidate drug for treating endometriosis to the model animal for endometriosis, a substance that causes regression of the lesion, or a periodic
  • a substance that becomes resistant to mon administration and does not respond to hormones it can be used to develop endometriosis drugs.
  • NOG NOD / SCID / y nuU mice (Laboratory Animal Central Laboratory, Kaoru Kawasaki) 10% bent
  • the excised kidney was embedded in Tissue-Tek OCT compound (Sakura Finetech, Califol, U.S., USA), frozen, and 6 ⁇ m thick using a cryostat (Leica Microsystems, Germany's Wetzlar). Sliced continuously. A portion of the obtained frozen section was subjected to tissue observation with a hematoxylin 'eosin (HE) staining solution (Sigma-Aldrich), and the remaining sections obtained on the slide glass were summarized in Table 1.
  • HE hematoxylin 'eosin
  • Table 1 The primary antibodies shown in the above were used in combination, followed by immunostaining according to the most appropriate method shown below.
  • the stained sections were washed and secondary fluorescently stained with Alexa Fluor 488 (for green fluorescence) or Alexa Fluor 568 (for red fluorescence) labeled secondary antibody (Molecular Probes, Inc., Oregon, USA). Furthermore, the sections were counterstained with the nuclear stain Hoechst 33258 (Sigma) for 5 minutes.
  • the sections after each staining were encapsulated with VECTAS HIELD (Vector Laboratories, California, USA) and examined with a DMIRE2 inverted fluorescence microscope (Leica Microsystems). Images were captured with a VB-700 CCD camera (Keyence Corp., Osaka City). I took it in.
  • Endometrial dispersed cells prepared by the same method as described above were cultured, and SDEC on a culture plate grown to a confluency of about 60% was compared with a multiplicity of infection of 1: 1.
  • the marker gene expression vector solution was added so as to maintain the ratio, and the culture was further continued.
  • stromal cells and glandular epithelial cells on the culture plate were examined with an inverted fluorescence microscope, Nikon ECLIPSE TS100 (Nikon, Tokyo), both of them were observed to emit fluorescence and bioluminescence (Fig. 5). ).
  • the cells on the plate are collected and transferred to HBSS + medium containing 2 ⁇ g Zml of Probidium Iodine (PI). After staining only dead cells, the MoFlo cell sorter (Cytomation , Colorado, USA). Sorted cells that were negative for PI staining and positive for Venus fluorescence were used as live cells in which the marker gene had been introduced into SDEC in the following transplantation experiments.
  • PI Probidium Iodine
  • the sorted gene-transferred cells were transplanted under the kidney capsule of ovariectomized NOG mice in the same manner as described above, and the mice were bred.
  • a bioluminescent substrate D-luciferin (Sumisho Bioscience, Tokyo) was intraperitoneally administered to the transplanted mice under anesthesia by administration of 2% isoflurane (Merck's Whey, Osaka) at a dose of 150mgZkg body weight.
  • isoflurane Merck's Whey, Osaka
  • the abdomen of the transplanted mouse in the living state was observed using a BLI viewing image (Xenogen-IVIS 100 cooled and CD optical macroscopic imaging system) (Sumisho Bioscience), and bioluminescence was imaged. .
  • BLI viewing image Xenogen-IVIS 100 cooled and CD optical macroscopic imaging system
  • a constant hormonal treatment was performed by subcutaneous transplantation.
  • an anti-hormone was administered to some of these by daily subcutaneous injection of estrogen receptor antagonist ICI 182,780 (Tocris Cookson Inc., Missouri, USA) at a dose of 100 ⁇ g / ml. Processed.
  • ICI 182,780 Tocris Cookson Inc., Missouri, USA
  • Constant hormone treatment was performed by subtransplantation. In addition, a part of them was subjected to periodic hormonal treatment by subcutaneous injection of 1 mg dose of P preparation in the same manner as described above ( Figure 9a).
  • the animal model of the present invention is particularly suitable for continuously observing the kinetics of transplanted cells over a long period of time. For example, if cell transplantation derived from the eclampsia is performed, the pathology of endometriosis It was possible to create an animal model that reproduced the above. Furthermore, it is possible to observe such an animal model non-invasively, continuously and quantitatively with the method of the present invention, elucidating the etiology of a disease from which transplanted cells are derived, and therapeutic agents. For example, in the case of an animal model of eclampsia, it is clear that it is possible to provide an animal model that can track changes in the pathology according to the administration of hormones and antihormonal agents. became.
  • an animal model that can more accurately reflect a lesion of human endometriosis, a method for producing the same, an animal model that enables noninvasive observation of transplanted cells, and a method for producing the animal model. Can be provided.

Abstract

It is intended to provide an animal model which can reflect a lesion site of human endometriosis more faithfully, a method for producing the same, an animal model which enables noninvasive observation of a transplanted cell, and a method for producing the same. The animal model which has a uniform endometriosis lesion can be produced by introducing an expression vector containing a gene encoding an observation marker such as luciferase into a cell isolated from human, transplanting a cell which has come to express the observation marker under the renal capsule of an immunodeficient mouse such as an NOG mouse, and isolating the cell to be transplanted from the endometrium or a focal site of endometriosis.

