WO2007049523A1 - Variable displacement compressor - Google Patents

Variable displacement compressor Download PDF

Info

Publication number
WO2007049523A1
WO2007049523A1 PCT/JP2006/320963 JP2006320963W WO2007049523A1 WO 2007049523 A1 WO2007049523 A1 WO 2007049523A1 JP 2006320963 W JP2006320963 W JP 2006320963W WO 2007049523 A1 WO2007049523 A1 WO 2007049523A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
tilting
swash plate
link
drive shaft
Prior art date
Application number
PCT/JP2006/320963
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikatsu Miyaji
Ryuichi Hirose
Naoki Ishikawa
Satoshi Kubo
Original Assignee
Calsonic Kansei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corporation filed Critical Calsonic Kansei Corporation
Priority to EP06812092A priority Critical patent/EP1942275A4/en
Priority to US12/091,662 priority patent/US20090246050A1/en
Publication of WO2007049523A1 publication Critical patent/WO2007049523A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • F04B27/1072Pivot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0895Component parts, e.g. sealings; Manufacturing or assembly thereof driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber

Definitions

  • the present invention relates to a variable capacity compressor.
  • a conventional variable capacity compressor includes a drive shaft, a rotor fixed to the drive shaft and rotating integrally with the drive shaft, a sleeve mounted on the drive shaft so as to be slidable in the axial direction, and a sleeve
  • a swash plate that can be freely tilted a link mechanism that is interposed between the rotor and the swash plate and transmits the rotation of the rotor to the swash plate, and a piston that reciprocates as the swash plate rotates.
  • the link mechanism connects the rotor and the swash plate so that the rotation angle of the swash plate can be changed while transmitting the rotation of the rotor to the swash plate. Changing the tilt angle of the swash plate changes the piston stroke.
  • FIG. 9 shows a link mechanism corresponding to Japanese Patent Laid-Open No. 10-176658.
  • the link mechanism in FIG. 9 includes a pair of opposed rotor arms 145 and 146 projecting from the rotor 140 toward the swash plate 141, and a single projecting projecting from the swash plate 141 toward the rotor 140.
  • a swash plate arm 147 and a pair of link arms 142A and 142B are provided. These five arms 145, 142A, 147, 143B, 146 are stacked in the direction of torque transmission, whereby the rotation of the rotor 140 is transmitted to the swash plate.
  • each of the pair of link arms 142A and 142B is rotatably connected to the pair of rotor arms 145 and 146 by the first connecting pin 143, and the other end is connected to the swash plate arm 147 by the second connection.
  • Pins 144 are rotatably connected.
  • the link arms 142A and 142B rotate with respect to the rotor arms 145 and 146 around the connecting pin 143
  • the swash plate arm 147 rotates with respect to the link arms 142A and 142B around the connecting pin 144.
  • the inclination angle of the swash plate 141 can be changed with respect to the drive shaft (not shown).
  • the rotor arm 145 and the link arm 142A serve as a rotational torque transmission surface and a rotational sliding contact surface. That is, the contact surface between the rotor arm 145 and the link arm 142A is in sliding contact with the connecting pin 143 as a center while receiving a surface pressure due to a large rotational torque Ft. Further, the contact surface between the link arm 142A and the swash plate arm 147 rotates and slides relative to the connection pin 144 while receiving a surface pressure due to a large rotational torque Ft.
  • the swash plate 141 When the compressor is in operation (when the drive shaft is rotating), the swash plate 141 receives a compression reaction force Fp as much as a piston force connected to the swash plate 141.
  • This compression reaction force Fp may be shifted forward in the rotational direction of the link mechanism as shown in Fig. 9 (see Fig. 2).
  • a twisting load is applied to the swash plate arm 147 in the Y direction in the figure, and the swash plate 141 and the link 142 are bitten and twisted at two points (C, C), further increasing the sliding resistance. End up.
  • Patent Document 1 that solves such a problem, a force in which a washer is interposed between the contact surfaces of the rotor arm and the link arm and between the contact surfaces of the link arm and the swash plate arm. Even with such a structure, the same problem occurs.
  • the present invention has been made paying attention to the problems of the prior art, and an object thereof is to provide a variable capacity compressor capable of reducing a torsional load applied to a link mechanism.
  • One aspect of the present invention is a variable capacity compressor, a rotating member fixed to a drive shaft and rotating integrally therewith, and a three-piece mounted on the drive shaft so as to be slidable in the axial direction.
  • a tilting member rotatably mounted on the sleeve by a pivot pin, and connecting the rotating member and the tilting member to allow tilting of the tilting member while allowing the rotating member to rotate torque of the rotating member.
  • a tilting guide formed on a surface orthogonal to the pivot pin on each of the sleeve and the tilting member and in sliding contact with each other. A surface.
  • FIG. 1 is a cross-sectional view of a variable capacity compressor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of an assembly in which a swash plate and a rotor are assembled to a drive shaft.
  • FIG. 3 is an exploded perspective view of the assembly.
  • FIG. 4 is a sectional view of the assembly.
  • FIG. 5 (a) is a cross-sectional view taken along the line Va—Va in FIG. 4, and FIG. 5 (b) is a cross-sectional view taken along the line Vb—Vb in FIG.
  • FIG. 6 is a perspective view including a partially broken portion in a state where a sleeve is assembled to a swash plate hub.
  • FIG. 7 is a view showing a state in which a sleeve is assembled to a swash plate hub.
  • FIG. 7 (a) is a front view
  • FIG. 7 (b) is a side view
  • Fig. 8 is a cross-sectional view taken along line VIII-VIII in Fig. 7 (c), and Fig. 8 (a) is a view of the swash plate hub parallel to the sleeve. (b) is a view of the swash plate hub tilted with respect to the sleeve.
  • FIG. 9 is a sectional view showing an example of a link mechanism of a conventional variable capacity compressor.
  • variable capacity compressor according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a cross-sectional view of a variable capacity compressor.
  • variable capacity compressor 1 of the present embodiment is a swash plate type variable capacity compressor.
  • the variable capacity compressor 1 includes a cylinder block 2 having a plurality of cylinder bores 3 (see FIG. 2) arranged at equal intervals in the circumferential direction, and a cylinder block 2 joined to the front end surface of the cylinder block 2 and cranked inside.
  • a front housing 4 that forms a chamber 5 and a rear housing 6 that is joined to a rear end surface of the cylinder block 2 via a valve plate 9 and that forms a suction chamber 7 and a discharge chamber 8 therein.
  • the cylinder block 2, the front housing 4 and the rear housing 6 are fastened and fixed by a plurality of through bolts 13 to constitute a compressor housing.
  • the valve plate 9 is formed with a suction hole 11 that communicates the cylinder bore 3 and the suction chamber 7, and a discharge hole 12 that communicates the cylinder bore 3 and the discharge chamber 8.
  • a suction valve mechanism (not shown) that opens and closes the suction hole 11 is provided on the surface of the valve plate 9 on the cylinder block 2 side. Discharge on the rear housing 6 side of the valve plate 9 A discharge valve mechanism (not shown) for opening and closing the hole 12 is provided. A gasket (not shown) is interposed between the valve plate 9 and the rear housing 6 so that the airtightness of the suction chamber 7 and the discharge chamber 8 is maintained.
  • the central through hole 14 as a bearing hole at the center of the cylinder block 2 and the front housing 4 is supported by a drive shaft 10 via radial bearings 15 and 19, thereby driving shaft 10 force S crank It is freely rotatable in chamber 5.
  • a thrust bearing 20 is interposed between the front end surface of a rotor 21 (described later) fixed to the drive shaft 10 and the inner wall surface of the rear housing 6, and the rear end of the central through hole 14 of the cylinder block 2.
  • a thrust bearing 16 is interposed between the adjusting screw 17 as a fixing member fixed to the side and the rear end surface of the drive shaft 10.
  • the crank chamber 5 includes a rotor 21 as a rotating member fixed to the drive shaft 10, a sleeve 22 slidably mounted on the drive shaft 10 in the axial direction, and a pivot pin 61 on the sleeve 22. And a swash plate 24 as a tilting member that can be pivoted with respect to the sleeve 22. That is, the swash plate 24 is attached to the drive shaft 10 via the sleeve 22 and the pivot pin 61, so that it can tilt with respect to the drive shaft 10 and slide in the axial direction of the drive shaft 10. .
  • the swash plate 24 includes a knob 25 attached to the sleeve 22 so as to be tiltable, and a swash plate body 26 fixed to a boss portion 25a of the hub 25.
  • a piston 29 is slidably accommodated in each cylinder bore 3, and this piston 29 is connected to a swash plate 24 via a pair of hemispherical piston shoes 30, 30.
  • a link mechanism 40 is interposed between the rotor 21 as the rotating member and the swash plate 24 as the tilting member.
  • the link mechanism 40 allows the rotational torque of the rotor 21 to be transmitted to the swash plate 24 while allowing the tilt angle of the swash plate 24 to be changed.
  • the inclination angle of the swash plate 24 decreases as the sleeve 22 moves closer to the cylinder block 2 side against the return spring 52, while the inclination angle of the swash plate 24 decreases, while the sleeve 22 resists the return spring 51. Then, when it moves away from the cylinder block 2, the inclination angle of the swash plate 24 increases.
  • Reference numeral 53 in FIG. 1 is a return spring stopper (for example, a C ring) that is locked in an annular groove formed in the drive shaft 10 and that compresses and holds the return spring 52 between the sleeve 22 and the like. is there.
  • This variable capacity compressor is provided with a pressure control mechanism.
  • the pressure control mechanism changes the tilt angle of the swash plate 24 by adjusting the differential pressure (pressure balance) between the crank chamber pressure Pc on the rear side of the piston 29 and the suction chamber pressure Ps on the front side of the piston 29. Change the piston stroke. When the piston stroke changes, the refrigerant discharge capacity of the compressor changes.
