WO2007057188A1 - Dispositif d'enrichissement en oxygene comprenant au moins deux tamis moleculaires pour l'alimentation d'un systeme a pile a combustible - Google Patents

Dispositif d'enrichissement en oxygene comprenant au moins deux tamis moleculaires pour l'alimentation d'un systeme a pile a combustible Download PDF

Info

Publication number
WO2007057188A1
WO2007057188A1 PCT/EP2006/011008 EP2006011008W WO2007057188A1 WO 2007057188 A1 WO2007057188 A1 WO 2007057188A1 EP 2006011008 W EP2006011008 W EP 2006011008W WO 2007057188 A1 WO2007057188 A1 WO 2007057188A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
air
fuel cell
obogs
molecular sieve
Prior art date
Application number
PCT/EP2006/011008
Other languages
English (en)
Inventor
Harald Gründel
Ralf-Henning Stolte
Original Assignee
Airbus Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005054888A external-priority patent/DE102005054888B4/de
Application filed by Airbus Deutschland Gmbh filed Critical Airbus Deutschland Gmbh
Publication of WO2007057188A1 publication Critical patent/WO2007057188A1/fr
Priority to US12/120,001 priority Critical patent/US8313868B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a combination of an oxygen enrichment device with a fuel cell, in particular the combination of an on board oxygen generation system (OBOGS) with a fuel cell system within the technical system of the aircraft.
  • OOGS on board oxygen generation system
  • Hydrogen-operated fuel cells have relatively high operating efficiency both in full- load and in partial-load operation.
  • the system combines an oxygen enrichment device for generating oxygen-enriched air in a fuel cell system comprising a fuel cell that uses oxygen-enriched air from the oxygen enrichment device as a reaction gas within the fuel cell.
  • the oxygen enrichment device is an on board oxygen generation system (OBOGS) that is supplied with air by way of an air supply source and that, by increasing the particle pressure of the oxygen in the air, increases the oxygen content in the air and conveys the oxygen-enriched air to the fuel cell system.
  • OOGS on board oxygen generation system
  • the OBOGS is an oxygen enrichment system that can, for example, be used in order to supply the cockpit of an aircraft with oxygen-enriched air, wherein the system is mechanically based, in contrast to the above-mentioned known oxygen-enrichment systems. Accordingly, the supply of oxygen is not limited to a period of time during which the chemical reaction takes place, as is the case in known oxygen enrichment systems, so that full-time operation of the system becomes possible.
  • the oxygen particle pressures of the OBOGS can be set to values between 60 and 94%.
  • the OBOGS can be supplied in various ways, for example by bleed air from an engine of an aircraft, by an air conditioning system, by outgoing or used air from the cabin and/or by an electrical compressor that compresses external air.
  • a pre-cooler is arranged upstream of the entire system because the bleed air leaves the engine at a temperature of approximately 220 °C, which may cause irreversible damage to the OBOGS.
  • Direct coupling of the bleed air with the OBOGS/fuel cell combination does not require the use of an electrical compressor with a high parasitic output.
  • the air that supplies the OBOGS may be precisely conditioned. Direct coupling of the OBOGS to the air conditioning system makes it possible to supply the system during a reduction in cabin pressure. In this case of malfunction the OBOGS/fuel cell combination can continue to supply the full electrical output. Supplying the OBOGS with external air that has been compressed by an electrical compressor is the simplest solution from the point of view of specific system- and regulation technology.
  • cabin air is used to supply the OBOGS, no additional conditioning (radiators or the like) is required; the cabin air can be supplied directly to the OBOGS.
  • the cabin air for the OBOGS/fuel cell system, there is no need to provide either a pre- cooler or compressors, both of which devices are associated with high electrical consumption.
  • the OBOGS comprises at least two molecular sieves for binding nitrogen and for letting oxygen through, with both nitrogen and oxygen being present in the air supplied by the air supply source. It is the function of these sieves to bind the nitrogen contained in the air by way of adhesion, and to let the oxygen pass, so that an increase in the oxygen particle pressure at the system outlet is created.
