WO2007052525A1 - Objective lens drive device and drive method - Google Patents

Objective lens drive device and drive method Download PDF

Info

Publication number
WO2007052525A1
WO2007052525A1 PCT/JP2006/321354 JP2006321354W WO2007052525A1 WO 2007052525 A1 WO2007052525 A1 WO 2007052525A1 JP 2006321354 W JP2006321354 W JP 2006321354W WO 2007052525 A1 WO2007052525 A1 WO 2007052525A1
Authority
WO
WIPO (PCT)
Prior art keywords
objective lens
focal point
observed
optical disc
driving
Prior art date
Application number
PCT/JP2006/321354
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshimichi Nishio
Takaaki Ujiie
Yoshihiro Hashizuka
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2007542643A priority Critical patent/JP4660555B2/en
Publication of WO2007052525A1 publication Critical patent/WO2007052525A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08505Methods for track change, selection or preliminary positioning by moving the head
    • G11B7/08511Methods for track change, selection or preliminary positioning by moving the head with focus pull-in only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to a driving apparatus and a driving method for driving an objective lens used in an optical disk reproducing apparatus or the like.
  • Optical disc playback devices and the like require an operation to focus the objective lens on the signal surface of the optical disc (focus pull-in) before playback of the optical disc. Changes in the operating environment of the playback device, warping of optical discs and signals In consideration of changes in the relative speed between the optical disc and the objective lens due to surface deflection caused by surface distortion, etc., the drive speed of the objective lens is fixed at a constant speed so that the focus bow I can be inserted even under the worst conditions. And then.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-14091
  • the amount of surface blur is It is an object of the present invention to provide an objective lens driving device and a driving method capable of shortening the force pull-in time when there is little blurring by setting the driving speed of the objective lens according to the above.
  • the invention according to claim 1 is directed to a light source, an objective lens for irradiating light from the light source with focusing on the optical disc, and the objective lens to the optical disc.
  • an objective lens driving device comprising a driving means for moving in a substantially vertical direction
  • the observation means is caused to observe the focal point on the optical disc by moving the objective lens to a certain range by the driving means.
  • a control means for changing the speed at which the driving means moves the objective lens in order to perform the force pull-in according to the result! / Speak.
  • the invention according to claim 9 is directed to an objective lens driving method for moving an objective lens for irradiating light of light source power while focusing on the optical disc in a substantially vertical direction with respect to the optical disc.
  • the objective lens is moved by a certain amount, the focal point on the optical disc is observed, and the speed at which the objective lens is driven is changed according to the observation result in order to perform focus pull-in.
  • FIG. 2 is an explanatory diagram of a light receiver of the optical pickup in the optical disc player shown in FIG.
  • FIG. 3 is an explanatory diagram of a waveform of a focus error signal.
  • FIG. 4 is a flowchart showing an objective lens driving speed determining operation in the first embodiment of the optical disc player shown in FIG. 1.
  • FIG. 4 is a flowchart showing an objective lens driving speed determining operation in the first embodiment of the optical disc player shown in FIG. 1.
  • FIG. 5 (a), (b) and (c) are explanatory diagrams of the relationship between the objective lens when the objective lens is driven, the focal point of the light emitted from the objective lens, and the signal surface of the optical disc.
  • FIG. 6 is a flowchart showing an objective lens drive speed determination operation in the second embodiment of the optical disc player shown in FIG. 1.
  • FIGS. 7A and 7B are explanatory diagrams of a method for determining the driving speed of the objective lens in the second embodiment.
  • FIG. 8 is a flowchart showing an objective lens driving speed determination operation in the third embodiment of the optical disk player shown in FIG. 1.
  • FIG. 8 is a flowchart showing an objective lens driving speed determination operation in the third embodiment of the optical disk player shown in FIG. 1.
  • FIG. 9 is an explanatory diagram of a method for determining a driving speed and a driving range of an objective lens according to a third embodiment.
  • the control means increases the speed at which the objective lens is driven when the number of times of crossing the focal point on the optical disk is less than a predetermined value.
  • the speed which drives an objective lens may be made slow. That is, when the surface blur is large, the number of times of crossing the focal point is large. When the surface blur is small, the number of times of crossing the focal point is small. Therefore, the driving speed of the objective lens can be changed depending on the amount of surface blur.
  • control means causes the position acquisition means to acquire the position of the objective lens when the observation means observes the focal point on the optical disc, and first adjusts the objective lens when the objective lens is moved within a certain range.
  • the driving range for focusing the objective lens may be changed. By doing so, the range in which the objective lens is driven can be limited, so that the focus pull-in time can be shortened.
  • control unit divides the fixed range in which the objective lens is moved into a plurality of ranges, and moves the driving range of the objective lens at the time of focus pull-in according to the range where the focal point exists in the plurality of ranges. You may do it. By doing this, the focus pull-in time can be shortened because the range where the in-focus point exists can be limited during focus pull-in. It can be done.
  • the control unit performs a plurality of the above observations observed within the second predetermined time.
  • the focal point may be counted as one.
  • the observation unit may set a position where any one or more of the focus error signal, the RF signal, and the return light total signal are observed as a focal point.
  • These signals are signals that are generated when the amount of reflected light from the optical disc exceeds a predetermined amount, so that it is easy to observe the focal point.
  • the position of the objective lens when the focal point on the optical disk is observed is acquired, and the focal point is first observed when the objective lens is moved within a certain range, and finally the focal point is determined.
  • the driving range for focusing the objective lens may be changed according to the observed position. By doing so, the range in which the objective lens is driven can be limited, so that the focus pull-in time can be shortened.
  • optical disc player 1 as an objective lens driving device that is effective in the first embodiment of the present invention will be described with reference to Figs.
  • the optical disc player 1 has multiple optical discs such as a DVD (Digital Versatile Disc), CD (Compact Disc), and BD (Blu-ray Disc), and multiple DVDs. It is a device that can reproduce multi-layer discs such as laminated optical discs and optical discs with DVD layers and BD layers.
  • disc motor 2, optical pickup 3, RF amplifier 4, servo signal A processing unit 5, a driver 6, an audio Z video signal processing unit 7, a DA converter 8, an audio signal Z video signal output terminal 9, and a microcomputer 10 are provided.
  • the disc motor 2 is a motor for rotating the optical disc 11 set in the optical disc player 1, and includes a spindle motor or the like.
  • the optical pickup 3 includes a laser diode (not shown) that generates light to be irradiated on the optical disc 11, an objective lens for irradiating the optical disc 11 with laser light from the laser diode, and a servo signal processing unit 5 And a receiver 30 that receives the reflected light reflected from the optical disk 11, and a focus error signal as a focal point is output from the output of the receiver 30. Generate and output.
  • the light receiver 30 includes a four-divided light receiver 31.
  • the quadrant light receiver 31 includes light receiving surfaces 31a, 31b, 31c and 31d.
  • the focus error signal is obtained by adding the outputs of the light receiving surfaces 31b and 31d at the other diagonal position from the sum of the outputs of the light receiving surfaces 3la and 31c at one of the diagonal positions in the quadrant light receiver 31. 3 is subtracted (ie, (31a + 31c)-(31b + 31d)) and the waveform shown in FIG. 3 is obtained, and Vfe in FIG. 3 is the focus error signal level as the intensity of reflected light at the focal point.
  • the RF amplifier 4 amplifies the signal output from the optical pickup 3 to a predetermined value and outputs it to the servo signal processing unit 5.
  • Servo signal processing unit 5 as drive means and observation means is used to observe the presence and level of a focus error signal, which is a signal input from the reflected light from optical disk 11 and input to RF amplifier 4 power,
  • the objective lens of the pickup 3 is driven to control focus and tracking so that the information recorded on the optical disk 11 can be read accurately.
  • a signal including information such as music and video recorded on the optical disc 11 is converted to analog Z digital and output to the audio Z video signal processing unit 7.
  • the driver 6 amplifies the signal input from the servo signal processing unit 5 and outputs the amplified signal to the disk motor 2 and the optical pickup 3.
  • the audio Z video signal processing unit 7 demodulates the signal input from the servo signal processing unit 5 into an audio or video signal, performs error correction, and outputs the signal to the DA converter 8.
  • a microcomputer 10 serving as a control means and a position acquisition means has a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and the optical disk 11 is inserted and ejected. Controls the entire optical disc player 1 in each operation such as recording Z playback and stop, and determines the objective lens drive speed and drive range from the focus error signal observed by the servo signal processing unit 5.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the flowchart shown in FIG. 4 is realized by the CPU of the microcomputer 10 executing the control program stored in the ROM of the microcomputer 10.
  • FIG. 5 shows the relationship between the objective lens, the focal point of the light emitted from the objective lens, and the signal surface of the optical disc when the objective lens is moved in a direction in which the positional force far from the optical disc is brought closer to the optical disc.
  • Fig. 5 (a) shows the case where the optical disc surface is shaken, that is, when the optical disc rotates, the signal plane has a large fluctuation in the focus direction.
  • the focal point of the objective lens is separated from the objective lens by a distance h0. If the objective lens moves, the focal point moves while maintaining the distance h0. As shown in Fig.
  • step S 101 the servo signal processing unit 5 is instructed to drive the objective lens in the vertical direction with respect to the optical disc 11 while continuing to irradiate the laser light from the laser diode of the optical pickup 3. Proceed to step S102.
  • the servo signal processing unit 5 outputs, via the driver 6, a signal that drives the objective lens away from the optical pickup 3, for example, in the direction toward the optical disc 11 and close to the positional force optical disc 11.
  • the fixed range is a range in which the objective lens is driven while continuing to irradiate laser light from a laser diode sufficient to determine the amount of surface blurring of the optical disc 11 in step S108 described later. For example, the bottom dead center To top dead center.
  • step S102 the servo signal processing unit 5 observes the focus error signal output from the optical pickup 3 when the signal surface of the optical disc 11 crosses the focal point.
  • the observed focus error signal level as the intensity of the reflected light is output to the microcomputer 10.
  • the focus error signal level observed from the servo signal processing unit 5 and input to the microcomputer 10 and the observation time of the focus error signal observed from the first time on the basis of the focus error signal first observed are used. measure.
  • the observation time of the focus error signal and the level at that time are stored in RAM in the microcomputer 10. Further, the result of counting the total number of observed focus error signals as a result of moving the objective lens is also stored in the RAM in the microcomputer 10, and the process proceeds to step S103.
  • step S103 it is determined whether or not a plurality of focus error signals are observed within a second predetermined time set in advance and stored in the ROM of the microcomputer 10 as a result of moving the objective lens. To do. If a plurality of observations are made within the second predetermined time (in the case of YES), the process proceeds to step S107, and if not (in the case of NO), the process proceeds to step S104.
  • the focal point of one signal surface (focus error signal) and the focal point of the other signal surface four This is a time interval sufficient for observing a cascading error signal).
  • Fig. 5 (c) shows the case where there are two signal surfaces. In the case of two layers, there are two waveforms representing the signal plane that is blurred as shown in Fig. 5 (c). In Fig. 5 (c), the signal plane crosses the focal point in the first and second layers, and there are six locations. Will be misjudged. Therefore, the accurate amount of surface blur can be determined by counting the number of times one signal surface crosses the focal point.
  • the second predetermined time is, for example, twice the time required to move the objective lens by the distance between the two most distant layers among the signal surfaces stacked on the optical disk 11.
  • the distance between each layer is very small compared to the surface blur width of the optical disk. Such a judgment is effective for counting the number of times the signal surface of the optical disk crosses the focal point by moving the optical disk.
  • step S104 when the focus error signal level first observed is within a range of levels that can be taken in the case of a predetermined type of optical disc stored in the ROM of the microcomputer 10, for example, a DVD. Then, it is determined whether or not all the focus error signal levels observed after the second are within the range of levels that can be taken by the DVD that is a predetermined range stored in the ROM of the microcomputer 10. If all observed focus error signal levels are within the range of levels that can be taken by the DVD (in the case of YES), the process proceeds to step S105, and if a level outside the predetermined range exists (in the case of NO), the step is performed. Proceed to S106. That is, it is determined whether or not the focus error signal level is within a predetermined range.
  • the predetermined range means that when a focus error signal as the focal point is observed from multiple layers on an optical disc 11 in which multiple media (for example, BD and DVD) are stacked, the number of actual surface blurs is counted more than the actual range. Therefore, it refers to the range of levels that the media can take in order to count only the focus error signals from a particular media layer.
  • the position of the recording surface (depth from the optical disk surface) on the optical disc is determined for each type of media, different types of media are stacked. In some cases, the distance between layers may be increased depending on the combination of media.
  • the range that the focus error signal level can take varies depending on the type of the medium of the optical disk. Therefore, it is effective to use the focus error signal level in order to count only the focus error signal of a specific medium layer force on an optical disc in which different types of media are stacked.
  • step S105 the total number of observations of the focus error signal counted in step S102 is read from the RAM, and the process proceeds to step S108.
  • step S106 an optical disc on which different types of media are stacked (for example, BD and D
  • step S108 only the focus error signal within a predetermined range is counted.
  • step S107 it is determined that the same type of media such as DVDs is stacked, and a plurality of focus error signals observed within the second predetermined time are counted as one time. Then go to step S108. For example, if the second predetermined time is t in Fig. 5 (c), the time from the point j where the signal plane of the first layer crosses the focal point to the point where the signal plane of the second layer crosses the focal point is 5 Because it is within t as shown in (c); ⁇ is not counted. Similarly, other points where the signal plane of the second layer crosses the focal point in Fig. 5 (c) are not counted because they are within t from the point where the signal plane of the first layer crosses the focal point.
  • step S108 it is determined whether or not the counted number of focus error signals is equal to or greater than a predetermined value that is preset and stored in the ROM of the microcomputer 10. If YES, the process proceeds to step S110. If less than the predetermined value (NO), the process proceeds to step S109.
  • the predetermined value is a value with which the amount of surface blur can be determined.
  • step S109 the number of times the focus error signal has been observed is small, that is, the number of times that the signal surface of the optical disk has crossed the focal point is less than the predetermined value, so it is determined that the surface blur is small! / Then, the servo signal processing unit 5 is instructed to drive the object lens at a speed (high speed) that is faster than the speed at the predetermined worst condition.
  • step SI10 if the focus error signal is observed many times, that is, if the signal surface of the optical disc crosses the focal point is more than a predetermined value, The servo signal processing unit 5 is instructed to drive the objective lens at a slow V and speed (low speed) so that the focus can be pulled in even under the worst condition determined in advance.
  • the number of times of crossing the signal surface of the optical disk and the focal point is counted, and if the result is equal to or greater than a predetermined value set in advance, it is determined that the surface blur is large and the objective lens is moved at a low speed. Since the objective lens is driven at high speed because it is judged that the surface blur is small if it is less than the predetermined value, the drive speed of the objective lens can be changed according to the amount of surface blur. When the amount is small, the focus pull-in time is shortened.
  • the configuration is the same as that of the first embodiment. Instead of counting the number of times that the signal surface of the optical disk crosses the focal point in determining the magnitude of the amount of shake on the surface of the optical disk, The difference is that the time span is measured from the time the surface first crosses the focal point to the last time it crosses the focal point. Therefore, a part of the control program of the microcomputer 10 has been changed.
  • FIG. 6 shows a flow of operations for determining the driving speed of the objective lens in the present invention.
  • FIG. 7 shows the same distance h0 to the focal point and the amount of surface blur as in Figure 5.
  • Fig. 7 (a) shows the case where the optical disc surface shake is large! /.
  • Fig. 7 (a) when the objective lens is moved in a certain range up to h2 in the focus direction, the time when the signal surface of the optical disc first crosses the focal point The time when the tl force also crosses last There is a time span of T1 by t2.
  • Figure 7 (b) shows the case where the surface shake is small! /.
  • Time t3 force when the signal surface of the optical disc first crosses the focal point for the first time t3 force time T4 is the time width by t4 when it last crosses. That is, as shown in FIG. 7, when the objective lens is moved, the time width that the signal surface of the optical disc crosses the focal point is smaller when the surface blur is small than when the surface blur is large (T1> T2). Therefore, as in the first embodiment, the focus error signal is observed, It is possible to distinguish the magnitude of the surface shake by measuring the observation result force time width.
  • the servo signal processing unit is configured to drive the objective lens in a vertical direction with respect to the optical disc 11 while continuing to irradiate laser light from the laser diode of the optical pickup 3. Instruct 5 and go to Step S202.
  • the servo signal processing unit 5 outputs, via the driver 6, a signal that drives the objective lens away from the optical pickup 3, for example, away from the optical disk 11 and closer to the positional force optical disk 11.
  • the fixed range is a range in which the objective lens is driven while continuing to irradiate laser light from a laser diode sufficient to determine the amount of surface blur of the optical disc 11 in step S206, which will be described later. For example, the bottom dead center To top dead center.
  • step S202 the servo signal processing unit 5 observes the focus error signal output from the optical pickup 3 when the signal surface of the optical disc 11 crosses the focal point.
  • the observed focus error signal level as the intensity of the reflected light is output to the microcomputer 10.
  • the microphone computer 10 measures the observed focus error signal level and the time width at which the focus error signal is first observed and the force error signal is finally observed, and stores it in the RAM. Then, the process proceeds to step S203.
  • the focus error signal level first observed is a range of levels that can be taken in the case of a predetermined type of optical disc stored in the ROM of the microcomputer 10, for example, a DVD. If it is determined that all the focus error signal levels observed after the second are within the range of levels that can be taken by the DVD, which is a predetermined range stored in the ROM of the microcomputer 10. If all the observed focus error signal levels are within the range of levels that can be taken by the DVD (in the case of YES), the process proceeds to step S204. If a level outside the predetermined range exists (in the case of NO), the process proceeds to step S205. Proceed to That is, it is determined whether or not the focus error signal level is within a predetermined range.
  • the predetermined range is the same as in step S104, when the focus error signal as the in-focus point is observed from multiple layers on the optical disc 11 on which a plurality of media (for example, BD and DVD) are stacked. More than counted Therefore, in order to count only the focus error signal from a specific media layer, the range of levels that the media can take! Uh.
  • step S204,! / Using the time width measured in step S202 as it is, the process proceeds to step S206.
  • step S205 it is determined that the disc is an optical disc (eg, BD and DVD) on which different types of media are stacked, and the level is within a predetermined range compared to the focus error signal first observed. Remeasure the time width of the difference signal only, and go to Step S206. That is, only the focus error signal within a predetermined range is counted.
  • an optical disc eg, BD and DVD
  • step S206 it is determined whether or not the time width of the measured focus error signal is equal to or longer than a first predetermined time set in advance and stored in the ROM of the microcomputer 10. If it is longer than the predetermined time (in the case of YES), the process proceeds to step S208. If it is less than the predetermined time (in the case of NO), the process proceeds to step S207.
  • the first predetermined time is a time width in which the amount of surface shake can be distinguished.
  • step S207 the time width over which the focus error signal is observed is shorter than the first predetermined time, that is, the time width in which the signal surface of the optical disk crosses the focal point is short, so it is determined that the surface blur is small. Then, the servo signal processing unit 5 is instructed to drive the objective lens at a speed (high speed) faster than the speed at the predetermined worst condition.
  • step S208 the time width over which the focus error signal is observed is longer than the first predetermined time, that is, the time width in which the signal surface of the optical disk crosses the focal point is long, so it is determined that the surface blur is large. Then, the servo signal processing unit 5 is instructed to drive the objective lens at a slow speed (low speed) at which the focus can be pulled in even in the worst case condition.
  • the time width over which the signal surface of the optical disk crosses the focal point is measured, and if the result is equal to or longer than the first predetermined time set in advance, it is determined that the surface blur is large and the speed is low.
  • the driving speed of the objective lens is changed according to the amount of the surface blur. If the surface blur is small, the focus pull-in time is shortened.
  • step S301 the servo signal processing unit 5 is instructed to drive the objective lens in a vertical range with respect to the optical disc 11 while continuing to irradiate laser light from the laser diode of the optical pickup 3 (step S302). Proceed to The servo signal processing unit 5 outputs, via the driver 6, a signal that drives the objective lens away from the optical pickup 3, for example, away from the optical disk 11 and closer to the positional force optical disk 11.
  • the fixed range is a range in which the objective lens is driven while irradiating laser light from the optical pickup 3 sufficient to determine the amount of surface blur of the optical disk 11 in step S306 described later. Desirably, from point to top dead center.
  • step S302 as the observation means and the position acquisition means, the servo signal processing unit 5 converts the focus error signal output from the optical pickup 3 when the signal surface of the optical disk 11 crosses the focal point.
  • the observed focus error signal level is output to the microcomputer 10.
  • the focus error signal level is inputted from the servo signal processing unit 5, the area number as the observation position and the level as the intensity of the reflected light are combined and stored in the RAM.
  • the focus error is Area force where one signal was observed
  • step S303 proceed to step S303.
  • step S303 when the first observed focus error signal level is within a range of levels that can be taken in the case of a predetermined type of optical disk, such as a DVD, stored in advance in the ROM of the microcomputer Determines whether all the focus error signal levels observed after the second are within the range of levels that can be taken by the DVD, which is a predetermined range stored in the ROM of the microcomputer 10. If all of the observed focus error signal levels are within the range of levels that the DVD can take (YES), go to step S305. If there is a level outside the specified range (NO), go to step S304. move on. That is, it is determined whether or not the focus error signal level is within a predetermined range.
  • a predetermined type of optical disk such as a DVD
  • the predetermined range is the same as in steps S104 and S203, when the focus error signal as the focal point is observed from multiple layers on the optical disc 11 on which a plurality of media (for example, BD and DVD) are stacked. Because it counts more than the amount, the range of levels that the media can take to count only the focus error signals from a particular media layer! Uh.
  • step S304 the number of areas counted in step S302 is read from the RAM, and the process proceeds to step S306.
  • step S305 it is determined that the disc is an optical disc on which different types of media are stacked (for example, BD and DVD), and all levels and areas in which the RAM force is also observed are read out and observed first.
  • the number of areas in which a signal with a level difference within a predetermined range is observed compared with the focus error signal is counted, and the process proceeds to step S306. That is, only the focus error signal within a predetermined range is counted.
  • step S306 it is determined whether or not the counted number of areas is greater than or equal to a predetermined value (corresponding to the second predetermined time described above) preset and stored in the ROM of the microcomputer 10. If it is equal to or greater than the predetermined value (in the case of YES), the process proceeds to step S308. If it is less than the predetermined value (in the case of NO), the process proceeds to step S307.
  • a predetermined value corresponding to the second predetermined time described above
  • step S307 the area in which the focus error signal is observed is small, that is, the time width during which the signal surface of the optical disk crosses the focal point is short, so that the surface blur is small.
  • the servo signal processing unit 5 is instructed to drive the objective lens at a speed (high speed) higher than the speed under the worst condition set in advance, and the process proceeds to step S309.
  • step S308 it is determined that there are many areas where the focus error signal is observed, that is, the time of the optical disc signal surface crossing the focal point is long, so that the surface blur is large.
  • the servo signal processing unit 5 is instructed to drive the objective lens at a slow speed (low speed) at which the focus can be drawn, and the process proceeds to step S309.
  • step S309 the area number obtained by subtracting 1 from the smallest area number where the focus error signal was observed (the position where the focus error signal was first observed) is set as the objective lens drive lower limit value. Then go to step S310.
  • step S310 an area number obtained by adding 1 from the largest area number where the focus error signal was observed (the position where the focus error signal was observed last) is set as the objective lens drive upper limit value.
  • the servo signal processing unit 5 is instructed to set the drive range from the set objective lens drive lower limit value to the objective lens drive upper limit value.
  • the driving range is from 4 to 7. That is, the drive range of the objective lens in the focus pull-in operation is changed according to the area where the focus error signal was first observed and the area where the focus error signal was last observed.
  • the objective lens is moved once, the moving time is divided into a plurality of areas, the detection of the area where the signal surface of the optical disc crosses the focal point and the number of areas are counted, and the counted area If the number is equal to or greater than the preset value, the surface blur is judged to be large! /, And the objective lens is driven at a low speed, and if it is less than the predetermined value, the surface blur is judged to be small! Drive.
  • the crossed area force drive range can be detected and set, so the drive speed and drive range of the objective lens can be changed according to the amount of surface shake. It is even shorter than just doing it.
  • the time axis is divided into a plurality of areas in the present embodiment
  • the focus direction may be divided into a plurality of areas.
  • the amount of surface blur was determined by counting the number of areas divided by the time axis.
  • the method of the second embodiment may be applied as it is.
  • the method of dividing the area into the areas to determine the driving range is not changed, and the method of counting the number of crossings in the first embodiment may be combined with the determination of the driving speed.
  • the driving range is a range with a margin for each of the upper and lower limits than the range in which the focus error signal is observed.
  • the driving range is not limited to this, and the range in which the focus error signal is observed is driven. It may be a range or allow more than 2 areas.
  • the drive range of only either the upper limit or the lower limit may be limited.
  • the focus error signal is used as the signal observed when the focal point crosses the signal surface of the optical disc.
  • the return light sum signal and the RF signal are used. Any signal that can be generated by the optical pickup 3 and observed by the servo signal processor 5 when the focal point crosses the signal surface of the optical disk, etc. can be observed. It can be used to judge the amount of quantity.
  • the driving speed is set to two stages of low speed and high speed.
  • the driving speed may be three stages or more instead of two stages. If there are three or more stages, set a predetermined value or first predetermined time in the ROM of the microcomputer 10 according to the number of stages.
  • the signal first detected in determining the level difference of the focus error signal is used as a reference.
  • the present invention is not limited to this.
  • the signal having the highest or lowest signal level is used as a reference.
  • the signal power may be counted or measured within a predetermined level difference.
  • the DVD, CD, and BD can be played back.
  • the present invention is not limited to this, and can be applied to other types of optical disks such as HD-DVD.
  • the following objective lens driving device and driving method can be obtained.
  • the focus pull-in time can be shortened.
  • the focus pull-in is performed at a speed according to the amount of the surface blur. If there is little surface blur, the focus pull-in time can be shortened.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

