WO2007049479A1 - Information processing apparatus, information processing method, and program - Google Patents

Information processing apparatus, information processing method, and program Download PDF

Info

Publication number
WO2007049479A1
WO2007049479A1 PCT/JP2006/320578 JP2006320578W WO2007049479A1 WO 2007049479 A1 WO2007049479 A1 WO 2007049479A1 JP 2006320578 W JP2006320578 W JP 2006320578W WO 2007049479 A1 WO2007049479 A1 WO 2007049479A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
embedding
coefficients
band
information
Prior art date
Application number
PCT/JP2006/320578
Other languages
French (fr)
Japanese (ja)
Inventor
Nozomi Ishihara
Koki Abe
Original Assignee
The University Of Electro-Communications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Electro-Communications filed Critical The University Of Electro-Communications
Priority to JP2007542315A priority Critical patent/JP4834844B2/en
Publication of WO2007049479A1 publication Critical patent/WO2007049479A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/467Embedding additional information in the video signal during the compression process characterised by the embedded information being invisible, e.g. watermarking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/0028Adaptive watermarking, e.g. Human Visual System [HVS]-based watermarking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/63Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0052Embedding of the watermark in the frequency domain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0202Image watermarking whereby the quality of watermarked images is measured; Measuring quality or performance of watermarking methods; Balancing between quality and robustness

