WO2007055137A1 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
WO2007055137A1
WO2007055137A1 PCT/JP2006/321873 JP2006321873W WO2007055137A1 WO 2007055137 A1 WO2007055137 A1 WO 2007055137A1 JP 2006321873 W JP2006321873 W JP 2006321873W WO 2007055137 A1 WO2007055137 A1 WO 2007055137A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
laser
rare earth
light
earth element
Prior art date
Application number
PCT/JP2006/321873
Other languages
French (fr)
Japanese (ja)
Inventor
Takuya Teshima
Yoshinori Kubota
Original Assignee
Central Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Company, Limited filed Critical Central Glass Company, Limited
Publication of WO2007055137A1 publication Critical patent/WO2007055137A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/08045Single-mode emission

Definitions

  • the present invention relates to a fiber laser device using a rare earth element-doped fiber.
  • Visible fiber lasers are expected to be visible light sources because they have a shorter wavelength than infrared light and have the advantages of fiber lasers. (For example, see Patent Document 1 and Non-Patent Document 1).
  • the standard frequency V of the fiber is defined as the following equation (1).
  • V (2 / X)-NA- a
  • is the wavelength of light
  • is the numerical aperture of the fiber
  • a is the radius of the fiber core.
  • V 2.405
  • the cutoff length c the cutoff length c.
  • V ⁇ 2.405 light of a certain wavelength in a fiber is propagated in single mode, and when V> 2.405, it is propagated in multimode. Therefore, in a certain fiber, the mode changes depending on the length of wavelength with c as the boundary, and the mode changes when the NA and a of the fiber change even at the same wavelength.
  • Patent Document 1 JP 2005-26475 A
  • Patent Document 2 Japanese Patent Laid-Open No. 11581584
  • Non-Patent Document 1 “Rare—Earth—Dooed Fiber Lasers and Amp Lif iers”; Mich el JF Digonnet; MARCEL DEKKER, INC. (1993) 171—242 Summary of the Invention
  • the wavelength of the pumping light is longer than that of the laser light, and the wavelength difference is large.
  • Japanese Patent Application Laid-Open No. 1-181584 If a rare earth element-doped fiber is designed and selected so that the laser light is single mode, the pump light is lost due to the bending loss of the fiber, or the laser light is It became a mode.
  • the present invention has been made in view of the above circumstances, and provides a small laser device or an ASE light source that is single-mode and has high efficiency and stable output.
  • the present invention provides a fiber laser device using an up-conversion phenomenon.
  • the standard frequency V of the rare earth element-doped fiber is 2.
  • a fiber laser device in which 4 ⁇ V ⁇ 3.9 is provided.
  • the present invention is a fiber laser device that is a single mode fiber with respect to laser light generated by a part of the fiber in the resonator.
  • the present invention is a fiber laser device using an up-conversion phenomenon that includes an excitation LD, a resonator, and a rare earth-doped fiber in which the wavelength of the excitation light is longer than that of the laser light.
  • a fiber laser device using any one of a fluoride glass, a fluoride oxide glass, a fluoride crystal-containing glass, and a fluoride oxide crystal-containing glass as a rare earth-doped fiber. It may be a position.
  • a fiber laser device installed in a place other than between the rare earth doped fiber and the pumping LD in the fiber force resonator that is single mode with respect to the generated light may be used.
  • FIG. 1 shows one of the cheapest configurations of a fiber laser device according to the present invention.
  • FIG. 2 is a schematic diagram showing an example of a fiber laser device according to another embodiment of the present invention.
  • FIG. 3 is a schematic view showing an example of a fiber laser device according to another embodiment of the present invention.
  • the present invention can be used not only for communication systems in the field of optical communication but also for application fields of optical transmission such as evaluation and measurement.
  • the laser is mainly single mode, so when outputting the laser, the laser outputs the single mode fiber. Even so, losses due to mode mismatch are minimized.
  • the present invention provides a fiber laser device using an up-conversion phenomenon.
  • the standard frequency V of the rare earth element-doped fiber is 2 with respect to the wavelength of the laser light. 4 ⁇ V ⁇ 3.9, and a single mode fiber is used for the laser beam generated by only a part of the fiber in the resonator.
  • the bending loss of the fiber with respect to the pumping light is reduced, the pumping light can be used efficiently, and a pseudo or intrinsic single-mode laser is obtained, and the loss of the laser light is small even if it is guided to the single-mode fiber.
  • an efficient fiber laser device can be obtained.
  • FIG. 1 is a schematic diagram showing an example of a fiber laser device of the present invention.
  • the excitation light source 101 is for activating the rare earth element in the rare earth element-doped fiber 103, it is not limited to the type or wavelength of the laser. Depending on the type of rare earth element and the wavelength of the laser beam to be obtained, it is necessary to replace it with an appropriate one.
  • a Fabry-Perot resonator is formed.
  • both may be mirrors or both may be fiber Bragg gratings. It doesn't matter.
  • the resonator may be a ring resonator.
  • the rare earth element-doped fiber 103 an erbium-doped fluoride fiber or the like can be used.
  • the rare earth element may be other excited active elements that are not erbium. An example is shown in Table 1.
  • the glass used as the base material to be added can be used by ZBLAN, etc. If a gain can be obtained at an upconversion emission wavelength, quartz glass, chalcogenide glass, etc. It doesn't matter. These may be in any combination as necessary.
  • the V value of the rare earth element-doped fiber 103 needs to be 2.4 ⁇ V ⁇ 3.9 with respect to the wavelength of the generated laser light.