Description

明 細 書  Specification
動物モデルとその作製方法  Animal model and production method
技術分野  Technical field
[0001] 本発明は、動物モデル、およびその作製方法に関する。  [0001] The present invention relates to an animal model and a method for producing the same.
背景技術  Background art
[0002] 子宮内膜症は、子宮内膜細胞が子宮以外のさまざまな臓器、特に腹膜、卵巣内部 、子宫筋層内で異所性に発生し、そこで通常の女性ホルモン分泌に反応して増殖 · 出血するエストロゲン依存性疾患であり、その主症状は、月経痛、下腹部痛、腰痛な どはじめとする様々な疼痛と不妊症である。本症は、その患者数が生殖年齢女性の 1 5%にものぼる頻度の高い疾患で、近年罹患率が増加している現代病の一つである 。そして本症は女性の QOL (生活の質)を傷害する代表的な疾患であり、女性の社 会進出時の障害ゃ少産少子時代の一因にもなることから、社会的にも看過できない 疾患の一つである。  Endometriosis is an ectopic occurrence of endometrial cells in various organs other than the uterus, particularly in the peritoneum, ovary, and eclampsia, where it proliferates in response to normal female hormone secretion. · It is an estrogen-dependent disease that bleeds, and its main symptoms are various pains and infertility, including menstrual pain, lower abdominal pain, and back pain. This disease is one of the most common diseases in which the number of patients is as high as 15% of women of reproductive age, and the incidence is increasing in recent years. And this disease is a typical disease that damages women's quality of life (QOL), and disability at the time of women's social advancement also contributes to the era of low birthrates, so it cannot be overlooked socially. It is one of the diseases.
[0003] 子宫内膜症の器質的病変として、ブルーべリースポット、卵巣チョコレート嚢胞、子 宫腺筋症、ダグラス窩子宫内膜症などがあり、治療としては、状況に応じて薬物療法 および外科的治療が選択される。薬物療法としては、 GnRH (生殖腺刺激ホルモン 放出ホルモン)ァゴニストが第一選択薬であるが、その副作用より長期投与は難しい 。また本症の疼痛に対しては、鎮痛剤および低用量経口避妊薬 (LOC)の有効性が 認められているが、あくまで対症療法である。外科的治療としては腹腔鏡下手術によ る病巣除去手術が一般的であるが、微小病変の完全除去は困難である。このように V、ずれの治療も根治療法が確立されて!、な 、ため、本症は患者の閉経まで再発を 繰り返す。そのため、早期診断法と治療法の確立が期待される。  [0003] Organic lesions of eclampsia include blueberry spots, ovarian chocolate cysts, gonococcal adenomyosis, and Douglas fistula endometriosis. Treatments include pharmacotherapy and surgery depending on the situation. Treatment is selected. For drug therapy, GnRH (gonadotropic hormone-releasing hormone) agonist is the first-line drug, but its long-term administration is difficult due to its side effects. In addition, analgesics and low-dose oral contraceptives (LOC) have been shown to be effective for this disease, but they are only symptomatic. As surgical treatment, lesion removal surgery by laparoscopic surgery is common, but complete removal of microlesions is difficult. In this way, radical treatment has been established for the treatment of V and misalignment! As a result, this disease recurs until the patient's menopause. Therefore, establishment of early diagnosis and treatment is expected.
[0004] 月経に伴い周期的な変化をする性ホルモンの影響のほかに、ストレス、環境ホルモ ンの影響による遺伝子構造変化と生体防御システムの破綻、あるいは環境ホルモン そのものの作用等によっても誘発されると考えられているがその原因は一様ではなく 、発生機序も不明な点は多い。  [0004] In addition to the effects of sex hormones that change periodically with menstruation, they are also induced by changes in the genetic structure due to the effects of stress, environmental hormones, the breakdown of the defense system, or the action of environmental hormones themselves However, the cause is not uniform, and there are many unclear points about the mechanism of occurrence.
[0005] 一方、子宮内膜症は異所性に発生して増殖と剥脱を繰り返すことから、子宮内膜症 細胞の幹細胞的性質も示唆されている。臨床的な背景とともにそのユニークな生物 学的特性力も基礎的研究は盛んである。内膜症を自然発生する動物が一部の霊長 類にかぎられることより、子宫内膜症の研究ツールとしての in vivoモデルはヒト子宫内 膜移植を主とした様々な動物モデルが作製されている。例えば、ヒトの子宮内膜の組 織片を皮下に異種移植して、ヒト子宮内膜組織に類似した組織を再構築する実験が ?T れ 7こ (ί列 ま、 Rui Matsuura— ¾awada, Takashi Murakami, Yuka uzawa, et al. Hu man Reproduction, 2005, 20(6): 1477-1484を参照)。 [0005] On the other hand, endometriosis occurs ectopically and repeats proliferation and exfoliation. The stem cell nature of the cells has also been suggested. Fundamental research is active on its unique biological characteristics as well as its clinical background. As animals that naturally develop endometriosis are limited to some primates, in vivo models as a research tool for eclampsia have been developed as various animal models mainly for human eclampsia intimal transplantation. Yes. For example, an experiment to reconstruct a tissue similar to human endometrial tissue by xenografting a human endometrial tissue piece subcutaneously is possible. (Tu Rai, Rui Matsuura—¾awada, Takashi Murakami, Yuka uzawa, et al. Hu man Reproduction, 2005, 20 (6): 1477-1484).
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力し、これまでの動物モデルでは、移植された糸且織 ·細胞の量が一定しないこと、 i n vivo現象の再現が不安定であること、長期間の非侵襲的かつリアルタイムな構築組 織のモニタリングが難しいこと、などの問題点があった。このように有効な in vivoモデ ルがないことにより、 in vivo環境での内膜症の動態変化の解明や治療薬のスクリー- ングといった臨床に則した研究は困難な状況であった。  [0006] However, in conventional animal models, the amount of transplanted yarn and tissue cells is not constant, the in vivo phenomenon is unstable to reproduce, long-term non-invasive and real-time There were problems such as difficulty in monitoring the organization. Due to the lack of such an effective in vivo model, clinical studies such as elucidation of changes in endometriosis kinetics and screening of therapeutic agents in an in vivo environment have been difficult.
[0007] 本発明は、上記の問題に鑑み、ヒト内膜症の病変部をより忠実に反映し得る動物モ デル、及びその作製方法、並びに、移植細胞の非侵襲的観察が可能である動物モ デル、及びその作製方法を提供することを目的とするものである。  [0007] In view of the above problems, the present invention provides an animal model that can more accurately reflect a lesion of human intimal disease, a method for producing the same, and an animal that enables noninvasive observation of transplanted cells. It is an object of the present invention to provide a model and a manufacturing method thereof.
課題を解決するための手段  Means for solving the problem
[0008] 上記課題を解決すべく発明者らは、子宮内膜症の病因究明や治療薬開発のため に有用であるような病態動物モデルの作製に鋭意取り組み、 NOGマウスの腎膜下に ルシフェラーゼ ·マーカーの導入された、ヒト子宮内膜に由来する分散細胞を移植す ることにより、非侵襲的に観察できるヒト子宮内膜環境を生体内で忠実に再現する子 宫内膜症モデルマウスの開発に成功した。このようにして、ヒト内膜症の病変部をより 忠実に反映し得る動物モデル、及び移植細胞の非侵襲的観察が可能である動物モ デルを開発し、以下のような本発明の完成に至った。  [0008] In order to solve the above problems, the inventors diligently worked on the creation of a pathological animal model that would be useful for investigation of the etiology of endometriosis and development of therapeutic agents, and luciferase was placed under the renal membrane of NOG mice. By transplanting dispersed cells derived from the human endometrium with the marker introduced, the human endometrial environment mouse that faithfully reproduces the human endometrial environment that can be observed noninvasively in vivo Successfully developed. In this way, an animal model that can more accurately reflect the lesion of human endometriosis and an animal model that enables non-invasive observation of transplanted cells were developed, and the present invention as described below was completed. It came.
[0009] すなわち本発明に係る動物モデルは、移植された細胞を腎被膜下に有する、ヒト以 外の脊椎動物モデルであって、移植された細胞力 観察マーカーを用いて、脊椎動 物の非侵襲的観察によって脊椎動物の細胞力 区別できることを特徴とするものであ る。そして移植された細胞の場所及び zまたは増殖は、脊椎動物を非侵襲的に観察 すること〖こよって、リアルタイムに判断されてもよい。また移植された細胞は、分散され た細胞であってもよい。非侵襲的観察が可能であるような観察マーカーは、移植され た細胞が有していてもよい。そして観察マーカーは、蛍光マーカーまたは発光マーカ 一であってもよい。またこの脊椎動物は、免疫不全マウスであってもよぐ例えば NO[0009] That is, the animal model according to the present invention is a non-human vertebrate model having transplanted cells under the kidney capsule, and using the transplanted cell force observation marker, It is characterized by being able to distinguish vertebrate cell forces by invasive observation. The The location and z or proliferation of the transplanted cells may then be determined in real time by non-invasively observing the vertebrates. The transplanted cells may be dispersed cells. The transplanted cell may have an observation marker that allows noninvasive observation. The observation marker may be a fluorescent marker or a luminescent marker. The vertebrate may be an immunodeficient mouse, for example NO
G (NOD/SCID/ y nuU)マウスであってもよい。 G (NOD / SCID / y nuU ) mice may also be used.
c  c
[0010] 一方移植された細胞は、ヒトの子宫内膜に由来するものであってもよぐあるいはヒト の子宫内膜症の病変部に由来するものであってもよい。これらの場合本発明は、動 物モデルに対して、子宮内膜症治療薬候補物質を投与する投与工程を含むことを 特徴とする、子宮内膜症治療薬のスクリーニング方法も含む。あるいはまた、移植さ れた細胞は、ヒトの子宫内膜症以外の病気の病変部に由来するものであってもよい。 この場合本発明は、動物モデルに対してその病気の治療薬候補物質を投与する投 与工程を含むことを特徴とする、治療薬のスクリーニング方法も含む。  [0010] On the other hand, the transplanted cells may be derived from human eclampsia intima or may be derived from a lesion of human eclampsia. In these cases, the present invention also includes a screening method for a therapeutic agent for endometriosis, comprising an administration step of administering a candidate substance for the therapeutic agent for endometriosis to an animal model. Alternatively, the transplanted cells may be derived from a diseased lesion other than human eclampsia. In this case, the present invention also includes a therapeutic drug screening method characterized by including an administration step of administering a therapeutic drug candidate substance for the disease to an animal model.