Definitions

  • the present invention relates to an information processing apparatus, an information processing method, and a program, and in particular, distinguishes between tampering and malicious modification such as compression and noise, and restores digital watermark information accurately.
  • the present invention relates to an information processing apparatus, an information processing method, and a program that enable accurate detection of tampering.
  • Embedding electronic penetration information changes the data to be embedded, so if the embedding strength is increased, the quality of the content represented by the data may be degraded.
  • the digital watermark information in order to accurately detect tampering, it is necessary to make the digital watermark information more robust. Therefore, as a technique for strengthening the resistance to attacks on the electronic permeability information that does not cause deterioration in content quality, that is, to increase the embedding strength, a plurality of predetermined coefficients of the wavelet-transformed coefficients are conventionally used.
  • an invention in which a plurality of pixels constituting digital watermark information are embedded, and when extracting the digital watermark information, each pixel value is determined by majority decision (for example, Patent Document 1). .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-106624
  • the electronic watermarking system is correctly restored, and the data is edited, compressed, expanded, noise and so on without malicious modification and the falsification as a malicious attack. It is necessary to distinguish and detect.
  • characteristics of coefficients in the wavelet domain of image data it is possible to have a strong resistance to compression, noise, etc. as the level gets.
  • the damage of the embedded electronic watermark is in a dispersion tendency, while the damage tends to be concentrated in tampering.
  • Patent Document 1 in the case where strong compression or noise is applied to image data, the present invention described in Patent Document 1 makes uniform majority judgment without considering these features. There has been a problem that the electronic transparency and the damage to the information increase, the majority decision does not work, the electronic transparency can not be restored, and malicious tampering can not be detected.
  • the present invention has been made in view of such a situation, and distinguishes between malicious tampering and non-malicious change such as compression, and accurately restores electronic transparency information and tampering with it. Can be accurately detected.
  • An information processing apparatus is an information processing apparatus for detecting falsification of target information in which digital watermark information is embedded by wavelet conversion, and performs conversion such as wavelet conversion of the target information.
  • the determination means for determining the embedding coefficient value which has won the majority as the pixel value constituting the digital watermark information based on the counting result by the counting means is further added. It can be provided.
  • the embedded coefficient value which loses the majority is regarded as a breaking coefficient
  • the wavelet transform unit performs wavelet transform by the wavelet transform unit.
  • calculation means for calculating the number of embedding coefficients and the number of breaking coefficients for each group of related coefficients across subbands, the number of embedding coefficients calculated by the calculating means, and the number of breaking coefficients Are weighted according to the embedding factor and the level of the sub-band to which the corruption factor belongs.
  • Determining whether or not the coefficient group has been tampered with, based on a ratio of the weighting unit, the number of the breaking coefficients weighted by the weighting unit, and the embedding coefficient weighted by the weighting unit Means may be further provided, and operation means for operating the coefficient value of the coefficient group based on the determination result by the determination means.
  • the operation means erases the breakage coefficient included in the coefficient group, and when the ratio is larger than a predetermined threshold value, the operation unit deletes the broken coefficient group.
  • the embedding factor included can be changed to a breaking factor.
  • a plurality of identical pixels constituting the digital watermark information is a second subband associated with an embedding coefficient randomly determined in advance from the coefficient of the first subband in the wavelet-transformed object information.
  • the modulation coefficient may be modulated based on the related coefficient of and embedded in the embedding coefficient.
  • the first sub-band may be a sub-band other than the lowest sub-band, and the second sub-band may be the lowest sub-band.
  • a plurality of stages of wavelet transforms are performed as needed, and each time a stage of wavelet transform is performed, the coefficient power of the first sub-band The second sub-band of the second sub-band associated with the embedding coefficient determined in advance randomly. Related coefficients can be detected.
  • the first sub-band may be a sub-band other than the highest sub-band, and the second sub-band may be the highest sub-band.
  • the information processing apparatus further comprises demodulation means for performing demodulation based on the related coefficient, and the counting means includes the embedding coefficient demodulated by the demodulation means.
  • Each of the embedding coefficients can be weighted and counted according to the sub-band to which it belongs.
  • a first information processing method or program according to the present invention is an information processing method for detecting falsification of target information in which electronic wave penetration information is embedded by wavelet conversion.
  • a program that causes a computer to execute processing for detecting falsification of target information in which penetration information is embedded, a conversion step of performing wavelet conversion on the target information, and a plurality of identical pixels constituting the digital watermark information
  • An embedding coefficient detection step of detecting a plurality of embedding coefficients to be embedded respectively and the plurality of embedding coefficients detected in the processing of the embedding coefficient detection step, weighting according to a sub-band to which each of the embedding coefficients belongs And counting steps.
  • the target information is wavelet-transformed, and a plurality of identical pixels constituting the digital watermark information are respectively embedded.
  • the embedded coefficients are detected and weighted and counted according to the sub-bands to which the embedded coefficients belong to the plurality of detected embedded coefficients.
  • digital watermark information can be embedded or extracted efficiently and safely.
  • FIG. 1 is a block diagram showing a configuration example of an image processing apparatus to which the present invention is applied.
  • FIG. 2 is a diagram for explaining wavelet transform.
  • FIG. 3 is a flowchart for explaining the digital watermark embedding process of embedding unit 13 in FIG. 1.
  • FIG. 4 is a diagram for explaining the process of step S4 in FIG. 3;
  • FIG. 5 Another view for explaining the processing of step S 4 in FIG. 3.
  • FIG. 6 is another diagram for explaining the process of step S4 in FIG. 3.
  • step S5 and step S6 of FIG. 3 are views for explaining the process of step S5 and step S6 of FIG. 3;
  • FIG. 8 is a block diagram showing a configuration example of an image processing apparatus 41 to which the present invention is applied.
  • FIG. 9 is a flowchart illustrating digital watermark extraction processing of the tampering detection unit 53 of FIG. 8;
  • FIG. 10 is a diagram for explaining the processing of steps S23 to S26 in FIG. 9;
  • FIG. 11 is a view for explaining the process of step S27 and step S28 of FIG. 9;
  • FIG. 12 is a view showing an example of a tampering detection image.
  • FIG. 13 is a diagram showing a breakage rate according to weights.
  • FIG. 14 is a flowchart for describing image processing in the image processing unit 54 of FIG. 8; 15 is a view for explaining the process of step S52 in FIG. 14;
  • FIG. 16 Another view for explaining the process of step S 52 in FIG.
  • FIG. 17 is a view for explaining the process of step S55 in FIG. 14;
  • FIG. 18A is a diagram showing an example of a target image.
  • FIG. 18B is a diagram showing an example of a target image.
  • FIG. 19 is a block diagram showing another configuration example of the image processing apparatus 1 to which the present invention is applied.
  • FIG. 20 is a flow chart for explaining the electron permeability and embedding process in the embedding section 101 of FIG. 19;
  • FIG. 21 is a view for explaining the process of step S84 and step S85 of FIG. 20.
  • FIG. 21 is a view for explaining the process of step S84 and step S85 of FIG. 20.
  • FIG. 22 is another view showing the breakage rate according to the weight.
  • FIG. 23 is a view for explaining a method of embedding an electron permeability image.
  • FIG. 24A Another view for explaining the method of embedding an electron permeability image.
  • FIG. 24B is another view illustrating the method of embedding an electron permeability image.
  • FIG. 25 is a block diagram showing a configuration example of a computer.
  • FIG. 1 shows a configuration example of an image processing apparatus 1 to which the present invention is applied.
  • the image processing apparatus 1 embeds a digital watermark image W of a binary image as digital watermark information into a target image F (for example, an image captured by a digital camera) to which the digital watermark image W is to be embedded.
  • a target image F for example, an image captured by a digital camera
  • the input unit 11 receives a target image F, a digital watermark image W, and a coefficient selection key C necessary for embedding the digital watermark image W.
  • the coefficient selection key C indicates the embedding number (replication number) of one pixel constituting the digital watermark image W, the coefficient of the target image F to which the digital watermark image W is to be embedded (hereinafter referred to as embedding coefficient), and the embedding strength.
  • Quantization parameter Data is included.
  • the embedding coefficients are also predetermined at random in advance of the subbands LL1, HH1, LH1, HL2, HH2, LH2, HL3, HH3, or LH3 excluding the subband LL3.
  • the subbands HL1 and LH1 of level 1 to the coefficient P1 and the coefficient P2 power to the subband HH2 of level 2 to the coefficient P3 force and the subband LH3 to level 3 of the coefficient 3 are respectively Determined as the embedding coefficient.
  • the input unit 11 supplies the input target image F to the wavelet transform unit 12, and supplies the input electronic watermark image W and the coefficient selection key C to the digital watermark embedding unit 13.
  • the wavelet transform unit 12 performs wavelet transform on the target image F supplied from the input unit 11, and the resulting coefficient of the frequency-converted target image F is converted into an electronic watermark embedding unit 13. Supply to
  • the two-dimensional level distribution of the image is frequency-transformed into data that can be easily compressed.
  • the target image F is decomposed into a plurality of frequency bands by repeating the process of dividing the pixel data of the target image F into high frequency components and low frequency components.
  • the process is performed on the pixel data of the target image F in A of FIG.
  • sub-band HL1 of "high-pass I low-pass” and It is decomposed into the sub-band ⁇ 1 of “high range I high range”.
  • the subbands LL1, LH1, HL1, or HH1 obtained by this processing are referred to as level 1 subbands as appropriate.
  • the second process is performed on the lower band subband LL1, and the lower band LL1 is the “lower band I lower band” subband LL2, as shown in C of FIG. It is decomposed into the low band I high band sub-band LH2, the high band I low band sub-band HL2, and the high band I high band sub-band HH2.
  • the subbands LL2, LH2, HL2, or HH2 obtained by this processing are appropriately referred to as level 2 subbands.
  • the third process is performed on the lower band subband LL2, and the lower band LL2 power as shown in D of FIG. 2 indicates that the “lower band I lower band” subband LL3, “lower band Sub-bar of It is decomposed into the band LH3, the high band I low band sub-band HL3, and the high band I high band sub-band HH 3.
  • the subbands LL3, LH3, HL3 or HH3 obtained by this processing are appropriately referred to as level 3 subbands.
  • the electron permeability embedded unit (hereinafter referred to as embedded unit) 13 supplies the coefficients for one frame of the target image F supplied from the wavelet conversion unit 12 from the input unit 11. Similarly, the supplied digital watermark image W is embedded according to the coefficient selection key C supplied from the input unit 11, and the resulting coefficient is supplied to the inverse wavelet transform unit 14. The embedding unit 13 also supplies, to the output unit 15, a coefficient selection key C necessary for extracting the electronically transparent image W.
  • the inverse wavelet transform unit 14 performs inverse inverse one-Bretlet transform on the coefficients supplied from the embedding unit 13 (performs the inverse process to the process shown in FIG. 2), a digital watermark A target image F (target image F ′) in which the image W is embedded is generated and supplied to the output unit 15.
  • the output unit 15 outputs the target image F ′ supplied from the inverse wavelet transform unit 14 and the coefficient selection key C supplied from the embedding unit 13 to an external device (for example, the image processing device 41 of FIG. 8). Supply to an external device (for example, the image processing device 41 of FIG. 8).
  • step S1 the embedding unit 13 inputs the coefficient (D in FIG. 2) of the target image F for one frame from the wavelet transformation unit 12.
  • step S 2 the embedding unit 13 selects one pixel of the digital watermark image W supplied from the input unit 11.
  • step S3 the embedding unit 13 calculates the pixel value of the pixel of the digital watermark image W selected in step S2 (hereinafter, referred to as a transparency bit) from the coefficient supplied from the input unit 11. Replicate as many copies as indicated in the selection key C.
  • step S4 the embedding unit 13 detects a coefficient (related coefficient) on the subband LL3 associated with the embedding coefficient given by the coefficient selection key C.
  • the coordinates (xlZ4, Coefficient force of ylZ4) From the embedding coefficient of the level 2 sub-band (x2, y2), the coefficient of the sub-band LL3 coordinate (x2Z2, y2Z2) and the level 3 sub-band (except for the sub-band LL3) From the embedding coefficients of the coordinates (x3, y3) of (1), the coefficient forces of the coordinates (x3, y3) of the subband LL3 are detected as the coefficients of the subband LL3 associated with the embedding coefficients.
  • the coefficient Q1 is from the coefficient P1
  • the coefficient Q2 is from the coefficient P2
  • the coefficient Q is from the coefficient P3
  • the coefficient Q4 is from the coefficient P4. It shall be detected as a factor of 3.
  • step S5 the embedding unit 13 detects, for example, three coefficients adjacent to the coefficient for each of the coefficients of the subband LL 3 detected in step S4, and The average value of the coefficient values of four coefficients (hereinafter, these four coefficients are appropriately referred to as corresponding coefficients) of the coefficients and the coefficients of the subband LL3 detected in step S4 is calculated. Quantize and convert to a binary value (1 or 0).
  • coefficient Q2 for example, coordinates (xq2, yq2)
  • three coefficients of coordinates (xq2, yq2 + 1), (xq2 + 1, yq2), and (xq2 + 1, yq2 + 1) are detected .
  • the average value of coefficient values of coefficient Q2 and its three coefficients is calculated, and it is quantized to obtain binary value r2.
  • step S6 the embedding unit 13 performs an exclusive OR operation (XOR) of each of the watermark bits copied in step S3 with each of the binary values of the average value obtained in step S5. (Ie, modulate the transmission bit with the binary value of the average value obtained in step S5), and include the resulting value (hereinafter referred to as the modulation bit) in the coefficient selection key C. Embed according to the strength of the quantization step.
  • XOR exclusive OR operation
  • the modulation bit wal obtained as a result of exclusive OR operation (XOR) of the watermark bit wa and the value rl is taken as the coefficient value of the coefficient P1
  • the watermark bit wa and the value r2 The modulation bit wa2 obtained as a result of XOR is taken as the coefficient value of the coefficient P2
  • the modulation bit wa3 obtained as a result of XOR of the watermark bit wa and the value r3 is taken as the coefficient value of the coefficient P3.
  • the modulation bit wa4 obtained as a result of XOR of wa and the value r4 is taken as the coefficient value of the coefficient P4.
  • step S 7 embedding unit 13 determines whether or not all the pixels of digital watermark image W have been selected, and if it is determined that there are still unselected pixels, step 13 is performed. The process returns to step S2 to select the next pixel, and the processes after step S3 are similarly performed.
  • step S7 If it is determined in step S7 that all the pixels have been selected, the embedding unit 13 ends the digital watermark embedding process.
  • the above-described processing is performed each time a target image F in which the digital watermark image W is to be embedded is input.
  • step S3 when embedding digital watermark information, embedding coefficients are determined randomly (step S3), it becomes difficult for a third party to specify the embedding coefficients.
  • the coefficient for embedding the electronic penetration information is the nth largest absolute value and limited to the coefficient, it is easy to identify the coefficient in which the digital watermark information is embedded,
  • the embedding process since the embedding process is performed on the embedding coefficients determined at random (steps S4 to S6), the embedding process can be performed efficiently. For example, in the method of Patent Document 1, in order to detect the nth coefficient whose absolute value is n, all coefficients are Because it needs to be scanned, it takes time for processing.
  • the coefficient value is manipulated, and the electronic force is embedded in the heat force, and the information is embedded, In the case of so-called “collage attack,” the coefficient value is manipulated based on the relationship between the digital watermark information and the coefficient in which the digital watermark information is embedded, and falsification is performed. It is effective to associate the coefficient in which the digital watermark information is embedded and the coefficient at another position in any relation. For example, check the magnitude of the coefficient into which the electron permeability information is embedded and the coefficient next to it, and if the coefficient into which the electron permeability information is embedded is larger, 0 is set, and if the next coefficient is large, 1 is set. It is a method to embed values.
  • the embedding coefficient and the lower band subband (in this example, subband LL3) associated with it are correlated to determine the value (modulation bit) to be embedded (step Steps S4 to S6) can protect the Collage Attack.
  • the target image F ′ and the coefficient selection key C for extracting electronic transparency information output from the image processing apparatus 1 of FIG. 1 are input to the input unit 51.
  • the input unit 51 supplies the input target image F ′ to the wavelet transform unit 52, and supplies the input coefficient selection key C to the tampering detection unit 53 and the image processing unit 54.
  • the wavelet transform unit 52 subjects the target image F ′ supplied from the input unit 51 to the same wavelet transform as the wavelet transform unit 12 shown in FIG. 1 (FIG. 2), and one frame obtained as a result
  • the coefficients of the target image F ′ for the minute are supplied to the tampering detection unit 53 and the image processing unit 54.
  • the tampering detection unit 53 extracts the electronically transmitted image W based on the coefficient selection key C from the coefficients of the target image F ′ supplied from the wavelet transform unit 52, and is obtained at that time.
  • the falsification information is supplied to the image processing unit 54.
  • the image processing unit 54 compares the coefficient of the target image F ′ supplied from the wavelet transformation unit 52 with the coefficient. Then, the coefficient operation is performed according to the coefficient selection key C supplied from the input unit 51 and the tampering information supplied from the tampering detection unit 53.
  • step S21 the tampering detection unit 53 inputs the coefficient of the target image F ′ for one frame from the wavelet transform unit 52.
  • step S22 the tampering detection unit 53 reads the coefficient selection key for one pixel of the digital watermark image W from the coefficient selection key supplied from the input unit 51.
  • step S23 the tampering detection unit 53 determines, based on the read coefficient selection key, the embedding coefficient (one pixel selected in step S22) from the coefficients for one frame input in step S21. Detection of embedded coefficients in which a bit is embedded.
  • step S24 the tampering detection unit 53 detects the coefficient of the sub-band LL3 related to the detected embedding coefficient based on the parent-child relationship of the wavelet transform.
  • coefficients P1 to Q1 are related, coefficients P2 to Q2 are related, coefficients P3 to Q3 are related, and coefficients P4 to Q4 are related, respectively. It is detected as a coefficient of subband LL3.
  • step S 25 for each of the coefficients of subband LL 3 detected in step S 24, tampering detection unit 53 detects, for example, three coefficients adjacent to the coefficient, and the three coefficients thereof. And the coefficients of the sub-band LL3 detected in step S24, the average value of the coefficient values of four coefficients (corresponding coefficients) is calculated, and the average value is quantized and converted into a binary value.
  • coefficient Q2 (coordinate (xq2, yq2)
  • three coefficients of coordinates (xq2, yq2 + 1), (xq2 + l, yq2), and (xq2 + l, yq2 + 1) are detected
  • the mean value of the coefficient value of the coefficient Q2 and its three coefficients is calculated and quantized to obtain the binary value r2 '.
  • step S26 the tampering detection unit 53 calculates each of the embedded coefficient coefficient values (modulation bit (step S6 in FIG. 3)) detected in step S23 and the corresponding average value obtained in step S25. XOR with each of the binary values (that is, demodulate the modulation bit with the binary value of the average value obtained in step S25), and obtain the resulting value (hereinafter referred to as demodulation bit) as In step S22, it is set as a candidate for the pixel value (penetration bit) of the pixel of the electron-permeable image W selected.
  • the demodulation bit wbl obtained as a result of XOR of the modulation bit wal, and the value rl
  • the demodulation bit wb2 obtained as a result of XOR of the modulation bit wa2 and the value r2.
  • Demodulated bit wb3 obtained as a result of XOR of modulation bit wa3 and value r3
  • force bit candidate for demodulation bit wb4 obtained as a result of XOR of modulation bit wa4 and value r4 It is assumed.
  • step S 27 the tampering detection unit 53 counts and counts the demodulation bits as the watermark bit candidate obtained in step S 26 according to the level of the sub-band to which the demodulation bits belong, and Based on the results, a majority is taken to determine the winning demodulation bits (hereinafter referred to as winning bits) and the losing demodulation bits (hereinafter referred to as losing bits).
  • winning bits the winning demodulation bits
  • losing bits the losing bits
  • the weight of the demodulation bits of the subbands belonging to level 1 is 1, the weight of the demodulation bits of the subbands belonging to level 2 is 6, and the demodulation bits of the subbands belonging to level 3 Assuming that each weight is 8 and the number of demodulation bits multiplied by each weight is prepared, among them, many bits and few bits are detected.
  • the demodulation bits wbl, wb4, wb3, wb2 are 0, 0, 0, 1 as shown in FIG.
  • level 1 demodulation bit wbl the value 0 as the level 1 demodulation bit wbl 1, level 3 demodulation bit wb4 value 0 0, level 2 demodulation bit wb3 value 0 6, level 1 demodulation bit wb2 value 1 1 or 15 There are 0 values and 1 value.
  • step S28 the tampering detection unit 53 selects the winning bit (0) detected in step S27 as the pixel value of the pixel of the image W which has been subjected to electron transparency selected in step S22.
  • the loss bit (1) is a coefficient corresponding to the coefficient P2 of the target image F 'of a white image (hereinafter referred to as an image for detecting falsification) M' prepared in advance with three stages of wavelet transform processing. Let it be a coefficient value of P2 '.
  • step S29 the tampering detection unit 53 determines in step S22 whether the coefficient selection key for all the pixels of the digital watermark image W has been read or not, and there is a coefficient selection key that has not been read yet. If it is determined that there is, the process returns to step S22, the coefficient selection key of the next pixel is read out, and the processes after step S23 are performed.
  • step S30 the digital watermark image W is restored, and a tampering detection image M ′ is generated.
  • the tampering detection unit 53 supplies the image processing unit 54 with the tampering detection image M ′.
  • the tampering detection image M obtained by performing the inverse wavelet transform process on the tampering detection image M ′ is displayed as shown in FIG. 12, for example.
  • the electron penetration information is extracted.
  • the watermark information embedded in depth and level is shallow and level.
  • the weight of the demodulation bit of the subband belonging to level 1 is 1 and the weight of the demodulation bit of the subband belonging to level 2 is 6 Since the weight of the demodulation bit of the sub-band belonging to level 3 is 8) and the influence of information embedded in the deep level is large, the detection of the transmission bit is performed.
  • the electronic watermark can be detected more accurately.
  • FIG. 13 shows the weight applied to the level 2 watermark shown on the X axis and the weight applied to the level 3 watermark shown on the Y axis when the target image F is compressed with JPEG compression at a compression ratio of 60%. It shows the damage rate when used. In this example, when the weight of level 2 is 6 and the weight of level 3 is 8 to 10, the lowest damage rate of electron permeability information is obtained.
  • step S 51 the image processing unit 54 sets each of the level 3 subbands LH 3 and HL 3 in the coefficients of the target image F for one frame supplied from the wavelet transform unit 52 to, for example, 4 ⁇ 4 pixels. Divide into blocks of
  • step S 52 the image processing unit 54 applies, for each of the blocks of subband LH 3 and subband HL 3 obtained in step S 51, subband LH 2 and subband HL 2 of level 2 corresponding thereto. , And blocks of level 1 subband LH1 and subband HL1 based on the parent-child relationship of wavelet transform
  • a block of level 3 subband LH 3 or subband HL 3 can be identified by a predetermined block number, and level 2 subband LH 2 and subband HL 2 corresponding to the block, and level 1 sub
  • the blocks of band LH1 and subband HL1 shall also be identified by the same block number as the corresponding blocks of subband LH3 or subband HL3.
  • each block can be identified, for example, by a code bk (i) where level is k and a block number is i, and a block group further represented by the same code bk (i) is labeled as Bk It can be expressed as a block belonging to (i).
  • the block of level 3 subband LH3 and subband HL3 shown in FIG. 15 is block b3 (l)
  • the corresponding block of level 2 subband LH2 and subband HL 2 is block b2 ( l) block of level 1 sub-band LH1 and sub-band HL1 is block bl (l)
  • block 1 of level 1 sub-band LH 1 and block HL of HL1 Let the block group represented be block group Bl (l), the block group represented by block 2 of level 2 subband LH2 and HL 2 block b2 (l) be block group B2 (1), and level 3 sub A block group represented by block b3 (l) of bands LH3 and HL3 is set as a block group B3 (l).
  • step S53 the image processing unit 54 selects one block number i, and in step S54, based on the coefficient selection key C, the block group BIG), B2 (i), B3 ( For each of the blocks belonging to i), calculate the number of embedding coefficients included in it. Further, the image processing unit 54 embeds the loss bit included in each of the blocks belonging to the block groups Bl (i), B2 (i) and B3 (i) based on the image M for tampering detection. Calculate the number of coefficients (hereinafter referred to as the breakage coefficients).
  • step S55 the image processing unit 54 sums up the number of embedding coefficients and the number of breaking coefficients of each block for each of the block groups Bl (i), B2 (i), B3 (i). And multiply the weight according to the level.
  • the sum of the number of embedding coefficients included in blocks belonging to block group B3 (i) and the sum of the number of corruption coefficients included in blocks belonging to block group B3G) Is multiplied by eight.
  • Block group A total of the number of embedding coefficients included in a block belonging to B2 (i), and a block group
  • Each of the sums of the number of breaking coefficients included in the block belonging to B2G) is multiplied by six.
  • Each of the sum of the number of embedding coefficients included in the block belonging to block group BIG and the total number of corruption coefficients included in the block B group 1 (block belonging to 0) is multiplied by one. .
  • step S56 the image processing unit 54 calculates the sum of the breaking coefficients obtained by the weighting in step S55 as the embedding coefficient obtained by the weighting in step S55, as shown in equation (1). Divide by the sum. [0099] [Number 1]
  • step S57 the image processing unit 54 determines whether or not the value obtained as a result of the calculation in step S56 (hereinafter referred to as the tampering rate) is equal to or less than a predetermined threshold, If it is determined that the following is true, it is determined that the block group of the block number i is not falsified, and the coefficient value (loss bit) of the corruption coefficient included in the target block is determined in step S58. Delete (hereinafter, this process is called "! /, Process").
  • step S57 if it is determined in step S57 that the block group is larger than the predetermined threshold value, the block group of the block number i is considered to be falsified, and the process proceeds to step S59 and the image processing unit 54 determines all coefficients belonging to the block Is changed to the failure factor (hereinafter this process is referred to as emphasizing process).
  • one threshold may be provided, or an upper threshold and a lower threshold may be provided. If the threshold is lower than the lower threshold, sieving is performed and the upper threshold is determined. In the above case, emphasis processing may be performed. In this case, if the tampering rate is between the upper threshold and the lower threshold, neither the! / ⁇ nor the emphasizing is performed.
  • step S58 When the destruction coefficient is erased in step S58, or when the coefficient of the block group of block numbers is changed in step S59, the process proceeds to step S60, and the image processing unit 54 performs the block B in step S53. It is determined whether or not the number i is selected, and if it is determined that there is still! /,! Or! /! Block number, the process returns to step S53, the next block is selected, and step S54 or later is performed. Perform the same process.
  • step S60 If it is determined in step S60 that all block numbers i have been selected, the process ends.
  • Image processing is performed as described above. As described above, since the sieving process and the emphasizing process are performed based on the falsification rate, when the target image F is as shown in FIG. 18A, an image corresponding to the falsified block as shown in FIG. 18B. Can be highlighted.
  • FIG. 19 shows another configuration example of the image processing apparatus 1.
  • a digital watermark embedding unit 101 may be provided instead of the digital watermark embedding unit 13 of FIG.
  • the other parts are the same as in FIG.
  • embedding section 101 substitutes the embedding coefficient in the lowest band.
  • the embedding process is performed in association with the coefficients of the same level sub-band ⁇ .
  • step S 81 the embedding unit 101 performs the first wavelet transformation on the target image F of one frame from the wavelet transformation unit 12, and the second wavelet transform is further performed.
  • the resulting coefficient C in Figure 2.
  • step S 82 the embedding unit 101 selects one pixel of the digital watermark image (binary image) W.
  • step S 83 the embedding unit 101 uses the coefficient selection key supplied from the input unit 11 as the pixel value (watermark bit) of the pixel of the electronically transparent image W selected in step S 82.
  • step S 84 embedding section 101 detects the coefficient of level 2 subband 2 associated with the embedding coefficient of level 2 subband HL 2 and subband LH 2 given by coefficient selection key C. .
  • the coefficient Pll coefficients (xqll, yqll)
  • the coefficient Q11 of the coordinates (xqll, yqll) of the subband HH2 is the coefficient Pll. Detected as a coefficient of the sub-band HH2 associated with
  • step S85 the embedding unit 101 detects, for example, three coefficients adjacent to the coefficient of the sub-band HH2 detected in step S84, and the three coefficients.
  • step S84 the average value of the coefficient values of a total of four coefficients (corresponding coefficients) with the coefficients of the subband HH2 detected is calculated, and it is quantized and converted into a binary value (1 or 0).
  • step S 86 embedding section 101 performs an exclusive OR operation (XOR) of the watermark bit copied in step S 83 and the binary value of the average value obtained in step S 85 ( That is, the watermark bit is modulated with the binary value of the average value obtained in step S85), and the resulting value (modulation bit) is determined according to the strength of the quantization step included in the coefficient selection key C.
  • XOR exclusive OR operation
  • step S 87 embedding unit 101 determines whether all the pixels of digital watermark image W have been selected or not, and if it is determined that there are any pixels not selected yet, step S 82. Return to step S83, select the next pixel, and execute the processing from step S83 onwards in the same way.
  • step S87 If it is determined in step S87 that all the pixels have been selected, the embedding unit 101 proceeds to step S88, and determines whether all coefficients for one frame of the target image F have been input. , If it is determined that the whole has not been input, the process returns to step S81.
  • the embedding unit 101 performs the wavelet transformation unit 12 in step S 81.
  • the third wavelet transform is performed on the target image F of one frame, input the coefficient (D in Fig. 2) obtained as a result.
  • the processing in the case of inputting this coefficient will be described continuously.
  • step S82 one pixel of the digital watermark image W is selected.
  • step S83 the pixel value (watermark bit) of the pixel of the digital watermark image W selected in step S82 is replicated by the number of copies indicated by the coefficient selection key C supplied from the input unit 11. .
  • step S84 the coefficient of level 3 subband HH3 associated with the embedding coefficient of level 3 subband HL3 and subband LH3 given by coefficient selection key C is detected.
  • coefficient P21 coefficients (xq21, yq21) of subband 3 of level 3 in FIG. 21 is the embedding coefficient
  • coefficient Q21 of coordinates (xq21, yq21) of subband HH3 is detected. .
  • step S85 for example, with respect to the coefficients of subband HH3 detected in step S84, three coefficients adjacent to the coefficient are detected, and these three coefficients and step are also included.
  • the average value of the coefficient values of a total of four coefficients (corresponding coefficients) with the coefficients of subband ⁇ 3 detected in S84 is calculated, and it is quantized and converted into a binary value (1 or 0).
  • the coefficient Q21 (coordinate (xq21, yq21)) in FIG. 21, the coordinates (xq21, yq21 + l), (xq21 + l, yq21), and (xq21 + 1, yq21 +) adjacent to the coefficient Q21 are used. Three coefficients 1) are detected, the average value of coefficient Q21 and the coefficient values of the three coefficients is calculated, and it is quantized to obtain a binary value.
  • step S86 exclusive OR operation (XOR) is performed between the watermark bit copied in step S83 and the binary value of the average value obtained in step S85 (ie, transparency). Bit Force Modulated with the binary value of the average value obtained in step S85), and embeds the resulting value (modulation bit) according to the strength of the quantization step included in the coefficient selection key C.
  • XOR exclusive OR operation
  • step S 87 it is determined whether all the pixels of the digital watermark image W have been selected. If it is determined that there are any pixels not selected yet, the process returns to step S 82. Are selected, and the processes after step S83 are similarly performed. Since it is not necessary to embed all the watermark bits in the level 3 sub-band, when watermark bits not to be embedded in the level 3 sub-band are selected, the processes in steps S 83 to S 86 are appropriately performed. It will be skipped.
  • step S87 If it is determined in step S87 that all the pixels have been selected, the process proceeds to step S88, in which it is determined that all the coefficients of one frame of the target image F have been input, and the process ends.
  • the embedding process is performed in such a manner that the embedding coefficient is associated with the lower band subband (in this example, subband LL3) associated therewith.
  • the lowest subband is formed after all stages of wavelet transform processing have been performed, as shown in FIG. 2D.
  • the embedding process in the embedding unit 13 of FIG. 1 had to be performed after the completion of the wavelet process in the wavelet transformation unit 12.
  • embedding section 101 of FIG. 19 substitutes the coefficients of the sub-bands ⁇ at the same level as the embedding coefficients, instead of the lowest band sub-bands, as described above. Since embedding was performed when wavelet coefficients were obtained (since the wavelet transform and embedding were performed in parallel), it should be performed more quickly than the embedding in the case of FIG. Can.
  • the sub-band ⁇ used here is the weakest band against tampering, which leads to an increase in the breakage rate. For example, even if the embedding coefficient of the subband HL or LH is not broken, if the coefficient of the subband HH associated with it is greatly changed, it becomes broken. Therefore, in this case, Level 1 was not used for embedding, and Level 2 and Level 3 were embedded.
  • FIG. 22 shows that the target image F is compressed when the digital watermark image W is extracted from the target image F (target image F ′) in which the digital watermark image W is embedded by the image processing device 1 of FIG.
  • the level 2 weight is 1 and the level 3 weight is 5 or the level 2 weight is 2 and the level 3 weight is 9 or 10
  • the lowest damage rate is obtained.
  • embedding of the digital watermark image W into the target image F is obtained, for example, as a result of exclusive OR operation (XOR) of the average value of the corresponding coefficients of the sub-band LL3 and the permeability bit.
  • XOR exclusive OR operation
  • the modulation bits are embedded according to the strength of the quantization parameter (steps S4 to S6 in FIG. 3), they can be embedded as described below.
  • Equation (2) a wavelet image of the target image F is represented by Expression (2).
  • k is represented by equation (3)
  • 1 is a level
  • (m, n) represent the position (coordinates) of a pixel.
  • Embedding is also performed so that f (m, n) after embedding becomes the center value of the section represented by equation (5).
  • is a quantization parameter.
  • the i-th pixel of the digital watermark image w is expressed by equation (6).
  • FIGS. 24A and 24B show the results where equation (18) and FIG. 24B shows the case where equation (19) holds.
  • the series of processes described above may be executed by hardware, or software It can also be executed by When a series of processes are to be executed by software, it is possible to execute various functions by installing a computer incorporated in hardware dedicated to the program power constituting the software, or various programs. It is installed from a program recording medium to a possible personal computer, for example.
  • FIG. 23 is a block diagram showing an example of a configuration of a personal computer that executes the series of processes described above according to a program.
  • a central processing unit (CPU) 201 executes various types of processing in accordance with a program stored in a read only memory (ROM) 202 or a storage unit 208.
  • the RAM (Random Access Memory) 203 appropriately stores programs and data to be executed by the CPU 201.
  • the CPU 201, the ROM 202, and the RAM 203 are connected to one another by a bus 204!
  • Program storage media for storing programs installed in a computer and made executable by the computer are, as shown in FIG. 23, a magnetic disk (including a flexible disk), an optical disk (CD-ROM (a flexible disk), and the like.
  • Compact Disc-Read Only Memory (DV) (including Digital Versatile Disc (DV D)), magneto-optical disc, or removable media 211, which is a package medium consisting of semiconductor memory, etc., or the program temporarily or permanently stores
  • the ROM 202 and the hard disk constituting the storage unit 208 are included.
  • the program may be stored in the program storage medium via a wired or wireless communication medium such as a local area network, Internet, digital satellite broadcast, or the like via the communication unit 209 which is an interface such as a router or a modem, if necessary. It is done using.
  • the steps of describing the program stored in the program recording medium are not limited to processing performed chronologically in the order described, but necessarily processing chronologically If not, it also includes processes executed in parallel or individually.
  • the image processing apparatus 1 and the image processing apparatus 41 may be integrally configured by, for example, a personal computer, or the image processing apparatus 1 is mounted on a digital camera, and the image processing apparatus 41 is personal. Configure them separately, such as mounting on a computer May be In particular, when the image processing apparatus 1 is mounted on a digital camera, high speed processing of embedding processing of digital watermark information is required. From this point of view, the digital watermark image is simply embedded without embedding a plurality of identical pixels. Let's process wavelet transform and embedding of digital watermark information in parallel!

