WO2007055178A1 - Method of cell fractionation and substrate to be used for the method - Google Patents

Method of cell fractionation and substrate to be used for the method Download PDF

Info

Publication number
WO2007055178A1
WO2007055178A1 PCT/JP2006/322119 JP2006322119W WO2007055178A1 WO 2007055178 A1 WO2007055178 A1 WO 2007055178A1 JP 2006322119 W JP2006322119 W JP 2006322119W WO 2007055178 A1 WO2007055178 A1 WO 2007055178A1
Authority
WO
WIPO (PCT)
Prior art keywords
ligand
cells
antibody
cell
presenting
Prior art date
Application number
PCT/JP2006/322119
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuji Yamaoka
Atsushi Mahara
Soichiro Kitamura
Original Assignee
Japan Health Sciences Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Health Sciences Foundation filed Critical Japan Health Sciences Foundation
Priority to JP2007544128A priority Critical patent/JPWO2007055178A1/en
Publication of WO2007055178A1 publication Critical patent/WO2007055178A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media

Definitions

  • the present invention relates to a cell sorting method and a base material used in the method, and more specifically, temporarily binds to the receptor from a cell group including cells presenting a specific receptor on the cell surface.
  • a ligand-presenting substrate on which the ligand to be displayed is displayed, a method for sorting cells efficiently and with high accuracy, and a high-density ligand immobilization for use in the method
  • the present invention relates to a ligand-presenting substrate.
  • FIG. 11 is a schematic diagram illustrating the principle of the FACS method.
  • the FACS method can be performed using an apparatus 100 shown in FIG.
  • the sorting mechanism includes a droplet charging method and a cell capture method.
  • FIG. 11 shows the principle of the droplet charging method.
  • the apparatus 100 is provided with a laser transmitter 102 and a detector 103 as shown in FIG.
  • This device 100 determines the amount of antigen on the cell surface by allowing cells labeled with a fluorescent antibody to flow in a liquid flow, passing through the focal point of the laser beam, and measuring the fluorescence emitted by individual cells. It can be measured quantitatively and specific cells can be sorted.
  • CD34 is presented on the surface of hematopoietic stem cells as a receptor specific for hematopoietic stem cells, and this CD34 can be used as a marker for identifying hematopoietic stem cells.
  • a cell suspension 101 containing hematopoietic stem cells is prepared.
  • CD34 of the hematopoietic stem cells is labeled with a fluorescent antibody 104.
  • FIG. 1 In FIG.
  • CD34 (+) cells hematopoietic stem cells fluorescently labeled with fluorescent antibody 104 are shown in black, and CD34 () cells (cells other than hematopoietic stem cells) are shown in white.
  • the prepared cell suspension 101 is also passed through the apparatus 100 with the directional force indicated by the arrow a in FIG. 11, and the sheath liquid is also flowed with the directional force indicated by the arrow b.
  • the sheath liquid containing cells is discharged from the nozzle 1 OOa.
  • the discharged sheath liquid is allowed to pass through the focal point of the laser beam emitted from the laser transmitter 102, whereby the fluorescence emitted by each cell is detected by the detector 103.
  • the sheath flow that flows out of the nozzle 100a also forms a droplet in the middle force. Therefore, the sheath where hematopoietic stem cells in which fluorescence is detected by the detector 103 is present A charged hematopoietic stem cell-containing droplet is formed by charging immediately before the liquid is about to form a droplet. Therefore, as shown in FIG. 11, if the deflector plate 105 is provided in the apparatus 100, the charged hematopoietic stem cell-containing droplets can be drawn to the deflector plate 105 and separated into the collection container 106 (non-patent document). (Ref. 1).
  • FIG. 12 is a schematic diagram for explaining the principle of the MACS method.
  • a cell suspension 101 containing hematopoietic stem cells is prepared.
  • magnetic beads 107 to which antibodies are attached are used to bind the antibodies to CD34 (antigen) to display magnetic beads 107 on the surface of hematopoietic stem cells.
  • the cell suspension 101 containing hematopoietic stem cells on which the magnetic beads 107 are presented is placed in the column 109 provided in the magnetic device 108 shown in FIG. 12, and the magnetic beads 107 are adsorbed on the magnetic device 108 to cause hematopoiesis.
  • Stem cells can be sorted (see Non-Patent Document 2).
  • Non-Patent Document 2 Miltenyi S. (1990) High Gradient Magnetic Cell Separation With MAC S, Cytometry, 11, 231-238
  • Non-Patent Document 3 Greenberg and Hammer: Cell Separation Mediated by Differential Rolling Adhesion, BIOTECHNOLOGY AND BIOENGINEERING, VOL.73, NO.2, APRI L 20, 2001, 111-124
  • Non-Patent Document 3 discloses a technique for separating cells based on the presence or absence of a receptor by using a ligand that binds to a receptor on the cell surface and using a base material on which the ligand is immobilized.
  • a glass substrate coated with a selectin solution (2 ⁇ g / mL) as a ligand is adopted as a ligand-presenting substrate, and CD34-negative cells (without receptors and cells) and CD34-positive cells are used.
  • the average rolling rate of both cells is 2.2 times different, so the elution rate is calculated to be approximately 20 minutes different.
  • latex particles coated with sialyl Lewis antigen are rolled in a chamber (width 15 mm, height 55 mm) composed of a ligand-presenting substrate surface, latex with a small particle size is used. For the particles, the rolling speed is slower than the larger one, indicating that the elution time is delayed.
  • Non-Patent Document 3 the ligand is applied to a smooth surface. A non-covalently bound ligand-presenting substrate is used. For this reason, it is not possible to expect an efficient contact frequency between the cell surface and the ligand-presenting substrate surface, which is difficult to modify with a high density of ligand, and therefore, cells having a receptor density within a predetermined range can be accurately separated. There is a risk of not.
  • the present invention has been made in view of the above problems, and an object of the present invention is a method of sorting cells from a group of cells including cells presenting a specific receptor on the cell surface. (1) a method for efficiently and accurately sorting the cells having a receptor density within a predetermined range; and (2) the cells having each density according to the receptor density from the cell group. It is an object to provide a method for efficiently and continuously fractionating the water.
  • the inventors of the present application have fixed a ligand capable of temporarily binding to a receptor present on the surface of a cell desired to be sorted via a graft chain. It has been found that cells having a display density of a receptor that is desired to be sorted can be sorted efficiently and with high accuracy by using a trapped substrate, and the present invention has been completed. In addition, the present inventors have found that by using the above-mentioned base material, cells having a certain display density can be sequentially sorted according to the display density of the receptor according to the receptor display density, and the present invention has been completed. I came to let you.
  • a ligand that temporarily binds to the receptor is presented on the surface via a graft chain from a cell group including cells in which a specific receptor is presented on the cell surface.
  • a ligand-presenting substrate By using a ligand-presenting substrate, cells having a receptor display density within a predetermined range are sorted.
  • the cells whose receptor display density is within a predetermined range are cells whose receptor display density is within the range of the display density desired to be sorted.
  • a ligand that temporarily binds to the receptor is displayed on the surface via a graft chain from a group of cells including cells on which the specific receptor is presented on the cell surface.
  • the display density of the receptor can be adjusted.
  • it is characterized by sequentially sorting cells having a certain display density according to the level of the display density.
  • a smooth surface is formed by the ligand-presenting base material and the ligand, and the sorting is performed by moving a group of cells along the surface.
  • the cell is rotated by moving on the smooth surface while binding with the ligand, and the cell moving speed is preferably reduced by the degree of binding with the ligand according to the receptor display density.
  • the smooth surface refers to a surface structure other than a surface having a structure that restricts the movement of cells when a cell group moves along the surface. This excludes the surface having a structure in which the cell just fits in the recess about the size of the cell.
  • a dispersion liquid in which the cells are dispersed is allowed to flow on the smooth surface, and the bonds are dissociated by shear stress that the cells receive a dispersion liquid force. Is preferred.
  • the sorting method according to the present invention uses a force that rolls on the inclined surface generated in the cells by flowing a dispersion liquid in which the cell group is dispersed on the inclined smooth surface. It is preferable to dissociate the bonds.
  • the cell is preferably a stem cell.
  • the ligand is a site force-in.
  • cyto force-in levels are vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), stromal cell-derived factor 1 (SDF1), and platelet-derived growth factor (PDGF).
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • SDF1 stromal cell-derived factor 1
  • PDGF platelet-derived growth factor
  • IGF Insulin-like growth factor
  • HGF hepatocyte growth factor
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • CNTF ciliary neurotrophic factor
  • GDNF glial cell-derived neurotrophic factor
  • NT-3 Neurotrophin-3
  • NT-4 Eurotrophin-1
  • BMP Bone morphogenetic factor
  • IL Interleukin
  • the receptor may be an antigen
  • the ligand may be an antibody that causes an antigen-antibody reaction against the antigen. More specifically, on The antigen is a specific antigen on the surface of vascular endothelial progenitor cells, and the above-mentioned antibodies are anti-CD31 antibody, anti-CD34 antibody, anti-CD133 antibody, anti-CD144 antibody, anti-Flk-l antibody, anti-Flk-2 antibody, anti-antibody Flk-3 antibody, anti-Flk-4 antibody, anti-Fit-1 antibody, anti-Fit-2 antibody, anti-Fit-3 antibody, anti-Fit-4 antibody, anti-tie-2 antibody, anti-PECAM antibody, anti-VE cadherin antibody And at least one selected from the group consisting of anti-VEGF receptor antibody strength.
  • the ligand-presenting substrate according to the present invention is characterized in that the ligand is presented on the surface via a graft chain for use in the above-described sorting method.
  • the ligand-presenting substrate according to the present invention is preferably a tubular substrate, and the ligand forms a smooth surface on the inner wall of the tube via the graft chain.
  • the ligand-presenting substrate according to the present invention is preferably a planar substrate having grooves.
  • the ligand-presenting substrate according to the present invention is preferably such that the ligand is formed in the groove via the graft chain! /.
  • a polymerization step of polymerizing a graft chain on the surface of the substrate before presenting the ligand, and the graft chain polymerized by the polymerization step And a fixing step of fixing the ligand.
  • the separation apparatus including the ligand-presenting base material used in the sorting method includes the above-described ligand-presenting base material and a tilting means for tilting the ligand surface of the ligand-presenting base material. It is characterized by that.
  • cells having a receptor density within a predetermined range can be efficiently and accurately sorted from a cell group containing the cells, and the cell group described above. From the above, according to the receptor density, the cells having each density can be continuously collected. Specifically, in the present invention, since a ligand-presenting substrate in which a ligand is presented on the surface via a graft chain is used, a conventional ligand-presenting substrate in which the ligand is non-covalently bonded to the substrate surface.
  • FIG. 1 is a diagram for explaining the principle of a sorting method according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a ligand-presenting substrate that can be used in a sorting method according to an embodiment of the present invention and a state of cells that rotate and move on the surface thereof.
  • FIG. 3 (a) is a diagram showing a configuration of a separation apparatus provided with a ligand-presenting substrate that can be used in a sorting method according to an embodiment of the present invention.
  • FIG. 3 (b) is a perspective view showing the shape of a ligand-presenting base material provided in the separation apparatus shown in FIG. 3 (a).
  • FIG. 4 is a view showing a ligand-presenting base material that can be used in a sorting method according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the results of quantifying the amount of ligand immobilized on the ligand-presenting substrate used in one example of the present invention.
  • FIG. 6 (a) A dispersion in which a cell group containing CD34-positive cells is dispersed in the ligand-presenting substrate (anti-CD34 antibody-immobilized tube substrate) used in one example of the present invention is passed through. It is a graph which shows the result of having quantified the number of cells in the fraction collected.
  • FIG. 6 (b) is a graph showing the results of quantifying the number of cells in the fraction recovered by passing the dispersion liquid of FIG. 6 (a) through a substrate with a ligand immobilized as a comparative example. is there.
  • ligand-presenting substrate anti-CD34 antibody-immobilized tube substrate
  • a dispersion in which CD34-negative cells were dispersed It is a graph which shows the result of having quantified the number of cells in a fraction.
  • FIG. 7 (b) As a comparative example, a graph showing the results of quantifying the number of cells in a fraction collected by passing a dispersion in which CD34 negative cells were dispersed in a base material, with a ligand immobilized. It is.
  • FIG. 8 (a) Analysis result by flow cytometer, analysis result of the dispersion before passing through the ligand-presenting substrate.
  • FIG. 8 (b) Analysis results by flow cytometer, and analysis results of the eluate collected in fraction no. 7 in Fig. 6 (a).
  • FIG. 9 is a graph showing the results of plotting the percentage of CD34 high-density cells against fraction no.
  • FIG. 10 is a graph showing the results of quantifying the expression level of collagen type 1 in mouse bone marrow-derived mesenchymal stem cells separated by a ligand-presenting substrate (anti-CD34 antibody-fixed tube substrate).
  • FIG. 11 is a diagram showing a conventional technique and explaining the principle of the FACS method.
  • FIG. 12 is a diagram showing a conventional technique and explaining the principle of the MACS method.
  • the present invention uses a ligand-presenting substrate in which a ligand that temporarily binds to the receptor is presented on the surface via a graft chain from a group of cells containing cells on which the specific receptor is presented on the cell surface.
  • a method for sorting cells having a receptor display density within a predetermined range is provided.
  • the present inventors have focused on a specific receptor that is present on the surface of a cell and serves as a marker for identifying the cell, and a protein having a ligand corresponding to this receptor (hereinafter simply referred to as a ligand).
  • a protein having a ligand corresponding to this receptor hereinafter simply referred to as a ligand.
  • target cells cells that are desired to be sorted
  • target cells can be efficiently and accurately sorted from a group of cells by using a base material that is bound to the surface via a graft chain.
  • target cells to be sorted include stem cells.
  • Stem cells are cells that constitute the target tissue or organ, cells that can differentiate into cells that constitute the target tissue or organ, and the like. In addition to such cells, there are cells that can differentiate into cells constituting the target tissue or organ or cells constituting the target tissue or organ by secreting a specific site force-in or the like. This also includes cells that encourage entry into the support body or induce differentiation of these cells.
  • cells that can differentiate into cells that constitute the tissue or organ are not particularly limited, and for example, human or animal-derived mesenchymal stem cells, ES cells, keratinocytes, Examples include fibroblasts, bone marrow cells, endothelial cells, smooth muscle cells, Schwann cells, chondrocytes, fat cells, osteoblasts, vascular endothelial progenitor cells, and the like.
  • the cell that secretes the site force-in is not particularly limited, and examples thereof include a cell constituting the tissue or organ, a cell capable of differentiating into a cell constituting the tissue or organ, and the like.
  • a stem cell is simply a cell.
  • the ligand that temporarily binds to a specific receptor displayed on the cell surface of the cell to be sorted is not particularly limited, and can bind to a receptor on the cell surface and has the conditions described below. Any ligand can be used as long as it can be dissociated. Specific examples include site force-in and antibodies.
  • the site force-in is not particularly limited, and examples thereof include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), stromal cell-derived factor 1 (SDF1), and platelet-derived growth factor.
  • VEGF vascular endothelial growth factor
  • bFGF basic fibroblast growth factor
  • SDF1 stromal cell-derived factor 1
  • PDGF platelet-derived growth factor
  • IGF insulin-like growth factor
  • HGF hepatocyte growth factor
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • CNTF ciliary neurotrophic factor
  • GDNF derived neurotrophic factor
  • NT-3 neurotrophin-3
  • NT-4 -eurotrophin-4
  • BMP bone morphogenetic factor
  • IL interleukin
  • the target cell or group of cells is a Schwann cell or a neuron
  • nerve growth factor NNF
  • brain-derived neurotrophic factor BDNF
  • Ciliary neurotrophic factor CNTF
  • neurotrophin 3 NT-3
  • NT-4 NT-4
  • nerve growth factor NGF
  • brain-derived neurotrophic factor BDNF
  • CNTF ciliary neurotrophic factor
  • NT-3) and -Eurotrophin 1 At least one site force selected from the group consisting of forces is bonded to the surface via a graft chain. (Ligand-presenting substrate) is used.
  • an antibody corresponding to a specific antigen on the surface of a target cell is used.
  • an antibody to a surface marker specifically present on the surface of a vascular endothelial cell or vascular endothelial progenitor cell, Schwann cell or nerve cell (anti-cell surface marker antibody), vascular endothelial cell or vascular endothelium
  • a surface marker specifically present on the surface of a vascular endothelial cell or vascular endothelial progenitor cell, Schwann cell or nerve cell (anti-cell surface marker antibody), vascular endothelial cell or vascular endothelium