[0011] 次に、本発明に係る動物モデルの作製方法は、細胞をヒト以外の脊椎動物の腎被 膜下に移植する移植工程を含む作製方法であって、その細胞が、腎被膜下に移植 された後に、脊椎動物を非侵襲的に観察することによって、脊椎動物の細胞から区 別され得ることを特徴とする。この細胞の位置及び Zまたは増殖は、腎被膜下に移植 された後に、脊椎動物の非侵襲的観察によって、リアルタイムに判断されてもよい。ま たこの細胞は、移植される際に分散されていてもよい。またこの作製方法は、細胞に 、非侵襲的観察が可能な観察マーカーを導入する導入工程を含んでもよい。そして 観察マーカーは、蛍光マーカーまたは発光マーカーであってもよい。さらにこの観察 マーカーは、その観察マーカーをコードする遺伝子を有する発現ベクターを導入す ることにより、細胞に導入されてもよぐその発現ベクターは、ウィルスベクターであつ てもよい。加えて本発明の作製方法は、移植の前に、観察マーカーを指標として、そ の観察マーカーが導入された細胞を選別する選別工程をさらに含んでもよぐあるい は、移植の前に細胞に選別マーカーを導入する第 2の導入工程と、その選別マーカ 一を指標として、観察マーカーが導入された細胞を選別する選別工程をさらに含ん でもよい。そして移植される細胞は、ヒトの子宫内膜に由来するものであってもよぐあ るいは、ヒトの病気の病変部に由来するものであってもよい。 [0011] Next, a method for producing an animal model according to the present invention is a production method including a transplanting step of transplanting cells under the kidney coating of a vertebrate other than a human, and the cells are placed under the kidney capsule. After being transplanted, the vertebrate cells can be distinguished from the vertebrate cells by non-invasive observation. This cell location and Z or proliferation may be determined in real time by non-invasive observation of vertebrates after transplantation under the renal capsule. The cells may also be dispersed when transplanted. In addition, this production method may include an introduction step of introducing an observation marker capable of noninvasive observation into cells. The observation marker may be a fluorescent marker or a luminescent marker. Further, this observation marker may be introduced into a cell by introducing an expression vector having a gene encoding the observation marker, and the expression vector may be a viral vector. In addition, the production method of the present invention may further include a sorting step of sorting cells into which the observation marker has been introduced using the observation marker as an index before transplantation, or the cells are subjected to the cell before transplantation. The method may further include a second introduction step for introducing the selection marker and a selection step for selecting the cell into which the observation marker is introduced, using the selection marker as an index. The cells to be transplanted may be derived from human eclampsia. Alternatively, it may be derived from a diseased part of a human disease.
[0012] 一方、本発明に係る子宫内膜症の病態動物モデルは、ヒト以外の脊椎動物モデル であって、ヒトの子宮内膜から単離された細胞に由来する病変部を腎被膜下に有す るものである。この脊椎動物は、免疫不全マウスに由来するものであってもよぐ例え ば NOGマウスに由来するものであってもよい。そして本発明は、このような子宫内膜 症の病態動物モデルに対して子宮内膜症治療薬候補物質を投与する投与工程を 含むことを特徴とする、子宮内膜症治療薬のスクリーニング方法も含む。  On the other hand, the pathological animal model of eclampsia associated with the present invention is a vertebrate model other than human, and a lesion derived from cells isolated from the human endometrium is placed under the renal capsule. It has. The vertebrate may be derived from an immunodeficient mouse, for example, a NOG mouse. The present invention also provides a screening method for a therapeutic agent for endometriosis, comprising an administration step of administering a candidate substance for the treatment of endometriosis to such an animal model of endometriosis. Including.
[0013] さらに本発明は、ヒトの子宮内膜もしくは子宮内膜症の病変部に由来する細胞が移 植された、前記いずれかの子宫内膜症の動物モデルに対して、ヒト子宮内膜環境を 再現する方法を含み、この方法は、外因性性ステロイドホルモンを投与する投与工程 を含むことを特徴とする。  [0013] Further, the present invention provides a human endometrium with respect to any of the animal models of endometriosis in which cells derived from a human endometrium or a lesion of endometriosis are transplanted. Including a method of reproducing the environment, the method comprising the step of administering an exogenous steroid hormone.
[0014] [関連文献とのクロスリファレンス]  [0014] [Cross-reference with related literature]
本願は、 2005年 11月 16日付けで出願した特願 2005— 332113号に基づく優先 権を主張する。この文献を本明細書に援用する。  The present application claims priority based on Japanese Patent Application No. 2005-332113 filed on November 16, 2005. This document is incorporated herein by reference.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の実施例において、子宮内膜分散細胞が移植された NOGマウスの肉 眼所見及び組織学的観察の結果を示す図である。移植マウス力 摘出された子宮( 第 1列)及び腎臓の写真 (第 2列、矢頭で移植部位を示す)、ならびに、移植部位の 組織切片の、 H— E染色 (第 3列)及び免疫染色 (第 4列)の光学顕微鏡写真が示さ れている。  FIG. 1 is a diagram showing the results of gross and histological observations of NOG mice transplanted with endometrial dispersed cells in an example of the present invention. Force of transplanted mouse Photo of the isolated uterus (first row) and kidney (second row, the transplant site is indicated by the arrowhead), and H-E staining (third row) and immunostaining of the tissue section of the transplant site An optical micrograph of (fourth column) is shown.
[図 2]本発明の実施例において、移植部位を免疫組織ィ匕学的に観察した結果を示す 図である。表 1に記載した各抗体を使用した免疫染色像 (第 1列および第 2列)と核染 色像 (第 3列)それらの重ね合わせ像 (第 4列)が示されて 、る。  FIG. 2 is a diagram showing the results of immunohistological observation of the transplanted site in the examples of the present invention. The immunostained images (first and second rows) and the nuclear stained images (third row) using the antibodies listed in Table 1 are shown as a superimposed image (fourth row).
[図 3]本発明の実施例において、子宮内膜細胞移植マウスに施した周期的ホルモン 処理の方法及び結果を表す図である。(a)はホルモン処理の工程を表す模式図であ り、細胞移植後のマウスに対する、 Eの恒常的投与と Pの周期的投与の組み合わせ  FIG. 3 is a diagram showing a method and results of cyclic hormone treatment applied to endometrial cell transplanted mice in the examples of the present invention. (A) is a schematic diagram showing the process of hormone treatment, which is a combination of constant administration of E and cyclic administration of P to mice after cell transplantation.
2 4  twenty four
による、月経周期を模倣したホルモン環境の作成を表している。(b)は、細胞移植後 11週間目に屠殺したマウスの腎臓の肉眼所見 (0及びその移植部位の拡大図 (ii)、並 びに移植部位の組織切片の光学顕微鏡による観察像 (iii)及び、その中の四角枠部 分の拡大図 (iv)を表して 、る。 Represents the creation of a hormonal environment that mimics the menstrual cycle. (B) Macroscopic findings of the kidneys of mice sacrificed 11 weeks after cell transplantation (0 and an enlarged view of the transplant site (ii), In addition, an observation image (iii) of the tissue section at the transplantation site by an optical microscope and an enlarged view (iv) of the rectangular frame portion therein are shown.
[図 4]本発明の実施例において、移植される細胞に導入されたマーカー遺伝子発現 ベクターの遺伝子マップを表す模式図である。  FIG. 4 is a schematic diagram showing a gene map of a marker gene expression vector introduced into a cell to be transplanted in an example of the present invention.
[図 5]本発明の実施例において、マーカー遺伝子を導入して培養した子宮内膜細胞 を観察した結果を表す図である。 (a)は培養プレート上の間質細胞 (上段)または腺 上皮細胞 (下段)の蛍光顕微鏡観察像を示す。 (b)は培養プレート全体の観察像を 示し、図の右側のスケールバーの濃度でルシフェラーゼによる発光の強度を示した。  FIG. 5 is a diagram showing the results of observing endometrial cells cultured by introducing a marker gene in Examples of the present invention. (a) shows a fluorescence microscope image of stromal cells (upper) or glandular epithelial cells (lower) on the culture plate. (b) shows an observation image of the whole culture plate, and the intensity of luminescence by luciferase at the concentration of the scale bar on the right side of the figure.
[図 6]本発明の実施例において、子宮内膜細胞移植マウスの外部から見た腹部の移 植部位 (a、円内が腎臓の位置)、同じ部位の開腹により露出した腎臓 (b)、および摘 出した左右の腎臓 (c)が発する生物発光を、 BLIにより観察した結果を表す図である 。各図の右側のスケールバーの濃度で示される発光強度の画像力 写真の画像と重 ねて表示されており、発光部位中心付近の色の濃い部分は、発光強度が特に強い( aでは約 30000以上、 bでは約 3.5 X 105以上、 cでは約 12000以上)ことを示している。 [Fig. 6] In the example of the present invention, the transplantation site of the abdomen (a, the position of the kidney in the circle) viewed from the outside of the endometrial cell transplanted mouse, the kidney exposed by the laparotomy of the same site (b), FIG. 3 is a diagram showing the results of BLI observation of bioluminescence emitted by the left and right kidneys (c) that were removed. The image power of the luminescence intensity indicated by the density of the scale bar on the right side of each figure is superimposed on the photographic image, and the dark part near the center of the luminescent part has a particularly strong luminescence intensity (about 30000 for a). Above, b shows about 3.5 X 10 5 or more, and c shows about 12000 or more).
[図 7]本発明の実施例において、定常的ホルモン処理をした子宮内膜細胞移植マウ スの腹部の BLI観察画像 (a)、ならびに画像の解析により発光強度を定量した結果 を表すグラフ (b)である。 aの画像の発光部位中心付近で色の濃い部分は、発光強 度が特に強 、ことを示して 、る。 FIG. 7 is a BLI observation image (a) of the abdomen of an endometrial cell transplanted mouse subjected to steady hormone treatment in the example of the present invention (a) and a graph showing the result of quantifying the luminescence intensity by analyzing the image (b ). The dark portion near the center of the light-emitting part of the image a shows that the light emission intensity is particularly strong.
[図 8]本発明の実施例にぉ ヽて、ホルモン及び抗ホルモン処理をした子宫内膜細胞 移植マウスの腹部の BLI観察画像 (a)、ならびに発光強度の定量の結果を表すダラ フ(b)である。 aの画像の発光部位中心付近で色の濃い部分は、発光強度が特に強 いことを示している。  [Fig. 8] A BLI observation image (a) of the abdomen of a mouse and hormonal and antihormone-treated mouse treated with hormones and antihormones (a) and a dra ). The dark part near the center of the light emitting part of the image a shows that the light emission intensity is particularly strong.
[図 9]本発明の実施例において、子宮内膜細胞移植マウスに施した周期的ホルモン 処理の模式図(a)、ならびに移植マウス腹部の BLIによる観察結果の画像 (b)及び その定量の結果を表すグラフ(c)である。 bの画像の発光部位中心付近で色の濃 、 部分は、発光強度が特に強いことを示している。  [Fig. 9] Schematic diagram of cyclic hormone treatment applied to endometrial cell transplanted mice in Example of the present invention (a), image of observation results by BLI of transplanted mouse abdomen (b), and results of quantification thereof. It is a graph (c) showing. The dark and colored portions near the center of the light emitting part of the image b indicate that the light emission intensity is particularly strong.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
= = =移植される細胞 = = = 本発明に係る脊椎動物モデルは、移植された細胞を腎被膜下に有する脊椎動物 モデルであり、この移植された細胞は、観察マーカーを用いた脊椎動物の非侵襲的 観察によって、容易に脊椎動物の細胞から区別され得る。このように、脊椎動物を非 侵襲的に観察することによって、移植された細胞を脊椎動物の受容動物と区別でき ると、脊椎動物が生きた状態のまま、移植された細胞の状態を観察することができる ようになる。 = = = Cells to be transplanted = = = The vertebrate model according to the present invention is a vertebrate model having transplanted cells under the kidney capsule, and the transplanted cells can be easily obtained by noninvasive observation of the vertebrate using an observation marker. Can be distinguished from other cells. In this way, if the transplanted cells can be distinguished from the vertebrate recipient animals by non-invasive observation of the vertebrates, the state of the transplanted cells can be observed while the vertebrates remain alive. Will be able to.