  • V ⁇ 2.4 a bending loss of the fiber occurs in the pumping light, so that efficient pumping cannot be performed, or the rare earth element-doped fiber 103 cannot be bent at a desired radius and the apparatus cannot be downsized.
  • the single mode fiber 105 needs to satisfy V ⁇ 2.405 with respect to the laser beam.
  • the insertion position of the single mode fiber is most preferably a place other than between the pumping LD force rare earth doped fiber in the resonator. If the pumping LD force is also inserted between the rare-earth doped fibers, the bending loss of the pumping light by the single mode fiber may increase, making it impossible to provide a stable and efficient fiber laser device.
  • an optical isolator may be incorporated inside and outside the resonator.
  • a polarization controller may be incorporated inside and outside the resonator.
  • a band pass filter may be incorporated inside and outside the resonator.
  • FIG. 1 is a schematic diagram showing an example of the fiber laser device of the present invention.
  • the fiber laser includes an excitation light source 101, a 550 nm band broadband filter 102, a rare earth element-added calophino plate 103, an optical power plastic 104, a single mode fiber 105, and a fiber Bragg grating 106.
  • the excitation light source 101 a semiconductor laser having a wavelength of 974 nm was used.
  • a 200 cm erbium-doped fluoride fiber was used for the rare earth element-doped fiber 103.
  • a Fabry-Perot resonator was formed using a 550 nm band broadband filter 102 and a fiber Bragg grating 106.
  • the 550 nm band broadband filter 102 had a reflectivity of 99.9% in the wavelength range of 538 nm to 546 nm
  • the fiber Bragg grating 106 had a reflectivity of 80% at a wavelength of 543 nm.
  • the fiber Bragg grating 106 has a V of 2.53 for a laser beam of 543 nm.
  • a fiber with a grating is used.
  • the rare earth element-doped fiber 103 was wound in a ring shape with a diameter of 45 mm.
  • the V for 543 nm light of the rare earth element-added Fino 103 in this example was 3.52.
  • Single mode fiber 105
  • V is 1.9 and V is 2.4.
  • the excitation light emitted from the excitation light source 101 excites erbium in the erbium-doped fluoride fiber, which is the rare earth element-doped fiber 103, and the erbium-doped fluoride fiber generates ASE light near 543 nm.
  • ASE light light having a wavelength of 543 nm is folded back by the 550 ⁇ m-band broadband filter 102 and the fiber Bragg grating 106.
  • the rare earth element-doped fiber 103 gradually gains when the excitation light is input, and oscillates between the 550 nm band broadband filter 102 and the fiber Bragg grating 106.
  • Laser light with a wavelength of 543 nm was output from the fiber Bragg grating 106 side. At this time, the laser beam output from the fiber Bragg grating 106 was emitted almost in single mode.
  • the rare earth element-doped fiber 103 had almost all the bending loss of the force-excited light with a diameter of 45 mm.
  • the single mode fiber 105 attached according to the present invention also served as a pumping light removal filter that diverges pumping light that the rare earth element-doped fiber 103 could not absorb.
  • excitation power of 500 mW was input from the excitation light source 101.
  • an output of 5 mW was obtained.
  • the splice loss was 0.2 dB and the laser output was 4.8 mW.
  • Comparative Example 1 is the same as Example 1 except that no single mode fiber 103 is used.
  • the laser beam output from the fiber Bragg grating 106 was emitted in multimode. Furthermore, when a fiber having the same characteristics as the single-mode fiber 105 was attached to the output end of the laser, the splice loss was 5 dB.
  • FIG. 2 is a schematic diagram showing an example of the fiber laser device of the present invention.
  • the fiber laser includes an excitation light source 101, a 550 nm band broadband filter 102, a rare earth element-added calo fiber 103, a light power plastic 104, a single mode fiber 105, and a loop mirror 201.
  • the excitation light source 101 a semiconductor laser having a wavelength of 974 nm was used.
  • the rare earth element-doped fiber 103 was a 100 cm erbium-doped fluorinated fiber.
  • a resonator was formed using a loop mirror 201 using a 550 nm band broadband filter 102 and an optical power bra.
  • the 550 nm wide band filter 102 had a reflectivity of 99.9% in the wavelength range of 538 nm to 546 nm.
  • V of the rare earth element-doped fiber 103 in this example with respect to 543 nm light is 3.
  • V was 1.9 for the laser light of 543 nm, and a fiber of V ⁇ 2.4 was used.
  • Single mode fiber 105 is shown
  • the optical fiber was inserted between the rare earth doped fiber 103 and the 550nm band broadband filter 102.
  • FIG. 3 is a schematic diagram showing an example of the fiber laser device of the present invention.
  • the fiber laser includes an excitation light source 101, a rare earth element-doped fiber 103, a single mode fiin 105, two optical power plastics 301 and 302, and an isolator 303 force.
  • the excitation light source 101 a semiconductor laser having a wavelength of 974 nm was used.
  • the rare earth element-doped fiber 103 was a 100 cm erbium-doped fluoride fiber.
  • a ring-type resonator was constructed, and the optical power bra 302 had a branching ratio of 50%.
  • V for the light of 543 nm of the rare earth element-doped fiber 103 was 3.52.
  • Single mode fiber 105 V is 1.9 for the laser light of 543nm, and V is 2.4.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

A laser device or a light source employing a pumping LD emitting excitation light having a wavelength longer than that of the emitting light, a resonator, and a rare earth element-added fiber characterized in that the standardized frequency V of the rare earth element-added fiber is between 2.4 and 3.9 times of the wavelength of the emitting light, and a fiber exhibiting single mode for such a light as generated by a part of fibers other than the rare earth element-added fiber is inserted into the resonator.

