WO2007049357A1 - Secondary electron emission rate measuring apparatus - Google Patents

Secondary electron emission rate measuring apparatus Download PDF

Info

Publication number
WO2007049357A1
WO2007049357A1 PCT/JP2005/019935 JP2005019935W WO2007049357A1 WO 2007049357 A1 WO2007049357 A1 WO 2007049357A1 JP 2005019935 W JP2005019935 W JP 2005019935W WO 2007049357 A1 WO2007049357 A1 WO 2007049357A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary electron
emission rate
electron emission
electrode
charged particle
Prior art date
Application number
PCT/JP2005/019935
Other languages
French (fr)
Japanese (ja)
Inventor
Ali Ide
Yasuhiko Morimoto
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to PCT/JP2005/019935 priority Critical patent/WO2007049357A1/en
Priority to JP2007542547A priority patent/JPWO2007049357A1/en
Publication of WO2007049357A1 publication Critical patent/WO2007049357A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion

Definitions

  • the present invention relates to a secondary electron emission rate measuring device, and more specifically, measures a secondary electron emission rate of a dielectric protective film of a plasma display panel in real time on a production line, or to a research and development facility.
  • the present invention relates to a secondary electron emission rate measuring device for precise measurement.
  • Plasma display panels are expected to expand in demand for information terminals for conference rooms, outdoor advertisements, large TVs, etc. as large-screen displays that take advantage of their thin, self-luminous type and wide viewing angle. And
  • FIG. 7 is a configuration diagram of an AC type plasma display panel (hereinafter abbreviated as “PDP”).
  • PDP AC type plasma display panel
  • a front glass substrate 302 and a rear glass substrate 303 are disposed to face each other, and both the front and rear substrates are sealed around (not shown), and an inert gas (discharge) Gas) is enclosed.
  • a pair of sustain electrodes 304 is formed of a transparent conductive material on the front glass substrate 302.
  • the bus electrode parallel to the sustain electrode 304 and in contact with a part of the sustain electrode 304 is formed of a metal having high conductivity.
  • a dielectric film 305 and a protective film (dielectric protective film) 306 covering the sustain electrode 304 are laminated.
  • address electrodes 307 are formed on the rear glass substrate 303.
  • partition walls 308 are formed at regular intervals in parallel with the address electrodes 307 to partition the space between the front and back substrates into a band-shaped space in the address electrode direction.
  • Address electrode 307 is dielectric layer 31
  • the phosphor 309 is formed on the upper surface thereof.
  • sustain electrode 304 on front glass substrate 302 and address electrode 307 on rear glass 303 are drawn in parallel. Actually, sustain electrode 304 and address electrode 307 are 90 degrees. The front and back glass are sealed so that they are arranged at an angle of torsion.
  • Discharging is performed by applying a voltage between address electrode 307 and sustain electrode 304, and this discharge is maintained by applying an AC voltage to a pair of sustain electrodes 304.
  • the inert gas is excited by discharge to generate ultraviolet rays, and the phosphor 309 emits light upon receiving the ultraviolet rays.
  • the discharge start voltage and the discharge sustain voltage of the PDP having such a structure depend on the secondary electron emission rate due to ion bombardment of the protective film 306, and if the discharge rate is high, the discharge start voltage and the discharge sustain voltage can be lowered. Power consumption is reduced. With PDPs, which consume more power than LCDs, reducing power consumption is the biggest challenge for expanding demand.
  • magnesium oxide thin film is widely used as a protective film.
  • active research is underway to develop a protective film with a high secondary electron emission rate.
  • an apparatus that can be easily measured.
  • it is important to measure and manage the secondary electron emission rate of the protective film in the production of PDP, and the demand for secondary electron emission rate measuring equipment will increase in the future.
  • Patent Document 1 Secondary electron measurement methods using ion beam irradiation are disclosed in Patent Document 1, Patent Document 2, and Patent Document 3, for example.
  • the apparatus of Patent Document 1 includes an ionization unit that generates charged particles in a chamber, a cathode on which a substance to be measured is placed, and an electrode that captures secondary electrons. The amount of charged particles irradiated and the amount of secondary electrons emitted are measured as the current of the cathode and collecting electrode to determine the secondary electron emission rate.
  • the basic structure of Patent Documents 2 and 3 is the same.
  • the secondary electron emission rate measurement device using the charged particle beam based on the techniques of Patent Document 1 and Patent Document 3 is a charged particle generation source, a target substance fixing holder, an incident current measurement device, an emission device. It is a large-scale device including an electronic current measuring device and a control device.
  • the charged particle generation source is not used for measuring the secondary electron emission rate. For example, it is used for focused ion beam (FIB) for material analysis or ion beam for material force measurement. Because it is diverted, it is very expensive. Therefore, it is difficult for small-scale research facilities and companies to conduct research on the secondary electron emission rate.
  • FIB focused ion beam
  • the charged particle beam used in the secondary electron emission rate measurement of Patent Documents 1 and 3 has a large current amount of several hundred eV to several keV. Therefore, when evaluating the secondary electron emission rate of insulator materials, the SN ratio deteriorates due to the surface charge-up phenomenon.
  • the energy of charged particles in plasma display panels is several tens to several hundreds eV, and it is preferable to use charged particle beams with energy values in this region for measuring the secondary electron emission rate. Have difficulty.
  • Patent Document 1 the measurement object described in Patent Document 1, Patent Document 2, and Patent Document 3 is an MgO thin film deposited on a substrate prepared for an experiment.
  • the technical idea of evaluating and managing the secondary electron emission rate in real time on the production line proposed in this patent has not been disclosed so far. Equipment can be installed.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-230923
  • Patent Document 2 JP 2004-28906 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-177135
  • the present invention has been made in view of the above-mentioned problems of the prior art. From the viewpoint of quality control in the production of PDP, the uniformity of the secondary electron emission rate of the protective film in the production line is determined in real time. The purpose is to provide a small and inexpensive secondary electron emission rate measuring device to be monitored.
  • An object of the present invention is to provide an emission rate measuring device.
  • a secondary electron emission rate measuring device includes a cylindrical electrode having an opening at the top and a central axis portion of the cylindrical electrode.
  • a charged particle generating source for generating charged particles by glow discharge plasma between the cylindrical electrode and the rod-shaped electrode and discharging the opening force;
  • Compact size consisting of an electrostatic lens that converges the beam of charged particles emitted from the aperture and irradiates the object to be measured, and a secondary electron collector electrode that captures the secondary electrons emitted from the measured substance force
  • a secondary electron measurement unit including a secondary electron measurement unit and a sample holding unit for holding an object to be measured in a vacuum chamber;
  • a voltage is applied to the gas exhaust unit that depressurizes the inside of the vacuum chamber, a gas supply unit that supplies a gas to be charged particles to the charged particle generation source, the charged particle generation source, the electrostatic lens, and the secondary electron collector electrode.
  • a voltage applying unit for measuring current and a current measuring unit is applied to the gas exhaust unit that depressurizes the inside of the vacuum chamber, a gas supply unit that supplies a gas to be charged particles to the charged particle generation source, the charged particle generation source, the electrostatic lens, and the secondary electron collector electrode.
  • a control computer for controlling these and calculating a secondary electron emission rate
  • the secondary electron emission rate measuring device is the secondary electron emission rate measuring device according to claim 1, wherein the charged particle generation source is controlled by a control computer. Gas is introduced from the gas supply unit, and a positive voltage is applied to the cylindrical electrode and a negative voltage is applied to the rod electrode by the voltage application unit to generate glow discharge plasma to generate charged particles.
  • the structure is characterized in that the pressure of the chamber is reduced and the charged particles pushed out by the pressure difference from the top opening of the cylindrical electrode are accelerated by the voltage applied to the cylindrical electrode.
  • the secondary electron emission rate measuring device is the secondary electron emission rate measuring device according to claim 1, wherein the electrostatic lens is charged with a space potential. At the same time as the particle beam is focused, the electrons in the charged particle beam of the charged particle generation force are reflected and removed, and the secondary electron collector electrode captures the secondary electrons that could be captured by the secondary electron collector electrode. It is comprised so that it may return to.
  • a secondary electron emission rate measuring device is the secondary electron emission rate measuring device according to claim 1, and further from a voltage application unit under the control of a control computer.
  • the polarity of the voltage applied to the cylindrical electrode and rod electrode of the charged particle generation source is reversed to change the charged particle beam from the positive ion beam to the electron beam, and the polarity of the voltage applied to the electrostatic lens is also reversed.
  • the secondary electron emission rate measuring device is the secondary electron emission rate measuring device according to any one of claims 1 to 4, further comprising secondary electrons.
  • the measurement unit includes a plurality of small secondary electron measurement units, and includes a drive unit that moves a plane perpendicular to the rod-shaped electrode, depending on whether the plurality of small secondary electron measurement units or the sample holding unit is misaligned. Is characterized by controlling the driving device and calculating the surface distribution of the secondary electron emission rate.
  • a secondary electron emission rate measuring device is the secondary electron emission rate measuring device according to any one of claims 1 to 4, further comprising a sample holding unit. Is equipped with a drive unit that holds multiple samples and moves the sample holder in a plane perpendicular to the rod-like electrode, and the control computer controls the drive unit to calculate the secondary electron emission rate of multiple samples in sequence. It is characterized by that.
  • FIG. 1 is a configuration diagram of a secondary electron emission rate measuring apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of a secondary electron emission rate measuring apparatus according to Embodiment 2 of the present invention.
  • FIG. 3 is an energy distribution diagram of a charged particle beam generated by the charged particle generation source of the present invention.
  • FIG. 4 is a time change diagram of a charged particle beam generated by the charged particle generation source of the present invention.
  • FIG. 5 shows the applied voltage dependence of the secondary electron collector electrode current in the secondary electron emission rate measuring device of the present invention.
  • FIG. 6 Secondary electron emission rates of various substances obtained by the secondary electron emission rate measuring device of the present invention.
  • FIG. 7 is a configuration diagram of a plasma display panel.
  • Figure 1 shows the purpose of measuring the uniformity of the secondary electron emission rate (product-to-product variation, product-to-product variation) of the substance to be measured (protective film) for quality control in the PDP production line.
  • a secondary electron emission rate measuring device configured as follows.
  • This secondary electron emission rate measuring device A small secondary electron unit comprising an electron particle generation source, an electrostatic lens, and a part of a secondary electron collector, and a secondary electron equipped with the small secondary electron unit and a sample holder in a vacuum chamber.
  • a measurement unit, a gas supply unit for operating the secondary electron measurement unit, a gas exhaust unit, a plurality of voltage application units, a plurality of current measurement units, a drive unit, and a control computer force are configured.
  • a gas for forming charged particles is supplied from the gas supply unit 101 into the cylindrical electrode 110 through the gas introduction pipe 104 and the gas introduction pipe 105.
  • a rod-shaped electrode 106 is formed at the position of the central axis in the cylindrical electrode 110.
  • a glow discharge is generated between both electrodes.
  • Electroplasma is generated.
  • a voltage is applied to the rod-shaped electrode 106 and the cylindrical electrode 110 by the voltage applying units 130 and 128, and currents are measured by the current measuring units 131 and 129.
  • the cylindrical electrode 110 and the rod-shaped electrode 106 are fixed to the charged particle generation chamber fixing plate 107 via a ceramic disk 108, and the cylindrical electrode 110 and the rod-shaped electrode 106 are isolated from the charged particle generation chamber fixing plate 107. I keep it.
  • the cylindrical electrode 110, the rod-shaped electrode 106, and the gas introduction tube 105 held on the ceramic disk 108 constitute a charged particle generation source.
  • the material of the rod-like electrode 106 and the cylindrical electrode 110 is a hard metal such as stainless steel, tantalum, or tungsten.
  • the gas introduced to generate charged particles from the gas supply unit 101 is an active gas such as O, N, CO, or He.
  • Inert gas such as 2 2, Ne, Ar, Xe.
  • An opening (charged particle passage hole) 111 is formed at the top of the cylindrical electrode.
  • the vacuum chamber 103 is depressurized to a predetermined pressure by the gas exhaust part 123. Due to the pressure difference between the inside and outside of the cylindrical electrode 110, charged particles generated by the glow discharge plasma pass through the charged particle passage hole 111. Released to the outside. At this time, the charged particle beam can be generated from the low vacuum region to the high vacuum region by adjusting the hole diameter of the charged particle passage hole 111 according to the degree of vacuum in the vacuum chamber. .
  • the degree of vacuum in the chamber needs to be changed in order to cope with various measurement conditions, while the degree of vacuum in the cylindrical electrode is kept at a pressure at which optimum discharge occurs depending on the introduced gas.
  • the hole diameter of the charged particle passage hole 111 is adjusted in order to optimize the vacuum balance between the chamber and the cylindrical electrode. Therefore, charged particle passage
  • the hole 111 preferably has a structure in which the hole diameter is variable or a member having a different hole diameter is detachably attached.
  • the charged particles emitted from the charged particle passage hole 111 are further accelerated by the voltage applied to the cylindrical electrode 110 by the voltage application unit 128 to become a charged particle beam.
  • the voltage applied to the cylindrical electrode 110 By controlling the voltage applied to the cylindrical electrode 110, the energy of the charged particle beam can be adjusted.
  • the vacuum chamber 103 is evacuated by the gas exhaust unit 123 and is controlled to a predetermined degree of vacuum.