Abstract

An information processing apparatus, an information processing method and a program wherein digital watermarking information can be effectively embedded. An input part (11) receives a target image (F), a digital watermarking image (W) and a factor selection key (C) required for embedding the digital watermarking image (W). The input part (11) supplies the received target image (F) to a converting part (12) and also supplies the received digital watermarking image (W) and factor selection key (C) to a digital watermark embedding part (13). The converting part (12) subjects the target image (F) supplied from the input part (11) to a wavelet conversion and supplies a factor of the resultant frequency-converted target image (F) to the embedding part (13). The embedding part (13) determines a factor of the lowest subband related to an embedding factor given from the factor selection key (C). The embedding part (13) modulates, based on the determined factor of the lowest subband, the pixels of the digital watermarking image (W) to embed the digital watermarking image (W) in accordance with the intensity of a quantized parameter included in the factor selection key (C).

Description

明 細 書  Specification
情報処理装置および情報処理方法、並びにプログラム  INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND PROGRAM
技術分野  Technical field
[0001] 本発明は、情報処理装置および情報処理方法、並びにプログラムに関し、特に、悪 意のある改竄と圧縮 ·ノイズ等の悪意のない変更を区別して、正確に電子透かし情報 を復元するとともに、改竄を的確に検出することができるようにする情報処理装置およ び情報処理方法、並びにプログラムに関する。  The present invention relates to an information processing apparatus, an information processing method, and a program, and in particular, distinguishes between tampering and malicious modification such as compression and noise, and restores digital watermark information accurately. The present invention relates to an information processing apparatus, an information processing method, and a program that enable accurate detection of tampering.
背景技術  Background art
[0002] 近年、文字データ、画像データ、音声データ等の多種のデータがコンピュータゃネ ットワーク内で扱われるようになるに伴い、そのデータの不正利用(改竄)を防止する ために、著作権情報や利用者情報を電子透かし情報として埋め込む技術が開発さ れている。  In recent years, as various types of data such as character data, image data, audio data, etc. are handled within computer networks, copyright information is protected to prevent unauthorized use (falsification) of the data. A technology has been developed for embedding user information as digital watermark information.
[0003] 電子透力し情報を埋め込むことは、埋め込みの対象となるデータを変更することに なるため、埋め込み強度を強くすると当該データにより表現されるコンテンツの品質 が劣化するおそれがある。一方、改竄を的確に検出するためには、電子透かし情報 の耐性を強くする必要がある。そこで、埋め込み強度を強くすることなぐすなわち、コ ンテンッの品質劣化を起こすことなぐ電子透力 情報への攻撃に対する耐性を強く した技術として、従来、ウェーブレット変換された係数のうちの所定の複数の係数に 対して、電子透かし情報を構成する画素をそれぞれ複数個埋め込み、電子透かし情 報を抽出する際には多数決判定によりそれぞれの画素値を決定する発明が知られ ている(例えば、特許文献 1)。  [0003] Embedding electronic penetration information changes the data to be embedded, so if the embedding strength is increased, the quality of the content represented by the data may be degraded. On the other hand, in order to accurately detect tampering, it is necessary to make the digital watermark information more robust. Therefore, as a technique for strengthening the resistance to attacks on the electronic permeability information that does not cause deterioration in content quality, that is, to increase the embedding strength, a plurality of predetermined coefficients of the wavelet-transformed coefficients are conventionally used. On the other hand, there is known an invention in which a plurality of pixels constituting digital watermark information are embedded, and when extracting the digital watermark information, each pixel value is determined by majority decision (for example, Patent Document 1). .
[0004] 特許文献 1:特開 2000— 106624号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-106624
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0005] ところで、改竄検出においては、正確に電子透かレ f青報を復元するとともに、データ の編集、圧縮、伸張、ノイズ等の悪意のない変更と、悪意のある攻撃としての改竄とを 区別して検出する必要がある。 [0006] ここで、画像データのウェーブレット領域における係数の特性として、深!、レベルほ ど圧縮やノイズ等に強い耐性をもつことが挙げられる。また、圧縮やノイズ等は係数 の変更量がそれほど大きくないため、埋め込まれた電子透かレ隋報の破損は分散傾 向にある一方、改竄では破損が集中する傾向にある。 By the way, in the falsification detection, the electronic watermarking system is correctly restored, and the data is edited, compressed, expanded, noise and so on without malicious modification and the falsification as a malicious attack. It is necessary to distinguish and detect. Here, as characteristics of coefficients in the wavelet domain of image data, it is possible to have a strong resistance to compression, noise, etc. as the level gets. In addition, since the amount of change in coefficient is not so large in compression and noise, etc., the damage of the embedded electronic watermark is in a dispersion tendency, while the damage tends to be concentrated in tampering.
[0007] し力しながら、特許文献 1に記載の発明では、これらの特徴を考慮することなぐ画 一的に多数決判定を行うため、画像データに強 ヽ圧縮やノイズがかけられた場合に 、電子透力し情報の破損が増カロして多数決が機能せず、電子透かレ 報を復元でき なくなったり、悪意のある改竄が検出できなくなるという問題があった。  However, in the invention described in Patent Document 1, in the case where strong compression or noise is applied to image data, the present invention described in Patent Document 1 makes uniform majority judgment without considering these features. There has been a problem that the electronic transparency and the damage to the information increase, the majority decision does not work, the electronic transparency can not be restored, and malicious tampering can not be detected.
[0008] 本発明はこのような状況に鑑みてなされたものであり、悪意のある改竄と圧縮 ィ ズ等の悪意のない変更を区別して、正確に電子透力し情報を復元するとともに、改竄 を的確に検出することができるようにするものである。  The present invention has been made in view of such a situation, and distinguishes between malicious tampering and non-malicious change such as compression, and accurately restores electronic transparency information and tampering with it. Can be accurately detected.
課題を解決するための手段  Means to solve the problem
[0009] 本発明の第 1の側面の情報処理装置は、ウェーブレット変換されて電子透かし情報 が埋め込まれた対象情報の改竄を検出する情報処理装置にぉ 、て、前記対象情報 をウェーブレット変換する変換手段と、前記電子透かし情報を構成する複数の同一 画素がそれぞれ埋め込まれる複数の埋め込み係数を検出する埋め込み係数検出手 段と、前記埋め込み係数検出手段により検出された前記複数の埋め込み係数につ V、て、それぞれの前記埋め込み係数が属するサブバンドに応じて重み付けをして計 数する計数手段とを備える。  An information processing apparatus according to a first aspect of the present invention is an information processing apparatus for detecting falsification of target information in which digital watermark information is embedded by wavelet conversion, and performs conversion such as wavelet conversion of the target information. Means, embedding coefficient detection means for detecting a plurality of embedding coefficients in which a plurality of identical pixels constituting the digital watermark information are respectively embedded, and a plurality of the embedding coefficients detected by the embedding coefficient detection unit V, And counting means for counting according to the sub-band to which each of the embedding coefficients belongs.
[0010] 第 1の側面の情報処理装置には、前記計数手段による計数結果に基づいて、多数 決に勝った埋め込み係数値を前記電子透かし情報を構成する画素値として決定す る決定手段をさらに設けることができる。  In the information processing apparatus according to the first aspect, the determination means for determining the embedding coefficient value which has won the majority as the pixel value constituting the digital watermark information based on the counting result by the counting means is further added. It can be provided.
[0011] 第 1の側面の情報処理装置には、前記計数手段による計数結果に基づいて、多数 決に負けた埋め込み係数値を壊れ係数とし、前記ウェーブレット変換手段によりゥェ 一ブレット変換された前記対象情報において、サブバンドにわたって関連する係数 群毎に、前記埋め込み係数の数と前記壊れ係数の数を算出する算出手段と、前記 算出手段により算出された前記埋め込み係数の数と前記壊れ係数の数を、前記埋 め込み係数および前記壊れ係数が属するサブバンドのレベルに応じて重み付けす る重み付け手段と、前記重み付け手段により重み付けされた前記壊れ係数の数と、 前記重み付け手段により重み付けされた前記埋め込み係数との比率に基づいて、前 記係数群が改竄されたか否かを判定する判定手段と、前記判定手段による判定結 果に基づいて、前記係数群の係数値を操作する操作手段とをさらに設けることができ る。 In the information processing apparatus according to the first aspect, based on the counting result by the counting unit, the embedded coefficient value which loses the majority is regarded as a breaking coefficient, and the wavelet transform unit performs wavelet transform by the wavelet transform unit. In the target information, calculation means for calculating the number of embedding coefficients and the number of breaking coefficients for each group of related coefficients across subbands, the number of embedding coefficients calculated by the calculating means, and the number of breaking coefficients Are weighted according to the embedding factor and the level of the sub-band to which the corruption factor belongs. Determining whether or not the coefficient group has been tampered with, based on a ratio of the weighting unit, the number of the breaking coefficients weighted by the weighting unit, and the embedding coefficient weighted by the weighting unit Means may be further provided, and operation means for operating the coefficient value of the coefficient group based on the determination result by the determination means.
[0012] 前記操作手段は、前記比率が所定の閾値以下の場合には、前記係数群に含まれ る前記壊れ係数を消去し、前記比率が所定の閾値より大きい場合には、前記係数群 に含まれる前記埋め込み係数を壊れ係数に変更することができる。  When the ratio is equal to or less than a predetermined threshold value, the operation means erases the breakage coefficient included in the coefficient group, and when the ratio is larger than a predetermined threshold value, the operation unit deletes the broken coefficient group. The embedding factor included can be changed to a breaking factor.
[0013] 前記電子透かし情報を構成する複数の同一画素は、ウエーブレット変換された対 象情報における第 1のサブバンドの係数から予めランダムに決定された埋め込み係 数と関連する第 2のサブバンドの関連係数に基づいて変調されて、前記埋め込み係 数に埋め込まれて 、るようにすることができる。  [0013] A plurality of identical pixels constituting the digital watermark information is a second subband associated with an embedding coefficient randomly determined in advance from the coefficient of the first subband in the wavelet-transformed object information. The modulation coefficient may be modulated based on the related coefficient of and embedded in the embedding coefficient.
[0014] 前記第 1のサブバンドは、最低域のサブバンド以外のサブバンドであり、前記第 2の サブバンドは、前記最低域のサブバンドであるようにすることができる。  The first sub-band may be a sub-band other than the lowest sub-band, and the second sub-band may be the lowest sub-band.
[0015] 複数段のウェーブレット変換を随時行うと同時に、各段階のウェーブレット変換が行 われる毎に、第 1のサブバンドの係数力 予めランダムに決定された埋め込み係数と 関連する第 2のサブバンドの関連係数を検出することができる。  [0015] A plurality of stages of wavelet transforms are performed as needed, and each time a stage of wavelet transform is performed, the coefficient power of the first sub-band The second sub-band of the second sub-band associated with the embedding coefficient determined in advance randomly. Related coefficients can be detected.
[0016] 前記第 1のサブバンドは、最高域のサブバンド以外のサブバンドであり、前記第 2の サブバンドは、前記最高域のサブバンドであるようにすることができる。  The first sub-band may be a sub-band other than the highest sub-band, and the second sub-band may be the highest sub-band.
[0017] 第 1の側面の情報処理装置には、前記関連係数に基づいて復調を行う復調手段を さらに設け、前記計数手段には、前記復調手段により復調された前記埋め込み係数 につ 、て、それぞれの前記埋め込み係数が属するサブバンドに応じて重み付けをし て計数させることができる。  The information processing apparatus according to the first aspect further comprises demodulation means for performing demodulation based on the related coefficient, and the counting means includes the embedding coefficient demodulated by the demodulation means. Each of the embedding coefficients can be weighted and counted according to the sub-band to which it belongs.
[0018] 本発明の第 1の情報処理方法、またはプログラムは、ウェーブレット変換されて電子 透力し情報が埋め込まれた対象情報の改竄を検出する情報処理方法において、ま たはウェーブレット変換されて電子透力し情報が埋め込まれた対象情報の改竄を検 出する処理をコンピュータに実行させるプログラムにおいて、前記対象情報をゥエー ブレット変換する変換ステップと、前記電子透かし情報を構成する複数の同一画素が それぞれ埋め込まれる複数の埋め込み係数を検出する埋め込み係数検出ステップ と、前記埋め込み係数検出ステップの処理で検出された前記複数の埋め込み係数 につ 、て、それぞれの前記埋め込み係数が属するサブバンドに応じて重み付けをし て計数する計数ステップとを含む。 [0018] A first information processing method or program according to the present invention is an information processing method for detecting falsification of target information in which electronic wave penetration information is embedded by wavelet conversion. In a program that causes a computer to execute processing for detecting falsification of target information in which penetration information is embedded, a conversion step of performing wavelet conversion on the target information, and a plurality of identical pixels constituting the digital watermark information An embedding coefficient detection step of detecting a plurality of embedding coefficients to be embedded respectively and the plurality of embedding coefficients detected in the processing of the embedding coefficient detection step, weighting according to a sub-band to which each of the embedding coefficients belongs And counting steps.
[0019] 以上のような第 1の側面の情報処理装置、情報処理方法、またはプログラムにおい ては、前記対象情報がウェーブレット変換され、前記電子透かし情報を構成する複数 の同一画素がそれぞれ埋め込まれる複数の埋め込み係数が検出され、検出された 前記複数の埋め込み係数にっ 、て、それぞれの前記埋め込み係数が属するサブバ ンドに応じて重み付けがされて計数される。  In the information processing apparatus, the information processing method, or the program according to the first aspect as described above, the target information is wavelet-transformed, and a plurality of identical pixels constituting the digital watermark information are respectively embedded. The embedded coefficients are detected and weighted and counted according to the sub-bands to which the embedded coefficients belong to the plurality of detected embedded coefficients.
発明の効果  Effect of the invention
[0020] 本発明の第 1の側面によれば、効率よぐかつ安全に電子透かし情報を埋め込みま たは抽出することができる。  According to the first aspect of the present invention, digital watermark information can be embedded or extracted efficiently and safely.
図面の簡単な説明  Brief description of the drawings
[0021] [図 1]本発明を適用した画像処理装置の構成例を示すブロック図である。 FIG. 1 is a block diagram showing a configuration example of an image processing apparatus to which the present invention is applied.
[図 2]ウェーブレット変換を説明する図である。  FIG. 2 is a diagram for explaining wavelet transform.
[図 3]図 1の埋め込み部 13の電子透かし埋め込み処理を説明するフローチャートで ある。  FIG. 3 is a flowchart for explaining the digital watermark embedding process of embedding unit 13 in FIG. 1.
[図 4]図 3のステップ S4の処理を説明する図である。  FIG. 4 is a diagram for explaining the process of step S4 in FIG. 3;
[図 5]図 3のステップ S4の処理を説明する他の図である。  [FIG. 5] Another view for explaining the processing of step S 4 in FIG. 3.
[図 6]図 3のステップ S4の処理を説明する他の図である。  FIG. 6 is another diagram for explaining the process of step S4 in FIG. 3.
[図 7]図 3のステップ S5およびステップ S6の処理を説明する図である。  7 is a view for explaining the process of step S5 and step S6 of FIG. 3;
[図 8]本発明を適用した画像処理装置 41の構成例を示すブロック図である。  FIG. 8 is a block diagram showing a configuration example of an image processing apparatus 41 to which the present invention is applied.
[図 9]図 8の改竄検出部 53の電子透かし抽出処理を説明するフローチャートである。  FIG. 9 is a flowchart illustrating digital watermark extraction processing of the tampering detection unit 53 of FIG. 8;
[図 10]図 9のステップ S23乃至ステップ S26の処理を説明する図である。  FIG. 10 is a diagram for explaining the processing of steps S23 to S26 in FIG. 9;
[図 11]図 9のステップ S27およびステップ S28の処理を説明する図である。  FIG. 11 is a view for explaining the process of step S27 and step S28 of FIG. 9;
[図 12]改竄検出用画像の例を示す図である。  FIG. 12 is a view showing an example of a tampering detection image.
[図 13]重みに応じた破損率を示す図である。  FIG. 13 is a diagram showing a breakage rate according to weights.
[図 14]図 8の画像処理部 54における画像処理を説明するフローチャートである。 [図 15]図 14のステップ S52の処理を説明する図である。 FIG. 14 is a flowchart for describing image processing in the image processing unit 54 of FIG. 8; 15 is a view for explaining the process of step S52 in FIG. 14;
[図 16]図 14のステップ S52の処理を説明する他の図である。  [FIG. 16] Another view for explaining the process of step S 52 in FIG.
[図 17]図 14のステップ S55の処理を説明する図である。  FIG. 17 is a view for explaining the process of step S55 in FIG. 14;
[図 18A]対象画像の例を示す図である。  FIG. 18A is a diagram showing an example of a target image.
[図 18B]対象画像の例を示す図である。  FIG. 18B is a diagram showing an example of a target image.
[図 19]本発明を適用した画像処理装置 1の他の構成例を示すブロック図である。  FIG. 19 is a block diagram showing another configuration example of the image processing apparatus 1 to which the present invention is applied.
[図 20]図 19の埋め込み部 101における電子透力し埋め込み処理を説明するフロー チャートである。  FIG. 20 is a flow chart for explaining the electron permeability and embedding process in the embedding section 101 of FIG. 19;
[図 21]図 20のステップ S84およびステップ S85の処理を説明する図である。  21 is a view for explaining the process of step S84 and step S85 of FIG. 20. FIG.
[図 22]重みに応じた破損率を示す他の図である。  FIG. 22 is another view showing the breakage rate according to the weight.
[図 23]電子透力 画像の埋め込み方法を説明する図である。  FIG. 23 is a view for explaining a method of embedding an electron permeability image.
[図 24A]電子透力 画像の埋め込み方法を説明する他の図である。  [FIG. 24A] Another view for explaining the method of embedding an electron permeability image.
[図 24B]電子透力 画像の埋め込み方法を説明する他の図である。  FIG. 24B is another view illustrating the method of embedding an electron permeability image.
[図 25]コンピュータの構成例を示すブロック図である。  FIG. 25 is a block diagram showing a configuration example of a computer.
符号の説明  Explanation of sign