  • the other molecular sieve preferably uses this oxygen- enriched air from the one molecular sieve for its regeneration and in this way supplies nitrogen-enriched air to a further outlet of the OBOGS. It is thus easy to clean a molecular sieve that has been contaminated with nitrogen and to make said sieve available again for its normal filter operation.
  • the system comprises a sensor that registers the oxygen in the oxygen-enriched air that issues from one of the molecular sieves and, if a predetermined threshold value is not reached, switches operation of the molecular sieve that supplies oxygen-enriched air to regeneration operation, while at the same time regeneration operation of the other molecular sieve is switched to operation to bind nitrogen and to let oxygen pass.
  • the molecular sieves are zeolites.
  • the nitrogen-enriched air supplied by the OBOGS is used as an inert gas within a tank system and/or for nitrogen inerting the fuel cell system.
  • the nitrogen is thus used as an inert gas within the tank system in order to prevent the creation of a potentially explosive mixture within the fuel tank.
  • the region in which the hydrogen tanks of the fuel cell system are integrated or the entire fuel cell system compartment is made inert with the use of nitrogen so as to elinimate any explosion hazard.
  • Nitrogen inerting can also be carried out for the kerosene tanks of the aircraft.
  • the oxygen-enriched air is preferably fed as an educt gas into a cathode inlet of the fuel cell system, as a result of which the fuel cells are operated with more oxygen, which results in increased cell tension with identical operating parameters, and thus in a higher output.
  • the design dimension and weight of the system can be reduced.
  • Fig. IA shows a diagrammatic view of an oxygen enrichment system according to a preferred exemplary embodiment of the invention in a first operating state:
  • Fig. IB shows the oxygen enrichment system according to Fig. IA in a second operating state:
  • Fig. 2 shows the oxygen enrichment system according to Fig. 1 in combination with a fuel cell system according to the invention.
  • Fig. IA shows an oxygen enrichment system which according to a preferred exemplary embodiment is an OBOGS as can be used in an aircraft.
  • air is fed into the OBOGS 1.
  • the air supplied to the OBOGS 1 is preferably bleed air from engines of an aircraft.
  • the OBOGS 1 comprises, for example, two molecular sieves 2, 3.
  • Fig. IA shows an operating state in which oxygen production (enrichment) takes place by means of the molecular sieve 2.
  • the oxygen-enriched air from the molecular sieve 2 in the re- verse current cleans a molecular sieve 3 that contains nitrogen contamination.
  • the molecular sieves 2, 3 are, for example, zeolite beds that remove nitrogen from the air, thus increasing the oxygen particle pressure.
  • a valve 4 arranged downstream of the molecular sieve 2 is open so that the air that has been oxygen-enriched by means of the molecular sieve 2 can be output from the OBOGS 1 by way of the valve 4, as indicated by arrow B.
  • the oxygen-enriched air from the molecular sieve 2 is also fed to the contaminated molecular sieve 3 so that the zeolite is cleaned.
  • the molecular sieve 3 generates nitrogen-enriched air, as indicated by arrow C.
  • the molecular sieve 2 In the operating state of the OBOGS as shown in Fig. IA, the molecular sieve 2 ab- sorbs nitrogen, while the molecular sieve 3 is engaged in a cleaning process.
  • the OBOGS 1 further comprises control valves 6a, b and 7a, b that are arranged on the air-supply side from the air supply source.
  • control valve 6b lets the air A coming from the supply source flow into the molecular sieve 2, while the control valve 7b prevents the air from flowing into the molecular sieve 3.
  • control valve 6a is switched such that it does not let the air A pass.
  • control valve 7a is switched such that the oxygen-enriched air from the molecu- lar sieve 3 is let out.
  • valve 8 switched in parallel to the valve 4, which valve 8 is preferably closed in this operating state of the OBOGS.
  • the OBOGS comprises a sensor 5 that senses the oxygen content of the oxygen-enriched air, and that, if a predetermined threshold value is not reached, initiates switchover of the valves 4, 8 and of the control valves 6, 7 such that the state shown in Fig. IB is assumed.
  • the molecular sieve 2 is engaged in a cleaning process while the molecular sieve 3 absorbs nitrogen.
  • the control valve 7b is switched such that it allows an air flow into the molecular sieve 3, while the control valve 6b is switched such that it prevents any supply of air A into the molecular sieve 2.