[0017] 移植される細胞は、その由来は何でもよいが、特にヒトの病変部由来の細胞を用い ることにより、病態モデル動物を作製することができる。また、細胞の形態は細胞塊、 組織片、個々に分散した細胞、単離後一且培養された細胞、他の動物に移植される t 、う過程を経て再びその動物力も単離された細胞など、どのようなものでもよ 、が、 分散した細胞が好ましい。それは、移植時の細胞数を揃えることができるため、移植 後の細胞の状態の再現性が良くなるからである。また、移植される細胞数は、 106以 下の少数でよ!、が、それ以上の数の細胞を移植しても構わな!/、。 [0017] The cells to be transplanted may be derived from any source, but a disease model animal can be prepared by using cells derived from human lesions. In addition, cell morphology is cell clumps, tissue pieces, individually dispersed cells, cells that have been isolated and cultured, cells that have been transplanted into other animals, and cells that have been isolated from animal power through a process. Any cell can be used, but dispersed cells are preferred. This is because the number of cells at the time of transplantation can be made uniform, and the reproducibility of the cell state after transplantation is improved. In addition, the number of cells to be transplanted may be a small number of 10 6 or less! However, it is possible to transplant more cells!
[0018] = = =移植の部位と受容動物 = = =  [0018] = = = Transplant site and recipient animal = = =
次に、本発明による細胞移植を行う部位は、腎臓の被膜下であることが、上述のよう に観察が容易であることのほか、(1)移植に必要な細胞が少量(106以下)でよい、 (2) 拒絶反応が起こりにくい、(3)成長因子等が豊富である、などの理由力 好適である。 腎臓のような動物個体が左右に 1対有する臓器を使用することは、同一個体の左右 の臓器上の移植部位に対してそれぞれ異なる移植片を移植して比較することにより、 移植片の差異に起因した移植成績および治療薬に対する効果の差異を的確に評価 できる、という点でも好ましい。 Next, the site for cell transplantation according to the present invention is under the capsule of the kidney. In addition to being easy to observe as described above, (1) a small amount of cells required for transplantation (10 6 or less) (2) Rejection is less likely to occur, (3) Reasonable factors such as abundant growth factors are suitable. The use of organs such as kidneys that have a pair of animals on the left and right side means that different grafts can be transplanted and compared to the transplant sites on the left and right organs of the same individual. It is also preferable in that the difference between the resulting transplantation results and the effect on the therapeutic agent can be accurately evaluated.
[0019] そして、このような移植を受ける脊椎動物としては、拒絶反応が起こりにくい点で、 免疫不全動物、例えばヌードマウスや NOD-SCIDマウスを用いることが望ましぐなか でも優れた可移植性を有する NOG (NOD/SCID/ y nuU)マウスの使用がより好適 [0019] And, as a vertebrate that receives such transplantation, it is difficult to cause rejection, so that it is excellent in transplantability even if it is desirable to use immunodeficient animals such as nude mice and NOD-SCID mice. Use of NOG (NOD / SCID / y nuU ) mice with
C  C
であるが、その他のヒト以外の脊椎動物についても、上記のような移植を可能とする 腎臓を有するものであれば受容動物として用いることができる。  However, other vertebrates other than humans can be used as recipient animals as long as they have a kidney that enables transplantation as described above.
[0020] = = =細胞の区別のためのマーカー = = =  [0020] = = = Marker for cell differentiation = = =
非侵襲的観察が可能な観察マーカーは、移植される細胞が有してもよぐあるいは 移植される脊椎動物の細胞が観察マーカーを有していてもよい。後者の例として、身 体の細胞にあら力じめ観察マーカーの遺伝子が組み込まれた遺伝子組み換え動物 、例えば、発光遺伝子を導入された組み換えマウス、いわゆる「光るマウス」などを、 受容動物として使用することが挙げられる。しかし、移植に際して適切な観察マーカ 一とそれに対応した観察方法を選択できると ヽぅ点で、移植される細胞に対して非侵 襲的観察マーカーを導入することがより好まし 、。 Observation markers that can be non-invasively observed may have cells to be transplanted or The transplanted vertebrate cell may have an observation marker. As an example of the latter, a genetically modified animal in which a gene for an observation marker is integrated into a body cell, such as a recombinant mouse into which a luminescent gene has been introduced, a so-called “shining mouse” is used as a recipient animal. Can be mentioned. However, it is more preferable to introduce a non-invasive observation marker for the cells to be transplanted, because it is possible to select an appropriate observation marker and an observation method corresponding to it in transplantation.
[0021] この観察マーカーとして、例えば GFPなどの蛍光マーカーを用いれば、その動物 に励起光を照射することで、細胞が移植された部位を容易に非侵襲的に光学的に観 察することができるし、あるいはルシフェラーゼなどの発光マーカーを用いれば、生物 発光画像化(bioluminescence imaging, BLI)法等の観察法を用いることによって容 易に非侵襲的に観察することができ、移植細胞の場所及び Zまたは増殖が、移植し た脊椎動物の非侵襲的観察によって、リアルタイムに判断し得るようになる。その他 造影剤として用いられる放射性同位元素等のような、移植部位を観察可能な状態に すること (可視化)ができる物質を観察マーカーとして用い、適切な観察法、例えば X 線コンピュータ断層撮影法 (computerized tomography, CT) '磁気共鳴映像法 (mag netic resonance imaging ^ MRI) · % ^放出断眉撮影法 (positron emission tomogra ph、 PET)などと組み合わせれば、同様に非侵襲的観察が可能となる。  [0021] If a fluorescent marker such as GFP is used as this observation marker, for example, by irradiating the animal with excitation light, the site where the cells are transplanted can be easily and non-invasively optically observed. However, if a luminescent marker such as luciferase is used, it can be easily observed non-invasively by using an observation method such as bioluminescence imaging (BLI). Alternatively, proliferation can be determined in real time by non-invasive observation of the transplanted vertebrate. Others Appropriate observation methods, such as X-ray computed tomography (computerized tomography), such as radioisotopes used as contrast agents, can be used as observation markers to make the transplanted site observable. tomography, CT) 'Magnetic resonance imaging ^ MRI ·% ^ When combined with positron emission tomography (PET), non-invasive observation is possible.
[0022] このような観察マーカーの細胞への導入方法としては、観察マーカーが遺伝子発 現によつて得られるもの、例えば蛋白質である場合は、その観察マーカーをコードす る遺伝子を有する発現ベクターを細胞に感染させる方法が一例として挙げられる。発 現ベクターとしては、例えばウィルスベクターは感染効率が高 、点で好適であるが、 プラスミドベクターゃコスミドベクターなどの、その他の一般的に用いられる発現べク ターを用いることもできる。そして、観察マーカーがタンパク質である場合のみならず それ以外の物質の場合でも、生きた細胞に外来物質を導入する一般的な導入法、 例えばリポフエクシヨン法やエレクト口ポレーシヨン法なども、観察マーカーの導入の ために用いることができる。  [0022] As a method for introducing such an observation marker into a cell, if the observation marker is obtained by gene expression, for example, a protein, an expression vector having a gene encoding the observation marker is used in the cell. As an example, a method for infecting a virus is mentioned. As the expression vector, for example, a virus vector is suitable in terms of high infection efficiency, but other commonly used expression vectors such as a plasmid vector and a cosmid vector can also be used. Even if the observation marker is a protein as well as other substances, general introduction methods for introducing foreign substances into living cells, such as the lipofusion method and the electoral position method, can also be used to introduce observation markers. Can be used for
[0023] = = =移植細胞の選別 = = = [0023] = = = Sorting of transplanted cells = = =
さらに、移植される細胞は、供与生物や患者力も採取された状態のまま、あるいは 前述の観察マーカーの導入が行われた後の状態のままで用いてもよいが、移植に際 し、観察マーカーを有する細胞を選別する操作を加えることもでき、この選別を行うこ とは、移植された細胞を受容動物の細胞から、より厳密に区別することができるように なるため望ましい。この場合、選別のためのマーカーは、前述の観察のためのマーカ 一と同一でもよいし、異なったマーカーを用いてもよい。そしてこのような選別マーカ 一としては、前述した観察のためのマーカーの場合と同様の理由から、発光マーカ 一や蛍光マーカーのような可視化マーカーの使用が好適である。例えば蛍光マーカ 一を用いる場合、フロー'サイトメトリー (flow cytometry)が選別のために利用できる。 しかしその他の選別マーカーとなり得る物質、例えば表面抗原や磁気ビーズなども、 それらを手掛力りにして細胞を生きたまま選別できるような適切な選別方法、例えば 細胞パンユング法や磁気分離法などとの組み合わせにおいて使用することができる Furthermore, the transplanted cells remain in the state where donor organisms and patient force are collected, or Although it may be used in the state after the introduction of the observation marker as described above, an operation for selecting cells having the observation marker can be added at the time of transplantation. This is desirable because it allows for more precise differentiation of transplanted cells from recipient animal cells. In this case, the marker for selection may be the same as the aforementioned marker for observation, or a different marker may be used. As such a selection marker, it is preferable to use a visualization marker such as a luminescent marker or a fluorescent marker for the same reason as in the case of the marker for observation described above. For example, if a fluorescent marker is used, flow cytometry can be used for sorting. However, other substances that can be used as selection markers, such as surface antigens and magnetic beads, can also be used as a suitable selection method, such as cell panning and magnetic separation methods. Can be used in combination
[0024] そしてこの選別マーカーを細胞に導入する方法も、前述の観察マーカーの導入方 法と同様の方法を用いることができる。そして、選別マーカーの導入の工程は、観察 マーカーの導入と同じ方法で同時に行ってもよいし、あるいは別々に、同じ又は異な つた方法で行ってもよい。ここで、別々に行う場合の例として、マーカーが蛋白質であ れば、例えばそれぞれのマーカーの遺伝子を別個に有する 2種類の発現ベクターを 別々に細胞に感染させることもできる力 両者を同時に共感染させると両方のマーカ 一が同一の細胞に共存する可能性が高まるので好ましい。一方、導入を同時に行う 場合としては、例えば、両方のマーカー遺伝子を有する単一の発現ベクターを構築 して、それを細胞に感染させることができる。この方法は導入の工程がより簡便となり 、し力も選別マーカーを用いて選別された細胞は必ず観察マーカーを有するので一 層好ましい。 [0024] The method for introducing the selection marker into the cell can be the same method as the method for introducing the observation marker described above. The step of introducing the selection marker may be performed simultaneously by the same method as the introduction of the observation marker, or may be performed separately by the same or different method. Here, as an example of performing separately, if the marker is a protein, for example, the ability to separately infect cells with two types of expression vectors having the genes of each marker separately Co-infection of both at the same time This is preferable because both markers are more likely to coexist in the same cell. On the other hand, when the introduction is performed simultaneously, for example, a single expression vector having both marker genes can be constructed and cells can be infected with it. This method is more preferable because the introduction process is simpler and the cells selected using the selection marker have an observation marker.
[0025] = = =病態モデル動物の作製と利用 = = =  [0025] = = = Production and utilization of disease model animals = = =