  • the electrostatic lenses 112 and 116 are grounded, and a voltage is applied to the electrostatic lens 114 by the voltage application unit 127.
  • the “electrostatic lens” is a technology that applies a voltage to three electrodes and converges the charged beam by the generated space potential.
  • each of the three electrodes constituting the “electrostatic lens” is This is called an electrostatic lens.
  • the charged particle beam is converged by the electrostatic lenses 112, 114, and 116, and is irradiated onto the substance 120 to be measured deposited on the substrate 121 held by the sample holder (not shown).
  • the force in which electrons are contained in the generated charged particle beam When the charged particle beam passes through the electrostatic lenses 112, 114, and 116, these electrons are removed by the spatial potential.
  • the secondary electrons emitted from the substance 120 to be measured are not captured by the secondary electron collector electrode 119, and the force that may jump out of the holes of the secondary electron collector electrode 11 9 It is pushed back by the space potential by 114, 116 and is captured by the secondary electron collector electrode 119.
  • the voltage applied to the electrostatic lens 114 may be either positive or negative for the purpose of focusing the charged particle beam, but in order to eliminate unnecessary electrons as described above. Is preferably a negative voltage.
  • the electrostatic lens converges the charged particle beam, and at the same time, removes excess electrons in the charged particle beam so that they do not enter the secondary electron collector electrode. Furthermore, the electrostatic lens cannot capture the force with the secondary electron collector electrode. The measured substance force also plays the three roles of returning the emitted secondary electrons to the secondary electron collector electrode, enabling highly accurate measurement.
  • the secondary electron is applied to the secondary electron collector electrode 119 to the voltage application unit 125.
  • the force is also captured by applying a positive voltage, and the number of electrons is measured by the current measuring unit 126 as a current amount.
  • the charged particle generator, the three electrostatic lenses, and the secondary electron collector electrode are united to form a small secondary electron measurement unit.
  • the small secondary electron measurement unit is designed so that the space potential around the secondary electron collector electrode 119 does not affect the space potential around the electrostatic lenses 112, 114, 116, and is unnecessary in the vacuum chamber 103. It is preferable to dispose the disturbance eliminating electrode 118 so that free electrons are not captured by the secondary electron collector electrode 119.
  • the rod-shaped electrode 106 is installed inside the cylindrical electrode 110, and gas is introduced into the cylindrical electrode to generate a glow discharge plasma between the electrodes.
  • the charged particles generated by the pressure from the opening 111 at the top of the cylindrical electrode due to the pressure difference are accelerated by the voltage applied to the cylindrical electrode 110.
  • the charged particle generation sources 105-108, 110, the electrostatic lenses 112, 114, 116, and the secondary electron collector electrodes 117, 118 are the insulating spacers 109, 113, 115, 1 17 and connected as a small secondary electron measuring unit.
  • This small secondary electron measurement unit can be manufactured with a height of 70 mm or less and a width of ⁇ 40 mm or less.
  • a secondary electron measuring unit is a unit in which a small secondary electron measuring unit and a sample holder are arranged in a vacuum chamber.
  • a valve 122 of a gas exhaust unit 123 that depressurizes the inside of the vacuum chamber 103, a valve 102 of a gas supply unit 101 that supplies gas that becomes charged particles to a charged particle generation source, a vacuum gauge 124, and a voltage application unit 125 , 127, 128, 130, current measuring units 126, 129, 131 and Z or signal input / output are collectively performed by the control computer 132.
  • the measurement flow of the secondary electron emission rate performed under the control of the control computer 132 will be described below.
  • the valve 122 is opened, the vacuum in the vacuum chamber 103 is evacuated, and the degree of vacuum is measured by the vacuum gauge 124.
  • the valve 102 is opened to supply a predetermined amount of gas to be charged particles.
  • the valve 102 is provided with a flow meter (not shown), and its output signal is transmitted to the system control computer and controlled to a predetermined flow rate.
  • the voltage application units 128 and 130 are controlled to apply a predetermined voltage to the cylindrical electrode 110 and the rod-like electrode 106, thereby generating a glow discharge plasma and emitting a charged particle beam.
  • the voltage application unit 127 is controlled to apply a predetermined voltage to the electrostatic lens 114 to converge the beam.
  • the voltage application unit 125 is controlled to apply a predetermined voltage to the secondary electron collector electrode 119 to capture the secondary electrons emitted from the substance 120 to be measured.
  • a change in the amount of secondary electron current measured by the current measuring unit 126 with respect to time is output through the control computer 132.
  • the secondary electron emission rate of the substance to be measured can be measured in real time in the factory production line.
  • the beam amount of the charged particles irradiated to the object to be measured is measured.
  • this device is extremely stable and has no problem for quality control purposes in the manufacturing process.
  • the charged particle beam amount is directly measured.
  • a charged particle generation source, an electrostatic lens, a small secondary electron measurement unit in which a part of a secondary electron collector is unitized, or a sample holder for holding a substance to be measured is arranged in the longitudinal direction of a rod-shaped electrode.
  • a small secondary electron measurement unit or sample holder is further provided for the drive unit that moves on a vertical plane, and this drive unit is controlled by a control computer so that the small secondary electron measurement unit and the substance to be measured can be controlled.
  • a secondary electron emission rate measuring device capable of measuring the emission rate surface distribution fully automatically in real time can be obtained.
  • Fig. 2 is a secondary electron emission rate measuring device constructed for the purpose of precise measurement experiments of the secondary electron emission rate of a substance to be measured in research and development facilities.
  • This secondary electron emission rate measuring device includes a small secondary electron unit consisting of a charged particle generation source, an electrostatic lens, and a part of a secondary electron collector, and the small secondary electron unit and a sample holder in a vacuum chamber.
  • the secondary electron measurement unit provided in the system, and the gas supply unit, gas exhaust unit, multiple voltage application units, multiple current measurement units, drive unit, and control computer power for operating the secondary electron measurement unit are also configured. Has been.
  • This configuration is the same as in Example 1. The details of each configuration are different from Example 1.
  • a gas to be charged particles is supplied from the gas supply unit 201 into the cylindrical electrode 210 through the gas introduction pipe 204 and the gas introduction pipe 205.
  • a positive voltage is applied to the cylindrical electrode 210 and a negative voltage is applied to the rod-shaped electrode 206, glow discharge plasma is generated between the two electrodes.
  • Voltage is applied to the rod-shaped electrode 206 and the cylindrical electrode 210 by the voltage applying units 232 and 230, respectively, and the current is measured by the current measuring units 233 and 231.
  • the cylindrical electrode 210 and the rod-shaped electrode 206 are fixed to the charged particle generation chamber fixing plate 207 via the ceramic disk 208, and the cylindrical electrode 210 and the rod-shaped electrode 206 are insulated from the charged particle generation chamber fixing plate 207. ing.
  • the glow discharge plasma is generated inside the cylindrical electrode.
  • the generated charged particles are released to the outside through an opening (charged particle passage hole) 211 provided at the top of the cylindrical electrode due to a pressure difference between the inside and outside of the cylindrical electrode 210.
  • the discharged charged particles are further accelerated by the voltage applied to the cylindrical electrode 210 to become a charged particle beam.
  • the energy of the charged particle beam can be adjusted.
  • FIG. 3 is an energy distribution diagram of an ion beam (charged particle beam).
  • the applied voltage of the cathode (rod electrode) is constant and the applied voltage of the anode (tubular electrode) is increased, the peak energy of the ion beam distribution increases.
  • a charged particle beam with low energy and a small half-value width is suitable for the secondary electron emission rate measurement device, and the distribution shown in Fig. 3 corresponds to this.
  • the vacuum chamber 203 is evacuated by a gas exhaust unit 224, and a predetermined degree of vacuum is controlled by a vacuum gauge 225. At this time, the charged particle beam can be generated from the low vacuum region to the high vacuum region by adjusting the hole diameter of the charged particle passage hole 211 according to the degree of vacuum in the vacuum chamber.
  • the electrostatic lenses 212 and 216 are grounded, and a voltage is applied to the electrostatic lens 214 by the voltage application unit 229.
  • the charged particle beam is converged by the electrostatic lenses 212, 214, and 216, and irradiated to the measurement target material 220.
  • the secondary electrons emitted from the material 220 to be measured are not captured by the secondary electron collector electrode 219, and the electrons that may jump out of the holes of the secondary electron collector electrode 219. , 216 and is captured by the secondary electron collector electrode 219.
  • the secondary electrons are applied to the secondary electron collector electrode 219. Is captured by applying a positive voltage, and the amount of electrons is measured by the current measuring unit 228 as a current amount.
  • the current flowing through the substance to be measured Measured by part 226.
  • the secondary electron collector electrode 219 has a shape that covers the target so that the secondary electrons from the substance 220 to be measured can be reliably captured.
  • charged particle generation sources 205-208, 210, electrostatic lenses 212, 214, 216, and secondary electron collector parts 218, 219 are insulating spacers 209, 213, 215, Connected by 21 7 and unitized as a small secondary electron measuring unit! RU
  • the measurement flow of the secondary electron emission rate performed under the control of the control computer 234 is described below.
  • the valve 223 is opened, the vacuum in the vacuum chamber 203 is drawn, and the degree of vacuum is measured by the vacuum gauge 225.
  • the valve 202 is opened to supply a gas to be charged particles at a predetermined flow rate.
  • the voltage application units 230 and 232 are operated to apply a voltage to the cylindrical electrode 210 and the rod-shaped electrode 206 to generate a glow discharge plasma and emit a charged particle beam.
  • the voltage application unit 229 is operated to apply a voltage to the electrostatic lens 214 to converge the beam.
  • FIG. 4 shows the change over time in the amount of current until the charged particle beam is stabilized.
  • the measurement conditions in Fig. 4 are cylindrical electrode: 150V, rod electrode: -300V, and chamber vacuum: 3.9 X 10 _3 Pa.
  • the ion beam (charged particle beam) current is about 12 nA, which is stable at a very low value compared to the conventional ion beam current. Also, it takes about 60 seconds for the ion beam to stabilize.
  • the voltage application unit 227 is operated to apply a voltage to the secondary electron collector electrode 219 to capture the secondary electrons emitted from the substance 220 to be measured. Measured as quantity (A).
  • the current measuring unit 226 measures the amount of current (B) flowing through the substance to be measured.
  • the secondary electron emission rate is obtained as AZ (B ⁇ A).
  • Secondary electron collector of secondary electron current measured by current measuring unit 226, 228 The change to the applied voltage to 1 is output through the system control computer 234.
  • Figure 5 shows an example of the dependence of the secondary electron current and the target (substance to be measured) current on the collector voltage (voltage applied to the secondary electron collector electrode).
  • Figure 5 shows the data obtained by measuring the secondary electron emission rate of MgO under the conditions of 150V for the cylindrical electrode, 300V for the rod electrode, 3.9 X 10 _3 Pa, and Ne + as the charged particle beam. It is. When the collector applied voltage is 20V or higher, the secondary electron current and the target current amount are almost constant, indicating that the secondary electrons are reliably captured. In addition, in Fig. 5, the charged particle beam amount is about llnA, which is significantly reduced compared to the conventional technology. As a result, it is possible to easily measure the secondary electron emission rate of the substance to be measured in laboratories and the like!
  • FIG. 6 shows experimental data for determining secondary electron emission rates for various substances to be measured using the secondary electron emission rate measurement system of the present invention. These were obtained under the measurement conditions of 150 V applied to the cylindrical electrode, 300 V applied to the rod electrode, Ne + charged particle beam, and 1.9 X 10 _3 Pa vacuum in the chamber. Data.
  • the charged particle beam can be changed to a positive ion beam force to an electron beam.
  • the polarity of the voltage applied to the electrostatic lens it is possible to measure the secondary electron emission rate when the electron beam is irradiated. From this, it is possible to measure two types of physical properties, the secondary electron emission rate by positive ion beam irradiation and the secondary electron emission rate by electron beam irradiation using the same apparatus.
  • the sample holding unit 221 further includes a driving unit that holds a plurality of samples and moves the sample holding unit on a plane perpendicular to the longitudinal direction of the rod-shaped electrode.
  • the secondary electron emission rate of multiple substances to be measured can be measured automatically with a single sample loading without breaking the vacuum in the measurement chamber for each substance to be measured.
  • the experimental time can be shortened Industrial applicability
  • the configuration suitable for measuring the secondary electron emission rate of the protective film of the PDP has been mainly described.
  • the small secondary electron measurement unit can be applied to various devices that require charged particle irradiation.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A low-cost and small secondary electron emission rate measuring apparatus is provided. The secondary electron emission rate measuring apparatus is provided with a secondary electron measuring section having a small secondary electron measuring unit and a sample holding section for holding a subject to be measured, in a vacuum chamber. The small secondary electron measuring unit is composed of a charged particle generating source, which has a tube-like electrode having an opening at the top and a bar-like electrode at the center axis section of the tube-like electrode, and generates charged particles by glow discharge plasma; an electrostatic lens for focusing charged particle beams and irradiating the subject with the focused beam; and a secondary electron collector section for capturing secondary electrons emitted from the subject. The secondary electron emission rate measuring apparatus is also provided with a gas exhaust section for depressurizing the vacuum chamber; a gas supplying section for supplying the charged particle generating source with a gas to be the charged particles; a voltage applying section and a current measuring section for applying voltages to the charged particle generating source, the electrostatic lens and the secondary electron collector electrode and measuring currents; and a control computer for controlling such sections and calculating secondary electron emission rates.