  • the control valve 7a is switched such that any output of air is prevented.
  • the oxygen-enriched air from the molecular sieve 3 is fed back to the molecular sieve 2 in order to clean the molecular sieve 2 that has become contaminated in operation according to Fig. IA.
  • the air D that is output by the molecular sieve 2 is nitrogen-enriched, wherein said nitrogen has been absorbed in operating state 1, as explained in conjunction with Fig. IA.
  • valve 6a In the operating state according to Fig. IB the control valve 6a is switched such that the nitrogen-enriched air D from the molecular sieve 2 can be output from the OBOGS 1.
  • the valve 8 is preferably open and the valve 4 closed.
  • the molecular sieve 3 thus performs the same function as does the molecular sieve 2 in the operating state according to Fig. IA; and in the operating state according to Fig. IB the molecular sieve 2 performs the same function as does the molecular sieve 3 in the operating state according to Fig. IA.
  • Fig. 2 shows the OBOGS 1 according to Figs IA and IB in combination with a fuel cell system 9 according to the invention.
  • the above- described OBOGS 1 can be supplied by various air supply sources 10, 11, 12, 13, of which four are shown by way of an example.
  • the supply source 10 is, for example, bleed air from an engine of an aircraft.
  • the air supply source 11 is, for example, air from an air conditioning system.
  • the supply source 12 supplies, for example, exter- nal air that is compressed by an electrical compressor 14 arranged downstream.
  • the air supply source 13 supplies, for example, normal outgoing air from the cabin.
  • the air supply sources 10 to 13 can be operated separately or in combination with each other.
  • the oxygen-enriched air that is generated by the OBOGS 1, as described above, is supplied to an air inlet 15 of the fuel cell system 9.
  • the fuel cell system 9 comprises a fuel cell 16 with a cathode side 16a and an anode side 16b.
  • an inlet 17 hydrogen in let into the fuel cell 16, and by way of a valve 18, as well as a hydrogen purge valve 19, said hydrogen is let out again.
  • the fuel cell system 9 comprises a condenser 20, arranged downstream of the fuel cell 16, which condenser 20 lets water out by way of a water outlet 21 and delivers air back to the air inlet 15 of the fuel cell system 9 by way of an air compressor 22 and an air recirculation line.
  • the fuel cell system 9 further comprises a condensate separator 24, whose inlet is connected to the hydrogen inlet 17 and whose outlet is connected between the valve 18 and the hydrogen purge valve 19.
  • the fuel cell system 9 operates in a known manner.
  • nitrogen C, D is fed to the fuel cell system 9, either from the molecular sieve 2 or from the molecular sieve 3, for nitrogen inerting the compartment.
  • the OBOGS can comprise more than two molecular sieves, or all the molecular sieves can at the same time enrich the air with oxygen, wherein in this case the molecular sieves are cleaned in some other way, for example by the application of heat.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Système combinant un dispositif d'enrichissement en oxygène (1) servant à générer de l'air enrichi en oxygène et un système à pile à combustible (9) comprenant une pile à combustible pour utiliser l'air enrichi en oxygène comme gaz de réaction dans la pile à combustible, de façon à en améliorer le rendement sans en augmenter la taille ni le poids. L'air est enrichi en oxygène au moyen d'au moins deux tamis moléculaires (2,3). L'air appauvri en oxygène (C, D) est utilisé comme gaz inerte, alors que la cathode du système à pile à combustible est chargée en air enrichi en oxygène (B).
PCT/EP2006/011008 2005-11-17 2006-11-16 Dispositif d'enrichissement en oxygene comprenant au moins deux tamis moleculaires pour l'alimentation d'un systeme a pile a combustible WO2007057188A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/120,001 US8313868B2 (en) 2005-11-17 2008-05-13 Oxygen enrichment device comprising at least two molecular sieves for supplying a fuel cell system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005054888.1 2005-11-17
DE102005054888A DE102005054888B4 (de) 2005-11-17 2005-11-17 Sauerstoffanreicherungsvorrichtung in Kombination mit einem Brennstoffzellensystem und Verwendung
US75277305P 2005-12-20 2005-12-20
US60/752,773 2005-12-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/120,001 Continuation US8313868B2 (en) 2005-11-17 2008-05-13 Oxygen enrichment device comprising at least two molecular sieves for supplying a fuel cell system