Description

明 細 書  Specification
光源装置  Light source device
技術分野  Technical field
[0001] 本発明は、希土類元素添加ファイバを用いたファイバレーザ装置に関する。  [0001] The present invention relates to a fiber laser device using a rare earth element-doped fiber.
発明の背景  Background of the Invention
[0002] 従来、希土類添加フッ化物ファイバが用いられる光ファイバレーザにっ 、ては、多く の研究がなされてきた。中でも、 Nd3+、 Tm3+、 Er3+、 Ho3+、 Pr3+等の希土類元素をフッ 化物ファイバのコア中に添加し実現される可視光レーザは、この材料に特徴的な赤 外光などの励起光力 励起光より短い波長の光が得られる現象、すなわちアップコン バージョン現象を利用したものである。 Conventionally, many studies have been made on optical fiber lasers using rare earth-doped fluoride fibers. Above all, visible lasers realized by adding rare earth elements such as Nd 3+ , Tm 3+ , Er 3+ , Ho 3+ , Pr 3+ into the core of the fluoride fiber are characteristic of this material. Excitation light force such as external light This phenomenon utilizes the phenomenon of obtaining light with a shorter wavelength than the excitation light, that is, the upconversion phenomenon.
[0003] 可視光ファイバレーザは、赤外光に比較し短波長であることや、ファイバレーザ特 有の利点も兼ね備えるため、可視光光源として期待できる。(例えば、特許文献 1、非 特許文献 1参照)。  [0003] Visible fiber lasers are expected to be visible light sources because they have a shorter wavelength than infrared light and have the advantages of fiber lasers. (For example, see Patent Document 1 and Non-Patent Document 1).
[0004] ファイバの規格ィ匕周波数 Vは次式(1)のように定義される。  [0004] The standard frequency V of the fiber is defined as the following equation (1).
V= (2 / X ) - NA- a  V = (2 / X)-NA- a
ここで、 λ:光の波長、 ΝΑ :ファイバの開口数、 a :ファイバのコアの半径である。  Where λ is the wavelength of light, ΝΑ is the numerical aperture of the fiber, and a is the radius of the fiber core.
[0005] 特に、あるファイバにおける(NA、 aを一定) V= 2. 405の時の λの値をカットオフ波 長え cと呼ぶ。 V< 2. 405の時、あるファイバにおけるある波長の光はシングルモー ドで伝搬され、 V> 2. 405の時、マルチモードで伝搬される。従って、あるファイバに おいてはえ cを境界とし、波長の長短によりモードが変化し、同じ波長であってもファ ィバの NA、 aが変化するとモードが変化する。  [0005] In particular, the value of λ at a certain fiber (NA, a constant) V = 2.405 is called the cutoff length c. When V <2.405, light of a certain wavelength in a fiber is propagated in single mode, and when V> 2.405, it is propagated in multimode. Therefore, in a certain fiber, the mode changes depending on the length of wavelength with c as the boundary, and the mode changes when the NA and a of the fiber change even at the same wavelength.
[0006] 従来、ファイバレーザにおいてシングルモードのレーザを得る場合、レーザ光に対し てシングルモードが得られる希土類元素添加ファイバを設計、選択して 、た (特許文 献 2参照)。  [0006] Conventionally, when obtaining a single mode laser in a fiber laser, a rare earth element-doped fiber capable of obtaining a single mode with respect to a laser beam has been designed and selected (see Patent Document 2).
特許文献 1:特開 2005 - 26475号公報  Patent Document 1: JP 2005-26475 A
特許文献 2:特開平 1 181584号公報  Patent Document 2: Japanese Patent Laid-Open No. 11581584
非特許文献 1:「Rare— Earth— Dooed Fiber Lasers and Amp lif iers」; Mich el J. F. Digonnet; MARCEL DEKKER, INC. (1993) 171— 242 発明の概要 Non-Patent Document 1: “Rare—Earth—Dooed Fiber Lasers and Amp Lif iers”; Mich el JF Digonnet; MARCEL DEKKER, INC. (1993) 171—242 Summary of the Invention
[0007] し力し、本発明の対象となるアップコンバージョン過程を用いたファイバレーザにおい ては、レーザ光より励起光の波長が長ぐ波長の差が大きいため、例えば特開平 1— 181584号公報に記載されるように、レーザ光をシングルモードにするように希土類 元素添加ファイバを設計、選択すると、励起光がファイバの曲げ損失で失われたり、 励起光の曲げ損失を避けるとレーザ光がマルチモードとなったりした。  However, in the fiber laser using the up-conversion process that is the subject of the present invention, the wavelength of the pumping light is longer than that of the laser light, and the wavelength difference is large. For example, Japanese Patent Application Laid-Open No. 1-181584 If a rare earth element-doped fiber is designed and selected so that the laser light is single mode, the pump light is lost due to the bending loss of the fiber, or the laser light is It became a mode.
[0008] これを回避するために、レーザ光をマルチモード発振させ、その後シングルモードで レーザ光を取り出すことが考えられる。しかし、レーザ光に対してシングルモードの出 力用ファイバにレーザを結合させる必要がある。この際、接続損失が大きくなり、レー ザ装置としてのエネルギー変換効率が悪くなる問題があった。また、マルチモードが 存在しているファイバが温度変化にさらされるとファイバ中のレーザの強度分布が変 化し、結果として安定性を欠くレーザとなった。  [0008] In order to avoid this, it is conceivable to oscillate the laser light in a multimode and then extract the laser light in a single mode. However, it is necessary to couple the laser to a single-mode output fiber for the laser light. At this time, there was a problem that the connection loss was increased and the energy conversion efficiency of the laser device was degraded. In addition, when a fiber with multimodes was exposed to temperature changes, the intensity distribution of the laser in the fiber changed, resulting in a laser that lacked stability.