  • examples thereof include antibodies against a progenitor cell, a cytoforce-in receptor that specifically acts on Schwann cells or neurons (anti-site force-in receptor antibody), and the like.
  • CD34, CD31, CD133, CD144, Flk-1, Flk-2, Flk-3 on the surface of vascular endothelial progenitor cells that can differentiate into cells constituting vascular endothelium.
  • Specific antigens such as Flk—4, Fit—1, Fit—2, Fit—3, Fit—4, tie—2, VE cadherin, PECAM, and VEGF receptor are present to identify vascular endothelial progenitor cells. It can be used as a marker (receptor).
  • anti-CD31 antibody, anti-CD34 antibody, anti-CD133 antibody, anti-CD144 antibody, anti-Flk-1 antibody, anti-Flk-2 antibody, anti-Flk— 3 antibodies, anti-Flk—4 antibodies, anti-Fit—1 antibody, anti-Fit—2 antibodies, anti-Fit—3 antibodies, anti-Fit—4 antibodies, anti-tie—2 antibodies, anti-PECAM antibodies, anti-VE cadherin antibodies or anti-VEGF Use a base material in which at least one kind of antibody selected from the group consisting of receptor antibodies is bound (presented) to the surface via a graft chain.
  • cyto force-in or antibody corresponding to any of them may be used, or two or more types may be used in combination.
  • two or more kinds of cytosines or antibodies are used in combination, higher selectivity can be realized in fractionation.
  • a method for preparing the above-mentioned site force-in or antibody is not particularly limited, and a conventionally known method can be used. In recent years, antibodies corresponding to various types of site force-in and main cell surface antigens have been marketed, so use them.
  • the ligand-presenting substrate of the present invention is obtained by binding a protein having a ligand to the surface of the substrate via a graft chain.
  • the substrate is not particularly limited, and a known inorganic material or organic material can be used.
  • a known inorganic material or organic material can be used.
  • Substances that can be used as a graft chain to be polymerized on the above-mentioned substrate include, for example, bur monomers such as acrylic acid, methacrylic acid, and butyl acetate, and derivatives thereof, and cyclic amines such as ethylene imide lactide. Examples include compounds.
  • the method for generating the polymerization start point is as follows: ⁇ ⁇ ⁇ ⁇ , plasma, corona, ultraviolet rays, and
  • the polymerization method of the graft chain is not limited to the radical polymerization by the vinyl monomer shown in the examples, but includes coordination anion polymerization, ring-opening polymerization, hydrogen transfer polymerization, polycondensation, addition condensation, and the like. The combination is also included.
  • the method for immobilizing an antibody to the generated graft chain is not limited to the method for the activation of an amino group with carpositimide, but is immobilized with a compound having an amino group and an isothiocyanate group or a succinimidyl ester. And various methods for hydroxyl groups, thiol groups, and carboxyl groups.
  • the density of the ligand and the contact frequency with the receptor-presenting cell are improved by immobilizing the antibody on the base material via a graft chain. It is not limited. That is, as long as the density of the ligand and the frequency of contact with the receptor-presenting cell can be improved, for example, immobilization of Fab, protein having a multi-binding site, and introduction of a high-density active site may be employed. It is possible. The following can be illustrated as such a form.
  • polylactic acid or the like is used as the base material
  • the surface of polylactic acid is hydrolyzed with an alkali or the like to expose a carboxyl group, and then a kind of water-soluble carbodiimide to the carboxyl group.
  • a protein can be bound by reacting a certain 1-ethyl-3- (3 dimethylaminopropyl) carbodiimide (EDC) and using this EDC active group to covalently bond the amino group of the protein.
  • EDC 1-ethyl-3- (3 dimethylaminopropyl) carbodiimide
  • the unreacted EDC active group remaining on the surface of the base material inhibits the binding between the receptor and the ligand, and there is a possibility that accurate fractionation cannot be realized. It is preferable to perform a cabbing treatment such as reacting with.
  • Collagen can also be used as the substrate.
  • the protein is shared via various divalent crosslinkers such as dialdehydes, epoxy compounds, and acid anhydrides by using functional groups of amino acids constituting collagen. Can be combined.
  • the shape of the substrate is not particularly limited, and for example, a tube or a film such as a tube or a film may be used. .
  • a tube-like material such as a tube
  • the protein having the above ligand is bound to the inner wall via a dial chain.
  • a film-like material such as a film
  • the protein having the ligand is bound to the membrane surface via a graft chain.
  • the binding amount of the protein (ligand) is not particularly limited, but according to the configuration of the present invention, since the ligand is bound via the graft chain, the ligand is bound at a high density. Can do.
  • the protein may be bound to the entire base material, or may be bound to only a part thereof.
  • the target cells are sorted by the cell group containing the target cells moving while rotating on the ligand surface of the ligand-presenting substrate.
  • the ligand-presenting substrate preferably has a smooth surface formed by the ligand.
  • the term “smooth surface” means that a cell group is on the surface. A surface that does not have a structure that restricts the movement of cells when moving along. For example, if a recess corresponding to the size of the cell is formed so that the cell completely fits in, the cell cannot be moved due to being fitted into the recess during movement. It becomes impossible to carry out taking method. Therefore, a surface that excludes the surface on which such a structure is formed is called a “smooth surface”. For example, a porous body having a large number of fine pores is suitable because it may cause the above problems.
  • the ligand surface of the ligand-presenting substrate has a planar surface with grooves that do not have to be a perfect plane. It may be a thing. In this case, it is also preferable that the protein having the ligand is bound to the groove via a graft chain.
  • the ligand-presenting substrate has a structure in which a plurality of tubes are formed with the flow channel directions parallel to each other, and the protein having the ligand is bound to the inner wall of each tube via a graft chain. It may be a thing.
  • FIG. 3 (a) shows an embodiment of a separation apparatus that can be used in the separation method of the present invention.
  • the separation device is provided with a ligand-presenting base material 2, a tilting means 6 for tilting the ligand-presenting base material 2, and a syringe pump 7.
  • FIG. 3 (b) shows the shape of the ligand-presenting substrate 2.
  • the separation device according to the present embodiment is configured such that a dispersion liquid in which a cell group is dispersed is supplied from a syringe pump 7 to the ligand surface, and the cell group rotates and moves on the ligand surface inclined by the inclination means 6. (Rolling movement)
  • the separation device may include a collecting means for rolling the ligand surface to collect the sorted cells.
  • the interaction between a receptor on the surface of a cell desired to be sorted and a ligand provided on the ligand-presenting substrate via a graft chain uses the degree of.
  • the degree of interaction (hereinafter referred to as binding) is proportional to the density of receptors presented on the cell surface (hereinafter referred to as receptor presentation density). That is, the degree of binding to the ligand immobilized on the substrate is high, and the cell has a receptor display density of “high”.
  • a cell with a low degree of binding to the ligand of the substrate can be said to have a receptor presentation density force S “low”.
  • binding force degree of binding
  • dissociating force force required to dissociate it
  • FIG. 1 is a schematic diagram for explaining the sorting method of this embodiment using this principle.
  • the cell group 1 is rolled and moved on the ligand surface 3 fixed to the draft chain 5 on the ligand-presenting substrate 2.
  • the ligand-presenting base material 2 is tilted using the tilting means 6 (FIG. 3 (a)), and a dispersion liquid in which the cell group 1 is dispersed is supplied from upstream.
  • a dispersion liquid in which the cell group 1 is dispersed is supplied from upstream.
  • the cell 4 rolls due to the force of the dispersion (shear stress) and the force that rolls on the slope generated in the cell 4 itself. That is, in the present embodiment, the shear stress and the force rolling on the inclined surface are the dissociating force.
  • the moving speed is high, and the cells may contain cells that present the receptor.
  • the receptor presentation density in each cell can be classified as a difference in migration speed. [0073] Therefore, for example, by using a cell in which the receptor presentation density is pre-divided, the cell can be rolled on the ligand presentation substrate, and the time during which the downstream force of the ligand presentation substrate is eluted according to the receptor presentation density can be set. By measuring, cells having a desired receptor display density can be sorted using the difference in migration speed, that is, using the difference in elution time.
  • the cell concentration (number) of the dispersion in which the cell group 1 is dispersed is not particularly limited as long as the above dissociation force is applied to individual cells that move rolling on the ligand surface.
  • the cell concentration in the dispersion is 1 X 10 ° to 1 X 10 7 cells / mL, and the number of cells is 1 X A dispersion of 10 ° to 1 ⁇ 10 1G Zm 2 can be used.
  • each receptor presentation is made downstream in the movement direction.
  • cells having different receptor display densities can be sequentially sorted according to the receptor display density.
  • a ligand-presenting substrate in which a ligand that temporarily binds to the receptor is presented on the surface via a graft chain from a group of cells containing cells on which the specific receptor is presented on the cell surface.
  • a method of sequentially sorting cells having a certain display density according to the display density of the receptor according to the level of the display density is also one of the sorting methods of the present invention.
  • Non-Patent Document 3 the possibility of cell separation is suggested by controlling the cell rolling only by the flow of a single dispersion (share stress).
  • shared stress an increase in shear stress generates a phase flow state between the ligand substrate surface and the liquid flow, and decreases the contact frequency between the cells and the substrate surface.
  • the method of Non-Patent Document 3 can realize cell rolling only within a very limited range.
  • Non-Patent Document 3 has a configuration in which a ligand is non-covalently bonded to the surface of a substrate. For this reason, the cell surface and the ligand substrate surface, on which high-density ligand modification is difficult, are more effective. Since it is not possible to expect an efficient contact frequency, there is a limit to the applicable share stress, and when the binding force between the ligand and the receptor is strong, the dissociation can be promoted only with a single share stress. Is difficult. On the other hand, the present invention utilizes the force of rolling on the slope generated in the cell itself together with the shear stress.
  • This method increases the frequency of contact between the ligand-presenting substrate and the cell surface receptor, enabling more efficient separation of the cells.
  • the degree of shear stress Furthermore, cell separation can be achieved more efficiently by freely changing the inclination angle of the ligand-presenting substrate.
  • the ligand is noncovalently bound to the substrate surface because the ligand-presenting base material on the surface of the ligand is used via the graft chain.
  • the ligand-presenting base material on the surface of the ligand is used via the graft chain.
  • the cells that have migrated on the ligand surface 3 of the ligand-presenting substrate 2 are collected downstream using the collecting means and sorted.
  • the present invention is not limited to this. That is, in the fractionation method according to the present invention, a dissociation force is released and a plurality of mobility different in the mobility is obtained in a state in which the movement speed is made different on the ligand surface 3 of the ligand-presenting substrate 2 with a difference in movement speed.
  • the cells may be placed (bound) on the ligand surface 3 as they are.
  • the present inventors sorted cells having a desired receptor-presenting density.
  • a ligand-presenting substrate was prepared.
  • ligand-presenting substrate As shown in FIG. 4, a polyethylene tube substrate having an inner diameter of 1 mm, an outer diameter of 2 mm, and a length of 100 mm was used as the substrate. First, the polyethylene tube substrate shown in FIG. 4 was treated with ozone gas at room temperature for 4 hours. Thereafter, the grafted chain of polyacrylic acid was polymerized on the polyethylene surface by heating at 60 ° C. for 4 hours in a 20% acrylic acid Z methanol solution. The grafted tube substrate was cleaned by sonication at 37 ° C for 30 minutes, and then 0.1M 1-ethyl-3- (3 dimethylaminopropyl) force rubodiimide (EDC) solution at 4 ° C. Soaked for 2 hours to activate the carboxyl groups on the surface.
  • EDC 1-ethyl-3- (3 dimethylaminopropyl) force rubodiimide
  • the EDC activity tube substrate was immersed in 0.04 mgZmL anti-CD34 antibody-phosphate buffer solution at 37 ° C for 4 hours to bind the anti-CD34 antibody to the inner wall.
  • FIG. 5 is a graph showing the results of quantification of the antibody amount of the anti-CD34 antibody.
  • a tube base material subjected to the following treatment is used as a control tube base material.
  • control tube substrate for example, a polyethylene tube substrate having an inner diameter of 1 mm, an outer diameter of 2 mm, and a length of 100 mm was used in the same manner as the ligand-presenting substrate.
  • the tube substrate was cleaned by sonication at 37 ° C for 30 minutes, and then added to 0.1M 1-ethyl-3- (3 dimethylaminopropyl) carpositimide (EDC) solution at 4 ° C for 2 hours.
  • EDC 1-ethyl-3- (3 dimethylaminopropyl) carpositimide
  • the surface carboxyl group was activated by immersion.
  • the EDC active tube substrate was then immersed in phosphate buffer solution at 37 ° C for 4 hours, and finally immersed in 1 OmM 2-aminoethanol phosphate buffer solution at 4 ° C for 2 hours.
  • the reaction active carboxyl group was capped to obtain a control tube base.
  • FIG. 5 shows that the amount of antibody immobilized on the inner wall of the tube base material (ligand-presenting base material) increases as the EDC activity time elapses. That is, this result showed that the anti-CD34 antibody was immobilized on the inner wall of the tube base material.
  • the ligand amount of the substrate is 200 ⁇ g / m 2 and the ligand density is 1. 67 X 10 ” 9 mol / m 2 . It was.
  • ligand-presenting substrate anti-CD34 antibody-immobilized tube substrate
  • HL60 cells derived from acute leukemia which are CD34 negative cells
  • KG-la cells which are CD34 positive cells
  • the prepared dispersion (cell concentration: 2 X 10 6 ZmL) was placed in a cell injection tube connected to the ligand-presenting substrate shown in Fig. 3 (a) using a syringe with 10 L (cell number: 2 X 10 4 pieces) Then, using a syringe pump 7 (KD Scientific Inc., Inlusion Pomp, Model: KDS100) shown in FIG. 3 (a), the dispersion liquid was flowed for 50 LZ (fraction no. 1 to 5), flow rate 60 O / z LZ fraction (fraction no. 6 to 15) was passed through the hollow part of the ligand-presenting substrate. The eluted cells were collected for each fraction. The recovered amount is 50 / z L in fractions no. 1-10 and 100 in fractions no. 11-15.
  • FIG. 6 (a) shows the results of measuring the number of cells in the eluate (fractions no. 1 to 8) collected every minute.
  • FIG. 6 (b) as a comparative example, phosphoric acid was added to the control tube base material (tube base material not presenting the ligand) prepared in FIG.
  • the results of collecting cells under the same conditions as in Fig. 6 (a) after passing a buffer solution are shown.
  • the amount of fluorescence labeled on CD34 positive cells was quantified.
  • the fluorescent labeling reagent used was FITC anti-human CD34 (Cat No: 558221) manufactured by BD Biosciences Pharmingen. 2 L of fluorescent labeling reagent was added to the collected 100 L fraction and allowed to stand at 4 ° C for 30 minutes. Thereafter, FACS measurement tube (Becton Dickinson Labware, FALCON352058 Polystyrene tube, 5 mL) and PBS were added to prepare a final volume of 1 mL.
  • Figs. 8 (a) and (b) The results of analysis using a flow cytometer are shown in Figs. 8 (a) and (b).
  • Fig. 8 (a) shows the analysis results of the eluate collected in fraction no. 2 in Fig. 6 (a)
  • Fig. 8 (b) shows the result collected in fraction no. 7 in Fig. 6 (a). It is the analysis result of the eluate.
  • a ligand-presenting base material a silicon tube base material having an inner diameter of 0.5 mm, an outer diameter of 1.5 mm, and a length of 100 mm
  • anti-mouse CD34 antibody immobilization agent prepared in the same manner as in (1) above.
  • mouse bone marrow-derived mesenchymal stem cells that are CD34 positive cells were isolated.
  • the amount of cell dispersion injected into the ligand-presenting substrate, the number of cells, and the flow rate of the dispersion are the same as in the above method (2).
  • the recovered cell volume is 25 L in the 12.5 ⁇ fractions no. 11-15 in the fraction no. 1-10.
  • the cells were seeded in a 24-well culture dish and allowed to stand for 24 hours at a temperature of 37 ° C and a carbon dioxide concentration of 5%. Then, the bone cell fraction induction medium (DMEM—low glucose (manufactured by Aldrich), dexamethasone 10_8 M, j8 glycephosphate phosphate 10 mM, ascorbic acid 0.3 mM) was added, and the temperature was 37 °. C, left at 5% carbon dioxide concentration.
  • DMEM low glucose
  • dexamethasone 10_8 M dexamethasone 10_8 M
  • j8 glycephosphate phosphate 10 mM ascorbic acid 0.3 mM
  • Samples No. 2 and 3 show the results of inducing differentiation of cells with low and high CD34 expression by FACS method.
  • the sorting method according to the present invention uses a ligand-presenting substrate in which a ligand that temporarily binds to the receptor is presented on the surface from a group of cells containing cells on which the specific receptor is presented.
  • a ligand that temporarily binds to the receptor is presented on the surface from a group of cells containing cells on which the specific receptor is presented.
  • cells with a certain display density can be easily sorted and sequentially sorted according to the level of the display density.
  • cells in stem cells that are divided into specific cells It can be widely applied to the field of regenerative medicine where various research and development are being carried out for the realization of treatment methods by tissue regeneration, such as elucidating the correlation between surface receptors and molecules.