  • the pressure control mechanism includes an extraction passage (not shown) that connects the crank chamber 5 and the suction chamber 7, and an air supply passage (not shown) that connects the crank chamber 5 and the discharge chamber 8. And a control valve 33 provided in the middle of the air supply passage for controlling the opening and closing of the air supply passage.
  • FIG. 2 is a perspective view of an assembly in which a swash plate and a rotor are assembled to a drive shaft
  • FIG. 3 is an exploded perspective view of the assembly
  • FIG. 4 is a sectional view of the assembly
  • FIG. 5 (a) is in FIG. Fig. 5 (b) is a cross-sectional view taken along the line Vb-Vb in Fig. 4
  • Fig. 6 is a swash plate hub.
  • 7 is a perspective view including a partially broken portion in a state where a sleeve is assembled
  • FIG. 7 is a diagram showing a state where a sleeve is assembled to a hub of a swash plate
  • (a) is a front view
  • (b) is a side view.
  • Yes (c) is a cross-sectional view taken along line VIIc-VIIc in (b)
  • FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7 (c)
  • FIG. FIG. 8 (b) is a diagram showing a state in which the swash plate hub is parallel
  • FIG. 8 (b) is a diagram showing a state in which the swash plate hub is inclined with respect to the sleeve.
  • the width dl of the slit 41s of the rotor 21 (that is, the width between the inner surfaces 41d and 41d of the pair of arms 41 and 41 of the rotor 21) and the width d2 of the slit 43s of the swash plate 24 (that is, the width of the swash plate 24)
  • a pair of arms 43 and 43 are formed to have the same width between the inner flanges J surface 43d and 43d), and the width dO of the link member 45 (that is, both of the link members 45) with respect to the widths dl and d2.
  • the width between the outer side surfaces 45e and 45e) is also formed to be substantially the same width, whereby the link member 45 is slidably fitted in both the slits 41s and 43s, and is always in sliding contact.
  • One end 45a of the link member 45 is rotatably connected to the pair of arms 41, 41 of the rotor 21 by a first connecting pin 46.
  • the other end 45 b of the link member 45 is rotatably connected to the pair of arms 43, 43 of the swash plate 24 by the second connecting pin 47.
  • a pair of arms 41, 41 of the rotor 21 is provided with a bearing hole 41a that rotatably supports the first connecting pin 46, and the first end 45a of the link member 45 has a first hole 45a.
  • a fixing hole 45c for fixing the connecting pin 46 by press-fitting is provided.
  • the pair of arms 43, 43 of the swash plate 24 is provided with a bearing hole 43a for rotatably supporting the second connecting pin 47, and the link portion
  • the other end 45b of the material 45 is provided with a fixing hole 45d for fixing the second connecting pin 47 by press fitting.
  • the first connecting pin 46 and the second connecting pin 47 have the same diameter and the same length.
  • the hub 25 is pivotally attached to the sleeve 22 by a pivot pin 61 that extends in a direction orthogonal to the drive shaft 10, and pivots while being guided by tilting guide surfaces 22 c and 25 e orthogonal to the pivot pin 61. It ’s like that.
  • the sleeve 22 is formed in a substantially cylindrical shape, and is attached to the drive shaft 10 so as to be slidable in the axial direction.
  • fixing holes 22b and 22b are formed concentrically on both sides of the drive shaft 10.
  • the fixing holes 22b and 22b extend in a direction perpendicular to the drive shaft 10, and the pivot pin 61 is fixed to the fixing holes 22b and 22b.
  • the swash plate hub 25 has bearing holes 25d and 25d formed concentrically on both sides of the drive shaft 10.
  • the bearing holes 25d and 25d extend in a direction orthogonal to the drive shaft 10.
  • the pivot pin 61 is inserted into the bearing holes 25d and 25d of the hub 25 with the sleeve 22 attached to the central port 25c of the hub 25, so that the pivot pin as shown in FIGS. 8 (a) and (b).
  • the hub 25 tilts with respect to the sleeve 22 around 61.
  • the sleeve 22 and the hub 25 are provided with tilting guide surfaces 22c and 25e that are in sliding contact with each other as shown in FIGS.
  • the tilt guide surfaces 22c and 25e are provided on both sides of the drive shaft 10 as surfaces orthogonal to the pivot pin 61. Therefore, the hub 25 is tilted about the pivot pin 61 with respect to the sleeve 22 while being guided by the tilt guide surfaces 22c and 25e.
  • the rotor 21 rotates integrally with the drive shaft 10.
  • the rotation of the rotor 21 is transmitted to the swash plate 24 via the link mechanism 40.
  • the rotation of the swash plate 24 is converted into a reciprocating motion of the piston 29 through a pair of pistons 30, 30, and the piston 29 reciprocates in the cylinder bore 3.
  • the reciprocating motion of the piston 29 causes the refrigerant valve plate in the suction chamber 7 to move. After being sucked into the cylinder bore 3 through the suction hole 11 of the cylinder 9, it is compressed in the cylinder bore 3, and is discharged into the discharge chamber 8 through the discharge hole 12 of the compressed refrigerant cover valve plate 9.
  • the pressure in the crank chamber 5 is adjusted by opening and closing the control valve 33, the pressure balance before and after the piston is adjusted, and the piston stroke is changed.
  • a compression reaction force Fp from the piston 29 is applied to the swash plate 24.
  • the compression reaction force Fp may be shifted forward in the rotational direction from the top dead center TDC of the swash plate 24 (position where the link mechanism 40 is located) depending on the rotational speed of the drive shaft 10. This is because the compression reaction force becomes maximum before the top dead center of the end of the compression stroke in the compression stroke of the piston 29.
  • the compression reaction force Fp is biased to the swash plate 24 forward in the rotational direction from the top dead center TDC, and a torsional load is applied to the swash plate 24.
  • the torsional load is received by the link mechanism 40 and the tilt guide surfaces 22c and 25e. For this reason, the torsional load applied to the link mechanism 40 that transmits the rotational torque and rotates and slides is reduced. As a result, the sliding resistance in the link mechanism 40 is reduced. That is, the sliding resistance between the link member 45 and the arms 41 and 43 decreases. More specifically, the sliding resistance between the outer side surface 45e of the link member and the inner side surface 41d of the arm 41 and the sliding resistance between the outer side surface 45e of the link member and the inner side surface 43d of the arm 43 are reduced). Thereby, the controllability of the compressor is improved. In the compressor 1 of the present embodiment, as shown in FIG.
  • the pair of tilting guide surfaces 22c, 22c of the sleeve 22 has a width d4 force.
  • the width 45 of the other end 45b of the material 45 is set wider. Therefore, more torsional loads can be received by the tilt guide surfaces 22c and 22c than the link mechanism 40, and the controllability of the compressor is further improved.
  • This embodiment is a variable capacity compressor, which is fixed to the drive shaft 10 and rotates integrally with the drive shaft 10, and is slidably mounted on the drive shaft 10 in the axial direction.
  • the rotation of the rotating member 21 while allowing the tilting member 24 to tilt by connecting the sleeve 22, the tilting member 24 rotatably mounted on the sleeve 22 by the pivot pin 61, and the rotating member 21 and the tilting member 24.
  • a link mechanism 40 for transmitting torque to the tilting member 24, and the tilting guide surfaces 22c and 25d formed on the sleeve 22 and the tilting member 24 as surfaces orthogonal to the pivot pin 61 are slidably contacted with each other.
  • This is a variable capacity compressor provided.
  • the link mechanism 40 includes the arm 41 projecting from the rotating member 21 toward the tilting member 24 and the arm 41 projecting from the tilting member 24 toward the rotating member 21. And the arm 43 of the rotating member and the arm 43 rotatably connected by a connecting pin (in this example, the first connecting pin 46 and the second connecting pin 47) directly or indirectly. Therefore, when changing the inclination angle of the tilting member 24, each member rotates around the pivot pin 61 of the sleeve 22 and the connecting pin of the link mechanism 40 (in this example, the connecting pins 46 and 47). Therefore, the friction form is “rolling-sliding friction”, so that the friction coefficient becomes extremely small, and the controllability of the compressor is further improved.
  • a connecting pin in this example, the first connecting pin 46 and the second connecting pin 47
  • the link mechanism 40 includes the pair of opposed arms 41, 41 projecting from the rotating member 21 toward the tilting member 24, and the tilting member 24 to the rotating member 21.
  • Towards A pair of opposed arms 43, 43 projecting from one end 45a is slidably fitted between a pair of arms 41, 41 of the rotating member, and the other end 45b is a pair of tilting members.
  • Link member 45 slidably fitted between the arms 43 and 43, and a first connecting pin 46 for rotatably connecting one end portion 45a of the link member and the arms 41 and 41 of the rotating member.
  • a second connecting pin 47 that rotatably connects the other end portion 45b of the link member and the arms 43, 43 of the tilting member.
  • each member rotates around the pivot pin 61 of the sleeve 22 and the connecting pins 46 and 47 of the link mechanism 40, so that the friction form is “Rolling sliding friction” makes the coefficient of friction extremely small and further improves the controllability of the compressor.
  • a pair of tilt guide surfaces 22c and 25e are provided across the drive shaft 10, and the width d4 of the pair of tilt guide surfaces 22c and 22c of the sleeve 22 is linked. It is wider than the width dO of the one end 45a of the member and the width dO of the other end 45b of the link member (see FIG. 5). Therefore, a larger torsional load can be received by the tilt guide surfaces 22c and 22c of the sleeve 22, and the burden on the link mechanism 40 can be reduced. This further improves the controllability of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A variable displacement compressor comprising a rotating member (21) secured to and rotating integrally with a drive shaft (10), a sleeve (22) fitted to the drive shaft (10) slidably in the axial direction, a tilting member (24) rotatably fitted to a sleeve (22) through pivot pins (61), a link mechanism (40) connecting the rotating member (21) to the tilting member (24) and transmitting the rotating torque of the rotating member (21) to the tilting member (24) while allowing inclination of the tilting member (24), and tilting guide faces (22c, 25d) formed on the sleeve (22) and the tilting member (24) as a surface perpendicular to the pivot pins (61) and brought into slidable contact with each other.