[0022] 1 画像処理装置, 12 ウェーブレット変換部, 13 電子透かし埋め込み部, 1 4 逆ウェーブレット変換部, 52 ウェーブレット変換部, 53 改竄検出部, 101 電子透かし埋め込み部  1 image processing device, 12 wavelet transform units, 13 digital watermark embedding units, 14 inverse wavelet transform units, 52 wavelet transform units, 53 tamper detection units, 101 digital watermark embedding units
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、図を参照して、本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0024] 図 1は、本発明を適用した画像処理装置 1の構成例を示している。この画像処理装 置 1は、電子透かし情報としての 2値画像の電子透かし画像 Wを、電子透かし画像 W を埋め込む対象となる対象画像 F (例えば、デジタルカメラで撮像された画像)に埋め 込むことができる。 FIG. 1 shows a configuration example of an image processing apparatus 1 to which the present invention is applied. The image processing apparatus 1 embeds a digital watermark image W of a binary image as digital watermark information into a target image F (for example, an image captured by a digital camera) to which the digital watermark image W is to be embedded. Can.
[0025] 入力部 11には、対象画像 F、電子透かし画像 W、および電子透かし画像 Wの埋め 込みに必要な係数選択鍵 Cが入力される。係数選択鍵 Cには、電子透かし画像 Wを 構成する 1画素の埋め込み数 (複製数)、電子透かし画像 Wを埋め込む対象画像 F の係数 (以下、埋め込み係数と称する)、および埋め込む強さを示す量子化パラメ一 タが含まれている。 The input unit 11 receives a target image F, a digital watermark image W, and a coefficient selection key C necessary for embedding the digital watermark image W. The coefficient selection key C indicates the embedding number (replication number) of one pixel constituting the digital watermark image W, the coefficient of the target image F to which the digital watermark image W is to be embedded (hereinafter referred to as embedding coefficient), and the embedding strength. Quantization parameter Data is included.
[0026] 埋め込み係数は、サブバンド LL3を除ぐサブバンド HL1、 HH1、 LH1、 HL2、 H H2、 LH2、 HL3、 HH3、または LH3の中力もランダムに予め決定されている。例え ば図 4の例では、レベル 1のサブバンド HL1およびサブバンド LH1から係数 P1およ び係数 P2力 レベル 2のサブバンド HH2から係数 P3力 そしてレベル 3のサブバン ド LH3から係数 P4が、それぞれ埋め込み係数として決定される。  [0026] The embedding coefficients are also predetermined at random in advance of the subbands LL1, HH1, LH1, HL2, HH2, LH2, HL3, HH3, or LH3 excluding the subband LL3. For example, in the example of FIG. 4, the subbands HL1 and LH1 of level 1 to the coefficient P1 and the coefficient P2 power to the subband HH2 of level 2 to the coefficient P3 force and the subband LH3 to level 3 of the coefficient 3 are respectively Determined as the embedding coefficient.
[0027] 入力部 11は、入力した対象画像 Fをウェーブレット変換部 12に供給し、入力した電 子透かし画像 Wおよび係数選択鍵 Cを電子透かし埋め込み部 13に供給する。  The input unit 11 supplies the input target image F to the wavelet transform unit 12, and supplies the input electronic watermark image W and the coefficient selection key C to the digital watermark embedding unit 13.
[0028] ウェーブレット変換部 12は、入力部 11から供給される対象画像 Fに対して、ゥエー ブレット変換を行い、その結果得られた周波数変換された対象画像 Fの係数を、電子 透かし埋め込み部 13に供給する。  The wavelet transform unit 12 performs wavelet transform on the target image F supplied from the input unit 11, and the resulting coefficient of the frequency-converted target image F is converted into an electronic watermark embedding unit 13. Supply to
[0029] ウェーブレット変換部 12においては、画像の 2次元のレベル分布が重み付けが可 能な圧縮しやす 、データに周波数変換される。  [0029] In the wavelet transformer 12, the two-dimensional level distribution of the image is frequency-transformed into data that can be easily compressed.
[0030] 具体的には、対象画像 Fのピクセルデータを高域成分と低域成分に 2分していく処 理を繰り返すことにより、対象画像 Fが複数の周波数帯域に分解される。  Specifically, the target image F is decomposed into a plurality of frequency bands by repeating the process of dividing the pixel data of the target image F into high frequency components and low frequency components.
[0031] 例えば、高域成分と低域成分に 2分していく処理を 3段階行う場合、はじめに例え ば図 2の Aの対象画像 Fのピクセルデータに対して処理が行われ、対象画像 Fが、図 2の Bに示すように、「低域 I低域」のサブバンド LL1、「低域 I高域」のサブバンド L Hl、「高域 I低域」のサブバンド HL1、および「高域 I高域」のサブバンド ΉΗ1に分 解される。なおこの処理で得られたサブバンド LL1、 LH1、 HL1、または HH1を、適 宜、レベル 1のサブバンドと称する。  For example, in the case of performing three steps of dividing the high frequency component and the low frequency component into two steps, for example, the process is performed on the pixel data of the target image F in A of FIG. As shown in B of FIG. 2, sub-band LL1 of "low-pass I low-pass", sub-band L H1 of "low-pass I high-pass", sub-band HL1 of "high-pass I low-pass", and It is decomposed into the sub-band ΉΗ 1 of “high range I high range”. The subbands LL1, LH1, HL1, or HH1 obtained by this processing are referred to as level 1 subbands as appropriate.
[0032] 次に 2回目の処理が、最低域のサブバンド LL1に対して行われ、サブバンド LL1が 、図 2の Cに示すように、「低域 I低域」のサブバンド LL2、「低域 I高域」のサブバン ド LH2、「高域 I低域」のサブバンド HL2、および「高域 I高域」のサブバンド HH2 に分解される。なおこの処理で得られたサブバンド LL2、 LH2、 HL2、または HH2を 、適宜、レベル 2のサブバンドと称する。  Next, the second process is performed on the lower band subband LL1, and the lower band LL1 is the “lower band I lower band” subband LL2, as shown in C of FIG. It is decomposed into the low band I high band sub-band LH2, the high band I low band sub-band HL2, and the high band I high band sub-band HH2. The subbands LL2, LH2, HL2, or HH2 obtained by this processing are appropriately referred to as level 2 subbands.
[0033] そして 3回目の処理が、最低域のサブバンド LL2に対して行われ、サブバンド LL2 力 図 2の Dに示すように、「低域 I低域」のサブバンド LL3、「低域 I高域」のサブバ ンド LH3、「高域 I低域」のサブバンド HL3、および「高域 I高域」のサブバンド HH 3に分解される。なおこの処理で得られたサブバンド LL3、 LH3、 HL3、または HH3 を、適宜、レベル 3のサブバンドと称する。 Then, the third process is performed on the lower band subband LL2, and the lower band LL2 power as shown in D of FIG. 2 indicates that the “lower band I lower band” subband LL3, “lower band Sub-bar of It is decomposed into the band LH3, the high band I low band sub-band HL3, and the high band I high band sub-band HH 3. The subbands LL3, LH3, HL3 or HH3 obtained by this processing are appropriately referred to as level 3 subbands.
[0034] 図 1に戻り電子透力 埋め込み部(以下、埋め込み部と略称する) 13は、ウェーブレ ット変換部 12から供給された対象画像 Fの 1フレーム分の係数に、入力部 11から供 給された電子透かし画像 Wを、同様に入力部 11から供給された係数選択鍵 Cに応じ て埋め込み、その結果得られた係数を、逆ウェーブレット変換部 14に供給する。埋め 込み部 13はまた、電子透カゝし画像 Wを抽出するために必要な係数選択鍵 Cを、出力 部 15に供給する。 Returning to FIG. 1, the electron permeability embedded unit (hereinafter referred to as embedded unit) 13 supplies the coefficients for one frame of the target image F supplied from the wavelet conversion unit 12 from the input unit 11. Similarly, the supplied digital watermark image W is embedded according to the coefficient selection key C supplied from the input unit 11, and the resulting coefficient is supplied to the inverse wavelet transform unit 14. The embedding unit 13 also supplies, to the output unit 15, a coefficient selection key C necessary for extracting the electronically transparent image W.
[0035] 逆ウエーブレット変換部 14は、埋め込み部 13から供給された係数に対して、逆ゥヱ 一ブレット変換を行 ヽ(図 2に示した処理と逆の処理を行 ヽ)、電子透かし画像 Wが埋 め込まれた対象画像 F (対象画像 F ' )を生成し、出力部 15に供給する。  [0035] The inverse wavelet transform unit 14 performs inverse inverse one-Bretlet transform on the coefficients supplied from the embedding unit 13 (performs the inverse process to the process shown in FIG. 2), a digital watermark A target image F (target image F ′) in which the image W is embedded is generated and supplied to the output unit 15.
[0036] 出力部 15は、逆ウェーブレット変換部 14から供給された対象画像 F'と、埋め込み 部 13から供給された係数選択鍵 Cを、外部の装置 (例えば、図 8の画像処理装置 41 )に供給する。  The output unit 15 outputs the target image F ′ supplied from the inverse wavelet transform unit 14 and the coefficient selection key C supplied from the embedding unit 13 to an external device (for example, the image processing device 41 of FIG. 8). Supply to
[0037] 次に、画像処理装置 1の埋め込み部 13における電子透かし埋め込み処理を、図 3 のフローチャートを参照して説明する。  Next, the digital watermark embedding process in the embedding unit 13 of the image processing apparatus 1 will be described with reference to the flowchart of FIG.
[0038] ステップ S1において、埋め込み部 13は、ウェーブレット変換部 12から、 1フレーム 分の対象画像 Fの係数(図 2の D)を入力する。  In step S1, the embedding unit 13 inputs the coefficient (D in FIG. 2) of the target image F for one frame from the wavelet transformation unit 12.
[0039] ステップ S2において、埋め込み部 13は、入力部 11から供給された電子透かし画 像 Wの 1画素を選択する。 In step S 2, the embedding unit 13 selects one pixel of the digital watermark image W supplied from the input unit 11.
[0040] 次にステップ S3において、埋め込み部 13は、ステップ S 2で選択した電子透かし画 像 Wの画素の画素値 (以下、透力 ビットと称する)を、入力部 11から供給された係 数選択鍵 Cに示される複製数だけ複製する。 Next, in step S3, the embedding unit 13 calculates the pixel value of the pixel of the digital watermark image W selected in step S2 (hereinafter, referred to as a transparency bit) from the coefficient supplied from the input unit 11. Replicate as many copies as indicated in the selection key C.
[0041] 次にステップ S4において、埋め込み部 13は、係数選択鍵 Cにより与えられた埋め 込み係数に関連するサブバンド LL3上の係数(関連係数)を検出する。 Next, in step S4, the embedding unit 13 detects a coefficient (related coefficient) on the subband LL3 associated with the embedding coefficient given by the coefficient selection key C.
[0042] ウェーブレット変換係数にぉ 、ては、レベル (r=l,2)のサブバンド上の座標(x, y) の係数と、レベル r+1のサブバンド上の座標(xZ2, yZ2)の係数とは、近寄った性質 を有していること (すなわち、空間的な相関が高いこと)が知られている(以下、この関 係を、親子関係と称する)。 [0042] In the wavelet transform coefficients, the coefficient of coordinates (x, y) on the subband of level (r = 1, 2) and the coordinate of the subband on level r + 1 (xZ2, yZ2) And the nature of the factor Is known to have (ie, high spatial correlation) (hereinafter this relationship is referred to as a parent-child relationship).
[0043] そこで本発明ではこの親子関係を利用し、図 5に示すように、レベル 1のサブバンド の座標(xl, yl)の埋め込み係数からは、レベル 3のサブバンド LL3の座標(xlZ4, ylZ4)の係数力 レベル 2のサブバンドの座標(x2, y2)の埋め込み係数からは、サ ブバンド LL3の座標(x2Z2, y2Z2)の係数が、そしてレベル 3のサブバンド(サブバ ンド LL3を除く)の座標(x3, y3)の埋め込み係数からは、サブバンド LL3の座標(x3 , y3)の係数力 それぞれ埋め込み係数に関連するサブバンド LL3の係数として検 出される。  Therefore, in the present invention, using this parent-child relationship, as shown in FIG. 5, from the embedding coefficient of the coordinates (xl, yl) of the level 1 subband, the coordinates (xlZ4, Coefficient force of ylZ4) From the embedding coefficient of the level 2 sub-band (x2, y2), the coefficient of the sub-band LL3 coordinate (x2Z2, y2Z2) and the level 3 sub-band (except for the sub-band LL3) From the embedding coefficients of the coordinates (x3, y3) of (1), the coefficient forces of the coordinates (x3, y3) of the subband LL3 are detected as the coefficients of the subband LL3 associated with the embedding coefficients.
[0044] この親子関係を空間上に表すと、図 6に示すことができる。  This parent-child relationship can be shown in FIG.
[0045] また図 4の例の場合、係数 P1からは係数 Q1が、係数 P2からは係数 Q2が、係数 P3 力 は係数 Q3が、そして係数 P4からは係数 Q4が、それぞれ関連するサブバンド LL 3の係数として検出されるものとする。  Further, in the example of FIG. 4, the coefficient Q1 is from the coefficient P1, the coefficient Q2 is from the coefficient P2, the coefficient Q is from the coefficient P3, and the coefficient Q4 is from the coefficient P4. It shall be detected as a factor of 3.
[0046] 次にステップ S5において、埋め込み部 13は、ステップ S4で検出したサブバンド LL 3の係数のそれぞれに対して、例えばその係数に隣接する 3個の係数を検出するとと もに、この 3個の係数と、ステップ S4で検出したサブバンド LL3の係数との合計 4個の 係数 (以下、この 4個の係数を、適宜、対応係数と称する)の係数値の平均値を算出 し、それを量子化して 2進値(1または 0)に変換する。  Next, in step S5, the embedding unit 13 detects, for example, three coefficients adjacent to the coefficient for each of the coefficients of the subband LL 3 detected in step S4, and The average value of the coefficient values of four coefficients (hereinafter, these four coefficients are appropriately referred to as corresponding coefficients) of the coefficients and the coefficients of the subband LL3 detected in step S4 is calculated. Quantize and convert to a binary value (1 or 0).
[0047] 図 4の係数 Q1 (例えば座標 (xql, yql) )に対して、図 7に示すように、係数 Q1に隣 接する座標(xql, yql + l)、 (xql + 1, yql)、および (xql + 1, yql + 1)の 3個の係 数が検出され、係数 Q1とその 3個の係数の係数値の平均値が算出され、それが量子 化されて 2進値 rlが得られる。係数 Q2 (例えば座標 (xq2, yq2) )に対して、座標 (xq2 , yq2 + l)、 (xq2 + l, yq2)、および (xq2 + 1, yq2 + 1)の 3個の係数が検出され、係 数 Q2とその 3個の係数の係数値の平均値が算出され、それが量子化されて 2進値 r2 が得られる。  For the coefficient Q1 in FIG. 4 (for example, coordinates (xql, yql)), as shown in FIG. 7, coordinates (xql, yql + l) adjacent to the coefficient Q1, (xql + 1, yql), And three coefficients of (xql + 1, yql + 1) are detected, and the average value of the coefficient value of the coefficient Q1 and its three coefficients is calculated, and it is quantized to obtain a binary value rl. Be For coefficient Q2 (for example, coordinates (xq2, yq2)), three coefficients of coordinates (xq2, yq2 + 1), (xq2 + 1, yq2), and (xq2 + 1, yq2 + 1) are detected , The average value of coefficient values of coefficient Q2 and its three coefficients is calculated, and it is quantized to obtain binary value r2.
[0048] また係数 Q3 (例えば座標 (xq3, yq3) )に対して、座標 (xq3, yq3 + l)、(xq3 + 1, y q3)、および (xq3 + l, yq3 + 1)の 3個の係数が検出され、係数 Q3とその 3個の係数 の係数値の平均値が算出され、それが量子化されて 2進値 r3が得られる。係数 Q4 ( 例えば座標 (xq4, yq4) )に対して、座標 (xq4, yq4+ 1)、 (xq4+ l, yq4)、および (x q4+ l, yq4+ l)の 3個の係数が検出され、係数 Q4とその 3個の係数の係数値の平 均値が算出され、それが量子化されて 2進値 r4が得られる。 In addition, three coefficients, (xq3, yq3 + l), (xq3 + 1, yq3), and (xq3 + l, yq3 + 1), for the coefficient Q3 (for example, coordinates (xq3, yq3)) The coefficient of is detected, the average value of coefficient values of coefficient Q3 and its three coefficients is calculated, and it is quantized to obtain binary value r3. Factor Q4 ( For example, for the coordinate (xq4, yq4), three coefficients of the coordinates (xq4, yq4 + 1), (xq4 + l, yq4), and (xq4 + l, yq4l) are detected, and the coefficient Q4 and its 3 The average of the coefficient values of the coefficients is calculated and quantized to obtain the binary value r4.
[0049] 次にステップ S6において、埋め込み部 13は、ステップ S3で複製した透かしビットの それぞれと、ステップ S5で得られた平均値の 2進値のそれぞれとの排他的論理和演 算 (XOR)を行 ヽ (すなわち透力しビットを、ステップ S5で得られた平均値の 2進値で 変調し)、その結果得られた値 (以下、変調ビットと称する)を、係数選択鍵 Cに含まれ る量子化ステップの強さに応じて埋め込む。  Next, in step S6, the embedding unit 13 performs an exclusive OR operation (XOR) of each of the watermark bits copied in step S3 with each of the binary values of the average value obtained in step S5. (Ie, modulate the transmission bit with the binary value of the average value obtained in step S5), and include the resulting value (hereinafter referred to as the modulation bit) in the coefficient selection key C. Embed according to the strength of the quantization step.
[0050] 図 7の例では、透かしビット waと値 rlとの排他的論理和演算(XOR)の結果得られ た変調ビット walが係数 P1の係数値とされ、透かしビット waと値 r2との XORの結果得 られた変調ビット wa2が係数 P2の係数値とされ、透かしビット waと値 r3との XORの結 果得られた変調ビット wa3が係数 P3の係数値とされ、透カゝしビット waと値 r4との XOR の結果得られた変調ビット wa4が係数 P4の係数値とされる。  In the example of FIG. 7, the modulation bit wal obtained as a result of exclusive OR operation (XOR) of the watermark bit wa and the value rl is taken as the coefficient value of the coefficient P1, and the watermark bit wa and the value r2 The modulation bit wa2 obtained as a result of XOR is taken as the coefficient value of the coefficient P2, and the modulation bit wa3 obtained as a result of XOR of the watermark bit wa and the value r3 is taken as the coefficient value of the coefficient P3. The modulation bit wa4 obtained as a result of XOR of wa and the value r4 is taken as the coefficient value of the coefficient P4.
[0051] ステップ S7において、埋め込み部 13は、電子透かし画像 Wのすベての画素を選 択した力否かを判定し、まだ選択していない画素が残っていると判定した場合、ステ ップ S2に戻り、次の画素を選択して、ステップ S3以降の処理を同様に実行する。  In step S 7, embedding unit 13 determines whether or not all the pixels of digital watermark image W have been selected, and if it is determined that there are still unselected pixels, step 13 is performed. The process returns to step S2 to select the next pixel, and the processes after step S3 are similarly performed.
[0052] ステップ S7で、すべての画素を選択したと判定した場合、埋め込み部 13は、電子 透かし埋め込み処理を終了する。  If it is determined in step S7 that all the pixels have been selected, the embedding unit 13 ends the digital watermark embedding process.
[0053] 以上のような処理が、電子透かし画像 Wが埋め込まれる対象画像 Fが入力される毎 に行われる。  The above-described processing is performed each time a target image F in which the digital watermark image W is to be embedded is input.
[0054] 以上のように、電子透かし情報を埋め込む際に、埋め込み係数をランダムに決定す るようにしたので (ステップ S3)、第三者による埋め込み係数の特定が困難になる。例 えば特許文献 1の方法では、電子透力し情報を埋め込む係数を絶対値が n番目に大 き 、係数と限定して 、るので、電子透かし情報が埋め込まれた係数が特定しやす 、  As described above, when embedding digital watermark information, embedding coefficients are determined randomly (step S3), it becomes difficult for a third party to specify the embedding coefficients. For example, in the method of Patent Document 1, since the coefficient for embedding the electronic penetration information is the nth largest absolute value and limited to the coefficient, it is easy to identify the coefficient in which the digital watermark information is embedded,
[0055] また以上のように、ランダムに決定された埋め込み係数に対して埋め込み処理がな されるので (ステップ S4乃至ステップ S6)、効率よく埋め込み処理を行うことができる。 例えば特許文献 1の方法では、絶対値が n番目の係数を検出するために、全係数を 走査する必要があるので、処理に時間が力かる。 Further, as described above, since the embedding process is performed on the embedding coefficients determined at random (steps S4 to S6), the embedding process can be performed efficiently. For example, in the method of Patent Document 1, in order to detect the nth coefficient whose absolute value is n, all coefficients are Because it needs to be scanned, it takes time for processing.