移植される細胞力 ヒトもしくはその他の生物における病気の病変部に由来するも のであれば、本発明によりその病気の病態動物モデルを作製することができる。そし て作製された動物モデルを継続飼育して移植部位を観察することによって、その病 気に由来する病変の変化を非侵襲的に追跡することができる。例えば移植される細 胞として、ヒトの子宫内膜に由来する細胞を用いることにより、子宫内膜症の動物モ デルが作製できるし、その他の病気、例えば腫瘍に由来する細胞を用いれば、腫瘍 動物モデルが作製でき、そのような病気に由来する病変を非侵襲的に容易に観察す ることが可能となる。 Cell force to be transplanted If it is derived from a diseased lesion in a human or other organism, an animal model of the disease can be prepared according to the present invention. Then, by continuously breeding the created animal model and observing the transplantation site, it is possible to noninvasively follow the changes in lesions derived from the disease. For example, the details to be transplanted By using cells derived from human eclampsia as the cell, an animal model of eclampsia can be produced, and by using cells derived from other diseases such as tumors, tumor animal models can be produced. Therefore, it is possible to easily observe a lesion derived from such a disease non-invasively.
[0026] 従来の動物モデルの場合、切除生検や屠殺後の組織学的観察などを行って初め て、その時点における病変部の組織構造を確認することが可能となる。しかし本発明 の動物モデルならば、観察マーカーを用いて、移植された細胞力 脊椎動物の非侵 襲的観察によって、脊椎動物の細胞力 区別し得るので、病変の進行の程度や病変 部の広がり具合を、非侵襲的な方法で、継続的にかつ定量的に観察することができ る。さらにその病変部あるいはその動物全体に対して処置を行い、その処置に対す る移植部位の変化を追跡すれば、その処置の有効性の解析や、病気の原因究明の ための基礎的研究などを行える。例えば、本発明の実施の一態様である子宮内膜症 動物モデルに対して、投与量及び時期を調節することにより月経周期に応じたホル モン濃度の変化を模倣するような、周期的なホルモン剤の投与実験を行えば、月経 周期様のホルモン環境を継続的に再現することができ、その結果、子宮内膜の月経 周期変化に類似した病変部の変化を解析できる。さらに、そのような動物モデルに対 して、子宮内膜症治療薬候補物質の投与実験を行い、病変の改善をもたらすような 候補物質のスクリーニングを実施すれば、子宮内膜症治療薬の開発に役立てること ができる。  [0026] In the case of a conventional animal model, it is possible to confirm the tissue structure of the lesioned part only after performing excisional biopsy, histological observation after sacrifice, and the like. However, in the animal model of the present invention, the vertebrate cell force can be distinguished by non-invasive observation of the transplanted cell force vertebrate using the observation marker. The condition can be observed continuously and quantitatively in a non-invasive manner. Furthermore, if the lesion or the entire animal is treated, and changes in the transplantation site are traced to the treatment, analysis of the effectiveness of the treatment and basic research for investigating the cause of the disease will be conducted. Yes. For example, with respect to an endometriosis animal model which is one embodiment of the present invention, a cyclic hormone that mimics the change in hormone concentration according to the menstrual cycle by adjusting the dose and timing. By conducting drug administration experiments, the menstrual cycle-like hormonal environment can be continuously reproduced, and as a result, changes in the lesion similar to changes in the menstrual cycle in the endometrium can be analyzed. In addition, if an animal model of endometriosis drug candidates is administered to such animal models and screening is performed for candidate substances that can improve lesions, development of endometriosis drugs Can be useful.
[0027] このように、本発明の動物モデルは、生きたままで非侵襲的に病変部をリアルタイム に観察可能である利点を有することから、長期間にわたって継続的な追跡を必要と する病気の病態モデル、例えば腫瘍患者に由来する腫瘍細胞を移植した場合は腫 瘍の病態モデルとして、極めて有用である。なお、これまで述べてきた動物モデルそ のものに加えて、そのような動物モデルの作製のための方法も本発明の範囲に含ま れるものであり、この方法の実施により作製された動物モデルは、対応する病気の原 因の解明や治療法並びに治療薬の開発などのために提供することができる。例えば 上記のようにして作製した腫瘍の動物モデルに対して、腫瘍治療薬候補物質の投与 実験を行い、病変の改善をもたらすような物質のスクリーニングを実施すれば、腫瘍 治療薬の開発に役立てることができる。 [0027] Thus, the animal model of the present invention has the advantage of being able to observe a lesion in real time in a non-invasive manner, and thus a disease state that requires continuous tracking over a long period of time. When a model, for example, a tumor cell derived from a tumor patient is transplanted, it is extremely useful as a model of a disease state of a tumor. In addition to the animal model itself described so far, a method for producing such an animal model is also included in the scope of the present invention. It can be provided for the elucidation of the cause of the corresponding disease and the development of therapeutic methods and drugs. For example, if a tumor therapeutic drug candidate substance is administered to an animal model of a tumor prepared as described above, and screening is performed for a substance that can improve the lesion, It can be used to develop therapeutic drugs.
[0028] = =子宫内膜症モデル動物 = =  [0028] = = model animal for eclampsia = =
ここで、ヒトの子宮内膜または子宮内膜症病変部力も単離された細胞に由来する病 変部を腎被膜下に有する、子宮内膜症の病態動物モデルは、マーカーが導入され ていなくても、それ自身有効に利用できる。この病態モデルは、周期的な外因性性ス テロイドホルモンを投与することにより、単離された子宮内膜細胞力 再構築された 組織が子宮内膜の月経周期変化に類似した変化を示す、すなわちヒト子宮内膜環 境を再現するようになった初めてのモデル動物である。この動物モデルに対しては、 外因性性ステロイドホルモンとして例えばエストロゲンやプロゲステロン等を、様々な 方法、例えば皮下や腹腔内への注射、食餌投与、徐放剤の皮下移植などの方法で 投与することができる。そして、ホルモン投与の調節により前述したような月経周期様 のホルモン環境を再現させた、動物モデルの移植部位に対して、例えば組織学的観 察のような解析を行えば、子宫内膜症の研究に役立てることができる。さらに、この子 宫内膜症モデル動物に対し、例えば、子宮内膜症治療薬候補物質を投与し、病変 の改善をもたらすような物質、病変部が退縮するような物質、あるいは、周期的ホル モン投与に抵抗性になり、ホルモンに対して反応を示さなくなるような物質を選択す ることにより、子宮内膜症治療薬の開発に役立てることができる。  Here, the endometriosis or pathological animal model of endometriosis, which has a diseased part derived from cells from which human endometriosis or endometriotic lesion force has been isolated, under the kidney capsule, has no marker introduced. However, it can be used effectively. This pathologic model shows that by administering periodic exogenous steroid hormones, the isolated endometrial cell force reconstructed tissue shows changes similar to the endometrial menstrual cycle change, i.e. This is the first model animal to reproduce the human endometrial environment. For this animal model, exogenous steroid hormones such as estrogen and progesterone should be administered by various methods such as subcutaneous and intraperitoneal injection, dietary administration, and sustained release subcutaneous transplantation. Can do. Then, if an analysis such as a histological observation is performed on the transplantation site of an animal model that reproduces the menstrual cycle-like hormonal environment as described above by adjusting the hormone administration, it is possible to analyze eclampsia. Useful for research. Furthermore, for example, a substance that can improve the lesion by administering a candidate drug for treating endometriosis to the model animal for endometriosis, a substance that causes regression of the lesion, or a periodic By selecting a substance that becomes resistant to mon administration and does not respond to hormones, it can be used to develop endometriosis drugs.
実施例  Example
[0029] 以下に、本発明の実施のための最良の形態を、実施例を用いてさらに詳述する。  [0029] Hereinafter, the best mode for carrying out the present invention will be described in further detail using examples.
[0030] 実施の形態及び実施例に特に説明がな!、場合には、 J. Sambrook, E. F. Fritsch & [0030] There is no particular explanation for the embodiments and examples! In the case of J. Sambrook, E. F. Fritsch &
T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold bpnng Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Prot ocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に 記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬 キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコ ールを用いる。  T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold bpnng Harbor Press, Cold Spring Harbor, New York (2001); FM Ausubel, R. Brent, RE Kingston, DD Moore, JG Seidman, A method described in a standard protocol collection such as JA Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd., or a modified or modified method thereof is used. In addition, when using commercially available reagent kits or measuring devices, use the protocols attached to them unless otherwise specified.
[0031] なお、本発明の目的、特徴、利点、及びアイデアは、本明細書の記載により当業者 には明らかであり、本発明は、当業者であれば本明細書の記載に基づき容易に再現 できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の 好ま 、実施態様を示すものであり、例示又は説明のためだけに示されて 、るので あって、本発明をそれらに限定するものではない。本明細書で開示されている本発 明の意図並びに範囲内で、本明細書の記載に基づき様々な改変並びに修飾ができ ることは、当業者にとって明らかである。 [0031] It should be noted that the object, features, advantages, and ideas of the present invention are described in the present specification by those skilled in the art. The present invention can be easily reproduced by those skilled in the art based on the description of the present specification. The embodiments and specific examples of the invention described below show preferred and embodiments of the present invention, and are shown only for illustration or explanation. It is not limited to them. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.
[0032] = = =子宮内膜分散細胞 (SDEC)の調製と NOGマウスの腎被膜下への移植 = = ヒトから単離された子宮内膜組織片を、 0. 2%(w/v)のコラゲナーゼ (和光純薬、大 阪)、 0. 05%(w/v)の DNaseI (GIBCO、米国カリフォルニア州)を含有する DMEM +培地(1%の抗生物質 抗真菌剤(GIBCO)、 10%のゥシ胎児血清 (BioWest、米 国フロリダ州)を含有するダルベッコ変法イーグル培地(DMEM、 Sigma-Aldrich,米 国ミズーリ州))中に、組織片 lgに対して 10mlの割合で移し、 37°Cにて 1. 5時間振 盪して酵素的細胞分散処理を行った。さらに 40 m孔径セルストレーナ(BD Bioscie nces、米国マサチューセッツ州)に細胞を通す機械的分散処理によって単一細胞の 状態まで分散させた。 [0032] = = = Preparation of endometrial dispersed cells (SDEC) and transplantation of NOG mice under the renal capsule = = Endometrial tissue fragments isolated from humans, 0.2% (w / v) Collagenase (Wako Pure Chemicals, Osaka), DMEM + medium containing 0.05% (w / v) DNaseI (GIBCO, California, USA) (1% antibiotic antifungal (GIBCO), 10% In Dulbecco's Modified Eagle's Medium (DMEM, Sigma-Aldrich, Missouri, USA) containing urine fetal serum (BioWest, Florida, USA) The cells were subjected to enzymatic cell dispersion treatment by shaking at ° C for 1.5 hours. Further, the cells were dispersed to a single cell state by mechanical dispersion treatment in which the cells were passed through a 40-m pore size cell strainer (BD Biosciences, Massachusetts, USA).