[PROBLEMS] To modify drive speed of a objective lens according to an optical disc wobbling amount in an objective lens drive device provided in an optical disc device and reduce a focus pull-in time when wobbling is small. [MEANS FOR SOLVING PROBLEMS] An objective lens in an optical pickup (3) is moved within a certain range from a servo signal processing unit (5). A focus error signal generated when the objective lens crosses a focal point on an optical disc (11) is observed by the servo signal processing unit (5). According to the observation result, a microcomputer (10) modifies the speed of movement of the objective lens for performing focus pull-in.

Description

明 細 書  Specification
対物レンズ駆動装置および駆動方法  Objective lens driving apparatus and driving method
技術分野  Technical field
[0001] 本発明は、光ディスク再生装置などで使用される対物レンズを駆動する駆動装置 および駆動方法に関する。  [0001] The present invention relates to a driving apparatus and a driving method for driving an objective lens used in an optical disk reproducing apparatus or the like.
背景技術  Background art
[0002] 光ディスク再生装置などでは光ディスクの再生前に対物レンズの焦点を光ディスク の信号面に合わせる動作 (フォーカス引き込み)が必要であり、再生装置の使用環境 の変化や、再生する光ディスクの反りや信号面の歪みなどにより発生する面ぶれによ る光ディスクと対物レンズとの相対速度の変化を勘案して、最悪条件でもフォーカス 弓 Iき込みが行えるように対物レンズの駆動速度を一定の速度に固定して 、た。  [0002] Optical disc playback devices and the like require an operation to focus the objective lens on the signal surface of the optical disc (focus pull-in) before playback of the optical disc. Changes in the operating environment of the playback device, warping of optical discs and signals In consideration of changes in the relative speed between the optical disc and the objective lens due to surface deflection caused by surface distortion, etc., the drive speed of the objective lens is fixed at a constant speed so that the focus bow I can be inserted even under the worst conditions. And then.
[0003] しかし、この場合光ディスクと対物レンズとの相対速度の変化が少な 、、すなわち面 ぶれが少な!/、光ディスクでも最悪条件に合わせた速度で対物レンズを駆動させて!/、 るため、フォーカスの引き込みに不要な時間がかかっていた。これを解決するために フォーカスエラー信号の検出時間幅力 フォーカス引き込み時の対物レンズの駆動 速度を変更する特許文献 1記載の方法が提案されて ヽる。  [0003] However, in this case, the change in the relative speed between the optical disk and the objective lens is small, that is, the surface blurring is small! / In the optical disk, the objective lens is driven at a speed that matches the worst condition! / It took unnecessary time to pull the focus. In order to solve this, there is proposed a method described in Patent Document 1 for changing the driving speed of the objective lens at the time of focus pull-in.
特許文献 1 :特開 2004— 14091号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-14091
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 特許文献 1記載の方法では、再生する光ディスクに面ぶれがあるときに面ぶれのど の部分でフォーカスエラー信号を測定する力 すなわち面ぶれによって光ディスクの 信号面と対物レンズが近づくときに測定するか離れるときに測定するかによって相対 速度が変わってしまうため、本来駆動すべき速度とは異なる速度で駆動してしまうこと があるという問題があり、そのためにフォーカスの引き込みに失敗すると再度フォー力 ス引き込み動作を行うので結果的にフォーカス引き込みに不要な時間が力かってし まつことかあつた。 [0004] In the method described in Patent Document 1, the force to measure the focus error signal at any part of the surface blur when the optical disk to be played back is measured, that is, when the signal surface of the optical disk approaches the objective lens due to the surface blur. Because the relative speed changes depending on whether the measurement is performed when moving or leaving, there is a problem that the driving speed may be different from the speed that should be driven. As a result, the time required for focus pull-in is increased.
[0005] そこで、本発明は、例えば再生する光ディスクに面ぶれがあるときでも面ぶれの量 に応じた対物レンズの駆動速度などを設定することで面ぶれが少ないときはフォー力 ス引き込み時間を短縮できる対物レンズ駆動装置および駆動方法を提供することを 課題とする。 [0005] Therefore, according to the present invention, for example, even when an optical disc to be reproduced has surface blur, the amount of surface blur is It is an object of the present invention to provide an objective lens driving device and a driving method capable of shortening the force pull-in time when there is little blurring by setting the driving speed of the objective lens according to the above.
課題を解決するための手段  Means for solving the problem
[0006] 上記課題を解決するために、請求項 1に記載の発明は、光源と、前記光源からの光 を光ディスクに焦点を合わせて照射するための対物レンズと、前記対物レンズを前記 光ディスクに対して略鉛直方向に移動させる駆動手段とを備える対物レンズ駆動装 置にお 、て、前記駆動手段に前記対物レンズを一定範囲移動させて前記光ディスク 上の合焦点を観測手段に観測させ、観測した結果に応じて前記駆動手段がフォー力 ス引き込みを行うために前記対物レンズを移動させる速度を変更させる制御手段と、 を備えたことを特徴として!/ヽる。  [0006] In order to solve the above problems, the invention according to claim 1 is directed to a light source, an objective lens for irradiating light from the light source with focusing on the optical disc, and the objective lens to the optical disc. On the other hand, in an objective lens driving device comprising a driving means for moving in a substantially vertical direction, the observation means is caused to observe the focal point on the optical disc by moving the objective lens to a certain range by the driving means. And a control means for changing the speed at which the driving means moves the objective lens in order to perform the force pull-in according to the result! / Speak.
[0007] 請求項 9記載の発明は、光源力 の光を光ディスクに焦点を合わせて照射するため の対物レンズを前記光ディスクに対して略鉛直方向に移動させる対物レンズ駆動方 法にぉ 、て、前記対物レンズを一定量移動させて前記光ディスク上の合焦点を観測 し、観測した結果に応じてフォーカス引き込みを行うために前記対物レンズを駆動す る速度を変更することを特徴として 、る。  [0007] The invention according to claim 9 is directed to an objective lens driving method for moving an objective lens for irradiating light of light source power while focusing on the optical disc in a substantially vertical direction with respect to the optical disc. The objective lens is moved by a certain amount, the focal point on the optical disc is observed, and the speed at which the objective lens is driven is changed according to the observation result in order to perform focus pull-in.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明の第 1の実施例、第 2の実施例および第 3の実施例に力かる光ディスク プレーヤのブロック図である。  [0008] FIG. 1 is a block diagram of an optical disc player according to a first embodiment, a second embodiment, and a third embodiment of the present invention.
[図 2]図 1に示された光ディスクプレーヤにおける光ピックアップの受光器の説明図で ある。  2 is an explanatory diagram of a light receiver of the optical pickup in the optical disc player shown in FIG.
[図 3]フォーカスエラー信号の波形の説明図である。  FIG. 3 is an explanatory diagram of a waveform of a focus error signal.
[図 4]図 1に示された光ディスクプレーヤの第 1の実施例における対物レンズの駆動 速度決定動作を示したフローチャートである。  4 is a flowchart showing an objective lens driving speed determining operation in the first embodiment of the optical disc player shown in FIG. 1. FIG.
[図 5] (a) (b) (c)ともに対物レンズを駆動したときの対物レンズと対物レンズから照射 される光の合焦点と光ディスクの信号面との関係の説明図である。  [FIG. 5] (a), (b) and (c) are explanatory diagrams of the relationship between the objective lens when the objective lens is driven, the focal point of the light emitted from the objective lens, and the signal surface of the optical disc.
[図 6]図 1に示された光ディスクプレーヤの第 2の実施例における対物レンズの駆動 速度決定動作を示したフローチャートである。 [図 7] (a) (b)ともに第 2の実施例における対物レンズの駆動速度決定方法の説明図 である。 6 is a flowchart showing an objective lens drive speed determination operation in the second embodiment of the optical disc player shown in FIG. 1. FIG. FIGS. 7A and 7B are explanatory diagrams of a method for determining the driving speed of the objective lens in the second embodiment.
[図 8]図 1に示された光ディスクプレーヤの第 3の実施例における対物レンズの駆動 速度決定動作を示したフローチャートである。  8 is a flowchart showing an objective lens driving speed determination operation in the third embodiment of the optical disk player shown in FIG. 1. FIG.
[図 9]第 3の実施例における対物レンズの駆動速度および駆動範囲決定方法の説明 図である。  FIG. 9 is an explanatory diagram of a method for determining a driving speed and a driving range of an objective lens according to a third embodiment.
符号の説明  Explanation of symbols
[0009] 1 光ディスクプレーヤ(対物レンズ駆動装置)  [0009] 1 Optical disc player (objective lens driving device)
3 光ピックアップ (光源、対物レンズ)  3 Optical pickup (light source, objective lens)
5 サーボ信号処理部 (駆動手段、観測手段)  5 Servo signal processor (drive means, observation means)
10 マイクロコンピュータ (制御手段、位置取得手段)  10 Microcomputer (Control means, position acquisition means)
11 光ディスク  11 Optical disc
S102 フォーカスエラー信号の観測と観測数計数および時間間隔測定 (観測手 段)  S102 Focus error signal observation, observation count and time interval measurement (observation method)
S103 時間間隔判定  S103 Time interval judgment
S104 レベル差判定  S104 Level difference judgment
S108 面ぶれ量判定  S108 Jitter amount judgment
S202 フォーカスエラー信号の観測と時間幅測定 (観測手段)  S202 Focus error signal observation and time width measurement (observation means)
S203 レベル差判定  S203 Level difference judgment
S206 面ぶれ量判定  S206 Surface shake amount judgment
S302 フォーカスエラー信号の観測と観測位置測定 (観測手段、位置検出手段) S303 レベル差判定  S302 Focus error signal observation and observation position measurement (observation means, position detection means) S303 Level difference judgment
S306 面ぶれ量判定  S306 Surface runout judgment
S309 駆動範囲下限設定  S309 Drive range lower limit setting
S310 駆動範囲上限設定  S310 Drive range upper limit setting
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明の一実施形態に力かる対物レンズ駆動装置を説明する。本発明の一 実施形態に力かる対物レンズ駆動装置は、駆動手段に対物レンズを一定範囲移動 させ、そして観測手段に光ディスク上の合焦点を観測させて、その観測結果に応じて フォーカス引き込みを行うために対物レンズを移動させる速度を変更させる制御手段 を備えている。このようにすることにより、光ディスク上の合焦点を観測することで光デ イスクの面ぶれの状態が把握できるため、面ぶれ量に合わせた速度でフォーカス引 き込みを行うことができ、面ぶれが少ないときはフォーカス引き込み時間を短縮するこ とがでさる。 [0010] Hereinafter, an objective lens driving device that works according to an embodiment of the present invention will be described. An objective lens driving device according to an embodiment of the present invention moves an objective lens to a driving means within a certain range. And a control means for causing the observation means to observe the focal point on the optical disc and changing the moving speed of the objective lens in order to perform the focus pull-in according to the observation result. By doing this, it is possible to grasp the state of optical disc surface blurring by observing the focal point on the optical disc, so that focus pull-in can be performed at a speed that matches the amount of surface blurring. If there is little, the focus pull-in time can be shortened.
[0011] また、制御手段は、観測手段が観測した結果、光ディスク上の合焦点を横切る回数 が予め定める所定の値よりも少ないときは対物レンズを駆動する速度を早くし、所定 の値よりも多いときは対物レンズを駆動する速度を遅くしてもよい。すなわち、面ぶれ が大きいときは合焦点を横切る回数が多ぐ面ぶれが小さいときは合焦点を横切る回 数が少な 、ので、面ぶれ量によって対物レンズの駆動速度を変更することができる。  [0011] Further, as a result of observation by the observation means, the control means increases the speed at which the objective lens is driven when the number of times of crossing the focal point on the optical disk is less than a predetermined value. When there are many, the speed which drives an objective lens may be made slow. That is, when the surface blur is large, the number of times of crossing the focal point is large. When the surface blur is small, the number of times of crossing the focal point is small. Therefore, the driving speed of the objective lens can be changed depending on the amount of surface blur.
[0012] また、制御手段は、観測手段が観測した結果、光ディスク上の合焦点を最初に横 切って力 最後に横切るまでの時間幅が予め定める第 1の所定時間よりも短いときは 前記対物レンズを駆動する速度を早くし、第 1の所定時間よりも長いときは対物レンズ を駆動する速度を遅くしてもよい。すなわち、面ぶれが大きいときは合焦点を最初に 横切って力 最後に横切るまでの時間幅が長ぐ面ぶれが小さいときは合焦点を最 初に横切って力 最後に横切るまでの時間幅が短いので、面ぶれ量によって対物レ ンズの駆動速度を変更することができる。  [0012] In addition, when the observation means observes that the time width until the force finally crosses the focal point on the optical disc is shorter than a predetermined first predetermined time, the objective The speed for driving the lens may be increased, and the speed for driving the objective lens may be decreased when longer than the first predetermined time. In other words, when the surface blur is large, the time width until the force crosses the focal point first is long.When the surface blur is small, the time width until the force crosses the focal point first is short. Therefore, the driving speed of the objective lens can be changed depending on the amount of surface blur.