Abstract

In a method of cell fractionation according to the invention, by using a ligand-presenting substrate in which a ligand capable of temporarily binding to a receptor present on the surface of a cell desired to be fractionated is immobilized via a graft chain, cells are rotationally transferred on the surface of the ligand-presenting substrate and a difference in the transfer rate caused by the binding degree is utilized. This achieves a method of fractionating a cell presenting a specific receptor on the cell surface from a group of cells including the cell, in which the cell having a receptor density within a predetermined range can be fractionated efficiently and highly accurately and the cells having respective densities can be continuously fractionated from the group of cells depending on the receptor density.

Description

明 細 書  Specification
細胞の分取方法、及び当該方法に用いる基材  Cell sorting method and substrate used in the method
技術分野  Technical field
[0001] 本発明は、細胞の分取方法、及び当該方法に用いる基材に関し、より詳細には、 特定のレセプターを細胞表面に提示した細胞を含む細胞群から、上記レセプターと 一時的に結合するリガンドが表面に提示されたリガンド提示基材を用いることによつ て、細胞を効率的且つ高精度で分取するための方法、及び当該方法に用いるため の、高密度にリガンドが固定化されたリガンド提示基材に関するものである。  [0001] The present invention relates to a cell sorting method and a base material used in the method, and more specifically, temporarily binds to the receptor from a cell group including cells presenting a specific receptor on the cell surface. By using a ligand-presenting substrate on which the ligand to be displayed is displayed, a method for sorting cells efficiently and with high accuracy, and a high-density ligand immobilization for use in the method The present invention relates to a ligand-presenting substrate.
背景技術  Background art
[0002] 再生医療分野では、 1993年米国 MITの Langerらにより提唱された治療法の実現 に向けて、すなわち細胞とそれを支持する基材 (スキヤホールド)を用いた組織再生 による治療法の実現に向けて様々な研究 *開発が展開されている。この手法を、安全 性の高 、治療法として確立するためには、組織再生に用いる幹細胞等を自家組織 力 効率よく採取する必要がある。  [0002] In the field of regenerative medicine, aiming for the realization of the treatment method proposed by Langer et al. In 1993 in the United States, that is, the realization of the treatment method by tissue regeneration using cells and the substrate (shearhold) that supports them Various research * development is being developed. In order to establish this method as a highly safe and therapeutic method, it is necessary to collect stem cells and the like used for tissue regeneration efficiently with the use of self-tissue.
[0003] 現在、幹細胞等を自家組織から採取する方法として、 Ficoll法に代表される物理学 的手法と、 FACS (fluorescence activated cell sorting)法や磁気ビーズ (Magnetic eel 1 sorting)法(以下、 MACS法という)などの生物学的な手法が挙げられる。中でも、 1 947年に Coulterらが開発したフローサイトメーターの原理を基に、 1965年に Fulwyle rにより基礎原理が確立された FACS法は、高い選択性'特異性の観点カゝら組織再 生に用いる幹細胞の分離法として採用されている。以下に、図 11及び図 12を用いて 、 FACS法及び MACS法の原理を説明する。  [0003] Currently, as a method of collecting stem cells and the like from autologous tissue, a physical method represented by the Ficoll method, a fluorescence activated cell sorting (FACS) method, a magnetic bead (Magnetic eel 1 sorting) method (hereinafter referred to as MACS) Biological methods). Among them, the FACS method, whose basic principle was established by Fulwyler in 1965 based on the principle of a flow cytometer developed in 1947 by Coulter et al. It is adopted as a method for separating stem cells used in the above. Hereinafter, the principles of the FACS method and the MACS method will be described with reference to FIG. 11 and FIG.
[0004] 図 11は、 FACS法の原理を説明する模式図である。 FACS法は、図 11に示す装 置 100を用いて行なうことができる。なお、分取の機構には液滴荷電方式及びセルキ ャプチヤー方式があるが、図 11は液滴荷電方式の原理を示している。装置 100には 、図 11に示すように、レーザー発信器 102と検出器 103とが設けられている。この装 置 100は、蛍光抗体で標識した細胞を液流に乗せて流し、レーザー光の焦点を通過 させ、個々の細胞が発する蛍光を測定することによって細胞表面にある抗原量を定 量的に測定することができ、また、特定の細胞を分取できる。 FIG. 11 is a schematic diagram illustrating the principle of the FACS method. The FACS method can be performed using an apparatus 100 shown in FIG. The sorting mechanism includes a droplet charging method and a cell capture method. FIG. 11 shows the principle of the droplet charging method. The apparatus 100 is provided with a laser transmitter 102 and a detector 103 as shown in FIG. This device 100 determines the amount of antigen on the cell surface by allowing cells labeled with a fluorescent antibody to flow in a liquid flow, passing through the focal point of the laser beam, and measuring the fluorescence emitted by individual cells. It can be measured quantitatively and specific cells can be sorted.
[0005] 以下に、 FACS法にっ 、て、骨髄に含まれる造血幹細胞を分取する場合を挙げて 詳述する。造血幹細胞の表面には、造血幹細胞に特異的なレセプターとして CD34 が提示されており、この CD34を、造血幹細胞を識別するためのマーカーとして利用 することができる。まず、造血幹細胞を含む細胞懸濁液 101を調製するが、調製の際 、造血幹細胞の CD34を蛍光抗体 104で標識する。図 11では、蛍光抗体 104で蛍 光標識した CD34 ( + )細胞 (造血幹細胞)を黒、 CD34 ( )細胞 (造血幹細胞以外 の細胞)を白で示している。次に、調製した細胞懸濁液 101を図 11の矢印 aで示した 方向力も装置 100に通し、矢印 bで示した方向力もシース液を流す。すると、ノズル 1 OOaから細胞を含むシース液が吐出する。ここで、吐出したシース液を、レーザー発 信器 102から出射したレーザー光の焦点を通過させることによって、個々の細胞が発 する蛍光が検出器 103にて検出される。この際、装置 100のノズル 100aを超音波振 動させること〖こより、ノズル 100aから流れ出るシース流は途中力も液滴が形成される ため、検出器 103によって蛍光が検出された造血幹細胞が存在するシース液が液滴 を形成しょうとする直前に荷電することによって、荷電した造血幹細胞含有液滴が形 成される。そこで、図 11に示すように、装置 100には偏向板 105を設けておけば、荷 電した造血幹細胞含有液滴を、当該偏向板 105に引き寄せて、回収容器 106に分 取できる (非特許文献 1を参照のこと)。  [0005] The following is a detailed description of the case where hematopoietic stem cells contained in the bone marrow are sorted by the FACS method. CD34 is presented on the surface of hematopoietic stem cells as a receptor specific for hematopoietic stem cells, and this CD34 can be used as a marker for identifying hematopoietic stem cells. First, a cell suspension 101 containing hematopoietic stem cells is prepared. At the time of preparation, CD34 of the hematopoietic stem cells is labeled with a fluorescent antibody 104. In FIG. 11, CD34 (+) cells (hematopoietic stem cells) fluorescently labeled with fluorescent antibody 104 are shown in black, and CD34 () cells (cells other than hematopoietic stem cells) are shown in white. Next, the prepared cell suspension 101 is also passed through the apparatus 100 with the directional force indicated by the arrow a in FIG. 11, and the sheath liquid is also flowed with the directional force indicated by the arrow b. Then, the sheath liquid containing cells is discharged from the nozzle 1 OOa. Here, the discharged sheath liquid is allowed to pass through the focal point of the laser beam emitted from the laser transmitter 102, whereby the fluorescence emitted by each cell is detected by the detector 103. At this time, since the nozzle 100a of the apparatus 100 is ultrasonically vibrated, the sheath flow that flows out of the nozzle 100a also forms a droplet in the middle force. Therefore, the sheath where hematopoietic stem cells in which fluorescence is detected by the detector 103 is present A charged hematopoietic stem cell-containing droplet is formed by charging immediately before the liquid is about to form a droplet. Therefore, as shown in FIG. 11, if the deflector plate 105 is provided in the apparatus 100, the charged hematopoietic stem cell-containing droplets can be drawn to the deflector plate 105 and separated into the collection container 106 (non-patent document). (Ref. 1).
[0006] 次に、図 12は、 MACS法の原理を説明する模式図である。ここでも、造血幹細胞 を分取する場合を挙げて説明する。まず、造血幹細胞を含む細胞懸濁液 101を調製 する。 MACS法では、抗体を付けた磁気ビーズ 107を用いて、 CD34 (抗原)に抗体 を結合させることによって造血幹細胞表面に磁気ビーズ 107を提示させる。そして、 磁気ビーズ 107を提示させた造血幹細胞を含む細胞懸濁液 101を、図 12に示す磁 気装置 108に設けたカラム 109に入れ、磁気装置 108に磁気ビーズ 107が吸着する ことによって、造血幹細胞を分取できる (非特許文献 2を参照のこと)。  Next, FIG. 12 is a schematic diagram for explaining the principle of the MACS method. Here, the case where hematopoietic stem cells are sorted will be described. First, a cell suspension 101 containing hematopoietic stem cells is prepared. In the MACS method, magnetic beads 107 to which antibodies are attached are used to bind the antibodies to CD34 (antigen) to display magnetic beads 107 on the surface of hematopoietic stem cells. Then, the cell suspension 101 containing hematopoietic stem cells on which the magnetic beads 107 are presented is placed in the column 109 provided in the magnetic device 108 shown in FIG. 12, and the magnetic beads 107 are adsorbed on the magnetic device 108 to cause hematopoiesis. Stem cells can be sorted (see Non-Patent Document 2).
特干文献 1: Visser J.W.M. (1984) Isolation of murine plunpotent hemopoietic ste m cells. J. Exp. Med., 59, 1576—1590  Special Reference 1: Visser J.W.M. (1984) Isolation of murine plunpotent hemopoietic stem cells. J. Exp. Med., 59, 1576—1590
非特許文献 2 : Miltenyi S. (1990) High Gradient Magnetic Cell Separation With MAC S, Cytometry, 11, 231-238 Non-Patent Document 2: Miltenyi S. (1990) High Gradient Magnetic Cell Separation With MAC S, Cytometry, 11, 231-238
非特許文献 3: Greenberg and Hammer: Cell Separation Mediated by Differential Roll ing Adhesion, BIOTECHNOLOGY AND BIOENGINEERING, VOL.73, NO.2, APRI L 20, 2001, 111-124  Non-Patent Document 3: Greenberg and Hammer: Cell Separation Mediated by Differential Rolling Adhesion, BIOTECHNOLOGY AND BIOENGINEERING, VOL.73, NO.2, APRI L 20, 2001, 111-124
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] し力しながら、上述した従来方法による細胞の単離は、操作が煩雑であるとともに、 大がかりな装置が必要であり、さらに、単離できる細胞数に限界があることから、臨床 への展開は難しい。 [0007] However, the isolation of cells by the conventional method described above is complicated and requires a large-scale apparatus, and further, since the number of cells that can be isolated is limited, it has become a clinical practice. Is difficult to deploy.
[0008] また、上述した従来方法による細胞の単離では、荷電量の大小や磁力の強弱とい つた勾配に応じて、各段階の液滴や磁気ビーズ付細胞を連続的に単離することは不 可能である。すなわち、液滴の荷電量や磁気ビーズ付細胞の磁力が細胞表面のレ セプターの数(レセプターの密度)に比例していること力もすれば、 FACS法や MAC S法では、細胞を、その表面に存在するレセプターの密度に応じて、各レセプター密 度を有する細胞を連続的に単離することは困難、もしくは煩雑な工程が必要であると いえる。  [0008] In addition, in the isolation of cells by the conventional method described above, it is not possible to continuously isolate droplets or cells with magnetic beads at each stage according to the gradient of magnitude of charge or strength of magnetic force. It is impossible. In other words, if the charge amount of the droplet or the magnetic force of the cell with magnetic beads is proportional to the number of receptors on the cell surface (receptor density), the FACS method and the MAC S method allow the cell to be It can be said that it is difficult or a complicated process is necessary to continuously isolate cells having the density of each receptor depending on the density of receptors present in the cells.
[0009] ところで、非特許文献 3には、細胞表面のレセプターに結合するリガンドを利用し、 これを表面に固定した基材を用いることによって、レセプターの有無に基づいて細胞 を分離する技術が開示されている。具体的には、非特許文献 3では、リガンドとしてセ レクチン溶液 (2 μ g/mL)でコートしたガラス基板をリガンド提示基板として採用し、 CD34陰性細胞(レセプターが無 、細胞)と、 CD34陽性細胞(レセプターがある細 胞)をリガンド提示基板の表面をローリングさせることによって、両細胞の平均ローリン グ速度が 2. 2倍異なることから、溶出速度が約 20分異なることを計算している。さら に、シァリルルイス抗原でコートした 5. もしくは 10. 9 mのラテックス粒子をリ ガンド提示基板表面から成るチャンバ一内(幅 15mm,高さ 長さ 55mm)で ローリングさせた場合、粒径の小さいラテックス粒子では、大きいものよりローリング速 度が遅いため溶出時間が遅延することを示している。  [0009] By the way, Non-Patent Document 3 discloses a technique for separating cells based on the presence or absence of a receptor by using a ligand that binds to a receptor on the cell surface and using a base material on which the ligand is immobilized. Has been. Specifically, in Non-Patent Document 3, a glass substrate coated with a selectin solution (2 μg / mL) as a ligand is adopted as a ligand-presenting substrate, and CD34-negative cells (without receptors and cells) and CD34-positive cells are used. By rolling cells (cells with receptors) on the surface of the ligand-presenting substrate, the average rolling rate of both cells is 2.2 times different, so the elution rate is calculated to be approximately 20 minutes different. In addition, when 5. or 10.9 m latex particles coated with sialyl Lewis antigen are rolled in a chamber (width 15 mm, height 55 mm) composed of a ligand-presenting substrate surface, latex with a small particle size is used. For the particles, the rolling speed is slower than the larger one, indicating that the elution time is delayed.
[0010] し力しながら、非特許文献 3に開示された技術では、平滑な表面に対してリガンドを 非共有結合させたリガンド提示基板を用いている。そのため、高密度なリガンド修飾 が難しぐ細胞表面とリガンド提示基板表面との効率的な接触頻度を期待することが できず、よって、所定範囲内のレセプター密度を有する細胞を、正確な分離ができな い虞がある。 However, with the technique disclosed in Non-Patent Document 3, the ligand is applied to a smooth surface. A non-covalently bound ligand-presenting substrate is used. For this reason, it is not possible to expect an efficient contact frequency between the cell surface and the ligand-presenting substrate surface, which is difficult to modify with a high density of ligand, and therefore, cells having a receptor density within a predetermined range can be accurately separated. There is a risk of not.
[0011] すなわち、所定範囲内のレセプター密度を有する細胞を効率的且つ高精度で分 取する方法は、未だ渴望されている状態にある。  [0011] That is, a method for efficiently and highly accurately sorting cells having a receptor density within a predetermined range is still desired.
課題を解決するための手段  Means for solving the problem
[0012] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、特定のレセプ ターを細胞表面に提示した細胞を含む細胞群から、当該細胞を分取する方法であつ て、(1)所定範囲内のレセプター密度を有する上記細胞を、効率的且つ高精度で分 取する方法、及び、(2)上記細胞群から、レセプター密度に応じて、各密度を有する 上記細胞を効率的且つ連続的に分取する方法を提供することにある。  [0012] The present invention has been made in view of the above problems, and an object of the present invention is a method of sorting cells from a group of cells including cells presenting a specific receptor on the cell surface. (1) a method for efficiently and accurately sorting the cells having a receptor density within a predetermined range; and (2) the cells having each density according to the receptor density from the cell group. It is an object to provide a method for efficiently and continuously fractionating the water.
[0013] 本願発明者らは、上記の問題点に鑑みて鋭意検討した結果、分取を所望する細胞 の表面に存在するレセプターと一時的に結合できるリガンドを、グラフト鎖を介して固 定ィ匕した基材を用いることによって、効率的且つ高精度で、分取を所望するレセプタ 一の提示密度を有する細胞を分取することを見出し、本発明を完成させるに至った。 また、本願発明者らは、上記基材を用いることによって、レセプターの提示密度に応 じて、或る提示密度を有する細胞を、提示密度の高低に従って順次分取できることを 見出し、本発明を完成させるに至った。  [0013] As a result of intensive studies in view of the above problems, the inventors of the present application have fixed a ligand capable of temporarily binding to a receptor present on the surface of a cell desired to be sorted via a graft chain. It has been found that cells having a display density of a receptor that is desired to be sorted can be sorted efficiently and with high accuracy by using a trapped substrate, and the present invention has been completed. In addition, the present inventors have found that by using the above-mentioned base material, cells having a certain display density can be sequentially sorted according to the display density of the receptor according to the receptor display density, and the present invention has been completed. I came to let you.
[0014] すなわち、本発明に係る分取方法は、特定のレセプターを細胞表面に提示した細 胞を含む細胞群から、上記レセプターと一時的に結合するリガンドがグラフト鎖を介し て表面に提示されたリガンド提示基材を用いることによって、レセプターの提示密度 が所定範囲内である細胞を分取することを特徴として 、る。  [0014] That is, in the sorting method according to the present invention, a ligand that temporarily binds to the receptor is presented on the surface via a graft chain from a cell group including cells in which a specific receptor is presented on the cell surface. By using a ligand-presenting substrate, cells having a receptor display density within a predetermined range are sorted.