[0056] また、電子透かレ隋報と、電子透かし情報が埋め込まれた係数の関連性に基づ!/、 て係数値を操作し、あた力も電子透力し情報が埋め込まれて 、るかのように偽装する 、いわゆる Collage Attackでは、電子透かし情報と、電子透かし情報が埋め込まれた 係数の関連性に基づいて係数値が操作されて改竄が行われるので、その防御策とし ては、電子透かし情報が埋め込まれた係数と、それとは別の位置の係数とを何らかの 関係で対応付けることが有効とされている。例えば、電子透力 情報が埋め込まれる 係数とその隣の係数の大小を調べ、電子透力 情報が埋め込まれる係数の方が大き ければ 0、隣の係数が大きければ 1とするようにして、その値が埋め込まれるようにす る方法である。  In addition, based on the relationship between the electronic transparency report and the coefficient in which the digital watermark information is embedded, the coefficient value is manipulated, and the electronic force is embedded in the heat force, and the information is embedded, In the case of so-called “collage attack,” the coefficient value is manipulated based on the relationship between the digital watermark information and the coefficient in which the digital watermark information is embedded, and falsification is performed. It is effective to associate the coefficient in which the digital watermark information is embedded and the coefficient at another position in any relation. For example, check the magnitude of the coefficient into which the electron permeability information is embedded and the coefficient next to it, and if the coefficient into which the electron permeability information is embedded is larger, 0 is set, and if the next coefficient is large, 1 is set. It is a method to embed values.
[0057] そこで以上のように、埋め込み係数と、それに関連する最低域サブバンド (この例の 場合、サブバンド LL3)を対応付けて埋め込まれる値 (変調ビット)を決定するようにし たので (ステップ S4乃至ステップ S6)、 Collage Attackを防御することができる。  [0057] Thus, as described above, the embedding coefficient and the lower band subband (in this example, subband LL3) associated with it are correlated to determine the value (modulation bit) to be embedded (step Steps S4 to S6) can protect the Collage Attack.
[0058] 次に、図 8を参照して、図 1の画像処理装置 1により電子透力 画像 Wが埋め込ま れた対象画像 F (対象画像 F' )から、電子透かし画像 Wを抽出する画像処理装置 41 について説明する。  Next, referring to FIG. 8, image processing for extracting the digital watermark image W from the target image F (target image F ′) in which the electronic permeability image W is embedded by the image processing apparatus 1 of FIG. The apparatus 41 will be described.
[0059] 入力部 51には、図 1の画像処理装置 1より出力された、対象画像 F'および電子透 力し情報抽出のための係数選択鍵 Cが入力される。  The target image F ′ and the coefficient selection key C for extracting electronic transparency information output from the image processing apparatus 1 of FIG. 1 are input to the input unit 51.
[0060] 入力部 51は、入力した対象画像 F'をウェーブレット変換部 52に供給し、入力した 係数選択鍵 Cを改竄検出部 53および画像処理部 54に供給する。 The input unit 51 supplies the input target image F ′ to the wavelet transform unit 52, and supplies the input coefficient selection key C to the tampering detection unit 53 and the image processing unit 54.
[0061] ウェーブレット変換部 52は、入力部 51から供給された対象画像 F'に対して、図 1に 示すウェーブレット変換部 12と同じウェーブレット変換を行い(図 2)、その結果得られ た 1フレーム分の対象画像 F'の係数を、改竄検出部 53および画像処理部 54に供給 する。 The wavelet transform unit 52 subjects the target image F ′ supplied from the input unit 51 to the same wavelet transform as the wavelet transform unit 12 shown in FIG. 1 (FIG. 2), and one frame obtained as a result The coefficients of the target image F ′ for the minute are supplied to the tampering detection unit 53 and the image processing unit 54.
[0062] 改竄検出部 53は、ウェーブレット変換部 52から供給された対象画像 F'の係数から 、係数選択鍵 Cに基づいて電子透カゝし画像 Wを抽出するとともに、その際に得られた 改竄情報を、画像処理部 54に供給する。  The tampering detection unit 53 extracts the electronically transmitted image W based on the coefficient selection key C from the coefficients of the target image F ′ supplied from the wavelet transform unit 52, and is obtained at that time. The falsification information is supplied to the image processing unit 54.
[0063] 画像処理部 54は、ウェーブレット変換部 52から供給された対象画像 F'の係数に対 して、入力部 51から供給された係数選択鍵 Cおよび改竄検出部 53から供給された 改竄情報に応じて係数操作を行う。 The image processing unit 54 compares the coefficient of the target image F ′ supplied from the wavelet transformation unit 52 with the coefficient. Then, the coefficient operation is performed according to the coefficient selection key C supplied from the input unit 51 and the tampering information supplied from the tampering detection unit 53.
[0064] 次に、改竄検出部 53における電子透かし画像および改竄検出用画像の抽出処理 を、図 9のフローチャートを参照して説明する。 Next, extraction processing of the digital watermark image and the tampering detection image in the tampering detection unit 53 will be described with reference to the flowchart in FIG.
[0065] ステップ S21において、改竄検出部 53は、ウェーブレット変換部 52から、 1フレーム 分の対象画像 F'の係数を入力する。 In step S21, the tampering detection unit 53 inputs the coefficient of the target image F ′ for one frame from the wavelet transform unit 52.
[0066] 次にステップ S22において、改竄検出部 53は、入力部 51から供給された係数選択 鍵じから、電子透かし画像 Wの 1画素についての係数選択鍵を読み出す。 Next, in step S22, the tampering detection unit 53 reads the coefficient selection key for one pixel of the digital watermark image W from the coefficient selection key supplied from the input unit 51.
[0067] ステップ S23において、改竄検出部 53は、読み出した係数選択鍵に基づいて、ス テツプ S21で入力した 1フレーム分の係数の中から、埋め込み係数 (ステップ S22で 選択された 1画素の透力しビットが埋め込まれている埋め込み係数)を検出する。 In step S23, the tampering detection unit 53 determines, based on the read coefficient selection key, the embedding coefficient (one pixel selected in step S22) from the coefficients for one frame input in step S21. Detection of embedded coefficients in which a bit is embedded.
[0068] 例えば図 7に示すように電子透かし画像 Wが埋め込まれた対象画像 Fから電子透 カゝし画像 Wを抽出する場合、図 10に示すように、図 7における場合と同様にレベル 1 のサブバンド HL 1の係数 P 1およびサブバンド LH 1の係数 P2が、レベル 2のサブバン ド HH2から係数 P3が、そしてレベル 3のサブバンド LH3から係数 P4が、それぞれ埋 め込み係数として検出される。 For example, in the case of extracting an electronic watermark image W from a target image F in which a digital watermark image W is embedded as shown in FIG. 7, level 1 as in the case of FIG. 7 as shown in FIG. The coefficient P1 of subband HL1 and the coefficient P2 of subband LH1 are detected as the embedding coefficients, respectively, the coefficient 2 of level 2 to the coefficient P3 and the coefficient of level 3 subband LH3 to the coefficient P4. Ru.
[0069] 次にステップ S24において、改竄検出部 53は、ウェーブレット変換の親子関係に基 づいて、検出した埋め込み係数に関連するサブバンド LL3の係数を検出する。 Next, in step S24, the tampering detection unit 53 detects the coefficient of the sub-band LL3 related to the detected embedding coefficient based on the parent-child relationship of the wavelet transform.
[0070] 図 10の例の場合、図 7における場合と同様に、係数 P1から係数 Q1が、係数 P2から 係数 Q2が、係数 P3から係数 Q3が、そして係数 P4から係数 Q4が、それぞれ関連する サブバンド LL3の係数として検出される。 In the example of FIG. 10, as in FIG. 7, coefficients P1 to Q1 are related, coefficients P2 to Q2 are related, coefficients P3 to Q3 are related, and coefficients P4 to Q4 are related, respectively. It is detected as a coefficient of subband LL3.
[0071] ステップ S25において、改竄検出部 53は、ステップ S24で検出したサブバンド LL3 の係数のそれぞれに対して、例えばその係数に隣接する 3個の係数を検出するととも に、その 3個の係数と、ステップ S24で検出したサブバンド LL3の係数との合計 4個の 係数 (対応係数)の係数値の平均値を算出し、それを量子化して 2進値に変換する。 In step S 25, for each of the coefficients of subband LL 3 detected in step S 24, tampering detection unit 53 detects, for example, three coefficients adjacent to the coefficient, and the three coefficients thereof. And the coefficients of the sub-band LL3 detected in step S24, the average value of the coefficient values of four coefficients (corresponding coefficients) is calculated, and the average value is quantized and converted into a binary value.
[0072] 図 10の例の場合は、図 7における場合と同様に、係数 Q1 (座標 (xql, yql) )に対し て、座標(xql, yql + l)、 (xql + 1, yql)、および (xql + 1, yql + 1)の 3個の係数 が検出され、係数 Q1とその 3個の係数の係数値の平均値が算出され、それが量子化 されて 2進数値 rl,が得られる。係数 Q2 (座標 (xq2, yq2) )に対して、座標 (xq2, yq2 + 1)、 (xq2 + l, yq2)、および (xq2 + l, yq2 + 1)の 3個の係数が検出され、係数 Q2 とその 3個の係数の係数値の平均値が算出され、それが量子化されて 2進数値 r2'が 得られる。 In the case of the example of FIG. 10, as in the case of FIG. 7, the coordinates (xql, yql + l), (xql + 1, yql) for the coefficient Q1 (coordinates (xql, yql)), And three coefficients of (xql + 1, yql + 1) are detected, and the average value of the coefficient value of the coefficient Q1 and its three coefficients is calculated and quantized. The binary value rl is obtained. For coefficient Q2 (coordinate (xq2, yq2)), three coefficients of coordinates (xq2, yq2 + 1), (xq2 + l, yq2), and (xq2 + l, yq2 + 1) are detected, The mean value of the coefficient value of the coefficient Q2 and its three coefficients is calculated and quantized to obtain the binary value r2 '.
[0073] また係数 Q3 (座標 (xq3, yq3) )に対して、座標 (xq3, yq3 + 1)、 (xq3 + 1 , yq3)、 および (xq3 + l, yq3 + l)の 3個の係数が検出され、係数 Q3とその 3個の係数の係 数値の平均値が算出され、それが量子化されて 2進値 r3'が得られる。係数 Q4 (座標 (xq4, yq4) )に対して、座標(xq4, yq4+ l)、 (xq4+ l, yq4)、および(xq4+ l, yq4 + 1)の 3個の係数が検出され、係数 Q4とその 3個の係数の係数値の平均値が算出 され、それが量子化されて 2進値 r4'が得られる。 In addition, three coefficients of coordinates (xq3, yq3 + 1), (xq3 + 1, yq3), and (xq3 + l, yq3 + l) for the coefficient Q3 (coordinates (xq3, yq3)) Is detected, and the average value of coefficient Q3 and the coefficient of its three coefficients is calculated, and it is quantized to obtain binary value r3 '. For coefficient Q4 (coordinate (xq4, yq4)), three coefficients of coordinates (xq4, yq4 + l), (xq4 + l, yq4) and (xq4 + l, yq4 + 1) are detected, and the coefficient Q4 is obtained. The mean value of the coefficient values of the three coefficients is calculated and quantized to obtain a binary value r4 '.
[0074] ステップ S26において、改竄検出部 53は、ステップ S23で検出した埋め込み係数 の係数値 (変調ビット(図 3のステップ S6) )のそれぞれと、対応するステップ S25で得 られた平均値の 2進値のそれぞれとの XORをとり(すなわち変調ビットを、ステップ S2 5で得られた平均値の 2進値で復調し)、その結果得られた値 (以下、復調ビットと称 する)を、ステップ S 22で選択した電子透力し画像 Wの画素の画素値 (透力しビット) の候補とする。  In step S26, the tampering detection unit 53 calculates each of the embedded coefficient coefficient values (modulation bit (step S6 in FIG. 3)) detected in step S23 and the corresponding average value obtained in step S25. XOR with each of the binary values (that is, demodulate the modulation bit with the binary value of the average value obtained in step S25), and obtain the resulting value (hereinafter referred to as demodulation bit) as In step S22, it is set as a candidate for the pixel value (penetration bit) of the pixel of the electron-permeable image W selected.
[0075] 図 10の例の場合、変調ビット wal,と値 rl,との XORの結果得られた復調ビット wbl 、変調ビット wa2,と値 r2,との XORの結果得られた復調ビット wb2、変調ビット wa3,と 値 r3,との XORの結果得られた復調ビット wb3、および変調ビット wa4,と値 r4,との X ORの結果得られた復調ビット wb4のそれぞれ力 透力しビットの候補とされる。  In the case of the example of FIG. 10, the demodulation bit wbl obtained as a result of XOR of the modulation bit wal, and the value rl, the demodulation bit wb2 obtained as a result of XOR of the modulation bit wa2 and the value r2. Demodulated bit wb3 obtained as a result of XOR of modulation bit wa3 and value r3, and force bit candidate for demodulation bit wb4 obtained as a result of XOR of modulation bit wa4 and value r4 It is assumed.
[0076] 次にステップ S27において、改竄検出部 53は、ステップ S26で得られた透かしビッ トの候補としての復調ビットを、復調ビットの属するサブバンドのレベルに応じて重み 付けてカウントし、その結果に基づいて多数決をとり、勝った復調ビット(以下、勝ちビ ットと称する)と負けた復調ビット (以下、負けビットと称する)を決定する。  Next, in step S 27, the tampering detection unit 53 counts and counts the demodulation bits as the watermark bit candidate obtained in step S 26 according to the level of the sub-band to which the demodulation bits belong, and Based on the results, a majority is taken to determine the winning demodulation bits (hereinafter referred to as winning bits) and the losing demodulation bits (hereinafter referred to as losing bits).
[0077] 例えば、レベル 1に属するサブバンドの復調ビットについての重みを 1とし、レベル 2 に属するサブバンドの復調ビットについての重みを 6とし、そしてレベル 3に属するサ ブバンドの復調ビットにっ 、ての重みを 8とし、それぞれ重みが乗算された数の復調 ビットが用意され、その中で多いビットと少ないビットが検出される。 [0078] 図 10の例の場合において、復調ビット wbl, wb4, wb3, wb2が、図 11に示すように 、 0, 0, 0, 1であるとき、レベル 1の復調ビット wblとしての値 0が 1個、レベル 3の復調 ビット wb4としての値 0が 8個、レベル 2の復調ビット wb3としての値 0が 6個、そしてレ ベル 1の復調ビット wb2としての値 1が 1個、すなわち 15個の値 0と、 1個の値 1が用意 される。 For example, it is assumed that the weight of the demodulation bits of the subbands belonging to level 1 is 1, the weight of the demodulation bits of the subbands belonging to level 2 is 6, and the demodulation bits of the subbands belonging to level 3 Assuming that each weight is 8 and the number of demodulation bits multiplied by each weight is prepared, among them, many bits and few bits are detected. In the case of the example of FIG. 10, when the demodulation bits wbl, wb4, wb3, wb2 are 0, 0, 0, 1 as shown in FIG. 11, the value 0 as the level 1 demodulation bit wbl 1, level 3 demodulation bit wb4 value 0 0, level 2 demodulation bit wb3 value 0 6, level 1 demodulation bit wb2 value 1 1 or 15 There are 0 values and 1 value.
[0079] 従ってこの例の場合、値 0が 15個で、値 1が 1個となるので、値 0が勝ちビット、そし て値 1が負けビットとして検出される。  Therefore, in the case of this example, since the value 0 is 15 and the value 1 is 1, the value 0 is detected as a winning bit and the value 1 is detected as a losing bit.
[0080] 次にステップ S28において、改竄検出部 53は、図 11に示すように、ステップ S27で 検出した勝ちビット(0)を、ステップ S22で選択した電子透力し画像 Wの画素の画素 値とし、負けビット(1)を、予め用意された 3段階のウェーブレット変換処理がなされた 白色画像 (以下、改竄検出用画像と称する) M'の、対象画像 F'の係数 P2に対応す る係数 P2 'の係数値とする。  Next, in step S28, as shown in FIG. 11, the tampering detection unit 53 selects the winning bit (0) detected in step S27 as the pixel value of the pixel of the image W which has been subjected to electron transparency selected in step S22. And the loss bit (1) is a coefficient corresponding to the coefficient P2 of the target image F 'of a white image (hereinafter referred to as an image for detecting falsification) M' prepared in advance with three stages of wavelet transform processing. Let it be a coefficient value of P2 '.
[0081] ステップ S29において、改竄検出部 53は、ステップ S22で、電子透かし画像 Wのす ベての画素についての係数選択鍵を読み出した力否かを判定し、まだ読み出してい ない係数選択鍵があると判定した場合、ステップ S22に戻り、次の画素の係数選択 鍵を読み出し、ステップ S23以降の処理を行う。  In step S29, the tampering detection unit 53 determines in step S22 whether the coefficient selection key for all the pixels of the digital watermark image W has been read or not, and there is a coefficient selection key that has not been read yet. If it is determined that there is, the process returns to step S22, the coefficient selection key of the next pixel is read out, and the processes after step S23 are performed.
[0082] ステップ S29で、すべての画素の係数選択鍵が読み出されたと判定された場合、ス テツプ S30に進み、電子透かし画像 Wが復元され、改竄検出用画像 M'が生成され る。改竄検出部 53は、改竄検出用画像 M'を画像処理部 54に供給する。なお、改竄 検出用画像 M'に逆ウェーブレット変換処理を行った改竄検出用画像 Mは、例えば 図 12に示すように表示される。  If it is determined in step S29 that the coefficient selection keys of all the pixels have been read out, the process proceeds to step S30, the digital watermark image W is restored, and a tampering detection image M ′ is generated. The tampering detection unit 53 supplies the image processing unit 54 with the tampering detection image M ′. The tampering detection image M obtained by performing the inverse wavelet transform process on the tampering detection image M ′ is displayed as shown in FIG. 12, for example.
[0083] 以上のようにして電子透力し情報が抽出される。  As described above, the electron penetration information is extracted.
[0084] 画像のウェーブレット変換係数の特徴として、深 、レベルほど圧縮やノイズに強!ヽ 耐性を有するので、深 、レベルに埋め込まれた電子透力し情報は圧縮やノイズに強 Vヽ。したがって深 ヽレベルに埋め込まれた電子透カゝし画像 Wおよび改竄検出用画像 M'が壊れたとすると、それは圧縮やノイズではなぐ切り取りや貼り付け処理などの 改竄によるものと考えることができる。  As the features of the wavelet transform coefficients of the image, the deeper the level, the stronger the compression and noise!耐性 Because it is resistant, it is embedded in the deep, level electronic penetration information is strong in compression and noise V ヽ. Therefore, if the electronically transparent image W and the image for tampering detection M ′ embedded in the deep level are broken, it can be considered that it is due to tampering such as cutting and pasting processing that is not compressed or noise.
[0085] 従って、以上のように深 、レベルに埋め込まれた電子透かし情報には浅 、レベル に埋め込まれた電子透かレ f青報より重みを大きくして(レベル 1に属するサブバンドの 復調ビットについての重みを 1とし、レベル 2に属するサブバンドの復調ビットについ ての重みを 6とし、そしてレベル 3に属するサブバンドの復調ビットについての重みを 8として)、深いレベルに埋め込まれた電子透力し情報の影響が大となるようにして透 力しビットを検出するようにしたので、電子透かレ f青報をより正確に検出することがで きる。 Therefore, as described above, the watermark information embedded in depth and level is shallow and level. The weight of the demodulation bit of the subband belonging to level 1 is 1 and the weight of the demodulation bit of the subband belonging to level 2 is 6 Since the weight of the demodulation bit of the sub-band belonging to level 3 is 8) and the influence of information embedded in the deep level is large, the detection of the transmission bit is performed. The electronic watermark can be detected more accurately.
[0086] 図 13は、対象画像 Fが圧縮率 60%の JPEG圧縮で圧縮された場合の、 X軸に示す レベル 2の透かしにかけた重みと、 Y軸に示すレベル 3の透かしにかけた重みを利用 したときの破損率を示している。この例では、レベル 2の重みを 6とし、レベル 3の重み を 8乃至 10にしたときに、最も低い電子透力 情報の破損率が得られる。  [0086] FIG. 13 shows the weight applied to the level 2 watermark shown on the X axis and the weight applied to the level 3 watermark shown on the Y axis when the target image F is compressed with JPEG compression at a compression ratio of 60%. It shows the damage rate when used. In this example, when the weight of level 2 is 6 and the weight of level 3 is 8 to 10, the lowest damage rate of electron permeability information is obtained.