[0009] また、ダブルクラッドファイバを用いる方法がある力 アップコンバージョン現象の起こ りやす!/、、フッ化物ファイバやカルコゲナイドファイバにお!/、ては品質の良!、ダブルク ラッド構造のファイバを製造することが難しぐ更に、励起光、レーザ光の入出力部の 構造が複雑になった。  [0009] In addition, there is a method using a double clad fiber. The up-conversion phenomenon is likely to occur! /, And fluoride fiber and chalcogenide fiber! In addition, the structure of the input and output parts of the excitation light and laser light has become complicated.
[0010] 本発明は、前記事情に鑑みてなされたもので、シングルモードで、かつ、効率の良 Vヽ安定した出力の小型レーザ装置、あるいは ASE光源を提供する。  [0010] The present invention has been made in view of the above circumstances, and provides a small laser device or an ASE light source that is single-mode and has high efficiency and stable output.
[0011] 本発明は、上記課題を解決するために、アップコンバージョン現象を利用したフアイ バレーザ装置にお!、て、希土類元素添加ファイバの規格ィヒ周波数 Vがレーザ光の 波長に対して 2. 4<V< 3. 9であるファイバレーザ装置を提供する。  [0011] In order to solve the above problems, the present invention provides a fiber laser device using an up-conversion phenomenon. The standard frequency V of the rare earth element-doped fiber is 2. A fiber laser device in which 4 <V <3.9 is provided.
[0012] また、共振器中のファイバの一部だけ力 発生したレーザ光に対してシングルモード ファイバであるファイバレーザ装置である。  [0012] Further, the present invention is a fiber laser device that is a single mode fiber with respect to laser light generated by a part of the fiber in the resonator.
[0013] また、励起光の波長がレーザ光よりも長ぐ励起 LDと共振器と希土類添加ファイバと を備えたアップコンバージョン現象を利用したファイバレーザ装置である。  [0013] Further, the present invention is a fiber laser device using an up-conversion phenomenon that includes an excitation LD, a resonator, and a rare earth-doped fiber in which the wavelength of the excitation light is longer than that of the laser light.
[0014] また、希土類添加ファイバにフッ化物ガラス、フッ素酸ィ匕物ガラス、フッ化物結晶含 有ガラス、フッ素酸ィ匕物結晶含有ガラスのうち、いずれかを用いた、ファイバレーザ装 置であってもよい。 [0014] Further, a fiber laser device using any one of a fluoride glass, a fluoride oxide glass, a fluoride crystal-containing glass, and a fluoride oxide crystal-containing glass as a rare earth-doped fiber. It may be a position.
[0015] また、発生した光に対してシングルモードであるファイバ力 共振器中の励起 LDか ら希土類添加ファイバ間以外の場所に設置されたファイバレーザ装置であってもよい 図面の簡単な説明  [0015] In addition, a fiber laser device installed in a place other than between the rare earth doped fiber and the pumping LD in the fiber force resonator that is single mode with respect to the generated light may be used.
[0016] [図 1]本発明によるファイバレーザ装置の最も安価な構成の 1つを示すものである。  FIG. 1 shows one of the cheapest configurations of a fiber laser device according to the present invention.
[図 2]本発明の他の形態のファイバレーザ装置の一例を示す模式図である。  FIG. 2 is a schematic diagram showing an example of a fiber laser device according to another embodiment of the present invention.
[図 3]本発明の他の形態のファイバレーザ装置の一例を示す模式図である。  FIG. 3 is a schematic view showing an example of a fiber laser device according to another embodiment of the present invention.
詳細な説明  Detailed description
[0017] 本発明は、光通信分野における通信システムはもちろん、評価'測定など光伝送の 応用分野にも利用できるものである。  [0017] The present invention can be used not only for communication systems in the field of optical communication but also for application fields of optical transmission such as evaluation and measurement.
[0018] 希土類元素添加ファイバの規格ィ匕周波数 Vがレーザ光の波長に対して 2. 4<V< 3. 9とすることで、励起波長よりレーザ波長が短いアップコンバージョン過程を利用し たレーザであっても、励起光に対してファイバの曲げ損失が充分無視できる程度に 小さくなり、ファイバを曲げて収納できるため、装置の小型化が可能となる。  [0018] A laser using an upconversion process in which the laser wavelength is shorter than the excitation wavelength by setting the standard frequency V of the rare earth element-doped fiber to 2.4 <V <3.9 with respect to the wavelength of the laser beam. Even so, the bending loss of the fiber with respect to the excitation light is sufficiently small to be negligible, and the fiber can be bent and stored, so that the apparatus can be miniaturized.
[0019] また、共振器中に発生したレーザ光に対してシングルモードとなるファイバを挿入 することで、レーザはシングルモードが主となるためレーザを出力する際、共振器より シングルモードファイバで出力しても、モードの不整合による損失が最小に押さえら れる。  [0019] In addition, by inserting a fiber that becomes a single mode with respect to the laser beam generated in the resonator, the laser is mainly single mode, so when outputting the laser, the laser outputs the single mode fiber. Even so, losses due to mode mismatch are minimized.
[0020] 本発明は、上記課題を解決するために、アップコンバージョン現象を利用したフアイ バレーザ装置にお!、て、希土類元素添加ファイバの規格ィヒ周波数 Vがレーザ光の 波長に対して 2. 4<V< 3. 9とし、かつ、共振器中のファイバの一部だけ力 発生し たレーザ光に対してシングルモードファイバとする。励起光に対してファイバの曲げ 損失が小さくなり、励起光を効率よく使用でき、かつ、疑似あるいは真性のシングルモ 一ドレーザを得、これをシングルモードファイバに導光してもレーザ光の損失は少なく 、結果として効率の良いファイバレーザ装置が得られる。  [0020] In order to solve the above-mentioned problems, the present invention provides a fiber laser device using an up-conversion phenomenon. The standard frequency V of the rare earth element-doped fiber is 2 with respect to the wavelength of the laser light. 4 <V <3.9, and a single mode fiber is used for the laser beam generated by only a part of the fiber in the resonator. The bending loss of the fiber with respect to the pumping light is reduced, the pumping light can be used efficiently, and a pseudo or intrinsic single-mode laser is obtained, and the loss of the laser light is small even if it is guided to the single-mode fiber. As a result, an efficient fiber laser device can be obtained.