[0013] また、制御手段は、観測手段が前記光ディスク上の合焦点を観測したときの対物レ ンズの位置を位置取得手段に取得させ、対物レンズを一定範囲移動させたときに最 初に合焦点が観測された位置と、最後に合焦点が観測された位置に応じて対物レン ズのフォーカス引き込みを行う際の駆動範囲を変更させてもょ 、。このようにすること により、対物レンズを駆動する範囲を限定することができるのでフォーカス引き込み時 間を短縮することができる。  [0013] Further, the control means causes the position acquisition means to acquire the position of the objective lens when the observation means observes the focal point on the optical disc, and first adjusts the objective lens when the objective lens is moved within a certain range. Depending on the position where the focal point was observed and the position where the focal point was last observed, the driving range for focusing the objective lens may be changed. By doing so, the range in which the objective lens is driven can be limited, so that the focus pull-in time can be shortened.
[0014] また、制御手段は、対物レンズを移動させる一定範囲を複数の範囲に区切り、複数 の範囲内のうち合焦点が存在する範囲に応じてフォーカス引き込み時の対物レンズ の駆動範囲を移動させるようにしてもよい。このようにすることにより、フォーカス引き 込み時は合焦点が存在する範囲を限定できるためフォーカス引き込み時間を短縮す ることがでさる。 [0014] Further, the control unit divides the fixed range in which the objective lens is moved into a plurality of ranges, and moves the driving range of the objective lens at the time of focus pull-in according to the range where the focal point exists in the plurality of ranges. You may do it. By doing this, the focus pull-in time can be shortened because the range where the in-focus point exists can be limited during focus pull-in. It can be done.
[0015] また、制御手段は、観測手段が観測した光ディスク上の合焦点が予め定める第 2の 所定時間以内に複数観測されたときは、第 2の所定時間以内に観測された複数の前 記合焦点は 1つとして計数してもよい。このよう〖こすること〖こより、複数層積層された光 ディスクにおいて正確に面ぶれ量を測ることができる。  [0015] In addition, when a plurality of focal points on the optical disc observed by the observation unit are observed within a predetermined second predetermined time, the control unit performs a plurality of the above observations observed within the second predetermined time. The focal point may be counted as one. As a result of such rubbing, it is possible to accurately measure the amount of surface blur in an optical disk in which a plurality of layers are laminated.
[0016] また、制御手段は、観測手段が観測した光ディスク上の複数の合焦点のうち光ディ スクカもの反射光の強度が所定の範囲内の合焦点のみを対象としてもよい。このよう にすることにより、複数のメディア(BDと DVDなど)が積層された光ディスクにおいて も正確に面ぶれ量を測ることができる。  [0016] Further, the control means may target only the in-focus in which the intensity of the reflected light of the optical disc is within a predetermined range among the plurality of in-focus on the optical disk observed by the observation means. In this way, the amount of surface blur can be accurately measured even on an optical disc in which a plurality of media (such as BD and DVD) are stacked.
[0017] また、フォーカスエラー信号と、 RF信号と、戻り光総和信号のうちいずれか 1つ以上 が観測した位置を前記観測手段が合焦点としてもよい。これらの信号は、光ディスク の反射光が所定の量以上のときに生成される信号であるため、合焦点の観測が容易 となる。  [0017] In addition, the observation unit may set a position where any one or more of the focus error signal, the RF signal, and the return light total signal are observed as a focal point. These signals are signals that are generated when the amount of reflected light from the optical disc exceeds a predetermined amount, so that it is easy to observe the focal point.
[0018] また、本発明の一実施形態に力かる対物レンズ駆動方法は、対物レンズを一定量 移動させて光ディスク上の合焦点を観測し、観測した結果に応じてフォーカス引き込 みを行うために対物レンズを駆動する速度を変更する。このようにすることにより、光 ディスク上の合焦点を観測することで光ディスクの面ぶれの状態が把握できるため、 面ぶれ量に合わせた速度でフォーカス引き込みを行うことができ、面ぶれが少ないと きはフォーカス引き込み時間を短縮することができる。  [0018] Further, in the objective lens driving method according to one embodiment of the present invention, the focal point on the optical disc is observed by moving the objective lens by a certain amount, and the focus is pulled in according to the observation result. The speed at which the objective lens is driven is changed. In this way, the state of optical disc surface blur can be ascertained by observing the focal point on the optical disc, so that focus pull-in can be carried out at a speed that matches the amount of surface blur. In this case, the focus pull-in time can be shortened.
[0019] また、光ディスク上の合焦点を観測したときの対物レンズの位置を取得し、対物レン ズを一定範囲移動させたときに最初に合焦点が観測された位置と、最後に合焦点が 観測された位置に応じて対物レンズのフォーカス引き込みを行う際の駆動範囲を変 更してもよい。このようにすることにより、対物レンズを駆動する範囲を限定することが できるのでフォーカス引き込み時間を短縮することができる。  [0019] Also, the position of the objective lens when the focal point on the optical disk is observed is acquired, and the focal point is first observed when the objective lens is moved within a certain range, and finally the focal point is determined. The driving range for focusing the objective lens may be changed according to the observed position. By doing so, the range in which the objective lens is driven can be limited, so that the focus pull-in time can be shortened.
実施例 1  Example 1
[0020] 本発明の第 1の実施例に力かる対物レンズ駆動装置としての光ディスクプレーヤ 1 を図 1ないし図 5を参照して説明する。光ディスクプレーヤ 1は、 DVD (Digital Versati le Disc)、 CD (Compact Disc)、 BD (Blu- ray Disc)等の光ディスクや、 DVDが複数 積層された光ディスクや DVD層と BD層が積層された光ディスク等の多層ディスクが 再生可能な装置であり、図 1に示すようにディスクモータ 2と、光ピックアップ 3と、 RF アンプ 4と、サーボ信号処理部 5と、ドライバ 6と、音声 Z映像信号処理部 7と、 DAコ ンバータ 8と、音声信号 Z映像信号出力端子 9と、マイクロコンピュータ 10とを備えて いる。 [0020] An optical disc player 1 as an objective lens driving device that is effective in the first embodiment of the present invention will be described with reference to Figs. The optical disc player 1 has multiple optical discs such as a DVD (Digital Versatile Disc), CD (Compact Disc), and BD (Blu-ray Disc), and multiple DVDs. It is a device that can reproduce multi-layer discs such as laminated optical discs and optical discs with DVD layers and BD layers. As shown in Fig. 1, disc motor 2, optical pickup 3, RF amplifier 4, servo signal A processing unit 5, a driver 6, an audio Z video signal processing unit 7, a DA converter 8, an audio signal Z video signal output terminal 9, and a microcomputer 10 are provided.
[0021] ディスクモータ 2は、光ディスクプレーヤ 1にセットされた光ディスク 11を回転させる ためのモータであり、スピンドルモータなどで構成されて 、る。  [0021] The disc motor 2 is a motor for rotating the optical disc 11 set in the optical disc player 1, and includes a spindle motor or the like.
[0022] 光ピックアップ 3は、光ディスク 11に照射する光を発生させる図示しない光源として のレーザダイオードや、光ディスク 11上にレーザダイオードからのレーザ光を照射す るための対物レンズ、サーボ信号処理部 5からの指示によりフォーカスやトラッキング を合わせるために対物レンズを駆動するァクチユエータおよび光ディスク 11から反射 された反射光を受ける受光器 30とを備え、受光器 30の出力から合焦点としてのフォ 一カスエラー信号を生成し出力する。  The optical pickup 3 includes a laser diode (not shown) that generates light to be irradiated on the optical disc 11, an objective lens for irradiating the optical disc 11 with laser light from the laser diode, and a servo signal processing unit 5 And a receiver 30 that receives the reflected light reflected from the optical disk 11, and a focus error signal as a focal point is output from the output of the receiver 30. Generate and output.
[0023] 受光器 30は図 2に示すように、 4分割受光器 31から構成される。 4分割受光器 31 は受光面 31a、 31b、 31c、 31dから構成される。  As shown in FIG. 2, the light receiver 30 includes a four-divided light receiver 31. The quadrant light receiver 31 includes light receiving surfaces 31a, 31b, 31c and 31d.
[0024] フォーカスエラー信号は 4分割受光器 31において一方の対角位置にある受光面 3 laおよび 31cの出力を加算したものから、他方の対角位置にある受光面 31bおよび 31dの出力を加算したものを減算して生成し(すなわち(31a+ 31c) - (31b + 31d) )、図 3に示す波形となり、図 3における Vfeが合焦点における反射光の強度としての フォーカスエラー信号レベルとなる。  [0024] The focus error signal is obtained by adding the outputs of the light receiving surfaces 31b and 31d at the other diagonal position from the sum of the outputs of the light receiving surfaces 3la and 31c at one of the diagonal positions in the quadrant light receiver 31. 3 is subtracted (ie, (31a + 31c)-(31b + 31d)) and the waveform shown in FIG. 3 is obtained, and Vfe in FIG. 3 is the focus error signal level as the intensity of reflected light at the focal point.
[0025] RFアンプ 4は、光ピックアップ 3から出力される信号を所定の値に増幅し、サーボ信 号処理部 5へ出力する。  The RF amplifier 4 amplifies the signal output from the optical pickup 3 to a predetermined value and outputs it to the servo signal processing unit 5.
[0026] 駆動手段、観測手段としてのサーボ信号処理部 5は、光ディスク 11からの反射光か ら得られ RFアンプ 4力 入力される信号であるフォーカスエラー信号の有無およびレ ベルの観測や、光ピックアップ 3の対物レンズを駆動させてフォーカスおよびトラツキ ングの制御などを行 、、光ディスク 11に記録された情報を正確に読めるようにする。 さらに、光ディスク 11に記録された音楽や映像などの情報を含む信号をアナログ Z デジタル変換して音声 Z映像信号処理部 7へ出力する。 [0027] ドライバ 6は、サーボ信号処理部 5から入力された信号を増幅し、ディスクモータ 2お よび光ピックアップ 3へ出力する。 [0026] Servo signal processing unit 5 as drive means and observation means is used to observe the presence and level of a focus error signal, which is a signal input from the reflected light from optical disk 11 and input to RF amplifier 4 power, The objective lens of the pickup 3 is driven to control focus and tracking so that the information recorded on the optical disk 11 can be read accurately. Further, a signal including information such as music and video recorded on the optical disc 11 is converted to analog Z digital and output to the audio Z video signal processing unit 7. The driver 6 amplifies the signal input from the servo signal processing unit 5 and outputs the amplified signal to the disk motor 2 and the optical pickup 3.
[0028] 音声 Z映像信号処理部 7は、サーボ信号処理部 5から入力された信号を音声また は映像信号に復調しエラー訂正などを行った後 DAコンバータ 8へ出力する。  [0028] The audio Z video signal processing unit 7 demodulates the signal input from the servo signal processing unit 5 into an audio or video signal, performs error correction, and outputs the signal to the DA converter 8.
[0029] DAコンバータ 8は、音声 Z映像信号処理部 7から入力されたデジタル信号をアナ ログ信号に変換し音声出力端子 9aおよび映像出力端子 9bから出力する。  The DA converter 8 converts the digital signal input from the audio Z video signal processing unit 7 into an analog signal and outputs the analog signal from the audio output terminal 9a and the video output terminal 9b.
[0030] 制御手段、位置取得手段としてのマイクロコンピュータ 10は、 CPU (Central Proces sing Unit)と、 RAM (Random Access Memory)と、 ROM (Read Only Memory)を内蔵 し、光ディスク 11の挿入や排出、記録 Z再生や停止などの各操作における光デイス クプレーヤ 1全体の制御およびサーボ信号処理部 5で観測されたフォーカスエラー信 号より対物レンズの駆動速度や駆動範囲の決定などを行う。  [0030] A microcomputer 10 serving as a control means and a position acquisition means has a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory), and the optical disk 11 is inserted and ejected. Controls the entire optical disc player 1 in each operation such as recording Z playback and stop, and determines the objective lens drive speed and drive range from the focus error signal observed by the servo signal processing unit 5.
[0031] 次に、図 1に示すような構成力 なる光ディスクプレーヤ 1において、対物レンズの 駆動速度を決定する動作を図 4に示すフローチャートを参照して説明する。図 4に示 したフローチャートは、マイクロコンピュータ 10の ROMに記憶されている制御プログ ラムをマイクロコンピュータ 10の CPUが実行することで実現される。  Next, the operation for determining the drive speed of the objective lens in the optical disc player 1 having the construction force shown in FIG. 1 will be described with reference to the flowchart shown in FIG. The flowchart shown in FIG. 4 is realized by the CPU of the microcomputer 10 executing the control program stored in the ROM of the microcomputer 10.
[0032] 対物レンズを、例えば光ディスクに遠い位置力も光ディスクに近づける方向に移動 したときの対物レンズと対物レンズから照射される光の合焦点と光ディスクの信号面と の関係を図 5を参照して説明する。図 5 (a)は光ディスクの面ぶれ、すなわち光デイス クを回転させたときの信号面のフォーカス方向の変動が大き 、場合である。図 5 (a) において、対物レンズの合焦点は対物レンズカゝら距離 h0だけ離れており、対物レンズ が移動すれば、合焦点も距離 h0を保ったまま移動する。図 5のようにフォーカス方向 に hiから h2まで一定範囲対物レンズを移動させたとき、光ディスクの信号面が合焦点 を横切るところがある(図 5 (a)の a〜i)。面ぶれが大き 、ときは光ディスクの信号面が 合焦点を横切る回数が多くなる。図 5 (b)は面ぶれが小さいときである。面ぶれが小さ いときは対物レンズを面ぶれが大きいときと同様に移動させても光ディスクの信号面 が合焦点を横切る回数は面ぶれが大きいときよりも少なくなる。  [0032] Referring to FIG. 5, the relationship between the objective lens, the focal point of the light emitted from the objective lens, and the signal surface of the optical disc when the objective lens is moved in a direction in which the positional force far from the optical disc is brought closer to the optical disc. explain. Fig. 5 (a) shows the case where the optical disc surface is shaken, that is, when the optical disc rotates, the signal plane has a large fluctuation in the focus direction. In Fig. 5 (a), the focal point of the objective lens is separated from the objective lens by a distance h0. If the objective lens moves, the focal point moves while maintaining the distance h0. As shown in Fig. 5, when the objective lens is moved from hi to h2 in the focus direction, the signal surface of the optical disc crosses the focal point (a to i in Fig. 5 (a)). When the surface blur is large, the number of times the signal surface of the optical disk crosses the focal point increases. Figure 5 (b) shows the case where the surface blur is small. When the surface blur is small, even if the objective lens is moved in the same way as when the surface blur is large, the number of times the signal surface of the optical disk crosses the focal point is smaller than when the surface blur is large.