Publications (1)

Publication Number Publication Date
WO2007057188A1 true WO2007057188A1 (fr) 2007-05-24

Family

ID=37726604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/011008 WO2007057188A1 (fr) 2005-11-17 2006-11-16 Dispositif d'enrichissement en oxygene comprenant au moins deux tamis moleculaires pour l'alimentation d'un systeme a pile a combustible

Country Status (1)

Country Link
WO (1) WO2007057188A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939963A1 (fr) * 2006-12-27 2008-07-02 Societe de Technologie Michelin Groupe electrogene comportant une pile a combustible
WO2013140312A3 (fr) * 2012-03-19 2013-12-05 Intertechnique Dispositifs de piles à combustible pour prévention des incendies et / ou des explosions
EP2808060A1 (fr) * 2013-05-28 2014-12-03 Zodiac Aerotechnics Système d'extinction d'incendie pour avion
CN104282926A (zh) * 2013-07-11 2015-01-14 空中客车德国运营有限责任公司 燃料电池系统、用于操作燃料电池的方法和具有该燃料电池系统的车辆
US9296480B2 (en) 2012-03-19 2016-03-29 Mag Aerospace Industries, Llc Use of at least one output of a fuel cell system in a lavatory
CN105502297A (zh) * 2015-12-11 2016-04-20 中国航空工业集团公司西安飞机设计研究所 一种液体污染物加注装置
CN105556723A (zh) * 2013-05-24 2016-05-04 水吉能公司 氮气富集的空气产生和燃料箱惰化系统
EP3023518A1 (fr) * 2014-11-24 2016-05-25 Hamilton Sundstrand Corporation Système de gestion de volume libre de gaz de réservoir de carburant pour aéronef
US9445665B2 (en) 2012-03-13 2016-09-20 Driesses Aerospace Group N.V. Autonomous trolley system
FR3035074A1 (fr) * 2015-04-17 2016-10-21 Snecma Aeronef comprenant une pile a combustible ayant un systeme d'alimentation ameliore en oxygene
US9966619B2 (en) 2013-01-15 2018-05-08 Zodiac Aerotechnics Aircraft energy management system for multi functional fuel cells
US9963240B2 (en) 2012-03-13 2018-05-08 Driessen Aerospace Group N.V. Power management for galley with fuel cell
US10040555B2 (en) 2012-03-13 2018-08-07 Driessen Aerospace Group N.V. Cargo bay catering container with a distribution system
US10040569B2 (en) 2014-12-09 2018-08-07 Zodiac Aerotechnics Autonomous aircraft fuel cell system
US10507345B2 (en) 2015-01-22 2019-12-17 Zodiac Aerotechnics Fuel cell devices for fire prevention on-board aircraft
US10717542B2 (en) 2015-01-22 2020-07-21 Zodiac Aerotechnics Aircraft fuel cell heat usages