Description

可変容量圧縮機  Variable capacity compressor
技術分野  Technical field
[0001] 本発明は可変容量圧縮機に関する。  [0001] The present invention relates to a variable capacity compressor.
背景技術  Background art
[0002] 従来の一可変容量圧縮機は、駆動軸と、駆動軸に固定されて駆動軸と一体的に回 転するロータと、駆動軸に軸方向にスライド自在に装着されるスリーブと、スリーブに 傾動自在に装着される斜板と、ロータと斜板との間に介在し且つロータの回転を斜板 へ伝達するリンク機構と、斜板の回転に伴って往復動するピストンと、を備えている( 例えば特開 2003— 172417号公報、特開平 10— 176658号公報参照)。リンク機 構は、ロータの回転を斜板へ伝達しつつも、斜板の傾斜角を変化させることができる ように、ロータと斜板とを連結している。斜板の傾斜角を変化させると、ピストンストロー クが変化する。  [0002] A conventional variable capacity compressor includes a drive shaft, a rotor fixed to the drive shaft and rotating integrally with the drive shaft, a sleeve mounted on the drive shaft so as to be slidable in the axial direction, and a sleeve A swash plate that can be freely tilted, a link mechanism that is interposed between the rotor and the swash plate and transmits the rotation of the rotor to the swash plate, and a piston that reciprocates as the swash plate rotates. (See, for example, Japanese Patent Laid-Open Nos. 2003-172417 and 10-176658). The link mechanism connects the rotor and the swash plate so that the rotation angle of the swash plate can be changed while transmitting the rotation of the rotor to the swash plate. Changing the tilt angle of the swash plate changes the piston stroke.
[0003] 図 9は特開平 10— 176658号公報に相当するリンク機構である。  FIG. 9 shows a link mechanism corresponding to Japanese Patent Laid-Open No. 10-176658.
[0004] 図 9のリンク機構は、ロータ 140から斜板 141に向けて突設された対向する一対の ロータアーム 145、 146と、斜板 141からロータ 140に向けて突設された一本の斜板 アーム 147と、一対のリンクアーム 142A、 142Bと、を備えている。これら 5本のァー ム 145、 142A、 147、 143B、 146はトルクの伝達方向に積層されており、これにより ロータ 140の回転が斜板に伝達される。また、一対のリンクアーム 142A、 142Bは、 その一端部が一対のロータアーム 145、 146に第 1の連結ピン 143で回転自在に連 結され、その他端部が斜板アーム 147に第 2の連結ピン 144で回転自在に連結され ている。これにより、連結ピン 143を中心としてロータアーム 145、 146に対してリンク アーム 142A、 142Bが回転し、且つ、連結ピン 144を中心としてリンクアーム 142A、 142Bに対して斜板アーム 147が回転する。これにより、駆動軸(図示せず)に対して 斜板 141の傾斜角を変更できるようになって!/、る。 [0004] The link mechanism in FIG. 9 includes a pair of opposed rotor arms 145 and 146 projecting from the rotor 140 toward the swash plate 141, and a single projecting projecting from the swash plate 141 toward the rotor 140. A swash plate arm 147 and a pair of link arms 142A and 142B are provided. These five arms 145, 142A, 147, 143B, 146 are stacked in the direction of torque transmission, whereby the rotation of the rotor 140 is transmitted to the swash plate. One end of each of the pair of link arms 142A and 142B is rotatably connected to the pair of rotor arms 145 and 146 by the first connecting pin 143, and the other end is connected to the swash plate arm 147 by the second connection. Pins 144 are rotatably connected. As a result, the link arms 142A and 142B rotate with respect to the rotor arms 145 and 146 around the connecting pin 143, and the swash plate arm 147 rotates with respect to the link arms 142A and 142B around the connecting pin 144. As a result, the inclination angle of the swash plate 141 can be changed with respect to the drive shaft (not shown).
発明の開示  Disclosure of the invention
[0005] 圧縮機の作動時(駆動軸の回転時)には、ロータアーム 145とリンクアーム 142Aと の接触面およびリンクアーム 142Aと斜板アーム 147との接触面は、回転トルク伝達 面となるとともに回転摺動接触面となる。つまり、ロータアーム 145とリンクアーム 142 Aとの接触面は大きな回転トルク Ftによる面圧を受けながら連結ピン 143を中心に相 対的に摺動接触する。また、リンクアーム 142Aと斜板アーム 147との接触面は大き な回転トルク Ftによる面圧を受けながら連結ピン 144を中心に相対的に摺動回転す る。そのため、斜板 141の傾斜角を変更させる際には、ロータアーム 145とリンクァー ム 142Aとの当接面間の摺動抵抗が極めて大きぐリンクアーム 142Aと斜板アーム 1 47との当接面間の摺動抵抗も極めて大きい。 [0005] During the operation of the compressor (when the drive shaft rotates), the rotor arm 145 and the link arm 142A The contact surface and the contact surface between the link arm 142A and the swash plate arm 147 serve as a rotational torque transmission surface and a rotational sliding contact surface. That is, the contact surface between the rotor arm 145 and the link arm 142A is in sliding contact with the connecting pin 143 as a center while receiving a surface pressure due to a large rotational torque Ft. Further, the contact surface between the link arm 142A and the swash plate arm 147 rotates and slides relative to the connection pin 144 while receiving a surface pressure due to a large rotational torque Ft. Therefore, when the inclination angle of the swash plate 141 is changed, the contact surface between the link arm 142A and the swash plate arm 147 where the sliding resistance between the contact surfaces of the rotor arm 145 and the link arm 142A is extremely large. The sliding resistance between them is extremely large.
[0006] また、圧縮機の作動時 (駆動軸の回転時)には、斜板 141は該斜板 141に連結され たピストン力もの圧縮反力 Fpを受ける。この圧縮反力 Fpは回転数によって図 9のよう にリンク機構よりも回転方向前方にズレことがある(図 2参照)。この場合、斜板アーム 147に図中 Y方向に捻れ荷重が加わり、斜板 141とリンク 142が 2点(C、 C)でこじれ るように食 、込み合うことで、更に摺動抵抗が増大してしまう。  [0006] When the compressor is in operation (when the drive shaft is rotating), the swash plate 141 receives a compression reaction force Fp as much as a piston force connected to the swash plate 141. This compression reaction force Fp may be shifted forward in the rotational direction of the link mechanism as shown in Fig. 9 (see Fig. 2). In this case, a twisting load is applied to the swash plate arm 147 in the Y direction in the figure, and the swash plate 141 and the link 142 are bitten and twisted at two points (C, C), further increasing the sliding resistance. End up.
[0007] このような課題を解決すベぐ特許文献 1ではロータアームとリンクアームとの当接 面間およびリンクアームと斜板アームとの当接面間にヮッシャを介在させてある力 こ のような構造にしてもやはり同様の問題は発生してしまう。  [0007] In Patent Document 1 that solves such a problem, a force in which a washer is interposed between the contact surfaces of the rotor arm and the link arm and between the contact surfaces of the link arm and the swash plate arm. Even with such a structure, the same problem occurs.
[0008] 本発明は前記従来技術の課題に着目して為されたもので、リンク機構に加わるねじ れ荷重を低減できる可変容量圧縮機の提供を目的とする。  [0008] The present invention has been made paying attention to the problems of the prior art, and an object thereof is to provide a variable capacity compressor capable of reducing a torsional load applied to a link mechanism.
[0009] 本発明の 1つのアスペクトは、可変容量圧縮機であって、駆動軸に固定されて一体 に回転する回転部材と、前記駆動軸に軸方向に向けてスライド自在に装着されるスリ ーブと、前記スリーブにピボットピンによって回転自在に装着された傾動部材と、前記 回転部材と前記傾動部材とを連結して前記傾動部材の傾動を許容しつつ前記回転 部材の回転トルクを前記傾動部材に伝達するリンク機構と、前記傾動部材の回転運 動に伴って往復動するピストンと、前記スリーブおよび前記傾動部材のそれぞれに前 記ピボットピンと直交する面で形成され且つ互いに摺動接触する傾動ガイド面と、を 備える。  [0009] One aspect of the present invention is a variable capacity compressor, a rotating member fixed to a drive shaft and rotating integrally therewith, and a three-piece mounted on the drive shaft so as to be slidable in the axial direction. A tilting member rotatably mounted on the sleeve by a pivot pin, and connecting the rotating member and the tilting member to allow tilting of the tilting member while allowing the rotating member to rotate torque of the rotating member. A tilting guide formed on a surface orthogonal to the pivot pin on each of the sleeve and the tilting member and in sliding contact with each other. A surface.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は本発明の一実施形態に力かる可変容量圧縮機の断面図。 [図 2]図 2は駆動軸に斜板およびロータを組み付けたアッセンプリの斜視図。 [0010] FIG. 1 is a cross-sectional view of a variable capacity compressor according to an embodiment of the present invention. FIG. 2 is a perspective view of an assembly in which a swash plate and a rotor are assembled to a drive shaft.
[図 3]図 3は同アッセンプリの分解斜視図。  FIG. 3 is an exploded perspective view of the assembly.
[図 4]図 4は同アッセンプリの断面図。  [FIG. 4] FIG. 4 is a sectional view of the assembly.
[図 5]図 5 (a)は図 4中の Va— Va線に沿う断面図、図 5 (b)は図 4中の Vb— Vb線に 沿う断面図。  FIG. 5 (a) is a cross-sectional view taken along the line Va—Va in FIG. 4, and FIG. 5 (b) is a cross-sectional view taken along the line Vb—Vb in FIG.
[図 6]図 6は斜板のハブにスリーブを組み付けた状態の一部破断部を含む斜視図。  FIG. 6 is a perspective view including a partially broken portion in a state where a sleeve is assembled to a swash plate hub.
[図 7]図 7は斜板のハブにスリーブを組み付けた状態を示す図であって図 7 (a)は正 面図であり図 7 (b)は側面図であり図 7 (c)は図 7 (b)中の VIIc— VIIc線に沿う断面図  [FIG. 7] FIG. 7 is a view showing a state in which a sleeve is assembled to a swash plate hub. FIG. 7 (a) is a front view, FIG. 7 (b) is a side view, and FIG. Sectional view along line VIIc-VIIc in Fig. 7 (b)