Description

明 細 書  Specification
二次電子放出率測定装置  Secondary electron emission rate measuring device
技術分野  Technical field
[0001] 本発明は、二次電子放出率測定装置に関し、詳細にはプラズマディスプレイパネ ルの誘電体保護膜の二次電子放出率を生産ラインに於いてリアルタイム測定する、 又は研究開発施設等に於いて精密に測定する二次電子放出率測定装置に関する。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a secondary electron emission rate measuring device, and more specifically, measures a secondary electron emission rate of a dielectric protective film of a plasma display panel in real time on a production line, or to a research and development facility. The present invention relates to a secondary electron emission rate measuring device for precise measurement. Background art
[0002] インターネット等のグローバルネットワークとローカルネットワークの整備により、これ らのネットワークを介して情報を送受信するための情報端末が飛躍的に増加している 。このような情報端末の使用場所はオフィスの机上で使用するものの他に、携帯用、 会議室用等様々で、それに応じてディスプレイが多様ィ匕して 、る。  [0002] With the development of global networks such as the Internet and local networks, information terminals for transmitting and receiving information via these networks are dramatically increasing. In addition to those used on office desks, such information terminals are used for various purposes such as portable and conference rooms, and the display is varied accordingly.
プラズマディスプレイパネルは、薄型、自己発光型、視野角が広い等の特徴を生か した大画面のディスプレイとして、会議室用の情報端末、戸外の広告、大型テレビ等 の用途に需要の拡大が期待されて 、る。  Plasma display panels are expected to expand in demand for information terminals for conference rooms, outdoor advertisements, large TVs, etc. as large-screen displays that take advantage of their thin, self-luminous type and wide viewing angle. And
[0003] 図 7は AC型のプラズマディスプレイパネル(以下、 Plasma Display Panel : PDP と略す)の構成図である。 FIG. 7 is a configuration diagram of an AC type plasma display panel (hereinafter abbreviated as “PDP”).
図 7に示すように、 PDP301は、前面ガラス基板 302と背面ガラス基板 303が対向 して配置され、前面、背面両基板は周囲で封止(図示せず)されており、不活性ガス( 放電ガス)が封入されている。前面ガラス基板 302には一対の維持電極 304が透明 導電物質で形成される。維持電極 304の電圧降下を防止するために維持電極 304 と平行で維持電極 304の一部と接触するバス電極が高導電率の金属で形成される 1S 図 7では省略している。維持電極 304上には維持電極 304を被覆する誘電体膜 305、保護膜 (誘電体保護膜) 306が積層される。  As shown in FIG. 7, in the PDP 301, a front glass substrate 302 and a rear glass substrate 303 are disposed to face each other, and both the front and rear substrates are sealed around (not shown), and an inert gas (discharge) Gas) is enclosed. A pair of sustain electrodes 304 is formed of a transparent conductive material on the front glass substrate 302. In order to prevent the voltage drop of the sustain electrode 304, the bus electrode parallel to the sustain electrode 304 and in contact with a part of the sustain electrode 304 is formed of a metal having high conductivity. On the sustain electrode 304, a dielectric film 305 and a protective film (dielectric protective film) 306 covering the sustain electrode 304 are laminated.
一方、背面ガラス基板 303上にはアドレス電極 307が形成される。また、アドレス電 極 307と平行に隔壁 308が一定間隔に形成され、前面、背面両基板間の空間をアド レス電極方向の帯状の空間に仕切っている。現在は生産技術が向上し、隔壁が格 子型もしくはミアンダ型に設計されているものもある。アドレス電極 307は誘電体層 31 0で覆われ、その上面に蛍光体 309が形成されて 、る。 On the other hand, address electrodes 307 are formed on the rear glass substrate 303. In addition, partition walls 308 are formed at regular intervals in parallel with the address electrodes 307 to partition the space between the front and back substrates into a band-shaped space in the address electrode direction. Currently, production technology has been improved, and some of the bulkheads are designed in a lattice type or meander type. Address electrode 307 is dielectric layer 31 The phosphor 309 is formed on the upper surface thereof.
なお、図 7では説明の都合上、前面ガラス基板 302上の維持電極 304と背面ガラス 303上のアドレス電極 307は平行に描かれている力 実際には維持電極 304とァドレ ス電極 307は 90度のねじれの角度で配置されるように前面、背面ガラスは封止され る。  In FIG. 7, for convenience of explanation, sustain electrode 304 on front glass substrate 302 and address electrode 307 on rear glass 303 are drawn in parallel. Actually, sustain electrode 304 and address electrode 307 are 90 degrees. The front and back glass are sealed so that they are arranged at an angle of torsion.
[0004] アドレス電極 307と維持電極 304の間に電圧を印加することで放電させ、この放電 の維持を一対の維持電極 304に AC電圧を印加することよって行う。不活性ガスが放 電により励起され紫外線が発生し、この紫外線を受けて蛍光体 309が発光する。この ような構造の PDPの放電開始電圧および放電維持電圧は保護膜 306のイオン衝撃 による二次電子放出率に依存し、放出率が高ければ放電開始電圧および放電維持 電圧を下げることができ、低消費電力化される。液晶に比べて消費電力の大きい PD Pは、低消費電力化が需要拡大にとって、最も大きな課題である。  [0004] Discharging is performed by applying a voltage between address electrode 307 and sustain electrode 304, and this discharge is maintained by applying an AC voltage to a pair of sustain electrodes 304. The inert gas is excited by discharge to generate ultraviolet rays, and the phosphor 309 emits light upon receiving the ultraviolet rays. The discharge start voltage and the discharge sustain voltage of the PDP having such a structure depend on the secondary electron emission rate due to ion bombardment of the protective film 306, and if the discharge rate is high, the discharge start voltage and the discharge sustain voltage can be lowered. Power consumption is reduced. With PDPs, which consume more power than LCDs, reducing power consumption is the biggest challenge for expanding demand.
現在、保護膜としては酸ィ匕マグネシウム複合薄膜が広く用いられているが、それに 代わる二次電子放出率の高い保護膜を開発する研究が活発に行われており、二次 電子放出率を正確、簡便に測定できる装置が求められている。また、 PDP製造上も 保護膜の二次電子放出率を測定し管理することは重要であり、今後、二次電子放出 率測定装置の需要は大きくなる。  Currently, magnesium oxide thin film is widely used as a protective film. However, active research is underway to develop a protective film with a high secondary electron emission rate. There is a need for an apparatus that can be easily measured. In addition, it is important to measure and manage the secondary electron emission rate of the protective film in the production of PDP, and the demand for secondary electron emission rate measuring equipment will increase in the future.
[0005] イオンビーム照射による二次電子測定法は、例えば特許文献 1、特許文献 2、特許 文献 3に開示されている。例えば特許文献 1の装置はチャンバ一内に荷電粒子を生 成するイオン化部と、被測定物質を載せる陰極と、二次電子を捕獲する電極を備え て ヽる。照射された荷電粒子量と放出された二次電子量を陰極と収集電極の電流と して測定し二次電子放出率を求める。特許文献 2、特許文献 3についても、基本的な 構造は同じである。  [0005] Secondary electron measurement methods using ion beam irradiation are disclosed in Patent Document 1, Patent Document 2, and Patent Document 3, for example. For example, the apparatus of Patent Document 1 includes an ionization unit that generates charged particles in a chamber, a cathode on which a substance to be measured is placed, and an electrode that captures secondary electrons. The amount of charged particles irradiated and the amount of secondary electrons emitted are measured as the current of the cathode and collecting electrode to determine the secondary electron emission rate. The basic structure of Patent Documents 2 and 3 is the same.
[0006] し力しながら、特許文献 1、特許文献 3の技術による荷電粒子ビームを用いた二次 電子放出率の測定装置は荷電粒子生成源、被測定物質固定ホルダー、入射電流 測定装置、放出電子電流測定装置、及び制御装置を含む大掛かりなものである。特 に荷電粒子生成源は二次電子放出率の測定に特ィ匕したものではなぐ例えば物質 分析用の集束イオンビーム (FIB)や物質力卩ェ用イオンビームに用いられて 、るもの を流用しているため、非常に高価である。従って、小規模の研究施設や企業におい ては二次電子放出率に関する研究を行うことが困難である。 [0006] However, the secondary electron emission rate measurement device using the charged particle beam based on the techniques of Patent Document 1 and Patent Document 3 is a charged particle generation source, a target substance fixing holder, an incident current measurement device, an emission device. It is a large-scale device including an electronic current measuring device and a control device. In particular, the charged particle generation source is not used for measuring the secondary electron emission rate. For example, it is used for focused ion beam (FIB) for material analysis or ion beam for material force measurement. Because it is diverted, it is very expensive. Therefore, it is difficult for small-scale research facilities and companies to conduct research on the secondary electron emission rate.
[0007] また特許文献 1、特許文献 3の二次電子放出率測定に用いられる荷電粒子ビーム は、そのエネルギーが数百 eVから数 keVと大きぐその電流量も大きい。そのため、 絶縁体物質の二次電子放出率を評価する際、表面のチャージアップ現象により SN 比が悪化する。プラズマディスプレイパネル内の荷電粒子のエネルギーは数十 eVか ら数百 eVであり、二次電子放出率測定にこの領域のエネルギー値の荷電粒子ビー ムを使用するほうが望ましいが、従来技術では測定が困難である。  [0007] In addition, the charged particle beam used in the secondary electron emission rate measurement of Patent Documents 1 and 3 has a large current amount of several hundred eV to several keV. Therefore, when evaluating the secondary electron emission rate of insulator materials, the SN ratio deteriorates due to the surface charge-up phenomenon. The energy of charged particles in plasma display panels is several tens to several hundreds eV, and it is preferable to use charged particle beams with energy values in this region for measuring the secondary electron emission rate. Have difficulty.
[0008] さらに特許文献 1、特許文献 2、特許文献 3に記載されて ヽる測定対象は実験用に 作成した基板の上に蒸着された MgO薄膜である。本特許にお ヽて提言して ヽる生 産ライン上でリアルタイムに二次電子放出率を評価 ·管理するという技術的思想はこ れまで開示されておらず、本装置によって初めて生産ライン上に装置を設置すること が可能となる。  [0008] Further, the measurement object described in Patent Document 1, Patent Document 2, and Patent Document 3 is an MgO thin film deposited on a substrate prepared for an experiment. The technical idea of evaluating and managing the secondary electron emission rate in real time on the production line proposed in this patent has not been disclosed so far. Equipment can be installed.
特許文献 1:特開平 11― 230923号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-230923
特許文献 2:特開 2004— 28906号公報  Patent Document 2: JP 2004-28906 A
特許文献 3 :特開 2004— 177135号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-177135
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は上記従来技術の問題点に鑑みてなされたものであって、 PDPの生産に 於ける品質管理の観点から、生産ラインにおける保護膜の二次電子放出率の均一 性をリアルタイムに監視する小型で安価な二次電子放出率測定装置を提供すること を目的とする。 [0009] The present invention has been made in view of the above-mentioned problems of the prior art. From the viewpoint of quality control in the production of PDP, the uniformity of the secondary electron emission rate of the protective film in the production line is determined in real time. The purpose is to provide a small and inexpensive secondary electron emission rate measuring device to be monitored.
また、二次電子放出率に関する研究、開発にも適するように、荷電粒子ビームの正 確な制御を可能にすると共に、電子線照射に於ける二次電子放出率の測定を可能 な二次電子放出率測定装置を提供することを目的とする。  In addition, it is possible to accurately control the charged particle beam so that it is suitable for research and development on the secondary electron emission rate, and it is possible to measure the secondary electron emission rate during electron beam irradiation. An object of the present invention is to provide an emission rate measuring device.
課題を解決するための手段  Means for solving the problem
[0010] 上記目的を達成するために、本発明の請求項 1に記載の二次電子放出率測定装 置は、頂部に開口部を有す筒状電極と前記筒状電極の中心軸部に設けた棒状電極 と荷電粒子となる気体を導入する気体導入管とを備え、前記筒状電極と棒状電極間 のグロ一放電プラズマによって荷電粒子を生成し、前記開口部力 放出する荷電粒 子生成源と、前記開口部から放出された荷電粒子のビームを収束させ被測定物に照 射する静電レンズと、被測定物質力 放出される二次電子を捕捉するための二次電 子コレクター電極とからなる小型二次電子測定ユニットと、被測定物を保持する試料 保持部とを真空チャンバ一内に備えた二次電子測定部と、 In order to achieve the above object, a secondary electron emission rate measuring device according to claim 1 of the present invention includes a cylindrical electrode having an opening at the top and a central axis portion of the cylindrical electrode. Provided rod-shaped electrode A charged particle generating source for generating charged particles by glow discharge plasma between the cylindrical electrode and the rod-shaped electrode and discharging the opening force; Compact size consisting of an electrostatic lens that converges the beam of charged particles emitted from the aperture and irradiates the object to be measured, and a secondary electron collector electrode that captures the secondary electrons emitted from the measured substance force A secondary electron measurement unit including a secondary electron measurement unit and a sample holding unit for holding an object to be measured in a vacuum chamber;