[0015] なお、レセプターの提示密度が所定範囲内である細胞とは、レセプターの提示密 度が分取を所望する提示密度の範囲内である細胞のことである。  It should be noted that the cells whose receptor display density is within a predetermined range are cells whose receptor display density is within the range of the display density desired to be sorted.
[0016] 本発明に係る他の分取方法は、特定のレセプターを細胞表面に提示した細胞を含 む細胞群から、上記レセプターと一時的に結合するリガンドがグラフト鎖を介して表 面に提示されたリガンド提示基材を用いることによって、レセプターの提示密度に応 じて、或る提示密度を有する細胞を、提示密度の高低に従って順次分取することを 特徴としている。 [0016] In another sorting method according to the present invention, a ligand that temporarily binds to the receptor is displayed on the surface via a graft chain from a group of cells including cells on which the specific receptor is presented on the cell surface. By using an improved ligand-presenting substrate, the display density of the receptor can be adjusted. Next, it is characterized by sequentially sorting cells having a certain display density according to the level of the display density.
[0017] 本発明に係るこれらの分取方法は、上記リガンド提示基材カ 上記リガンドによって 平滑な表面が形成されており、上記分取は、上記表面に沿って細胞群を移動させて 、上記細胞が上記リガンドと上記結合しながら上記平滑な表面を回転移動することに よって行われ、細胞の移動速度は、レセプター提示密度に応じたリガンドとの上記結 合の度合いによって減速されることが好まし 、。  [0017] In these sorting methods according to the present invention, a smooth surface is formed by the ligand-presenting base material and the ligand, and the sorting is performed by moving a group of cells along the surface. The cell is rotated by moving on the smooth surface while binding with the ligand, and the cell moving speed is preferably reduced by the degree of binding with the ligand according to the receptor display density. Better ,.
[0018] なお、平滑な表面とは、細胞群が当該表面に沿って移動する際、細胞の移動が制 限されてしまうような構造を有する表面以外の表面構造を示すものであり、例えば、 細胞の大きさほどの凹部で細胞がちょうど嵌まってしまうような構造を有する表面を除 いたものである。  [0018] Note that the smooth surface refers to a surface structure other than a surface having a structure that restricts the movement of cells when a cell group moves along the surface. This excludes the surface having a structure in which the cell just fits in the recess about the size of the cell.
[0019] また、本発明に係る分取方法は、上記細胞群を分散させた分散液を上記平滑な表 面に流し、上記細胞が分散液力 受けるシ アストレスによって、上記結合を解離さ せることが好ましい。  [0019] Further, in the sorting method according to the present invention, a dispersion liquid in which the cells are dispersed is allowed to flow on the smooth surface, and the bonds are dissociated by shear stress that the cells receive a dispersion liquid force. Is preferred.
[0020] また、本発明に係る分取方法は、上記細胞群を分散させた分散液を、傾斜させた 上記平滑な表面に流すことによって、上記細胞に生じる斜面を転がる力を用いて、上 記結合を解離させることが好ま ヽ。  [0020] Further, the sorting method according to the present invention uses a force that rolls on the inclined surface generated in the cells by flowing a dispersion liquid in which the cell group is dispersed on the inclined smooth surface. It is preferable to dissociate the bonds.
[0021] また、本発明に係る分取方法は、上記細胞が幹細胞であることが好ま 、。 [0021] In the sorting method according to the present invention, the cell is preferably a stem cell.
[0022] また、本発明に係る分取方法は、上記リガンドがサイト力インであることが好ま 、。 [0022] In the fractionation method according to the present invention, it is preferable that the ligand is a site force-in.
より具体的には、上記サイト力インは、血管内皮細胞増殖因子 (VEGF)、塩基性繊 維芽細胞増殖因子 (bFGF)、ストロマ細胞由来因子 1 (SDF1)、血小板由来増殖因 子 (PDGF)、インスリン様増殖因子 (IGF)、肝細胞増殖因子 (HGF)、神経成長因 子 (NGF)、脳由来神経栄養因子 (BDNF)、毛様体神経栄養因子 (CNTF)、グリア 細胞由来神経栄養因子(GDNF)、ニューロトロフィン— 3 (NT— 3)、 -ユーロトロフィ ン一 4 (NT— 4)、骨形成因子(BMP)、又は、インターロイキン (IL)であることが好ま しい。  More specifically, the above cyto force-in levels are vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), stromal cell-derived factor 1 (SDF1), and platelet-derived growth factor (PDGF). , Insulin-like growth factor (IGF), hepatocyte growth factor (HGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-derived neurotrophic factor (GDNF), Neurotrophin-3 (NT-3), Eurotrophin-1 (NT-4), Bone morphogenetic factor (BMP), or Interleukin (IL).
[0023] また、本発明に係る分取方法は、上記レセプターが抗原であり、上記リガンドが当 該抗原に対して抗原 抗体反応を起こす抗体であってもよい。より具体的には、上 記抗原が血管内皮前駆細胞の表面の特異的な抗原であり、上記抗体が、抗 CD31 抗体、抗 CD34抗体、抗 CD133抗体、抗 CD144抗体、抗 Flk—l抗体、抗 Flk—2 抗体、抗 Flk— 3抗体、抗 Flk— 4抗体、抗 Fit— 1抗体、抗 Fit— 2抗体、抗 Fit— 3抗 体、抗 Fit— 4抗体、抗 tie— 2抗体、抗 PECAM抗体、抗 VEカドヘリン抗体及び抗 V EGF受容体抗体力 なる群より選択される少なくとも 1種であることが好ましい。 [0023] In the fractionation method according to the present invention, the receptor may be an antigen, and the ligand may be an antibody that causes an antigen-antibody reaction against the antigen. More specifically, on The antigen is a specific antigen on the surface of vascular endothelial progenitor cells, and the above-mentioned antibodies are anti-CD31 antibody, anti-CD34 antibody, anti-CD133 antibody, anti-CD144 antibody, anti-Flk-l antibody, anti-Flk-2 antibody, anti-antibody Flk-3 antibody, anti-Flk-4 antibody, anti-Fit-1 antibody, anti-Fit-2 antibody, anti-Fit-3 antibody, anti-Fit-4 antibody, anti-tie-2 antibody, anti-PECAM antibody, anti-VE cadherin antibody And at least one selected from the group consisting of anti-VEGF receptor antibody strength.
[0024] また、本発明に係るリガンド提示基材は、上記した分取方法に用いるために、リガン ドがグラフト鎖を介して表面に提示されていることを特徴としている。  In addition, the ligand-presenting substrate according to the present invention is characterized in that the ligand is presented on the surface via a graft chain for use in the above-described sorting method.
[0025] また、本発明に係るリガンド提示基材は、管状の基材であり、当該管の内壁に上記 リガンドが上記グラフト鎖を介して平滑な表面を形成して 、ることが好ま 、。  [0025] Further, the ligand-presenting substrate according to the present invention is preferably a tubular substrate, and the ligand forms a smooth surface on the inner wall of the tube via the graft chain.
[0026] また、本発明に係るリガンド提示基材は、溝が形成された平面状の基材であること が好ましい。  [0026] Further, the ligand-presenting substrate according to the present invention is preferably a planar substrate having grooves.
[0027] また、本発明に係るリガンド提示基材は、上記溝に上記リガンドが上記グラフト鎖を 介して形成されて 、ることが好まし!/、。  [0027] The ligand-presenting substrate according to the present invention is preferably such that the ligand is formed in the groove via the graft chain! /.
[0028] また、本発明に係るリガンド提示基材の製造方法は、リガンドを提示する前の基材 の表面にグラフト鎖を重合する重合工程と、上記重合工程によって重合された上記 グラフト鎖に、リガンドを固定する固定工程とを含むことを特徴としている。 [0028] Further, in the method for producing a ligand-presenting substrate according to the present invention, a polymerization step of polymerizing a graft chain on the surface of the substrate before presenting the ligand, and the graft chain polymerized by the polymerization step, And a fixing step of fixing the ligand.
[0029] また、上記した分取方法に用いるリガンド提示基材を備えた分離装置は、上記リガ ンド提示基材と、上記リガンド提示基材のリガンド表面を傾斜させるための傾斜手段 を備えて 、ることを特徴として 、る。 [0029] Further, the separation apparatus including the ligand-presenting base material used in the sorting method includes the above-described ligand-presenting base material and a tilting means for tilting the ligand surface of the ligand-presenting base material. It is characterized by that.
発明の効果  The invention's effect
[0030] 本発明に係る表示装置によれば、所定範囲内のレセプター密度を有する細胞を、 当該細胞を含む細胞群から、効率的且つ高精度で分取することができるとともに、上 記細胞群から、レセプター密度に応じて、各密度を有する上記細胞を連続的に分取 することができる。具体的には、本発明では、リガンドがグラフト鎖を介して表面に提 示されたリガンド提示基材を用いていることから、基板表面にリガンドが非共有結合し て 、る従来のリガンド提示基板に比べて、高密度なリガンド修飾を実現して 、るため 、細胞表面とリガンド提示基板表面との効率的な接触頻度を提供し、よって、所定範 囲内のレセプター密度を有する細胞を、正確に分離することが可能となる。 [0031] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。 [0030] According to the display device of the present invention, cells having a receptor density within a predetermined range can be efficiently and accurately sorted from a cell group containing the cells, and the cell group described above. From the above, according to the receptor density, the cells having each density can be continuously collected. Specifically, in the present invention, since a ligand-presenting substrate in which a ligand is presented on the surface via a graft chain is used, a conventional ligand-presenting substrate in which the ligand is non-covalently bonded to the substrate surface. Compared to the above, in order to achieve high-density ligand modification, it provides efficient contact frequency between the cell surface and the ligand-presenting substrate surface, so that cells having a receptor density within a predetermined range can be accurately detected. It becomes possible to separate. [0031] Still other objects, features, and advantages of the present invention will be sufficiently enhanced by the following description. The benefits of the present invention will become apparent from the following description with reference to the accompanying drawings.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]本発明の一実施形態である分取方法の原理を説明した図である。 FIG. 1 is a diagram for explaining the principle of a sorting method according to an embodiment of the present invention.
[図 2]本発明の一実施形態である分取方法に用いることができるリガンド提示基材と、 その表面を回転移動する細胞の様子を模式的に示した図である。  FIG. 2 is a diagram schematically showing a ligand-presenting substrate that can be used in a sorting method according to an embodiment of the present invention and a state of cells that rotate and move on the surface thereof.
[図 3(a)]本発明の一実施形態である分取方法に用いることができるリガンド提示基材 を備えた分離装置の構成を示した図である。  FIG. 3 (a) is a diagram showing a configuration of a separation apparatus provided with a ligand-presenting substrate that can be used in a sorting method according to an embodiment of the present invention.
[図 3(b)]図 3 (a)に示した分離装置に設けられたリガンド提示基材の形状を示した透 視図である。  [FIG. 3 (b)] FIG. 3 (b) is a perspective view showing the shape of a ligand-presenting base material provided in the separation apparatus shown in FIG. 3 (a).
[図 4]本発明の一実施例である分取方法に用いることができるリガンド提示基材を示 した図である。  FIG. 4 is a view showing a ligand-presenting base material that can be used in a sorting method according to an embodiment of the present invention.
[図 5]本発明の一実施例で用いたリガンド提示基材のリガンド固定量を定量した結果 を示すグラフである。  FIG. 5 is a graph showing the results of quantifying the amount of ligand immobilized on the ligand-presenting substrate used in one example of the present invention.
[図 6(a)]本発明の一実施例で用いたリガンド提示基材 (抗 CD34抗体固定ィ匕チュー ブ基材)に、 CD34陽性細胞を含む細胞群を分散させた分散液を通液して回収した フラクション内の細胞数を定量した結果を示すグラフである。  [FIG. 6 (a)] A dispersion in which a cell group containing CD34-positive cells is dispersed in the ligand-presenting substrate (anti-CD34 antibody-immobilized tube substrate) used in one example of the present invention is passed through. It is a graph which shows the result of having quantified the number of cells in the fraction collected.
[図 6(b)]比較例としてリガンドを固定して 、な 、基材に、図 6 (a)の分散液を通液して 回収したフラクション内の細胞数を定量した結果を示すグラフである。  FIG. 6 (b) is a graph showing the results of quantifying the number of cells in the fraction recovered by passing the dispersion liquid of FIG. 6 (a) through a substrate with a ligand immobilized as a comparative example. is there.
[図 7(a)]本発明の一実施例で用いたリガンド提示基材 (抗 CD34抗体固定ィ匕チュー ブ基材)に、 CD34陰性細胞を分散させた分散液を通液して回収したフラクション内 の細胞数を定量した結果を示すグラフである。  [Fig. 7 (a)] The ligand-presenting substrate (anti-CD34 antibody-immobilized tube substrate) used in one example of the present invention was collected by passing a dispersion in which CD34-negative cells were dispersed. It is a graph which shows the result of having quantified the number of cells in a fraction.
[図 7(b)]比較例としてリガンドを固定して 、な 、基材に、 CD34陰性細胞を分散させ た分散液を通液して回収したフラクション内の細胞数を定量した結果を示すグラフで ある。  [FIG. 7 (b)] As a comparative example, a graph showing the results of quantifying the number of cells in a fraction collected by passing a dispersion in which CD34 negative cells were dispersed in a base material, with a ligand immobilized. It is.
[図 8(a)]フローサイトメーターによる解析結果であり、リガンド提示基材を通す前の分 散液の解析結果である。 [図 8(b)]フローサイトメーターによる解析結果であり、図 6 (a)のフラクション no. 7に回 収された溶出液の解析結果である。 [Fig. 8 (a)] Analysis result by flow cytometer, analysis result of the dispersion before passing through the ligand-presenting substrate. [Fig. 8 (b)] Analysis results by flow cytometer, and analysis results of the eluate collected in fraction no. 7 in Fig. 6 (a).
[図 9]CD34高密度細胞の割合をフラクション no.に対してプロットした結果を示すグ ラフである。  FIG. 9 is a graph showing the results of plotting the percentage of CD34 high-density cells against fraction no.
[図 10]リガンド提示基材 (抗 CD34抗体固定ィ匕チューブ基材)により分離したマウス骨 髄由来間葉系幹細胞のコラーゲン 1型の遺伝子発現量を定量した結果を示したダラ フである。  FIG. 10 is a graph showing the results of quantifying the expression level of collagen type 1 in mouse bone marrow-derived mesenchymal stem cells separated by a ligand-presenting substrate (anti-CD34 antibody-fixed tube substrate).
[図 11]従来技術を示す図であり、 FACS法の原理を説明した図である。  FIG. 11 is a diagram showing a conventional technique and explaining the principle of the FACS method.
[図 12]従来技術を示す図であり、 MACS法の原理を説明した図である。  FIG. 12 is a diagram showing a conventional technique and explaining the principle of the MACS method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 本発明は、特定のレセプターを細胞表面に提示した細胞を含む細胞群から、上記 レセプターと一時的に結合するリガンドがグラフト鎖を介して表面に提示されたリガン ド提示基材を用いることによって、レセプターの提示密度が所定範囲内である細胞を 分取するための方法を提供する。  [0033] The present invention uses a ligand-presenting substrate in which a ligand that temporarily binds to the receptor is presented on the surface via a graft chain from a group of cells containing cells on which the specific receptor is presented on the cell surface. Thus, a method for sorting cells having a receptor display density within a predetermined range is provided.
[0034] 本発明者らは、細胞の表面に存在する、当該細胞を同定するためのマーカーとな る特定のレセプターに着目し、このレセプターに対応するリガンドを有するタンパク質 (以下、単にリガンドということもある)をグラフト鎖を介して表面に結合させた基材を用 いることによって、細胞群から、分取を所望する細胞(以下、目的細胞ということもある )を効率的且つ正確に分取できることを見出し、本発明に係る方法を完成するに至つ た。  [0034] The present inventors have focused on a specific receptor that is present on the surface of a cell and serves as a marker for identifying the cell, and a protein having a ligand corresponding to this receptor (hereinafter simply referred to as a ligand). In other words, cells that are desired to be sorted (hereinafter also referred to as target cells) can be efficiently and accurately sorted from a group of cells by using a base material that is bound to the surface via a graft chain. As a result, they have found that they can do it and have completed the method according to the present invention.
[0035] 以下に、本発明の一実施形態を説明するが、本発明はこれに限定されるものでは ない。  Hereinafter, an embodiment of the present invention will be described, but the present invention is not limited to this.
[0036] 分取する目的細胞としては幹細胞を挙げることができる。幹細胞は、目的とする組 織又は器官を構成する細胞や、目的とする組織又は器官を構成する細胞に分化し 得る細胞等である。また、このような細胞以外にも、特定のサイト力イン等を分泌する ことにより、目的とする組織又は器官を構成する細胞や目的とする組織又は器官を構 成する細胞に分化し得る細胞が支持体内に侵入するのを促したり、これらの細胞が 分化するのを誘導したりする細胞等も該当する。 [0037] 上記組織又は器官を構成する細胞、組織又は器官を構成する細胞に分化し得る 細胞としては特に限定されず、例えば、ヒト又は動物由来の間葉系幹細胞、 ES細胞 、角化細胞、繊維芽細胞、骨髄細胞、内皮細胞、平滑筋細胞、シュワン細胞、軟骨 細胞、脂肪細胞、骨芽細胞、血管内皮前駆細胞等が挙げられる。 [0036] Examples of target cells to be sorted include stem cells. Stem cells are cells that constitute the target tissue or organ, cells that can differentiate into cells that constitute the target tissue or organ, and the like. In addition to such cells, there are cells that can differentiate into cells constituting the target tissue or organ or cells constituting the target tissue or organ by secreting a specific site force-in or the like. This also includes cells that encourage entry into the support body or induce differentiation of these cells. [0037] The cells that can differentiate into cells that constitute the tissue or organ, cells that constitute the tissue or organ are not particularly limited, and for example, human or animal-derived mesenchymal stem cells, ES cells, keratinocytes, Examples include fibroblasts, bone marrow cells, endothelial cells, smooth muscle cells, Schwann cells, chondrocytes, fat cells, osteoblasts, vascular endothelial progenitor cells, and the like.