[図 8]図 8は図 7 (c)中の VIII— VIII線に沿う断面図であって図 8 (a)はスリーブに対し て斜板のハブを平行にした状態の図であり図 8 (b)はスリーブに対して斜板のハブを 傾斜させた状態の図。 [Fig. 8] Fig. 8 is a cross-sectional view taken along line VIII-VIII in Fig. 7 (c), and Fig. 8 (a) is a view of the swash plate hub parallel to the sleeve. (b) is a view of the swash plate hub tilted with respect to the sleeve.
[図 9]図 9は従来の可変容量圧縮機のリンク機構の一例を示す断面図。  FIG. 9 is a sectional view showing an example of a link mechanism of a conventional variable capacity compressor.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の一実施形態の可変容量圧縮機を図面を参照しつつ説明する。 Hereinafter, a variable capacity compressor according to an embodiment of the present invention will be described with reference to the drawings.
[0012] 図 1は可変容量圧縮機の断面図である。 FIG. 1 is a cross-sectional view of a variable capacity compressor.
[0013] 本実施形態の可変容量圧縮機 1は、図 1に示すように、斜板式の可変容量圧縮機 である。この可変容量圧縮機 1は、円周方向に複数の等間隔に配置されたシリンダボ ァ 3 (図 2参照)を有するシリンダブロック 2と、該シリンダブロック 2の前端面に接合さ れ且つ内部にクランク室 5を形成するフロントハウジング 4と、シリンダブロック 2の後端 面にバルブプレート 9を介して接合され且つ内部に吸入室 7および吐出室 8を形成す るリアハウジング 6と、を備えている。これらシリンダブロック 2とフロントハウジング 4とリ ァハウジング 6とは、複数のスルーボルト 13によって締結固定され、圧縮機のハウジ ングを構成している。  As shown in FIG. 1, the variable capacity compressor 1 of the present embodiment is a swash plate type variable capacity compressor. The variable capacity compressor 1 includes a cylinder block 2 having a plurality of cylinder bores 3 (see FIG. 2) arranged at equal intervals in the circumferential direction, and a cylinder block 2 joined to the front end surface of the cylinder block 2 and cranked inside. A front housing 4 that forms a chamber 5 and a rear housing 6 that is joined to a rear end surface of the cylinder block 2 via a valve plate 9 and that forms a suction chamber 7 and a discharge chamber 8 therein. The cylinder block 2, the front housing 4 and the rear housing 6 are fastened and fixed by a plurality of through bolts 13 to constitute a compressor housing.
[0014] バルブプレート 9には、シリンダボア 3と吸入室 7とを連通する吸入孔 11と、シリンダ ボア 3と吐出室 8とを連通する吐出孔 12と、が形成されている。  The valve plate 9 is formed with a suction hole 11 that communicates the cylinder bore 3 and the suction chamber 7, and a discharge hole 12 that communicates the cylinder bore 3 and the discharge chamber 8.
[0015] バルブプレート 9のシリンダブロック 2側の面には、吸入孔 11を開閉する図示せぬ 吸入弁機構が設けられている。バルブプレート 9のリアハウジング 6側の面には、吐出 孔 12を開閉する図示せぬ吐出弁機構が設けられている。バルブプレート 9とリアハウ ジング 6との間には図示せぬガスケットが介在し、吸入室 7と吐出室 8の密閉性が保 持されている。 A suction valve mechanism (not shown) that opens and closes the suction hole 11 is provided on the surface of the valve plate 9 on the cylinder block 2 side. Discharge on the rear housing 6 side of the valve plate 9 A discharge valve mechanism (not shown) for opening and closing the hole 12 is provided. A gasket (not shown) is interposed between the valve plate 9 and the rear housing 6 so that the airtightness of the suction chamber 7 and the discharge chamber 8 is maintained.
[0016] シリンダブロック 2およびフロントハウジング 4の中心の軸受穴としての中央貫通口 1 4、 18にはラジアル軸受 15、 19を介して駆動軸 10が軸支され、これにより駆動軸 10 力 Sクランク室 5内で回転自在となっている。なお、駆動軸 10に固定されたロータ 21 ( 後述する)の前端面とリアハウジング 6の内壁面との間にスラスト軸受 20が介在してお り、シリンダブロック 2の中央貫通口 14の後端側に固定された固定部材としての調整 ネジ 17と、駆動軸 10の後端面と、の間にスラスト軸受 16が介在している。  [0016] The central through hole 14 as a bearing hole at the center of the cylinder block 2 and the front housing 4 is supported by a drive shaft 10 via radial bearings 15 and 19, thereby driving shaft 10 force S crank It is freely rotatable in chamber 5. A thrust bearing 20 is interposed between the front end surface of a rotor 21 (described later) fixed to the drive shaft 10 and the inner wall surface of the rear housing 6, and the rear end of the central through hole 14 of the cylinder block 2. A thrust bearing 16 is interposed between the adjusting screw 17 as a fixing member fixed to the side and the rear end surface of the drive shaft 10.
[0017] クランク室 5は、前記駆動軸 10に固設された回転部材としてのロータ 21と、駆動軸 10に軸方向に向けてスライド自在に装着されたスリーブ 22と、スリーブ 22にピボット ピン 61により連結されてスリーブ 22に対して枢動可能な傾動部材としての斜板 24と 、を収容している。つまり、斜板 24は、駆動軸 10にスリーブ 22とピボットピン 61を介し て装着されることで、駆動軸 10に対して傾動自在で且つ駆動軸 10の軸方向にスライ ド自在になっている。この例では斜板 24は、スリーブ 22に傾動可能に装着されたノヽ ブ 25と、このハブ 25のボス部 25aに固定された斜板本体 26と、を備えてなる。  The crank chamber 5 includes a rotor 21 as a rotating member fixed to the drive shaft 10, a sleeve 22 slidably mounted on the drive shaft 10 in the axial direction, and a pivot pin 61 on the sleeve 22. And a swash plate 24 as a tilting member that can be pivoted with respect to the sleeve 22. That is, the swash plate 24 is attached to the drive shaft 10 via the sleeve 22 and the pivot pin 61, so that it can tilt with respect to the drive shaft 10 and slide in the axial direction of the drive shaft 10. . In this example, the swash plate 24 includes a knob 25 attached to the sleeve 22 so as to be tiltable, and a swash plate body 26 fixed to a boss portion 25a of the hub 25.
[0018] 各シリンダボア 3にはピストン 29が摺動自在に収容されており、このピストン 29は半 球状の一対のピストンシユー 30、 30を介して斜板 24に連結されて!、る。  A piston 29 is slidably accommodated in each cylinder bore 3, and this piston 29 is connected to a swash plate 24 via a pair of hemispherical piston shoes 30, 30.
[0019] 回転部材としてのロータ 21と、傾動部材としての斜板 24と、の間にはリンク機構 40 が介在している。このリンク機構 40により斜板 24の傾角の変更を許容しつつロータ 2 1の回転トルクを斜板 24に伝達できるようになって 、る。  [0019] A link mechanism 40 is interposed between the rotor 21 as the rotating member and the swash plate 24 as the tilting member. The link mechanism 40 allows the rotational torque of the rotor 21 to be transmitted to the swash plate 24 while allowing the tilt angle of the swash plate 24 to be changed.
[0020] 斜板 24の傾斜角は、スリーブ 22がリターンスプリング 52に抗してシリンダブロック 2 側に近接移動すると斜板 24の傾斜角が減少し、一方、スリーブ 22がリターンスプリン グ 51に抗してシリンダブロック 2から離れる方向に移動すると斜板 24の傾斜角が増大 する。なお、図 1中の符号 53は、駆動軸 10に形成された環状溝に係止され且つスリ ーブ 22との間にリターンスプリング 52を圧縮保持するリターンスプリング用ストッパ( 例えば Cリングなど)である。  [0020] The inclination angle of the swash plate 24 decreases as the sleeve 22 moves closer to the cylinder block 2 side against the return spring 52, while the inclination angle of the swash plate 24 decreases, while the sleeve 22 resists the return spring 51. Then, when it moves away from the cylinder block 2, the inclination angle of the swash plate 24 increases. Reference numeral 53 in FIG. 1 is a return spring stopper (for example, a C ring) that is locked in an annular groove formed in the drive shaft 10 and that compresses and holds the return spring 52 between the sleeve 22 and the like. is there.
[0021] 駆動軸 10が回転すると、駆動軸 10と一体でロータ 21が回転し、このロータ 21の回 転がリンク機構 40を介して斜板 24に伝達される。斜板 24の回転は、ピストン 29の往 復動に変換され、ピストン 29がシリンダボア 3内を往復動する。このピストン 29の往復 動すると、吸入室 7内の冷媒がバルブプレート 9の吸入孔 11を通じてシリンダボア 3 内に吸入されたのちシリンダボア 3内で圧縮され、圧縮された冷媒がバルブプレート 9の吐出孔 12を通じて吐出室 8へと吐出される。 [0021] When the drive shaft 10 rotates, the rotor 21 rotates together with the drive shaft 10, and the rotation of the rotor 21 rotates. The rotation is transmitted to the swash plate 24 via the link mechanism 40. The rotation of the swash plate 24 is converted into the back-and-forth movement of the piston 29, and the piston 29 reciprocates in the cylinder bore 3. When the piston 29 reciprocates, the refrigerant in the suction chamber 7 is sucked into the cylinder bore 3 through the suction hole 11 of the valve plate 9 and then compressed in the cylinder bore 3, and the compressed refrigerant is discharged into the discharge hole 12 of the valve plate 9. It is discharged to the discharge chamber 8 through.
[0022] この可変容量圧縮機には、圧力制御機構が設けられている。圧力制御機構は、ピ ストン 29の後面側のクランク室圧 Pcとピストン 29の前面側の吸入室圧 Psの差圧(圧 カバランス)を調整することにより、斜板 24の傾角を変化させて、ピストンストロークを 変化させる。ピストンストロークが変化すると、圧縮機の冷媒の吐出容量が変化する。  [0022] This variable capacity compressor is provided with a pressure control mechanism. The pressure control mechanism changes the tilt angle of the swash plate 24 by adjusting the differential pressure (pressure balance) between the crank chamber pressure Pc on the rear side of the piston 29 and the suction chamber pressure Ps on the front side of the piston 29. Change the piston stroke. When the piston stroke changes, the refrigerant discharge capacity of the compressor changes.