前記真空チャンバ一内を減圧にする気体排気部と、前記荷電粒子生成源に荷電 粒子となるガスを供給する気体供給部と、前記荷電粒子生成源、静電レンズ及び二 次電子コレクター電極に電圧を印加し、電流を測定する電圧印加部と電流測定部と A voltage is applied to the gas exhaust unit that depressurizes the inside of the vacuum chamber, a gas supply unit that supplies a gas to be charged particles to the charged particle generation source, the charged particle generation source, the electrostatic lens, and the secondary electron collector electrode. A voltage applying unit for measuring current and a current measuring unit,
、これらを制御し、二次電子放出率を算出する制御コンピュータと、 A control computer for controlling these and calculating a secondary electron emission rate;
力 構成されることを特徴とする。  It is characterized by being composed of force.
[0011] 本発明の請求項 2に記載の二次電子放出率測定装置は、請求項 1に記載の二次 電子放出率測定装置であって、更に、荷電粒子生成源は、制御コンピュータの制御 により気体供給部からガスを導入させ、電圧印加部により筒状電極に正電圧と棒状 電極に負電圧を印加してグロ一放電プラズマを生成することにより荷電粒子を生成し 記気体排気部により真空チャンバ一を減圧して筒状電極の頂部開口部より圧力差に よって押し出された荷電粒子を筒状電極に印加された電圧によって加速させる構造 であることを特徴とする。  [0011] The secondary electron emission rate measuring device according to claim 2 of the present invention is the secondary electron emission rate measuring device according to claim 1, wherein the charged particle generation source is controlled by a control computer. Gas is introduced from the gas supply unit, and a positive voltage is applied to the cylindrical electrode and a negative voltage is applied to the rod electrode by the voltage application unit to generate glow discharge plasma to generate charged particles. The structure is characterized in that the pressure of the chamber is reduced and the charged particles pushed out by the pressure difference from the top opening of the cylindrical electrode are accelerated by the voltage applied to the cylindrical electrode.
[0012] 本発明の請求項 3に記載の二次電子放出率測定装置は、請求項 1に記載の二次 電子放出率測定装置であって、更に、静電レンズは、空間電位により前記荷電粒子 のビームを収束させると同時に、荷電粒子生成源力 の荷電粒子のビーム中の電子 を反射 '除去し、二次電子コレクター電極で捉えきれなカゝつた放出二次電子を二次 電子コレクター電極に戻すように構成されることを特徴とする。  [0012] The secondary electron emission rate measuring device according to claim 3 of the present invention is the secondary electron emission rate measuring device according to claim 1, wherein the electrostatic lens is charged with a space potential. At the same time as the particle beam is focused, the electrons in the charged particle beam of the charged particle generation force are reflected and removed, and the secondary electron collector electrode captures the secondary electrons that could be captured by the secondary electron collector electrode. It is comprised so that it may return to.
[0013] 本発明の請求項 4に記載の二次電子放出率測定装置は、請求項 1に記載の二次 電子放出率測定装置であって、更に、制御コンピュータの制御により電圧印加部か ら荷電粒子生成源の筒状電極と棒状電極への印加電圧の極性を逆転して荷電粒子 のビームを正イオンビームから電子ビームへ変更し、さらに静電レンズへの印加電圧 の極性も逆転して、電子ビームを照射する二次電子放出率の測定することを特徴と する。 [0013] A secondary electron emission rate measuring device according to claim 4 of the present invention is the secondary electron emission rate measuring device according to claim 1, and further from a voltage application unit under the control of a control computer. The polarity of the voltage applied to the cylindrical electrode and rod electrode of the charged particle generation source is reversed to change the charged particle beam from the positive ion beam to the electron beam, and the polarity of the voltage applied to the electrostatic lens is also reversed. , Characterized by measuring the secondary electron emission rate irradiated with an electron beam To do.
[0014] 本発明の請求項 5に記載の二次電子放出率測定装置は、請求項 1乃至 4のいずれ 力 1項に記載の二次電子放出率測定装置であって、更に、二次電子測定部は複数 の小型二次電子測定ユニットを備え、複数の小型二次電子測定ユニット又は試料保 持部の ヽずれかを棒状電極に垂直な平面を移動させる駆動部を備え、制御コンビュ ータは前記駆動装置を制御し、二次電子放出率の面分布を算出することを特徴とす る。  [0014] The secondary electron emission rate measuring device according to claim 5 of the present invention is the secondary electron emission rate measuring device according to any one of claims 1 to 4, further comprising secondary electrons. The measurement unit includes a plurality of small secondary electron measurement units, and includes a drive unit that moves a plane perpendicular to the rod-shaped electrode, depending on whether the plurality of small secondary electron measurement units or the sample holding unit is misaligned. Is characterized by controlling the driving device and calculating the surface distribution of the secondary electron emission rate.
[0015] 本発明の請求項 6に記載の二次電子放出率測定装置は、請求項 1乃至 4のいずれ 力 1項に記載の二次電子放出率測定装置であって、更に、試料保持部は複数の試 料を保持し、試料保部を棒状電極に垂直な平面を移動させる駆動部を備え、制御コ ンピュータは駆動部を制御し、複数の試料の二次電子放出率を順次算出することを 特徴とする。  [0015] A secondary electron emission rate measuring device according to claim 6 of the present invention is the secondary electron emission rate measuring device according to any one of claims 1 to 4, further comprising a sample holding unit. Is equipped with a drive unit that holds multiple samples and moves the sample holder in a plane perpendicular to the rod-like electrode, and the control computer controls the drive unit to calculate the secondary electron emission rate of multiple samples in sequence. It is characterized by that.
発明の効果  The invention's effect
[0016] 上記構成にお!、て、荷電粒子生成のためにグロ一放電プラズマを利用し、さらにグ ロー放電プラズマ生成と荷電粒子加速の二つの役割を筒状電極によって担う構造に することで、荷電粒子生成源を大幅に簡素化、小型化できる。この結果、従来は別々 の構成であった荷電粒子生成源、静電レンズ、二次電子コレクタ一部のユニットィ匕が 可能となる。これより、従来は荷電粒子生成源、静電レンズ、二次電子コレクタ一間で ビームを引出す為にそれぞれの位置調整が必要であった力 ユニットィ匕したことによ り位置調整の手間を省くことができ、容易に二次電子放出率測定が可能となる。さら に、従来技術では測定チャンバ一に荷電粒子生成源が備えられていることが前提で あつたため、装置が非常に巨大かつコストの力かるものであった力 本発明の二次電 子放出率測定装置では、荷電粒子生成源、静電レンズ、及び二次電子コレクタ一部 のユニットィ匕により測定チャンバ一に荷電粒子生成源が備わっている必要がなぐ気 体導入部及び電流導入部さえあれば測定可能になるため、装置の小型化,低コスト 化が可能となる。  [0016] In the above configuration, by using a glow discharge plasma for the generation of charged particles, and a structure in which two roles of glow discharge plasma generation and charged particle acceleration are played by the cylindrical electrode. The charged particle generation source can be greatly simplified and miniaturized. As a result, a unit of a charged particle generation source, an electrostatic lens, and a part of a secondary electron collector, which has been conventionally configured separately, can be realized. As a result, it was previously necessary to adjust the position of the charged particle generation source, electrostatic lens, and secondary electron collector to adjust the position of each beam. This makes it possible to easily measure the secondary electron emission rate. Furthermore, since the conventional technology is based on the premise that the measurement chamber is equipped with a charged particle generation source, the force that the apparatus was very large and costly was used. Secondary electron emission rate of the present invention In the measurement apparatus, there is only a gas introduction unit and a current introduction unit that do not need to have a charged particle generation source in the measurement chamber by a unit of a charged particle generation source, an electrostatic lens, and a secondary electron collector. Since measurement is possible, the size and cost of the device can be reduced.
[0017] また、従来技術では生成の難し力つた、 PDPのセル内の荷電粒子とほぼ等しい数 十 eVから数百 eVの低エネルギー荷電粒子ビームを用いた二次電子放出率の測定 が容易に可能となる。さらに従来技術と比べ荷電粒子ビームのエネルギーが数百か ら数十分の一に抑えられるため、二次電子放出率測定を非破壊に行うことが可能と なる。一方、荷電粒子電流量も数 nAから十数 nAまで電流量を安定して絞ることが可 能になることにより、従来技術では表面のチャージアップのため二次電子放出率が 困難であった絶縁体ターゲットの場合も、チャージアップによる悪影響を受けずに測 定が可能となる。 [0017] Measurement of the secondary electron emission rate using a low-energy charged particle beam of several tens to several hundreds of eV, which is almost the same as a charged particle in a PDP cell, which is difficult to generate with the conventional technology. Is easily possible. Furthermore, since the energy of the charged particle beam can be suppressed to several hundred to several tenths compared with the conventional technology, it becomes possible to perform secondary electron emission rate measurement nondestructively. On the other hand, since it is possible to stably reduce the amount of charged particle current from several nA to several tens of nA, in the conventional technology, the secondary electron emission rate was difficult due to surface charge-up. In the case of a body target, measurement is possible without being adversely affected by charge-up.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の実施例 1による二次電子放出率測定装置の構成図である。 FIG. 1 is a configuration diagram of a secondary electron emission rate measuring apparatus according to Embodiment 1 of the present invention.
[図 2]本発明の実施例 2による二次電子放出率測定装置の構成図である。  FIG. 2 is a configuration diagram of a secondary electron emission rate measuring apparatus according to Embodiment 2 of the present invention.
[図 3]本発明の荷電粒子生成源で生成される荷電粒子ビームのエネルギー分布図で ある。  FIG. 3 is an energy distribution diagram of a charged particle beam generated by the charged particle generation source of the present invention.
[図 4]本発明の荷電粒子生成源で生成される荷電粒子ビームの時間変化図である。  FIG. 4 is a time change diagram of a charged particle beam generated by the charged particle generation source of the present invention.
[図 5]本発明の二次電子放出率測定装置における二次電子コレクター電極電流の印 加電圧依存性である。  FIG. 5 shows the applied voltage dependence of the secondary electron collector electrode current in the secondary electron emission rate measuring device of the present invention.
[図 6]本発明の二次電子放出率測定装置により得られた様々な物質の二次電子放 出率である。  [FIG. 6] Secondary electron emission rates of various substances obtained by the secondary electron emission rate measuring device of the present invention.
[図 7]プラズマディスプレイパネルの構成図である。  FIG. 7 is a configuration diagram of a plasma display panel.
符号の説明  Explanation of symbols
[0019] 101、 201 気体供給部  [0019] 101, 201 Gas supply section
102、 122、 202、 223 ノ レブ  102, 122, 202, 223
103、 203 真空チャンノ ー  103, 203 Vacuum channel
104、 204 気体導入パイプ  104, 204 Gas introduction pipe
105、 205 気体導入管  105, 205 Gas introduction pipe
106、 206 棒状電極  106, 206 Rod electrode
107、 207 荷電粒子生成室固定板  107, 207 Charged particle generation chamber fixing plate
108、 208 セラミックディスク  108, 208 Ceramic disc
109、 113、 115、 117、 209、 213、 215、 217 絶縁性スぺーサ  109, 113, 115, 117, 209, 213, 215, 217 Insulating spacer
110、 210 筒状電極 111、 211 荷電粒子通過孔(開口部) 110, 210 cylindrical electrode 111, 211 Charged particle passage hole (opening)
112、 114、 116、 212、 214、 216 静電レンズ  112, 114, 116, 212, 214, 216 electrostatic lens
118、 218、 222 外舌し除去電極  118, 218, 222 Tongue removal electrode
119、 219 二次電子コレクター電極  119, 219 Secondary electron collector electrode
120、 220 被測定物質 (保護膜)  120, 220 Substance to be measured (Protective film)
121 基板  121 board
123、 224 気体排気部  123, 224 Gas exhaust
124、 225 真空計  124, 225 Vacuum gauge
125、 127、 128、 130、 227、 229、 230、 232、 電圧印カロ部  125, 127, 128, 130, 227, 229, 230, 232, voltage marking section
126、 129、 131、 226、 228、 231、 233 電流測定部  126, 129, 131, 226, 228, 231, 233 Current measurement unit
132、 234 制御コンピュータ  132, 234 Control computer
221 試料保持部  221 Sample holder
301 プラズマディスプレイパネル  301 Plasma display panel
302 前面ガラス基板  302 Front glass substrate
303 背面ガラス基板  303 Rear glass substrate
304 維持電極  304 maintenance electrode
305 誘電体膜  305 Dielectric film
306 保護膜 (誘電体保護膜)  306 Protective film (Dielectric protective film)