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925322A (en) * 1995-10-26 1999-07-20 H Power Corporation Fuel cell or a partial oxidation reactor or a heat engine and an oxygen-enriching device and method therefor
EP1357625A2 (fr) * 2002-04-13 2003-10-29 Airbus Deutschland GmbH Procédé pour augmenter l'efficacité et diminuer les gaz d'échappement d'un système de piles à combustible
US20040043276A1 (en) * 2001-10-11 2004-03-04 Claus Hoffjann Fuel cell system and method with increased efficiency and reduced exhaust emissions
US20050031932A1 (en) * 2003-08-04 2005-02-10 Liqing Hu Fuel cell with particulates blocking device
WO2006058774A2 (fr) * 2004-12-03 2006-06-08 Airbus Deutschland Gmbh Systeme d'alimentation en energie d'un aeronef, aeronef en etant equipe, et procede d'alimentation en energie d'un aeronef

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925322A (en) * 1995-10-26 1999-07-20 H Power Corporation Fuel cell or a partial oxidation reactor or a heat engine and an oxygen-enriching device and method therefor
US20040043276A1 (en) * 2001-10-11 2004-03-04 Claus Hoffjann Fuel cell system and method with increased efficiency and reduced exhaust emissions
EP1357625A2 (fr) * 2002-04-13 2003-10-29 Airbus Deutschland GmbH Procédé pour augmenter l'efficacité et diminuer les gaz d'échappement d'un système de piles à combustible
US20050031932A1 (en) * 2003-08-04 2005-02-10 Liqing Hu Fuel cell with particulates blocking device
WO2006058774A2 (fr) * 2004-12-03 2006-06-08 Airbus Deutschland Gmbh Systeme d'alimentation en energie d'un aeronef, aeronef en etant equipe, et procede d'alimentation en energie d'un aeronef

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2911010A1 (fr) * 2006-12-27 2008-07-04 Conception & Dev Michelin Sa Groupe electrogene comportant une pile a combustible
EP1939963A1 (fr) * 2006-12-27 2008-07-02 Societe de Technologie Michelin Groupe electrogene comportant une pile a combustible
US9445665B2 (en) 2012-03-13 2016-09-20 Driesses Aerospace Group N.V. Autonomous trolley system
US10040555B2 (en) 2012-03-13 2018-08-07 Driessen Aerospace Group N.V. Cargo bay catering container with a distribution system
US9963240B2 (en) 2012-03-13 2018-05-08 Driessen Aerospace Group N.V. Power management for galley with fuel cell
US9770100B2 (en) 2012-03-13 2017-09-26 Driessen Aerospace Group N.V. Autonomous trolley system
WO2013140312A3 (fr) * 2012-03-19 2013-12-05 Intertechnique Dispositifs de piles à combustible pour prévention des incendies et / ou des explosions
JP2015513941A (ja) * 2012-03-19 2015-05-18 ゾディアック エアロテクニクス 火災及び/又は爆発の防止のための燃料電池装置
US9296480B2 (en) 2012-03-19 2016-03-29 Mag Aerospace Industries, Llc Use of at least one output of a fuel cell system in a lavatory
US9966619B2 (en) 2013-01-15 2018-05-08 Zodiac Aerotechnics Aircraft energy management system for multi functional fuel cells
CN105556723B (zh) * 2013-05-24 2018-12-07 水吉能公司 氮气富集的空气产生和燃料箱惰化系统
CN105556723A (zh) * 2013-05-24 2016-05-04 水吉能公司 氮气富集的空气产生和燃料箱惰化系统
US10164278B2 (en) 2013-05-24 2018-12-25 Hydrogenics Corporation Nitrogen enriched air generation and fuel tank inerting system
EP2808060A1 (fr) * 2013-05-28 2014-12-03 Zodiac Aerotechnics Système d'extinction d'incendie pour avion
EP2824744A1 (fr) * 2013-07-11 2015-01-14 Airbus Operations GmbH Système de pile à combustible, procédé pour faire fonctionner une pile à combustible et véhicule équipé d'un tel système de pile à combustible
CN104282926A (zh) * 2013-07-11 2015-01-14 空中客车德国运营有限责任公司 燃料电池系统、用于操作燃料电池的方法和具有该燃料电池系统的车辆
EP3023518A1 (fr) * 2014-11-24 2016-05-25 Hamilton Sundstrand Corporation Système de gestion de volume libre de gaz de réservoir de carburant pour aéronef
US9623981B2 (en) 2014-11-24 2017-04-18 Hamilton Sundstrand Corporation Aircraft fuel tank ullage gas management system
US10040569B2 (en) 2014-12-09 2018-08-07 Zodiac Aerotechnics Autonomous aircraft fuel cell system
US10710739B2 (en) 2014-12-09 2020-07-14 Zodiac Aerotechnics Autonomous aircraft fuel cell system
US10507345B2 (en) 2015-01-22 2019-12-17 Zodiac Aerotechnics Fuel cell devices for fire prevention on-board aircraft
US10717542B2 (en) 2015-01-22 2020-07-21 Zodiac Aerotechnics Aircraft fuel cell heat usages
FR3035074A1 (fr) * 2015-04-17 2016-10-21 Snecma Aeronef comprenant une pile a combustible ayant un systeme d'alimentation ameliore en oxygene
CN105502297A (zh) * 2015-12-11 2016-04-20 中国航空工业集团公司西安飞机设计研究所 一种液体污染物加注装置