[0087] 次に画像処理装置 41の画像処理部 54の処理を、図 14のフローチャートを参照し て説明する。  Next, the processing of the image processing unit 54 of the image processing apparatus 41 will be described with reference to the flowchart of FIG.
[0088] ステップ S51において、画像処理部 54は、ウェーブレット変換部 52から供給された 1フレーム分の対象画像 F,の係数におけるレベル 3のサブバンド LH3および HL3の それぞれを、例えば、 4 X 4画素のブロックに分割する。  In step S 51, the image processing unit 54 sets each of the level 3 subbands LH 3 and HL 3 in the coefficients of the target image F for one frame supplied from the wavelet transform unit 52 to, for example, 4 × 4 pixels. Divide into blocks of
[0089] 次にステップ S52において、画像処理部 54は、ステップ S51で得られたサブバンド LH3およびサブバンド HL3のブロックのそれぞれについて、それらに対応するレべ ル 2のサブバンド LH2およびサブバンド HL2、並びにレベル 1のサブバンド LH1およ びサブバンド HL1のブロックを、ウェーブレット変換の親子関係に基づいて決定する  Next, in step S 52, the image processing unit 54 applies, for each of the blocks of subband LH 3 and subband HL 3 obtained in step S 51, subband LH 2 and subband HL 2 of level 2 corresponding thereto. , And blocks of level 1 subband LH1 and subband HL1 based on the parent-child relationship of wavelet transform
[0090] なお例えば、レベル 3のサブバンド LH3またはサブバンド HL3のブロックは所定の ブロック番号で識別できるとともに、そのブロックに対応するレベル 2のサブバンド LH 2およびサブバンド HL2、並びにレベル 1のサブバンド LH1およびサブバンド HL1の ブロックも、対応するサブバンド LH3またはサブバンド HL3のブロックと同じブロック 番号で識別できるものとする。 For example, a block of level 3 subband LH 3 or subband HL 3 can be identified by a predetermined block number, and level 2 subband LH 2 and subband HL 2 corresponding to the block, and level 1 sub The blocks of band LH1 and subband HL1 shall also be identified by the same block number as the corresponding blocks of subband LH3 or subband HL3.
[0091] すなわち各ブロックは、例えばレベルを k、そしてブロック番号を iとする符号 bk (i)で 識別することができ、さらに同一の符号 bk(i)で表されるブロック群を、符号 Bk(i)に属 するブロックとして表すことができるちのとする。 [0092] 例えば図 15に示すレベル 3のサブバンド LH3およびサブバンド HL3のブロックを、 ブロック b3(l)とし、それに対応する、レベル 2のサブバンド LH2およびサブバンド HL 2のブロックをブロック b2(l)とし、レベル 1のサブバンド LH1およびサブバンド HL1の ブロックをブロック bl(l)とするものとし、図 16に示すように、レベル 1のサブバンド LH 1および HL1のブロック bl(l)で表されるブロック群を、ブロック群 Bl(l)とし、レベル 2 のサブバンド LH2および HL2のブロック b2(l)で表されるブロック群を、ブロック群 B2( 1)とし、そしてレベル 3のサブバンド LH3および HL3のブロック b3(l)で表されるブロッ ク群を、ブロック群 B3(l)とするちのとする。 That is, each block can be identified, for example, by a code bk (i) where level is k and a block number is i, and a block group further represented by the same code bk (i) is labeled as Bk It can be expressed as a block belonging to (i). For example, the block of level 3 subband LH3 and subband HL3 shown in FIG. 15 is block b3 (l), and the corresponding block of level 2 subband LH2 and subband HL 2 is block b2 ( l) block of level 1 sub-band LH1 and sub-band HL1 is block bl (l), and as shown in FIG. 16, block 1 of level 1 sub-band LH 1 and block HL of HL1 Let the block group represented be block group Bl (l), the block group represented by block 2 of level 2 subband LH2 and HL 2 block b2 (l) be block group B2 (1), and level 3 sub A block group represented by block b3 (l) of bands LH3 and HL3 is set as a block group B3 (l).
[0093] 次にステップ S53において、画像処理部 54は、 1つのブロック番号 iを選択し、ステ ップ S54において、係数選択鍵 Cに基づいて、ブロック群 BIG), B2(i), B3(i)に属する ブロックのそれぞれについて、それに含まれる埋め込み係数の数を算出する。また画 像処理部 54は、改竄検出用画像 M,に基づいて、ブロック群 Bl(i), B2(i), B3(i)に属 するブロックのそれぞれについて、それに含まれる負けビットが埋め込まれた係数 (以 下、壊れ係数と称する)の数を算出する。  Next, in step S53, the image processing unit 54 selects one block number i, and in step S54, based on the coefficient selection key C, the block group BIG), B2 (i), B3 ( For each of the blocks belonging to i), calculate the number of embedding coefficients included in it. Further, the image processing unit 54 embeds the loss bit included in each of the blocks belonging to the block groups Bl (i), B2 (i) and B3 (i) based on the image M for tampering detection. Calculate the number of coefficients (hereinafter referred to as the breakage coefficients).
[0094] 次にステップ S55において、画像処理部 54は、各ブロックの埋め込み係数の数と 壊れ係数の数のそれぞれを、ブロック群 Bl(i), B2(i), B3(i)毎に合計し、レベルに応じ た重みを乗算する。  Next, in step S55, the image processing unit 54 sums up the number of embedding coefficients and the number of breaking coefficients of each block for each of the block groups Bl (i), B2 (i), B3 (i). And multiply the weight according to the level.
[0095] 例えば、図 17に示すように、ブロック群 B3(i)に属するブロックに含まれる埋め込み 係数の数の合計と、ブロック群 B3G)に属するブロックに含まれる壊れ係数の数の合計 のそれぞれに 8が乗算される。  For example, as shown in FIG. 17, the sum of the number of embedding coefficients included in blocks belonging to block group B3 (i) and the sum of the number of corruption coefficients included in blocks belonging to block group B3G) Is multiplied by eight.
[0096] ブロック群 B2(i)に属するブロックに含まれる埋め込み係数の数の合計と、ブロック群Block group A total of the number of embedding coefficients included in a block belonging to B2 (i), and a block group
B2G)に属するブロックに含まれる壊れ係数の数の合計のそれぞれに 6が乗算される。 Each of the sums of the number of breaking coefficients included in the block belonging to B2G) is multiplied by six.
[0097] そしてブロック群 BIG)に属するブロックに含まれる埋め込み係数の数の合計と、ブ ロック B群 1(0に属するブロックに含まれる壊れ係数の数の合計のそれぞれに 1が乗 算される。 Each of the sum of the number of embedding coefficients included in the block belonging to block group BIG and the total number of corruption coefficients included in the block B group 1 (block belonging to 0) is multiplied by one. .
[0098] ステップ S56において、画像処理部 54は、式(1)に示すように、ステップ S55での 重み付けで得られた壊れ係数の合計を、ステップ S55での重み付けで得られた埋め 込み係数の合計で除算する。 [0099] [数 1] In step S56, the image processing unit 54 calculates the sum of the breaking coefficients obtained by the weighting in step S55 as the embedding coefficient obtained by the weighting in step S55, as shown in equation (1). Divide by the sum. [0099] [Number 1]
B3 ( i )の壊れ係数の数の合計 X 8  Sum of the number of broken coefficients of B3 (i) x 8
+ B2 ( i )の壊れ係数の数の合計 X 6  Sum of the number of breaking coefficients of + B2 (i) x 6
+ B1 ( i )の壊れ係数の数の合計 X 1  + Sum of the number of breaking coefficients of B1 (i) x 1
…い)  ...)
B3 ( i )の埋め込み係数の数の合計 X 8  Total number of embedding coefficients in B3 (i) x 8
+ B2 ( i )の埋め込み係数の数の合計 X 6  + Total number of embedding coefficients in B2 (i) x 6
+ B1 ( i )の埋め込み係数の数の合計 X 1  + Sum of the number of embedding coefficients in B1 (i) x 1
[0100] 次にステップ S57において、画像処理部 54は、ステップ S56での演算の結果得ら れた値 (以下、改竄率と称する)が所定の閾値以下である力否かを判定し、閾値以下 であると判定した場合、そのブロック番号 iのブロック群は改竄されていないとして、ス テツプ S58にお 、て、対象となって 、るブロックに含まれる壊れ係数の係数値 (負け ビット)を消去する(以下、この処理をふる!/、処理と称する)。  Next, in step S57, the image processing unit 54 determines whether or not the value obtained as a result of the calculation in step S56 (hereinafter referred to as the tampering rate) is equal to or less than a predetermined threshold, If it is determined that the following is true, it is determined that the block group of the block number i is not falsified, and the coefficient value (loss bit) of the corruption coefficient included in the target block is determined in step S58. Delete (hereinafter, this process is called "! /, Process").
[0101] 一方ステップ S57で、所定の閾値より大きいと判定された場合、そのブロック番号 i のブロック群は改竄されたものとして、ステップ S59に進み、画像処理部 54は、その ブロックに属する全係数を、壊れ係数に変更する(以下、この処理を強調処理と称す る)。  On the other hand, if it is determined in step S57 that the block group is larger than the predetermined threshold value, the block group of the block number i is considered to be falsified, and the process proceeds to step S59 and the image processing unit 54 determines all coefficients belonging to the block Is changed to the failure factor (hereinafter this process is referred to as emphasizing process).
[0102] なお、閾値は、上述のように 1つ設けるようにしてもよいし、上限の閾値と下限の閾 値とを設け、下限の閾値以下の場合にはふるい処理を行い、上限の閾値以上の場 合には強調処理を行うようにしてもよい。この場合、改竄率が上限の閾値と下限の閾 値との間である場合にはふる!/ヽ処理も強調処理も行われな!/ヽようになる。  As described above, one threshold may be provided, or an upper threshold and a lower threshold may be provided. If the threshold is lower than the lower threshold, sieving is performed and the upper threshold is determined. In the above case, emphasis processing may be performed. In this case, if the tampering rate is between the upper threshold and the lower threshold, neither the! / ヽ nor the emphasizing is performed.
[0103] ステップ S58で壊れ係数が消去されたとき、またはステップ S59でブロック番号の ブロック群の係数が変更されたとき、ステップ S60に進み、画像処理部 54は、ステツ プ S53ですベてのブロック番号 iを選択したか否かを判定し、まだ選択して!/、な!/ヽブロ ック番号が存在すると判定した場合、ステップ S53に戻り、次のブロックを選択し、ス テツプ S54以降の処理を同様に実行する。  When the destruction coefficient is erased in step S58, or when the coefficient of the block group of block numbers is changed in step S59, the process proceeds to step S60, and the image processing unit 54 performs the block B in step S53. It is determined whether or not the number i is selected, and if it is determined that there is still! /,! Or! /! Block number, the process returns to step S53, the next block is selected, and step S54 or later is performed. Perform the same process.
[0104] ステップ S60で、すべてのブロック番号 iが選択されたと判定された場合、処理は終 了する。  If it is determined in step S60 that all block numbers i have been selected, the process ends.
[0105] 以上のようにして画像処理が行われる。 [0106] 以上のように、改竄率に基づいてふるい処理および強調処理を行うようにしたので 、対象画像 Fが図 18Aである場合、図 18Bに示すように、改竄されたブロックに対応 する画像を強調して表示することができる。 Image processing is performed as described above. As described above, since the sieving process and the emphasizing process are performed based on the falsification rate, when the target image F is as shown in FIG. 18A, an image corresponding to the falsified block as shown in FIG. 18B. Can be highlighted.
[0107] 圧縮やノイズは、画素係数の修正量がそれほど多くな 、ため、電子透かし情報の破 損は分散する傾向にあるが、切り取りや貼り付け等の改竄があった場合、その改竄の 画像係数は、集中して破損している傾向にある。そのため上述したように破損した電 子透かし情報の密度 (改竄率)を調べ、それを閾値と比較することにより、その破損が 圧縮やノイズによるもの力、改竄によるものを適切に判別することができる。  [0107] Since compression and noise have a large amount of correction of pixel coefficients, damage to digital watermark information tends to be dispersed, but if there is tampering such as clipping or pasting, the image of the tampering The coefficients tend to be concentrated and corrupted. Therefore, by examining the density (alteration rate) of the corrupted electronic watermark information as described above and comparing it with a threshold value, it is possible to appropriately determine the damage due to compression, noise, or tampering. .
[0108] 図 19は、画像処理装置 1の他の構成例を示している。この画像処理装置には、図 1 の電子透かし埋め込み部 13に代えて、電子透かし埋め込み部 101が設けられて ヽ る。他の部分は、図 1における場合と同様である。  FIG. 19 shows another configuration example of the image processing apparatus 1. In this image processing apparatus, a digital watermark embedding unit 101 may be provided instead of the digital watermark embedding unit 13 of FIG. The other parts are the same as in FIG.
[0109] 図 1の埋め込み部 13における埋め込み処理は、埋め込み係数を最低域のサブバ ンド (サブバンド LL3)の係数に関連付けたが、埋め込み部 101は、最低域のサブバ ンドに代えて、埋め込み係数と同一のレベルのサブバンド ΉΗの係数に関連付けて、 埋め込み処理を行う。  Although the embedding process in embedding section 13 in FIG. 1 associates the embedding coefficient with the coefficient of the lowest band (subband LL 3), embedding section 101 substitutes the embedding coefficient in the lowest band. The embedding process is performed in association with the coefficients of the same level sub-band 同一.
[0110] 埋め込み部 101における電子透かし埋め込み処理を、図 20のフローチャートを参 照して説明する。  Digital watermark embedding processing in embedding section 101 will be described with reference to the flowchart in FIG.
[0111] ステップ S81において、埋め込み部 101は、ウェーブレット変換部 12から、 1フレー ムの対象画像 Fに対する、 1回目のウェーブレット変換が行われ、そして 2回目のゥェ 一ブレット変換がさらに行われたとき、その結果得られた係数(図 2の C)を入力する。  In step S 81, the embedding unit 101 performs the first wavelet transformation on the target image F of one frame from the wavelet transformation unit 12, and the second wavelet transform is further performed. When, enter the resulting coefficient (C in Figure 2).
[0112] ステップ S82において、埋め込み部 101は、電子透かし画像(2値画像) Wの 1画素 を選択する。  In step S 82, the embedding unit 101 selects one pixel of the digital watermark image (binary image) W.
[0113] 次にステップ S83において、埋め込み部 101は、ステップ S82で選択された電子透 カゝし画像 Wの画素の画素値 (透かしビット)を、入力部 11から供給された係数選択鍵 Next, in step S 83, the embedding unit 101 uses the coefficient selection key supplied from the input unit 11 as the pixel value (watermark bit) of the pixel of the electronically transparent image W selected in step S 82.
Cに示される複製数だけ複製する。 Replicate as many copies as shown in C.
[0114] 次にステップ S84において、埋め込み部 101は、係数選択鍵 Cにより与えられたレ ベル 2のサブバンド HL2およびサブバンド LH2の埋め込み係数に関連するレベル 2 のサブバンド ΉΗ2の係数を検出する。 [0115] 例えば、図 21のレベル 2のサブバンド LH2の係数 Pll (座標(xqll, yqll) )が埋め 込み係数である場合、サブバンド HH2の座標 (xqll, yqll)の係数 Q11が、係数 Pll と関連するサブバンド HH2の係数として検出される。 Next, in step S 84, embedding section 101 detects the coefficient of level 2 subband 2 associated with the embedding coefficient of level 2 subband HL 2 and subband LH 2 given by coefficient selection key C. . For example, when the coefficient Pll (coordinates (xqll, yqll)) of the subband LH2 of level 2 in FIG. 21 is the embedding coefficient, the coefficient Q11 of the coordinates (xqll, yqll) of the subband HH2 is the coefficient Pll. Detected as a coefficient of the sub-band HH2 associated with
[0116] 次にステップ S85において、埋め込み部 101は、ステップ S84で検出したサブバン ド HH2の係数に対して、例えばその係数に隣接する 3個の係数を検出するとともに、 この 3個の係数と、ステップ S84で検出したサブバンド HH2の係数との合計 4個の係 数 (対応係数)の係数値の平均値を算出し、それを量子化して 2進値(1または 0)に 変換する。  Next, in step S85, the embedding unit 101 detects, for example, three coefficients adjacent to the coefficient of the sub-band HH2 detected in step S84, and the three coefficients, In step S84, the average value of the coefficient values of a total of four coefficients (corresponding coefficients) with the coefficients of the subband HH2 detected is calculated, and it is quantized and converted into a binary value (1 or 0).
[0117] 図 21の係数 Q11 (座標 (xqll, yqll) )に対して、係数 Q11に隣接する座標 (xqll, yqll + l)、 (xqll + 1, yqll)、および(xqll + 1, yqll + 1)の 3個の係数が検出さ れ、係数 Q11とその 3個の係数の係数値の平均値が算出され、それが量子化されて 2進値が得られる。  For the coefficient Q11 (coordinate (xqll, yqll)) in FIG. 21, the coordinates (xqll, yqll + l), (xqll + 1, yqll), and (xqll + 1, yqll +) adjacent to the coefficient Q11 Three coefficients of 1) are detected, the average value of coefficient Q11 and coefficient values of the three coefficients is calculated, and it is quantized to obtain a binary value.
[0118] 次にステップ S86において、埋め込み部 101は、ステップ S83で複製した透かしビ ットと、ステップ S85で得られた平均値の 2進値との排他的論理和演算 (XOR)を行い (すなわち透かしビットを、ステップ S85で得られた平均値の 2進値で変調し)、その結 果得られた値 (変調ビット)を、係数選択鍵 Cに含まれる量子化ステップの強さに応じ て埋め込む。  Next, in step S 86, embedding section 101 performs an exclusive OR operation (XOR) of the watermark bit copied in step S 83 and the binary value of the average value obtained in step S 85 ( That is, the watermark bit is modulated with the binary value of the average value obtained in step S85), and the resulting value (modulation bit) is determined according to the strength of the quantization step included in the coefficient selection key C. To embed.
[0119] ステップ S87において、埋め込み部 101は、電子透かし画像 Wのすベての画素を 選択した力否かを判定し、まだ選択していない画素が残っていると判定した場合、ス テツプ S82に戻り、次の画素を選択して、ステップ S83以降の処理を同様に実行する  In step S 87, embedding unit 101 determines whether all the pixels of digital watermark image W have been selected or not, and if it is determined that there are any pixels not selected yet, step S 82. Return to step S83, select the next pixel, and execute the processing from step S83 onwards in the same way.
[0120] なお透かしビットのすべてを、レベル 2のサブバンドに埋め込む必要はないので、レ ベル 2のサブバンドに埋め込まない透かしビットが選択されたときには、ステップ S83 乃至ステップ S86の処理は、適宜、スキップされる。 Note that since it is not necessary to embed all the watermark bits in the level 2 sub-band, when watermark bits not to be embedded in the level 2 sub-band are selected, the processing in steps S 83 to S 86 is performed as appropriate. It will be skipped.
[0121] ステップ S87で、すべての画素を選択したと判定した場合、埋め込み部 101は、ス テツプ S88に進み、対象画像 Fの 1フレーム分の係数の全部を入力したか否かを判 定し、全部を入力していないと判定した場合、ステップ S81に戻る。  If it is determined in step S87 that all the pixels have been selected, the embedding unit 101 proceeds to step S88, and determines whether all coefficients for one frame of the target image F have been input. , If it is determined that the whole has not been input, the process returns to step S81.
[0122] いまの場合、ステップ S81〖こおいて、埋め込み部 101は、ウェーブレット変換部 12 で 1フレームの対象画像 Fに対する、 3回目のウェーブレット変換が行われたとき、そ の結果得られた係数(図 2の D)を入力する。この係数を入力した場合の処理を続け て説明する。 In the present case, the embedding unit 101 performs the wavelet transformation unit 12 in step S 81. When the third wavelet transform is performed on the target image F of one frame, input the coefficient (D in Fig. 2) obtained as a result. The processing in the case of inputting this coefficient will be described continuously.
[0123] すなわちステップ S82で、電子透かし画像 Wの 1画素が選択される。  That is, in step S82, one pixel of the digital watermark image W is selected.