307 アドレス電極  307 Address electrode
308 隔壁  308 Bulkhead
309 蛍光体  309 phosphor
310 誘電体層  310 Dielectric layer
発明の実施の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0021] 図 1は PDPの生産ラインにぉ 、て品質管理のために被測定物質 (保護膜)の二次 電子放出率の均一性 (製品間バラツキ、製品内バラツキ)を測定することを目的として 構成された二次電子放出率測定装置である。この二次電子放出率測定装置は、荷 電粒子生成源、静電レンズ、及び二次電子コレクタ一部からなる小型二次電子ュ- ットと、この小型二次電子ユニットと試料保持部を真空チャンバ一内に備えた二次電 子測定部と、この二次電子測定部を動作させるための気体供給部、気体排気部、複 数の電圧印加部、複数の電流測定部、駆動部、及び、制御コンピュータ力 構成さ れている。 [0021] Figure 1 shows the purpose of measuring the uniformity of the secondary electron emission rate (product-to-product variation, product-to-product variation) of the substance to be measured (protective film) for quality control in the PDP production line. Is a secondary electron emission rate measuring device configured as follows. This secondary electron emission rate measuring device A small secondary electron unit comprising an electron particle generation source, an electrostatic lens, and a part of a secondary electron collector, and a secondary electron equipped with the small secondary electron unit and a sample holder in a vacuum chamber. A measurement unit, a gas supply unit for operating the secondary electron measurement unit, a gas exhaust unit, a plurality of voltage application units, a plurality of current measurement units, a drive unit, and a control computer force are configured.
[0022] 荷電粒子を生成するために、気体供給部 101から荷電粒子にするための気体が気 体導入パイプ 104と気体導入管 105を通して筒状電極 110内に供給される。  In order to generate charged particles, a gas for forming charged particles is supplied from the gas supply unit 101 into the cylindrical electrode 110 through the gas introduction pipe 104 and the gas introduction pipe 105.
筒状電極 110内の中心軸の位置には棒状電極 106が形成されており、筒状電極 1 10に正電圧を、棒状電極 106に負電圧を印加することにより、両電極間でグロ一放 電プラズマが生じる。棒状電極 106、筒状電極 110はそれぞれ電圧印加部 130、 12 8により電圧が印加され、電流測定部 131、 129により電流が測定される。この筒状電 極 110と棒状電極 106はセラミックディスク 108を介して荷電粒子生成室固定板 107 に固定されており、筒状電極 110と棒状電極 106は荷電粒子生成室固定板 107と絶 縁を保っている。セラミックディスク 108に保持された筒状電極 110、棒状電極 106及 び気体導入管 105が荷電粒子生成源を構成する。  A rod-shaped electrode 106 is formed at the position of the central axis in the cylindrical electrode 110. By applying a positive voltage to the cylindrical electrode 110 and a negative voltage to the rod-shaped electrode 106, a glow discharge is generated between both electrodes. Electroplasma is generated. A voltage is applied to the rod-shaped electrode 106 and the cylindrical electrode 110 by the voltage applying units 130 and 128, and currents are measured by the current measuring units 131 and 129. The cylindrical electrode 110 and the rod-shaped electrode 106 are fixed to the charged particle generation chamber fixing plate 107 via a ceramic disk 108, and the cylindrical electrode 110 and the rod-shaped electrode 106 are isolated from the charged particle generation chamber fixing plate 107. I keep it. The cylindrical electrode 110, the rod-shaped electrode 106, and the gas introduction tube 105 held on the ceramic disk 108 constitute a charged particle generation source.
棒状電極 106と筒状電極 110の材質はステンレス、タンタル、タングステン等の硬 質金属である。また、気体供給部 101から荷電粒子を生成するために導入される気 体は O、 N、 CO等の活性ガス又は He  The material of the rod-like electrode 106 and the cylindrical electrode 110 is a hard metal such as stainless steel, tantalum, or tungsten. The gas introduced to generate charged particles from the gas supply unit 101 is an active gas such as O, N, CO, or He.
2 2 、 Ne、 Ar、 Xe等の不活性ガスである。 Inert gas such as 2 2, Ne, Ar, Xe.
2 2
[0023] 筒状電極の頂部には開口部 (荷電粒子通過孔) 111が形成されている。真空チヤ ンバー 103は、気体排気部 123により所定の圧力に減圧されており、筒状電極 110 の内外の圧力差により、グロ一放電プラズマによって生成された荷電粒子は荷電粒 子通過孔 111を通って外部に放出される。この際、荷電粒子通過孔 111の孔径を真 空チャンバ一内の真空度に合わせて調節することで、チャンバ一の真空度が低真空 領域から高真空領域まで荷電粒子ビームを生成することができる。  An opening (charged particle passage hole) 111 is formed at the top of the cylindrical electrode. The vacuum chamber 103 is depressurized to a predetermined pressure by the gas exhaust part 123. Due to the pressure difference between the inside and outside of the cylindrical electrode 110, charged particles generated by the glow discharge plasma pass through the charged particle passage hole 111. Released to the outside. At this time, the charged particle beam can be generated from the low vacuum region to the high vacuum region by adjusting the hole diameter of the charged particle passage hole 111 according to the degree of vacuum in the vacuum chamber. .
即ち、チャンバ一の真空度は、様々な測定条件に対応するために変更する必要が あり、一方筒状電極内の真空度は導入されるガスに依存して最適の放電が起こる圧 力に保つ必要がある。従って、チャンバ一内と筒状電極内の真空度バランスを最適 化するために荷電粒子通過孔 111の孔径を調節する。そのために、荷電粒子通過 孔 111は孔径を可変、又は、孔径の異なる部材を着脱可能に取付ける構造とするの が好ましい。 In other words, the degree of vacuum in the chamber needs to be changed in order to cope with various measurement conditions, while the degree of vacuum in the cylindrical electrode is kept at a pressure at which optimum discharge occurs depending on the introduced gas. There is a need. Therefore, the hole diameter of the charged particle passage hole 111 is adjusted in order to optimize the vacuum balance between the chamber and the cylindrical electrode. Therefore, charged particle passage The hole 111 preferably has a structure in which the hole diameter is variable or a member having a different hole diameter is detachably attached.
[0024] 荷電粒子通過孔 111から放出された荷電粒子はさらに筒状電極 110に電圧印加 部 128により印加された電圧によって加速され、荷電粒子ビームとなる。筒状電極 11 0に印加する電圧を制御することにより、荷電粒子ビームのエネルギーを調節するこ とが出来る。  The charged particles emitted from the charged particle passage hole 111 are further accelerated by the voltage applied to the cylindrical electrode 110 by the voltage application unit 128 to become a charged particle beam. By controlling the voltage applied to the cylindrical electrode 110, the energy of the charged particle beam can be adjusted.
真空チャンバ一 103は気体排気部 123によって真空引されており、所定の真空度 に管理されている。  The vacuum chamber 103 is evacuated by the gas exhaust unit 123 and is controlled to a predetermined degree of vacuum.
[0025] 静電レンズ 112、 116は接地され、静電レンズ 114は電圧印加部 127により電圧を 印加されている。なお、一般に「静電レンズ」は 3つの電極に電圧を印加して、生ずる 空間電位により荷電ビームを収束させる技術であるが、本明細書では「静電レンズ」 を構成する 3つの電極をそれぞれ静電レンズと呼ぶ。荷電粒子ビームは静電レンズ 1 12、 114、 116によって収束され、試料保持部(図示せず)に保持された基板 121上 蒸着された被測定物質 120へ照射される。生成された荷電粒子ビーム中には電子が 含まれている力 荷電粒子ビームが静電レンズ 112、 114、 116を通過する際に、空 間電位によってそれらの電子が取り除かれる。また、被測定物質 120から放出された 二次電子が二次電子コレクター電極 119に捕捉されず、二次電子コレクター電極 11 9の孔からとび出る場合がある力 これらの電子は静電レンズ 112、 114、 116による 空間電位によって押し戻され、二次電子コレクター電極 119によって捕捉される。 静電レンズ 114に印加される電圧は、荷電粒子ビームを収束させるだけの目的に は、正、負どちらの電圧を印加してもよいが、上述のように不必要な電子を排除する ためには負電圧とするのが好ましい。  The electrostatic lenses 112 and 116 are grounded, and a voltage is applied to the electrostatic lens 114 by the voltage application unit 127. In general, the “electrostatic lens” is a technology that applies a voltage to three electrodes and converges the charged beam by the generated space potential. In this specification, each of the three electrodes constituting the “electrostatic lens” is This is called an electrostatic lens. The charged particle beam is converged by the electrostatic lenses 112, 114, and 116, and is irradiated onto the substance 120 to be measured deposited on the substrate 121 held by the sample holder (not shown). The force in which electrons are contained in the generated charged particle beam When the charged particle beam passes through the electrostatic lenses 112, 114, and 116, these electrons are removed by the spatial potential. In addition, the secondary electrons emitted from the substance 120 to be measured are not captured by the secondary electron collector electrode 119, and the force that may jump out of the holes of the secondary electron collector electrode 11 9 It is pushed back by the space potential by 114, 116 and is captured by the secondary electron collector electrode 119. The voltage applied to the electrostatic lens 114 may be either positive or negative for the purpose of focusing the charged particle beam, but in order to eliminate unnecessary electrons as described above. Is preferably a negative voltage.
静電レンズは荷電粒子ビームを収束させると同時に、荷電粒子ビーム中の余分な 電子が二次電子コレクター電極部に進入しな 、ように除去し、さらに二次電子コレク ター電極で捉えきれな力つた被測定物質力も放出された二次電子を二次電子コレク ター電極に戻すという 3つの役割を果たし、高精度な測定が可能になる。  The electrostatic lens converges the charged particle beam, and at the same time, removes excess electrons in the charged particle beam so that they do not enter the secondary electron collector electrode. Furthermore, the electrostatic lens cannot capture the force with the secondary electron collector electrode. The measured substance force also plays the three roles of returning the emitted secondary electrons to the secondary electron collector electrode, enabling highly accurate measurement.
[0026] 荷電粒子ビームが照射されることにより、基板 121上の被測定物質 120から二次電 子が放出される力 この二次電子は二次電子コレクター電極 119に電圧印加部 125 力も正電圧を印加することで捕捉され、電子数は電流測定部 126によって電流量とし て測定される。 [0026] The force by which the secondary electron is emitted from the substance 120 to be measured on the substrate 121 by being irradiated with the charged particle beam. The secondary electron is applied to the secondary electron collector electrode 119 to the voltage application unit 125. The force is also captured by applying a positive voltage, and the number of electrons is measured by the current measuring unit 126 as a current amount.
荷電粒子生成源と 3つの静電レンズと二次電子コレクター電極はユニットィ匕され小 型二次電子測定ユニットを構成する。  The charged particle generator, the three electrostatic lenses, and the secondary electron collector electrode are united to form a small secondary electron measurement unit.
小型二次電子測定ユニットには、二次電子コレクター電極 119周りの空間電位が 静電レンズ 112、 114、 116周りの空間電位に影響を及ぼさないように、また真空チ ヤンバー 103内の不必要な自由電子が二次電子コレクター電極 119に捕獲されない ように、外乱除去電極 118を配置することが好ま 、。  The small secondary electron measurement unit is designed so that the space potential around the secondary electron collector electrode 119 does not affect the space potential around the electrostatic lenses 112, 114, 116, and is unnecessary in the vacuum chamber 103. It is preferable to dispose the disturbance eliminating electrode 118 so that free electrons are not captured by the secondary electron collector electrode 119.
[0027] 従来は、二次電子放出率測定装置に本発明のようなグロ一放電プラズマを用いた イオン源を使用しな力つた。その理由として大電流量のビームを生成することが困難 であることが挙げられる。 [0027] Conventionally, an ion source using a glow discharge plasma as in the present invention has been used for a secondary electron emission rate measuring apparatus. The reason is that it is difficult to generate a beam with a large current.
本発明では、上述した構成にすることにより、(1)筒状電極 110の内部に棒状電極 106を設置し、筒状電極内部へガスを導入して電極間でグロ一放電プラズマを生成 することにより荷電粒子を生成し、さらに筒状電極頂部の開口部 111から圧力差によ つて押し出された荷電粒子を筒状電極 110に印加された電圧によって加速させるこ とにより、従来に比べ非常に簡素な構造で容易に低エネルギー荷電粒子ビームを生 成し、(2)荷電粒子発生源 105— 108、 110、静電レンズ 112、 114、 116、二次電 子コレクター電極 118、 119の距離を縮める構成で取り扱 ヽの難 U、イオン源として これまで着目されなカゝつたグロ一放電プラズマを用いたイオン源の二次電子放出率 測定装置を実現した。また、低エネルギー荷電粒子ビームを用いることにより被測定 物質のチャージアップの問題も解決した。このように小型二次電子測定ユニットを二 次電子放出率測定用に特化させることで、従来よりも大幅に簡素な構造で容易に低 エネルギー荷電粒子ビームを生成できる。  In the present invention, by adopting the configuration described above, (1) the rod-shaped electrode 106 is installed inside the cylindrical electrode 110, and gas is introduced into the cylindrical electrode to generate a glow discharge plasma between the electrodes. In addition, the charged particles generated by the pressure from the opening 111 at the top of the cylindrical electrode due to the pressure difference are accelerated by the voltage applied to the cylindrical electrode 110. (2) Reduce the distance between the charged particle generation sources 105-108, 110, electrostatic lenses 112, 114, 116, and secondary electron collector electrodes 118, 119. Difficult to handle due to configuration U, I realized a secondary electron emission rate measurement device of ion source using glow discharge plasma that has been focused on as an ion source. In addition, the problem of charge-up of the substance to be measured was solved by using a low-energy charged particle beam. By thus specializing the small secondary electron measurement unit for measuring the secondary electron emission rate, it is possible to easily generate a low-energy charged particle beam with a much simpler structure than before.