[0033] 光ディスクの信号面が合焦点を横切ると、横切ったときの光ディスクからの反射光よ りフォーカスエラー信号が生成されるため、フォーカスエラー信号を観測して出現回 数を計数すれば、合焦点を横切った回数を計数することになり、その回数によって面 ぶれの大小を見分けることができる。ここまでに説明した内容の本実施例における詳 細な動作を図 4のフローチャートに沿って以下に説明する。 [0033] When the signal surface of the optical disc crosses the focal point, a focus error signal is generated from the reflected light from the optical disc when it crosses. If the number is counted, the number of times of crossing the focal point is counted, and the size of the surface blur can be distinguished by the number of times. The detailed operation of the present embodiment having the above-described contents will be described below with reference to the flowchart of FIG.
[0034] まず、ステップ S 101において、光ピックアップ 3のレーザダイオードからレーザ光を 照射し続けながら対物レンズを光ディスク 11に対して鉛直方向に一定範囲駆動する ようにサーボ信号処理部 5へ指示し、ステップ S102へ進む。サーボ信号処理部 5は 光ピックアップ 3に対して対物レンズを例えば光ディスク 11に遠 、位置力 光ディスク 11に近づける方向に駆動するような信号をドライバ 6経由で出力する。なお、一定範 囲とは後述するステップ S108において、光ディスク 11の面ぶれ量を判定するのに充 分なレーザダイオードからレーザ光を照射し続けながら対物レンズを駆動する範囲で あり、例えば下死点から上死点までとするのが望ましい。  First, in step S 101, the servo signal processing unit 5 is instructed to drive the objective lens in the vertical direction with respect to the optical disc 11 while continuing to irradiate the laser light from the laser diode of the optical pickup 3. Proceed to step S102. The servo signal processing unit 5 outputs, via the driver 6, a signal that drives the objective lens away from the optical pickup 3, for example, in the direction toward the optical disc 11 and close to the positional force optical disc 11. The fixed range is a range in which the objective lens is driven while continuing to irradiate laser light from a laser diode sufficient to determine the amount of surface blurring of the optical disc 11 in step S108 described later. For example, the bottom dead center To top dead center.
[0035] 次に、観測手段としてのステップ S102において、光ディスク 11の信号面が合焦点 を横切ったときに光ピックアップ 3から出力されるフォーカスエラー信号をサーボ信号 処理部 5で観測する。フォーカスエラー信号が観測されたら、反射光の強度としての 観測されたフォーカスエラー信号レベルをマイクロコンピュータ 10へ出力する。  Next, in step S102 as observation means, the servo signal processing unit 5 observes the focus error signal output from the optical pickup 3 when the signal surface of the optical disc 11 crosses the focal point. When the focus error signal is observed, the observed focus error signal level as the intensity of the reflected light is output to the microcomputer 10.
[0036] マイクロコンピュータ 10ではサーボ信号処理部 5で観測されマイクロコンピュータ 10 に入力されたフォーカスエラー信号レベルおよび最初に観測されたフォーカスエラー 信号を基準として以降に観測されるフォーカスエラー信号の観測時間を計測する。フ オーカスエラー信号の観測時間とそのときのレベルをマイクロコンピュータ 10内の RA Mに保存する。さらに対物レンズを移動させた結果、フォーカスエラー信号の観測さ れた総数を計数した結果もマイクロコンピュータ 10内の RAMに保存しステップ S 103 へ進む。  [0036] In the microcomputer 10, the focus error signal level observed from the servo signal processing unit 5 and input to the microcomputer 10 and the observation time of the focus error signal observed from the first time on the basis of the focus error signal first observed are used. measure. The observation time of the focus error signal and the level at that time are stored in RAM in the microcomputer 10. Further, the result of counting the total number of observed focus error signals as a result of moving the objective lens is also stored in the RAM in the microcomputer 10, and the process proceeds to step S103.
[0037] 次に、ステップ S103において、対物レンズを移動させた結果、予め設定しマイクロ コンピュータ 10の ROMに記憶してある第 2の所定時間以内にフォーカスエラー信号 が複数観測されているか否力判断する。第 2の所定時間以内に複数観測されている 場合 (YESの場合)はステップ S107に進み、無い場合 (NOの場合)はステップ S10 4に進む。第 2の所定時間とは同じメディア(例えば DVD)の信号面が複数あったとき に一方の信号面の合焦点(フォーカスエラー信号)と他方の信号面の合焦点(フォー カスエラー信号)が観測されるのに充分な時間間隔である。複数の信号面の合焦点 をそれぞれ 1回と計数すると実際の面ぶれ量よりも多く計数されてしまうため、この第 2の所定時間以内に観測されたフォーカスエラー信号は 1回として計数する。ここで 一例として図 5 (c)に信号面が 2層ある場合を示す。 2層の場合は図 5 (c)のように面 ぶれをしている信号面を表す波形が 2つ現れる。この図 5 (c)において、信号面が合 焦点を横切るところは 1層目、 2層目合わせて 6ケ所あり、面ぶれ大小の判定値の設 定によっては面ぶれが小さいにもかかわらず大きいと誤判定されてしまう。したがって 、片方の信号面が合焦点を横切る回数を計数することで正確な面ぶれ量の判定が 行える。第 2の所定時間は、例えば光ディスク 11に複数積層されている信号面のうち 、最も離れて ヽる 2つの層間の距離分だけ対物レンズを移動させるのに必要な時間 の 2倍などである。一般に、同種のメディアが光ディスクに複数積層されている際には 、各層間の距離は光ディスクの面ぶれ幅に比べて微小なため、同種のメディアが複 数積層されている光ディスクに対して対物レンズを移動させて光ディスクの信号面が 合焦点を横切る回数を計数するには、このような判断が有効である。 [0037] Next, in step S103, it is determined whether or not a plurality of focus error signals are observed within a second predetermined time set in advance and stored in the ROM of the microcomputer 10 as a result of moving the objective lens. To do. If a plurality of observations are made within the second predetermined time (in the case of YES), the process proceeds to step S107, and if not (in the case of NO), the process proceeds to step S104. When there are multiple signal surfaces of the same media (for example, DVD) with the second predetermined time, the focal point of one signal surface (focus error signal) and the focal point of the other signal surface (four This is a time interval sufficient for observing a cascading error signal). If each focal point of multiple signal planes is counted once, it will be counted more than the actual amount of surface blurring. Therefore, the focus error signal observed within this second predetermined time is counted as one time. As an example, Fig. 5 (c) shows the case where there are two signal surfaces. In the case of two layers, there are two waveforms representing the signal plane that is blurred as shown in Fig. 5 (c). In Fig. 5 (c), the signal plane crosses the focal point in the first and second layers, and there are six locations. Will be misjudged. Therefore, the accurate amount of surface blur can be determined by counting the number of times one signal surface crosses the focal point. The second predetermined time is, for example, twice the time required to move the objective lens by the distance between the two most distant layers among the signal surfaces stacked on the optical disk 11. In general, when multiple media of the same type are stacked on an optical disk, the distance between each layer is very small compared to the surface blur width of the optical disk. Such a judgment is effective for counting the number of times the signal surface of the optical disk crosses the focal point by moving the optical disk.
次に、ステップ S 104において、最初に観測されたフォーカスエラー信号レベルが 予めマイクロコンピュータ 10の ROMに記憶されている所定の種類の光ディスク、例 えば DVDの場合に取り得るレベルの範囲だった場合は、 2番目以降に観測された全 てのフォーカスエラー信号レベルがマイクロコンピュータ 10の ROMに記憶してある 所定の範囲である DVDの取り得るレベルの範囲以内であるか否か判断する。観測さ れた全てのフォーカスエラー信号レベルが DVDの取り得るレベルの範囲以内である 場合 (YESの場合)はステップ S 105に進み、所定範囲外のレベルが存在する場合( NOの場合)はステップ S106に進む。すなわち、フォーカスエラー信号レベルが所定 の範囲内にある力否かを判断している。所定の範囲とは、複数のメディア (例えば BD と DVD)が積層された光ディスク 11で複数層から合焦点としてのフォーカスエラー信 号が観測されると実際の面ぶれ量よりも多く計数されてしまうため、特定のメディアの 層からのフォーカスエラー信号のみを計数するようにするためにそのメディアが取り得 るレベルの範囲をいう。一般に、メディアの種類毎に光ディスクにおける記録面の位 置 (光ディスク表面からの深さ)が定められているため、異なる種類のメディアが積層 される場合に、メディアの組み合わせによっては層間の距離が離れてしまうことがある 。一方、特定のメディアに対応するレーザ光を光ディスクに照射すると、その光デイス クのメディアの種類によってフォーカスエラー信号レベルの取り得る範囲が異なる。よ つて、異なる種類のメディアが積層されて 、る光ディスクにお 、て特定のメディアの層 力 のフォーカスエラー信号のみを計数するには、フォーカスエラー信号レベルを用 、ることが有効である。 Next, in step S104, when the focus error signal level first observed is within a range of levels that can be taken in the case of a predetermined type of optical disc stored in the ROM of the microcomputer 10, for example, a DVD. Then, it is determined whether or not all the focus error signal levels observed after the second are within the range of levels that can be taken by the DVD that is a predetermined range stored in the ROM of the microcomputer 10. If all observed focus error signal levels are within the range of levels that can be taken by the DVD (in the case of YES), the process proceeds to step S105, and if a level outside the predetermined range exists (in the case of NO), the step is performed. Proceed to S106. That is, it is determined whether or not the focus error signal level is within a predetermined range. The predetermined range means that when a focus error signal as the focal point is observed from multiple layers on an optical disc 11 in which multiple media (for example, BD and DVD) are stacked, the number of actual surface blurs is counted more than the actual range. Therefore, it refers to the range of levels that the media can take in order to count only the focus error signals from a particular media layer. Generally, since the position of the recording surface (depth from the optical disk surface) on the optical disc is determined for each type of media, different types of media are stacked. In some cases, the distance between layers may be increased depending on the combination of media. On the other hand, when a laser beam corresponding to a specific medium is irradiated onto an optical disk, the range that the focus error signal level can take varies depending on the type of the medium of the optical disk. Therefore, it is effective to use the focus error signal level in order to count only the focus error signal of a specific medium layer force on an optical disc in which different types of media are stacked.
[0039] 次に、ステップ S105においては、ステップ S 102で計数したフォーカスエラー信号 の観測総数を RAMから読み出してステップ S108へ進む。  [0039] Next, in step S105, the total number of observations of the focus error signal counted in step S102 is read from the RAM, and the process proceeds to step S108.
[0040] ステップ S106にお!/、ては、異種のメディアが積層された光ディスク(例えば BDと D[0040] In step S106, an optical disc on which different types of media are stacked (for example, BD and D
VD)であると判断し、最初に観測したフォーカスエラー信号と比較して所定範囲以内 のレベル差の信号のみを計数しステップ S 108へ進む。すなわち、所定の範囲内の フォーカスエラー信号のみを対象として計数する。 VD), and only the signals having a level difference within a predetermined range compared with the focus error signal observed first are counted, and the process proceeds to step S108. That is, only the focus error signal within a predetermined range is counted.
[0041] ステップ S107においては、 DVD同士などの同種のメディアが積層された光デイス クであると判断し、第 2の所定時間以内に観測されている複数のフォーカスエラー信 号は 1回として計数しステップ S 108へ進む。例えば、図 5 (c)において第 2の所定時 間を tとすると、 1層目の信号面が合焦点を横切る点 jから 2層目の信号面が合焦点を 横切る点 までの時間は図 5 (c)に示すように t以内であるため; Γは計数しない。同様 に図 5 (c)における 2層目の信号面が合焦点を横切る他の点も、夫々 1層目の信号面 が合焦点を横切る点から t以内であるため計数しない。  [0041] In step S107, it is determined that the same type of media such as DVDs is stacked, and a plurality of focus error signals observed within the second predetermined time are counted as one time. Then go to step S108. For example, if the second predetermined time is t in Fig. 5 (c), the time from the point j where the signal plane of the first layer crosses the focal point to the point where the signal plane of the second layer crosses the focal point is 5 Because it is within t as shown in (c); Γ is not counted. Similarly, other points where the signal plane of the second layer crosses the focal point in Fig. 5 (c) are not counted because they are within t from the point where the signal plane of the first layer crosses the focal point.
[0042] 次に、ステップ S108において、計数したフォーカスエラー信号の数が予め設定し マイクロコンピュータ 10の ROMに記憶してある所定の値以上であるか否かを判断し 所定の値以上の場合 (YESの場合)はステップ S110へ進み、所定の値未満の場合 (NOの場合)はステップ S109へ進む。なお、所定の値とは、面ぶれ量の大小を判別 可能な値である。  [0042] Next, in step S108, it is determined whether or not the counted number of focus error signals is equal to or greater than a predetermined value that is preset and stored in the ROM of the microcomputer 10. If YES, the process proceeds to step S110. If less than the predetermined value (NO), the process proceeds to step S109. The predetermined value is a value with which the amount of surface blur can be determined.