[0021] 以下、本発明を添付図面を参照しながら詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0022] 図 1は、本発明のファイバレーザ装置の一例を示す模式図である。ファイバレーザ は、励起光源 101 550nm帯広帯域フィルタ 102、希土類元素添加ファイバ 103 シングルモードファイバ 105、ファイバブラッググレーティング 106から構成される。 FIG. 1 is a schematic diagram showing an example of a fiber laser device of the present invention. Fiber laser Consists of a pump light source 101, a 550 nm band broadband filter 102, a rare earth element doped fiber 103, a single mode fiber 105, and a fiber Bragg grating 106.
[0023] 励起光源 101は、希土類元素添加ファイバ 103中の希土類元素を活性ィ匕するため のものであるため、レーザの種類や波長に限定されない。希土類元素の種類、得よう とするレーザ光の波長により、適当なものに代える必要がある。  Since the excitation light source 101 is for activating the rare earth element in the rare earth element-doped fiber 103, it is not limited to the type or wavelength of the laser. Depending on the type of rare earth element and the wavelength of the laser beam to be obtained, it is necessary to replace it with an appropriate one.
[0024] 広帯域フィルタ 102とファイバブラッググレーティング 106を用い、フアブリペロー型共 振器を形成する。  Using a broadband filter 102 and a fiber Bragg grating 106, a Fabry-Perot resonator is formed.
[0025] 共振器の作製にあたっては、 ASE光のうち特定波長の光を反射できれば良ぐ図と 異なり双方がミラーであっても、双方がファイバブラッググレーティングであっても良く 、その他の方法であっても構わない。  [0025] Unlike the figure in which the resonator can be manufactured as long as it can reflect light of a specific wavelength in the ASE light, both may be mirrors or both may be fiber Bragg gratings. It doesn't matter.
[0026] また共振器は、リング型共振器であっても構わない。  [0026] The resonator may be a ring resonator.
[0027] 希土類元素添加ファイバ 103には、エルビウム添加フッ化物ファイバ等が使用できる 。希土類元素はエルビウムではないその他の励起活性元素でも良い。一例を表 1に 示す。  For the rare earth element-doped fiber 103, an erbium-doped fluoride fiber or the like can be used. The rare earth element may be other excited active elements that are not erbium. An example is shown in Table 1.
[表 1]  [table 1]
Figure imgf000005_0001
また、添加する母材となるガラスは ZBLAN等が使用できる力 実質的にアップコン バージョン発光波長で利得が得られれば、石英系ガラス、カルコゲナイドガラスなど でも構わない。これらは、必要によりどのような組み合わせであっても良い。
Figure imgf000005_0001
The glass used as the base material to be added can be used by ZBLAN, etc. If a gain can be obtained at an upconversion emission wavelength, quartz glass, chalcogenide glass, etc. It doesn't matter. These may be in any combination as necessary.
[0029] 希土類元素添加ファイバ 103の V値は、発生するレーザ光の波長に対して、 2. 4< V< 3. 9である必要がある。 V≤ 2. 4の場合、励起光にファイバの曲げ損が発生し、 効率の良い励起ができなくなったり、希土類元素添加ファイバ 103を所望の半径で 曲げられなくなり装置を小型にできなくなったりする。  [0029] The V value of the rare earth element-doped fiber 103 needs to be 2.4 <V <3.9 with respect to the wavelength of the generated laser light. In the case of V≤2.4, a bending loss of the fiber occurs in the pumping light, so that efficient pumping cannot be performed, or the rare earth element-doped fiber 103 cannot be bent at a desired radius and the apparatus cannot be downsized.
[0030] V≥3. 9の場合、レーザがマルチモードで誘起されるので、これからシングルモード でレーザを取り出そうとする場合に、損失が大きくなり、結果として、効率の良いレー ザ装置とならない。  [0030] When V ≥ 3.9, the laser is induced in multimode, so when attempting to take out the laser in single mode from now on, the loss increases, and as a result, an efficient laser device cannot be obtained.
[0031] シングルモードファイバ 105は、レーザ光に対して V< 2. 405である必要がある。  [0031] The single mode fiber 105 needs to satisfy V <2.405 with respect to the laser beam.
[0032] シングルモードファイバの挿入位置は、共振器中の励起 LD力 希土類添加ファイバ 間以外の場所が最も好ましい。励起 LD力も希土類添加ファイバ間に挿入された場 合、シングルモードファイバによる励起光への曲げ損失が大きくなる場合があり、安定 な効率の良いファイバレーザ装置を提供できなくなる。 [0032] The insertion position of the single mode fiber is most preferably a place other than between the pumping LD force rare earth doped fiber in the resonator. If the pumping LD force is also inserted between the rare-earth doped fibers, the bending loss of the pumping light by the single mode fiber may increase, making it impossible to provide a stable and efficient fiber laser device.
[0033] その他に、光アイソレータや偏波コントローラ、バンドパスフィルター、力プラ、レンズ などを共振器内外に組み込んでも差し支えな 、。 In addition, an optical isolator, a polarization controller, a band pass filter, a force plastic, a lens, and the like may be incorporated inside and outside the resonator.
[0034] 以下、実施例を挙げて本発明を説明する。 Hereinafter, the present invention will be described with reference to examples.