[0028] 上記構成の中で、荷電粒子生成源 105— 108、 110、静電レンズ 112、 114、 116 、および二次電子コレクター電極 117、 118は絶縁性スぺーサー 109、 113、 115、 1 17によって接続され、小型二次電子測定ユニットとしてユニットィ匕されている。この小 型二次電子測定ユニットは高さ 70mm以下、幅は φ 40mm以下のサイズで作製可 能である。 更に、小型二次電子測定ユニットと試料保持部を真空チャンバ一内に配置したもの が二次電子測定部である。 [0028] In the above configuration, the charged particle generation sources 105-108, 110, the electrostatic lenses 112, 114, 116, and the secondary electron collector electrodes 117, 118 are the insulating spacers 109, 113, 115, 1 17 and connected as a small secondary electron measuring unit. This small secondary electron measurement unit can be manufactured with a height of 70 mm or less and a width of φ40 mm or less. Furthermore, a secondary electron measuring unit is a unit in which a small secondary electron measuring unit and a sample holder are arranged in a vacuum chamber.
[0029] 真空チャンバ一 103内を減圧にする気体排気部 123のバルブ 122、荷電粒子生成 源に荷電粒子となるガスを供給する気体供給部 101のバルブ 102、真空計 124、電 圧印加部 125、 127、 128、 130、電流測定部 126、 129、 131の制御及び Z又は信 号入出力は制御コンピュータ 132で一括して行われる。以下に制御コンピュータ 132 の制御で行われる二次電子放出率の測定フローを述べる。  [0029] A valve 122 of a gas exhaust unit 123 that depressurizes the inside of the vacuum chamber 103, a valve 102 of a gas supply unit 101 that supplies gas that becomes charged particles to a charged particle generation source, a vacuum gauge 124, and a voltage application unit 125 , 127, 128, 130, current measuring units 126, 129, 131 and Z or signal input / output are collectively performed by the control computer 132. The measurement flow of the secondary electron emission rate performed under the control of the control computer 132 will be described below.
[0030] 最初にバルブ 122を開き真空チャンバ一 103の真空を引き、その真空度を真空計 124により測定する。所定の真空度に達すると、バルブ 102を開き荷電粒子にする気 体を所定量供給する。バルブ 102には流量計(図示せず)が備えられ、その出力信 号は、システム制御コンピュータに送信され、これに基き所定の流量に制御される。 電圧印加部 128、 130を制御して筒状電極 110及び棒状電極 106に所定の電圧を 印加し、グロ一放電プラズマを生成して荷電粒子ビームを放出する。グロ一放電ブラ ズマを生成後、電圧印加部 127を制御し静電レンズ 114に所定の電圧を印加し、ビ ームを収束させる。  First, the valve 122 is opened, the vacuum in the vacuum chamber 103 is evacuated, and the degree of vacuum is measured by the vacuum gauge 124. When a predetermined degree of vacuum is reached, the valve 102 is opened to supply a predetermined amount of gas to be charged particles. The valve 102 is provided with a flow meter (not shown), and its output signal is transmitted to the system control computer and controlled to a predetermined flow rate. The voltage application units 128 and 130 are controlled to apply a predetermined voltage to the cylindrical electrode 110 and the rod-like electrode 106, thereby generating a glow discharge plasma and emitting a charged particle beam. After the glow discharge plasma is generated, the voltage application unit 127 is controlled to apply a predetermined voltage to the electrostatic lens 114 to converge the beam.
[0031] 荷電粒子ビームが安定後、電圧印加部 125を制御して二次電子コレクター電極 11 9に所定の電圧を印加し、被測定物質 120から放出される二次電子を捕捉する。電 流測定部 126によって測定される二次電子電流量の時間に対する変化が制御コン ピュータ 132を通じて出力される。これより、工場の生産ラインにおいて全自動でリア ルタイムに被測定物質の二次電子放出率を測定することが出来る。  [0031] After the charged particle beam is stabilized, the voltage application unit 125 is controlled to apply a predetermined voltage to the secondary electron collector electrode 119 to capture the secondary electrons emitted from the substance 120 to be measured. A change in the amount of secondary electron current measured by the current measuring unit 126 with respect to time is output through the control computer 132. As a result, the secondary electron emission rate of the substance to be measured can be measured in real time in the factory production line.
[0032] なお、本実施例では被測定物に照射される荷電粒子のビーム量を測定して 、な!/ヽ 。しかし、本装置は極めて安定しており、製造工程の品質管理の目的では全く支障 ない。また、次に述べる実施例 2では荷電粒子ビーム量を直接測定する構成になつ ており、実施例 2の装置を用いて基礎データを十分に取ることで、導入ガスの種類お よび流量、棒状電極 106および筒状電極 110への印加電圧値等から、被測定物に 照射される荷電粒子のビーム量を決定することが可能である。  [0032] In the present embodiment, the beam amount of the charged particles irradiated to the object to be measured is measured. However, this device is extremely stable and has no problem for quality control purposes in the manufacturing process. In Example 2, which will be described below, the charged particle beam amount is directly measured. By sufficiently obtaining basic data using the device of Example 2, the type and flow rate of the introduced gas, the rod electrode From the voltage applied to 106 and the cylindrical electrode 110, etc., it is possible to determine the beam amount of charged particles irradiated to the object to be measured.
[0033] 荷電粒子生成源、静電レンズ、二次電子コレクタ一部をユニット化した小型二次電 子測定ユニットもしくは被測定物質を保持する試料保持部を、棒状電極の長手方向 対し垂直な平面上を移動させる駆動部を小型二次電子測定ユニットもしくは試料保 持部更に設け、この駆動部を制御コンピュータで制御して、小型二次電子測定ュニ ットと被測定物質の相対位置を所定の相対位置に変え、例えば工場の生産ライン上 にある大画面 PDPのような大きな被測定物質に対して、被測定物質の複数の点の二 次電子放出率、あるいは二次電子放出率面分布を全自動でリアルタイムに測定可能 な二次電子放出率測定装置とすることができる。 [0033] A charged particle generation source, an electrostatic lens, a small secondary electron measurement unit in which a part of a secondary electron collector is unitized, or a sample holder for holding a substance to be measured is arranged in the longitudinal direction of a rod-shaped electrode. A small secondary electron measurement unit or sample holder is further provided for the drive unit that moves on a vertical plane, and this drive unit is controlled by a control computer so that the small secondary electron measurement unit and the substance to be measured can be controlled. Change the relative position to a predetermined relative position, and for example, a large measured substance such as a large screen PDP on the factory production line, the secondary electron emission rate of multiple points of the measured substance, or secondary electrons A secondary electron emission rate measuring device capable of measuring the emission rate surface distribution fully automatically in real time can be obtained.
更に、小型二次電子測定ユニットを複数個備え、これらの小型二次電子測定ュニッ トもしくは、試料保持部を移動させる駆動部を設け、効率よく二次電子放出率面分布 を測定することも可能である。  In addition, it is possible to efficiently measure the secondary electron emission rate surface distribution by providing multiple small secondary electron measurement units and providing a drive unit that moves these small secondary electron measurement units or sample holders. It is.
実施例 2  Example 2
[0034] 図 2は研究開発施設等において被測定物質の二次電子放出率の精密測定実験を 目的として構成された二次電子放出率測定装置である。この二次電子放出率測定 装置は、荷電粒子生成源、静電レンズ、及び二次電子コレクタ一部からなる小型二 次電子ユニットと、この小型二次電子ユニットと試料保持部を真空チャンバ一内に備 えた二次電子測定部と、この二次電子測定部を動作させるための気体供給部、気体 排気部、複数の電圧印加部、複数の電流測定部、駆動部、及び、制御コンピュータ 力も構成されている。この構成は実施例 1と同じである力 それぞれの構成の細部が 実施例 1と異なっている。  [0034] Fig. 2 is a secondary electron emission rate measuring device constructed for the purpose of precise measurement experiments of the secondary electron emission rate of a substance to be measured in research and development facilities. This secondary electron emission rate measuring device includes a small secondary electron unit consisting of a charged particle generation source, an electrostatic lens, and a part of a secondary electron collector, and the small secondary electron unit and a sample holder in a vacuum chamber. The secondary electron measurement unit provided in the system, and the gas supply unit, gas exhaust unit, multiple voltage application units, multiple current measurement units, drive unit, and control computer power for operating the secondary electron measurement unit are also configured. Has been. This configuration is the same as in Example 1. The details of each configuration are different from Example 1.
[0035] 荷電粒子を生成するために、荷電粒子とする気体が気体供給部 201から気体導入 パイプ 204と気体導入管 205を通して筒状電極 210内に供給される。筒状電極 210 に正電圧を、棒状電極 206に負電圧を印加することにより、両電極間でグロ一放電 プラズマが生じる。  In order to generate charged particles, a gas to be charged particles is supplied from the gas supply unit 201 into the cylindrical electrode 210 through the gas introduction pipe 204 and the gas introduction pipe 205. When a positive voltage is applied to the cylindrical electrode 210 and a negative voltage is applied to the rod-shaped electrode 206, glow discharge plasma is generated between the two electrodes.
棒状電極 206、筒状電極 210に対してはそれぞれ電圧印加部 232、 230により電 圧を印加し、電流測定部 233、 231により電流を測定している。この筒状電極 210と 棒状電極 206はセラミックディスク 208を介して荷電粒子生成室固定板 207に固定さ れており、筒状電極 210と棒状電極 206は荷電粒子生成室固定板 207と絶縁を保つ ている。  Voltage is applied to the rod-shaped electrode 206 and the cylindrical electrode 210 by the voltage applying units 232 and 230, respectively, and the current is measured by the current measuring units 233 and 231. The cylindrical electrode 210 and the rod-shaped electrode 206 are fixed to the charged particle generation chamber fixing plate 207 via the ceramic disk 208, and the cylindrical electrode 210 and the rod-shaped electrode 206 are insulated from the charged particle generation chamber fixing plate 207. ing.
筒状電極 210の内外の圧力差により、筒状電極内でグロ一放電プラズマによって 生成された荷電粒子は、筒状電極 210の内外の圧力差により筒状電極頂部に設け た開口部 (荷電粒子通過孔) 211を通って外部に放出される。放出された荷電粒子 はさらに筒状電極 210に印加された電圧によって加速され、荷電粒子ビームとなる。 筒状電極 210に印加する電圧を操作することで、荷電粒子ビームのエネルギーを調 節することが出来る。 Due to the pressure difference between the inside and outside of the cylindrical electrode 210, the glow discharge plasma is generated inside the cylindrical electrode. The generated charged particles are released to the outside through an opening (charged particle passage hole) 211 provided at the top of the cylindrical electrode due to a pressure difference between the inside and outside of the cylindrical electrode 210. The discharged charged particles are further accelerated by the voltage applied to the cylindrical electrode 210 to become a charged particle beam. By manipulating the voltage applied to the cylindrical electrode 210, the energy of the charged particle beam can be adjusted.
[0036] 図 3はイオンビーム(荷電粒子ビーム)のエネルギー分布図である。陰極(棒状電極 )の印加電圧を一定として、陽極 (筒状電極)の印加電圧を高くすると、イオンビーム の分布のピークエネルギーは高くなる。二次電子放出率測定装置には、低エネルギ 一かつ半値幅の小さい荷電粒子ビームが適しており、図 3に示す分布はこれに当た る。  FIG. 3 is an energy distribution diagram of an ion beam (charged particle beam). When the applied voltage of the cathode (rod electrode) is constant and the applied voltage of the anode (tubular electrode) is increased, the peak energy of the ion beam distribution increases. A charged particle beam with low energy and a small half-value width is suitable for the secondary electron emission rate measurement device, and the distribution shown in Fig. 3 corresponds to this.
また、真空チャンバ一 203は気体排気部 224によって真空引きしており、真空計 22 5によって所定の真空度を制御している。この際、荷電粒子通過孔 211の孔径を真 空チャンバ一内の真空度に合わせて調節することで、低真空領域から高真空領域下 で荷電粒子ビームを生成することができる。  The vacuum chamber 203 is evacuated by a gas exhaust unit 224, and a predetermined degree of vacuum is controlled by a vacuum gauge 225. At this time, the charged particle beam can be generated from the low vacuum region to the high vacuum region by adjusting the hole diameter of the charged particle passage hole 211 according to the degree of vacuum in the vacuum chamber.