[0043] 次に、ステップ S109において、フォーカスエラー信号が観測された回数が少ない、 すなわち光ディスクの信号面が合焦点を横切った回数が所定の値よりも少ないので 面ぶれが小さ!/、と判断し、予め定めた最悪条件時の速度よりも早!、速度 (高速)で対 物レンズを駆動するようにサーボ信号処理部 5へ指示する。 [0044] 次に、ステップ SI 10において、フォーカスエラー信号が観測された回数が多い、す なわち光ディスクの信号面が合焦点を横切った回数が所定の値よりも多いので面ぶ れが大きいと判断し、予め定めた最悪条件でもフォーカス引き込みが行えるような遅 V、速度 (低速)で対物レンズを駆動するようにサーボ信号処理部 5へ指示する。 [0043] Next, in step S109, the number of times the focus error signal has been observed is small, that is, the number of times that the signal surface of the optical disk has crossed the focal point is less than the predetermined value, so it is determined that the surface blur is small! / Then, the servo signal processing unit 5 is instructed to drive the object lens at a speed (high speed) that is faster than the speed at the predetermined worst condition. [0044] Next, in step SI10, if the focus error signal is observed many times, that is, if the signal surface of the optical disc crosses the focal point is more than a predetermined value, The servo signal processing unit 5 is instructed to drive the objective lens at a slow V and speed (low speed) so that the focus can be pulled in even under the worst condition determined in advance.
[0045] 本実施例によれば、光ディスクの信号面と合焦点を横切る回数を計数し、その結果 が予め設定した所定の値以上であれば面ぶれが大きいと判断して低速で対物レンズ を駆動し、所定の値未満であれば面ぶれが小さ!、と判断して高速に対物レンズを駆 動するようにしたので、面ぶれ量に合わせて対物レンズの駆動速度を変更でき、面 ぶれが少ないときはフォーカス引き込みの時間が短縮される。  [0045] According to the present embodiment, the number of times of crossing the signal surface of the optical disk and the focal point is counted, and if the result is equal to or greater than a predetermined value set in advance, it is determined that the surface blur is large and the objective lens is moved at a low speed. Since the objective lens is driven at high speed because it is judged that the surface blur is small if it is less than the predetermined value, the drive speed of the objective lens can be changed according to the amount of surface blur. When the amount is small, the focus pull-in time is shortened.
実施例 2  Example 2
[0046] 次に、第 2の実施例に力かる対物レンズ駆動装置としての光ディスクプレーヤ 1を図 6および図 7を参照して説明する。なお、前述した第 1の実施例と同一部分には、同 一符号を付して説明を省略する。  Next, an optical disc player 1 as an objective lens driving device that works in the second embodiment will be described with reference to FIG. 6 and FIG. The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
[0047] 本実施例は、構成は第 1の実施例と同様である力 面ぶれ量の大小の判断に光デ イスクの信号面が合焦点を横切る回数を計数することに代えて光ディスクの信号面が 最初に合焦点を横切る時間から最後に合焦点を横切る時間の幅を計測している点 が異なる。そのためマイクロコンピュータ 10の制御プログラムの一部が変更されてい る。図 6に本発明における対物レンズの駆動速度を決定する動作のフローを示す。  [0047] In this embodiment, the configuration is the same as that of the first embodiment. Instead of counting the number of times that the signal surface of the optical disk crosses the focal point in determining the magnitude of the amount of shake on the surface of the optical disk, The difference is that the time span is measured from the time the surface first crosses the focal point to the last time it crosses the focal point. Therefore, a part of the control program of the microcomputer 10 has been changed. FIG. 6 shows a flow of operations for determining the driving speed of the objective lens in the present invention.
[0048] 本実施例における対物レンズの駆動速度決定方法を図 7を参照して説明する。図 7 は合焦点までの距離 h0や面ぶれ量などは図 5と同一である。図 7 (a)は光ディスクの 面ぶれが大き!/、場合である。図 7 (a)のようにフォーカス方向に hi力も h2まで一定範 囲対物レンズを移動させたとき、光ディスクの信号面が合焦点を最初に横切ったとき の時刻 tl力も最後に横切ったときの時刻 t2までには T1の時間幅がある。図 7 (b)は面 ぶれが小さ!/、場合である。面ぶれが小さ!/、ときは光ディスクの信号面が合焦点を最 初に横切ったときの時刻 t3力 最後に横切ったときの時刻 t4までには T2の時間幅が ある。すなわち図 7に示すように対物レンズを移動させたときに光ディスクの信号面が 合焦点を横切る時間幅は面ぶれが小さいときは面ぶれが大きいときよりも小さくなる( T1 >T2となる)。したがって、第 1の実施例と同様にフォーカスエラー信号を観測し、 その観測結果力 時間幅を計測することで面ぶれの大小を見分けることができる。以 降本実施例における詳細な動作を図 6のフローチャートに沿って説明する。 [0048] A method for determining the driving speed of the objective lens in the present embodiment will be described with reference to FIG. Figure 7 shows the same distance h0 to the focal point and the amount of surface blur as in Figure 5. Fig. 7 (a) shows the case where the optical disc surface shake is large! /. As shown in Fig. 7 (a), when the objective lens is moved in a certain range up to h2 in the focus direction, the time when the signal surface of the optical disc first crosses the focal point The time when the tl force also crosses last There is a time span of T1 by t2. Figure 7 (b) shows the case where the surface shake is small! /. Time t3 force when the signal surface of the optical disc first crosses the focal point for the first time t3 force time T4 is the time width by t4 when it last crosses. That is, as shown in FIG. 7, when the objective lens is moved, the time width that the signal surface of the optical disc crosses the focal point is smaller when the surface blur is small than when the surface blur is large (T1> T2). Therefore, as in the first embodiment, the focus error signal is observed, It is possible to distinguish the magnitude of the surface shake by measuring the observation result force time width. Hereinafter, the detailed operation in the present embodiment will be described with reference to the flowchart of FIG.
[0049] まず、ステップ S 201にお!/、て、光ピックアップ 3のレーザダイオードからレーザ光を 照射し続けながら対物レンズを光ディスク 11に対して鉛直方向に一定範囲駆動する ようにサーボ信号処理部 5へ指示しステップ S202へ進む。サーボ信号処理部 5は光 ピックアップ 3に対して対物レンズを例えば光ディスク 11に遠 、位置力 光ディスク 1 1に近づける方向に駆動するような信号をドライバ 6経由で出力する。なお、一定範 囲とは後述するステップ S206において、光ディスク 11の面ぶれ量を判定するのに充 分なレーザダイオードからレーザ光を照射し続けながら対物レンズを駆動する範囲で あり、例えば下死点から上死点までとするのが望ましい。 First, in step S 201! /, The servo signal processing unit is configured to drive the objective lens in a vertical direction with respect to the optical disc 11 while continuing to irradiate laser light from the laser diode of the optical pickup 3. Instruct 5 and go to Step S202. The servo signal processing unit 5 outputs, via the driver 6, a signal that drives the objective lens away from the optical pickup 3, for example, away from the optical disk 11 and closer to the positional force optical disk 11. Note that the fixed range is a range in which the objective lens is driven while continuing to irradiate laser light from a laser diode sufficient to determine the amount of surface blur of the optical disc 11 in step S206, which will be described later. For example, the bottom dead center To top dead center.
[0050] 次に、観測手段としてのステップ S202において、光ディスク 11の信号面が合焦点 を横切ったときに光ピックアップ 3から出力されるフォーカスエラー信号をサーボ信号 処理部 5で観測する。フォーカスエラー信号が観測されたら、反射光の強度としての 観測されたフォーカスエラー信号レベルをマイクロコンピュータ 10へ出力する。マイク 口コンピュータ 10は観測された各フォーカスエラー信号レベルと最初にフォーカスェ ラー信号が観測されて力 最後にフォーカスエラー信号が観測された時間幅を計測 し RAMへ保存し、ステップ S 203へ進む。 [0050] Next, in step S202 as observation means, the servo signal processing unit 5 observes the focus error signal output from the optical pickup 3 when the signal surface of the optical disc 11 crosses the focal point. When the focus error signal is observed, the observed focus error signal level as the intensity of the reflected light is output to the microcomputer 10. The microphone computer 10 measures the observed focus error signal level and the time width at which the focus error signal is first observed and the force error signal is finally observed, and stores it in the RAM. Then, the process proceeds to step S203.
[0051] 次に、ステップ S 203において、最初に観測されたフォーカスエラー信号レベルが 予めマイクロコンピュータ 10の ROMに記憶されている所定の種類の光ディスク、例 えば DVDの場合に取り得るレベルの範囲だった場合は、 2番目以降に観測された全 てのフォーカスエラー信号レベルがマイクロコンピュータ 10の ROMに記憶してある 所定の範囲である DVDの取り得るレベルの範囲以内であるか否か判断する。観測さ れた全てのフォーカスエラー信号レベルが DVDの取り得るレベルの範囲以内である 場合 (YESの場合)はステップ S204に進み、所定範囲外のレベルが存在する場合( NOの場合)はステップ S205に進む。すなわち、フォーカスエラー信号レベルが所定 の範囲内にある力否かを判断している。なお、所定の範囲とはステップ S 104と同様 に複数のメディア (例えば BDと DVD)が積層された光ディスク 11で複数層から合焦 点としてのフォーカスエラー信号が観測されると実際の面ぶれ量よりも多く計数され てしまうため、特定のメディアの層からのフォーカスエラー信号のみを計数するように するためにそのメディアが取り得るレベルの範囲を!、う。 [0051] Next, in step S203, the focus error signal level first observed is a range of levels that can be taken in the case of a predetermined type of optical disc stored in the ROM of the microcomputer 10, for example, a DVD. If it is determined that all the focus error signal levels observed after the second are within the range of levels that can be taken by the DVD, which is a predetermined range stored in the ROM of the microcomputer 10. If all the observed focus error signal levels are within the range of levels that can be taken by the DVD (in the case of YES), the process proceeds to step S204. If a level outside the predetermined range exists (in the case of NO), the process proceeds to step S205. Proceed to That is, it is determined whether or not the focus error signal level is within a predetermined range. Note that the predetermined range is the same as in step S104, when the focus error signal as the in-focus point is observed from multiple layers on the optical disc 11 on which a plurality of media (for example, BD and DVD) are stacked. More than counted Therefore, in order to count only the focus error signal from a specific media layer, the range of levels that the media can take! Uh.
[0052] 次に、ステップ S 204にお!/、ては、ステップ S202で計測した時間幅をそのまま使用 し、ステップ S206へ進む。  [0052] Next, in step S204,! /, Using the time width measured in step S202 as it is, the process proceeds to step S206.
[0053] ステップ S205にお!/、ては、異種のメディアが積層された光ディスク(例えば BDと D VD)であると判断し、最初に観測したフォーカスエラー信号と比較して所定範囲以内 のレベル差の信号のみの時間幅を計測し直してステップ S206へ進む。すなわち、所 定の範囲内のフォーカスエラー信号のみを対象として計数する。  [0053] In step S205, it is determined that the disc is an optical disc (eg, BD and DVD) on which different types of media are stacked, and the level is within a predetermined range compared to the focus error signal first observed. Remeasure the time width of the difference signal only, and go to Step S206. That is, only the focus error signal within a predetermined range is counted.
[0054] 次に、ステップ S206において、計側したフォーカスエラー信号の時間幅が予め設 定しマイクロコンピュータ 10の ROMに記憶してある第 1の所定時間以上であるか否 かを判断し第 1の所定時間以上の場合 (YESの場合)はステップ S208へ進み、所定 時間未満の場合 (NOの場合)はステップ S 207へ進む。第 1の所定時間とは面ぶれ 量の大小を判別可能な時間幅である。  Next, in step S206, it is determined whether or not the time width of the measured focus error signal is equal to or longer than a first predetermined time set in advance and stored in the ROM of the microcomputer 10. If it is longer than the predetermined time (in the case of YES), the process proceeds to step S208. If it is less than the predetermined time (in the case of NO), the process proceeds to step S207. The first predetermined time is a time width in which the amount of surface shake can be distinguished.
[0055] 次に、ステップ S207において、フォーカスエラー信号が観測された時間幅が第 1の 所定時間より短い、すなわち光ディスクの信号面が合焦点を横切った時間幅が短い ので面ぶれが小さいと判断し、予め定めた最悪条件時の速度よりも早い速度 (高速) で対物レンズを駆動するようにサーボ信号処理部 5へ指示する。  [0055] Next, in step S207, the time width over which the focus error signal is observed is shorter than the first predetermined time, that is, the time width in which the signal surface of the optical disk crosses the focal point is short, so it is determined that the surface blur is small. Then, the servo signal processing unit 5 is instructed to drive the objective lens at a speed (high speed) faster than the speed at the predetermined worst condition.
[0056] 次に、ステップ S208において、フォーカスエラー信号が観測された時間幅が第 1の 所定時間より長い、すなわち光ディスクの信号面が合焦点を横切った時間幅が長い ので面ぶれが大きいと判断し、予め定めた最悪条件でもフォーカス引き込みが行え るような遅い速度 (低速)で対物レンズを駆動するようにサーボ信号処理部 5へ指示 する。  [0056] Next, in step S208, the time width over which the focus error signal is observed is longer than the first predetermined time, that is, the time width in which the signal surface of the optical disk crosses the focal point is long, so it is determined that the surface blur is large. Then, the servo signal processing unit 5 is instructed to drive the objective lens at a slow speed (low speed) at which the focus can be pulled in even in the worst case condition.
[0057] 本実施例によれば、光ディスクの信号面が合焦点を横切る時間幅を計側し、その 結果が予め設定した第 1の所定時間以上であれば面ぶれが大きいと判断して低速 で対物レンズを駆動し、第 1の所定時間未満であれば面ぶれが小さいと判断して高 速に対物レンズを駆動するようにしたので、面ぶれ量に合わせて対物レンズの駆動 速度を変更でき、面ぶれが少ないときはフォーカス引き込みの時間が短縮される。 実施例 3 [0058] 次に、第 3の実施例に力かる対物レンズ駆動装置を備えた再生装置としての光ディ スクプレーヤ 1を図 8および図 9を参照して説明する。なお、前述した第 1の実施例お よび第 2の実施例と同一部分には、同一符号を付して説明を省略する。 [0057] According to the present embodiment, the time width over which the signal surface of the optical disk crosses the focal point is measured, and if the result is equal to or longer than the first predetermined time set in advance, it is determined that the surface blur is large and the speed is low. When the objective lens is driven, and the objective lens is driven at a high speed because it is judged that the surface blur is small if it is less than the first predetermined time, the driving speed of the objective lens is changed according to the amount of the surface blur. If the surface blur is small, the focus pull-in time is shortened. Example 3 Next, an optical disc player 1 as a reproducing apparatus equipped with an objective lens driving device that is effective in the third embodiment will be described with reference to FIG. 8 and FIG. The same parts as those in the first embodiment and the second embodiment described above are denoted by the same reference numerals and description thereof is omitted.