[0038] 上記サイト力イン等を分泌する細胞としては特に限定されず、上記組織又は器官を 構成する細胞、組織又は器官を構成する細胞に分化し得る細胞等が挙げられる。な お、以下の説明では幹細胞を単に細胞を 、う。  [0038] The cell that secretes the site force-in is not particularly limited, and examples thereof include a cell constituting the tissue or organ, a cell capable of differentiating into a cell constituting the tissue or organ, and the like. In the following explanation, a stem cell is simply a cell.
[0039] 分取する細胞の細胞表面に提示されている特定のレセプターと一時的に結合する リガンドとしては特に限定はされず、細胞表面のレセプターと結合でき、且つ後述す るような条件のもとで解離可能であるリガンドであればよい。具体的には、サイト力イン 、抗体等が挙げられる。  [0039] The ligand that temporarily binds to a specific receptor displayed on the cell surface of the cell to be sorted is not particularly limited, and can bind to a receptor on the cell surface and has the conditions described below. Any ligand can be used as long as it can be dissociated. Specific examples include site force-in and antibodies.
[0040] 上記サイト力インとしては特に限定されないが、例えば、血管内皮細胞増殖因子 (V EGF)、塩基性繊維芽細胞増殖因子 (bFGF)、ストロマ細胞由来因子 1 (SDF1)、 血小板由来増殖因子 (PDGF)、インスリン様増殖因子 (IGF)、肝細胞増殖因子 (H GF)、神経成長因子 (NGF)、脳由来神経栄養因子 (BDNF)、毛様体神経栄養因 子(CNTF)、グリア細胞由来神経栄養因子(GDNF)、ニューロトロフィン— 3 (NT— 3)、 -ユーロトロフィンー4 (NT— 4)、骨形成因子(BMP)、又は、インターロイキン(I L)等が挙げられる。  [0040] The site force-in is not particularly limited, and examples thereof include vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), stromal cell-derived factor 1 (SDF1), and platelet-derived growth factor. (PDGF), insulin-like growth factor (IGF), hepatocyte growth factor (HGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell Examples include derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), -eurotrophin-4 (NT-4), bone morphogenetic factor (BMP), or interleukin (IL).
[0041] 例えば、目的細胞もしくは細胞群がシュワン細胞又は神経細胞である場合には、こ れらの細胞に特異的なレセプターに対して神経成長因子 (NGF)、脳由来神経栄養 因子(BDNF)、毛様体神経栄養因子(CNTF)、ニューロトロフィン 3 (NT— 3)及 び-ユーロトロフィン— 4 (NT— 4)等のサイト力インが特異的に結合し得る。従って、 本発明の方法によってシュワン細胞又は神経細胞を分取する場合には、神経成長 因子 (NGF)、脳由来神経栄養因子 (BDNF)、毛様体神経栄養因子 (CNTF)、二 ユーロトロフィン一 3 (NT— 3)及び-ユーロトロフィン一 4 (NT— 4)力らなる群より選 択される少なくとも 1種のサイト力インを、その表面にグラフト鎖を介して結合させた基 材 (リガンド提示基材)を用いる。  [0041] For example, when the target cell or group of cells is a Schwann cell or a neuron, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) for receptors specific to these cells , Ciliary neurotrophic factor (CNTF), neurotrophin 3 (NT-3) and -eurotrophin-4 (NT-4) can be specifically bound. Therefore, when Schwann cells or nerve cells are separated by the method of the present invention, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), di-eurotrophin. 1 (NT-3) and -Eurotrophin 1 (NT-4) At least one site force selected from the group consisting of forces is bonded to the surface via a graft chain. (Ligand-presenting substrate) is used.
[0042] 上記抗体としては、目的とする細胞の表面の特異的な抗原に対応する抗体を用い る。 [0042] As the antibody, an antibody corresponding to a specific antigen on the surface of a target cell is used. The
[0043] 例えば、血管内皮細胞又は血管内皮前駆細胞、あるいは、シュワン細胞又は神経 細胞の表面に特異的に存在する表面マーカー(レセプター)に対する抗体 (抗細胞 表面マーカー抗体)、血管内皮細胞又は血管内皮前駆細胞、あるいは、シュワン細 胞又は神経細胞に特異的に働くサイト力インの受容体に対する抗体 (抗サイト力イン 受容体抗体)等が挙げられる。  [0043] For example, an antibody to a surface marker (receptor) specifically present on the surface of a vascular endothelial cell or vascular endothelial progenitor cell, Schwann cell or nerve cell (anti-cell surface marker antibody), vascular endothelial cell or vascular endothelium Examples thereof include antibodies against a progenitor cell, a cytoforce-in receptor that specifically acts on Schwann cells or neurons (anti-site force-in receptor antibody), and the like.
[0044] 具体的には、例えば、血管内皮を構成する細胞に分化し得る血管内皮前駆細胞の 表面に ίま、 CD34、 CD31、 CD133、 CD144、 Flk— 1、 Flk— 2、 Flk— 3、 Flk— 4 、 Fit— 1、 Fit— 2、 Fit— 3、 Fit— 4、 tie— 2、 VEカドヘリン、 PECAM、 VEGF受容 体等の特異的な抗原が存在し、血管内皮前駆細胞を同定する際のマーカー(レセプ ター)として用いることができる。従って、本発明の方法によって血管内皮前駆細胞を 分取する場合には、抗 CD31抗体、抗 CD34抗体、抗 CD133抗体、抗 CD144抗体 、抗 Flk— 1抗体、抗 Flk— 2抗体、抗 Flk— 3抗体、抗 Flk— 4抗体、抗 Fit— 1抗体、 抗 Fit— 2抗体、抗 Fit— 3抗体、抗 Fit— 4抗体、抗 tie— 2抗体、抗 PECAM抗体、 抗 VEカドヘリン抗体又は抗 VEGF受容体抗体カゝらなる群より選択される少なくとも 1 種の抗体を表面にグラフト鎖を介して結合 (提示)させた基材を用いればょ 、。  [0044] Specifically, for example, CD34, CD31, CD133, CD144, Flk-1, Flk-2, Flk-3, on the surface of vascular endothelial progenitor cells that can differentiate into cells constituting vascular endothelium. Specific antigens such as Flk—4, Fit—1, Fit—2, Fit—3, Fit—4, tie—2, VE cadherin, PECAM, and VEGF receptor are present to identify vascular endothelial progenitor cells. It can be used as a marker (receptor). Therefore, when vascular endothelial progenitor cells are collected by the method of the present invention, anti-CD31 antibody, anti-CD34 antibody, anti-CD133 antibody, anti-CD144 antibody, anti-Flk-1 antibody, anti-Flk-2 antibody, anti-Flk— 3 antibodies, anti-Flk—4 antibodies, anti-Fit—1 antibody, anti-Fit—2 antibodies, anti-Fit—3 antibodies, anti-Fit—4 antibodies, anti-tie—2 antibodies, anti-PECAM antibodies, anti-VE cadherin antibodies or anti-VEGF Use a base material in which at least one kind of antibody selected from the group consisting of receptor antibodies is bound (presented) to the surface via a graft chain.
[0045] 細胞の表面に複数種のレセプターが存在する場合には、そのうちの何れかに対応 するサイト力イン又は抗体を 1種のみ用いてもよいし、 2種以上を併用してもよい。 2種 以上のサイト力イン又は抗体を併用する場合には、分取において、より高い選択性を 実現させることができる。  [0045] When a plurality of types of receptors are present on the cell surface, only one type of cyto force-in or antibody corresponding to any of them may be used, or two or more types may be used in combination. When two or more kinds of cytosines or antibodies are used in combination, higher selectivity can be realized in fractionation.
[0046] 上記サイト力インや抗体を調製する方法としては特に限定されず、従来公知の方法 を用いることができる。また、近年では、各種のサイト力インや主な細胞の表面抗原に 対応する抗体が市販されて ヽるので、これを用いてもょ 、。  [0046] A method for preparing the above-mentioned site force-in or antibody is not particularly limited, and a conventionally known method can be used. In recent years, antibodies corresponding to various types of site force-in and main cell surface antigens have been marketed, so use them.
[0047] 次に、本発明の分取方法に用いる、リガンドが表面に提示されたリガンド提示基材 について説明する。  [0047] Next, the ligand-presenting base material on which the ligand is presented on the surface used in the sorting method of the present invention will be described.
[0048] 本発明のリガンド提示基材は、基材表面にリガンドを有するタンパク質が、グラフト 鎖を介して結合されて 、るものである。  [0048] The ligand-presenting substrate of the present invention is obtained by binding a protein having a ligand to the surface of the substrate via a graft chain.
[0049] 基材としては特に限定されず、公知の無機材料又は有機材料を用いることができる 。従って、例えば、ポリ乳酸、ポリダリコール酸、ポリ ε一力プロラタトン、乳酸—ダリ コール酸共重合体、グリコール酸 ε—力プロラタトン共重合体、乳酸 ε—力プロ ラタトン共重合体、ポリクェン酸、ポリリンゴ酸、ポリ (Xーシァノアクリレート、ポリ 13 ーヒドロキシ酸、ポリトリメチレンォキサレート、ポリテトラメチレンォキサレート、ポリオ ルソエステル、ポリオルソカーボネート、ポリエチレンカーボネート、ポリ γ—べンジ ルー L グルタメート、ポリ一 γ—メチルー L グルタメート、ポリ一 L ァラニン等の 合成高分子;デンプン、アルギン酸、ヒアルロン酸、キチン、ぺクチン酸及びその誘導 体等の多糖類や、ゼラチン、コラーゲン、アルブミン、フイブリン等のタンパク質等の 天然高分子を用いることも可能である。また、これらの中から 1種類を用いて構成する ものであってもよぐ複数種類を組み合わせて構成したものであってもよ!/、。 [0049] The substrate is not particularly limited, and a known inorganic material or organic material can be used. . Thus, for example, polylactic acid, polydaricholic acid, poly ε-strength prolatatone, lactic acid-darlicholic acid copolymer, glycolic acid ε-strength prolatatone copolymer, lactic acid ε-strength prolatatone copolymer, polykenic acid, polymalic acid , Poly (X-cyanoacrylate, poly 13-hydroxy acid, polytrimethylene oxalate, polytetramethylene oxalate, polyorthoester, polyorthocarbonate, polyethylene carbonate, poly γ-benzyl lu glutamate, poly γ —Synthetic polymers such as methyl-L-glutamate and poly-L-alanine; natural polysaccharides such as starch, alginic acid, hyaluronic acid, chitin, pectinic acid and derivatives thereof, and proteins such as gelatin, collagen, albumin and fibrin It is also possible to use a polymer. , Even those that have been constructed by combining the Yogu multiple types even constitute using one type from among these! /,.
[0050] 上記した基材に重合されるグラフト鎖として用いることができる物質は、例えば、ァク リル酸、メタクリル酸、酢酸ビュル等のビュル系モノマーやその誘導体、エチレンイミ ンゃラクチドなどの環状ィ匕合物等が挙げられる。 [0050] Substances that can be used as a graft chain to be polymerized on the above-mentioned substrate include, for example, bur monomers such as acrylic acid, methacrylic acid, and butyl acetate, and derivatives thereof, and cyclic amines such as ethylene imide lactide. Examples include compounds.
[0051] また、重合開始点の生成方法は、 Ο 、プラズマ、コロナや紫外線、さらにはィ匕学反 [0051] Further, the method for generating the polymerization start point is as follows: プ ラ ズ マ, plasma, corona, ultraviolet rays, and
3  Three
応開始点の導入等も含まれ特定の手法に限定するものではない。また、グラフト鎖の 重合方法は、実施例で示したビニルモノマーによるラジカル重合に限定されることな ぐ配位ァニオン重合、開環重合、水素転移重合、重縮合、付加縮合等やこれらの 手法を併用したものも含まれる。  This includes the introduction of response starting points and is not limited to a specific method. In addition, the polymerization method of the graft chain is not limited to the radical polymerization by the vinyl monomer shown in the examples, but includes coordination anion polymerization, ring-opening polymerization, hydrogen transfer polymerization, polycondensation, addition condensation, and the like. The combination is also included.
[0052] また、生成したグラフト鎖に対する抗体の固定ィ匕方法としては、カルポジイミドによる ァミノ基の活性ィ匕法に限定されることなぐァミノ基とイソチオシァネート基ゃサクシン ィミジルエステルを有する化合物による固定方法や、水酸基、チオール基、カルボキ シル基に対する様々な方法が含まれる。 [0052] Further, the method for immobilizing an antibody to the generated graft chain is not limited to the method for the activation of an amino group with carpositimide, but is immobilized with a compound having an amino group and an isothiocyanate group or a succinimidyl ester. And various methods for hydroxyl groups, thiol groups, and carboxyl groups.
[0053] なお、本発明では、基材にグラフト鎖を介して抗体を固定することによってリガンド の高密度化及びレセプター提示細胞との接触頻度の向上を実現しているが、本発明 はこれに限定されるものではない。すなわち、リガンドの高密度化及びレセプター提 示細胞との接触頻度を向上できるものであれば、例えば Fabの固定化、マルチ結合 サイトを有するタンパク質、並びに高密度活性点の導入などを採用することも可能で ある。このような形態としては、次のようなものが例示できる。 [0054] 上記基材としてポリ乳酸等を用いる場合には、例えば、ポリ乳酸の表面をアルカリ 等を用いて加水分解してカルボキシル基を露出させた後、このカルボキシル基に水 溶性カルボジイミドの一種である 1 ェチルー 3—(3 ジメチルァミノプロピル)カル ポジイミド (EDC)を反応させ、この EDC活性基を利用してタンパク質のアミノ基を共 有結合させることにより、タンパク質を結合させることができる。なお、上記基材の表面 に残存した未反応の EDC活性基は、レセプターとリガンドとの結合を阻害し、正確な 分取が実現できない虞があることから、タンパク質結合処理後に 2—アミノエタノール 等と反応させる等のキヤッビング処理を施すことが好ましい。 [0053] In the present invention, the density of the ligand and the contact frequency with the receptor-presenting cell are improved by immobilizing the antibody on the base material via a graft chain. It is not limited. That is, as long as the density of the ligand and the frequency of contact with the receptor-presenting cell can be improved, for example, immobilization of Fab, protein having a multi-binding site, and introduction of a high-density active site may be employed. It is possible. The following can be illustrated as such a form. [0054] When polylactic acid or the like is used as the base material, for example, the surface of polylactic acid is hydrolyzed with an alkali or the like to expose a carboxyl group, and then a kind of water-soluble carbodiimide to the carboxyl group. A protein can be bound by reacting a certain 1-ethyl-3- (3 dimethylaminopropyl) carbodiimide (EDC) and using this EDC active group to covalently bond the amino group of the protein. The unreacted EDC active group remaining on the surface of the base material inhibits the binding between the receptor and the ligand, and there is a possibility that accurate fractionation cannot be realized. It is preferable to perform a cabbing treatment such as reacting with.
[0055] また、上記基材としてコラーゲンを用いることもできる。この場合には、例えば、コラ 一ゲンを構成するアミノ酸の官能基を利用して、ジアルデヒド類、エポキシィ匕合物、酸 無水物等の種々の二価性架橋剤を介して上記タンパク質を共有結合させることがで きる。  [0055] Collagen can also be used as the substrate. In this case, for example, the protein is shared via various divalent crosslinkers such as dialdehydes, epoxy compounds, and acid anhydrides by using functional groups of amino acids constituting collagen. Can be combined.
[0056] 以上のような形態であっても、リガンドの高密度化及びレセプター提示細胞との接 触頻度の向上が期待できる。  [0056] Even in the above-described form, it is expected that the density of the ligand is increased and the frequency of contact with the receptor-presenting cell is improved.
[0057] 上記基材の形状は特に限定されず、例えば、管状のものであってもよぐ板状や膜 状のものであってもよぐチューブやフィルムのようなものを用いることができる。チュ ーブのような管状のものであれば、その内壁に上記リガンドを有するタンパク質がダラ フト鎖を介して結合されていることが好ましい。また、フィルムのような膜状のものであ れば、膜表面に上記リガンドを有するタンパク質がグラフト鎖を介して結合されている ことが好ましい。  [0057] The shape of the substrate is not particularly limited, and for example, a tube or a film such as a tube or a film may be used. . In the case of a tube-like material such as a tube, it is preferable that the protein having the above ligand is bound to the inner wall via a dial chain. In the case of a film-like material such as a film, it is preferable that the protein having the ligand is bound to the membrane surface via a graft chain.
[0058] なお、上記タンパク質 (リガンド)の結合量としては特に限定されないが、本発明の 構成によれば、グラフト鎖を介してリガンドが結合しているため、高密度でリガンドを結 合させることができる。また、上記タンパク質は、上記基材の全体に結合させてもよぐ 一部分にのみ結合させてもよ 、。  [0058] The binding amount of the protein (ligand) is not particularly limited, but according to the configuration of the present invention, since the ligand is bound via the graft chain, the ligand is bound at a high density. Can do. In addition, the protein may be bound to the entire base material, or may be bound to only a part thereof.
[0059] 本発明は、詳細は後述するが、 目的細胞を含む細胞群が、上記リガンド提示基材 のリガンド表面を回転しながら移動することによって当該目的細胞の分取が行われる 。従って、上記リガンド提示基材は、上記リガンドによって平滑な表面が形成されてこ とが好ましい。なお、本明細書中における「平滑な表面」とは、細胞群が当該表面に 沿って移動する際、細胞の移動を制限するような構造が形成されていない表面のこと である。例えば、細胞が完全に嵌まってしまうような、当該細胞の大きさに相当する凹 部が形成されていると、細胞が移動中に当該凹部に嵌まって移動できなくなり、本発 明の分取方法が実施できなくなる。そこで、そのような構造が形成されている表面を 除外したものを「平滑な表面」という。例えば、多数の微細小孔を有する多孔質体は 上記した問題を生じる虞があるため適さな 、。 [0059] Although the details of the present invention will be described later, the target cells are sorted by the cell group containing the target cells moving while rotating on the ligand surface of the ligand-presenting substrate. Accordingly, the ligand-presenting substrate preferably has a smooth surface formed by the ligand. In the present specification, the term “smooth surface” means that a cell group is on the surface. A surface that does not have a structure that restricts the movement of cells when moving along. For example, if a recess corresponding to the size of the cell is formed so that the cell completely fits in, the cell cannot be moved due to being fitted into the recess during movement. It becomes impossible to carry out taking method. Therefore, a surface that excludes the surface on which such a structure is formed is called a “smooth surface”. For example, a porous body having a large number of fine pores is suitable because it may cause the above problems.
[0060] し力しながら、上記したような問題を生じる虞がなければ、リガンド提示基材のリガン ド表面は、完全な平面でなくてもよぐ溝が形成された平面状の表面を有するもので あってもよい。また、この場合、溝にも上記リガンドを有するタンパク質がグラフト鎖を 介して結合されて ヽることが好ま ヽ。  [0060] However, if there is no risk of causing the above-described problems, the ligand surface of the ligand-presenting substrate has a planar surface with grooves that do not have to be a perfect plane. It may be a thing. In this case, it is also preferable that the protein having the ligand is bound to the groove via a graft chain.