[0023] 圧力制御機構は、具体的には、クランク室 5と吸入室 7とを連通する抽気通路(図示 せぬ)と、クランク室 5と吐出室 8とを連通する給気通路(図示せぬ)と、この給気通路 の途中に設けられ給気通路を開閉制御する制御弁 33と、を有する。  [0023] Specifically, the pressure control mechanism includes an extraction passage (not shown) that connects the crank chamber 5 and the suction chamber 7, and an air supply passage (not shown) that connects the crank chamber 5 and the discharge chamber 8. And a control valve 33 provided in the middle of the air supply passage for controlling the opening and closing of the air supply passage.
[0024] 抽気通路は、制御弁 33の開閉に関わらず開いているので、抽気通路を通じてクラ ンク室 5内の冷媒ガスが吸入室 7に常時抜けて 、くようになって 、る。  [0024] Since the extraction passage is open regardless of whether the control valve 33 is opened or closed, the refrigerant gas in the crank chamber 5 always flows into the suction chamber 7 through the extraction passage.
[0025] 制御弁 33によって給気通路を開くと、吐出室 8から高圧の冷媒ガスが給気通路を 通じてクランク室 5に流れ込み、これによりクランク室 5内の圧力が上昇する。クランク 室 5内の圧力が上昇すると、スリーブ 22がシリンダブロック 2側に近接移動しつつ斜 板 24の傾斜角が減少することで、ピストンストロークが小さくなり、吐出量が減少する  When the supply passage is opened by the control valve 33, high-pressure refrigerant gas flows from the discharge chamber 8 through the supply passage into the crank chamber 5, thereby increasing the pressure in the crank chamber 5. When the pressure in the crank chamber 5 rises, the sleeve 22 moves closer to the cylinder block 2 and the inclination angle of the swash plate 24 decreases, thereby reducing the piston stroke and reducing the discharge amount.
[0026] 一方、制御弁 33によって給気通路を閉じると、抽気通路を通じてクランク室 5内の 冷媒ガスが吸入室 7に常時抜けていっているため、次第に吸入室 7とクランク室 5との 圧力差が小さくなつていく。すると、スリーブ 22がシリンダブロック 2から離れる方向に 移動しつつ斜板 24の傾斜角が増大して、ピストンストロークが大きくなり、吐出量が増 大する。 [0026] On the other hand, when the supply passage is closed by the control valve 33, the refrigerant gas in the crank chamber 5 always escapes to the suction chamber 7 through the extraction passage, so that the pressure difference between the suction chamber 7 and the crank chamber 5 gradually increases. Will get smaller. Then, while the sleeve 22 moves away from the cylinder block 2, the inclination angle of the swash plate 24 increases, the piston stroke increases, and the discharge amount increases.
[0027] 次に、図 2〜図 8を参照しつつ斜板の支持構造をより詳しく説明する。  Next, the support structure for the swash plate will be described in more detail with reference to FIGS.
[0028] 図 2は駆動軸に斜板およびロータを組み付けたアッセンプリの斜視図、図 3は同ァ ッセンプリの分解斜視図、図 4は同アッセンプリの断面図、図 5 (a)は図 4中の Va— V a線に沿う断面図、図 5 (b)は図 4中の Vb— Vb線に沿う断面図、図 6は斜板のハブに スリーブを組み付けた状態の一部破断部を含む斜視図、図 7は斜板のハブにスリー ブを組み付けた状態を示す図であって (a)は正面図であり(b)は側面図であり(c)は (b)中の VIIc— VIIc線に沿う断面図、図 8は図 7 (c)中の VIII— VIII線に沿う断面図 であって図 8 (a)はスリーブに対して斜板のハブを平行にした状態の図であり図 8 (b) はスリーブに対して斜板のハブを傾斜させた状態の図である。 2 is a perspective view of an assembly in which a swash plate and a rotor are assembled to a drive shaft, FIG. 3 is an exploded perspective view of the assembly, FIG. 4 is a sectional view of the assembly, and FIG. 5 (a) is in FIG. Fig. 5 (b) is a cross-sectional view taken along the line Vb-Vb in Fig. 4, and Fig. 6 is a swash plate hub. 7 is a perspective view including a partially broken portion in a state where a sleeve is assembled, FIG. 7 is a diagram showing a state where a sleeve is assembled to a hub of a swash plate, (a) is a front view, and (b) is a side view. Yes (c) is a cross-sectional view taken along line VIIc-VIIc in (b), FIG. 8 is a cross-sectional view taken along line VIII-VIII in FIG. 7 (c), and FIG. FIG. 8 (b) is a diagram showing a state in which the swash plate hub is parallel, and FIG. 8 (b) is a diagram showing a state in which the swash plate hub is inclined with respect to the sleeve.
[0029] まずリンク機構 40について説明する。 First, the link mechanism 40 will be described.
[0030] 図 3、図 4、図 5 (a)に示すように、リンク機構 40は、ロータ 21から斜板 24に向けて 突設され且つスリット 41sで分割された対向する一対のアーム 41、 41と、斜板 24から ロータ 21に向けて突設され且つスリット 43sで分割された一対のアーム 43、 43と、口 ータ 21のスリット 41s (—対のアーム 41、 41間)と斜板 24のスリット 43s (—対のアーム 43、 43間)に挿入された矩形状のリンク部材 45と、を備えている。なお、いずれの一 対のアーム 41、 41および 43、 43も、駆動軸 10とは直交する方向(=回転方向の接 線方向)に向けて対向配置されている。  [0030] As shown in Figs. 3, 4, and 5 (a), the link mechanism 40 includes a pair of opposed arms 41 that protrude from the rotor 21 toward the swash plate 24 and are divided by slits 41s. 41, a pair of arms 43, 43 projecting from the swash plate 24 toward the rotor 21 and divided by a slit 43s, a slit 41s of the port 21 (between the pair of arms 41, 41) and the swash plate A rectangular link member 45 inserted into 24 slits 43s (between the pair of arms 43 and 43). Note that each of the pair of arms 41, 41 and 43, 43 is disposed so as to face in a direction orthogonal to the drive shaft 10 (= a tangential direction of the rotational direction).
[0031] ロータ 21のスリット 41sの幅 dl (つまりロータ 21の一対のアーム 41、 41の内側面 41 d、 41d間の幅)と、斜板 24のスリット 43sの幅 d2 (つまり斜板 24の一対のアーム 43、 43の内佃 J面 43d、 43d間の幅)と、は同一幅に形成され、さらにこの幅 dl、 d2に対し て、リンク部材 45の幅 dO (つまりリンク部材 45の両外側面 45e、 45eの間の幅)も略同 一幅で形成され、これにより両スリット 41s、 43s内にリンク部材 45が摺動自在に嵌合 されて、常に摺動接触している。  [0031] The width dl of the slit 41s of the rotor 21 (that is, the width between the inner surfaces 41d and 41d of the pair of arms 41 and 41 of the rotor 21) and the width d2 of the slit 43s of the swash plate 24 (that is, the width of the swash plate 24) A pair of arms 43 and 43 are formed to have the same width between the inner flanges J surface 43d and 43d), and the width dO of the link member 45 (that is, both of the link members 45) with respect to the widths dl and d2. The width between the outer side surfaces 45e and 45e) is also formed to be substantially the same width, whereby the link member 45 is slidably fitted in both the slits 41s and 43s, and is always in sliding contact.
[0032] リンク部材 45の一端部 45aは、第 1の連結ピン 46によりロータ 21の一対のアーム 4 1、 41に回転自在に連結されている。リンク部材 45の他端部 45bは、第 2の連結ピン 47により斜板 24の一対のアーム 43、 43に回転自在に連結されている。いずれの連 結ピン 46、 47も、駆動軸 10と直交する方向(=回転方向の接線方向)に向けて設定 されている。  [0032] One end 45a of the link member 45 is rotatably connected to the pair of arms 41, 41 of the rotor 21 by a first connecting pin 46. The other end 45 b of the link member 45 is rotatably connected to the pair of arms 43, 43 of the swash plate 24 by the second connecting pin 47. Both of the connecting pins 46 and 47 are set in a direction orthogonal to the drive shaft 10 (= tangential direction of the rotational direction).
[0033] この例では、ロータ 21の一対のアーム 41、 41に、第 1の連結ピン 46を回転自在に 軸支する軸受孔 41aが設けられ、リンク部材 45の一端部 45aに、第 1の連結ピン 46 を圧入により固定する固定孔 45cが設けられている。また、斜板 24の一対のアーム 4 3、 43に、第 2の連結ピン 47を回転自在に軸支する軸受孔 43aが設けられ、リンク部 材 45の他端部 45bに、第 2の連結ピン 47を圧入により固定する固定孔 45dが設けら れている。第 1の連結ピン 46と第 2の連結ピン 47とは同一径で且つ同一長さに設定 されている。 [0033] In this example, a pair of arms 41, 41 of the rotor 21 is provided with a bearing hole 41a that rotatably supports the first connecting pin 46, and the first end 45a of the link member 45 has a first hole 45a. A fixing hole 45c for fixing the connecting pin 46 by press-fitting is provided. The pair of arms 43, 43 of the swash plate 24 is provided with a bearing hole 43a for rotatably supporting the second connecting pin 47, and the link portion The other end 45b of the material 45 is provided with a fixing hole 45d for fixing the second connecting pin 47 by press fitting. The first connecting pin 46 and the second connecting pin 47 have the same diameter and the same length.
[0034] 次に、スリーブ 22とハブ 25とを連結するピボット機構について図 3〜図 7を参照しつ つ説明する。  [0034] Next, a pivot mechanism for connecting the sleeve 22 and the hub 25 will be described with reference to FIGS.
[0035] ハブ 25はスリーブ 22に対して、駆動軸 10とは直交する方向に延びるピボットピン 6 1により枢着され、ピボットピン 61と直交する傾動ガイド面 22c、 25eにガイドされつつ 枢動するようになつている。  The hub 25 is pivotally attached to the sleeve 22 by a pivot pin 61 that extends in a direction orthogonal to the drive shaft 10, and pivots while being guided by tilting guide surfaces 22 c and 25 e orthogonal to the pivot pin 61. It ’s like that.
[0036] スリーブ 22は、略円筒形に形成され、駆動軸 10に対して軸方向にスライド自在に 装着される。スリーブ 22には、固定孔 22b、 22bが駆動軸 10を挟んで両側に同心で 形成されている。固定孔 22b、 22bは、駆動軸 10と直交する方向に延びており、この 固定孔 22b、 22bに、ピボットピン 61が固定されている。  The sleeve 22 is formed in a substantially cylindrical shape, and is attached to the drive shaft 10 so as to be slidable in the axial direction. In the sleeve 22, fixing holes 22b and 22b are formed concentrically on both sides of the drive shaft 10. The fixing holes 22b and 22b extend in a direction perpendicular to the drive shaft 10, and the pivot pin 61 is fixed to the fixing holes 22b and 22b.