[0037] 静電レンズ 212、 216は接地され、静電レンズ 214は電圧印加部 229により電圧を 印加されている。荷電粒子ビームは静電レンズ 212、 214、 216によって収束され、 被測定物質 220へ照射される。 The electrostatic lenses 212 and 216 are grounded, and a voltage is applied to the electrostatic lens 214 by the voltage application unit 229. The charged particle beam is converged by the electrostatic lenses 212, 214, and 216, and irradiated to the measurement target material 220.
生成された荷電粒子ビーム中には電子が含まれている力 荷電粒子ビームが静電 レンズ 212、 214、 216を通過する際に、空間電位によってそれらの電子が取り除か れる。  A force in which electrons are contained in the generated charged particle beam When the charged particle beam passes through the electrostatic lenses 212, 214, and 216, these electrons are removed by the space potential.
また、被測定物質 220から放出された二次電子が二次電子コレクター電極 219に 捕捉されず、二次電子コレクター電極 219の孔からとび出る場合がある力 これらの 電子は静電レンズ 212、 214、 216による空間電位によって押し戻され、二次電子コ レクター電極 219によって捕捉される。  In addition, the secondary electrons emitted from the material 220 to be measured are not captured by the secondary electron collector electrode 219, and the electrons that may jump out of the holes of the secondary electron collector electrode 219. , 216 and is captured by the secondary electron collector electrode 219.
[0038] 荷電粒子ビームが照射されることにより、試料保持部 221に固定された被測定物質 220から二次電子が放出される力 この二次電子は二次電子コレクター電極 219に 電圧印加部 227から正電圧を印加することで捕捉され、その電子の量は電流測定部 228によって電流量として測定される。また、被測定物質に流れる電流は電流測定 部 226によって測定される。二次電子コレクター電極 219は、確実に被測定物質 22 0からの二次電子を確実に捕捉できるようにターゲットを覆うような形状をしている。 [0038] The force by which secondary electrons are emitted from the measurement target substance 220 fixed to the sample holder 221 by irradiation with the charged particle beam. The secondary electrons are applied to the secondary electron collector electrode 219. Is captured by applying a positive voltage, and the amount of electrons is measured by the current measuring unit 228 as a current amount. In addition, the current flowing through the substance to be measured Measured by part 226. The secondary electron collector electrode 219 has a shape that covers the target so that the secondary electrons from the substance 220 to be measured can be reliably captured.
[0039] 上記構成の中で、荷電粒子生成源 205— 208、 210、静電レンズ 212、 214、 216 、および二次電子コレクタ一部 218、 219は絶縁性スぺーサー 209、 213、 215、 21 7によって接続され、小型二次電子測定ユニットとしてユニットィ匕されて!、る。  [0039] In the above configuration, charged particle generation sources 205-208, 210, electrostatic lenses 212, 214, 216, and secondary electron collector parts 218, 219 are insulating spacers 209, 213, 215, Connected by 21 7 and unitized as a small secondary electron measuring unit! RU
また、小型二次電子ユニットと試料保持部 221を真空チャンバ一 203に収納、設置 した構成を二次電子測定部と呼ぶ。  A configuration in which the small secondary electron unit and the sample holding unit 221 are housed and installed in the vacuum chamber 203 is called a secondary electron measuring unit.
[0040] 真空チャンバ一 203内を減圧にする気体排気部 224のバルブ 223、荷電粒子生成 源に荷電粒子となるガスを供給する気体供給部 201のバルブ 202、真空計 225、電 圧印カロ部、 227、 229、 230、 232、電流測定部 226、 228、 231、 233の制御及び Z又は信号入出力は制御コンピュータ 234で一括して行われる。以下に制御コンビ ユータ 234の制御で行われる二次電子放出率の測定フローを述べる。  [0040] A valve 223 of a gas exhaust unit 224 for depressurizing the inside of the vacuum chamber 203, a valve 202 of a gas supply unit 201 for supplying a gas as a charged particle to a charged particle generation source, a vacuum gauge 225, a voltage marking unit, Control of 227, 229, 230, 232, current measuring unit 226, 228, 231, 233 and Z or signal input / output are performed collectively by the control computer 234. The measurement flow of the secondary electron emission rate performed under the control of the control computer 234 is described below.
[0041] 最初にバルブ 223を開き真空チャンバ一 203の真空を引き、その真空度を真空計 225により測定する。所定の真空度に達すると、バルブ 202を開き荷電粒子にする気 体を所定の流量で供給する。電圧印加部 230、 232を操作して筒状電極 210及び 棒状電極 206に電圧を印加させ、グロ一放電プラズマを生成して荷電粒子ビームを 放出する。グロ一放電プラズマを生成後、電圧印加部 229を操作し静電レンズ 214 に電圧を印加し、ビームを収束させる。  First, the valve 223 is opened, the vacuum in the vacuum chamber 203 is drawn, and the degree of vacuum is measured by the vacuum gauge 225. When a predetermined degree of vacuum is reached, the valve 202 is opened to supply a gas to be charged particles at a predetermined flow rate. The voltage application units 230 and 232 are operated to apply a voltage to the cylindrical electrode 210 and the rod-shaped electrode 206 to generate a glow discharge plasma and emit a charged particle beam. After the glow discharge plasma is generated, the voltage application unit 229 is operated to apply a voltage to the electrostatic lens 214 to converge the beam.
[0042] 荷電粒子ビームが安定するまでの電流量の時間変化を図 4に示す。図 4の測定条 件は、筒状電極: 150V、棒状電極:—300V、チャンバ一真空度: 3. 9 X 10_3Paで ある。イオンビーム (荷電粒子ビーム)電流は約 12nAと従来のイオンビーム電流に比 ベ極めて低い値で安定している。また、イオンビームが安定するまでに 60秒程度が 必要である。 [0042] FIG. 4 shows the change over time in the amount of current until the charged particle beam is stabilized. The measurement conditions in Fig. 4 are cylindrical electrode: 150V, rod electrode: -300V, and chamber vacuum: 3.9 X 10 _3 Pa. The ion beam (charged particle beam) current is about 12 nA, which is stable at a very low value compared to the conventional ion beam current. Also, it takes about 60 seconds for the ion beam to stabilize.
荷電粒子ビームが安定後、電圧印加部 227を操作して二次電子コレクター電極 21 9に電圧を印加し、被測定物質 220から放出される二次電子を捕捉し、電流測定部 2 28によって電流量 (A)として測定される。同時に、被測定物質に流れる電流量 (B) を電流測定部 226によって測定する。二次電子放出率は AZ(B— A)として求めら れる。電流測定部 226、 228によって測定される二次電子電流量の二次電子コレクタ 一への印加電圧に対する変化がシステム制御コンピュータ 234を通じて出力される。 図 5は二次電子の電流およびターゲット (被測定物質)の電流のコレクター電圧(二 次電子コレクター電極印加電圧)依存性の一例である。図 5は筒状電極が 150V、棒 状電極が— 300V、チャンバ一真空度が 3. 9 X 10_3Pa、荷電粒子ビームとして Ne+ を用いた条件で MgOの二次電子放出率を測定したデータである。コレクター印加電 圧が 20V以上の場合は、二次電子電流およびターゲット電流量は概ね一定であり、 二次電子が確実に捕捉されていることが分かる。また図 5において荷電粒子ビーム量 は l lnA程度であり、従来の技術に比べ大幅に低減されていることが分かる。これより 、研究室等にお!、て全自動で被測定物質の二次電子放出率を容易に測定すること が出来る。 After the charged particle beam is stabilized, the voltage application unit 227 is operated to apply a voltage to the secondary electron collector electrode 219 to capture the secondary electrons emitted from the substance 220 to be measured. Measured as quantity (A). At the same time, the current measuring unit 226 measures the amount of current (B) flowing through the substance to be measured. The secondary electron emission rate is obtained as AZ (B−A). Secondary electron collector of secondary electron current measured by current measuring unit 226, 228 The change to the applied voltage to 1 is output through the system control computer 234. Figure 5 shows an example of the dependence of the secondary electron current and the target (substance to be measured) current on the collector voltage (voltage applied to the secondary electron collector electrode). Figure 5 shows the data obtained by measuring the secondary electron emission rate of MgO under the conditions of 150V for the cylindrical electrode, 300V for the rod electrode, 3.9 X 10 _3 Pa, and Ne + as the charged particle beam. It is. When the collector applied voltage is 20V or higher, the secondary electron current and the target current amount are almost constant, indicating that the secondary electrons are reliably captured. In addition, in Fig. 5, the charged particle beam amount is about llnA, which is significantly reduced compared to the conventional technology. As a result, it is possible to easily measure the secondary electron emission rate of the substance to be measured in laboratories and the like!
図 6は、本発明の二次電子放出率測定システムを用いて様々な被測定物質に対す る二次電子放出率を求めた実験データである。これらは、筒状電極への印加電圧が 150V、棒状電極への印加電圧が— 300V、荷電粒子ビームが Ne+、チャンバ一内 真空度が 3. 9 X 10_3Paという測定条件の下に得られたデータである。 FIG. 6 shows experimental data for determining secondary electron emission rates for various substances to be measured using the secondary electron emission rate measurement system of the present invention. These were obtained under the measurement conditions of 150 V applied to the cylindrical electrode, 300 V applied to the rod electrode, Ne + charged particle beam, and 1.9 X 10 _3 Pa vacuum in the chamber. Data.
[0043] 荷電粒子生成源にお!ヽて筒状電極と棒状電極への印加電圧の正負を逆転するこ とにより、荷電粒子ビームを正イオンビーム力も電子ビームへ変更することができ、さ らに静電レンズへの印加電圧の正負も逆転することで、電子ビームを照射した場合 の二次電子放出率の測定が可能となる。これより、同じ装置を用いて正イオンビーム 照射による二次電子放出率と電子ビーム照射による二次電子放出率の二種類の物 理的性質を測定することができる。  [0043] By reversing the polarity of the voltage applied to the cylindrical electrode and the rod-shaped electrode at the charged particle generating source, the charged particle beam can be changed to a positive ion beam force to an electron beam. In addition, by reversing the polarity of the voltage applied to the electrostatic lens, it is possible to measure the secondary electron emission rate when the electron beam is irradiated. From this, it is possible to measure two types of physical properties, the secondary electron emission rate by positive ion beam irradiation and the secondary electron emission rate by electron beam irradiation using the same apparatus.
PDPの場合は主にイオン導出型二次電子放出に着目されている力 一般にはィォ ン導出型二次電子放出と電子導出型二次電子放出の両方とも非常に重要な物理現 象である。特に電子導出型二次電子放出に関する論文はイオン導出型二次電子放 出に関するそれよりも圧倒的に発表数が多い。従って被測定物の電子導出型二次 電子放出率を測定することにより、装置の較正を行うことが出来る。結果、被測定物 のイオン導出型二次電子放出率の測定値への信頼性が向上する。  In the case of PDP, the force mainly focused on ion-derived secondary electron emission Generally, both ion-derived secondary electron emission and electron-derived secondary electron emission are very important physical phenomena. . In particular, the number of papers on electron-derived secondary electron emission is overwhelmingly higher than that on ion-derived secondary electron emission. Therefore, the apparatus can be calibrated by measuring the electron emission type secondary electron emission rate of the object to be measured. As a result, the reliability of the measured value of the ion-derived secondary electron emission rate of the object to be measured is improved.
[0044] また、試料保持部 221に複数の試料を保持し、試料保持部を、棒状電極の長手方 向に対し垂直な平面上を移動させる駆動部を試料保持部に更に設け、この駆動部を 制御コンピュータで制御して、複数の試料が順次小型二次電子測定ユニットと対向 する位置にくるように試料保持部を移動させ、複数の被測定物質の二次電子放出率 を順次測定することができる。研究施設等の精密実験において、被測定物質毎に測 定チャンバ一の真空を破ることなぐ一度の試料装填で複数個の被測定物質の二次 電子放出率を全自動で測定可能となるので、実験時間を短縮することが可能である 産業上の利用可能性 [0044] In addition, the sample holding unit 221 further includes a driving unit that holds a plurality of samples and moves the sample holding unit on a plane perpendicular to the longitudinal direction of the rod-shaped electrode. The It is possible to measure the secondary electron emission rate of multiple substances to be measured sequentially by controlling the control computer to move the sample holder so that the multiple samples are sequentially facing the small secondary electron measurement unit. it can. In precision experiments at research facilities, etc., the secondary electron emission rate of multiple substances to be measured can be measured automatically with a single sample loading without breaking the vacuum in the measurement chamber for each substance to be measured. The experimental time can be shortened Industrial applicability
上記、実施例では主として PDPの保護膜の二次電子放出率を測定するのに適した 構成を説明したが、小型二次電子測定ユニットは様々な荷電粒子照射の必要な装 置に適用できる。  In the above-described embodiments, the configuration suitable for measuring the secondary electron emission rate of the protective film of the PDP has been mainly described. However, the small secondary electron measurement unit can be applied to various devices that require charged particle irradiation.