実施例 1  Example 1
[0035] 図 1は、本発明のファイバレーザ装置の一例を示す模式図である。  FIG. 1 is a schematic diagram showing an example of the fiber laser device of the present invention.
[0036] ファイバレーザは、励起光源 101、 550nm帯広帯域フィルタ 102、希土類元素添カロ ファイノく 103、光力プラ 104、シングルモードファイバ 105、ファイバブラッググレーテ イング 106から構成される。 The fiber laser includes an excitation light source 101, a 550 nm band broadband filter 102, a rare earth element-added calophino plate 103, an optical power plastic 104, a single mode fiber 105, and a fiber Bragg grating 106.
[0037] 励起光源 101は波長 974nmの半導体レーザを用いた。希土類元素添加ファイバ 10 3に 200cmのエルビウム添カ卩フッ化物ファイバを用いた。 550nm帯広帯域フィルタ 1 02とファイバブラッググレーティング 106を用い、フアブリペロー型共振器を形成した 。 550nm帯広帯域フィルタ 102は、波長 538nmから 546nmの範囲において反射率 99. 9%であり、ファイバブラッググレーティング 106の波長は波長 543nmにおいて 反射率 80%であった。 As the excitation light source 101, a semiconductor laser having a wavelength of 974 nm was used. A 200 cm erbium-doped fluoride fiber was used for the rare earth element-doped fiber 103. A Fabry-Perot resonator was formed using a 550 nm band broadband filter 102 and a fiber Bragg grating 106. The 550 nm band broadband filter 102 had a reflectivity of 99.9% in the wavelength range of 538 nm to 546 nm, and the fiber Bragg grating 106 had a reflectivity of 80% at a wavelength of 543 nm.
[0038] ファイバブラッググレーティング 106は、 543nmのレーザ光に対して、 V が 2. 53の ファイバにグレーティングがかかれているものを用いた。希土類元素添加ファイバ 10 3は、直径 45mmでリング状に巻かれた。本実施例における希土類元素添加フアイ ノ 103の 543nmの光に対する V は、 3. 52であった。シングルモードファイバ 105 [0038] The fiber Bragg grating 106 has a V of 2.53 for a laser beam of 543 nm. A fiber with a grating is used. The rare earth element-doped fiber 103 was wound in a ring shape with a diameter of 45 mm. The V for 543 nm light of the rare earth element-added Fino 103 in this example was 3.52. Single mode fiber 105
RDF  RDF
には、レーザ光である 543nmの光に対して V は 1. 9であり、 V く 2. 4のファイバ  For the laser beam of 543nm, V is 1.9 and V is 2.4.
SM SM  SM SM
を用いた。  Was used.
[0039] 励起光源 101から出射した励起光が希土類元素添加ファイバ 103であるエルビウム 添加フッ化物ファイバ中のエルビウムを二段階励起し、エルビウム添加フッ化物ファ ィバは 543nm近傍の ASE光を発生する。 ASE光のうち、波長 543nmの光は 550η m帯広帯域フィルタ 102とファイバブラッググレーティング 106により折り返される。  [0039] The excitation light emitted from the excitation light source 101 excites erbium in the erbium-doped fluoride fiber, which is the rare earth element-doped fiber 103, and the erbium-doped fluoride fiber generates ASE light near 543 nm. Of the ASE light, light having a wavelength of 543 nm is folded back by the 550 η m-band broadband filter 102 and the fiber Bragg grating 106.
[0040] 希土類元素添加ファイバ 103は励起光の投入により、次第に利得を得、 550nm帯 広帯域フィルタ 102およびファイバブラッググレーティング 106間でレーザ発振する。 波長 543nmのレーザ光はファイバブラッググレーティング 106側から出力された。こ の時、ファイバブラッググレーティング 106から出力されるレーザ光はほぼシングルモ 一ドで出射された。  [0040] The rare earth element-doped fiber 103 gradually gains when the excitation light is input, and oscillates between the 550 nm band broadband filter 102 and the fiber Bragg grating 106. Laser light with a wavelength of 543 nm was output from the fiber Bragg grating 106 side. At this time, the laser beam output from the fiber Bragg grating 106 was emitted almost in single mode.
[0041] 希土類元素添加ファイバ 103は、直径 45mmで卷かれた力 励起光の曲げ損はほと んどな力つた。本発明により取り付けられたシングルモードファイバ 105は、希土類元 素添加ファイバ 103が吸収しきれな力つた励起光を発散させる励起光除去フィルタの 役割も果たした。  [0041] The rare earth element-doped fiber 103 had almost all the bending loss of the force-excited light with a diameter of 45 mm. The single mode fiber 105 attached according to the present invention also served as a pumping light removal filter that diverges pumping light that the rare earth element-doped fiber 103 could not absorb.
[0042] この様な構成のファイバレーザ装置において、励起光源 101から励起パワーを 500 mW投入した。その結果、 5mWの出力を得た。更に、レーザの出力端にシングルモ ードファイバ 105と同じ特性を持つファイバを取り付けたところ、接続損失は 0. 2dBと なり、レーザの出力は 4. 8mWであった。  In the fiber laser device having such a configuration, excitation power of 500 mW was input from the excitation light source 101. As a result, an output of 5 mW was obtained. Furthermore, when a fiber having the same characteristics as the single-mode fiber 105 was attached to the laser output end, the splice loss was 0.2 dB and the laser output was 4.8 mW.
[0043] (比較例 1)  [0043] (Comparative Example 1)
シングルモードファイバ 103が無 ヽ他は全て実施例 1と同様の構成を比較例 1とす る。ファイバブラッググレーティング 106から出力されるレーザ光はマルチモードで出 射された。更に、レーザの出力端にシングルモードファイバ 105と同じ特性を持つフ アイバを取り付けたところ、接続損失は 5dBとなった。  Comparative Example 1 is the same as Example 1 except that no single mode fiber 103 is used. The laser beam output from the fiber Bragg grating 106 was emitted in multimode. Furthermore, when a fiber having the same characteristics as the single-mode fiber 105 was attached to the output end of the laser, the splice loss was 5 dB.