[0059] 本実施例も、構成は第 1の実施例と同様であるが、面ぶれ量の大小の判断によって 対物レンズの駆動速度を変更するだけでなぐ駆動範囲も限定することでフォーカス 引き込みの時間を短縮する。そのためマイクロコンピュータ 10の制御プログラムの一 部が変更されている。図 8に本発明における対物レンズの駆動速度を決定する動作 のフローを示す。  The configuration of this embodiment is the same as that of the first embodiment, but the focus pull-in is reduced by limiting the drive range that can be achieved by simply changing the drive speed of the objective lens by determining the amount of surface blur. Reduce time. Therefore, a part of the control program of the microcomputer 10 has been changed. Fig. 8 shows the flow of operations for determining the driving speed of the objective lens in the present invention.
[0060] 本実施例では図 9に示すように対物レンズをフォーカス方向に hi力 h2まで一定範 囲移動させたときに時間軸方向に 1〜10のエリアに分け、光ディスクの信号面が最 初に横切ったエリアと最後に横切ったエリアを検出しそのエリア数とエリア番号に応じ て駆動速度および駆動範囲を決定している。以降本実施例における詳細な動作を 図 8のフローチャートに沿って説明する。  In this embodiment, as shown in FIG. 9, when the objective lens is moved in the focus direction to a certain range up to the hi force h2, it is divided into 1 to 10 areas in the time axis direction, and the signal surface of the optical disc is the first. The crossing area and the last crossing area are detected, and the drive speed and drive range are determined according to the number of areas and the area number. Hereinafter, detailed operations in this embodiment will be described with reference to the flowchart of FIG.
[0061] まず、ステップ S301において、光ピックアップ 3のレーザダイオードからレーザ光を 照射し続けながら対物レンズを光ディスク 11に対して鉛直方向に一定範囲駆動する ようにサーボ信号処理部 5へ指示しステップ S302に進む。サーボ信号処理部 5は光 ピックアップ 3に対して対物レンズを例えば光ディスク 11に遠 、位置力 光ディスク 1 1に近づける方向に駆動するような信号をドライバ 6経由で出力する。なお、一定範 囲とは後述するステップ S306において、光ディスク 11の面ぶれ量を判定するのに充 分な光ピックアップ 3からレーザ光を照射し続けながら対物レンズを駆動する範囲で あり、例えば下死点から上死点までとするのが望ましい。  First, in step S301, the servo signal processing unit 5 is instructed to drive the objective lens in a vertical range with respect to the optical disc 11 while continuing to irradiate laser light from the laser diode of the optical pickup 3 (step S302). Proceed to The servo signal processing unit 5 outputs, via the driver 6, a signal that drives the objective lens away from the optical pickup 3, for example, away from the optical disk 11 and closer to the positional force optical disk 11. The fixed range is a range in which the objective lens is driven while irradiating laser light from the optical pickup 3 sufficient to determine the amount of surface blur of the optical disk 11 in step S306 described later. Desirably, from point to top dead center.
[0062] 次に、観測手段および位置取得手段としてのステップ S302において、光ディスク 1 1の信号面が合焦点を横切ったときに光ピックアップ 3から出力されたフォーカスエラ 一信号をサーボ信号処理部 5で観測し、フォーカスエラー信号が観測されたら、観測 されたフォーカスエラー信号レベルをマイクロコンピュータ 10へ出力する。マイクロコ ンピュータ 10ではサーボ信号処理部 5からフォーカスエラー信号レベルが入力され たときに観測位置としてのエリア番号と反射光の強度としてのレベルとを合わせて RA Mへ記憶する。さらに、対物レンズを一定範囲移動させた結果最初にフォーカスエラ 一信号が観測されたエリア力 最後にフォーカスエラー信号が観測されたエリアまで のエリア数を計数し RAMに記憶してステップ S303へ進む。 Next, in step S302 as the observation means and the position acquisition means, the servo signal processing unit 5 converts the focus error signal output from the optical pickup 3 when the signal surface of the optical disk 11 crosses the focal point. When the focus error signal is observed, the observed focus error signal level is output to the microcomputer 10. In the microcomputer 10, when the focus error signal level is inputted from the servo signal processing unit 5, the area number as the observation position and the level as the intensity of the reflected light are combined and stored in the RAM. Furthermore, as a result of moving the objective lens over a certain range, the focus error is Area force where one signal was observed Finally, count the number of areas up to the area where the focus error signal was observed, store it in RAM, and proceed to step S303.
[0063] 次に、ステップ S 303において、最初に観測されたフォーカスエラー信号レベルが 予めマイクロコンピュータの ROMに記憶されている所定の種類の光ディスク、例えば DVDの場合に取り得るレベルの範囲だった場合は、 2番目以降に観測された全ての フォーカスエラー信号レベルがマイクロコンピュータ 10の ROMに記憶してある所定 の範囲である DVDの取り得るレベルの範囲以内であるか否か判断する。観測された 全てのフォーカスエラー信号レベルが DVDの取り得るレベルの範囲以内である場合 (YESの場合)はステップ S305に進み、所定範囲外のレベルが存在する場合 (NO の場合)はステップ S304に進む。すなわち、フォーカスエラー信号レベルが所定の 範囲内にあるか否かを判断している。なお、所定の範囲とはステップ S 104、 S203と 同様に複数のメディア(例えば BDと DVD)が積層された光ディスク 11で複数層から 合焦点としてのフォーカスエラー信号が観測されると実際の面ぶれ量よりも多く計数 されてしまうため、特定のメディアの層からのフォーカスエラー信号のみを計数するよ うにするためにそのメディアが取り得るレベルの範囲を!、う。  [0063] Next, in step S303, when the first observed focus error signal level is within a range of levels that can be taken in the case of a predetermined type of optical disk, such as a DVD, stored in advance in the ROM of the microcomputer Determines whether all the focus error signal levels observed after the second are within the range of levels that can be taken by the DVD, which is a predetermined range stored in the ROM of the microcomputer 10. If all of the observed focus error signal levels are within the range of levels that the DVD can take (YES), go to step S305. If there is a level outside the specified range (NO), go to step S304. move on. That is, it is determined whether or not the focus error signal level is within a predetermined range. Note that the predetermined range is the same as in steps S104 and S203, when the focus error signal as the focal point is observed from multiple layers on the optical disc 11 on which a plurality of media (for example, BD and DVD) are stacked. Because it counts more than the amount, the range of levels that the media can take to count only the focus error signals from a particular media layer! Uh.
[0064] 次に、ステップ S304において、ステップ S302で計数したエリア数を RAMから読み 出しステップ S 306へ進む。  [0064] Next, in step S304, the number of areas counted in step S302 is read from the RAM, and the process proceeds to step S306.
[0065] ステップ S305にお!/、ては、異種のメディアが積層された光ディスク(例えば BDと D VD)であると判断し、 RAM力も観測された全てのレベルとエリアを読み出し、最初に 観測したフォーカスエラー信号と比較して所定範囲以内のレベル差の信号が観測さ れたエリアのエリア数を計数しステップ S306へ進む。すなわち、所定の範囲内のフォ 一カスエラー信号のみを対象として計数する。  [0065] In step S305, it is determined that the disc is an optical disc on which different types of media are stacked (for example, BD and DVD), and all levels and areas in which the RAM force is also observed are read out and observed first. The number of areas in which a signal with a level difference within a predetermined range is observed compared with the focus error signal is counted, and the process proceeds to step S306. That is, only the focus error signal within a predetermined range is counted.
[0066] 次に、ステップ S306において、計数したエリア数が予め設定しマイクロコンピュータ 10の ROMに記憶してある所定値 (前述した第 2の所定時間に相当)以上である力否 かを判断し所定値以上の場合 (YESの場合)はステップ S308へ進み、所定値未満 の場合(NOの場合)はステップ S307へ進む。  [0066] Next, in step S306, it is determined whether or not the counted number of areas is greater than or equal to a predetermined value (corresponding to the second predetermined time described above) preset and stored in the ROM of the microcomputer 10. If it is equal to or greater than the predetermined value (in the case of YES), the process proceeds to step S308. If it is less than the predetermined value (in the case of NO), the process proceeds to step S307.
[0067] 次に、ステップ S307において、フォーカスエラー信号が観測されたエリアが少ない 、すなわち光ディスクの信号面が合焦点を横切った時間幅が短 、ので面ぶれが小さ いと判断し、予め定めた最悪条件時の速度よりも早い速度 (高速)で対物レンズを駆 動するようにサーボ信号処理部 5へ指示し、ステップ S309へ進む。 [0067] Next, in step S307, the area in which the focus error signal is observed is small, that is, the time width during which the signal surface of the optical disk crosses the focal point is short, so that the surface blur is small. The servo signal processing unit 5 is instructed to drive the objective lens at a speed (high speed) higher than the speed under the worst condition set in advance, and the process proceeds to step S309.
[0068] 次に、ステップ S308において、フォーカスエラー信号が観測されたエリアが多い、 すなわち光ディスクの信号面が合焦点を横切った時間幅が長いので面ぶれが大き いと判断し、予め定めた最悪条件でもフォーカス引き込みが行えるような遅い速度( 低速)で対物レンズを駆動するようにサーボ信号処理部 5へ指示し、ステップ S309へ 進む。 [0068] Next, in step S308, it is determined that there are many areas where the focus error signal is observed, that is, the time of the optical disc signal surface crossing the focal point is long, so that the surface blur is large. However, the servo signal processing unit 5 is instructed to drive the objective lens at a slow speed (low speed) at which the focus can be drawn, and the process proceeds to step S309.
[0069] 次に、ステップ S 309において、フォーカスエラー信号が観測された最小のエリア番 号 (最初にフォーカスエラー信号が観測された位置)から 1を引いたエリア番号を対物 レンズ駆動下限値に設定しステップ S 310へ進む。  [0069] Next, in step S309, the area number obtained by subtracting 1 from the smallest area number where the focus error signal was observed (the position where the focus error signal was first observed) is set as the objective lens drive lower limit value. Then go to step S310.
[0070] 次に、ステップ S310において、フォーカスエラー信号が観測された最大のエリア番 号 (最後にフォーカスエラー信号が観測された位置)から 1を加えたエリア番号を対物 レンズ駆動上限値に設定する。そして、以降行うフォーカス引き込み動作では設定し た対物レンズ駆動下限値から対物レンズ駆動上限値までを駆動範囲とするようにサ ーボ信号処理部 5へ指示する。例えば図 9ではエリア 5と 6で合焦点を横切って 、る ので駆動範囲はエリア 4〜7までが駆動範囲となる。すなわち最初にフォーカスエラ 一信号が観測されたエリアと最後にフォーカスエラー信号が観測されたエリアに応じ てフォーカス引き込み動作における対物レンズの駆動範囲を変更している。  [0070] Next, in step S310, an area number obtained by adding 1 from the largest area number where the focus error signal was observed (the position where the focus error signal was observed last) is set as the objective lens drive upper limit value. . In the subsequent focus pull-in operation, the servo signal processing unit 5 is instructed to set the drive range from the set objective lens drive lower limit value to the objective lens drive upper limit value. For example, in FIG. 9, since the focal points are crossed in areas 5 and 6, the driving range is from 4 to 7. That is, the drive range of the objective lens in the focus pull-in operation is changed according to the area where the focus error signal was first observed and the area where the focus error signal was last observed.
[0071] 本実施例によれば、対物レンズを一度移動させ、その移動時間を複数のエリアに 分割し、光ディスクの信号面が合焦点を横切るエリアの検出およびエリア数を計数し 、計数したエリア数が予め設定した所定値以上であれば面ぶれが大き!/、と判断して 低速で対物レンズを駆動し、所定値未満であれば面ぶれが小さ!、と判断して高速に 対物レンズを駆動する。さらに横切ったエリア力 駆動範囲を検出、設定できるように したので、面ぶれ量に合わせて対物レンズの駆動速度および駆動範囲を変更でき、 面ぶれが少ないときはフォーカス引き込みの時間が駆動速度を変更するのみよりもさ らに短縮される。  [0071] According to this embodiment, the objective lens is moved once, the moving time is divided into a plurality of areas, the detection of the area where the signal surface of the optical disc crosses the focal point and the number of areas are counted, and the counted area If the number is equal to or greater than the preset value, the surface blur is judged to be large! /, And the objective lens is driven at a low speed, and if it is less than the predetermined value, the surface blur is judged to be small! Drive. The crossed area force drive range can be detected and set, so the drive speed and drive range of the objective lens can be changed according to the amount of surface shake. It is even shorter than just doing it.
[0072] なお、本実施例では時間軸を複数エリアに区切っていたが、フォーカス方向を複数 エリアに区切っても良い。 [0073] また、本実施例では時間軸を区切ったエリア数を計数していた面ぶれ量を判定して いたが、時間軸を複数エリアに分けて、その数を計数することから第 2の実施例の時 間幅を計測しているのと同等であるといえるので第 2の実施例の方法をそのまま適用 しても良い。また、駆動範囲を決定するためにエリアに区切る方法はそのままで、駆 動速度の判定には第 1の実施例の横切った数を計数する方法を組み合わせてもよ い。 [0072] Although the time axis is divided into a plurality of areas in the present embodiment, the focus direction may be divided into a plurality of areas. [0073] Further, in this embodiment, the amount of surface blur was determined by counting the number of areas divided by the time axis. However, since the time axis is divided into a plurality of areas and the number is counted, the second Since it can be said that the time width of the embodiment is measured, the method of the second embodiment may be applied as it is. In addition, the method of dividing the area into the areas to determine the driving range is not changed, and the method of counting the number of crossings in the first embodiment may be combined with the determination of the driving speed.