[0124] 次にステップ S83で、ステップ S82で選択された電子透かし画像 Wの画素の画素 値 (透かしビット)が、入力部 11から供給された係数選択鍵 Cに示される複製数だけ 複製される。  Next, in step S83, the pixel value (watermark bit) of the pixel of the digital watermark image W selected in step S82 is replicated by the number of copies indicated by the coefficient selection key C supplied from the input unit 11. .
[0125] 次にステップ S84で、係数選択鍵 Cにより与えられたレベル 3のサブバンド HL3お よびサブバンド LH3の埋め込み係数に関連するレベル 3のサブバンド HH3の係数 が検出される。  Next, in step S84, the coefficient of level 3 subband HH3 associated with the embedding coefficient of level 3 subband HL3 and subband LH3 given by coefficient selection key C is detected.
[0126] 例えば、図 21のレベル 3のサブバンド HL3の係数 P21 (座標(xq21, yq21) )が埋め 込み係数である場合、サブバンド HH3の座標 (xq21, yq21)の係数 Q21が検出され る。  For example, if coefficient P21 (coordinates (xq21, yq21)) of subband 3 of level 3 in FIG. 21 is the embedding coefficient, coefficient Q21 of coordinates (xq21, yq21) of subband HH3 is detected. .
[0127] 次にステップ S85で、ステップ S84で検出されたサブバンド HH3の係数に対して、 例えばその係数に隣接する 3個の係数が検出されるとともに、この 3個の係数と、ステ ップ S84で検出されたサブバンド ΉΗ3の係数との合計 4個の係数 (対応係数)の係 数値の平均値が算出され、それが量子化されて 2進値(1または 0)に変換される。  Next, in step S85, for example, with respect to the coefficients of subband HH3 detected in step S84, three coefficients adjacent to the coefficient are detected, and these three coefficients and step are also included. The average value of the coefficient values of a total of four coefficients (corresponding coefficients) with the coefficients of subband ΉΗ3 detected in S84 is calculated, and it is quantized and converted into a binary value (1 or 0).
[0128] 図 21の係数 Q21 (座標 (xq21, yq21) )に対して、係数 Q21に隣接する座標 (xq21, yq21 + l)、 (xq21 + l, yq21)、および(xq21 + 1, yq21 + 1)の 3個の係数が検出さ れ、係数 Q21とその 3個の係数の係数値の平均値が算出され、それが量子化されて 2進値が得られる。  For the coefficient Q21 (coordinate (xq21, yq21)) in FIG. 21, the coordinates (xq21, yq21 + l), (xq21 + l, yq21), and (xq21 + 1, yq21 +) adjacent to the coefficient Q21 are used. Three coefficients 1) are detected, the average value of coefficient Q21 and the coefficient values of the three coefficients is calculated, and it is quantized to obtain a binary value.
[0129] 次にステップ S86で、ステップ S83で複製された透かしビットと、ステップ S85で得ら れた平均値の 2進値との排他的論理和演算 (XOR)が行われ (すなわち透力しビット 力 ステップ S85で得られた平均値の 2進値で変調され)、その結果得られた値 (変 調ビット)を、係数選択鍵 Cに含まれる量子化ステップの強さに応じて埋め込む。  Next, in step S86, exclusive OR operation (XOR) is performed between the watermark bit copied in step S83 and the binary value of the average value obtained in step S85 (ie, transparency). Bit Force Modulated with the binary value of the average value obtained in step S85), and embeds the resulting value (modulation bit) according to the strength of the quantization step included in the coefficient selection key C.
[0130] ステップ S87で、電子透かし画像 Wのすベての画素が選択されたか否かを判定さ れ、まだ選択されていない画素が残っていると判定された場合、ステップ S82に戻り、 次の画素が選択されて、ステップ S83以降の処理を同様に実行される。 [0131] なお透かしビットのすべてを、レベル 3のサブバンドに埋め込む必要はないので、レ ベル 3のサブバンドに埋め込まない透かしビットが選択されたときには、ステップ S83 乃至ステップ S86の処理は、適宜、スキップされる。 In step S 87, it is determined whether all the pixels of the digital watermark image W have been selected. If it is determined that there are any pixels not selected yet, the process returns to step S 82. Are selected, and the processes after step S83 are similarly performed. Since it is not necessary to embed all the watermark bits in the level 3 sub-band, when watermark bits not to be embedded in the level 3 sub-band are selected, the processes in steps S 83 to S 86 are appropriately performed. It will be skipped.
[0132] ステップ S87で、すべての画素を選択したと判定された場合、ステップ S88に進み、 対象画像 Fの 1フレーム分の係数の全部が入力されたと判定され、処理は終了する。  If it is determined in step S87 that all the pixels have been selected, the process proceeds to step S88, in which it is determined that all the coefficients of one frame of the target image F have been input, and the process ends.
[0133] 図 1の埋め込み部 13では、埋め込み係数と、それに関連する最低域サブバンド (こ の例の場合、サブバンド LL3)を対応付けるようにして埋め込み処理が行われる。ま た最低域サブバンドは、図 2の Dに示すように、すべての段階のウェーブレット変換処 理が行われた後に形成される。  In embedding section 13 in FIG. 1, the embedding process is performed in such a manner that the embedding coefficient is associated with the lower band subband (in this example, subband LL3) associated therewith. The lowest subband is formed after all stages of wavelet transform processing have been performed, as shown in FIG. 2D.
[0134] すなわち図 1の埋め込み部 13における埋め込み処理は、ウェーブレット変換部 12 におけるウェーブレット処理が終了するのを待って行う必要があった。  That is, the embedding process in the embedding unit 13 of FIG. 1 had to be performed after the completion of the wavelet process in the wavelet transformation unit 12.
[0135] これに対して図 19の埋め込み部 101は、最低域のサブバンドに代えて、埋め込み 係数と同一のレベルのサブバンド ΉΗの係数を対応付けるようにして、上述したように 、各レベルのウェーブレット係数が得られたとき埋め込み処理を行うようにしたので(ゥ エーブレット変換処理と埋め込み処理を並列に行うようにしたので)、図 1の場合の埋 め込み処理に比べ、迅速に行うことができる。  On the other hand, embedding section 101 of FIG. 19 substitutes the coefficients of the sub-bands 同一 at the same level as the embedding coefficients, instead of the lowest band sub-bands, as described above. Since embedding was performed when wavelet coefficients were obtained (since the wavelet transform and embedding were performed in parallel), it should be performed more quickly than the embedding in the case of FIG. Can.
[0136] なおここで利用するサブバンド ΉΗは、改竄に対して最も弱いバンドであり、破損率 の増加を招く。例えばサブバンド HLまたは LHの埋め込み係数が壊れていなくても、 それと関連付けられたサブバンド HHの係数が大きく変わってしまうと、壊れたものと なってしまう。そこで、この場合、攻撃に弱いレベル 1を埋め込みに用いず、レベル 2 およびレベル 3に対して、埋め込みを行うようにした。  [0136] Note that the sub-band ΉΗ used here is the weakest band against tampering, which leads to an increase in the breakage rate. For example, even if the embedding coefficient of the subband HL or LH is not broken, if the coefficient of the subband HH associated with it is greatly changed, it becomes broken. Therefore, in this case, Level 1 was not used for embedding, and Level 2 and Level 3 were embedded.
[0137] 図 19の画像処理装置 1により電子透かし画像 Wが埋め込まれた対象画像 F (対象 画像 F' )から、電子透かし画像 Wを抽出する場合の画像処理装置 41の動作は、図 9 および図 14に示した通りであるので、その説明は省略する。  The operation of the image processing device 41 in the case of extracting the digital watermark image W from the target image F (target image F ′) in which the digital watermark image W is embedded by the image processing device 1 of FIG. The description is omitted because it is as shown in FIG.
[0138] 図 22は、図 19の画像処理装置 1により電子透かし画像 Wが埋め込まれた対象画 像 F (対象画像 F' )から、電子透かし画像 Wを抽出する場合において、対象画像 Fが 圧縮率 60%の JPEG圧縮で圧縮されたときの、 X軸に示すレベル 2の透かしにかけた 重みと、 Y軸に示すレベル 3の透かしにかけた重みを利用したときの破損率を示して いる。この例では、レベル 2の重みを 1とし、レベル 3の重みを 5、またはレベル 2の重 みを 2とし、レベル 3の重みを 9若しくは 10としたときに、最も低い破損率が得られる。 FIG. 22 shows that the target image F is compressed when the digital watermark image W is extracted from the target image F (target image F ′) in which the digital watermark image W is embedded by the image processing device 1 of FIG. Indicates the level 2 watermarking weight shown on the X axis and the corruption rate using the level 3 watermarking weight shown on the Y axis when compressed with a 60% JPEG compression. There is. In this example, when the level 2 weight is 1 and the level 3 weight is 5 or the level 2 weight is 2 and the level 3 weight is 9 or 10, the lowest damage rate is obtained.
[0139] なお以上において、対象画像 Fへの電子透かし画像 Wの埋め込みは、例えばサブ バンド LL3の対応係数の平均値と透力しビットとの排他的論理和演算 (XOR)の結果 得られた変調ビットを、量子化パラメータの強さに応じて埋め込むようにしたが(図 3の ステップ S4乃至ステップ S6)、以下に説明するようにして埋め込むことができる。  In the above, embedding of the digital watermark image W into the target image F is obtained, for example, as a result of exclusive OR operation (XOR) of the average value of the corresponding coefficients of the sub-band LL3 and the permeability bit. Although the modulation bits are embedded according to the strength of the quantization parameter (steps S4 to S6 in FIG. 3), they can be embedded as described below.
[0140] ここで対象画像 Fをウェーブレット変換したものを式(2)で表すものとする。式(2)中 、 kは式(3)で表され、 1は、レベルであり、 (m, n)は、画素の位置 (座標)を表す。  Here, it is assumed that a wavelet image of the target image F is represented by Expression (2). In equation (2), k is represented by equation (3), 1 is a level, and (m, n) represent the position (coordinates) of a pixel.
[数 2]  [Number 2]
f i,k n, n) ' ' ' (2)  f i, k n, n) '' '(2)
[数 3]  [Number 3]
k={lh, hl, hh} (LH, HL, HHバンド) ■ ■ ■ (3)  k = {lh, hl, hh} (LH, HL, HH bands) ■ ■ ■ (3)
[0141] 電子透力 画像 Wの埋め込みは、例えば式 (4)で定義される量子化関数 Qを用い て f (m,n) (式(2))が 2進値されて写像されることによって行われる力 ここで説明する l,k  In embedding of the electron permeability image W, for example, f (m, n) (Formula (2)) is mapped to a binary value using the quantization function Q defined by the formula (4). Forces performed by The l, k described here
埋め込みは、埋め込み後の f (m,n)が式(5)で表す区間の中央値となるようにするも  Embedding is also performed so that f (m, n) after embedding becomes the center value of the section represented by equation (5).
l,k  l, k
のである。  It is
 Picture
Q(f) =  Q (f) =
'0, if ΓΔ <f<(r + 1)A, r=0, ±2, '" ,  '0, if Γ Δ <f <(r + 1) A, r = 0, ± 2,' ",
1, if rA<f<(r + 1)A, r = ±1, ±3,…丄 ■ ■ ■ (4)  1, if rA <f <(r + 1) A, r = ± 1, ± 3, ... 丄 ■ ■ ■ (4)
[数 5]  [Number 5]
modF= |f i,k(m, n) I mod Δ ■ ■ ■ (5)  mod F = | f i, k (m, n) I mod Δ ■ ■ ■ ■ (5)
[0142] なお式 (4)中、 Δは、量子化パラメータである。電子透かし画像 wの i番目のピクセ ルを式 (6)で表す。  In the equation (4), Δ is a quantization parameter. The i-th pixel of the digital watermark image w is expressed by equation (6).
[数 6]  [Number 6]
w(i), i=0, Nw-1 ■ ■ ■ (6)  w (i), i = 0, Nw-1 ■ ■ ■ (6)
[0143] 例えば量子化関数 Qについて (式 (4))、式(7)が成立するとき、次の規則を用いて 、式 (5)を満たす f (m,n)がその区間の中央に変更される。 For example, for the quantization function Q (equation (4)), when the equation (7) holds, the following rules are used: , F (m, n) satisfying equation (5) is changed to the center of the interval.
l,k  l, k
[数 7]  [Number 7]
Q(fi,k(m, n))=w(i) ■ ■ ■ (7) Q (fi, k (m, n)) = w (i) ■ ■ ■ (7)
[0144] 具体的には、式 (8)が成立するときは、 f (m,n)は、式(9)により求められる。  Specifically, when equation (8) holds, f (m, n) is obtained by equation (9).
l,k  l, k
[数 8]  [Number 8]
fi,k(m, n)>0 ■ ■ ■ (8)  fi, k (m, n)> 0 ■ ■ ■ (8)
[数 9] f (m, n) :=f i,k(m, η) + modF) ■ ■ ■ (9)  [Equation 9] f (m, n): = f i, k (m, η) + mod F) ■ ■ ■ (9)
[0145] なおこの規則に基づく f (m,n)の変更を、模式的に表すと図 23に示すようになる。 The change of f (m, n) based on this rule is schematically shown in FIG.
l,k  l, k
[0146] また式(10)が成立するときは、 f (m,n)は、式(11)により求められる。  Further, when equation (10) holds, f (m, n) can be obtained by equation (11).
l,k  l, k
[数 10]  [Number 10]
fi,k(m, n) <0 ■ ■ ■ (10)  fi, k (m, n) <0 ■ ■ ■ (10)
[数 11] f (m, n) :=f i,k(m, n)— ( 一 modF) ■ ■ - (11)  [Equation 11] f (m, n): = f i, k (m, n)-(one mod F) ■ ■-(11)
[0147] また量子化関数 Qについて (式 (4))、式(12)が成立するときは、次の規則を用い て、式(13)が成立するように、 f (m,n)が変更される。 Further, when the quantization function Q (Eq. (4)) and the equation (12) hold, f (m, n) becomes f (m, n) such that the equation (13) holds, using the following rules: Be changed.
l,k  l, k
[数 12]  [Number 12]
Q(fi,k(m,n))≠w(i) ■ ■ ■ (12)  Q (fi, k (m, n)) w (i) ■ ■ ■ (12)
[数 13]  [Number 13]
Q(fi,k(m,n))=w(i) ■ ■ ■ (13) Q (fi, k (m, n)) = w (i) ■ ■ ■ (13)
[0148] 具体的には、式(14)が成立するときは、 f (m,n)は、式(15)により求められる。  Specifically, when equation (14) holds, f (m, n) can be obtained by equation (15).
l,k  l, k
[数 14]  [Number 14]
fi,k(m, n)>0 ■ ■ ■ (14)  fi, k (m, n)> 0 ■ ■ ■ (14)
[数 15] k (m, n): = [Number 15] k (m, n): =
Figure imgf000025_0001
Figure imgf000025_0001
[0149] また式(16)が成立するときは、 f (m,n)は、式(17)により求められる。  Further, when equation (16) holds, f (m, n) can be obtained by equation (17).
l,k  l, k
[数 16]  [Equation 16]
f i, k (m, n) <0 ■ ■ ■ (16)  f i, k (m, n) <0 ■ ■ ■ (16)
[数 17]  [Number 17]
f i,k (m, n) : =  f i, k (m, n): =
Figure imgf000025_0002
Figure imgf000025_0002
[0150] この規則に基づく場合において、 f (m,n)>0であるときの f (m,n)の変更を、模式的 l,k l,k  In the case based on this rule, a change of f (m, n) when f (m, n)> 0 is schematically represented by l, k l, k
に表すと図 24Aおよび図 24Bに示すようになる。なお図 24Aは、式(18)が、図 24B は、式(19)が成り立つ場合のものである。  The results are as shown in FIGS. 24A and 24B. FIG. 24A shows the case where equation (18) and FIG. 24B shows the case where equation (19) holds.
[数 18] modi-≥ (18)  [Equation 18] modi ≥ (18)
2  2
[数 19] modFく (19)  [Number 19] modF (19)
2  2
[0151] :のように、埋め込み後の f (m,n) (式(2) )が式(5)で表す区間の中央値となるよう l,k  As in:, l, k such that f (m, n) (Eq. (2)) after embedding becomes the center value of the interval represented by
に、電子透かし画像 Wを対象画像 Fに埋め込むようにすることにより、電子透かし画 像 Wが埋め込まれることによる対象画像 Fの画質への影響を小さくすることができると ともに、圧縮などの攻撃に対しても強いものとすることができる。  In addition, by embedding the digital watermark image W in the target image F, it is possible to reduce the influence on the image quality of the target image F due to the digital watermark image W being embedded, as well as to an attack such as compression. It can also be strong.
[0152] 上述した一連の処理は、ハードウェアにより実行させることもできるし、ソフトウェア により実行させることもできる。一連の処理をソフトウェアにより実行させる場合には、 そのソフトウェアを構成するプログラム力 専用のハードウェアに組み込まれているコ ンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行 することが可能な、例えば汎用のパーソナルコンピュータなどに、プログラム記録媒 体からインストールされる。 The series of processes described above may be executed by hardware, or software It can also be executed by When a series of processes are to be executed by software, it is possible to execute various functions by installing a computer incorporated in hardware dedicated to the program power constituting the software, or various programs. It is installed from a program recording medium to a possible personal computer, for example.
[0153] 図 23は、上述した一連の処理をプログラムにより実行するパーソナルコンピュータ の構成の例を示すブロック図である。 CPU (Central Processing Unit) 201は、 ROM (R ead Only Memory) 202、または記憶部 208に記憶されているプログラムに従って各 種の処理を実行する。 RAM (Random Access Memory) 203には、 CPU201力実行す るプログラムやデータなどが適宜記憶される。これらの CPU201、 ROM202,および R AM203は、バス 204により相互に接続されて!ヽる。  FIG. 23 is a block diagram showing an example of a configuration of a personal computer that executes the series of processes described above according to a program. A central processing unit (CPU) 201 executes various types of processing in accordance with a program stored in a read only memory (ROM) 202 or a storage unit 208. The RAM (Random Access Memory) 203 appropriately stores programs and data to be executed by the CPU 201. The CPU 201, the ROM 202, and the RAM 203 are connected to one another by a bus 204!
[0154] コンピュータにインストールされ、コンピュータによって実行可能な状態とされるプロ グラムを格納するプログラム記録媒体は、図 23に示すように、磁気ディスク (フレキシ ブルディスクを含む)、光ディスク(CD- ROM(Compact Disc-Read Only Memory),DV D(Digital Versatile Disc)を含む)、光磁気ディスク、もしくは半導体メモリなどよりなる パッケージメディアであるリムーバブルメディア 211、または、プログラムが一時的もし くは永続的に格納される ROM202や、記憶部 208を構成するハードディスクなどによ り構成される。プログラム記録媒体へのプログラムの格納は、必要に応じてルータ、モ デムなどのインタフェースである通信部 209を介して、ローカルエリアネットワーク、ィ ンターネット、デジタル衛星放送といった、有線または無線の通信媒体を利用して行 われる。  Program storage media for storing programs installed in a computer and made executable by the computer are, as shown in FIG. 23, a magnetic disk (including a flexible disk), an optical disk (CD-ROM (a flexible disk), and the like. Compact Disc-Read Only Memory (DV) (including Digital Versatile Disc (DV D)), magneto-optical disc, or removable media 211, which is a package medium consisting of semiconductor memory, etc., or the program temporarily or permanently stores The ROM 202 and the hard disk constituting the storage unit 208 are included. The program may be stored in the program storage medium via a wired or wireless communication medium such as a local area network, Internet, digital satellite broadcast, or the like via the communication unit 209 which is an interface such as a router or a modem, if necessary. It is done using.
[0155] なお、本明細書にぉ 、て、プログラム記録媒体に格納されるプログラムを記述する ステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも 時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むもので ある。  Note that in the present specification, the steps of describing the program stored in the program recording medium are not limited to processing performed chronologically in the order described, but necessarily processing chronologically If not, it also includes processes executed in parallel or individually.
[0156] また、画像処理装置 1および画像処理装置 41は、例えばパーソナルコンピュータに より一体的に構成するようにしてもよいし、画像処理装置 1をデジタルカメラに実装し 、画像処理装置 41をパーソナルコンピュータに実装する等別々に構成するようにし てもよい。なお、特に画像処理装置 1をデジタルカメラに実装する場合、電子透かし 情報の埋め込み処理の高速ィ匕が要請されるため、この観点からは、電子透かし画像 の同一画素を複数個埋め込むことなく、単にウェーブレット変換と電子透かし情報の 埋め込みとを並列に処理するようにすればよ!、。 Further, the image processing apparatus 1 and the image processing apparatus 41 may be integrally configured by, for example, a personal computer, or the image processing apparatus 1 is mounted on a digital camera, and the image processing apparatus 41 is personal. Configure them separately, such as mounting on a computer May be In particular, when the image processing apparatus 1 is mounted on a digital camera, high speed processing of embedding processing of digital watermark information is required. From this point of view, the digital watermark image is simply embedded without embedding a plurality of identical pixels. Let's process wavelet transform and embedding of digital watermark information in parallel!