[0033] 分散した細胞に対し、さらにそこ力も子宮内膜間質細胞を分離するために、 FicoU- Paque PLUS (Amersham Biosciencesゝ米国-ユージャージー州)上に重層して 780 X gにて 15分間の密度勾配遠心を実施し、界面層から単一細胞の分散液を回収し た。一方、細胞ストレーナ上に残った細胞塊を再懸濁して、 0. 05%(w/v)トリプシン EDTA · 0. 05 %(w/v)DNaseI溶液で酵素処理後に再度セルストレーナに通すこ とにより、子宮内膜腺上皮細胞を単一細胞分散液として回収した。  [0033] In order to separate the endometrial stromal cells from the dispersed cells, the layers were layered on FicoU-Paque PLUS (Amersham Biosciences USA-U.J.) For 15 minutes at 780 X g. A single cell dispersion was recovered from the interface layer. On the other hand, resuspend the cell mass remaining on the cell strainer and pass it through the cell strainer again after enzyme treatment with 0.05% (w / v) trypsin EDTA and 0.05% (w / v) DNaseI solution. Thus, endometrial gland epithelial cells were collected as a single cell dispersion.
[0034] NOG (NOD/SCID/ y nuU)マウス(実験動物中央研究所、川崎巿)に 10%ベント [0034] NOG (NOD / SCID / y nuU ) mice (Laboratory Animal Central Laboratory, Kaoru Kawasaki) 10% bent
C  C
バルピタール (大日本薬品製)含有リン酸緩衝液 (Sigma)を 40 μ 1腹腔内注射して麻 酔し、内在性女性ホルモンの影響を除くため卵巣を摘出した。このマウスに、内径 1 mmの先細キヤビラリ一ピペットを腎臓の一端力 貫通させて他端の被膜直下に先端 を静止させ、上述の方法で得られた SDECの約 5 X 105個(5〜: L0 μ 1の DMEM + 培地中分散液)を注入することによって移植した。 [0035] = = =移植部位の形態的および組織ィ匕学的観察 = = = A 40 μl injection of valpital (Dainippon Pharmaceutical) -containing phosphate buffer (Sigma) was injected intraperitoneally to cause intoxication, and the ovaries were removed to remove the effects of endogenous female hormones. In this mouse, a tapered capillary pipette with an inner diameter of 1 mm was passed through one end of the kidney and the tip was stopped just below the capsule on the other end. Approximately 5 X 10 5 SDECs obtained by the above method (5: Transplantation was performed by injecting L0 μl of DMEM + dispersion in medium). [0035] = = = Morphological and histological observation of the transplant site = = =
SDEC移植を受けた NOGマウスの一部に対して、さらに、エストロゲン )徐放ぺ  For some NOG mice that have undergone SDEC transplantation, estrogen)
2 レット(Innovative Research of America,米国フロリダ州)を 0錠、 1錠もしくは 2錠皮下 移植することにより、異なる量の女性ホルモンを恒常的に投与して、飼育を継続した。 所定の期間経過後に腎臓を摘出し、以下の肉眼所見及び免疫組織学的観察に用 いた。  Two letts (Innovative Research of America, Florida, USA) were transplanted subcutaneously by 0, 1 or 2 tablets, and different amounts of female hormones were continually administered, and the breeding was continued. After a predetermined period of time, the kidney was removed and used for the following gross findings and immunohistological observations.
[0036] まず摘出した腎臓を Tissue- Tek OCT compound (Sakura Finetech、米国カリフオル ユア州)に包埋して凍結し、クライオスタツト(Leica Microsystems,ドイツ'ウェツラー巿 )を用いて 6 μ m厚にて連続薄切した。得られた凍結切片の一部はへマトキシリン'ェ ォジン (H— E)染色液 (Sigma- Aldrich)による組織観察に供し、スライドガラス上に得 られた残りの切片に対して、表 1にまとめて示した一次抗体を組み合わせて用い、以 下に示すうちの 、ずれか最適な方法に従 、免疫染色して観察した。  [0036] First, the excised kidney was embedded in Tissue-Tek OCT compound (Sakura Finetech, Califol, U.S., USA), frozen, and 6 μm thick using a cryostat (Leica Microsystems, Germany's Wetzlar). Sliced continuously. A portion of the obtained frozen section was subjected to tissue observation with a hematoxylin 'eosin (HE) staining solution (Sigma-Aldrich), and the remaining sections obtained on the slide glass were summarized in Table 1. The primary antibodies shown in the above were used in combination, followed by immunostaining according to the most appropriate method shown below.
[0037] [表 1] 本実施例で用いられた抗体の一覧表  [0037] [Table 1] List of antibodies used in this example
抗原 クローン 入手先 アイソタイプ 用時希釈率 cytokeratin MNF1 16 0 A mouse IgG 1 100 vimentin V9 3 B Gy3 - conjugated mouse IgG 1 400 vimentin V9 3 A mouse IgG 1 400 ヒ卜 CD9 P 1 /33/2 A mouse IgG 1 100 ヒ卜 CD9 M-L13 C PE-conjugated mouse IgG 無希釈 ヒト CD10 SS2/36 A mouse IgG 1 100 ヒ卜 CD13 WM-47 A mouse IgG 1 100 ヒト CD31 JC70A a A mouse IgG 1 100 ヒ卜 CD45 2B1 1 +PD7/26 a A mouse IgG 1 100 ヒ卜 CD45 T29/33 A PE-conjugated mouse IgG 無希釈 プロゲステロン受容体(PR) PgR636 A mouse IgG 1 100 ひ-平滑筋ァクチン(Qi SMA) 1 A4 c B Gy3 - conjugated mouse IgG 1 400 -平滑筋ァクチン(Qi SMA) 1 A4 c A mouse IgG 1 400 prolactin polyclonal D rabbit antiserum 1 1000 マウス CD31 MEC13.3 b C rat IgG 1 100 マウス CD45 30-F1 1 b C rat IgG 1 100 マウス赤血球 TER-1 19 b E rat IgG 1 100 a:ヒト抗原にのみ反応する抗体 A: DakoCytomation (グロストラップ,デンマーク) b:マウス抗原にのみ反応する抗体 B: SIGMA Chemical (米国ミズーリ州) Antigen clone Source Isotype for dilution ratio cytokeratin MNF1 16 0 A mouse IgG 1 100 vimentin V9 3 B Gy3-conjugated mouse IgG 1 400 vimentin V9 3 A mouse IgG 1 400 卜 CD9 P 1/33/2 A mouse IgG 1 100 mouse CD9 M-L13 C PE-conjugated mouse IgG undiluted human CD10 SS2 / 36 A mouse IgG 1 100 mouse CD13 WM-47 A mouse IgG 1 100 human CD31 JC70A a A mouse IgG 1 100 mouse CD45 2B1 1 + PD7 / 26 a A mouse IgG 1 100 mouse CD45 T29 / 33 A PE-conjugated mouse IgG undiluted progesterone receptor (PR) PgR636 A mouse IgG 1 100 human smooth muscle actin (Qi SMA) 1 A4 c B Gy3 -conjugated mouse IgG 1 400-smooth muscle actin (Qi SMA) 1 A4 c A mouse IgG 1 400 prolactin polyclonal D rabbit antiserum 1 1000 mouse CD31 MEC13.3 b C rat IgG 1 100 mouse CD45 30-F1 1 b C rat IgG 1 100 Mouse erythrocytes TER-1 19 b E rat IgG 1 100 a: Antibody that reacts only with human antigen A: DakoCytomation (Grostrap, Denmark) b: Responds only to mouse antigen Corresponding antibody B: SIGMA Chemical (Missouri, USA)
c:ヒト及びマウス抗原に反応する抗体 C : BD PharMingen (米国カリフォルニア州).  c: Antibody reacting with human and mouse antigens C: BD PharMingen (California, USA).
D: Upstate Biotechnologies (米国ニューヨーク州) E: e-Bioscience (米国カリフォルニア州) [0038] すなわち切片の一部に対しては、氷上で 100%アセトンにて 4°Cで 10分間固定後 、リン酸緩衝液で洗浄した。また残りに対しては、 4%パラホルムアルデヒドにて室温 で 20分間固定後、リン酸緩衝液で洗浄した。これら固定した切片を 10%ゥシ血清ァ ルブミン溶液中に 30分間浸漬してブロッキング処理してから、各一次抗体の所定希 釈濃度溶液中に室温にて 1時間浸漬して抗体染色を行った。染色後の切片を洗浄 し、 Alexa Fluor 488 (緑色蛍光用)もしくは Alexa Fluor 568 (赤色蛍光用)標識二次抗 体 (Molecular Probes, Inc.,米国オレゴン州)で蛍光二次染色した。さらに切片は核 染色剤 Hoechst 33258 (Sigma)で 5分間対比染色した。各染色後の切片を、 VECTAS HIELD (Vector Laboratories,米国カリフォルニア州)で封入し、 DMIRE2倒立蛍光 顕微鏡(Leica Microsystems)で検鏡し、画像を VB- 700 CCDカメラ (Keyence Corp., 大阪市)で取り込んだ。 D: Upstate Biotechnologies (New York, USA) E: e-Bioscience (California, USA) [0038] That is, a part of the section was fixed with 100% acetone on ice at 4 ° C for 10 minutes, and then washed with a phosphate buffer. The rest was fixed with 4% paraformaldehyde at room temperature for 20 minutes and then washed with phosphate buffer. These fixed sections were immersed in a 10% ushi serum albumin solution for 30 minutes for blocking treatment, and then stained for 1 hour in a predetermined diluted solution of each primary antibody at room temperature for antibody staining. . The stained sections were washed and secondary fluorescently stained with Alexa Fluor 488 (for green fluorescence) or Alexa Fluor 568 (for red fluorescence) labeled secondary antibody (Molecular Probes, Inc., Oregon, USA). Furthermore, the sections were counterstained with the nuclear stain Hoechst 33258 (Sigma) for 5 minutes. The sections after each staining were encapsulated with VECTAS HIELD (Vector Laboratories, California, USA) and examined with a DMIRE2 inverted fluorescence microscope (Leica Microsystems). Images were captured with a VB-700 CCD camera (Keyence Corp., Osaka City). I took it in.
[0039] このようにして得られた移植マウスの腎臓には、被膜下の移植を実施した部位に肉 眼で識別できる新しい病変が生じており(図 1第 2列の矢頭)、し力もその大きさは投 与した Eの量に応じて漸次大きくなつていた(図 1上段力 順に E相対投与量が 0、 1  [0039] In the kidney of the transplanted mouse thus obtained, a new lesion that can be identified with the naked eye is generated at the site where the subcapsular transplant was performed (Fig. 1, second row arrowhead). The size gradually increased with the amount of E applied (Fig. 1, upper relative force in the order of E force, 0, 1
2 2 twenty two
、 2用量)。また病変部の組織切片の透過光観察像および免疫染色像の所見より、そ の内部も子宮内膜に類似した組織構造を有していることが分力つた(図 1の第 3列お よび第 4列)。 2 doses). In addition, from the observations of transmitted light and immunostained images of the tissue sections of the lesion, it was found that the inside also had a tissue structure similar to that of the endometrium (third column in Fig. 1 and (4th column).
[0040] 続、て、組織切片に対するヒトの間質細胞、腺上皮細胞、平滑筋細胞および血球 細胞にそれぞれ特異的な一次抗体を用いた免疫染色を実施することによって、新し く生じた病変部は、それを構成する細胞がヒトに由来し、かつその組織構造が子宮内 膜によく類似していることが明らかになった(図 2)。さらに、 E徐放ペレットの皮下移  [0040] Subsequently, lesions newly formed by performing immunostaining with primary antibodies specific to human stromal cells, glandular epithelial cells, smooth muscle cells and blood cells on tissue sections, respectively. It was clarified that the cells constituting it were derived from humans and the tissue structure was very similar to that of the endometrium (Fig. 2). In addition, subcutaneous transfer of E sustained release pellets
2  2
植と、プロゲステロン (P )製剤であるルテゥム注 25 (帝国臓器製薬、東京) lmg用量  Lutem * 25 (Imperial Organs, Tokyo), a progesterone (P) formulation
4  Four
の皮下注射による周期的投与とを組み合わせた、周期的ホルモン処理を移植マウス に施すことにより、月経周期様のホルモン環境を再現した (その方法を図 3aに投与ス キームの模式図として示した)。その結果、内膜症の腹膜活動病変であるレッドスポッ トに類似した、移植部位の肉眼的変化が惹起され(図 3b(i、 ii))、さらにその切片の組 織学的観察から、内部構造も子宮内膜症病変部に類似していることが分力つた(図 3 b(iii、 iv)) 0このように、本発明のモデル動物への子宫内膜細胞の移植により、子宫 内膜の組織を構造的に再構築できた。 Reproduction of the menstrual cycle-like hormonal environment by applying cyclic hormone treatment to transplanted mice in combination with periodic administration by subcutaneous injection of the drug (the method is shown in Figure 3a as a schematic diagram of the administration scheme) . As a result, a macroscopic change in the transplanted site, similar to the red spot, which is a peritoneal activity lesion of endometriosis, was induced (Fig. 3b (i, ii)). it is a component force ivy that structures similar to endometriosis lesions (FIG. 3 b (iii, iv)) 0 Thus, the transplantation of a child Imperial Household membrane cells into animal models of the present invention, uterus The intimal tissue could be structurally reconstructed.