実施例 2 [0044] 図 2は、本発明のファイバレーザ装置の一例を示す模式図である。 Example 2 FIG. 2 is a schematic diagram showing an example of the fiber laser device of the present invention.
[0045] ファイバレーザは、励起光源 101、 550nm帯広帯域フィルタ 102、希土類元素添カロ ファイバ 103、光力プラ 104、シングルモードファイバ 105、ループミラー 201から構 成される。  The fiber laser includes an excitation light source 101, a 550 nm band broadband filter 102, a rare earth element-added calo fiber 103, a light power plastic 104, a single mode fiber 105, and a loop mirror 201.
[0046] 励起光源 101は波長 974nmの半導体レーザを用いた。希土類元素添加ファイバ 10 3に 100cmのエルビウム添カ卩フッ化物ファイバを用いた。 550nm帯広帯域フィルタ 1 02と光力ブラを使ったループミラー 201を用い、共振器を形成した。 550nm帯広帯 域フィルタ 102は、波長 538nmから 546nmの範囲において反射率 99. 9%であつ た。  As the excitation light source 101, a semiconductor laser having a wavelength of 974 nm was used. The rare earth element-doped fiber 103 was a 100 cm erbium-doped fluorinated fiber. A resonator was formed using a loop mirror 201 using a 550 nm band broadband filter 102 and an optical power bra. The 550 nm wide band filter 102 had a reflectivity of 99.9% in the wavelength range of 538 nm to 546 nm.
[0047] ループミラー 201は、分岐比 12%の 2 X 2力プラを用いた。希土類元素添加ファイバ As the loop mirror 201, a 2 × 2 force plastic having a branching ratio of 12% was used. Rare earth element doped fiber
103は、直径 45mmでリング状に巻かれた。 103 was wound in a ring shape with a diameter of 45 mm.
[0048] 本実施例における希土類元素添加ファイバ 103の 543nmの光に対する V は、 3.[0048] V of the rare earth element-doped fiber 103 in this example with respect to 543 nm light is 3.
DF  DF
52であった。シングルモードファイバ 105には、レーザ光である 543nmの光に対して V は 1. 9であり、 V < 2· 4のファイバを用いた。シングルモードファイバ 105は図 52. For the single mode fiber 105, V was 1.9 for the laser light of 543 nm, and a fiber of V <2.4 was used. Single mode fiber 105 is shown
S S S S
に示された通り、希土類添加ファイバ 103と 550nm帯広帯域フィルタ 102の間に揷 入した。  As shown in Fig. 2, the optical fiber was inserted between the rare earth doped fiber 103 and the 550nm band broadband filter 102.
[0049] 励起光源 101から励起パワーを 500mW投入した。その結果、レーザ発振を確認で き、 15mWの出力を得た。更に、レーザの出力端にシングルモードファイバ 105と同 じ特性を持つファイバを取り付けたところ、接続損失は 0. 2dBとなり、レーザの出力 は 14mWであった。  [0049] An excitation power of 500 mW was input from the excitation light source 101. As a result, laser oscillation was confirmed and an output of 15 mW was obtained. Furthermore, when a fiber having the same characteristics as the single mode fiber 105 was attached to the laser output end, the splice loss was 0.2 dB, and the laser output was 14 mW.
実施例 3  Example 3
[0050] 図 3は、本発明のファイバレーザ装置の一例を示す模式図である。  FIG. 3 is a schematic diagram showing an example of the fiber laser device of the present invention.
[0051] ファイバレーザは、励起光源 101、希土類元素添加ファイバ 103、シングルモードフ ァイノく 105、 2つの光力プラ 301、 302、アイソレータ 303力ら構成される。  [0051] The fiber laser includes an excitation light source 101, a rare earth element-doped fiber 103, a single mode fiin 105, two optical power plastics 301 and 302, and an isolator 303 force.
[0052] 励起光源 101は波長 974nmの半導体レーザを用いた。希土類元素添加ファイバ 10 3に 100cmのエルビウム添加フッ化物ファイバを用いた。リング型共振器を構成し、 光力ブラ 302は分岐比 50%であった。本実施例における希土類元素添加ファイバ 1 03の 543nmの光に対する V は、 3. 52であった。シングルモードファイバ 105には 、レーザ光である 543nmの光に対して V は 1. 9であり、 V く 2. 4のファイバを用 As the excitation light source 101, a semiconductor laser having a wavelength of 974 nm was used. The rare earth element-doped fiber 103 was a 100 cm erbium-doped fluoride fiber. A ring-type resonator was constructed, and the optical power bra 302 had a branching ratio of 50%. In this example, V for the light of 543 nm of the rare earth element-doped fiber 103 was 3.52. Single mode fiber 105 V is 1.9 for the laser light of 543nm, and V is 2.4.
SM SM  SM SM
いた。シングルモードファイバ 105は図に示された位置に挿入した。  It was. Single mode fiber 105 was inserted at the position shown in the figure.
[0053] 励起光源 101から励起パワーを 500mW投入した。その結果、レーザ発振を確認で き、 10mWの出力を得た。更に、レーザの出力端にシングルモードファイバ 105と同 じ特性を持つファイバを取り付けたところ、接続損失は 0. 2dBとなり、レーザの出力 は 9. 5mWであった。 [0053] An excitation power of 500 mW was input from the excitation light source 101. As a result, laser oscillation was confirmed and an output of 10 mW was obtained. Furthermore, when a fiber having the same characteristics as the single mode fiber 105 was attached to the laser output end, the splice loss was 0.2 dB and the laser output was 9.5 mW.
[0054] シングルモードファイバ 105の挿入位置をかえ、レーザ出力を計測したところ、リン グ型共振器内の光力ブラ 301から希土類元素添加ファイバ 103間以外の場所であれ ば同様の出力が得られた。  [0054] When the insertion position of the single mode fiber 105 was changed and the laser output was measured, the same output was obtained at a place other than between the optical power bra 301 in the ring resonator and the rare earth element doped fiber 103. It was.