[0061] このように上記リガンドが結合した溝を有する基材を用いることによって、細胞群と 相互作用するリガンド表面面積を広くすることができ、効率よく分取することが可能と なる。また、これと同じ理由から、リガンド提示基材は、複数の管が流路方向を互いに 平行にして形成され、各管の内壁に上記リガンドを有するタンパク質がグラフト鎖を介 して結合された構造のものであってもよ 、。  [0061] By using the base material having the groove to which the ligand is bound in this way, the surface area of the ligand that interacts with the cell group can be widened, and sorting can be efficiently performed. For the same reason, the ligand-presenting substrate has a structure in which a plurality of tubes are formed with the flow channel directions parallel to each other, and the protein having the ligand is bound to the inner wall of each tube via a graft chain. It may be a thing.
[0062] 本発明の分離方法に用いることができる分離装置の一実施形態を図 3 (a)に示す。  FIG. 3 (a) shows an embodiment of a separation apparatus that can be used in the separation method of the present invention.
分離装置は、図 3 (a)に示すように、リガンド提示基材 2と、リガンド提示基材 2を傾斜 させる傾斜手段 6と、シリンジポンプ 7とが設けられている。図 3 (b)には、リガンド提示 基材 2の形状を示している。本実施形態における分離装置では、細胞群を分散させ た分散液がシリンジポンプ 7からリガンド表面に供給されるように構成されており、細 胞群は、傾斜手段 6によって傾斜したリガンド表面を回転移動(ローリング移動)する  As shown in FIG. 3 (a), the separation device is provided with a ligand-presenting base material 2, a tilting means 6 for tilting the ligand-presenting base material 2, and a syringe pump 7. FIG. 3 (b) shows the shape of the ligand-presenting substrate 2. The separation device according to the present embodiment is configured such that a dispersion liquid in which a cell group is dispersed is supplied from a syringe pump 7 to the ligand surface, and the cell group rotates and moves on the ligand surface inclined by the inclination means 6. (Rolling movement)
[0063] また、リガンド表面をローリング移動して、分取される細胞を回収するための回収手 段も上記分離装置として含むものであってもよ 、。 [0063] Further, the separation device may include a collecting means for rolling the ligand surface to collect the sorted cells.
[0064] 次に、本発明に係る分取方法について詳述する。 [0064] Next, a sorting method according to the present invention will be described in detail.
[0065] 本発明に係る分取方法は、分取を所望する細胞の表面のレセプターと、上記リガン ド提示基材にグラフト鎖を介して設けられたリガンドとの相互作用(一時的な結合)の 度合いを利用して行なう。 [0066] 相互作用(以下、結合という)の度合いは、細胞表面に提示されたレセプターの提 示密度 (以下、レセプター提示密度という)に比例する。すなわち、基材に固定された リガンドに対する結合の度合 、が高 、細胞は、レセプター提示密度が「高 、」 t 、え る。一方、基材のリガンドに対する結合の度合いが低い細胞は、レセプター提示密度 力 S「低い」といえる。また、ここから、結合の度合い(以下、結合力という)が高いと、そ れを解離するために要する力(以下、解離力という)は大きぐ結合力が低いと、解離 力は小さくてよいことになる。 [0065] In the sorting method according to the present invention, the interaction between a receptor on the surface of a cell desired to be sorted and a ligand provided on the ligand-presenting substrate via a graft chain (temporary binding). Use the degree of. [0066] The degree of interaction (hereinafter referred to as binding) is proportional to the density of receptors presented on the cell surface (hereinafter referred to as receptor presentation density). That is, the degree of binding to the ligand immobilized on the substrate is high, and the cell has a receptor display density of “high”. On the other hand, a cell with a low degree of binding to the ligand of the substrate can be said to have a receptor presentation density force S “low”. Also, from here, when the degree of binding (hereinafter referred to as binding force) is high, the force required to dissociate it (hereinafter referred to as dissociating force) is large, and when the binding force is low, the dissociating force may be small. It will be.
[0067] 本発明は、このような原理を用いて目的細胞を分取する。図 1は、この原理を用い た本実施形態の分取方法を説明する模式図である。  [0067] The present invention sorts target cells using such a principle. FIG. 1 is a schematic diagram for explaining the sorting method of this embodiment using this principle.
[0068] 本実施形態における分取方法では、図 1に示すように、リガンド提示基材 2上のダラ フト鎖 5に固定されたリガンド表面 3において、細胞群 1をローリング移動させる。  [0068] In the sorting method of the present embodiment, as shown in FIG. 1, the cell group 1 is rolled and moved on the ligand surface 3 fixed to the draft chain 5 on the ligand-presenting substrate 2.
[0069] 本実施形態では、図 2に示すように、リガンド提示基材 2を傾斜手段 6 (図 3 (a) )を 用いて傾斜させ、細胞群 1を分散させた分散液を上流から供給する。これにより、細 胞 4は、分散液の流れる力(シ アストレス)と、細胞 4自体に生じる斜面を転がる力と によって、ローリング移動する。すなわち、本実施形態では、上記シェアストレスと、斜 面を転がる力とが、上記解離力となる。  In this embodiment, as shown in FIG. 2, the ligand-presenting base material 2 is tilted using the tilting means 6 (FIG. 3 (a)), and a dispersion liquid in which the cell group 1 is dispersed is supplied from upstream. To do. As a result, the cell 4 rolls due to the force of the dispersion (shear stress) and the force that rolls on the slope generated in the cell 4 itself. That is, in the present embodiment, the shear stress and the force rolling on the inclined surface are the dissociating force.
[0070] そこで、この解離力を結合力の異なる複数の細胞 (細胞群)に加えることによって、 結合力が小さ 、細胞 4bは結合力が容易に解離されるため、結合力に起因するローリ ング移動速度の減速は小さ 、が、結合力が高 、細胞 4aは結合力が解離され難 、た め、結合力に起因するローリング移動速度の減速は、結合力が小さい細胞 4bに比べ て大きい。すなわち、レセプター提示密度の違いによって、移動速度に違いが現れる 。換言すれば、移動速度が速い細胞 4bは、レセプター提示密度が「低い」ということ ができ、移動速度が遅い細胞 4aは、レセプター提示密度は「高い」ということができる  [0070] Therefore, by applying this dissociation force to a plurality of cells (cell groups) having different binding forces, the binding force is small, and the binding force of cells 4b is easily dissociated. The slowing of the moving speed is small, but the binding force is high, and the binding force of the cell 4a is difficult to dissociate. Therefore, the rolling moving speed caused by the binding force is slow compared to the cell 4b having a small binding force. In other words, the movement speed varies depending on the difference in receptor presentation density. In other words, a cell 4b with a high migration speed can be said to have a "low" receptor presentation density, and a cell 4a with a low migration speed can be said to have a "high" receptor presentation density.
[0071] なお、移動速度が速!、細胞の中には、上記レセプターを提示して ヽな 、細胞を含 むものであってもよい。 [0071] It should be noted that the moving speed is high, and the cells may contain cells that present the receptor.
[0072] このように、本実施形態の方法によれば、個々の細胞におけるレセプター提示密度 を、移動速度の差として分別することができる。 [0073] 従って、例えば、レセプター提示密度が予め分力つている細胞を用いて、リガンド 提示基材上のローリング移動させて、レセプター提示密度に応じてリガンド提示基材 の下流力も溶出される時間を測定しておくことによって、所望のレセプター提示密度 を有する細胞を、移動速度の差を利用して、すなわち溶出時間差を利用して分取で きる。 [0072] Thus, according to the method of the present embodiment, the receptor presentation density in each cell can be classified as a difference in migration speed. [0073] Therefore, for example, by using a cell in which the receptor presentation density is pre-divided, the cell can be rolled on the ligand presentation substrate, and the time during which the downstream force of the ligand presentation substrate is eluted according to the receptor presentation density can be set. By measuring, cells having a desired receptor display density can be sorted using the difference in migration speed, that is, using the difference in elution time.
[0074] 細胞群 1を分散させた分散液の細胞濃度 (数)は、リガンド表面上でローリング移動 する個々の細胞に上記解離力が加えられれば特に制限はないが、例えば、リガンド 量が 200 μ g/m2であるリガンド提示基材を用いる場合は、分散液中の細胞濃度( レセプターの無い細胞も含む)が 1 X 10°〜1 X 107個/ mLで、細胞数が 1 X 10°〜 1 X 101G個 Zm2である分散液を用いることができる。 [0074] The cell concentration (number) of the dispersion in which the cell group 1 is dispersed is not particularly limited as long as the above dissociation force is applied to individual cells that move rolling on the ligand surface. When using a ligand-presenting substrate of μg / m 2 , the cell concentration in the dispersion (including cells without receptors) is 1 X 10 ° to 1 X 10 7 cells / mL, and the number of cells is 1 X A dispersion of 10 ° to 1 × 10 1G Zm 2 can be used.
[0075] また、本発明に係る分取方法によれば、図 1にも示すように、レセプター提示密度 の違いによって移動速度に差をつけることができるため、移動方向の下流において、 各レセプター提示密度の細胞を回収する手段を設けておくことによって、異なるレセ プター提示密度の細胞を、レセプター提示密度の高低に従って、順次分取できる。  [0075] Further, according to the sorting method according to the present invention, as shown in FIG. 1, since the moving speed can be differentiated by the difference in receptor presentation density, each receptor presentation is made downstream in the movement direction. By providing a means for collecting cells having a different density, cells having different receptor display densities can be sequentially sorted according to the receptor display density.
[0076] すなわち、特定のレセプターを細胞表面に提示した細胞を含む細胞群から、上記 レセプターと一時的に結合するリガンドがグラフト鎖を介して表面に提示されたリガン ド提示基材を用いることによって、レセプターの提示密度に応じて、或る提示密度を 有する細胞を、提示密度の高低に従って順次分取する方法も、本発明の分取方法 の一つである。  [0076] That is, by using a ligand-presenting substrate in which a ligand that temporarily binds to the receptor is presented on the surface via a graft chain from a group of cells containing cells on which the specific receptor is presented on the cell surface. A method of sequentially sorting cells having a certain display density according to the display density of the receptor according to the level of the display density is also one of the sorting methods of the present invention.
[0077] 上記の説明では、図 2に示すように、リガンド提示基材 2を傾斜させ、分散液から受 けるシェアストレスと、細胞自体に生じる斜面を転がる力とを上記解離力として用いた 。ここで、上記した非特許文献 3の技術では、細胞のローリングを単一の分散液の流 れるカ(シェアストレス)のみで制御することにより細胞分離の可能性を示唆している。 しかしながら、シェアストレスの増加はリガンド基材表面と液流との相流状態を発生さ せ、細胞と基材表面との接触頻度を減少させる。このため、非特許文献 3の手法では 極めて限定された範囲内でしか細胞のローリングが実現できない。また、上述したよう に、非特許文献 3の技術では、基材表面に対してリガンドが非共有結合した構成であ る。このため、高密度なリガンド修飾が難しぐ細胞表面とリガンド基材表面とのより効 率的な接触頻度を期待することができないことから、適応できるシェアストレスにも制 限があり、リガンド'レセプター間の結合力が強い場合には単一のシェアストレスのみ でその解離を促進することは難しい。これに対して、本発明は、シェアストレスとともに 、細胞自体に生じる斜面を転がる力を利用する。この手法ではリガンド提示基材と細 胞表面レセプターとの接触頻度が増加し、細胞をより効率的に分離する事が可能に なり、後述する実施例に記載しているように、シェアストレスの程度やリガンド提示基 材の傾斜角を自在に可変させることで、より効率的に細胞の分離を達成することがで きる。 In the above description, as shown in FIG. 2, the ligand-presenting base material 2 is tilted, and the shear stress received from the dispersion and the force that rolls on the slope generated in the cells themselves are used as the dissociation force. Here, in the technique of Non-Patent Document 3 described above, the possibility of cell separation is suggested by controlling the cell rolling only by the flow of a single dispersion (share stress). However, an increase in shear stress generates a phase flow state between the ligand substrate surface and the liquid flow, and decreases the contact frequency between the cells and the substrate surface. For this reason, the method of Non-Patent Document 3 can realize cell rolling only within a very limited range. Further, as described above, the technique of Non-Patent Document 3 has a configuration in which a ligand is non-covalently bonded to the surface of a substrate. For this reason, the cell surface and the ligand substrate surface, on which high-density ligand modification is difficult, are more effective. Since it is not possible to expect an efficient contact frequency, there is a limit to the applicable share stress, and when the binding force between the ligand and the receptor is strong, the dissociation can be promoted only with a single share stress. Is difficult. On the other hand, the present invention utilizes the force of rolling on the slope generated in the cell itself together with the shear stress. This method increases the frequency of contact between the ligand-presenting substrate and the cell surface receptor, enabling more efficient separation of the cells. As described in the examples described later, the degree of shear stress Furthermore, cell separation can be achieved more efficiently by freely changing the inclination angle of the ligand-presenting substrate.
[0078] 以上のように、本発明の分取方法によれば、リガンドがグラフト鎖を介して表面に提 示されたリガンド提示基材を用いていることから、基板表面にリガンドが非共有結合し て 、る従来のリガンド提示基板に比べて、高密度なリガンド修飾を実現して 、るため 、細胞表面とリガンド提示基板表面との効率的な接触頻度を提供し、よって、所定範 囲内のレセプター密度を有する細胞を、正確に分離することが可能となるとともに、レ セプター密度に応じて、各密度を有する上記細胞を連続的に分取することができる。  [0078] As described above, according to the fractionation method of the present invention, the ligand is noncovalently bound to the substrate surface because the ligand-presenting base material on the surface of the ligand is used via the graft chain. Thus, compared with the conventional ligand-presenting substrate, in order to realize a high-density ligand modification, it provides an efficient contact frequency between the cell surface and the ligand-presenting substrate surface, and thus within a predetermined range. Cells having a receptor density can be accurately separated, and the cells having each density can be continuously collected according to the receptor density.
[0079] なお、上記の説明では、リガンド提示基材 2のリガンド表面 3上を移動した細胞を下 流において回収手段を用いて回収し、分取する構成とした。しかしながら、本発明は これに限定されるものではない。すなわち、本発明に係る分取方法では、リガンド提 示基材 2のリガンド表面 3上をローリング移動させて移動速度に差をつけた状態で、 解離力を解除し、移動度が異なった複数の細胞をそのままリガンド表面 3上に配置( 結合)させてもよい。  [0079] In the above description, the cells that have migrated on the ligand surface 3 of the ligand-presenting substrate 2 are collected downstream using the collecting means and sorted. However, the present invention is not limited to this. That is, in the fractionation method according to the present invention, a dissociation force is released and a plurality of mobility different in the mobility is obtained in a state in which the movement speed is made different on the ligand surface 3 of the ligand-presenting substrate 2 with a difference in movement speed. The cells may be placed (bound) on the ligand surface 3 as they are.
[0080] これにより、細胞表面のレセプター提示密度に応じて、リガンド表面 3上に細胞を偏 在させた基材を提供することができる。  [0080] Thereby, it is possible to provide a base material in which cells are unevenly distributed on the ligand surface 3 in accordance with the receptor display density on the cell surface.
[0081] 本発明は、以下の実施例によってさらに詳細に説明される力 これに限定されるべ きではない。 [0081] The present invention is not limited to the force described in more detail by the following examples.
実施例  Example
[0082] 本発明者らは、上述した構成を有するリガンド提示基材を用いて、所望のレセプタ 一提示密度を有する細胞の分取を行なった。まず、リガンド提示基材を作製した。  [0082] Using the ligand-presenting base material having the above-described configuration, the present inventors sorted cells having a desired receptor-presenting density. First, a ligand-presenting substrate was prepared.
[0083] (1)リガンド提示基材の作成 基材には、図 4に示すように、内径 lmm、外径 2mm、長さ 100mmのポリエチレン 製のチューブ基材を用いた。まず、図 4に示すポリエチレン製のチューブ基材に対し て、室温の条件でオゾンガスにより 4時間処理した。その後、 20%のアクリル酸 Zメタ ノール溶液中にて 60°C、 4時間加熱することでポリエチレン表面に対してポリアクリル 酸のグラフト鎖を重合した。このグラフトイ匕チューブ基材を、 37°Cで 30分間超音波処 理を行なって洗浄した後、 0. 1Mの 1ーェチルー 3—(3 ジメチルァミノプロピル)力 ルボジイミド (EDC)溶液に 4°C、 2時間浸漬して、表面のカルボキシル基を活性ィ匕し た。 [0083] (1) Creation of ligand-presenting substrate As shown in FIG. 4, a polyethylene tube substrate having an inner diameter of 1 mm, an outer diameter of 2 mm, and a length of 100 mm was used as the substrate. First, the polyethylene tube substrate shown in FIG. 4 was treated with ozone gas at room temperature for 4 hours. Thereafter, the grafted chain of polyacrylic acid was polymerized on the polyethylene surface by heating at 60 ° C. for 4 hours in a 20% acrylic acid Z methanol solution. The grafted tube substrate was cleaned by sonication at 37 ° C for 30 minutes, and then 0.1M 1-ethyl-3- (3 dimethylaminopropyl) force rubodiimide (EDC) solution at 4 ° C. Soaked for 2 hours to activate the carboxyl groups on the surface.