[0041] = = =マーカー遺伝子発現ベクターの構築と、子宮内膜単離細胞への導入 = = = レンチウィルスに由来し Venus (YFP由来の GFP類縁体である蛍光マーカー蛋白 質)の遺伝子を有する発現ベクター pCSII-EF-MCS-IRES2-Venus (非特許文献 2: M lyoshi, H., Blomer, U., Takahashi, M., Gage, F.H. & Verma, I.M. Development of a self-inactivating lentivirus vector. J Virol. 72, 8150-8157 (1998)を参照)に対して、 さらにその制限酵素 BamHI切断部位へ、赤色発光性ルシフェラーゼ CBR luc (コメッ キムシ 'ルシフェラーゼ由来の変異体である生物発光マーカー蛋白質)の遺伝子を 導入して、マーカー遺伝子発現ベクターを構築した(図 4)。  [0041] = = = Construction of marker gene expression vector and introduction into endometrial isolated cells = = = Lentivirus-derived Venus (fluorescent marker protein that is a GFP analog derived from YFP) Expression vector pCSII-EF-MCS-IRES2-Venus (Non-patent document 2: M lyoshi, H., Blomer, U., Takahashi, M., Gage, FH & Verma, IM Development of a self-inactivating lentivirus vector. J Virol. 72, 8150-8157 (1998)) to the restriction enzyme BamHI cleavage site, and the gene for the red luminescent luciferase CBR luc (a bioluminescent marker protein that is a mutant derived from the beetle luciferase) Was introduced to construct a marker gene expression vector (Fig. 4).
[0042] 前述の方法と同様の方法で調製した子宮内膜分散細胞 (SDEC)を培養し、約 60 %の集密度まで増殖した培養プレート上の SDECに対して、感染多重度 1: 1の割合 になるようマーカー遺伝子発現ベクター溶液を添加して、さらに培養を継続した。ここ で、培養プレート上の間質細胞および腺上皮細胞を Nikon ECLIPSE TS100 (ニコン 、東京)倒立蛍光顕微鏡で検鏡したところ、その両方が、蛍光および生物発光を発す ることを観察した(図 5)。細胞培養が集密に達したところでプレート上の細胞を回収し 、ヨウ化プロビジゥム(PI) 2 μ gZml含有 HBSS +培地に移すことにより死細胞のみ を染色した上で、 MoFlo細胞分取装置(Cytomation、米国コロラド州)を用いて分取し た。 PI染色に関して陰性でかつ Venusの蛍光に対して陽性であった分取細胞を、 S DECにマーカー遺伝子が導入された生細胞として以下の各移植実験に用いた。  [0042] Endometrial dispersed cells (SDEC) prepared by the same method as described above were cultured, and SDEC on a culture plate grown to a confluency of about 60% was compared with a multiplicity of infection of 1: 1. The marker gene expression vector solution was added so as to maintain the ratio, and the culture was further continued. Here, when stromal cells and glandular epithelial cells on the culture plate were examined with an inverted fluorescence microscope, Nikon ECLIPSE TS100 (Nikon, Tokyo), both of them were observed to emit fluorescence and bioluminescence (Fig. 5). ). When the cell culture reaches confluence, the cells on the plate are collected and transferred to HBSS + medium containing 2 μg Zml of Probidium Iodine (PI). After staining only dead cells, the MoFlo cell sorter (Cytomation , Colorado, USA). Sorted cells that were negative for PI staining and positive for Venus fluorescence were used as live cells in which the marker gene had been introduced into SDEC in the following transplantation experiments.
[0043] = = =マーカー遺伝子導入細胞の移植と、移植部位の BLIによる観察 = = =  [0043] = = = Transplantation of marker gene-introduced cells and observation of the transplant site by BLI = = =
分取した遺伝子導入細胞を、上述の方法と同様にして、卵巣摘出 NOGマウスの腎 被膜下に移植して、マウスを飼育した。  The sorted gene-transferred cells were transplanted under the kidney capsule of ovariectomized NOG mice in the same manner as described above, and the mice were bred.
[0044] 移植マウスに対して、 2%イソフルラン (メルク'ホエイ、大阪)投与による麻酔下で、 生物発光基質 D-ルシフェリン (住商バイオサイエンス、東京)を 150mgZkg体重比 の用量にて腹腔内投与し、その直後に生きたままの状態の移植マウスの腹部を BLI 観祭装像 (Xenogen- IVIS 100 cooledし CD optical macroscopic imagingsystem ) (住 商バイオサイエンス)を用いて観察し、生物発光を画像化した。その結果、移植部位 に相当すると思われる部位からの発光が検出された(図 6a)。参考のため一部の移 植マウスの腹部を切開して腎臓周辺を露出し(図 6b)、さらに腎臓のみを摘出して( 図 6c)、それぞれ同様に BLI装置で観察したところ、腎被膜下への細胞移植に由来 する病変部のみが発光して 、ることが確認できた。 [0044] A bioluminescent substrate D-luciferin (Sumisho Bioscience, Tokyo) was intraperitoneally administered to the transplanted mice under anesthesia by administration of 2% isoflurane (Merck's Whey, Osaka) at a dose of 150mgZkg body weight. Immediately after that, the abdomen of the transplanted mouse in the living state was observed using a BLI viewing image (Xenogen-IVIS 100 cooled and CD optical macroscopic imaging system) (Sumisho Bioscience), and bioluminescence was imaged. . As a result, luminescence was detected from the site considered to correspond to the transplant site (Fig. 6a). Some transfers for reference The abdomen of the transplanted mouse was incised to expose the periphery of the kidney (Fig. 6b), and only the kidney was removed (Fig. 6c), and each was similarly observed with a BLI device. It was confirmed that only the lesioned part emitted light.
[0045] = = =恒常的ホルモン処理を行った移植部位の BLI観察 = = = [0045] = = = BLI observation of the transplanted site with constant hormonal treatment = = =
マーカー遺伝子が導入された SDECの移植を施したマウスの一部に対して、さらに E徐放ペレットを 0錠、 1錠または 2錠皮下移植することにより、前述と同様に恒常的 By substituting 0, 1 or 2 E sustained-release pellets subcutaneously into a portion of the mice that have received the SDEC transplanted with the marker gene, the same as described above.
2 2
ホルモン処理を行った。飼育を継続して、所定期間毎に上記と同様にして移植マウ ス腹部の BLI観察を実施した(図 7a)。得られた生物発光画像のそれぞれに対して、 特定領域を定めて発光強度を定量化した。その結果、時間の経過および E  Hormone treatment was performed. Breeding was continued, and BLI observation of the transplanted mouse abdomen was carried out in the same manner as above (Figure 7a). For each of the obtained bioluminescence images, a specific region was determined and the luminescence intensity was quantified. As a result, the passage of time and E
2の投与 用量の両方に応じて、病変部力 の発光シグナルの強度が漸次増大することが観察 された(図 7b)。  It was observed that the intensity of the luminescent signal of the lesion force gradually increased with both doses of administration (Fig. 7b).
[0046] = = =抗ホルモン処理を行った移植部位の BLI観察 = = =  [0046] = = = BLI observation of transplanted sites treated with anti-hormones = = =
マーカー遺伝子導入 SDECを移植したマウスの一部に対して、 E徐放ペレット 1錠  Marker gene transfer 1 tablet of sustained release E for a part of mice transplanted with SDEC
2  2
の皮下移植により恒常的ホルモン処理を行った。さらにその一部に対して、エストロ ゲン受容体アンタゴ-ストである ICI 182,780 (Tocris Cookson Inc.,米国ミズーリ州) を 100 μ g/mlの用量にて皮下注射を毎日実施することにより、抗ホルモン処理を行つ た。移植後 1、 2、 3ヶ月目に病変部の BLI観察を行った結果、 1ヶ月目力ら 2ヶ月目の 間にわたって発光シグナルの低下が見られた(図 8)。このように、子宫内膜に由来す る病変への抗ホルモン剤投与の効果が認められた。  A constant hormonal treatment was performed by subcutaneous transplantation. In addition, an anti-hormone was administered to some of these by daily subcutaneous injection of estrogen receptor antagonist ICI 182,780 (Tocris Cookson Inc., Missouri, USA) at a dose of 100 μg / ml. Processed. As a result of BLI observation of the lesion at 1, 2, and 3 months after transplantation, a decrease in the luminescence signal was observed from the first month to the second month (Fig. 8). Thus, the effect of administration of antihormonal agents on lesions derived from the eclampsia intima was observed.
[0047] = = =周期的ホルモン処理を行った移植部位の BLI観察 = = = [0047] = = = BLI observation of transplanted sites with cyclic hormone treatment = = =
マーカー遺伝子導入 SDECを移植したマウスの一部に対して、 E徐放ペレット皮  Marker gene transfer For some mice transplanted with SDEC, E sustained release pellet skin
2  2
下移植により恒常的ホルモン処理を行った。さらにその一部に対して、前述と同様に して P製剤 1 mg用量の皮下注射による周期的ホルモン処理を行つた(図 9aに投与ス Constant hormone treatment was performed by subtransplantation. In addition, a part of them was subjected to periodic hormonal treatment by subcutaneous injection of 1 mg dose of P preparation in the same manner as described above (Figure 9a).
4 Four
キームの模式図を示す)。 BLI観察を行ったところ、 P投与の周期的投与に応じて移  A schematic diagram of the chiem is shown). When BLI observation was performed, it was shifted according to the periodic administration of P administration.
4  Four
植部位からの発光シグナルの増大と減少が観察された(図 9bおよび c)。このように、 子宮内膜由来の病変は、月経を模したホルモン濃度変化に対して子宮内膜と同様 の応答を示したことから、移植マウスモデルを用いて子宮内膜の月経周期が機能的 に再現できることが分力つた。 [0048] = = =結論 = = = An increase and decrease in the luminescence signal from the planting site was observed (Figures 9b and c). Thus, endometrial lesions showed similar responses to endometrium to changes in hormone concentrations that mimic menstruation. Therefore, the menstrual cycle of the endometrium was functional using a transplanted mouse model. It was possible to reproduce it. [0048] = = = Conclusion = = =
以上のように、本発明の動物モデル力 移植された細胞の動態を長期にわたって 継続的に観察するのに特に好適であり、例えば子宫内膜由来の細胞移植を行えば 、子宮内膜症の病態を再現した動物モデルが作製できることが分力つた。さらに、そ のような動物モデルを本発明の方法で、生きたまま非侵襲的、継続的かつ定量的に 観察することが可能であり、移植された細胞が由来する病気の病因解明や治療薬の 開発等のために有効であること、例えば子宫内膜症動物モデルであれば、ホルモン ゃ抗ホルモン剤の投与に応じた病態の変化を追跡できる動物モデルを提供できるこ とが明ら力となった。  As described above, the animal model of the present invention is particularly suitable for continuously observing the kinetics of transplanted cells over a long period of time. For example, if cell transplantation derived from the eclampsia is performed, the pathology of endometriosis It was possible to create an animal model that reproduced the above. Furthermore, it is possible to observe such an animal model non-invasively, continuously and quantitatively with the method of the present invention, elucidating the etiology of a disease from which transplanted cells are derived, and therapeutic agents. For example, in the case of an animal model of eclampsia, it is clear that it is possible to provide an animal model that can track changes in the pathology according to the administration of hormones and antihormonal agents. became.
産業上の利用可能性  Industrial applicability
[0049] 本発明により、ヒト内膜症の病変部をより忠実に反映し得る動物モデル、及びその 作製方法、並びに、移植細胞の非侵襲的観察が可能である動物モデル、及びその 作製方法を提供することができる。 [0049] According to the present invention, there are provided an animal model that can more accurately reflect a lesion of human endometriosis, a method for producing the same, an animal model that enables noninvasive observation of transplanted cells, and a method for producing the animal model. Can be provided.