[0037] 一方、斜板のハブ 25は、軸受孔 25d、 25dが駆動軸 10を挟んで両側に同心で形 成されている。この軸受孔 25d、 25dは、駆動軸 10と直交する方向に延びている。ハ ブ 25の中心口 25cにスリーブ 22が装着された状態で、ハブ 25の軸受孔 25d、 25d にピボットピン 61が挿入されていることで、図 8 (a)および (b)の如くピボットピン 61を 中心にしてハブ 25がスリーブ 22に対して傾動するようになっている。そして、スリーブ 22およびハブ 25には、図 5〜図 7に示すように互い摺動接触する傾動ガイド面 22c、 25eが設けられている。この傾動ガイド面 22c、 25eはピボットピン 61と直交する面と して、駆動軸 10を挟んで両側に設けられている。そのため、ハブ 25は、傾動ガイド面 22c, 25eにガイドされつつ、スリーブ 22に対してピボットピン 61を中心にして傾動す るようになっている。  On the other hand, the swash plate hub 25 has bearing holes 25d and 25d formed concentrically on both sides of the drive shaft 10. The bearing holes 25d and 25d extend in a direction orthogonal to the drive shaft 10. The pivot pin 61 is inserted into the bearing holes 25d and 25d of the hub 25 with the sleeve 22 attached to the central port 25c of the hub 25, so that the pivot pin as shown in FIGS. 8 (a) and (b). The hub 25 tilts with respect to the sleeve 22 around 61. The sleeve 22 and the hub 25 are provided with tilting guide surfaces 22c and 25e that are in sliding contact with each other as shown in FIGS. The tilt guide surfaces 22c and 25e are provided on both sides of the drive shaft 10 as surfaces orthogonal to the pivot pin 61. Therefore, the hub 25 is tilted about the pivot pin 61 with respect to the sleeve 22 while being guided by the tilt guide surfaces 22c and 25e.
[0038] 作用  [0038] Action
次に、本実施形態の圧縮機の作用を説明する。  Next, the operation of the compressor of this embodiment will be described.
[0039] 駆動軸 10が回転すると、駆動軸 10と一体でロータ 21が回転する。このロータ 21の 回転がリンク機構 40を介して斜板 24に伝達される。斜板 24の回転は、一対のピスト ンシユー 30、 30を介してピストン 29の往復動に変換され、ピストン 29がシリンダボア 3 内を往復動する。このピストン 29の往復動により、吸入室 7内の冷媒カバルブプレー ト 9の吸入孔 11を通じてシリンダボア 3内に吸入されたのちシリンダボア 3内で圧縮さ れ、圧縮された冷媒カバルブプレート 9の吐出孔 12を通じて吐出室 8へと吐出される When the drive shaft 10 rotates, the rotor 21 rotates integrally with the drive shaft 10. The rotation of the rotor 21 is transmitted to the swash plate 24 via the link mechanism 40. The rotation of the swash plate 24 is converted into a reciprocating motion of the piston 29 through a pair of pistons 30, 30, and the piston 29 reciprocates in the cylinder bore 3. The reciprocating motion of the piston 29 causes the refrigerant valve plate in the suction chamber 7 to move. After being sucked into the cylinder bore 3 through the suction hole 11 of the cylinder 9, it is compressed in the cylinder bore 3, and is discharged into the discharge chamber 8 through the discharge hole 12 of the compressed refrigerant cover valve plate 9.
[0040] 冷媒の吐出容量を変化させるには、制御弁 33を開閉することで、クランク室 5内の 圧力を調整し、ピストンの前後の圧力バランスを調整して、ピストンストロークを変化さ せる。 [0040] In order to change the refrigerant discharge capacity, the pressure in the crank chamber 5 is adjusted by opening and closing the control valve 33, the pressure balance before and after the piston is adjusted, and the piston stroke is changed.
[0041] より具体的には、制御弁 33によって給気通路を開くと、吐出室 8から高圧の冷媒ガ スが給気通路を通じてクランク室 5に流れ込み、これによりクランク室 5内の圧力が上 昇する。クランク室 5内の圧力が上昇すると、スリーブ 22がシリンダブロック 2側に近接 移動しつつ斜板 24の傾斜角が減少することで、ピストンストロークが小さくなり、吐出 量が減少する。一方、制御弁 33によって給気通路を閉じると、抽気通路を通じてクラ ンク室 5内の冷媒ガスが吸入室 7に常時抜けていっているため、次第に吸入室 7とク ランク室 5との圧力差が無くなくなって均圧化していく。すると、スリーブ 22がシリンダ ブロック 2から離れる方向に移動しつつ斜板 24の傾斜角が増大して、ピストンストロー クが大きくなり、吐出量が増大する。  [0041] More specifically, when the supply passage is opened by the control valve 33, a high-pressure refrigerant gas flows from the discharge chamber 8 through the supply passage into the crank chamber 5, thereby increasing the pressure in the crank chamber 5. Ascend. When the pressure in the crank chamber 5 rises, the sleeve 22 moves closer to the cylinder block 2 and the inclination angle of the swash plate 24 decreases, so that the piston stroke becomes smaller and the discharge amount decreases. On the other hand, when the supply passage is closed by the control valve 33, the refrigerant gas in the crank chamber 5 is always discharged to the suction chamber 7 through the extraction passage, so that the pressure difference between the suction chamber 7 and the crank chamber 5 gradually increases. Eliminates and equalizes pressure. Then, while the sleeve 22 moves away from the cylinder block 2, the inclination angle of the swash plate 24 increases, the piston stroke increases, and the discharge amount increases.
[0042] ここで、圧縮機が運転している際には、斜板 24に対してピストン 29からの圧縮反力 Fpが加わる。この圧縮反力 Fpは、図 2に示すように、駆動軸 10の回転数によっては 斜板 24の上死点 TDC (リンク機構 40がある位置)より回転方向前方にずれることが ある。これはピストン 29の圧縮行程にぉ ヽて圧縮行程終点の上死点よりも手前で圧 縮反力が最大となることによる。このような場合、斜板 24には、上死点 TDCより回転 方向前方に圧縮反力 Fpが偏って、斜板 24に捻れ荷重が加わることになる。  Here, when the compressor is operating, a compression reaction force Fp from the piston 29 is applied to the swash plate 24. As shown in FIG. 2, the compression reaction force Fp may be shifted forward in the rotational direction from the top dead center TDC of the swash plate 24 (position where the link mechanism 40 is located) depending on the rotational speed of the drive shaft 10. This is because the compression reaction force becomes maximum before the top dead center of the end of the compression stroke in the compression stroke of the piston 29. In such a case, the compression reaction force Fp is biased to the swash plate 24 forward in the rotational direction from the top dead center TDC, and a torsional load is applied to the swash plate 24.
[0043] この捻れ荷重は、本実施形態では、リンク機構 40および傾動ガイド面 22c、 25eで 受け止められる。そのため、回転トルクを伝達するとともに回転摺動する部分であるリ ンク機構 40に加わる捻れ荷重が減ることとなる。これにより、リンク機構 40内の摺動 抵抗が減少する。つまり、リンク部材 45とアーム 41、 43との摺動抵抗が減少する。さ らに具体的にはリンク部材の外側面 45eおよびアーム 41の内側面 41dの摺動抵抗 ならびにリンク部材の外側面 45eとアーム 43の内側面 43dとの摺動抵抗が減少する) 。これにより、圧縮機の制御性が向上する。 [0044] し力も本実施形態の圧縮機 1においては、図 5に示すように、スリーブ 22の一対の 傾動ガイド面 22c、 22cの幅 d4力 リンク部材 45の一端部 45aの幅 dOおよびリンク部 材 45の他端部 45bの幅 dOよりも広く設定されている。そのため、リンク機構 40に比べ て傾動ガイド面 22c、 22cでより多くの捻れ荷重を受け止めることができ、さらに圧縮 機の制御性が向上する。 [0043] In the present embodiment, the torsional load is received by the link mechanism 40 and the tilt guide surfaces 22c and 25e. For this reason, the torsional load applied to the link mechanism 40 that transmits the rotational torque and rotates and slides is reduced. As a result, the sliding resistance in the link mechanism 40 is reduced. That is, the sliding resistance between the link member 45 and the arms 41 and 43 decreases. More specifically, the sliding resistance between the outer side surface 45e of the link member and the inner side surface 41d of the arm 41 and the sliding resistance between the outer side surface 45e of the link member and the inner side surface 43d of the arm 43 are reduced). Thereby, the controllability of the compressor is improved. In the compressor 1 of the present embodiment, as shown in FIG. 5, the pair of tilting guide surfaces 22c, 22c of the sleeve 22 has a width d4 force. The width dO of the one end 45a of the link member 45 and the link portion. The width 45 of the other end 45b of the material 45 is set wider. Therefore, more torsional loads can be received by the tilt guide surfaces 22c and 22c than the link mechanism 40, and the controllability of the compressor is further improved.
[0045] 以下、本実施形態の特徴を列挙する。  [0045] The features of this embodiment are listed below.
[0046] (1)本実施形態は、可変容量圧縮機であって、駆動軸 10に固定されて一体に回転 する回転部材 21と、駆動軸 10に軸方向に向けてスライド自在に装着されるスリーブ 2 2と、スリーブ 22にピボットピン 61によって回転自在に装着された傾動部材 24と、回 転部材 21と傾動部材 24とを連結して傾動部材 24の傾動を許容しつつ回転部材 21 の回転トルクを傾動部材 24に伝達するリンク機構 40と、を備え、スリーブ 22および傾 動部材 24に、ピボットピン 61と直交する面として形成され互!ヽに摺動接触する傾動 ガイド面 22c、 25dが設けられた可変容量圧縮機である。そのため、傾動部材 24に 圧縮反力が加わった際には、ねじれ荷重力 Sスリーブ 22とリンク機構 40の双方で受け 止められる。そのため、リンク機構 40 (トルクを伝達するとともに回転摺動する部分)に 加わるねじれ荷重が減る。これにより、傾動部材 24の傾斜角の変更がスムーズになり 、圧縮機の制御性が向上する。また、リンク機構 40の耐久性が向上し、且つ小型化 も図れる。  (1) This embodiment is a variable capacity compressor, which is fixed to the drive shaft 10 and rotates integrally with the drive shaft 10, and is slidably mounted on the drive shaft 10 in the axial direction. The rotation of the rotating member 21 while allowing the tilting member 24 to tilt by connecting the sleeve 22, the tilting member 24 rotatably mounted on the sleeve 22 by the pivot pin 61, and the rotating member 21 and the tilting member 24. A link mechanism 40 for transmitting torque to the tilting member 24, and the tilting guide surfaces 22c and 25d formed on the sleeve 22 and the tilting member 24 as surfaces orthogonal to the pivot pin 61 are slidably contacted with each other. This is a variable capacity compressor provided. Therefore, when a compression reaction force is applied to the tilting member 24, it is received by both the torsional load force S sleeve 22 and the link mechanism 40. As a result, the torsional load applied to the link mechanism 40 (the portion that rotates and slides while transmitting torque) is reduced. Thereby, the change of the tilt angle of the tilt member 24 becomes smooth, and the controllability of the compressor is improved. Further, the durability of the link mechanism 40 is improved and the size can be reduced.