Claims

請求の範囲 The scope of the claims
[1] ウェーブレット変換されて電子透力し情報が埋め込まれた対象情報の改竄を検出 する情報処理装置において、  [1] In an information processing apparatus for detecting falsification of target information in which wavelet transformation is performed and electronic penetration information is embedded,
前記対象情報をウェーブレット変換する変換手段と、  Transformation means for wavelet transforming the object information;
前記電子透力し情報を構成する複数の同一画素がそれぞれ埋め込まれる複数の 埋め込み係数を検出する埋め込み係数検出手段と、  Embedding coefficient detection means for detecting a plurality of embedding coefficients in which a plurality of identical pixels constituting the electron penetration information are respectively embedded;
前記埋め込み係数検出手段により検出された前記複数の埋め込み係数について 、それぞれの前記埋め込み係数が属するサブバンドに応じて重み付けをして計数す る計数手段と  And counting means for weighting and counting the plurality of embedding coefficients detected by the embedding coefficient detection means according to a sub-band to which each of the embedding coefficients belongs.
を備える情報処理装置。  An information processing apparatus comprising:
[2] 前記計数手段による計数結果に基づいて、多数決に勝った埋め込み係数値を前 記電子透力し情報を構成する画素値として決定する決定手段  [2] A determination means for determining the embedding coefficient value that has won the majority as the pixel value forming the information of the electronic penetration based on the counting result by the counting means
をさらに備える請求項 1の情報処理装置。  The information processing apparatus according to claim 1, further comprising:
[3] 前記計数手段による計数結果に基づいて、多数決に負けた埋め込み係数値を壊 れ係数とし、前記ウェーブレット変換手段によりウェーブレット変換された前記対象情 報において、サブバンドにわたって関連する係数群毎に、前記埋め込み係数の数と 前記壊れ係数の数を算出する算出手段と、  [3] Based on the counting result by the counting means, the embedding coefficient value which has lost the majority is regarded as a breaking factor, and in the target information wavelet-transformed by the wavelet transformation means, for each coefficient group related across subbands. Calculating means for calculating the number of embedding coefficients and the number of breaking coefficients;
前記算出手段により算出された前記埋め込み係数の数と前記壊れ係数の数を、前 記埋め込み係数および前記壊れ係数が属するサブバンドのレベルに応じて重み付 けする重み付け手段と、  Weighting means for weighting the number of embedding coefficients and the number of breaking coefficients calculated by the calculating means according to the embedding coefficient and the level of the sub-band to which the breaking coefficient belongs;
前記重み付け手段により重み付けされた前記壊れ係数の数と、前記重み付け手段 により重み付けされた前記埋め込み係数との比率に基づ 、て、前記係数群が改竄さ れたか否かを判定する判定手段と、  A determination unit that determines whether the coefficient group has been tampered with based on a ratio between the number of broken coefficients weighted by the weighting unit and the embedding coefficient weighted by the weighting unit;
前記判定手段による判定結果に基づ!ヽて、前記係数群の係数値を操作する操作 手段と  Operation means for operating the coefficient value of the coefficient group based on the judgment result by the judgment means;
をさらに備える請求項 1または請求項 2に記載の情報処理装置。  The information processing apparatus according to claim 1, further comprising:
[4] 前記操作手段は、 [4] The operation means is
前記比率が所定の閾値以下の場合には、前記係数群に含まれる前記壊れ係数を 消去し、 前記比率が所定の閾値より大きい場合には、前記係数群に含まれる前記 埋め込み係数を壊れ係数に変更する When the ratio is equal to or less than a predetermined threshold value, the breaking coefficient included in the coefficient group is Erase, and if the ratio is larger than a predetermined threshold, change the embedding coefficient included in the coefficient group to a destruction coefficient
請求項 3に記載の情報処理装置。  The information processing apparatus according to claim 3.
[5] 前記電子透かし情報を構成する複数の同一画素は、ウェーブレット変換された対 象情報における第 1のサブバンドの係数から予めランダムに決定された埋め込み係 数と関連する第 2のサブバンドの関連係数に基づいて変調されて、前記埋め込み係 数に埋め込まれている [5] A plurality of identical pixels constituting the digital watermark information is a second sub-band associated with an embedding coefficient randomly determined in advance from the first sub-band coefficient in wavelet-transformed target information. Modulated based on the relevant coefficient and embedded in the embedded coefficient
請求項 1乃至請求項 4のいずれか一項に記載の情報処理装置。  The information processing apparatus according to any one of claims 1 to 4.
[6] 前記第 1のサブバンドは、最低域のサブバンド以外のサブバンドであり、 [6] The first subband is a subband other than the lowest subband,
前記第 2のサブバンドは、前記最低域のサブバンドである  The second subband is the lowest subband
請求項 5に記載の情報処理装置。  The information processing apparatus according to claim 5.
[7] 複数段のウェーブレット変換を随時行うと同時に、 [7] While performing multi-stage wavelet transform as needed,
各段階のウェーブレット変換が行われる毎に、第 1のサブバンドの係数から予めラン ダムに決定された埋め込み係数と関連する第 2のサブバンドの関連係数を検出する 請求項 5に記載の情報処理装置。  6. The information processing method according to claim 5, wherein each time wavelet transform is performed, a related coefficient of a second subband associated with an embedding coefficient determined in random from a coefficient of the first subband is detected. apparatus.
[8] 前記第 1のサブバンドは、最高域のサブバンド以外のサブバンドであり、 [8] The first sub-band is a sub-band other than the highest sub-band,
前記第 2のサブバンドは、前記最高域のサブバンドである  The second sub-band is the highest band sub-band
請求項 7に記載の情報処理装置。  The information processing apparatus according to claim 7.
[9] 前記関連係数に基づいて復調を行う復調手段をさらに備え、 [9] The apparatus further comprises demodulation means for performing demodulation based on the related coefficient,
前記計数手段は、前記復調手段により復調された前記埋め込み係数について、そ れぞれの前記埋め込み係数が属するサブバンドに応じて重み付けをして計数する 請求項 5乃至請求項 8のいずれか一項に記載の情報処理装置。  9. The apparatus according to any one of claims 5 to 8, wherein said counting means counts and counts the embedding coefficients demodulated by said demodulation means according to the sub-band to which each of the embedding coefficients belongs. The information processing apparatus according to claim 1.
[10] ウェーブレット変換されて電子透力し情報が埋め込まれた対象情報の改竄を検出 する情報処理方法にぉ 、て、 [10] An information processing method for detecting falsification of target information in which wavelet transformation is performed and electronic penetration information is embedded.
前記対象情報をウェーブレット変換する変換ステップと、  Transformation step of wavelet transforming the object information;
前記電子透力し情報を構成する複数の同一画素がそれぞれ埋め込まれる複数の 埋め込み係数を検出する埋め込み係数検出ステップと、  An embedding coefficient detection step of detecting a plurality of embedding coefficients in which a plurality of identical pixels constituting the electron penetration information are respectively embedded;
前記埋め込み係数検出ステップの処理で検出された前記複数の埋め込み係数に っ 、て、それぞれの前記埋め込み係数が属するサブバンドに応じて重み付けをして 計数する計数ステップと The plurality of embedding coefficients detected in the processing of the embedding coefficient detection step A counting step of weighting and counting according to a sub-band to which each of the embedding coefficients belongs
を含む情報処理方法。  Information processing method including:
ウェーブレット変換されて電子透力し情報が埋め込まれた対象情報の改竄を検出 する処理をコンピュータに実行させるプログラムにおいて、  In a program that causes a computer to execute processing for detecting falsification of target information in which wavelet transformation is performed and electronic penetration information is embedded.
前記対象情報をウェーブレット変換する変換ステップと、  Transformation step of wavelet transforming the object information;
前記電子透力し情報を構成する複数の同一画素がそれぞれ埋め込まれる複数の 埋め込み係数を検出する埋め込み係数検出ステップと、  An embedding coefficient detection step of detecting a plurality of embedding coefficients in which a plurality of identical pixels constituting the electron penetration information are respectively embedded;
前記埋め込み係数検出ステップの処理で検出された前記複数の埋め込み係数に っ 、て、それぞれの前記埋め込み係数が属するサブバンドに応じて重み付けをして 計数する計数ステップと  A counting step of weighting and counting the plurality of embedding coefficients detected in the process of the embedding coefficient detection step according to a sub-band to which each of the embedding coefficients belongs;
を含む処理をコンピュータに実行させるプログラム。  A program that causes a computer to execute a process that includes
PCT/JP2006/320578 2005-10-25 2006-10-16 Information processing apparatus, information processing method, and program WO2007049479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007542315A JP4834844B2 (en) 2005-10-25 2006-10-16 Information processing apparatus, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-309980 2005-10-25
JP2005309980 2005-10-25

Publications (1)

Publication Number Publication Date
WO2007049479A1 true WO2007049479A1 (en) 2007-05-03

Family

ID=37967592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320578 WO2007049479A1 (en) 2005-10-25 2006-10-16 Information processing apparatus, information processing method, and program

Country Status (2)

Country Link
JP (1) JP4834844B2 (en)
WO (1) WO2007049479A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294916A (en) * 2007-05-28 2008-12-04 Mitsubishi Electric Corp Digital watermark detecting device, digital watermark detecting method, digital watermark detecting program, and digital watermark processing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257300A (en) * 1997-03-12 1998-09-25 Nippon Telegr & Teleph Corp <Ntt> Picture processing method and picture processor
JP2004221715A (en) * 2003-01-10 2004-08-05 Sanyo Electric Co Ltd Electronic watermark embedding method, and encoder and decoder capable of utilizing the method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257300A (en) * 1997-03-12 1998-09-25 Nippon Telegr & Teleph Corp <Ntt> Picture processing method and picture processor
JP2004221715A (en) * 2003-01-10 2004-08-05 Sanyo Electric Co Ltd Electronic watermark embedding method, and encoder and decoder capable of utilizing the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294916A (en) * 2007-05-28 2008-12-04 Mitsubishi Electric Corp Digital watermark detecting device, digital watermark detecting method, digital watermark detecting program, and digital watermark processing system

Also Published As

Publication number Publication date
JPWO2007049479A1 (en) 2009-04-30
JP4834844B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Kutter et al. Fair benchmark for image watermarking systems
US6721439B1 (en) Method and system of watermarking digital data using scaled bin encoding and maximum likelihood decoding
US20070196024A1 (en) Digital Authentication with Digital and Analog Documents
Perwej et al. An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection
JP2002325170A (en) Image processing unit and its method, and program code, storage medium
US7092545B2 (en) Apparatus and method for embedding and extracting a digital watermark based on a wavelet
JP3834281B2 (en) Watermark embedding method, transmission method, restoration method and apparatus therefor
US7720305B2 (en) System and method for robust lossless data hiding and recovering from the integer wavelet representation
Qadir et al. Estimating JPEG2000 compression for image forensics using Benford's Law
Khalifa et al. A robust non-blind algorithm for watermarking color images using multi-resolution wavelet decomposition
Hadmi et al. A robust and secure perceptual hashing system based on a quantization step analysis
Naik et al. An IWT based blind and robust image watermarking scheme using secret key matrix
Kuttera et al. A fair benchmark for image watermarking systems
Ling et al. Watermarking for image authentication
WO2007049479A1 (en) Information processing apparatus, information processing method, and program
Senthil et al. Digital image watermarking using edge detection and wavelets with robustness analysis against jpeg compression attacks
Carli et al. Video watermarking in 3D DCT domain
Yu et al. Multiresolution fragile watermarking using complex chirp signals for content authentication
Sharma et al. Robust image watermarking technique using contourlet transform and optimized edge detection algorithm
Rosales-Roldan et al. Semi-fragile watermarking-based color image authentication with recovery capability
Nguyen A watermark algorithm against de-synchronization attacks
WO2017188500A1 (en) Watermark embedding and extracting device, and watermark embedding and extracting method thereof
Luyen et al. A Novel Public Key Robust Watermarking Method for Still Images Based on Intentional Permutation Based on DCT and DWT
Sharma et al. Robust Hybrid Watermarking using Image and Audio against Synchronization Attacks
Priya et al. Efficient steganography method to implement selected lease significant bits in spatial domain (SLSB–SD)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007542315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821883

Country of ref document: EP

Kind code of ref document: A1