[0074] また、本実施例では駆動範囲をフォーカスエラー信号が観測された範囲よりも上限 下限とも 1エリアずつ余裕を持った範囲としていたが、それに限らずフォーカスエラー 信号が観測された範囲を駆動範囲としても良いし、余裕を 2エリア以上持たせても良 い。さらに、上限、下限のいずれかのみの駆動範囲を制限するようにしても良い。  [0074] In this embodiment, the driving range is a range with a margin for each of the upper and lower limits than the range in which the focus error signal is observed. However, the driving range is not limited to this, and the range in which the focus error signal is observed is driven. It may be a range or allow more than 2 areas. Furthermore, the drive range of only either the upper limit or the lower limit may be limited.
[0075] また、上記第 1〜第 3の実施例では、光ディスクの信号面を合焦点が横切った際に 観測される信号としてフォーカスエラー信号を使用していたが、戻り光総和信号や R F信号など光ディスクの信号面を合焦点が横切った際に光ピックアップ 3で生成可能 でサーボ信号処理部 5で観測できる信号であればよく、またこれらの信号を複数観測 し、観測結果を組み合わせて面ぶれ量の大小の判断に利用しても良 、。  In the first to third embodiments, the focus error signal is used as the signal observed when the focal point crosses the signal surface of the optical disc. However, the return light sum signal and the RF signal are used. Any signal that can be generated by the optical pickup 3 and observed by the servo signal processor 5 when the focal point crosses the signal surface of the optical disk, etc. can be observed. It can be used to judge the amount of quantity.
[0076] また、上記第 1〜第 3の実施例では駆動速度を低速と高速の 2段階としたが 2段階 でなく 3段階以上であってもよい。 3段階以上とする場合はマイクロコンピュータ 10の ROMに予め設定する所定の値や第 1の所定時間を段階数に応じた数だけ設定する  [0076] In the first to third embodiments, the driving speed is set to two stages of low speed and high speed. However, the driving speed may be three stages or more instead of two stages. If there are three or more stages, set a predetermined value or first predetermined time in the ROM of the microcomputer 10 according to the number of stages.
[0077] また、上記第 1〜第 3の実施例ではフォーカスエラー信号のレベル差の判定に最初 に検出した信号を基準として 、たが、それに限らず例えば信号レベルが最大または 最低の信号を基準にし、その信号力 所定のレベル差以内を計数または計測するよ うにしてもよい。 [0077] In the first to third embodiments, the signal first detected in determining the level difference of the focus error signal is used as a reference. However, the present invention is not limited to this. For example, the signal having the highest or lowest signal level is used as a reference. The signal power may be counted or measured within a predetermined level difference.
[0078] また、上記第 1〜第 3の実施例では DVDと CDと BDが再生可能な再生装置として いたが、これらに限らず HD— DVDなどの他の種類の光ディスクにも適用可能である  [0078] In the first to third embodiments, the DVD, CD, and BD can be played back. However, the present invention is not limited to this, and can be applied to other types of optical disks such as HD-DVD.
[0079] 前述した実施例によれば、以下の対物レンズ駆動装置と駆動方法が得られる。 According to the embodiment described above, the following objective lens driving device and driving method can be obtained.
[0080] (付記 1)レーザダイオードと、レーザダイオードからの光を光ディスク 11に焦点を合 わせて照射するための対物レンズと、対物レンズを光ディスク 11に対して略鉛直方 向に移動させるサーボ信号処理部 5とを備える光ディスクプレーヤ 1にお 、て、サー ボ信号処理部 5に対物レンズを一定範囲移動させて光ディスク 11上の合焦点をサー ボ信号処理部 5に観測させ、観測した結果に応じてサーボ信号処理部 5がフォー力 ス引き込みを行うために対物レンズを移動させる速度を変更させるマイクロコンピュー タ 10と、を備えたことを特徴とする光ディスクプレーヤ 1。 [0080] (Appendix 1) Focusing the laser diode and the light from the laser diode on the optical disc 11 The servo signal processing unit 5 includes an objective lens for irradiating the object and a servo signal processing unit 5 that moves the objective lens in a substantially vertical direction with respect to the optical disc 11. The servo signal processing unit 5 observes the focal point on the optical disc 11 by moving a certain range, and the speed at which the servo signal processing unit 5 moves the objective lens to pull the force according to the observation result. An optical disc player 1 comprising a microcomputer 10 to be changed.
[0081] この光ディスクプレーヤ 1によれば、光ディスク 11上の合焦点を観測することで光デ イスク 11の面ぶれの状態が把握できるため、面ぶれ量に合わせた速度でフォーカス 引き込みを行うことができ、面ぶれが少ないときはフォーカス引き込み時間を短縮す ることがでさる。 According to this optical disc player 1, since the state of the surface shake of the optical disc 11 can be grasped by observing the focal point on the optical disc 11, the focus can be pulled in at a speed corresponding to the amount of the surface shake. If the surface blurring is small, the focus pull-in time can be shortened.
[0082] (付記 2)レーザダイオードからの光を光ディスク 11に焦点を合わせて照射するため の対物レンズを光ディスク 11に対して略鉛直方向に移動させる対物レンズ駆動方法 にお 、て、対物レンズを一定量移動させて前記光ディスク 11上の合焦点を観測し、 観測した結果に応じてフォーカス引き込みを行うために対物レンズを駆動する速度を 変更することを特徴とする対物レンズ駆動方法。  (Additional remark 2) In the objective lens driving method of moving the objective lens for focusing and irradiating the light from the laser diode to the optical disc 11 in the substantially vertical direction with respect to the optical disc 11, the objective lens is moved. A method of driving an objective lens, characterized by observing a focal point on the optical disk 11 by moving a certain amount and changing a speed of driving the objective lens to perform focus pull-in according to the observed result.
[0083] この対物レンズ駆動方法によれば、光ディスク 11上の合焦点を観測することで光デ イスク 11の面ぶれの状態が把握できるため、面ぶれ量に合わせた速度でフォーカス 引き込みを行うことができ、面ぶれが少ないときはフォーカス引き込み時間を短縮す ることがでさる。  [0083] According to this objective lens driving method, since the state of the surface blur of the optical disk 11 can be grasped by observing the focal point on the optical disk 11, the focus pull-in is performed at a speed according to the amount of the surface blur. If there is little surface blur, the focus pull-in time can be shortened.
[0084] なお、前述した実施例は本発明の代表的な形態を示したに過ぎず、本発明は、実 施例に限定されるものではない。すなわち、本発明の骨子を逸脱しない範囲で種々 変形して実施することができる。  It should be noted that the above-described embodiments are merely representative forms of the present invention, and the present invention is not limited to the embodiments. That is, various modifications can be made without departing from the scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 光源と、前記光源からの光を光ディスクに焦点を合わせて照射するための対物レン ズと、前記対物レンズを前記光ディスクに対して略鉛直方向に移動させる駆動手段と を備える対物レンズ駆動装置において、  [1] Objective lens drive comprising: a light source; an objective lens for irradiating light from the light source with focusing on the optical disk; and a driving means for moving the objective lens in a substantially vertical direction with respect to the optical disk. In the device
前記駆動手段に前記対物レンズを一定範囲移動させて前記光ディスク上の合焦点 を観測手段に観測させ、観測した結果に応じて前記駆動手段がフォーカス引き込み を行うために前記対物レンズを移動させる速度を変更させる制御手段と、を備えたこ とを特徴とする対物レンズ駆動装置。  The drive means moves the objective lens within a certain range, causes the observation means to observe the focal point on the optical disc, and the drive means moves the objective lens to perform focus pull-in according to the observation result. An objective lens driving device comprising: a control means for changing.
[2] 前記制御手段は、前記観測手段が観測した結果、前記光ディスク上の合焦点を横 切る回数が予め定める所定の値よりも少ないときは前記対物レンズを駆動する速度 を早くし、前記所定の値よりも多いときは前記対物レンズを駆動する速度を遅くするこ とを特徴とする請求項 1記載の対物レンズ駆動装置。  [2] The control means increases the speed of driving the objective lens when the number of times crossing the focal point on the optical disk is less than a predetermined value as a result of observation by the observation means, 2. The objective lens driving device according to claim 1, wherein a speed of driving the objective lens is decreased when the value is larger than the value of.
[3] 前記制御手段は、前記観測手段が観測した結果、前記光ディスク上の合焦点を最 初に横切って力 最後に横切るまでの時間幅が予め定める第 1の所定時間よりも短 いときは前記対物レンズを駆動する速度を早くし、前記第 1の所定時間よりも長いとき は前記対物レンズを駆動する速度を遅くすることを特徴とする請求項 1記載の対物レ ンズ駆動装置。  [3] The control means, when the observation means observes, when the time width until the force finally crosses the focal point on the optical disc is shorter than a predetermined first predetermined time. 2. The objective lens driving device according to claim 1, wherein the driving speed of the objective lens is increased, and the driving speed of the objective lens is decreased when the driving speed is longer than the first predetermined time.
[4] 前記制御手段は、前記観測手段が前記光ディスク上の合焦点を観測したときの前 記対物レンズの位置を位置取得手段に取得させ、前記対物レンズを一定範囲移動 させたときに最初に合焦点が観測された位置と、最後に合焦点が観測された位置に 応じて前記対物レンズのフォーカス引き込みを行う際の駆動範囲を変更することを特 徴とする請求項 1乃至 3のいずれか記載の対物レンズ駆動装置。  [4] The control means first causes the position acquisition means to acquire the position of the objective lens when the observation means observes the focal point on the optical disc, and first moves the objective lens within a certain range. 4. The driving range for performing focus pull-in of the objective lens is changed according to a position where the focal point is observed and a position where the focal point is finally observed. The objective-lens drive device of description.
[5] 前記制御手段は、前記一定範囲を複数の範囲に区切り、前記複数の範囲内のうち 前記合焦点が存在する範囲に応じて、前記対物レンズのフォーカス引き込みを行う 際の駆動範囲を変更することを特徴とする請求項 4記載の対物レンズ駆動装置。  [5] The control unit divides the fixed range into a plurality of ranges, and changes a driving range when performing focus pull-in of the objective lens according to a range where the in-focus point exists in the plurality of ranges. 5. The objective lens driving device according to claim 4, wherein
[6] 前記制御手段は、前記観測手段が観測した前記光ディスク上の合焦点が予め定 める第 2の所定時間以内に複数観測されたときは、前記第 2の所定時間以内に観測 された複数の前記合焦点は 1つとして計数することを特徴とする請求項 2記載の対物 レンズ駆動装置。 [6] When a plurality of in-focus points on the optical disc observed by the observation unit are observed within a second predetermined time that is determined in advance, the control unit observes within the second predetermined time. 3. The objective according to claim 2, wherein the plurality of in-focus points are counted as one. Lens drive device.
[7] 前記制御手段は、前記観測手段が観測した前記光ディスク上の複数の合焦点のう ち前記光ディスクからの反射光の強度が所定の範囲内の合焦点のみを対象とするこ とを特徴とする請求項 2または 3記載の対物レンズ駆動装置。  [7] The control means targets only a focal point in which the intensity of reflected light from the optical disc is within a predetermined range among a plurality of focal points on the optical disc observed by the observation unit. The objective lens driving device according to claim 2 or 3.
[8] フォーカスエラー信号と、 RF信号と、戻り光総和信号のうちいずれか 1つ以上が観 測した位置を前記観測手段が合焦点とすることを特徴とする請求項 1乃至 7のうちい ずれか記載の対物レンズ駆動装置。 [8] The method according to any one of claims 1 to 7, wherein the observation means sets a position where one or more of a focus error signal, an RF signal, and a return light total signal are observed as a focal point. An objective lens driving device according to any one of the deviations.
[9] 光源力もの光を光ディスクに焦点を合わせて照射するための対物レンズを前記光 ディスクに対して略鉛直方向に移動させる対物レンズ駆動方法にぉ 、て、 [9] An objective lens driving method for moving an objective lens for irradiating light having a light source power with focusing on the optical disk in a substantially vertical direction with respect to the optical disk, and
前記対物レンズを一定量移動させて前記光ディスク上の合焦点を観測し、観測した 結果に応じてフォーカス引き込みを行うために前記対物レンズを駆動する速度を変 更することを特徴とする対物レンズ駆動方法。  An objective lens drive characterized by observing a focal point on the optical disc by moving the objective lens by a certain amount, and changing a speed at which the objective lens is driven to perform focus pull-in according to the observed result. Method.
[10] 前記光ディスク上の合焦点を観測したときの前記対物レンズの位置を取得し、前記 対物レンズを一定範囲移動させたときに最初に合焦点が観測された位置と、最後に 合焦点が観測された位置に応じて前記対物レンズのフォーカス引き込みを行う際の 駆動範囲を変更することを特徴とする請求項 9記載の対物レンズ駆動方法。 [10] The position of the objective lens when the focal point on the optical disk is observed is acquired, and the focal point is first observed when the objective lens is moved within a certain range, and finally the focal point is obtained. 10. The objective lens driving method according to claim 9, wherein a driving range when performing focus pull-in of the objective lens is changed according to an observed position.
PCT/JP2006/321354 2005-11-07 2006-10-26 Objective lens drive device and drive method WO2007052525A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542643A JP4660555B2 (en) 2005-11-07 2006-10-26 Objective lens driving apparatus and driving method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-322126 2005-11-07
JP2005322126 2005-11-07