Claims

請求の範囲 The scope of the claims
[1] 頂部に開口部を有す筒状電極と前記筒状電極の中心軸部に設けた棒状電極と荷 電粒子となる気体を導入する気体導入管とを備え、前記筒状電極と棒状電極間のグ ロー放電プラズマによって荷電粒子を生成し、前記開口部から放出する荷電粒子生 成源と、前記開口部力 放出された荷電粒子のビームを収束させ被測定物に照射す る静電レンズと、被測定物質から放出される二次電子を捕捉するための二次電子コ レクター電極とからなる小型二次電子測定ユニットと、被測定物を保持する試料保持 部とを真空チャンバ一内に備えた二次電子測定部と、  [1] A cylindrical electrode having an opening at the top, a rod-shaped electrode provided at a central shaft portion of the cylindrical electrode, and a gas introduction tube for introducing gas serving as charged particles, the cylindrical electrode and the rod-shaped electrode Charged particles are generated by glow discharge plasma between electrodes, and a charged particle generating source that emits from the opening, and an electrostatic force that irradiates the object to be measured by converging the beam of charged particles emitted from the opening force. A small secondary electron measurement unit comprising a lens and a secondary electron collector electrode for capturing secondary electrons emitted from the substance to be measured, and a sample holder for holding the object to be measured are provided in the vacuum chamber. A secondary electron measurement unit prepared for
前記真空チャンバ一内を減圧にする気体排気部と、  A gas exhaust unit for reducing the pressure in the vacuum chamber;
前記荷電粒子生成源に荷電粒子となるガスを供給する気体供給部と、 前記荷電粒子生成源、静電レンズ及び二次電子コレクタ一部に電圧を印加し、電 流を測定する電圧印加部と電流測定部と、  A gas supply unit configured to supply a gas serving as charged particles to the charged particle generation source; a voltage application unit configured to apply a voltage to a part of the charged particle generation source, the electrostatic lens, and the secondary electron collector and measure the current; A current measuring unit;
これらを制御し、二次電子放出率を算出する制御コンピュータと、  A control computer for controlling these and calculating the secondary electron emission rate;
力 構成されることを特徴とする二次電子放出率測定装置。  Secondary electron emission rate measuring device characterized by comprising.
[2] 前記荷電粒子生成源は、前記制御コンピュータの制御により前記気体供給部から ガスを導入させ、前記電圧印加部により筒状電極に正電圧と棒状電極に負電圧を印 カロしてグロ一放電プラズマを生成することにより荷電粒子を生成し、前記気体排気部 により真空チャンバ一を減圧して筒状電極の頂部開口部より圧力差によって押し出さ れた荷電粒子を筒状電極に印加された電圧によって加速させる構造であることを特 徴とする請求項 1に記載の二次電子放出率測定装置。  [2] The charged particle generation source is configured to cause a gas to be introduced from the gas supply unit under the control of the control computer, and to apply a positive voltage to the cylindrical electrode and a negative voltage to the rod-shaped electrode by the voltage application unit. Charged particles are generated by generating discharge plasma, and the vacuum chamber is depressurized by the gas exhaust unit, and charged particles pushed out by a pressure difference from the top opening of the cylindrical electrode are applied to the cylindrical electrode. 2. The secondary electron emission rate measuring device according to claim 1, wherein the secondary electron emission rate measuring device is a structure accelerated by the electron beam.
[3] 前記静電レンズは、空間電位により前記荷電粒子のビームを収束させると同時に、 荷電粒子生成源からの荷電粒子のビーム中の電子を反射'除去し、二次電子コレク ター電極で捉えきれな力つた放出二次電子を二次電子コレクター電極に戻すように 構成されることを特徴とする請求項 1に記載の二次電子放出率測定装置。  [3] The electrostatic lens converges the beam of charged particles by a spatial potential, and at the same time, reflects and removes electrons in the beam of charged particles from the charged particle generation source and captures them with a secondary electron collector electrode. 2. The secondary electron emission rate measuring device according to claim 1, wherein the secondary electron emission rate measuring device is configured to return the emitted secondary electrons with strong force to the secondary electron collector electrode.
[4] 前記制御コンピュータの制御により電圧印加部力 前記荷電粒子生成源の筒状電 極と棒状電極への印加電圧の極性を逆転して荷電粒子のビームを正イオンビームか ら電子ビームへ変更し、さらに静電レンズへの印加電圧の極性も逆転して、電子ビー ムを照射して二次電子放出率を測定することを特徴とする請求項 1に記載の二次電 子放出率測定装置。 [4] The voltage applied by the control of the control computer is changed from the positive ion beam to the electron beam by reversing the polarity of the voltage applied to the cylindrical electrode and rod electrode of the charged particle generation source. The secondary electron emission rate is measured by irradiating an electron beam with the polarity of the voltage applied to the electrostatic lens reversed and irradiating the electron beam. Child emission rate measuring device.
[5] 前記二次電子測定部は複数の小型二次電子測定ユニットを備え、前記複数の小 型二次電子測定ユニット又は試料保持部のいずれかを前記棒状電極に垂直な平面 を移動させる駆動部を備え、前記制御コンピュータは前記駆動部を制御し、二次電 子放出率の面分布を算出することを特徴とする請求項 1乃至 4のいずれか 1項に記 載の二次電子放出率測定装置。  [5] The secondary electron measurement unit includes a plurality of small secondary electron measurement units, and drives either the plurality of small secondary electron measurement units or the sample holder to move in a plane perpendicular to the rod-shaped electrode. 5. The secondary electron emission according to claim 1, wherein the control computer controls the driving unit to calculate a surface distribution of a secondary electron emission rate. Rate measuring device.
[6] 前記試料保持部は複数の試料を保持し、前記試料保持部を前記棒状電極に垂直 な平面を移動させる駆動部を備え、前記制御コンピュータは前記駆動部を制御し、 前記複数の試料の二次電子放出率を順次算出することを特徴とする請求項 1乃至 4 の 、ずれか 1項に記載の二次電子放出率測定装置。  [6] The sample holding unit includes a driving unit that holds a plurality of samples and moves the sample holding unit in a plane perpendicular to the rod-shaped electrode, the control computer controls the driving unit, and the plurality of samples The secondary electron emission rate measuring device according to claim 1, wherein the secondary electron emission rate is sequentially calculated.
PCT/JP2005/019935 2005-10-28 2005-10-28 Secondary electron emission rate measuring apparatus WO2007049357A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/019935 WO2007049357A1 (en) 2005-10-28 2005-10-28 Secondary electron emission rate measuring apparatus
JP2007542547A JPWO2007049357A1 (en) 2005-10-28 2005-10-28 Secondary electron emission rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/019935 WO2007049357A1 (en) 2005-10-28 2005-10-28 Secondary electron emission rate measuring apparatus

Publications (1)

Publication Number Publication Date
WO2007049357A1 true WO2007049357A1 (en) 2007-05-03

Family

ID=37967481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019935 WO2007049357A1 (en) 2005-10-28 2005-10-28 Secondary electron emission rate measuring apparatus

Country Status (2)

Country Link
JP (1) JPWO2007049357A1 (en)
WO (1) WO2007049357A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108776169A (en) * 2018-03-23 2018-11-09 无锡格林通安全装备有限公司 A kind of PID gas sensors that humidity can be inhibited to interfere
CN112240968A (en) * 2020-08-31 2021-01-19 北京空间飞行器总体设计部 Initial free electron loading and quantifying method in micro-discharge test piece

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244936A (en) * 1985-08-23 1987-02-26 Nippon Telegr & Teleph Corp <Ntt> Ion beam generating method and device therefor
JPH01209633A (en) * 1988-02-18 1989-08-23 Nippon Telegr & Teleph Corp <Ntt> High velocity atomic beam source
JPH07335166A (en) * 1994-06-08 1995-12-22 Sanyuu Denshi Kk Observing device for beam sources and processing device
JP2004177135A (en) * 2002-11-25 2004-06-24 Ari Ide All-purpose type secondary electron emission rate measuring instrument
JP2004279163A (en) * 2003-03-14 2004-10-07 Sony Corp Substrate inspection device and its substrate inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244936A (en) * 1985-08-23 1987-02-26 Nippon Telegr & Teleph Corp <Ntt> Ion beam generating method and device therefor
JPH01209633A (en) * 1988-02-18 1989-08-23 Nippon Telegr & Teleph Corp <Ntt> High velocity atomic beam source
JPH07335166A (en) * 1994-06-08 1995-12-22 Sanyuu Denshi Kk Observing device for beam sources and processing device
JP2004177135A (en) * 2002-11-25 2004-06-24 Ari Ide All-purpose type secondary electron emission rate measuring instrument
JP2004279163A (en) * 2003-03-14 2004-10-07 Sony Corp Substrate inspection device and its substrate inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108776169A (en) * 2018-03-23 2018-11-09 无锡格林通安全装备有限公司 A kind of PID gas sensors that humidity can be inhibited to interfere
CN108776169B (en) * 2018-03-23 2024-02-06 无锡格林通安全装备有限公司 PID gas sensor capable of inhibiting humidity interference
CN112240968A (en) * 2020-08-31 2021-01-19 北京空间飞行器总体设计部 Initial free electron loading and quantifying method in micro-discharge test piece
CN112240968B (en) * 2020-08-31 2023-06-30 北京空间飞行器总体设计部 Method for loading and quantifying initial free electrons in micro-discharge test piece

Also Published As

Publication number Publication date
JPWO2007049357A1 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP5728728B2 (en) Ionization gauge with operating parameters and shape designed for high pressure operation
US7960704B2 (en) Compact pyroelectric sealed electron beam
WO2007108211A1 (en) Gas analyzer
JP2008535193A (en) Apparatus and process for generating, accelerating and propagating electron and plasma beams
Hernandez-Garcia et al. Compact-300 kV dc inverted insulator photogun with biased anode and alkali-antimonide photocathode
WO2007049357A1 (en) Secondary electron emission rate measuring apparatus
Schomas et al. A compact design for velocity-map imaging of energetic electrons and ions
JP6111129B2 (en) Reverse magnetron type cold cathode ionization vacuum device
Fakhfakh et al. Study of electrical properties of silica glasses, intended for FED spacers, under electron irradiation
US8227753B2 (en) Multiple current charged particle methods
JP2011210494A (en) Focused ion beam device, chip tip structure inspection method, and chip tip structure regeneration method
Hoshi et al. High resolution static SIMS imaging by time of flight SIMS
Allen et al. Transport of multiply and highly charged ions through nanoscale apertures in silicon nitride membranes
Strasser et al. Experimental setup for X-ray spectroscopy of muonic atoms formed from implanted ions in solid hydrogen
JP5350911B2 (en) Plasma generating apparatus, film forming apparatus, film forming method, and display element manufacturing method
Sámel et al. Experimental characterisation of atmospheric pressure electron gun
Ranković et al. Design and performance of an instrument for electron impact tandem mass spectrometry and action spectroscopy of mass/charge selected macromolecular ions stored in RF ion trap
Balsiger et al. Rosetta orbiter spectrometer for ion and neutral analysis ROSINA
US20110121176A1 (en) Sample inspection methods, systems and components
US20070215473A1 (en) Method for sequentially electrophoresis depositing carbon nanotube of field emission display
Kremer et al. A novel method for the collimation of ions at atmospheric pressure
JP5592136B2 (en) Chip tip structure inspection method
Satake et al. UHV-IMMA development and application to hydrogen detection
ADAME INFLUENCE OF HYDROGEN CONTAMINATION ON ELECTRON EMISSION PROPERTIES OF AMORPHOUS CARBON COATINGS USED IN PARTICLE ACCELERATORS
JP3577593B2 (en) General-purpose secondary electron emission rate measuring instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542547

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805217

Country of ref document: EP

Kind code of ref document: A1