Claims

請求の範囲 The scope of the claims
[I] 移植された細胞を腎被膜下に有する、ヒト以外の脊椎動物モデルであって、  [I] A non-human vertebrate model having transplanted cells under the kidney capsule,
観察マーカーを用いて、前記移植された細胞が、前記脊椎動物の非侵襲的観察 によって、前記脊椎動物の細胞から区別され得ることを特徴とする動物モデル。  An animal model, wherein the transplanted cells can be distinguished from the vertebrate cells by non-invasive observation of the vertebrate using an observation marker.
[2] 前記移植された細胞の位置及び Zまたは増殖が、前記脊椎動物の非侵襲的観察 によって、リアルタイムに判断し得ることを特徴とする請求項 1に記載の動物モデル。  [2] The animal model according to claim 1, wherein the position and Z or proliferation of the transplanted cells can be determined in real time by noninvasive observation of the vertebrate.
[3] 前記移植された細胞が、分散された細胞であることを特徴とする、請求項 1または 2 に記載の動物モデル。  [3] The animal model according to claim 1 or 2, wherein the transplanted cells are dispersed cells.
[4] 前記移植された細胞が、非侵襲的観察が可能な前記観察マーカーを有することを 特徴とする、請求項 1〜3のいずれかに記載の動物モデル。  [4] The animal model according to any one of claims 1 to 3, wherein the transplanted cells have the observation marker capable of noninvasive observation.
[5] 前記観察マーカーが、蛍光マーカーまたは発光マーカーであることを特徴とする、 請求項 1〜4のいずれかに記載の動物モデル。 [5] The animal model according to any one of claims 1 to 4, wherein the observation marker is a fluorescent marker or a luminescent marker.
[6] 前記脊椎動物が、免疫不全マウスであることを特徴とする、請求項 1〜5のいずれ かに記載の動物モデル。 [6] The animal model according to any one of [1] to [5], wherein the vertebrate is an immunodeficient mouse.
[7] 前記免疫不全マウスが、 NOGマウスであることを特徴とする、請求項 6に記載の動 物モテノレ。 [7] The animal monot according to claim 6, wherein the immunodeficient mouse is a NOG mouse.
[8] 前記移植された細胞が、ヒトの子宮内膜に由来することを特徴とする、請求項 1〜7 の!、ずれかに記載の動物モデル。  [8] The method according to any one of claims 1 to 7, wherein the transplanted cells are derived from a human endometrium! The animal model described in any one of the above.
[9] 前記移植された細胞が、ヒトの病気の病変部に由来することを特徴とする、請求項 1[9] The transplanted cell is derived from a diseased lesion of a human disease,
〜7の!、ずれかに記載の動物モデル。 ~ 7 !, Animal model as described in somewhere.
[10] 前記病気が子宫内膜症であることを特徴とする、請求項 9に記載の動物モデル。 10. The animal model according to claim 9, wherein the disease is eclampsia.
[II] 請求項 9に記載の動物モデルに対して、前記病気の治療薬候補物質を投与する 投与工程を含むことを特徴とする、前記病気の治療薬のスクリーニング方法。  [II] A screening method for a therapeutic agent for the disease, comprising an administration step of administering a candidate substance for the therapeutic agent for the disease to the animal model according to claim 9.
[12] 請求項 8または 10に記載の動物モデルに対して、子宮内膜症治療薬候補物質を 投与する投与工程を含むことを特徴とする、子宮内膜症治療薬のスクリーニング方法  [12] A screening method for a therapeutic agent for endometriosis, comprising an administration step of administering a candidate substance for the therapeutic agent for endometriosis to the animal model according to claim 8 or 10.
[13] 細胞をヒト以外の脊椎動物の腎被膜下に移植する移植工程を含む、動物モデルの 作製方法であって、 前記細胞が、腎被膜下に移植された後、前記脊椎動物の非侵襲的観察によって、 前記脊椎動物の細胞カゝら区別され得ることを特徴とする作製方法。 [13] A method for producing an animal model, comprising a transplantation step of transplanting cells under the kidney capsule of a non-human vertebrate, After the cells are transplanted under the kidney capsule, the vertebrate cell lines can be distinguished by non-invasive observation of the vertebrates.
[14] 前記細胞の位置及び Zまたは増殖が、腎被膜下に移植された後、前記脊椎動物 の非侵襲的観察によって、リアルタイムに判断し得ることを特徴とする、請求項 13に 記載の作製方法。  [14] The production according to claim 13, wherein the location and Z or proliferation of the cells can be determined in real time by noninvasive observation of the vertebrates after transplantation under the kidney capsule. Method.
[15] 前記細胞が、移植される際に分散されていることを特徴とする、請求項 13または 14 に記載の作製方法。  15. The production method according to claim 13 or 14, wherein the cells are dispersed when transplanted.
[16] 前記細胞に、前記非侵襲的観察が可能な観察マーカーを導入する導入工程を含 むことを特徴とする、請求項 13〜 15のいずれかに記載の作製方法。  [16] The production method according to any one of [13] to [15], further comprising an introduction step of introducing the observation marker capable of noninvasive observation into the cell.
[17] 前記観察マーカーが、蛍光マーカーまたは発光マーカーであることを特徴とする、 請求項 16に記載の作製方法。 [17] The production method according to claim 16, wherein the observation marker is a fluorescent marker or a luminescent marker.
[18] 前記観察マーカーをコードする遺伝子を有する発現ベクターを導入することにより、 前記観察マーカーを前記移植された細胞に導入することを特徴とする、請求項 16ま たは 17に記載の作製方法。 [18] The production method according to claim 16 or 17, wherein the observation marker is introduced into the transplanted cell by introducing an expression vector having a gene encoding the observation marker. .
[19] 前記発現ベクターが、ウィルスベクターであることを特徴とする、請求項 18に記載の 作製方法。 19. The production method according to claim 18, wherein the expression vector is a viral vector.
[20] 前記移植前に、前記観察マーカーを指標として、前記観察マーカーが導入された 細胞を選別する選別工程をさらに含むことを特徴とする、請求項 16〜19のいずれか に記載の作製方法。  [20] The production method according to any one of claims 16 to 19, further comprising a selection step of selecting cells into which the observation marker is introduced using the observation marker as an index before the transplantation. .
[21] 前記移植前に、前記細胞に選別マーカーを導入する第 2の導入工程と、  [21] a second introduction step of introducing a selection marker into the cells before the transplantation;
前記選別マーカーを指標として、前記観察マーカーが導入された細胞を選別する 選別工程をさらに含むことを特徴とする、請求項 16〜19のいずれかに記載の作製 方法。  20. The production method according to any one of claims 16 to 19, further comprising a selection step of selecting a cell into which the observation marker is introduced using the selection marker as an index.
[22] 前記細胞が、ヒトの子宫内膜に由来することを特徴とする、請求項 13〜21のいず れかに記載の作製方法。  [22] The production method according to any one of [13] to [21], wherein the cell is derived from a human eclampsia lining.
[23] 前記細胞が、ヒトの病気の病変部に由来することを特徴とする、請求項 13〜21の いずれかに記載の作製方法。 [23] The production method according to any one of [13] to [21], wherein the cells are derived from a lesion of a human disease.
[24] ヒト以外の脊椎動物モデルであって、 ヒトの子宮内膜から単離された細胞を、腎被膜下に有する、子宮内膜症の動物モ デル。 [24] A non-human vertebrate model, An animal model of endometriosis having cells isolated from the human endometrium under the kidney capsule.
[25] 前記脊椎動物が、免疫不全マウスであることを特徴とする、請求項 24に記載の動 物モテノレ。  [25] The animal motenore according to claim 24, wherein the vertebrate is an immunodeficient mouse.
[26] 前記免疫不全マウスが、 NOGマウスであることを特徴とする、請求項 25に記載の 動物モアノレ。  26. The animal moire according to claim 25, wherein the immunodeficient mouse is a NOG mouse.
[27] 請求項 24〜26のいずれかに記載の動物モデルに対して、子宫内膜症治療薬候 補物質を投与する投与工程を含むことを特徴とする、子宮内膜症治療薬のスクリー ユング方法。  [27] A screening screen for an endometriosis drug, comprising an administration step of administering a candidate drug for the treatment of eclampsia to the animal model according to any one of claims 24 to 26. Jung way.
[28] 請求項 8、 10、 24〜26のいずれかに記載の動物モデルに対して、外因性性ステロ イドホルモンを投与する投与工程を含むことを特徴とする、ヒト子宮内膜環境を再現 する方法。  [28] Reproducing a human endometrial environment characterized by including an administration step of administering an exogenous steroid hormone to the animal model according to any one of claims 8, 10, and 24-26. how to.
PCT/JP2006/319415 2005-11-16 2006-09-29 Animal model and method for producing the same WO2007058021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007545171A JP5288395B2 (en) 2005-11-16 2006-09-29 Animal model and production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-332113 2005-11-16
JP2005332113 2005-11-16

Publications (1)

Publication Number Publication Date
WO2007058021A1 true WO2007058021A1 (en) 2007-05-24

Family

ID=38048413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319415 WO2007058021A1 (en) 2005-11-16 2006-09-29 Animal model and method for producing the same

Country Status (2)

Country Link
JP (1) JP5288395B2 (en)
WO (1) WO2007058021A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033626A (en) * 2012-08-08 2014-02-24 Juntendo Method for creating model mouse for distant metastasis of human cancer epithelial cell
WO2017141987A1 (en) * 2016-02-19 2017-08-24 コニカミノルタ株式会社 Non-clinical test method characterized by quantitative evaluation of experimental animal specimen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042185A1 (en) * 1997-03-26 1998-10-01 Reprogen, Inc. Endometriosis mouse model

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042185A1 (en) * 1997-03-26 1998-10-01 Reprogen, Inc. Endometriosis mouse model

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JENKINS D.E. ET AL.: "Bioluminescent imaging (BLI) to improve an refine traditional murine models of tumor growth and metastasis", CLINICAL AND EXPERIMENTAL METASTASIS, vol. 20, 2003, pages 733 - 744, XP019235724 *
MASUDA H. ET AL.: "Atarashii Shikyu Naimakusho Model Mouse no Sakusei to Sono Real Time Kaiseki System no Kaihatsu", ACTA OBSTETRICA ET GYNAECOLOGIA JAPONICA, vol. 58, no. 2, 1 February 2006 (2006-02-01), pages 467, XP003009023 *
MASUDA H. ET AL.: "Atarashii Shikyu Naimakusho Model Mouse no Sakusei", NIPPON FUNINGAKU ZASSHI, vol. 50, no. 4, 1 October 2005 (2005-10-01), pages 239, XP003009022 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033626A (en) * 2012-08-08 2014-02-24 Juntendo Method for creating model mouse for distant metastasis of human cancer epithelial cell
WO2017141987A1 (en) * 2016-02-19 2017-08-24 コニカミノルタ株式会社 Non-clinical test method characterized by quantitative evaluation of experimental animal specimen

Also Published As

Publication number Publication date
JPWO2007058021A1 (en) 2009-04-30
JP5288395B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
CN100497385C (en) Antibodies of non-functional P 2 Chi 7 receptor and its uses of diagnosis and treatment of cancers and other syndrome
CN105980408A (en) Therapeutic methods and compositions
CN106046158A (en) Antibody against human prostaglandin e2 receptor ep4
CN109232736A (en) Specifically bind monoclonal antibody, pharmaceutical composition, kit and its application of transmissible gastro-enteritis virus
CN104507965B (en) BAG3 as serum and biochemical marker
Cupello et al. Lung evolution in vertebrates and the water-to-land transition
WO2007058021A1 (en) Animal model and method for producing the same
Yu et al. Evaluation of blood flow as a route for propagation in experimental synucleinopathy
CN102803968A (en) Esophageal cancer marker
KR20050004263A (en) Animal model for toxicology and dose prediction
Suo et al. Murine xenograft model for human uterine fibroids: an in vivo imaging approach
JP2002045087A (en) Chimera animal
Xu et al. Intratibial injection of patient‑derived tumor cells from giant cell tumor of bone elicits osteolytic reaction in nude mouse
US20070025914A1 (en) Bronchioalveolar stem cells and uses thereof
WO2007039318A2 (en) Neuropeptide y analogs
Emmi et al. COVID-19 neuropathology: Evidence for SARS-CoV-2 invasion of human brainstem nuclei
Kim et al. An immunocompetent rectal cancer model to study radiation therapy
Hirai et al. Imaging alloreactive T cells provides early warning of organ transplant rejection
Parra et al. Association between decreases in type V collagen and apoptosis in mouse lung chemical carcinogenesis: a preliminary model to study cancer cell behavior
Wolffs et al. Calcium-sensing receptor antagonism as a novel therapeutic for pulmonary fibrosis
Schmitt et al. Zika virus induced microcephaly and aberrant hematopoietic cell differentiation modeled in novel neonatal humanized mice
Ratko et al. Role of uroguanylin's signalling pathway in the development of ischaemic stroke
JP2010148449A (en) Diagnostic agent and preventing/treating agent of enterovirus infection
Kurniawan et al. Feasibility study of C57BL/6 induced RM-1 cell line as a prostate cancer mice model for development of radiopharmaceuticals targeted prostate-specific membrane antigen (PSMA)
JP2008148693A (en) Method for isolation of stem cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007545171

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810821

Country of ref document: EP

Kind code of ref document: A1