Similar Documents

Publication Publication Date Title
US8313868B2 (en) Oxygen enrichment device comprising at least two molecular sieves for supplying a fuel cell system
WO2007057188A1 (fr) Dispositif d'enrichissement en oxygene comprenant au moins deux tamis moleculaires pour l'alimentation d'un systeme a pile a combustible
CN104282926B (zh) 燃料电池系统、用于操作燃料电池的方法和具有该燃料电池系统的车辆
US9963792B2 (en) Electrochemical gas separator for combustion prevention and suppression
JP5033136B2 (ja) 可燃性ガス濃縮システム
ES2590955T3 (es) Sistema y método para regular el funcionamiento de un ensamble de calentamiento a través del control de purga de la adsorción con oscilación de presión
US10017257B2 (en) Combined VOC—O2—CO2 treatment system
US6997970B2 (en) Oxygen/inert gas generator
US7625434B2 (en) Enhanced OBIGGS
CN107428415B (zh) 具有冗余的有效引气系统的飞行器
US20090211273A1 (en) Aircraft air-conditioning unit and method for operating an aircraft air-conditioning unit
US9364698B2 (en) Inerting method and system for reducing oxygen
JP2008523981A (ja) 温度に基づく破過検出及び圧力揺動吸着システム及び同一物を有する燃料電池
EP0997164B1 (fr) Système de génération de gaz
JP2008539072A (ja) ガス発生器をタンデム式に動作させる方法
US10207813B1 (en) Regenerative activated carbon filtration for aircraft obiggs
FR2855812A1 (fr) Systeme embarque de generation et de fourniture d'oxygene et d'azote
EP2862618B1 (fr) Dispositif de séparation de gaz et procédé de séparation de gaz
US20080160387A1 (en) Electric power pack that includes a fuel cell
US7442238B2 (en) Means for air fractionization
US7951228B2 (en) Self-propelled vehicle comprising an onboard equipment supplied with filtered air
CN214477571U (zh) 一种利用分子筛的低尾排燃料电池空气处理系统及燃料电池系统、车辆
US20080223988A1 (en) System For Inerting a Compartment of a self-Propelled Vehicle, Especially an Aircraft
US20040040440A1 (en) Method of installing a molecular sieve bed gas-enriching system
WO2009056203A1 (fr) Système de pile à combustible et procédé d'utilisation d'un système de pile à combustible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06818595

Country of ref document: EP

Kind code of ref document: A1