Publications (1)

Publication Number Publication Date
WO2007052525A1 true WO2007052525A1 (en) 2007-05-10

Family

ID=38005676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321354 WO2007052525A1 (en) 2005-11-07 2006-10-26 Objective lens drive device and drive method

Country Status (2)

Country Link
JP (1) JP4660555B2 (en)
WO (1) WO2007052525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097394A1 (en) * 2012-12-18 2014-06-26 三菱電機株式会社 Disk reproduction device and focus servo pulling-in method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184670A (en) * 1999-12-24 2001-07-06 Hitachi Ltd Optical disk device
JP2004014091A (en) * 2002-06-11 2004-01-15 Matsushita Electric Ind Co Ltd Focus pull-in control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001184670A (en) * 1999-12-24 2001-07-06 Hitachi Ltd Optical disk device
JP2004014091A (en) * 2002-06-11 2004-01-15 Matsushita Electric Ind Co Ltd Focus pull-in control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097394A1 (en) * 2012-12-18 2014-06-26 三菱電機株式会社 Disk reproduction device and focus servo pulling-in method

Also Published As

Publication number Publication date
JPWO2007052525A1 (en) 2009-04-30
JP4660555B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
KR100680657B1 (en) Apparatus for and method of playing back optical disc
KR100571983B1 (en) Disk discrimination apparatus and method for digital versatile disk system
JPH09106617A (en) Method and apparatus for discriminating information-recording medium and method and apparatus for focus servo control
KR20070053114A (en) Playback equipment, spherical aberration revision value and focus bias control method
JPH11149640A (en) Optical disk device
US7646689B2 (en) Disk discriminating method and disk discriminating apparatus
WO2008093928A1 (en) Method and apparatus for controlling focus of an optical information storage medium
JP4660555B2 (en) Objective lens driving apparatus and driving method
JP3938175B2 (en) Optical disc recording / reproducing apparatus
JP2002260246A (en) Optical disk discriminating circuit
JP2007207359A (en) Focus control device and focus control method
JP3764299B2 (en) Optical disk device
JPH11296962A (en) Optical disk discriminating device
JP4187012B2 (en) Optical disk device
JP2005302176A (en) Optical disk device
US8416662B2 (en) Optical disc drive and method for detecting vertical deviation thereon
JP2004192784A (en) Optical disk device
JP2012243342A (en) Optical disk drive device
JP2006277846A (en) Disk discrimination method and disk-discriminating apparatus
US20050201238A1 (en) Method and device for discriminating deflecting disc
JP4432926B2 (en) Optical disk device
KR100600268B1 (en) Device and method for tracking servo of the hrom reader
JPH11259965A (en) Device and method for discriminating optical record medium
JP2006277847A (en) Disk discrimination method and disk-discriminating apparatus
US20090310466A1 (en) Objective lens driving device and driving method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007542643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822330

Country of ref document: EP

Kind code of ref document: A1