[0084] 次いで、 EDC活性ィ匕チューブ基材を 0. 04mgZmL抗 CD34抗体—リン酸緩衝溶 液中に 37°Cで 4時間浸漬して、内壁に抗 CD34抗体を結合させた。  [0084] Next, the EDC activity tube substrate was immersed in 0.04 mgZmL anti-CD34 antibody-phosphate buffer solution at 37 ° C for 4 hours to bind the anti-CD34 antibody to the inner wall.
[0085] 最後に 10mMの 2 アミノエタノール—リン酸緩衝溶液中に 4°C、 2時間浸漬して未 反応の活性ィ匕カルボキシル基をキヤッビングしてリガンド提示基材を得た。  [0085] Finally, it was immersed in a 10 mM 2-aminoethanol-phosphate buffer solution at 4 ° C for 2 hours to cap the unreacted active carboxyl group to obtain a ligand-presenting substrate.
[0086] 次に、固定化した抗 CD34抗体の抗体量を定量した。定量は、ペルォキシダーゼ 修飾抗マウス IgGャギ IgGを用いて行なった。定量結果を図 5に示す。  [0086] Next, the amount of the immobilized anti-CD34 antibody was quantified. Quantification was performed using peroxidase-modified anti-mouse IgG goat IgG. Figure 5 shows the quantitative results.
[0087] 図 5は、抗 CD34抗体の抗体量の定量結果を示すグラフである。なお、図 5では、 次のような処理を行なったチューブ基材を対照チューブ基材として用いて 、る。  FIG. 5 is a graph showing the results of quantification of the antibody amount of the anti-CD34 antibody. In FIG. 5, a tube base material subjected to the following treatment is used as a control tube base material.
[0088] 対照チューブ基材は、例えば、リガンド提示基材と同様に、内径 lmm、外径 2mm 、長さ 100mmのポリエチレン製のチューブ基材を用いた。このチューブ基材を、 37 °Cで 30分間超音波処理を行なって洗浄した後、 0. 1Mの 1ーェチルー 3—(3 ジメ チルァミノプロピル)カルポジイミド (EDC)溶液に 4°C、 2時間浸漬して、表面のカル ボキシル基を活性ィ匕した。次いで、 EDC活性ィ匕チューブ基材をリン酸緩衝溶液中に 37°Cで 4時間浸漬し、最後に 1 OmMの 2 -アミノエタノール リン酸緩衝溶液中に 4 °C、 2時間浸漬して未反応の活性ィ匕カルボキシル基をキヤッビングし対照チューブ基 材を得た。  [0088] As the control tube substrate, for example, a polyethylene tube substrate having an inner diameter of 1 mm, an outer diameter of 2 mm, and a length of 100 mm was used in the same manner as the ligand-presenting substrate. The tube substrate was cleaned by sonication at 37 ° C for 30 minutes, and then added to 0.1M 1-ethyl-3- (3 dimethylaminopropyl) carpositimide (EDC) solution at 4 ° C for 2 hours. The surface carboxyl group was activated by immersion. The EDC active tube substrate was then immersed in phosphate buffer solution at 37 ° C for 4 hours, and finally immersed in 1 OmM 2-aminoethanol phosphate buffer solution at 4 ° C for 2 hours. The reaction active carboxyl group was capped to obtain a control tube base.
[0089] 図 5から、 EDC活性ィ匕時間を経るに従って、チューブ基材 (リガンド提示基材)の内 壁に固定ィ匕された抗体量が増加していることが示された。すなわち、この結果から、 チューブ基材の内壁に抗 CD34抗体が固定ィ匕されていることが示された。なお、基 板のリガンド量は 200 μ g/m2であり、リガンド密度は 1. 67 X 10"9mol/m2であつ た。 FIG. 5 shows that the amount of antibody immobilized on the inner wall of the tube base material (ligand-presenting base material) increases as the EDC activity time elapses. That is, this result showed that the anti-CD34 antibody was immobilized on the inner wall of the tube base material. The ligand amount of the substrate is 200 μg / m 2 and the ligand density is 1. 67 X 10 ” 9 mol / m 2 . It was.
[0090] (2)リガンド提示基材の性能  [0090] (2) Performance of ligand-presenting substrate
〔提示マーカー密度による分離の検討〕  [Examination of separation by displayed marker density]
上記(1)で作製したリガンド提示基材 (抗 CD34抗体固定ィ匕チューブ基材)の性能 を検証した。まず、細胞群を分散させた分散液の調製を行なった。 CD34陰性細胞 である急性白血病由来の HL60細胞と、 CD34陽性細胞である KG— la細胞をそれ ぞれリン酸緩衝液に懸濁させ、細胞分散液を調製した。  The performance of the ligand-presenting substrate (anti-CD34 antibody-immobilized tube substrate) prepared in (1) above was verified. First, a dispersion in which cell groups were dispersed was prepared. HL60 cells derived from acute leukemia, which are CD34 negative cells, and KG-la cells, which are CD34 positive cells, were suspended in phosphate buffer to prepare cell dispersions.
[0091] 調製した分散液 (細胞濃度: 2 X 106個 ZmL)を、図 3 (a)に示したリガンド提示基 材に連結した細胞注入チューブに、注射器を用いて 10 L (細胞数: 2 X 104個)注 入した。そして、図 3 (a)に示すシリンジポンプ 7 (KD Scientific Inc., Inlusion Pomp, M odel:KDS100)を用いて、分散液を流速 50 LZ分(フラクション no. 1〜5)、流速 60 O /z LZ分 (フラクション no. 6〜 15)でリガンド提示基材の中空部に流した。溶出した 細胞は各フラクション毎に回収した。回収量は、フラクション no. 1〜10では、 50 /z L 、フラクション no. 11〜15では、 100 である。 [0091] The prepared dispersion (cell concentration: 2 X 10 6 ZmL) was placed in a cell injection tube connected to the ligand-presenting substrate shown in Fig. 3 (a) using a syringe with 10 L (cell number: 2 X 10 4 pieces) Then, using a syringe pump 7 (KD Scientific Inc., Inlusion Pomp, Model: KDS100) shown in FIG. 3 (a), the dispersion liquid was flowed for 50 LZ (fraction no. 1 to 5), flow rate 60 O / z LZ fraction (fraction no. 6 to 15) was passed through the hollow part of the ligand-presenting substrate. The eluted cells were collected for each fraction. The recovered amount is 50 / z L in fractions no. 1-10 and 100 in fractions no. 11-15.
[0092] 図 6 (a)に、 1分毎に回収した溶出液 (フラクション no. 1〜8)の細胞数を測定した 結果を示す。  FIG. 6 (a) shows the results of measuring the number of cells in the eluate (fractions no. 1 to 8) collected every minute.
[0093] なお、図 6 (b)には、比較例として、図 5において作製した対照チューブ基材 (リガン ドを提示していないチューブ基材)に、上記分散液を流した後、リン酸緩衝液を通液 して図 6 (a)と同様の条件で細胞を回収した結果を示す。  [0093] In FIG. 6 (b), as a comparative example, phosphoric acid was added to the control tube base material (tube base material not presenting the ligand) prepared in FIG. The results of collecting cells under the same conditions as in Fig. 6 (a) after passing a buffer solution are shown.
[0094] 図 6 (a) · (b)の結果から、図 6 (b)のフラクション no. 6'〜8 'では細胞の溶出がほと んど見られなかったのに対して、図 6 (a)のフラクション no. 6〜8に細胞の溶出が観 察された。すなわち、抗体を提示させたリガンド提示基材を用いた場合にのみ、細胞 溶出時間が遅延する細胞群が確認された。  [0094] From the results in Fig. 6 (a) · (b), almost no cell elution was observed in fractions no. 6 'to 8' in Fig. 6 (b), whereas Fig. 6 Cell elution was observed in fractions no. 6 to 8 in (a). That is, a cell group with a delayed cell elution time was confirmed only when a ligand-presenting substrate on which an antibody was presented was used.
[0095] また、対照実験として HL60細胞 (CD34陰性細胞)をリガンド提示基材へ流した結 果、遅延するフラクションは確認されな力つた(図 7 (a) )。また、 HL60細胞を上記対 照チューブ基材へ流した場合でも遅延フラクションは確認されなカゝつた(図 7 (b) )。 以上の結果より、図 6 (a)で観察されたフラクション no. 6〜8の細胞は、 CD34発現マ 一力一の作用によって溶出時間が遅延したものと確認できた。 [0096] 次に、リガンド提示基材を通す前の HL60細胞及び KG— la細胞を含む分散液と、 図 6 (a)のフラクション no. 7に回収された溶出液を、フローサイトメーターを用いて解 祈し、 CD34陽性細胞に標識された蛍光量を定量した。蛍光標識試薬は、 BD Biosci ences Pharmingen社製の FITC anti-human CD34 (Cat No:555821)を用いた。回収し た 100 Lのフラクションに対して、 2 Lの蛍光標識試薬をカ卩え、 4°Cで 30分静置し た。その後、 FACS測定用チューブ(Becton Dickinson Labware製、 FALCON352058 Polystyrene tube, 5mL)〖こ PBSを加え、最終体積が lmLとなるように調製した。 [0095] As a control experiment, HL60 cells (CD34 negative cells) were allowed to flow through the ligand-presenting substrate. As a result, no delayed fraction was observed (Fig. 7 (a)). In addition, even when HL60 cells were allowed to flow through the control tube substrate, delayed fraction was not confirmed (Fig. 7 (b)). From the above results, it was confirmed that the cells of fractions no. 6 to 8 observed in FIG. 6 (a) were delayed in elution time by the action of CD34 expression. [0096] Next, using a flow cytometer, the dispersion containing HL60 cells and KG-la cells before passing through the ligand-presenting substrate and the eluate collected in fraction no. 7 in Fig. 6 (a) are used. The amount of fluorescence labeled on CD34 positive cells was quantified. The fluorescent labeling reagent used was FITC anti-human CD34 (Cat No: 558221) manufactured by BD Biosciences Pharmingen. 2 L of fluorescent labeling reagent was added to the collected 100 L fraction and allowed to stand at 4 ° C for 30 minutes. Thereafter, FACS measurement tube (Becton Dickinson Labware, FALCON352058 Polystyrene tube, 5 mL) and PBS were added to prepare a final volume of 1 mL.
[0097] フローサイトメーターによる解析結果を図 8 (a) · (b)に示す。図 8 (a)は、図 6 (a)の フラクション no. 2に回収された溶出液の解析結果であり、図 8 (b)は、図 6 (a)のフラ クシヨン no. 7に回収された溶出液の解析結果である。  [0097] The results of analysis using a flow cytometer are shown in Figs. 8 (a) and (b). Fig. 8 (a) shows the analysis results of the eluate collected in fraction no. 2 in Fig. 6 (a), and Fig. 8 (b) shows the result collected in fraction no. 7 in Fig. 6 (a). It is the analysis result of the eluate.
[0098] 図 8 (a) · (b)の結果から、図 8 (a)の解析結果中の丸で囲んだ領域に含まれる蛍光 強度が、図 8 (b)において増加していることがわかる。この丸で囲んだ領域で検出さ れた細胞は、他の領域で検出された細胞と比較して、細胞表面レセプター密度の高 い細胞である。ここから、本発明に係る分取方法によって、或る蛍光強度範囲内の細 胞が分離 ·濃縮されることが示された。この細胞表面レセプター密度の高 、細胞の割 合をフラクション no.に対してプロットした結果、図 9に示すように、 CD34高密度細胞 がフラクション no.に伴って増加していることが示された。このこと力ら、このカラムによ り CD34高密度細胞を分離できることが示された。すなわち、細胞の表面レセプター 密度によって細胞を分離できることを示して 、る。  [0098] From the results in Figs. 8 (a) and (b), it is clear that the fluorescence intensity included in the circled region in the analysis results in Fig. 8 (a) increases in Fig. 8 (b). Recognize. The cells detected in this circled area are cells with a higher cell surface receptor density than the cells detected in other areas. From this, it was shown that the cells within a certain fluorescence intensity range are separated and concentrated by the fractionation method according to the present invention. As a result of plotting the high cell surface receptor density and the percentage of cells against the fraction no., It was shown that the density of CD34 high density cells increased with the fraction no. . This indicates that this column can separate high-density CD34 cells. That is, it shows that cells can be separated by the surface receptor density of the cells.
[0099] 〔リガンド提示基材で分離した間葉系幹細胞の骨細胞への分化誘導実験〕  [0099] [Induction of differentiation of mesenchymal stem cells separated by ligand-presenting base material into bone cells]
リガンド提示基材で分離した間葉系幹細胞を用いて骨細胞への分ィヒ誘導実験を行 つた o  O Conducted an experiment to induce differentiation into bone cells using mesenchymal stem cells separated by a ligand-presenting substrate o
[0100] 上記(1)と同様の手順で作製したリガンド提示基材(内径 0. 5mm、外径 1. 5mm、 長さ 100mmのシリコンチューブ基材。抗マウス CD34抗体固定ィ匕)を用いて、 CD34 陽性細胞であるマウス骨髄由来間葉系幹細胞を分離した。リガンド提示基材に注入 した細胞分散液の量、細胞数、および分散液の流速は上記(2)の方法と同一である 。溶出した細胞の回収量は、フラクション no. 1〜10では、 12. 5 μ フラクション no . 11〜15では、 25 Lである。そして、回収したフラクション no. 2〜7に含まれる細 胞を 24穴培養皿に播種して 24時間、温度 37°C、二酸化炭素濃度 5%のもとで静置 した。その後、骨細胞分ィ匕誘導培地 (DMEM—低グルコース (アルドリッチ社製)、デ キサメタゾン 10_8M、 j8グリセ口フォスフェート 10mM、ァスコルビン酸 0. 3mMを含 む)、を添加し、温度 37°C、二酸化炭素濃度 5%のもとで静置した。 [0100] Using a ligand-presenting base material (a silicon tube base material having an inner diameter of 0.5 mm, an outer diameter of 1.5 mm, and a length of 100 mm, anti-mouse CD34 antibody immobilization agent) prepared in the same manner as in (1) above. Then, mouse bone marrow-derived mesenchymal stem cells that are CD34 positive cells were isolated. The amount of cell dispersion injected into the ligand-presenting substrate, the number of cells, and the flow rate of the dispersion are the same as in the above method (2). The recovered cell volume is 25 L in the 12.5 μ fractions no. 11-15 in the fraction no. 1-10. The collected fractions no. 2 to 7 The cells were seeded in a 24-well culture dish and allowed to stand for 24 hours at a temperature of 37 ° C and a carbon dioxide concentration of 5%. Then, the bone cell fraction induction medium (DMEM—low glucose (manufactured by Aldrich), dexamethasone 10_8 M, j8 glycephosphate phosphate 10 mM, ascorbic acid 0.3 mM) was added, and the temperature was 37 °. C, left at 5% carbon dioxide concentration.
[0101] 骨細胞分化誘導培地を添加開始してから 4日後、細胞から従来公知の方法にて m RNAを回収し、 PCR法によりコラーゲン 1型の遺伝子発現量を定量した (フォーヮー ドプライマ一配列: 5 '— GAAGTCAGCTGCATACAC— 3,、リバースプライマー 配列: 5 ' - AGG AAGTCC AGGCTGTCC 3,、 PCR条件: 50°C (2分)→95°C ( 1分)→〔95°C (1分)→60°C (15秒)→74°C (1分)〕) X 40サイクル→終了)。その結 果を図 10に示す。図 10のサンプル no. 1には、対照として分離していない細胞(マウ ス骨髄由来間葉系幹細胞)を同様に分化誘導した結果を示している。また、サンプル no. 2, 3では FACS法により CD34発現が低い細胞と高い細胞を分離して、その細 胞を分化誘導した結果を示して ヽる。  [0101] Four days after the start of the addition of the bone cell differentiation induction medium, mRNA was recovered from the cells by a conventionally known method, and the gene expression level of collagen type 1 was quantified by the PCR method (forward primer sequence: 5'—GAAGTCAGCTGCATACAC—3, reverse primer Sequence: 5′-AGG AAGTCC AGGCTGTCC 3, PCR conditions: 50 ° C (2 minutes) → 95 ° C (1 minute) → [95 ° C (1 minute) → 60 ° C (15 seconds) → 74 ° C (1 minute)]) X 40 cycles → end). Figure 10 shows the results. Sample no. 1 in Fig. 10 shows the results of similarly inducing differentiation of cells (mouse bone marrow-derived mesenchymal stem cells) as a control. Samples No. 2 and 3 show the results of inducing differentiation of cells with low and high CD34 expression by FACS method.
[0102] この結果より、リガンド提示基材で分離したサンプル no. 5〜8では、分離していな V、細胞や、 FACS法で分離した細胞と比較して 5倍力 7倍程度高 、遺伝子発現量 を示していた。  [0102] From this result, in samples no. 5 to 8 separated with the ligand-presenting substrate, the gene was 5 times more potent and 7 times higher than unseparated V and cells or cells separated by the FACS method. The expression level was shown.
[0103] このことはリガンド提示基材により分離した間葉系幹細胞の方が効率的に分ィ匕誘導 できる幹細胞を単離できることを示して 、る。  [0103] This indicates that the mesenchymal stem cells separated by the ligand-presenting substrate can isolate the stem cells that can be more efficiently induced.
[0104] 以上のことから、リガンド提示基材を用いることによって、所定のレセプター提示密 度を有する細胞を、分散液に分散した細胞群力 容易且つ迅速に分取できることが 示された。また、このリガンド提示基材により分離された間葉系幹細胞は従来法となる FACS法で分離した間葉系幹細胞と比較して分化誘導の効率が著しく高い結果を 示したことから、特有の細胞への幹細胞の分ィ匕に関して、細胞表面レセプターと分ィ匕 との相関を解明するための極めて有用な手助けとなることが考えられる。また、細胞 表面レセプターに基づいて、特定の細胞のみに分ィ匕する細胞、もしくは特定の細胞 に分ィ匕した細胞の分取を実現できれば、細胞移植や再生医療の研究開発に大きく 貢献することが期待できる。  [0104] From the above, it was shown that by using a ligand-presenting substrate, cells having a predetermined receptor-presenting density can be easily and quickly sorted by a cell group dispersed in a dispersion. In addition, mesenchymal stem cells isolated by this ligand-presenting substrate showed significantly higher differentiation-inducing efficiency than mesenchymal stem cells isolated by the conventional FACS method. It is considered to be a very useful aid for elucidating the correlation between cell surface receptors and separations. In addition, if cells that can be sorted into specific cells or sorted into specific cells can be realized based on cell surface receptors, it will greatly contribute to the research and development of cell transplantation and regenerative medicine. Can be expected.
[0105] なお、本発明は上述した実施の形態に限定されるものではなぐ請求項に示した範 囲で種々の変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, but includes the scope shown in the claims. Various changes can be made in the box.
産業上の利用の可能性 Industrial applicability
本発明に係る分取方法は、特定のレセプターを細胞表面に提示した細胞を含む細 胞群から、上記レセプターと一時的に結合するリガンドが表面に提示されたリガンド 提示基材を用いることによって、レセプターの提示密度に応じて、或る提示密度を有 する細胞を簡易に分取できるとともに、その提示密度の高低に従って順次分取できる ことから、例えば、特有の細胞へ分ィ匕する幹細胞における細胞表面レセプターと分 ィ匕との相関を解明する等、組織再生による治療法の実現に向けて様々な研究,開発 が展開されている再生医療分野に広く適用することができる。  The sorting method according to the present invention uses a ligand-presenting substrate in which a ligand that temporarily binds to the receptor is presented on the surface from a group of cells containing cells on which the specific receptor is presented. Depending on the receptor display density, cells with a certain display density can be easily sorted and sequentially sorted according to the level of the display density. For example, cells in stem cells that are divided into specific cells It can be widely applied to the field of regenerative medicine where various research and development are being carried out for the realization of treatment methods by tissue regeneration, such as elucidating the correlation between surface receptors and molecules.