[0047] (2)また本実施形態によれば、リンク機構 40は、回転部材 21から傾動部材 24に向 けて突設されたアーム 41と、傾動部材 24から回転部材 21に向けて突設され且つ回 転部材のアーム 41と直接または間接的に連結ピン (この例では第 1の連結ピン 46お よび第 2の連結ピン 47)により回転自在に連結されたアーム 43と、を備える。そのた め、傾動部材 24の傾斜角を変更する際にはスリーブ 22のピボットピン 61とリンク機構 40の連結ピン (この例では連結ピン 46、 47)とを中心に各部材が回転することとなる ため、摩擦形態が「ころがり—すべり摩擦」であることで摩擦係数が極めて小さくなり、 さらに圧縮機の制御性が向上する。  (2) According to the present embodiment, the link mechanism 40 includes the arm 41 projecting from the rotating member 21 toward the tilting member 24 and the arm 41 projecting from the tilting member 24 toward the rotating member 21. And the arm 43 of the rotating member and the arm 43 rotatably connected by a connecting pin (in this example, the first connecting pin 46 and the second connecting pin 47) directly or indirectly. Therefore, when changing the inclination angle of the tilting member 24, each member rotates around the pivot pin 61 of the sleeve 22 and the connecting pin of the link mechanism 40 (in this example, the connecting pins 46 and 47). Therefore, the friction form is “rolling-sliding friction”, so that the friction coefficient becomes extremely small, and the controllability of the compressor is further improved.
[0048] (3)また本発明によれば、リンク機構 40は、回転部材 21から傾動部材 24に向けて 突設された対向する一対のアーム 41、 41と、傾動部材 24から回転部材 21に向けて 突設された対向する一対のアーム 43、 43と、一端部 45aが回転部材の一対のァー ム 41、41の間に摺動自在に嵌合されるとともに他端部 45bが傾動部材の一対のァ ーム 43、 43の間に摺動自在に嵌合されたリンク部材 45と、リンク部材の一端部 45a と回転部材のアーム 41、 41とを回転自在に連結する第 1の連結ピン 46と、リンク部材 の他端部 45bと傾動部材のアーム 43、 43とを回転自在に連結する第 2の連結ピン 4 7と、を備えた構造である。そのため、傾動部材 24の傾斜角を変更する際には、スリ ーブ 22のピボットピン 61とリンク機構 40の連結ピン 46、 47とを中心に各部材が回転 することとなるため、摩擦形態が「ころがり すべり摩擦」であることで摩擦係数が極め て小さくなり、さらに圧縮機の制御性が向上する。 [0048] (3) According to the present invention, the link mechanism 40 includes the pair of opposed arms 41, 41 projecting from the rotating member 21 toward the tilting member 24, and the tilting member 24 to the rotating member 21. Towards A pair of opposed arms 43, 43 projecting from one end 45a is slidably fitted between a pair of arms 41, 41 of the rotating member, and the other end 45b is a pair of tilting members. Link member 45 slidably fitted between the arms 43 and 43, and a first connecting pin 46 for rotatably connecting one end portion 45a of the link member and the arms 41 and 41 of the rotating member. And a second connecting pin 47 that rotatably connects the other end portion 45b of the link member and the arms 43, 43 of the tilting member. Therefore, when changing the inclination angle of the tilting member 24, each member rotates around the pivot pin 61 of the sleeve 22 and the connecting pins 46 and 47 of the link mechanism 40, so that the friction form is “Rolling sliding friction” makes the coefficient of friction extremely small and further improves the controllability of the compressor.
[0049] (4)また本実施形態によれば、傾動ガイド面 22c、 25eはそれぞれ駆動軸 10を挟ん で一対設けられており、スリーブ 22の一対の傾動ガイド面 22c、 22cの幅 d4がリンク 部材の一端部 45aの幅 dOおよびリンク部材の他端部 45bの幅 dOよりも広い(図 5参 照)。そのため、スリーブ 22の傾動ガイド面 22c、 22cでより大きなねじれ荷重を受け 止めることができ、さらにリンク機構 40への負担を低減できる。これにより、さらに圧縮 機の制御性を向上できる。 [0049] (4) According to the present embodiment, a pair of tilt guide surfaces 22c and 25e are provided across the drive shaft 10, and the width d4 of the pair of tilt guide surfaces 22c and 22c of the sleeve 22 is linked. It is wider than the width dO of the one end 45a of the member and the width dO of the other end 45b of the link member (see FIG. 5). Therefore, a larger torsional load can be received by the tilt guide surfaces 22c and 22c of the sleeve 22, and the burden on the link mechanism 40 can be reduced. This further improves the controllability of the compressor.
産業上の利用可能性  Industrial applicability
[0050] なお、本発明は上述した実施形態のみに限定解釈されるものではなぐ本発明の 技術的思想の範囲内で様々な変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the technical idea of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 可変容量圧縮機であって、  [1] A variable capacity compressor,
駆動軸に固定されて一体に回転する回転部材と、  A rotating member fixed to the drive shaft and rotating integrally;
前記駆動軸に軸方向に向けてスライド自在に装着されるスリーブと、  A sleeve that is slidably attached to the drive shaft in the axial direction;
前記スリーブにピボットピンによって回転自在に装着された傾動部材と、 前記回転部材と前記傾動部材とを連結して前記傾動部材の傾動を許容しつつ前 記回転部材の回転トルクを前記傾動部材に伝達するリンク機構と、  A tilting member rotatably mounted on the sleeve by a pivot pin, and connecting the rotating member and the tilting member to allow the tilting member to tilt and transmit the rotational torque of the rotating member to the tilting member A link mechanism to
前記傾動部材の回転運動に伴って往復動するピストンと、  A piston that reciprocates with the rotational movement of the tilting member;
前記スリーブおよび前記傾動部材のそれぞれに前記ピボットピンと直交する面とし て形成され且つ互いに摺動接触する傾動ガイド面と、  A tilt guide surface formed as a surface orthogonal to the pivot pin on each of the sleeve and the tilt member and in sliding contact with each other;
を備える可変容量圧縮機。  A variable capacity compressor.
[2] 請求項 1に記載の可変容量圧縮機であって、  [2] The variable capacity compressor according to claim 1,
前記リンク機構は、  The link mechanism is
前記回転部材力 前記傾動部材に向けて突設されたアームと、  The rotating member force, an arm protruding toward the tilting member;
前記傾動部材力 前記回転部材に向けて突設されたアームと、  The tilting member force, an arm projecting toward the rotating member;
前記回転部材のアームと前記傾動部材のアームとを直接または間接的に回転自 在に連結する連結ピンと、  A connecting pin for directly or indirectly connecting the arm of the rotating member and the arm of the tilting member directly to the rotation;
を備える可変容量圧縮機。  A variable capacity compressor.
[3] 請求項 1に記載の可変容量圧縮機であって、 [3] The variable capacity compressor according to claim 1,
前記リンク機構は、  The link mechanism is
前記回転部材力 前記傾動部材に向けて突設された対向する一対のアームと、前 記傾動部材力 前記回転部材に向けて突設された対向する一対のアームと、一端 部が前記回転部材の一対のアームの間に摺動自在に嵌合されるとともに他端部が 前記傾動部材の一対のアームの間に摺動自在に嵌合されたリンク部材と、前記リンク 部材の一端部と前記回転部材のアームとを回転自在に連結する第 1の連結ピンと、 前記リンク部材の他端部と前記傾動部材のアームとを回転自在に連結する第 2の連 結ピンと、  The rotating member force, a pair of opposing arms protruding toward the tilting member, the tilting member force, a pair of opposing arms protruding toward the rotating member, and one end portion of the rotating member A link member slidably fitted between a pair of arms and having the other end slidably fitted between a pair of arms of the tilting member, one end of the link member and the rotation A first connecting pin that rotatably connects the arm of the member; a second connecting pin that rotatably connects the other end of the link member and the arm of the tilting member;
を備えることを特徴とする可変容量圧縮機。 [4] 請求項 3に記載の可変容量圧縮機であって、 A variable capacity compressor comprising: [4] The variable capacity compressor according to claim 3,
前記スリーブの前記傾動ガイド面および前記傾動部材の前記傾動ガイド面は、そ れぞれ前記駆動軸を挟んで一対設けられ、  A pair of the tilt guide surface of the sleeve and the tilt guide surface of the tilt member are provided across the drive shaft, respectively.
前記スリーブの一対の傾動ガイド面の幅力 前記リンク部材の一端部の幅および前 記リンク部材の他端部の幅よりも広い可変容量圧縮機。  Width force of a pair of tilt guide surfaces of the sleeve A variable capacity compressor wider than a width of one end of the link member and a width of the other end of the link member.
PCT/JP2006/320963 2005-10-27 2006-10-20 Variable displacement compressor WO2007049523A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06812092A EP1942275A4 (en) 2005-10-27 2006-10-20 Variable displacement compressor
US12/091,662 US20090246050A1 (en) 2005-10-27 2006-10-20 Variable capacity compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005313123A JP4794274B2 (en) 2005-10-27 2005-10-27 Variable capacity compressor
JP2005-313123 2005-10-27