Claims

請求の範囲 The scope of the claims
[1] 励起光の波長が発生する光よりも長波長である、励起 LDと共振器と希土類元素添 加ファイバを用いたレーザ装置または光源において、希土類元素添加ファイバの規 格ィ匕周波数 Vが発生する光の波長に対して 2. 4<V< 3. 9であり、かつ、共振器中 に希土類添加ファイバ以外のファイバの一部が発生した光に対してシングルモード であるファイバが挿入されていることを特徴とするレーザ装置。  [1] In a laser device or a light source using a pumping LD, a resonator, and a rare earth element-added fiber, the wavelength V of the pump light is longer than that of the generated light, the standard frequency V of the rare earth element-doped fiber is A fiber that is 2.4 <V <3.9 with respect to the wavelength of the generated light and that is a single mode is inserted into the light generated by a part of the fiber other than the rare-earth doped fiber in the resonator. A laser device characterized by comprising:
[2] 希土類添加ファイバが、フッ化物ガラス、フッ素酸ィ匕物ガラス、フッ化物結晶含有ガラ ス、フッ素酸ィ匕物結晶含有ガラス、カルコゲナイドガラスのうち、いずれかである、請 求項 1に記載のレーザ装置。  [2] According to claim 1, wherein the rare earth-doped fiber is any one of fluoride glass, fluorinated glass, glass containing fluoride crystal, glass containing fluorinated glass, and chalcogenide glass. The laser apparatus described.
[3] 発生した光に対してシングルモードであるファイバ力 共振器中の励起 LD力も希土 類添加ファイバ間以外の場所に挿入された請求項 1に記載のレーザ装置。  [3] The laser device according to [1], wherein the pumping LD force in the single-mode fiber force resonator is also inserted at a place other than between the rare earth doped fibers.
PCT/JP2006/321873 2005-11-08 2006-11-01 Light source device WO2007055137A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-323946 2005-11-08
JP2005323946A JP2007134414A (en) 2005-11-08 2005-11-08 Light source apparatus

Publications (1)

Publication Number Publication Date
WO2007055137A1 true WO2007055137A1 (en) 2007-05-18

Family

ID=38023142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321873 WO2007055137A1 (en) 2005-11-08 2006-11-01 Light source device

Country Status (2)

Country Link
JP (1) JP2007134414A (en)
WO (1) WO2007055137A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359483A1 (en) * 2020-05-13 2021-11-18 National University Of Singapore Visible and tunable ring cavity laser source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119284A1 (en) * 2008-03-26 2009-10-01 日本電気株式会社 Wavelength variable laser device, and method and program for controlling the same
JP2010050126A (en) * 2008-08-19 2010-03-04 Central Glass Co Ltd Ase light source

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077216A (en) * 1993-01-25 1995-01-10 Matsushita Electric Ind Co Ltd Rare-earth-ion added laser element and rare-earth-ion added optical amplifier element
JP2003086868A (en) * 2001-09-12 2003-03-20 Toshiba Corp Optical fiber laser device
JP2005251992A (en) * 2004-03-04 2005-09-15 Fujikura Ltd Optical fiber laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077216A (en) * 1993-01-25 1995-01-10 Matsushita Electric Ind Co Ltd Rare-earth-ion added laser element and rare-earth-ion added optical amplifier element
JP2003086868A (en) * 2001-09-12 2003-03-20 Toshiba Corp Optical fiber laser device
JP2005251992A (en) * 2004-03-04 2005-09-15 Fujikura Ltd Optical fiber laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359483A1 (en) * 2020-05-13 2021-11-18 National University Of Singapore Visible and tunable ring cavity laser source

Also Published As

Publication number Publication date
JP2007134414A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4486688B2 (en) Integrated passive mode-locked fiber laser and its fabrication
US6801550B1 (en) Multiple emitter side pumping method and apparatus for fiber lasers
US7813387B2 (en) Optical system for providing short laser-pulses
JP6306625B2 (en) Fiber that provides double-clad gain with increased cladding absorption while maintaining single-mode operation
AU685901B2 (en) Laser
Zhang et al. High-power single-frequency thulium-doped fiber DBR laser at 1943 nm
US8947768B2 (en) Master oscillator—power amplifier systems
EP2503653B1 (en) Amplifying optical fiber, and optical fiber amplifier and resonator using same
US8270442B2 (en) Optical fiber laser
US20070133625A1 (en) All-fiber laser device for mid-infrared wavelength band
KR20100043207A (en) Light emitting devices with phosphosilicate glass
JP2007511100A (en) Clad pumped quasi-three-level fiber laser / amplifier
Kurkov et al. Yb3+-doped double-clad fibers and lasers
CN101202407A (en) Switching optical fibre laser on frequency
CA2090679C (en) Optical fibre amplifier and laser
WO2007055137A1 (en) Light source device
JPH11223744A (en) Article including optical fiber laser doped with improved rare-earth element
US7038844B2 (en) High power 938 nanometer fiber laser and amplifier
KR20110065305A (en) Double clad fiber laser device
JP2007234948A (en) Multi-wavelength light source
JP2007103751A (en) Fiber laser
EP1030416A2 (en) Laser amplifier and laser oscillator
JP2015046560A (en) Gain-producing fibers with increased cladding absorption while maintaining single-mode operation
Al-Mahrous et al. Red and orange tunable fiber laser
Alam et al. Erbium-ytterbium co-doped cladding-pumped fiber laser tunable from 1533 to 1600 nm with up to 6.7 W of output power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822802

Country of ref document: EP

Kind code of ref document: A1