Claims

請求の範囲 The scope of the claims
[1] 特定のレセプターを細胞表面に提示した細胞を含む細胞群から、上記レセプター と一時的に結合するリガンドがグラフト鎖を介して表面に提示されたリガンド提示基材 を用いることによって、レセプターの提示密度が所定範囲内である細胞を分取するこ とを特徴とする分取方法。  [1] By using a ligand-presenting substrate in which a ligand that temporarily binds to the above receptor is presented on the surface via a graft chain from a group of cells containing cells on which the specific receptor is presented on the cell surface, A sorting method comprising sorting cells having a display density within a predetermined range.
[2] 特定のレセプターを細胞表面に提示した細胞を含む細胞群から、上記レセプター と一時的に結合するリガンドがグラフト鎖を介して表面に提示されたリガンド提示基材 を用いることによって、レセプターの提示密度に応じて、或る提示密度を有する細胞 を、提示密度の高低に従って順次分取することを特徴とする分取方法。  [2] By using a ligand-presenting substrate in which a ligand that temporarily binds to the above receptor is presented on the surface via a graft chain from a group of cells including cells on which the specific receptor is presented on the cell surface, A sorting method comprising sequentially sorting cells having a certain display density according to the display density according to the level of the display density.
[3] 上記リガンド提示基材は、上記リガンドによって平滑な表面が形成されており、 上記分取は、上記表面に沿って細胞群を移動させて、上記細胞が上記リガンドと上 記結合しながら上記平滑な表面を回転移動することによって行われ、  [3] The ligand-presenting substrate has a smooth surface formed by the ligand, and the sorting is performed by moving a group of cells along the surface and binding the cells to the ligand. Done by rotating the smooth surface,
細胞の移動速度は、提示密度に応じたリガンドとの上記結合の度合いによって減 速されることを特徴とする請求項 1または 2に記載の分取方法。  3. The sorting method according to claim 1, wherein the moving speed of the cells is reduced depending on the degree of binding with the ligand according to the display density.
[4] 上記細胞群を分散させた分散液を上記平滑な表面に流し、上記細胞が分散液か ら受けるシェアストレスによって、上記結合を解離させることを特徴とする請求項 3に 記載の分取方法。  [4] The fractionation according to [3], wherein a dispersion in which the cell group is dispersed is allowed to flow on the smooth surface, and the binding is dissociated by a shear stress that the cells receive from the dispersion. Method.
[5] 上記細胞群を分散させた分散液を、傾斜させた上記平滑な表面に流すことによつ て、上記細胞に生じる斜面を転がる力を用いて、上記結合を解離させることを特徴と する請求項 3または 4に記載の分取方法。  [5] The dissociation of the bond is performed by using a force that rolls on the inclined surface generated in the cell by flowing a dispersion liquid in which the cell group is dispersed on the inclined smooth surface. The preparative method according to claim 3 or 4.
[6] 上記細胞は、幹細胞であることを特徴とする請求項 1から 5の何れか 1項に記載の 分取方法。  [6] The sorting method according to any one of [1] to [5], wherein the cells are stem cells.
[7] 上記リガンドは、サイト力インであることを特徴とする請求項 1から 6の何れか 1項に 記載の分取方法。  [7] The fractionation method according to any one of [1] to [6], wherein the ligand is site force-in.
[8] 上記サイト力インは、血管内皮細胞増殖因子 (VEGF)、塩基性繊維芽細胞増殖因 子 (bFGF)、ストロマ細胞由来因子 1 (SDF1)、血小板由来増殖因子(PDGF)、イン スリン様増殖因子 (IGF)、肝細胞増殖因子 (HGF)、神経成長因子 (NGF)、脳由来 神経栄養因子 (BDNF)、毛様体神経栄養因子 (CNTF)、グリア細胞由来神経栄養 因子(GDNF)、ニューロトロフィン一 3 (NT- 3)、ニューロトロフィン一 4 (NT— 4)、 骨形成因子 (BMP)、又は、インターロイキン (IL)であることを特徴とする請求項 7に 記載の分取方法。 [8] The above-mentioned cyto force in is vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), stromal cell-derived factor 1 (SDF1), platelet-derived growth factor (PDGF), insulin-like Growth factor (IGF), hepatocyte growth factor (HGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-derived neurotrophic It is a factor (GDNF), neurotrophin 1 (NT-3), neurotrophin 4 (NT-4), bone morphogenetic factor (BMP), or interleukin (IL). The preparative method described in 7.
[9] 上記レセプターは、抗原であり、 [9] The receptor is an antigen,
上記リガンドは、当該抗原に対して抗原—抗体反応を起こす抗体であることを特徴 とする請求項 1から 6の何れ力 1項に記載の分取方法。  The sorting method according to any one of claims 1 to 6, wherein the ligand is an antibody that causes an antigen-antibody reaction against the antigen.
[10] 上記抗原は、血管内皮前駆細胞の表面の特異的な抗原であり、 [10] The antigen is a specific antigen on the surface of vascular endothelial progenitor cells,
上記抗体は、抗 CD31抗体、抗 CD34抗体、抗 CD133抗体、抗 CD144抗体、抗 Anti-CD31 antibody, anti-CD34 antibody, anti-CD133 antibody, anti-CD144 antibody, anti-CD31 antibody
Flk— 1抗体、抗 Flk— 2抗体、抗 Flk— 3抗体、抗 Flk— 4抗体、抗 Fit— 1抗体、抗 FFlk-1 antibody, anti-Flk-2 antibody, anti-Flk-3 antibody, anti-Flk-4 antibody, anti-Fit-1 antibody, anti-F
It 2抗体、抗 Fit— 3抗体、抗 Fit— 4抗体、抗 tie— 2抗体、抗 PECAM抗体、抗 VIt 2 antibody, anti-Fit—3 antibody, anti-Fit—4 antibody, anti-tie—2 antibody, anti-PECAM antibody, anti-V
Eカドヘリン抗体及び抗 VEGF受容体抗体カゝらなる群より選択される少なくとも 1種で あることを特徴とする請求項 9に記載の分取方法。 10. The sorting method according to claim 9, wherein the sorting method is at least one selected from the group consisting of an E-cadherin antibody and an anti-VEGF receptor antibody.
[11] 請求項 1から 10の何れか 1項に記載の分取方法に用いる、リガンドがグラフト鎖を 介して表面に提示されたリガンド提示基材。 [11] A ligand-presenting substrate for use in the sorting method according to any one of claims 1 to 10, wherein the ligand is presented on the surface via a graft chain.
[12] 上記リガンド提示基材は、管状の基材であり、当該管の内壁に上記リガンドが上記 グラフト鎖を介して平滑な表面を形成して 、ることを特徴とする請求項 11に記載のリ ガンド提示基材。 [12] The ligand-presenting substrate is a tubular substrate, and the ligand forms a smooth surface on the inner wall of the tube via the graft chain. The base material for presenting.
[13] 上記リガンド提示基材は、溝が形成された平面状の基材であることを特徴とする請 求項 11に記載のリガンド提示基材。  [13] The ligand-presenting substrate according to claim 11, wherein the ligand-presenting substrate is a planar substrate having a groove.
[14] 上記溝に上記リガンドが上記グラフト鎖を介して形成されていることを特徴とする請 求項 13に記載のリガンド提示基材。 [14] The ligand-presenting base material according to claim 13, wherein the ligand is formed in the groove via the graft chain.
[15] 請求項 1から 10の何れか 1項に記載の分取方法に用いるリガンド提示基材の製造 方法であって、 [15] A method for producing a ligand-presenting substrate for use in the fractionation method according to any one of claims 1 to 10,
リガンドを提示する前の基材の表面にグラフト鎖を重合する重合工程と、 上記重合工程によって重合された上記グラフト鎖に、リガンドを固定する固定工程と を含むことを特徴とするリガンド提示基材の製造方法。  A ligand presenting substrate comprising: a polymerization step of polymerizing a graft chain on the surface of the substrate before presenting the ligand; and a fixing step of immobilizing the ligand on the graft chain polymerized by the polymerization step. Manufacturing method.
[16] 請求項 1から 10の何れか 1項に記載の分取方法に用いるリガンド提示基材を備え た分離装置であって、 上記リガンド提示基材と、 [16] A separation apparatus comprising a ligand-presenting base material used in the sorting method according to any one of claims 1 to 10, The ligand-presenting substrate;
上記リガンド提示基材のリガンド表面を傾斜させるための傾斜手段を備えていること を特徴とする分離装置。  A separation apparatus comprising a tilting means for tilting the ligand surface of the ligand-presenting substrate.
PCT/JP2006/322119 2005-11-08 2006-11-06 Method of cell fractionation and substrate to be used for the method WO2007055178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007544128A JPWO2007055178A1 (en) 2005-11-08 2006-11-06 Cell sorting method and substrate used in the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-324162 2005-11-08
JP2005324162 2005-11-08

Publications (1)

Publication Number Publication Date
WO2007055178A1 true WO2007055178A1 (en) 2007-05-18

Family

ID=38023181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322119 WO2007055178A1 (en) 2005-11-08 2006-11-06 Method of cell fractionation and substrate to be used for the method

Country Status (2)

Country Link
JP (1) JPWO2007055178A1 (en)
WO (1) WO2007055178A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144928A1 (en) * 2008-05-30 2009-12-03 国立大学法人 東京大学 Cell separation device. cell separation system and cell separation method
JP2010227016A (en) * 2009-03-27 2010-10-14 Seiko Epson Corp Cell-separating device and cell-separating method
CN102337211A (en) * 2011-08-25 2012-02-01 中国科学院深圳先进技术研究院 Cell culture device
CN102686360A (en) * 2009-11-12 2012-09-19 日立化成工业株式会社 CMP polishing liquid and polishing method using the same and fabricating method of semiconductor substrate
JP2013215217A (en) * 2013-07-31 2013-10-24 Seiko Epson Corp Method for recovering cell
JP2013230162A (en) * 2013-07-24 2013-11-14 Seiko Epson Corp Cell separation apparatus and medical device
US9238791B2 (en) 2009-03-27 2016-01-19 Seiko Epson Corporation Cell separating apparatus and cell separating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136505A (en) * 1993-11-17 1995-05-30 Terumo Corp Affinity separating material
WO2004027050A1 (en) * 2002-09-06 2004-04-01 Johns Hopkins Singapore Pte Ltd Method of immobilization of clusters of ligands on polymer surface and use n cell engineering
JP2005511074A (en) * 2001-12-10 2005-04-28 イーメンブレン インコーポレーティッド Functionalized materials and their libraries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4288352B2 (en) * 2002-12-25 2009-07-01 独立行政法人産業技術総合研究所 Cell separation and collection apparatus and separation and collection method
JP5457632B2 (en) * 2004-06-24 2014-04-02 アストラゼネカ・アクチエボラーグ Process for making modified forms of crystals for use in the manufacture of sodium salt of esomeprazole

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136505A (en) * 1993-11-17 1995-05-30 Terumo Corp Affinity separating material
JP2005511074A (en) * 2001-12-10 2005-04-28 イーメンブレン インコーポレーティッド Functionalized materials and their libraries
WO2004027050A1 (en) * 2002-09-06 2004-04-01 Johns Hopkins Singapore Pte Ltd Method of immobilization of clusters of ligands on polymer surface and use n cell engineering

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
UBAHARA A. ET AL.: "Kotai Koteika Column System ni yoru Kansaibo Bunri", THE SOCIETY OF POLYMER SCIENCE, JAPAN IRYO KOBUNSHI SYMPOSIUM KOEN YOSHISHU, vol. 35TH, 1 August 2006 (2006-08-01), pages 47 - 48 *
UMAHARA A. ET AL.: "Ligand Koteika Column ni yoru Kansaibo Bunriho no Kaihatsu", THE SOCIETY OF POLYMER SCIENCE, JAPAN NENJI TAIKAI YOKOSHU (CD-ROM), vol. 55, no. 1, 10 May 2006 (2006-05-10), pages 3JI5 *
UMAHARA A. ET AL.: "Saibo Bunri Column ni yoru Kinosei Kansaibo no Subpopulation Bunri to Kino Hyoka", THE JAPANESE JOURNAL OF ARTIFICIAL ORGANS, vol. 35, no. 2, 1 October 2006 (2006-10-01), pages S-126 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144928A1 (en) * 2008-05-30 2009-12-03 国立大学法人 東京大学 Cell separation device. cell separation system and cell separation method
JP2010227016A (en) * 2009-03-27 2010-10-14 Seiko Epson Corp Cell-separating device and cell-separating method
US9238791B2 (en) 2009-03-27 2016-01-19 Seiko Epson Corporation Cell separating apparatus and cell separating method
CN102686360A (en) * 2009-11-12 2012-09-19 日立化成工业株式会社 CMP polishing liquid and polishing method using the same and fabricating method of semiconductor substrate
CN102337211A (en) * 2011-08-25 2012-02-01 中国科学院深圳先进技术研究院 Cell culture device
CN102337211B (en) * 2011-08-25 2013-04-17 中国科学院深圳先进技术研究院 Cell culture device
JP2013230162A (en) * 2013-07-24 2013-11-14 Seiko Epson Corp Cell separation apparatus and medical device
JP2013215217A (en) * 2013-07-31 2013-10-24 Seiko Epson Corp Method for recovering cell

Also Published As

Publication number Publication date
JPWO2007055178A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
WO2007055178A1 (en) Method of cell fractionation and substrate to be used for the method
US10011817B2 (en) Cell rolling separation
Nagase et al. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering
Guryanov et al. Receptor-ligand interactions: Advanced biomedical applications
Vitte et al. Is there a predictable relationship between surface physical-chemical properties and cell behaviour at the interface?
Liu et al. Surface modification by allylamine plasma polymerization promotes osteogenic differentiation of human adipose-derived stem cells
Ren et al. Directional migration of vascular smooth muscle cells guided by a molecule weight gradient of poly (2-hydroxyethyl methacrylate) brushes
CN103998932A (en) Capture, purification and release of biological substance using a surface coating
US20240018468A1 (en) Surface acoustic wave (saw) 3d printing method
Martin et al. Quantitative photochemical immobilization of biomolecules on planar and corrugated substrates: a versatile strategy for creating functional biointerfaces
Bong et al. Synthesis of Cell-Adhesive Anisotropic Multifunctional Particles by Stop Flow Lithography and Streptavidin–Biotin Interactions
EP2834348A1 (en) 3d in vitro bi-phasic cartilage-bone construct
Oliveira et al. Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors
JP2008054511A (en) Apparatus for immobilizing plurality of cells and method for immobilizing cell
MX2013000142A (en) Method for detecting molecular interactions.
Khorasani et al. Effect of oxygen plasma treatment on surface charge and wettability of PVC blood bag—In vitro assay
WO2008117195A2 (en) Use of microcarrier beads for detection and/or isolation of cells by flow cytometry
Matsuda et al. Surface design for in situ capture of endothelial progenitor cells: VEGF‐bound surface architecture and behaviors of cultured mononuclear cells
Vozzi et al. SOFT‐MI: A novel microfabrication technique integrating soft‐lithography and molecular imprinting for tissue engineering applications
JP2008048684A (en) Substrate plate for immobilizing cell, capable of regulating cellular function, and device for producing the same
Custódio et al. Selective cell recruitment and spatially controlled cell attachment on instructive chitosan surfaces functionalized with antibodies
Nagase et al. A thermoresponsive cationic block copolymer brush-grafted silica bead interface for temperature-modulated separation of adipose-derived stem cells
Öztürk Öncel et al. Biomedical applications: liposomes and supported lipid bilayers for diagnostics, theranostics, imaging, vaccine formulation, and tissue engineering
Krutty et al. Xeno-free bioreactor culture of human mesenchymal stromal cells on chemically defined microcarriers
Frey et al. Surface-immobilized biomolecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007544128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823032

Country of ref document: EP

Kind code of ref document: A1