Publications (1)

Publication Number Publication Date
WO2007049523A1 true WO2007049523A1 (en) 2007-05-03

Family

ID=37967635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320963 WO2007049523A1 (en) 2005-10-27 2006-10-20 Variable displacement compressor

Country Status (6)

Country Link
US (1) US20090246050A1 (en)
EP (1) EP1942275A4 (en)
JP (1) JP4794274B2 (en)
KR (1) KR20080066928A (en)
CN (1) CN101297115A (en)
WO (1) WO2007049523A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974927B2 (en) * 2008-02-26 2012-07-11 カルソニックカンセイ株式会社 Swash plate compressor
JP5065120B2 (en) * 2008-03-28 2012-10-31 サンデン株式会社 Reciprocating compressor
JP6063150B2 (en) * 2012-05-28 2017-01-18 サンデンホールディングス株式会社 Variable capacity compressor
JP6047307B2 (en) * 2012-05-28 2016-12-21 サンデンホールディングス株式会社 Variable capacity compressor
JP6047306B2 (en) * 2012-05-28 2016-12-21 サンデンホールディングス株式会社 Variable capacity compressor
JP6171875B2 (en) * 2013-11-13 2017-08-02 株式会社豊田自動織機 Variable capacity swash plate compressor
DE112019006499T5 (en) * 2018-12-27 2021-09-23 Hanon Systems Swash plate compressor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176655A (en) * 1996-12-13 1998-06-30 Zexel Corp Variable-displacement swash plate type compressor
JP2001041153A (en) * 1999-07-23 2001-02-13 Zexel Valeo Climate Control Corp Variable-displacement compressor
JP2001304103A (en) * 2001-03-30 2001-10-31 Zexel Valeo Climate Control Corp Variable displacement compressor
JP2001349274A (en) * 2000-06-07 2001-12-21 Zexel Valeo Climate Control Corp Variable displacement swash plate compressor
JP2003172417A (en) 2001-12-04 2003-06-20 Sanden Corp Link mechanism and variable displacement compressor using it
US20040149058A1 (en) 2003-01-30 2004-08-05 Ebbing David Michael Hinge for a variable displacement compressor
JP2005083325A (en) * 2003-09-10 2005-03-31 Toyota Industries Corp Variable displacement compressor with rotation speed detecting mechanism

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061443A (en) * 1976-12-02 1977-12-06 General Motors Corporation Variable stroke compressor
US4685866A (en) * 1985-03-20 1987-08-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement wobble plate type compressor with wobble angle control unit
JPH0329586Y2 (en) * 1985-11-08 1991-06-24
JPS6365177A (en) * 1986-09-05 1988-03-23 Hitachi Ltd Variable displacement swash plate type compressor
KR910004933A (en) * 1989-08-09 1991-03-29 미다 가쓰시게 Variable displacement swash plate compressor
JP2979687B2 (en) * 1991-03-26 1999-11-15 株式会社豊田自動織機製作所 Variable capacity swash plate compressor
JPH08326655A (en) * 1995-06-05 1996-12-10 Calsonic Corp Swash plate compressor
JPH10176658A (en) * 1996-12-17 1998-06-30 Zexel Corp Variable rocker plate type compressor
JPH11125176A (en) * 1997-10-21 1999-05-11 Calsonic Corp Swash plate variable displacement compressor
JP2000291541A (en) * 1999-04-06 2000-10-17 Toyota Autom Loom Works Ltd Layout method for variable displacement compressor and manufacture thereof
DE10124031B4 (en) * 2001-05-16 2009-08-20 Daimler Ag Reciprocating engine with a driver

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176655A (en) * 1996-12-13 1998-06-30 Zexel Corp Variable-displacement swash plate type compressor
JP2001041153A (en) * 1999-07-23 2001-02-13 Zexel Valeo Climate Control Corp Variable-displacement compressor
JP2001349274A (en) * 2000-06-07 2001-12-21 Zexel Valeo Climate Control Corp Variable displacement swash plate compressor
JP2001304103A (en) * 2001-03-30 2001-10-31 Zexel Valeo Climate Control Corp Variable displacement compressor
JP2003172417A (en) 2001-12-04 2003-06-20 Sanden Corp Link mechanism and variable displacement compressor using it
US20040149058A1 (en) 2003-01-30 2004-08-05 Ebbing David Michael Hinge for a variable displacement compressor
JP2005083325A (en) * 2003-09-10 2005-03-31 Toyota Industries Corp Variable displacement compressor with rotation speed detecting mechanism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1942275A4

Also Published As

Publication number Publication date
JP2007120394A (en) 2007-05-17
EP1942275A1 (en) 2008-07-09
JP4794274B2 (en) 2011-10-19
KR20080066928A (en) 2008-07-17
EP1942275A4 (en) 2010-08-18
CN101297115A (en) 2008-10-29
US20090246050A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
WO2007116936A1 (en) Variable displacement compressor
WO2007049523A1 (en) Variable displacement compressor
EP1001169A2 (en) Variable capacity swash plate type compressor
US7972118B2 (en) Variable capacity compressor
JP2007239722A (en) Variable displacement reciprocating compressor
US20070220859A1 (en) Link Mechanism and Variable Displacement Compressor
JPH10266952A (en) Variable displacement type swash plate compressor
US20020162720A1 (en) Power transmission mechanism
JP2001304102A (en) Variable displacement compressor
JP4451323B2 (en) Link mechanism and variable capacity compressor using the same
EP2063121A1 (en) Variable displacement compressor
JP4649230B2 (en) Link mechanism and variable capacity compressor
JP2007278200A (en) Variable displacement compressor
US20020182085A1 (en) Power transmitting mechanism
WO2024018829A1 (en) Compressor
JP2003049767A (en) Variable displacement compressor
JP2015063892A (en) Variable displacement swash plate compressor
US20020178903A1 (en) Power transmission mechanism
JP6052016B2 (en) Variable capacity swash plate compressor
WO2006095565A1 (en) Variable displacement compressor
JPH064376U (en) Full stroke positioning structure of variable displacement oscillating plate compressor
JP2006226192A (en) Variable displacement compressor
JP2009257204A (en) Variable displacement swash plate compressor
JP2004044550A (en) Swash plate type compressor
JP2006220051A (en) Variable displacement compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040033.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006812092

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087009885

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12091662

Country of ref document: US